This document and the material and data contained herein were developed under the sponsorship of the governments, their agencies, and the institutions, universities, and employing organizations or the members of the International Linear Collider Technical Review Committee. None of these entities, nor their employees, nor their respective contractors, subcontractors, nor their employees make any warranty, express or implied, or assume any liability or responsibility for accuracy, completeness or usefulness or any information, apparatus, product or process disclosed, or represent that its use will not infringe privately owned rights. Mention of any product, its manufacturer, or suppliers shall not, nor it is intended to, imply approval, disapproval, or fitness for any particular use. The sponsoring entities, individually and at all times, retain the right to use and disseminate this information for any purpose whatsoever. Notice 03 02 20.

This report was produced on behalf of the International Linear Collider Technical Review Committee by the Stanford Linear Accelerator Center under contract DE-AC03-76SF00515 with the U.S. Department of Energy. Copies may be obtained by requesting SLAC-R-606 from the following address:

Stanford Linear Accelerator Center
Technical Publications Department
2575 Sand Hill Road, MS-68
Menlo Park, CA 94025
E-mail address: epubs-l@slac.stanford.edu
CONTENTS

Executive Summary .. xxv
 Introduction ... xxv
 Genesis, Charge, and Organization xxvi
 Brief Descriptions of the Four Linear Collider Designs xxviii
 TESLA ... xxviii
 JLC-C ... xxxi
 JLC-X/NLC ... xxxi
 CLIC .. xxviii
 Methodology ... xxxv
 Overall Assessments ... xxxvi
 Ranking of Recommended R&D Issues xxxvii
 Ranking 1 ... xxxvii
 Ranking 2 ... xxxvii
 Overall Impact of Reliability on Peak and Integrated Luminosity xlii
 Added Value of the ILC-TRC .. xliii
 Concluding Remarks ... xliv
 Acknowledgements .. xlv

1 Steering Committee, Charge, Working Groups, Milestones, and Methodology ... 1
 1.1 Introduction ... 1
 1.2 Steering Committee and Charge 1
 1.3 Working Groups and Milestones 3
 1.4 Contents and Methodology ... 6
 1.5 Added Value of the ILC-TRC .. 7
 1.6 Acknowledgements ... 8

2 The Megatables ... 9

3 Descriptions of the Four Machines at 500 GeV c.m. 17
 3.1 TESLA ... 17
 3.1.1 Overview ... 17
 3.1.2 Results of Superconducting Accelerator Development 25
 3.1.3 Main Linac .. 32
 3.1.4 Injection System and Damping Rings 38
 3.1.5 Beam Delivery System ... 45
 3.2 JLC-C .. 53
6.3.1 Klystrons 233
6.3.2 Modulators 236
6.3.3 Low-Level RF Control 240
6.3.4 Conclusions 243

6.4 RF Power Distribution 245
6.4.1 TESLA 245
6.4.2 JLC-C 247
6.4.3 JLC-X/NLC 249
6.4.4 CLIC 255
6.4.5 Power Efficiency 259
6.4.6 Conclusions 261

6.5 Accelerator Structures 262
6.5.1 Technology for Superconducting Structures: TESLA 262
6.5.2 Technology for Normal Conducting Structures 274
6.5.3 Accelerator Structures: Conclusions 288

7 Luminosity Performance Working Group Assessments 299
7.1 Introduction 299
7.1.1 Charge and Guidelines 299
7.1.2 Subgroup Organization and Membership 300
7.1.3 Subgroup Report Structure 302
7.2 Damping Rings 303
7.2.1 Introduction 303
7.2.2 Experience at Operating Machines 303
7.2.3 Extracted Emittances 309
7.2.4 Extracted Beam Jitter 320
7.2.5 Particle Loss 324
7.2.6 Extracted Polarization 326
7.2.7 Upgrade to Higher Energy 326
7.2.8 Conclusions 328
7.2.9 Items for Further R&D 330
7.3 Low Emittance Transport (LET) 331
7.3.1 Introduction 331
7.3.2 Performance Limitations Present by Design in Error-Free Machine . . 334
7.3.3 Quasi-Static Errors 347
7.3.4 Dynamic Misalignments 355
7.3.5 Other Time-Dependent Sources of Error 364
7.3.6 Luminosity Issues Related to Energy Upgrades 369
7.3.7 Conclusions 371
7.3.8 Concerns 372
7.3.9 Phenomena That Were Not Reviewed 373
7.3.10 Items for Further R&D 374
7.4 Machine-Detector Interface 375
7.4.1 Overview 376
7.4.2 Beam-Beam Effects, Luminosity Spectrum, and Collision Backgrounds 377
7.4.3 Interaction-Region and Extraction-Line Layout 384
7.4.4 Assessment of Final-Doublet Issues 391
CONTENTS

7.4.5 Beam Halo, Collimation, and Machine Protection 395
7.4.6 Detector Backgrounds .. 404
7.4.7 Beam Polarization and Energy Measurement 410
7.4.8 Energy Tunability and Upgradability 411
7.4.9 Conclusions .. 415

