Update of Fit to Moments of Inclusive $B \to X_c \ell \bar{\nu}$ and $B \to X_s \gamma$
Decay Distributions for LP07

O. L. Buchmüller and H. U. Flächer
CERN, CH-1211 Geneva 23, Switzerland
(Dated: August 10, 2007)

We present an update of our fit to measured moments of inclusive distributions in $B \to X_c \ell \bar{\nu}$ and
$B \to X_s \gamma$ decays to extract values for the CKM matrix element $|V_{cb}|$, the b- and c-quark masses, and
higher order parameters that appear in the Heavy Quark Expansion. The fit is carried out using
theoretical calculations in the kinetic scheme and includes moment measurements of the BABAR,
Belle, CDF, CLEO and DELPHI collaborations for which correlation matrices have been published.
We find $|V_{cb}| = (41.91 \pm 0.19_{\text{exp}} \pm 0.28_{\text{HQE}} \pm 0.59_{\text{SL}}) \times 10^{-3}$ and
$m_b = 4.613 \pm 0.022_{\text{exp}} \pm 0.027_{\text{HQE}} \text{GeV}$
where the errors are experimental and theoretical respectively. We also translate the heavy quark
distribution function parameters m_b and μ^2_π to the shape function scheme so that they can be used
as input for the determination of $|V_{cb}|$.

I. INTRODUCTION

We present an update of our fit to measured moments of inclusive distributions in $B \to X_c \ell \bar{\nu}$ and
$B \to X_s \gamma$ decays in the kinetic scheme [1]. The only difference with respect to [1] is the inclusion of the published hadron
mass and lepton energy moment measurements by the Belle collaboration [2, 3]. When referring to the results
presented in this note please cite Ref. [1].

II. EXPERIMENTAL INPUT

All results are based on the following set of moment measurements which are also summarised in Table I. Addi-
tional measurements for which correlation matrices are not available and thus cannot be used in the presented
fit are listed in parentheses.

- **BABAR**
 Hadron mass [4] and lepton energy moments [5] from $B \to X_c \ell \bar{\nu}$ decays measured as a function of
 the minimum lepton energy E_{cut}. The lepton moments used here differ slightly from those in the
 BABAR publication [5]. They have been updated by taking into account the recent improved measure-
 ments of the D_s and B branching fractions (super-vertex charm) that impact the background sub-
 traction. Moments of the photon energy spectrum in $B \to X_s \gamma$ decays as a function of the minimum
 photon energy E_{cut} from two independent analyses [6, 7].

- **Belle**
 Measurements of hadron mass and lepton energy moments as functions of the lower lepton energy
 [2, 3]. First and second moment of the photon energy spectrum as a function of the minimum pho-
 ton energy E_{cut} [8, 9].

- **CDF**
 Hadron moment measurements with a minimum lepton energy of $E_{\text{cut}} = 0.7$ GeV [10].

- **CLEO**
 Hadron moment measurements as a function of the minimum lepton energy [11]. First (and second)
 moment of the photon energy spectrum at $E_{\text{cut}} = 2.0$ GeV [12]. (The measurement of lepton energy
 moments as a function of E_{cut} [13] is not given with the full covariance matrix and thus has not
 been included in the fit [14].)

- **DELPHI**
 Lepton energy and hadron mass moment measurements with no restriction on the lepton energy [15].

III. FIT TO MOMENTS

The fit to the moment measurements is carried out using HQE calculations in the kinetic scheme presented
in Refs. [17, 18], including E_{cut} dependent perturbative corrections to the hadron moments [19-21].
As μ^2_π and ρ^2_{LS} are estimated from the $B^* \to B$ mass splitting and heavy-quark sum rules, respectively, we
impose Gaussian error constraints on $\mu^2_\pi = 0.35 \pm 0.07 \text{GeV}^2$ and $\rho^2_{LS} = -0.15 \pm 0.10 \text{GeV}^2$ on these parameters as ad-
vocated in Ref. [17].

The results of a combined fit of the HQEs to all moment measurements listed in Table I is shown in Table II.
In order to assess the consistency of the moment measurements from the two different decay processes,
$B \to X_c \ell \bar{\nu}$ and $B \to X_s \gamma$, we also carry out separate fits to $B \to X_c \ell \bar{\nu}$ moments and to photon
moments only. However, as the latter are not sensitive to all the heavy quark parameters, all but m_b and
μ^2_π are fixed to the result obtained from the combined fit.

