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Defining a magnetic field 



Magnetic field (1) 

•  Create your Magnetic field class. It must be instantiated in 
ConstructSDandField() method of your DetectorConstruction 

–  Uniform field :  

•  Use an object of the G4UniformMagField class 

     G4MagneticField* magField =    

         new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.);    

–  Non-uniform field : 

•  Create your own concrete class derived from G4MagneticField and 
implement GetFieldValue method. 

     void MyField::GetFieldValue( 

            const double Point[4], double *field) const 

•  Point[0..2] are position in global coordinate system, Point[3] is time 

•  field[0..2] are returning magnetic field 
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Global and local fields 
•  One field manager is associated with the ‘world’ and it is set in 

G4TransportationManager 

•  Other volumes can override this 

–  An alternative field manager can be associated with any logical volume 

•  The field must accept position in global coordinates and return field in 
global coordinates 

–  By default this is propagated to all its daughter volumes 

G4FieldManager* localFieldMgr  

     = new G4FieldManager(magField); 

logVolume->setFieldManager(localFieldMgr, true);  

where ‘true’ makes it push the field to all the volumes it contains, unless a 
daughter has its own field manager. 

•  Customizing the field propagation classes 

–  Choosing an appropriate stepper for your field 

–  Setting precision parameters 
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Magnetic field (2) 

    MyField* fMagneticField = new MyField(); 

    G4Fieldmanager* fFieldMgr = new G4FieldManager(); 

    fFieldMgr->SetDetectorField(fMagneticField); 

    fFieldMgr->CreateChordFinder(fMagneticField); 

    G4bool forceToAllDaughters = true; 

    fMagneticLogical->SetFieldManager(fFieldMgr,       

                              forceToAllDaughters); 

    // Register the field and its manager for deleting 

    G4AutoDelete::Register(fMagneticField); 

    G4AutoDelete::Register(fFieldMgr); 

•  /example/basic/B5 is a good starting point 
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Field integration 

•  In order to propagate a particle inside a field  (e.g. magnetic, electric or both), we 
solve the equation of motion of the particle in the field.  

•  We use a Runge-Kutta method for the integration of the ordinary differential 
equations of motion.  

–  Several Runge-Kutta ‘steppers’ are available. 

•  In specific cases other solvers can also be used:  

–  In a uniform field, using the analytical solution. 

–  In a smooth but varying field, with RK+helix. 

•  Using the method to calculate the track's motion in a field, Geant4 breaks up this 
curved path into linear chord segments.  

–  We determine the chord segments so that they closely approximate the 
curved path. 
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Tracking in field 

•  We use the chords to interrogate the G4Navigator, to see whether the track has 
crossed a volume boundary. 

•  One physics/tracking step can create several chords. 

–  In some cases, one step consists of several helix turns. 

•  User can set the accuracy of the volume intersection,  

–  By setting a parameter called the “miss distance” 

•  It is a measure of the error in whether the approximate track intersects a 
volume.  

•  It is quite expensive in CPU performance to set too small “miss 
distance”. 
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Tunable parameters 

•  In addition to the “miss distance” there are two more 
parameters which the user can set in order to adjust the 
accuracy (and performance) of tracking in a field.  

–  These parameters govern the accuracy of the 
intersection with a volume boundary and the accuracy 
of the integration of other steps.  

•  The “delta intersection” parameter is the accuracy to which 
an intersection with a volume boundary is calculated. This 
parameter is especially important because it is used to limit 
a bias that our algorithm (for boundary crossing in a field) 
exhibits. The intersection point is always on the 'inside' of 
the curve. By setting a value for this parameter that is much 
smaller than some acceptable error, the user can limit the 
effect of this bias.  
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Tunable parameters 
•  The “delta one step” parameter is the accuracy for the endpoint of 'ordinary' 

integration steps, those which do not intersect a volume boundary. This parameter 
is a limit on the estimation error of the endpoint of each physics step. 

•  “delta intersection” and “delta one step” are strongly coupled. These values must 
be reasonably close to each other.  
–  At most within one order of magnitude 

•  These tunable parameters can be set by 

theChordFinder->SetDeltaChord( miss_distance ); 

theFieldManager->SetDeltaIntersection( delta_intersection ); 

theFieldManager->SetDeltaOneStep( delta_one_step ); 

 

•  Further details are described in Section 4.3 (Electromagnetic Field) of the 
Application Developers Manual. 
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Field integration  
and 
Other types of field 



Customizing field integration  

•  Runge-Kutta integration is used to compute the motion of a charged track in a 
general field. There are many general steppers from which to choose, of low and 
high order, and specialized steppers for pure magnetic fields.  