8 Reliability, Availability, and Operability 429

8.1 Charge and Organization ... 429
8.2 Introduction .. 430
8.3 Compilation of Reliability Data 432
 8.3.1 Large Accelerators ... 432
 8.3.2 Extrapolation ... 434
8.4 RF Components .. 434
 8.4.1 Main Linac RF Systems 435
 8.4.2 Other RF Systems .. 439
 8.4.3 Low Level RF ... 440
 8.4.4 High Power Microwave Components 441
 8.4.5 Cables .. 441
 8.4.6 Evaluation—RF Components 441
8.5 Other Components .. 442
 8.5.1 Sources ... 442
 8.5.2 Magnets and Power Supplies 443
 8.5.3 Cryogenic Systems ... 444
 8.5.4 Vacuum ... 445
 8.5.5 Controls ... 446
 8.5.6 Evaluation—Other Components 447
8.6 Engineering Margins ... 448
 8.6.1 Radiation Damage ... 448
 8.6.2 Evaluation—Engineering Margins 449
8.7 Machine Protection System (MPS) 449
 8.7.1 Component Vulnerability 450
 8.7.2 Permit System ... 450
 8.7.3 Power Restoring Sequence 451
 8.7.4 Average Power ... 451
 8.7.5 Other Concerns .. 452
 8.7.6 CLIC Drive Beam MPS 452
 8.7.7 Evaluation—Machine Protection System 452
8.8 Recovery and Tuning Impact 453
 8.8.1 Tuning Procedures .. 454
 8.8.2 Evaluation of Tuning and Recovery Scenarios 455
 8.8.3 Commissioning ... 457
 8.8.4 Maintenance Model .. 457
 8.8.5 Evaluation ... 458
8.9 Summary .. 459
9 Summary of R&D Work

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0 Introduction</td>
<td>465</td>
</tr>
<tr>
<td>9.1 Ranking 1</td>
<td>466</td>
</tr>
<tr>
<td>9.2 Ranking 2</td>
<td>468</td>
</tr>
<tr>
<td>9.3 Ranking 3</td>
<td>471</td>
</tr>
<tr>
<td>9.4 Ranking 4</td>
<td>477</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>TESLA layout</td>
</tr>
<tr>
<td>2</td>
<td>Sketch of the 5 m diameter TESLA linac tunnel</td>
</tr>
<tr>
<td>3</td>
<td>The 9-cell niobium cavity for TESLA</td>
</tr>
<tr>
<td>4</td>
<td>Schematic of a JLC-C linac rf unit (one of 848 per linac)</td>
</tr>
<tr>
<td>5</td>
<td>JLC-X/NLC layout</td>
</tr>
<tr>
<td>6</td>
<td>Schematic of a JLC-X/NLC linac rf unit (one of 254 per linac)</td>
</tr>
<tr>
<td>7</td>
<td>CLIC layout (two-linac length at 500 GeV c.m. is 5 km)</td>
</tr>
<tr>
<td>8</td>
<td>Drive-beam generation complex</td>
</tr>
<tr>
<td>3.1</td>
<td>The 9-cell niobium cavity for TESLA</td>
</tr>
<tr>
<td>3.2</td>
<td>Sketch of the overall layout of TESLA</td>
</tr>
<tr>
<td>3.3</td>
<td>Sketch of the 5 m diameter TESLA linac tunnel</td>
</tr>
<tr>
<td>3.4</td>
<td>Side view of the 9-cell cavity with the main power coupler port and two higher-order mode couplers</td>
</tr>
<tr>
<td>3.5</td>
<td>Excitation curves of cavities of the third production series</td>
</tr>
<tr>
<td>3.6</td>
<td>Excitation curves of three electropolished single-cell cavities without heat treatment at 1400°C. The tests have been performed in different cryostats and under slightly different conditions (magnetic shielding, helium temperature)</td>
</tr>
<tr>
<td>3.7</td>
<td>Excitation curve of a TESLA 9-cell cavity after buffered chemical polishing (BCP) and electropolishing (EP), but before application of the baking procedure</td>
</tr>
<tr>
<td>3.8</td>
<td>Acceleration of long macro pulses. The beam energy and the bunch charge within one single macro pulse are shown. The rf control system was operated with the feedback loop active for beam loading compensation. The bunch spacing was 444 ns.</td>
</tr>
<tr>
<td>3.9</td>
<td>Illustration of BNS damping in TESLA. The correlated energy spread (dashed curve in upper figure, full curve without BNS) is generated in the 5 to 25 GeV section of the linac and the beneficial effect is shown in the dashed autophasing curve.</td>
</tr>
<tr>
<td>3.10</td>
<td>Example of (non-dispersive) wakefield correction bumps for one particular random seed of misalignments. With two bumps, the emittance growth is reduced by one order of magnitude.</td>
</tr>
<tr>
<td>3.11</td>
<td>Orbit offsets in µm of the first 500 bunches at the end of the linac. The lower curve shows the effects of cavity misalignments only (Δyc = 0.5 mm rms, one seed). The upper curve shows the effects of the same misalignments, but with an additional one σy injection error of the beam (coherent betatron oscillation).</td>
</tr>
<tr>
<td>3.12</td>
<td>Sketch of the positron source layout.</td>
</tr>
</tbody>
</table>
3.13 Conceptual layout of the positron damping ring. The electron ring is similar with the exception that the injection point is located close to the indicated ejection position at the beginning of the linac. ... 41

3.14 Dynamic acceptance of the damping ring. The simulations include quadrupole and sextupole alignment errors which result in an average emittance coupling of 1%, and the real physical aperture as the maximum amplitude limit. The phase space volume of the incoming beam as defined by acceptance of the positron pre-accelerator is also shown. ... 43

3.15 Optics functions for the TESLA BDS (e^-). .. 45

3.16 Geometry of the primary e^- BDS from linac to IP. .. 46

3.17 Interaction region layout. ... 48

3.18 Luminosity spectra for 500 GeV and 800 GeV center of mass energy. 49

3.19 Relative rms vibration amplitude ($f \geq 5$ Hz) in the HERA tunnel as a function of distance between the points where the seismometers were placed (squares, right hand scale) and the measured coherence (diamonds, left hand scale). These data were taken in 1995. A more recent (2000) result for the difference amplitude across the interaction region East is also shown (triangle). 51