The fit to $B \to X_c \ell \bar{\nu}$ moments only results in:

$\quad |V_{cb}| = 41.68 \pm 0.39_{\text{fit}} \pm 0.58_{\text{SL}} \times 10^{-3}$,
$\quad m_b = 4.677 \pm 0.053 \text{GeV}$,
$\quad m_c = 1.285 \pm 0.078 \text{GeV}$,
$\quad \mu^2_\pi = 0.387 \pm 0.039 \text{GeV}^2$.
TABLE I: Summary of moment measurements used in the combined fit. \(n \) indicates the order of the (central) moment measurement of observable \(\langle M^n \rangle_{E_{\text{cut}}} \), \(\langle F^n \rangle_{E_{\text{cut}}} \) and \(\langle E^n \rangle_{E_{\text{cut}}} \). \(E_{\text{cut}} \) indicates measurements with the corresponding minimum lepton momenta and photon energies in GeV.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Hadron Moments (\langle M^n \rangle_{E_{\text{cut}}})</th>
<th>Lepton Moments (\langle F^n \rangle_{E_{\text{cut}}})</th>
<th>Photon Moments (\langle E^n \rangle_{E_{\text{cut}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>(n=2) (E_{\text{cut}}=0.9,1.0,1.1,1.2,1.3,1.4,1.5)</td>
<td>(n=0) (E_{\text{cut}}=0.6,1.2,1.5)</td>
<td>(n=1) (E_{\text{cut}}=1.9)</td>
</tr>
<tr>
<td></td>
<td>(n=4) (E_{\text{cut}}=0.9,1.0,1.1,1.2,1.3,1.4,1.5)</td>
<td>(n=1) (E_{\text{cut}}=0.6,0.8,1.0,1.2,1.5)</td>
<td>(n=2) (E_{\text{cut}}=1.9)</td>
</tr>
<tr>
<td></td>
<td>(n=6) (E_{\text{cut}}=0.9,1.0,1.1,1.2,1.3,1.4,1.5)</td>
<td>(n=2) (E_{\text{cut}}=0.6,1.0,1.5)</td>
<td>(n=3) (E_{\text{cut}}=0.8,1.2)</td>
</tr>
<tr>
<td>Belle</td>
<td>(n=2) (E_{\text{cut}}=0.7,0.9,1.1,1.3)</td>
<td>(n=0) (E_{\text{cut}}=0.6,1.0,1.4)</td>
<td>(n=1) (E_{\text{cut}}=1.8,1.9)</td>
</tr>
<tr>
<td></td>
<td>(n=4) (E_{\text{cut}}=0.7,0.9,1.1,1.3)</td>
<td>(n=1) (E_{\text{cut}}=0.6,1.0,1.4)</td>
<td>(n=2) (E_{\text{cut}}=1.8,2.0)</td>
</tr>
<tr>
<td></td>
<td>(n=8) (E_{\text{cut}}=0.7,0.9,1.1,1.3)</td>
<td>(n=2) (E_{\text{cut}}=0.6,0.8)</td>
<td>(n=3) (E_{\text{cut}}=0.8,1.2)</td>
</tr>
<tr>
<td>CDF</td>
<td>(n=2) (E_{\text{cut}}=0.7)</td>
<td>(n=0) (E_{\text{cut}}=0.7)</td>
<td>(n=1) (E_{\text{cut}}=2.0)</td>
</tr>
<tr>
<td></td>
<td>(n=4) (E_{\text{cut}}=0.7)</td>
<td>(n=1) (E_{\text{cut}}=0.0)</td>
<td>(n=2) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td>CLEO</td>
<td>(n=2) (E_{\text{cut}}=1.0,1.5)</td>
<td>(n=1) (E_{\text{cut}}=0.0)</td>
<td>(n=3) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td></td>
<td>(n=4) (E_{\text{cut}}=1.0,1.5)</td>
<td>(n=0) (E_{\text{cut}}=0.0)</td>
<td>(n=4) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td>DELPHI</td>
<td>(n=2) (E_{\text{cut}}=0.0)</td>
<td>(n=0) (E_{\text{cut}}=0.0)</td>
<td>(n=1) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td></td>
<td>(n=4) (E_{\text{cut}}=0.0)</td>
<td>(n=1) (E_{\text{cut}}=0.0)</td>
<td>(n=2) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td></td>
<td>(n=6) (E_{\text{cut}}=0.0)</td>
<td>(n=2) (E_{\text{cut}}=0.0)</td>
<td>(n=3) (E_{\text{cut}}=0.0)</td>
</tr>
<tr>
<td>HEPG</td>
<td>(n=16) (E_{\text{cut}}=0.6)</td>
<td>(n=0) (E_{\text{cut}}=0.0)</td>
<td>(n=1) (E_{\text{cut}}=0.0)</td>
</tr>
</tbody>
</table>

\(^a\)A total of six photon moments from Refs. [6] and [7] are used.