•  By default, Geant4 uses the classical fourth-order Runge-Kutta stepper 
(G4ClassicalRK4), which is general purpose and robust.  
–  If the field is known to have specific properties, lower or higher order 

steppers can be used to obtain the results of same quality using fewer 
computing cycles.  

•  In particular, if the field is calculated from a field map, a lower order stepper is 
recommended. The less smooth the field is, the lower the order of the stepper 
that should be used.  
–  The choice of lower order steppers includes the third order stepper 

G4SimpleHeum, the second order G4ImplicitEuler and G4SimpleRunge, and 
the first order G4ExplicitEuler. A first order stepper would be useful only for 
very rough fields.  

–  For somewhat smooth fields (intermediate), the choice between second and 
third order steppers should be made by trial and error.  
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Customizing field integration  

•  Trying a few different types of steppers for a particular field or application is 
suggested if maximum performance is a goal. 	

•  Specialized steppers for pure magnetic fields are also available. They take into 
account the fact that a local trajectory in a slowly varying field will not vary 
significantly from a helix.  

–  Combining this in with a variation, the Runge-Kutta method can provide 
higher accuracy at lower computational cost when large steps are possible.  

•  To change the stepper  

theChordFinder 

->GetIntegrationDriver()  

->RenewStepperAndAdjust( newStepper );  

	

•  Further details are described in Section 4.3 (Electromagnetic Field) of the 
Application Developers Manual.	
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Other types of field 
•  The user can create their own type of field, inheriting from G4VField, and an 

associated Equation of Motion class (inheriting from G4EqRhs) to simulate other 
types of fields. Field can be time-dependent. 

•  For pure electric field, Geant4 has G4ElectricField and G4UniformElectricField 
classes. For combined electromagnetic field, Geant4 has G4ElectroMagneticField 
class.  

•  Equation of Motion class for electromagnetic field is G4MagElectricField. 
 
G4ElectricField* fEMfield 

 = new G4UniformElectricField( G4ThreeVector(0., 100000.*kilovolt/cm, 0.) );  
G4EqMagElectricField* fEquation = new G4EqMagElectricField(fEMfield);  
G4MagIntegratorStepper* fStepper = new G4ClassicalRK4( fEquation, nvar );  
G4FieldManager* fFieldMgr 

 = G4TransportationManager::GetTransportationManager()-> GetFieldManager();  
fFieldManager->SetDetectorField( fEMfield ); 
G4MagInt_Driver* fIntgrDriver  

 = new G4MagInt_Driver(fMinStep, fStepper, 
      fStepper->GetNumberOfVariables() ); 

G4ChordFinder* fChordFinder = new G4ChordFinder(fIntgrDriver);  14 
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GDML/CAD interfaces 



GDML	  and	  CAD	  Interfaces	  

•  Up	  to	  now,	  the	  course	  has	  shown	  how	  to	  define	  materials	  and	  volumes	  from	  C++.	  
•  This	  part	  of	  slides	  shows	  some	  alternate	  ways	  to	  define	  geometry	  at	  runCme	  by	  

providing	  a	  file-‐based	  detector	  descripCon.	  
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GDML	  :	  Geometrical	  DescripCon	  Modeling	  Language	  

•  An	  XML-‐based	  language	  designed	  as	  an	  applicaCon	  independent	  persistent	  format	  for	  
describing	  the	  geometries	  of	  detectors.	  
–  Implements	  “geometry	  trees”	  which	  correspond	  to	  the	  hierarchy	  of	  volumes	  a	  

detector	  geometry	  can	  be	  composed	  of	  
–  Allows	  materials	  to	  be	  defined	  and	  solids	  to	  be	  posiConed	  

•  Because	  it	  is	  pure	  XML,	  GDML	  can	  be	  used	  universally	  
–  Not	  just	  for	  Geant4	  
–  Can	  be	  format	  for	  interchanging	  geometries	  among	  different	  applicaCons.	  
–  Can	  be	  used	  to	  translate	  CAD	  geometries	  to	  Geant4	  

•  XML	  is	  simple	  
–  Rigid	  set	  of	  rules,	  self-‐describing	  data	  validated	  against	  schema	  

•  XML	  is	  extensible	  
–  Easy	  to	  add	  custom	  features,	  data	  types	  

•  XML	  is	  Interoperable	  to	  OS’s,	  languages,	  applicaCons	  
•  XML	  has	  hierarchical	  structure	  

–  Appropriate	  for	  Object-‐Oriented	  programming	  
–  Detector/sub-‐detector	  relaConships	  
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GDML	  structure	  