3.20 Luminosity as a function of correlated emittance growth obtained from beam-beam simulations (see text). The diamonds are the results without feedback, the squares with IP steering feedback “on.” The dashed line denotes the expected luminosity if the emittance growth was uncorrelated. 52

3.21 Same as Figure 3.20, but for a modified parameter set with reduced disruption parameter (see text). ... 53

3.22 Schematic diagram of the C-band rf unit. .. 57

3.23 Schematic diagram of the C-band modulator circuit. .. 58

3.24 Output waveform of the modulator. .. 58

3.25 Cross-sectional view of the E3746 C-band klystron. ... 59

3.26 Output waveform of the klystron. .. 60

3.27 Output power and efficiency of E3746 klystron. The dashed line is a result of computer simulation using FCI and the circles represent the measured results. 60

3.28 Cut-away view of the first C-band PPM klystron, TOSHIBA-E3747. 61

3.29 Output waveform of C-band PPM klystron. .. 62

3.30 Output power and efficiency of C-band PPM klystron. .. 62

3.31 Schematic diagram of the phase modulation system. ... 63

3.32 The power gain of the rf pulse compressor with and without phase compensation. 63

3.33 Cut-away view of the C-band choke-mode structure. .. 65

3.34 Dipole transmission of the choke. ... 65

3.35 Measured (circles) and expected (solid line) wakefield. 67

3.36 Choke-mode structure with rf-BPM. ... 67

3.37 RF BPM with common-mode-less design. .. 67

3.38 Schematic of the JLC-X/NLC. .. 70

3.39 Energy versus luminosity for Stage II NLC rf system ... 73

3.40 Schematic of the JLC-X/NLC linac layout; each sector contains 20 rf units in a length of 520 meters. .. 75

3.41 Schematic of a JLC-X/NLC linac rf unit (one of 254 per linac); the SLED-II delay lines could be located in either the linac or utility tunnels. 77
3.42 Photograph of the NLC induction modulator with three of the SLAC 5045 klystrons that are used as a load. .. 80
3.43 Schematic of the JLC Linear Induction Modulator design. 82
3.44 Schematic of the dual-moded SLED-II demonstration at the NLCTA. 84
3.45 Comparison of measured and predicted wakefield for the RDDS1 structure. .. 86
3.46 Schematic of the conventional e^+ production system. 94
3.47 Schematic of NLC positron damping ring complex. 97
3.48 Beam delivery system layout with two interaction regions separated by 150 m longitudinally. ... 101
3.49 Optics of the NLC collimation and final focus systems. 103
3.50 Energy reach of the NLC final focus where L_0 is the luminosity without the pinch enhancement, L is the nominal luminosity, and L_s is the luminosity after scaling the bending magnets. By scaling the bending magnets in a manner to maintain the IP position the present system can accommodate beam energies well above 1500 GeV. .. 103
3.51 Magnet position jitter and drift (or alignment) tolerance of the NLC FFS calculated using the FFADA program. “Jitter” tolerance relates to the magnet’s capacity to steer beams out of collision at the IP, while “drift” refers to the magnet’s capacity to cause the beams at the IP to be too large. Reciprocal tolerances are shown, so in this case bigger is more difficult. Note the large jitter sensitivity of the final doublet magnets QF1 and QD0............ 108
3.52 Power spectrum of ground motion, in units of μm^2/Hz, from several accelerator tunnels and a cave. The strong peak at 0.15 Hz in all spectra is from ocean waves. The shoulder at 4 Hz in the HERA data is most likely due to “cultural noise,” vibration sources within the accelerator complex and from the surrounding urban area. .. 111
3.53 Beam-based alignment hardware in the NLC main linac. 113
3.54 Misalignment amplitude leading to 10% $\Delta \varepsilon/\varepsilon$ as a function of the accelerator structure length (90 cm) for the long-range (solid) and short-range transverse wakefields. An alignment length of one structure corresponds to random rigid misalignments of individual structures while lengths of less than one structure correspond to random piecewise misalignments of the structures. With the S-BPM and structure mover system, the JLC-X/NLC essentially eliminates the short-range wakefield tolerances. .. 114
3.55 Emittance dilution (%) in the NLC main linacs due to diffusive ground motion, assuming an ATL coefficient comparable to that measured at SLAC. A case with no linac feedbacks (squares) and a case with the proposed NLC steering feedback architecture (circles) are both considered. 116
3.56 Degradation of alignment under ATL ground motion with IP beam-beam deflection based feedback only, with orbit feedback added, and with direct luminosity optimization added. .. 118
3.57 The top shows the overall layout of the CLIC complex and the bottom shows the tunnel lengths (km) for the linacs and the BDS (base-line design) on each side of the IP, at various cm energies. .. 119
3.58 CLIC injector complex for the e^+ and e^- main beams. 124
3.59 Left: Optical functions over the arc cell. Right: Optical functions from the end of the arc to the first wiggler FODO cell. .. 128
LIST OF FIGURES