From the fit to \(B \to X_s \gamma \) moments only we obtain:

\[
m_b = 4.56^{+0.08}_{-0.14} \text{ GeV},
\]

\[
\mu_s^2 = 0.44^{+0.30}_{-0.17} \text{ GeV}^2.
\]

A comparison of results from the combined fit with those obtained from fits to \(B \to X_s \ell \nu \) and \(B \to X_s \gamma \) moments only can be found in Figure 1 where the \(\Delta \chi^2 = 1 \) contours for the fit results are shown in the \((m_b, |V_{cb}|)\) and \((m_s, \mu_s^2)\) planes. It can be seen that the inclusion of the photon energy moments adds additional sensitivity to the \(b \)-quark mass \(m_b \).

In addition to the above we extract the difference in the quark masses as

\[
m_b - m_c = 3.427 \pm 0.021 \text{ GeV}.
\]

Comparing the extracted values of the quark mass \(m_b \) with other determinations is often convenient in the commonly used \(\overline{\text{MS}} \) scheme. The translation between the kinetic and \(\overline{\text{MS}} \) masses to two loop accuracy and including the BLM part of the \(\alpha_s^n \) corrections was given in Ref. [22]. This leads to

\[
m_b(m_b) = 4.22 \pm 0.04 \text{ GeV}
\]

IV. TRANSLATION OF FIT RESULTS TO SHAPE FUNCTION SCHEME

We translate the results for \(m_b \) and \(\mu_s^2 \) in the kinetic scheme to heavy quark distribution function parameters in other schemes so that they can be used for the extraction of \(|V_{cb}| \). The translation is done by predicting the first and second moment of the photon energy spectrum above \(E_{\text{cut}} = 1.6 \) GeV based on the heavy quark parameters from Table II and using the calculations of Ref. [18].

The experimental and theoretical uncertainties in the fitted parameters as well as their correlations are propagated into the errors on the moments. The minimum photon energy of 1.6 GeV is chosen such as to be insensitive to the distribution function itself. At this threshold the local OPE calculation is applicable as the hardness \(Q = m_B - 2E_{\text{cut}} \) of the process is sufficiently high such that cut-induced perturbative and non-perturbative corrections or biases are negligible. The predicted moments are given in Table III.

As the moments are physical observables which are scheme independent they can be used to extract the corresponding heavy quark distribution function parameters in other schemes. For this translation, grids for the first and second moments of the photon energy spectrum are generated as a function of the two parameters \((m_b, \mu_s^2) \) for the Shape Function [23] scheme. A \(\chi^2 \) is calculated for every set of parameters \(\mu = (\langle E_{\gamma} \rangle, (m_b, \mu_s^2)) \), \((\langle E_{\gamma} - \langle E_{\gamma} \rangle \rangle^2(m_b, \mu_s^2)) \) as

\[
\chi^2 = \sum_{i,j=1,2} (y_i - \sigma_i) V_{ij}^{-1} (y_j - \mu_j) \text{ with } V_{ij} = \sigma_i \sigma_j \rho_{ij} \tag{1}
\]

where the \(y_i \) are the predicted moments with their errors \(\sigma_i \) and \(\rho_{ij} \) is the correlation between them.

From the minimum value \(\chi_{\text{min}}^2 \) we obtain the central values for the parameters in the shape function scheme.
TABLE II: Results for the combined fit to all moments with experimental and theoretical uncertainties. For $|V_{cb}|$ we add an additional theoretical error stemming from the uncertainty in the expansion for Γ_{SL} of 1.4%. Below the fit results the correlation matrix is shown.

<table>
<thead>
<tr>
<th></th>
<th>OPE FIT RESULT: $\chi^2/N_{dof} = 39.1/62$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULT</td>
<td>41.91</td>
</tr>
<tr>
<td>$\Delta \exp$</td>
<td>0.19</td>
</tr>
<tr>
<td>Δ HQE</td>
<td>0.28</td>
</tr>
<tr>
<td>Δ Γ_{SL}</td>
<td>0.59</td>
</tr>
</tbody>
</table>