•  Contains	  numerical	  values	  of	  constants,	  posiCons,	  rotaCons	  and	  scales	  that	  will	  be	  used	  
later	  on	  in	  the	  geometry	  construcCon.	  
–  Uses	  CLHEP	  expressions	  

•  Constants	  
<constant	  name=“length”	  value=“6.25”/>	  

•  Variables	  
<variable	  name=“x”	  value=“6”/>	  

–  Once	  defined,	  can	  be	  used	  anywhere	  later,	  e.g.	  
<variable	  name=“y”	  value=“x/2”/>	  
<box	  name=“my_box”	  x=“x”	  y=“y”	  z=“x+y”/>	  

•  PosiCons	  
	  	  <posiCon	  name=“P1”	  x=“25.0”	  y=“50.0”	  z=“75.0”	  unit=“cm”/>	  

•  RotaCons	  
<rotaCon	  name=“RotateZ”	  z=“30”	  unit=“deg”/>	  

•  Matrices	  
	  	  <matrix	  name=“m”	  coldim=“3”	  values=“	  0.4	  9	  126	  
	   	   	   	   	   	   	   	   	  	  	  8.5	  7	  21	  
	   	   	   	   	   	   	   	   	  	  	  34.6	  7	  9”/>	  
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GDML	  structure	  

•  Simple	  Elements	  
<element	  Z="8"	  formula="O"	  name="Oxygen"	  >	  
	   	  <atom	  value="16"	  />	  
</element>	  

•  Material	  by	  number	  of	  atoms	  (“molecule”)	  
<material	  name="Water"	  formula="H2O">	  

<D	  value="1.0"	  />	  
<composite	  n="2"	  ref="Hydrogen"	  />	  
<composite	  n="1"	  ref="Oxygen"	  />	  

</material>	  
•  Material	  as	  a	  fracConal	  mixture	  of	  elements	  or	  materials,	  (“compound”):	  

<material	  formula="air"	  name="Air"	  >	  
<D	  value="0.00129"	  />	  
<fracCon	  n="0.7"	  ref="Nitrogen"	  />	  
<fracCon	  n="0.3"	  ref="Oxygen"	  />	  

</material>	  
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GDML	  solids	  

•  Box	  
•  Cone	  Segment	  
•  Ellipsoid	  
•  EllipCcal	  Tube	  
•  EllipCcal	  Cone	  
•  Orb	  
•  Paraboloid	  
•  Parallelepiped	  
•  Polycone	  
•  Polyhedron	  
•  Sphere	  
•  Torus	  Segment	  

•  Trapezoid	  (x&y	  vary	  along	  z)	  
•  General	  Trapezoid	  
•  Tube	  with	  Hyperbolic	  Profile	  
•  Cut	  Tube	  
•  Tube	  Segment	  
•  Twisted	  Box	  
•  Twisted	  Trapezoid	  
•  Twisted	  General	  Trapezoid	  
•  Twisted	  Tube	  Segment	  
•  Extruded	  Solid	  
•  Tessellated	  Solid	  
•  Tetrahedron	  
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GDML	  Boolean	  solid	  

•  The	  Boolean	  operaCons	  union,	  subtracCon	  and	  intersecCon	  are	  also	  supported,	  e.g.	  
<box	  name=“box_1”	  x=“1”	  y=“5”	  z=“20”	  />	  
<box	  name=“box_2”	  x=“4”	  y=“4.5”	  z=“18”	  />	  
<union	  name=“union”	  >	  
	   	  <first	  ref=“box_1”	  />	  
	   	  <second	  ref=“box_2”/>	  
	   	  <posiConref	  ref=“union_posiCon”	  />	  
	   	  <rotaConref	  ref=“union_rotaCon”	  />	  
</union>	  
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GDML	  volumes	  

•  Volumes	  are	  created	  from	  solids	  and	  materials	  that	  were	  previously	  defined	  in	  this	  or	  a	  
linked	  GDML	  file	  

•  Both	  logical	  and	  physical	  volumes	  are	  defined	  in	  one	  
<volume	  name="World">	  
	   	  <materialref	  ref="Air"/>	  
	   	  <solidref	  ref="WorldBox"/>	  
	   	  <physvol>	  
	   	  <volumeref	  ref="vol0"/>	  
	   	   	  <posiConref	  ref="center"/>	  
	   	   	  <rotaConref	  ref="idenCty"/>	  
	   	  </physvol>	  
</volume>	  
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ImporCng	  GDML	  file	  