3.60 Left: Optical functions in the first chicane. Right: in the second chicane. .. 131
3.61 Left: The beta-function in the main linac lattice. Right: The full width energy spread along the linac. To estimate the total energy spread the uncorrelated incoming energy spread is cut at $\pm 2.5\sigma_E$. .. 132
3.62 Left: The emittance growth in the linac after the ballistic alignment and optimization of the emittance tuning bumps. Right: The emittance growth after 1000 s of ground motion if seven feedbacks are used. 134
3.63 Left: Cross-sectional view of the TDS geometry. Right: Photograph of a TDS cell with damping waveguides and SiC loads. ... 136
3.64 Left: Accelerating gradient in MV/m as a function of cell number. The solid line is with beam and the dotted one without. Right: Transverse wake spectrum in V/Hz/pC/mm/m between 16 and 30 GHz. .. 136
3.65 Left: Transverse wake of the TDS with the 10 mm load, as computed by the double-band circuit model (n.b. the computation has been made for a 15 GHz structure). Right: Detail of the TDS load. The load is 2 mm wide at its base and 0.2 mm2 at the tip. ... 137
3.66 500-GeV optics for the compact beam delivery (left) and final focus (right) systems. .. 139
3.67 Top view of the CLIC IP region with the detector, the colliding beams, and the final quadrupoles for the base-line (left) and the compact final-focus optics (right) at 3 TeV. Scales are indicated. The transverse size of the detector is about 17 m. ... 140
3.68 View from above on the adopted mask design. The sketch is stretched in the vertical direction. Care has to be taken that no particles are backscattered through the hole in the mask. ... 142
3.69 Schematic layout of the CLIC rf power source. Two such complexes (one for each of the main linacs) will be needed to provide the power for 500 GeV c.m. CLIC operation. Only two of the 4 decelerator/accelerator units composing a linac are shown. ... 144
3.70 Layout of the CLIC Drive Beam Injector. ... 147
3.71 Combined pulses at the drive-beam injector linac entrance. ... 147
3.72 Left: The beta functions in the drive beam accelerator. Right: The final offset of a beam entering the structure with an offset of one rms bunch size σ. The value is normalized to the final beam size. ... 149
3.73 Left: Conceptual view of the SICA accelerator structure. Right: Machined disc of the 3 GHz version of the SICA structure. .. 151
3.74 Drive-beam klystron-modulators for one generation complex. ... 153
3.75 50 MW MBK rf module layout. .. 154
3.76 Schematic layout of the injection insertion with rf deflectors (left) and of the extraction insertion (right). At injection, the circulating bunches will travel on the central or inner orbit, while the injected bunches are kicked by the 2rd deflector onto the equilibrium orbit. The train of combined bunches is ejected before the next pulse reaches the deflecting phase represented by the dotted line trajectory (intercepting the septum). .. 157
3.77 Left: The ratio between output power and maximum decelerating field as a function of the fundamental frequency of the PETS. Right: The final energy distribution in the various bunches of the drive-beam train. .. 158
3.78 Left: The 3σ-envelope of a beam with initial offsets of $\Delta x = \sigma_x$ and $\Delta y = \sigma_y$. For comparison the 4σ-envelope of a beam with no offset is also shown. Right: the 3σ-envelopes in a decelerator after beam-based alignment. Three examples are shown together with the envelope that contains all of 100 simulated cases.

3.79 A quarter geometry of the C-PETS with 12 damping slots and SiC loads.

3.80 The electric field pattern of the rf power extractor for the C-PETS.

3.81 Left: The long-range wakes in the C-PETS. Right: The transverse impedance in the C-PETS. (grey: without damping, dark: with damping.)

4.1 Energy versus luminosity for the Stage II NLC rf system.

4.2 Left: Emittance evolution in the main linac after static correction which includes ten emittance bumps. Right: Optics of the compact beam delivery system at 3-TeV c.m.

5.1 Layout of the TESLA Test Facility at DESY.

5.2 Evolution of the average gradient obtained with 9-cell cavities in CW-tests in the years 1995 to 2000 (the time on the horizontal axis refers to the preceding 12 month period, over which the test results have been averaged). Both data for first test and best test (after additional treatment) are shown.

5.3 Performance (quality factor versus gradient) of a 9-cell electro-polished cavity on the CW test stand, March 2002.

5.4 Layout of the first stage of SCSS.

5.5 Schematic of the Stanford Linear Collider.

5.6 Spot sizes and cross-sectional area at the SLC IP as a function of time from 1990 through 1998; the design spot sizes were 1.7 μm by 1.7 μm.

5.7 Schematic of the NLC Test Accelerator.

5.8 Photograph of the beam line in the NLC Test Accelerator.

5.9 Scanning electron microscope photograph of damage along the sharp edge of an input coupler under two different magnifications.

5.10 Gradients achieved in DDS3, a 1.8-m structure, and a number of test structures constructed from 2000 through 2002; note that most of the test structures exceeded the 70 MV/m goal and the most recent test structure, with a new design for the input and output couplers, is operating at 90 MV/m.

5.11 Schematic of the ASSET test facility.

5.12 Photograph of the collimator wakefield test facility and an example of a measurement which also shows the nonlinearity of the wakefield when the beam is close to the collimator edges.

5.13 Layout of ATF.

5.14 Examples of diagnostics and controls developed for the FFTB: (left) schematic of a remote magnet mover with 300 nm steps in X and Y and (right) measured beam trajectories through an rf BPM triplet having ~30 nm resolution showing 130 nm of beam jitter.