| $|V_{cb}|$ | m_b (GeV) | m_c (GeV) | μ_x^2 (GeV2) | ρ_D^2 (GeV3) | μ_G^2 (GeV2) | ρ_{LS}^2 (GeV3) | $BR_{c\tau}$ (%) |
|----------|-------------|-------------|---------------------|----------------------|---------------------|----------------------|-----------------|
| 1.000 | -0.450 | -0.315 | 0.495 | 0.311 | -0.275 | 0.070 | 0.074 |
| 1.000 | 0.962 | -0.525 | -0.225 | 0.226 | -0.211 | 0.121 | |
| 1.000 | 1.000 | 0.536 | -0.310 | -0.448 | -0.100 | 0.152 | |
| 1.000 | 0.750 | 0.230 | 0.071 | 0.126 | | | |
| 1.000 | 1.000 | 0.185 | -0.507 | -0.123 | | | |
| 1.000 | 0.016 | 0.0431 | 0.0030 | -0.07 | | | |
| 1.000 | 0.016 | 0.0431 | 0.0030 | -0.07 | | | |

FIG. 1: Comparison of the different fit scenarios. Figure (a) shows the $\Delta \chi^2 = 1$ contour in the (m_b, μ_x^2) plane for the combined fit to all moments (red), the fit to hadron and lepton moments only (blue) and the fit to photon moments only (green). Figure (b) shows the results for the combined fit (red) and the fit to hadron and lepton moments only (blue) in the $(m_b, |V_{cb}|)$ plane.

and determine the $\Delta \chi^2 = 1$ contour with respect to χ^2_{min}.

For the translation into the Shape-Function scheme [23, 24] we use a grid of moments obtained with a Mathematica notebook based on Ref. [25–28] that was provided to us by the authors. In this calculation the moments are determined from a spectrum that is obtained by convoluting a shape function with a perturbative kernel with next-to-leading order accuracy.

TABLE III: First and second moment of the photon spectrum predicted for $E_{\text{cut}} = 1.6\text{ GeV}$ on the basis of the fit results for the HQE parameters.

<table>
<thead>
<tr>
<th>E_{cut} (GeV)</th>
<th>$\langle E_\gamma \rangle$ (GeV)</th>
<th>$((E_\gamma - \langle E_\gamma \rangle)^2)$ (GeV2)</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>2.297 ± 0.016</td>
<td>0.0431 ± 0.0030</td>
<td>-0.07</td>
</tr>
</tbody>
</table>
FIG. 2: Translation of fit results obtained in the kinetic scheme to the Shape Function scheme via predicted photon moments. Figure (a) shows the results for the shape function parameters in the \((m_{b\,SF}^2, \mu^2_{SF})\) plane using three different Ansätze for the Shape Function in the SF scheme. Figure (b) shows the corresponding results in the internal parameter space \((b, \Lambda)\) (see text).

TABLE IV: Comparison of heavy quark distribution function parameters in the kinetic and Shape Function scheme together with their correlation \(\rho\).

<table>
<thead>
<tr>
<th>Shape Function Scheme</th>
<th>(m_{b,SF}) (GeV)</th>
<th>(\mu^2_{SF}) (GeV(^2))</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential SF</td>
<td>4.631 ± 0.034</td>
<td>0.184 ± 0.036</td>
<td>0.27</td>
</tr>
<tr>
<td>Hyperbolic SF</td>
<td>4.631 ± 0.034</td>
<td>0.183 ± 0.036</td>
<td>0.27</td>
</tr>
<tr>
<td>Gaussian SF</td>
<td>4.624 ± 0.035</td>
<td>0.205 ± 0.041</td>
<td>0.28</td>
</tr>
</tbody>
</table>

where we use three different Ansätze for the shape function (exponential, hyperbolic, and gaussian) given in Ref. [25]. This calculation is conceptually similar to the one for \(B \to X_u \ell \bar{\nu}\) decays also presented in Ref. [25] which at present is used for the extraction of \(|V_{ub}|\) by several experiments. It therefore allows for a consistent determination of the shape function parameters for both, \(B \to X_s \gamma\) and \(B \to X_u \ell \bar{\nu}\) decays. The numerical results for the shape function parameters are shown in Table IV and the \(\Delta \chi^2 = 1\) contours are displayed in Figure 2 for the three different shape function Ansätze. In addition, the \(\Delta \chi^2 = 1\) contours are shown in the internal parameter space \((b, \Lambda)\). These are model parameters that depend on the used functional form.

As expected, the difference in the physical parameters \(m_{b\,SF}\) and \(\mu^2_{SF}\) obtained with the three SF Ansätze is small as the translation between schemes was done using moments predicted at \(E_{cut} = 1.6\) GeV, where the sensitivity to shape function effects is expected to be small.