5.15 Histogram of the FFTB vertical spot size measurements (left) with an average of 70\pm7 nm versus the expected size of 59\pm8 nm and (right) a plot showing a typical measurement using the Shintake laser interferometer corresponding to a 77 nm beam spot.
5.16 Photograph (left) of 100 kg block stabilized in six degrees-of-freedom and
(right) of the compact nonmagnetic inertial sensor under development. 203
5.17 Schematic of the FONT experiment in the NLC Test Accelerator. 204
5.18 Layout of the final configuration of CTF3. 205
5.19 Chart with CTF3 schedule. .. 205
5.20 Prototype cell for the SICA structure. 207
5.21 Schematic description of the pulse compression and frequency multiplication
using a delay loop and a transverse rf deflector. Note that the last bunch
coming from the left is in an even bucket again for consecutive deflection into
the delay loop, therefore shifted in phase. After the delay loop, there are 140 ns
between the trains. After the combiner ring, a single 140 ns long drive beam
pulse with a current of 35 A is obtained. The final bunch spacing is 2 cm... 207
5.22 Amplification of an initial error in position Δx (crosses) and angle $\Delta x'$(squares)
of the injected beam as a function of the betatron phase advance in the ring,
after five turns. The ring tune has been chosen in the low amplification region,
close to a phase advance of 260°. 208
5.23 Vertical rms amplitude of vibration, integrated from above a given frequency
f_{min}, versus this frequency. Vibration was simultaneously measured on the
floor, on the quadrupole, and on the tabletop. 211
6.1 Schematic layout of the TESLA waveguide distribution system 246
6.2 Schematic layout of a single-moded rf unit. 252
6.3 Interleaved single-moded DLDS scheme. 252
6.4 Schematic layout of a dual-moded rf unit. 254
6.5 Interleaved dual-moded DLDS scheme. 254
7.1 Left: Horizontal emittance measured in the extraction line versus bunch in-
tensity. Right: Vertical emittance measured in the damping ring and in the
extraction line versus bunch intensity. The curves are from calculations assum-
ing emittance ratios of 0.004, 0.006, and 0.008. 308
7.2 Left: Energy spread measured in the extraction line versus bunch intensity.
The curves are from calculations assuming emittance ratios of 0.004, 0.006, and
0.008. Right: Energy spread versus store time for three different bunch inten-
sities. The curves are from calculations assuming an emittance ratio of 0.006. 308
7.3 Vertical emittance in the TESLA damping rings resulting from diffusive (ATL)
ground motion. ... 314
7.4 Vertical emittance in the NLC main damping rings resulting from diffusive
(ATL) ground motion. .. 315
7.5 Average electron density versus secondary electron yield for the TESLA DR
and the NLC MDR. The simulation uses only the round chamber geometry
of the TESLA DR field-free straight sections, and only the chamber geometry
(which includes an antechamber) of the field-free regions in the NLC MDR.
The neutralization densities for NLC and TESLA are represented by the upper
and lower horizontal dotted lines, respectively. 318
7.6 Depolarization time of the NLC main damping ring (normalized to standard
store time 0.025 sec) versus energy. 327
7.7 Depolarization time of the TESLA damping ring with vertical bends and coupling bump (normalized to standard store time 0.2 sec) versus energy. 327

7.8 Energy spread in the main linac of each linear collider design: (a) correlated (“BNS”) energy spread for BBU control; (b) total energy spread, including incoming energy spread and BBU-control energy spread. 335

7.9 Relative luminosity as a function of beam energy. In this case, the energy of one beam at the IP is held constant, while the IP energy of the other beam is varied by uniformly scaling the accelerating gradient of its linac. 339

7.10 Variation in NLC IP parameters as the phase of LET injection is varied from −6 mm to 6 mm: (left) centroid energy and energy spread, normalized to design RMS energy spread; (right) centroid longitudinal position and bunch length, normalized to design RMS bunch length. Note that vertical axis is in percent in both cases. 343

7.11 Luminosity as a function of the vertical offsets of the two beams in absence of correlated emittance growth. Left: offset in absolute values. Right: offset in units of beam size σ_y; an approximation for the luminosity of rigid beams which do not focus one another is shown for comparison. 344

7.12 The luminosity in TESLA as a function of the vertical emittance growth using different levels of optimizations: zeroing the offset and vertical crossing angles of the beams (crosses), varying the offset to maximize luminosity (x’s), and varying both the offset and the vertical crossing angle to maximize luminosity (stars). For comparison the approximate scaling with $L \propto 1/\sqrt{\epsilon_y}$ is also shown; this is the luminosity scaling for an uncorrelated emittance growth. 345

7.13 The allowed offset as a function of the allowed luminosity loss. In the case of NLC and CLIC the multibunch case (m.b.) does not require much better stability than the single bunch case (s.b.). In the case of JLC-X the tolerance is tightened significantly by the multibunch kink instability. In TESLA no multibunch effects exist. 346

7.14 Ground motion model spectra. The absolute spectra (left), the integrated absolute spectra (right, solid lines) and the integrated relative (for $\Delta L=50$ m) spectra (right, dashed lines). 357

7.15 Results of 1995 vibration measurements on the SLC detector [51] (left plot). The integrated spectra show that the difference of the motion (solid line) of the South triplet (dashed curve) and the North triplet (dash-dot curve) is about 30 nm, as measured by two STS-2 seismometers installed on the triplets. The black dotted line shows an approximation for the FD noise used in the integrated simulations, which extends to higher frequencies to represent more accurately the expected spectrum after low frequency detector modes have been suppressed. The right plot shows the modelling transfer functions used in simulations to represent FD stabilization (dashed: already achieved; solid: expected performance with new sensors). 358

7.16 Example of simulations of TESLA, JLC-X/NLC and CLIC for three models of ground motion with simple intratrain IP feedback for TESLA and train-to-train feedback for the others. The final doublet follows the ground with no additional vibration due to the detector. 359
7.17 Percentage of luminosity obtained for each LC with ground motion models A, B, C, with and without additional vibration of FD, and with different combinations of IP feedbacks and FD stabilization. With the intratrain feedback, neither FD noise nor stabilization was included. The results are averaged over 256 trains (50 for TESLA). The error represents the statistical variation in mean luminosity. .. 360

7.18 TESLA simulations with ground motion C and intratrain IP feedback with full optimization. Left: Normalized luminosity. Right: Optimal y/σ_y and $y'/\sigma_{y'}$ with respect to zero offsets. Only one seed is plotted. 361

7.19 Angular distribution of beamstrahlung photons in the horizontal (left) and vertical (right) planes, for TESLA (top curve), JLC-C and JLC-X/NLC (middle curves) and CLIC (bottom curve). The flux predictions assume perfectly centered collisions of ideal gaussian beams, and correspond to the parameters listed in Table 7.22................................. 378

7.20 Luminosity spectra for 500 GeV and 800 GeV c.m. energy (TESLA parameters). .. 378

7.21 Polar-angle and transverse-momentum distribution, after the collision, of e^\pm from incoherent pair production. This particular simulation uses CLIC parameters, but such behavior is generic across projects. 380

7.22 Simulated beam-beam backgrounds at the IP, showing the trajectories of e^\pm pairs and electromagnetic shower debris (x-z view). The dashed blue lines represent photons, red solid lines electrons, and green lines positrons. The incoming e^- beam comes in from the left. High-energy e^\pm debris roughly follow the initial beam direction into the extraction line, while lower-energy products spiral along the solenoid field lines and hit the front face of the luminosity monitor. Note that pair-induced low-energy e^- traveling to the left (the right) are defocused (focused) by the incoming e^- (e^+) beam (and similarly for positrons). This particular simulation reflects the NLC IR layout and beam parameters, but similar features are found in all projects. 382

7.23 IP masking and spent-beam extraction in the TESLA design (y-z view). . . 382

7.24 NLC IR layout (LD detector model, x-z view). M1 and M2 are detector masks, QD0 and QF1 are the final doublet, and SF0 and SF1 are chromaticity-correcting sextupoles. .. 383

7.25 View from above of the CLIC mask design. The sketch is stretched in the vertical direction. Care has to be taken that no particles are backscattered through the hole in the mask. 383

7.26 Top view of the CLIC IP region with the detector, the colliding beams, and the final quadrupoles for the base-line (left) and the compact final-focus optics (right) at 3 TeV. Scales are indicated. The transverse size of the detector is about 17 m. 385

7.27 Vertical layout of the TESLA final-transformer region, as presented in Section II-7.6.2 of Reference [93]. The beamstrahlung power levels are for the 500 GeV machine under ideal conditions. 388
7.28 Collimation-system performance [104] assuming an incident fractional halo of \(10^{-3}\). Left: fractional loss of charged-halo particles, integrating back, starting at the IP, and normalized to the nominal bunch charge. The horizontal scale shows the distance from the IP. The upstream edge of the secondary-collimation system is located at \(-543\) and \(-583\) m in NLC and TESLA respectively. In CLIC, the last betatron absorber is located at \(-632\) m. Right: number of charged-halo particles per bunch, normalized to the nominal bunch charge, in a rectangular \(x-y\) window at the entrance to the final doublet, as a function of the collimation depth. The scale factor \(K\) defines the window dimension: for \(K=1\), the window size corresponds to the effective collimation depth listed, for each machine, in Table 7.27. .. 398

7.29 Number of particles per bunch crossing that hit the innermost layer of the vertex detector. The same solenoidal field \(B_z=4\) T and angular coverage \(|\cos \theta| \leq 0.98\) has been assumed for all machines. The radial edge of the stay-clear cone is apparent. .. 405
LIST of TABLES

1 Second ILC-TRC Overall Organization xxvii
2 Summary of Machine Parameters xxix

1.1 Second ILC-TRC overall organization 3
1.2 Technology, RF Power, and Energy Working Group 4
1.3 Luminosity Performance Working Group 5
1.4 Reliability, Availability, and Operability Working Group 5
1.5 Major milestones and meetings 6

2.1 Overall parameters ... 10
2.2 Linear colliders: electron and positron sources 11
2.3 Damping rings ... 12
2.4 Pre-linacs and bunch compressors 13
2.5 Main linac parameters 14
2.6 Linear colliders: beam delivery system and interaction point parameters . . . 15

3.1 TESLA parameters for the $E_{cm}=500$ GeV baseline design. The machine length includes a 2% overhead for energy management. 23
3.2 Estimated luminosity at lower energies (see text). 24
3.3 Beam parameters for the $\gamma\gamma$ option. The effective luminosity takes into account only the high energy peak of the luminosity spectrum ($E_{cm,\gamma\gamma} \sim 400$ GeV). . . 25
3.4 Parameters of the 9-cell cavity (note that we adopt here the definition of shunt impedance by the relation $R = V^2/P$, where P is the dissipated power and V the peak voltage in the equivalent parallel LCR circuit). 26
3.5 Overview of components in each of the two main linacs. A 2% overhead for energy management is included. 33
3.6 Overview of power consumption and efficiencies for the main linac. 33
3.7 Parameters related to single bunch emittance dilution. Note that the relative emittance dilution is quoted with respect to the design emittance at the IP. . . 35
3.8 Overview of the positron source main parameters. 40
3.9 Parameters for the TESLA positron damping ring. Where different, values for the electron damping ring are given in parentheses. 42
3.10 C-band and C-X hybrid parameters. 55
3.11 C-band and C-X hybrid parameters (continued). 56
3.12 Design parameters and test results for the E3746 klystron. 59
3.13 Target parameters of C-band PPM klystron. 60
3.14 Parameters for Stage I and Stage II of the JLC-X/NLC. 71
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15</td>
<td>Low energy operation parameters for the NLC.</td>
<td>72</td>
</tr>
<tr>
<td>3.16</td>
<td>NLC Design Emittance and Jitter budgets for 500 GeV c.m. parameters.</td>
<td>74</td>
</tr>
<tr>
<td>3.17</td>
<td>Intrinsic versus design emittances and luminosity for JLC-X/NLC at 1 TeV.</td>
<td>74</td>
</tr>
<tr>
<td>3.18</td>
<td>Parameters for γ/γ collisions at the JLC-X/NLC.</td>
<td>74</td>
</tr>
<tr>
<td>3.19</td>
<td>JLC-X and NLC rf system parameters.</td>
<td>79</td>
</tr>
<tr>
<td>3.20</td>
<td>Beam parameters as delivered by the electron source system to the electron main damping ring system for the 1.4 ns bunch spacing option.</td>
<td>91</td>
</tr>
<tr>
<td>3.21</td>
<td>Beam parameters delivered by the positron source system to the positron pre-damping ring system for the 1.4 bunch spacing option.</td>
<td>92</td>
</tr>
<tr>
<td>3.22</td>
<td>Comparison of NLC main damping rings with design parameters of other rings.</td>
<td>95</td>
</tr>
<tr>
<td>3.23</td>
<td>Requirements for NLC main damping rings.</td>
<td>96</td>
</tr>
<tr>
<td>3.24</td>
<td>Parameters for main damping rings and the pre-damping ring.</td>
<td>98</td>
</tr>
<tr>
<td>3.25</td>
<td>Requirements for JLC-X/NLC diagnostic and correction devices, compared with achieved capabilities of existing equipment.</td>
<td>109</td>
</tr>
<tr>
<td>3.26</td>
<td>Distribution of the main linac emittance budget and resulting engineering tolerances. Dilutions are applied to the vertical plane except where indicated. Beam-to-quad misalignment is an “effective misalignment” assuming DFS + bumps with 1.0 μm effective BPM resolution. Multibunch sources assume factor of 10 suppression via subtrain feedback. Note that the tolerance on structure dipole frequencies is for the worst-case error mode (random cell-by-cell frequency errors which are reproduced in every structure), and all other distributions of frequency errors have considerably looser tolerances.</td>
<td>117</td>
</tr>
<tr>
<td>3.27</td>
<td>Basic target parameters at different stages of the injection.</td>
<td>123</td>
</tr>
<tr>
<td>3.28</td>
<td>Main-beam klystron-modulator requirements. MDK= Modulator-Klystron system, SBK= Single-Beam Klystron, MBK= Multibeam Klystron.</td>
<td>126</td>
</tr>
<tr>
<td>3.29</td>
<td>Target beam parameters for the damping ring at 500 GeV (3 TeV).</td>
<td>127</td>
</tr>
<tr>
<td>3.30</td>
<td>CLIC damping ring parameters (3 TeV present design).</td>
<td>129</td>
</tr>
<tr>
<td>3.31</td>
<td>Fundamental mode parameters of the TDS as calculated using HFSS.</td>
<td>136</td>
</tr>
<tr>
<td>3.32</td>
<td>Power source basic parameters.</td>
<td>146</td>
</tr>
<tr>
<td>3.33</td>
<td>Beam characteristics at the drive-beam injector exit.</td>
<td>148</td>
</tr>
<tr>
<td>3.34</td>
<td>Parameters of the SICA drive-beam accelerator structures.</td>
<td>152</td>
</tr>
<tr>
<td>3.35</td>
<td>Multibeam klystron data.</td>
<td>155</td>
</tr>
<tr>
<td>3.36</td>
<td>Drive-beam klystron-modulator requirements.</td>
<td>155</td>
</tr>
<tr>
<td>3.37</td>
<td>Parameters of the C-PETS.</td>
<td>161</td>
</tr>
</tbody>
</table>

4.1 TESLA parameters for an upgrade to 800 GeV. It is assumed that the linac is built with 2 9-cell superstructures and the rf power has been doubled (see text).166

4.2 Luminosity achievable with the TESLA-500 baseline design at higher center-of-mass energies without any upgrade of installed hardware. The numbers quoted take into account the reduction of beam current with increasing energy, the increase in cavity filling time, and a reduction of the repetition rate to 4 Hz at 600 GeV and 3 Hz at 700 GeV. | 167

5.1 Milestones reached during the TESLA R&D program and schedule for the near future. | 183
5.2 The design goals of the ATF and the accelerator performance achieved. The numbers in parenthesis indicate the number of particles per bunch for the particular measurement. .. 196
5.3 ATF timeline and plans .. 199

6.1 Tables for Electrons .. 220
6.2 Tables for Positrons .. 221
6.3 Comparisons of profile monitor characteristics. 230
6.4 Klystron Summary ... 234
6.5 Modulator Summary .. 237
6.6 Power Supply Summary .. 238
6.7 Low-level RF Control System Summary 241
6.8 RF Power Efficiencies for TESLA 0.5 TeV 259
6.9 RF Power Efficiencies for JLC-C 0.5 TeV 259
6.10 RF Power Efficiencies for JLC-X/NLC 0.5 TeV 260
6.11 RF Power Efficiencies for CLIC 0.5 TeV 260
6.12 Tolerances on cavity fabrication. 266

7.1 Assumed errors in simulation 306
7.2 Simulated vertical emittance after corrections 307
7.3 Comparison of calculated sensitivities in operating rings with the NLC and TESLA damping rings. \(Y_{\text{align}} \): sextupole vertical misalignment; Roll align: quadrupole roll alignment; \(Y_{\text{jitter}} \): quadrupole vertical jitter; \(\Delta k/k \): fractional quadrupole strength error. [9] 311
7.4 Summary of vertical emittance correction evaluation. All simulated misalignments and rolls have a Gaussian distribution truncated at \(3\sigma \) 313
7.5 Analytical estimates of electron cloud effects in the damping rings. 319
7.6 Intrabeam scattering calculation results. 320
7.7 Acceptable residual extraction kicker deflection. 320
7.8 Predicted beam jitter from correlated ground motion. 321
7.9 Nominal parameters and jitter in the damping ring extraction kickers. 322
7.10 Estimates of circumference and energy variation due to ATL ground motion and earth tides. 323
7.11 RF system and lattice parameters for longitudinal jitter simulations. 323
7.12 Touschek lifetime at equilibrium emittance for a momentum aperture of 1.0%. 325
7.13 Emittance growth due to a 1\(\sigma_y \) initial oscillation in the main linac. Cases without and with correlated energy spread, but without initial energy spread, are shown; also shown is the case with both initial and correlated energy spread. 334
7.14 Growth in normalized vertical emittance due to a 1\(\sigma_y \) offset of all bunches at the start of the linac. The simulation included single bunch wakefields and BNS damping, but no initial uncorrelated energy spread. NLC result from T. Raubenheimer, private communication. TESLA result based on DESY TESLA-00-28, 2000. CLIC result from D. Schulte, private communication. . . 336
7.15 Emittance growth in Linear Collider LETs for on-axis beams. Initial emittances are damping ring extraction for TESLA and NLC, main linac injection for CLIC. ... 338
7.16 Emittance growth in Linear Collider LETs from 1 σ oscillations in horizontal or vertical planes. These values are growth in addition to the on-axis growth, and include short-range wakefields. Initial emittances are damping ring extraction for TESLA and NLC, main linac injection for CLIC. “Ideal” refers to the expected effect for a fully filamented oscillation, \(\Delta \gamma \epsilon = (\sqrt{2} - 1) \gamma \epsilon \). Note that emittance growths due to initial oscillation scale quadratically with the amplitude of the oscillation. .. 338

7.17 Jitter-amplification figures of merit for collimators in the final doublet betatron phase. “N/A” indicates that the collimator classes in question (FF spoilers, etc.) are not present in the design and thus contribute no wakefields. 341

7.18 Emittance growth for each LET design due to effects present in an error-free LET lattice. “N/A” indicates a value that was not yet available at the time of writing. Initial emittances for TESLA and JLC-X/NLC are damping ring extraction values, while for CLIC, main linac injection values are used. 347

7.19 Upper table: RMS misalignments required to achieve a 1 nm growth in vertical emittance in the main linac of each LET. Emittance growth estimates assume that the beam is steered to zero BPM readings (TESLA), or that the beam is steered via quad movers and that rf girders are then aligned to the beam trajectory (JLC-X/NLC and CLIC). Lower table: Expected \textit{ab initio} component installation accuracy. 350

7.20 Multibunch growth in normalized vertical emittance due to trajectory offsets in the rf structures with realistic machine imperfections. The NLC result [47] assumes 30 \(\mu \)m rms structure-to-structure offsets on a girder as the dominant error source. The TESLA result [48] assumes 500 \(\mu \)m rms structure-to-structure offsets. The CLIC result is from [49]. 353

7.21 Performance sensitivity of bunch compressor rf parameters. 367

7.22 Linear colliders: beam delivery system and interaction point parameters. 379

7.23 Neutron hit density in the proposed vertex trackers, in units of \(10^9 \) n/(cm\(^2\)×yr) at 500 GeV c.m. energy. The numbers reflect the different masking and extraction-line geometries as optimized by the individual machine and detector study groups. LD and SD refer to the two NLC detector models mentioned in Section 7.4.3.1. Neutron-flux predictions are not yet available for CLIC. 381

7.24 Detector polar-angle coverage. All numbers are in mrad and refer to the 500 GeV designs except for CLIC. In the crossing-angle designs, the pair monitor must allow for the passage of both the incoming-beam and the spent-beam pipes, which causes a \(\sim 10\% \) gap in azimuthal coverage for \(\theta < 30 \) mrad. 386

7.25 Predicted charged-beam losses in the TESLA and NLC extraction lines at \(\sqrt{s} = 500 \) GeV. All numbers are in \% of the incoming-beam population unless specified otherwise. The maximum loss occurs for a vertical separation of 2 \(\sigma_y \) in TESLA and 20 \(\sigma_y \) in NLC. 390

7.26 Summary of baseline FD magnet parameters. In the last column, the length refers to the magnet adjacent to the IP. 394

xxii ILC-TRC/Second Report
7.27 Main parameters of the post-linac primary collimation system ($\sqrt{s}=500$ GeV; the full list is available in Reference [104]. $\sigma_{x,y}$ are the horizontal and vertical beam sizes at the spoiler (including the dispersive contribution); $\sigma_{x,y}^d$ refer to the betatron contributions alone. The quoted muon rates include those produced in the collimation section as well as further downstream in the BDS. In some cases, the spoiler settings must be tighter than the effective collimation depth (at the final doublet) because of dispersive or higher-order effects.

7.28 Spoiler-survival parameters for the momentum and betatron spoilers ($\sqrt{s}=500$ GeV). For TESLA, N_p is twice the single-bunch population, while for CLIC and NLC it refers to that of the entire bunch train. σ_x and σ_y are the horizontal and vertical beam size at the spoiler (including the dispersive contribution).

7.29 Number and energy of pairs produced at $\sqrt{s}=500$ GeV, computed with GUINEA-PIG.

7.30 Pair-induced occupancies in the TESLA subdetectors, including secondaries (e^\pm, γ) [83, 116], at $\sqrt{s}=500$ GeV. The vertex detector is primarily sensitive to charged hits. The sensitivity window is the subdetector integration time. R_V is the radius of the vertex-detector layer. The solenoid field strength is 4 T.

7.31 Pair-induced occupancies in the CLIC subdetectors, including secondaries (e^\pm, γ) at $\sqrt{s}=500$ GeV. Only charged hits are counted in the vertex detector. The sensitivity window of all subdetectors is assumed longer than the duration of the bunch train. R_V is the radius of the vertex-detector layer. The solenoid field strength is 4 T.

7.32 Beam-beam induced hadronic backgrounds at $\sqrt{s}=500$ GeV.

8.2 Required MTB Failures for NLC modulators and klystrons with 3% spares allocated.

8.3 Required MTB Faults for NLC main linac rf components with 2% overhead allocated.