•  GDML	  files	  can	  be	  directly	  imported	  into	  Geant4	  geometry,	  using	  the	  GDML	  plug-‐in	  
facility:	  

#include	  “G4GDMLParser.hh”	  
•  Generally	  you	  will	  want	  to	  put	  the	  following	  lines	  into	  your	  DetectorConstrucCon	  class:	  

G4GDMLParser	  parser;	  
parser.Read(“geometryFile.gdml”);	  
G4VphysicalVolume*	  W=parser.GetWorldVolume();	  

•  To	  include	  the	  Geant4	  module	  for	  GDML,	  	  
–  Install	  the	  XercesC	  parser	  (version	  2.8.0	  or	  3.0.0)	  

hrp://xerces.apache.org/xerces-‐c/download.cgi	  
–  Set	  appropriate	  environment	  variables	  when	  G4	  libraries	  are	  built	  

•  Examples	  available	  in:	  
$G4INSTALL/examples/extended/persistency/gdml	  
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ImporCng	  CAD	  geometry	  

•  Users	  with	  3D	  engineering	  drawings	  may	  want	  to	  incorporate	  these	  into	  their	  Geant4	  
simulaCon	  as	  directly	  as	  possible	  

•  DifficulCes	  include:	  
–  Proprietary,	  undocumented	  or	  changing	  CAD	  formats	  
–  Usually	  no	  connecCon	  between	  geometry	  and	  materials	  
–  Mismatch	  in	  level	  of	  detail	  required	  to	  machine	  a	  part	  and	  that	  required	  to	  transport	  

parCcles	  in	  that	  part	  
•  CAD	  is	  never	  as	  easy	  as	  you	  might	  think	  (if	  the	  geometry	  is	  complex	  enough	  to	  require	  CAD	  in	  

the	  first	  place)	  
•  CADMesh	  is	  a	  direct	  CAD	  model	  import	  interface	  for	  GEANT4	  opConally	  leveraging	  VCGLIB,	  

and	  ASSIMP	  by	  default.	  Currently	  it	  supports	  the	  import	  of	  triangular	  facet	  surface	  meshes	  
defined	  in	  formats	  such	  as	  STL	  and	  PLY.	  A	  G4TessellatedSolid	  is	  returned	  and	  can	  be	  included	  
in	  a	  standard	  user	  detector	  constructor.	  
–  hrps://code.google.com/p/cadmesh/	  	  

•  One	  output	  format	  most	  CAD	  programs	  do	  support	  is	  STEP	  
–  Not	  a	  complete	  soluCon,	  in	  parCcular	  does	  not	  contain	  material	  informaCon	  
–  There	  are	  movements	  under	  way	  to	  get	  new	  formats	  that	  contain	  addiConal	  

informaCon,	  but	  none	  yet	  widely	  adopted.	  
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ConverCng	  STEP	  to	  GDML	  

•  Imperfect,	  but	  sCll	  helpful	  soluCons	  are	  tools	  to	  convert	  STEP	  to	  GDML	  and	  provide	  the	  
user	  a	  way	  to	  add	  materials	  informaCon	  

•  There	  are	  two	  cases	  where	  exisCng	  CAD	  programs	  have	  added	  GDML	  export	  features.	  
Since	  these	  CAD	  programs	  can	  also	  read	  in	  STEP,	  they	  can	  be	  used	  as	  STEP	  to	  GDML	  
converters.	  
–  Neither	  opCon	  is	  free,	  neither	  opCon	  works	  perfectly	  
–  ST-‐Viewer	  

•  hrp://www.steptools.com	  
–  FastRad	  

•  GDML	  export	  extension	  was	  funded	  by	  European	  Space	  Agency	  
•  Not	  free	  except	  for	  limited,	  trial	  mode	  that	  can	  handle	  only	  a	  small	  number	  of	  
volumes	  

•  hrp://www.fastrad.net/	  	  
•  Discussion	  of	  these	  soluCons	  takes	  place	  in	  the	  Geant4	  Persistency	  forum:	  

hrp://hypernews.slac.stanford.edu/HyperNews/geant4/get/persistency.html	  
•  Useful	  technical	  note:	  

–  Linking	  computer-‐aided	  design	  (CAD)	  to	  Geant4-‐based	  Monte	  Carlo	  simulaCons	  for	  
precise	  implementaCon	  of	  complex	  treatment	  head	  geometries.,	  ConstanCn	  et.	  al.,	  
Phys	  Med	  Biol.	  2010	  Apr	  21;55(8):N211-‐20.	  Epub	  2010	  Mar	  26	  
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Geometry checking tools 



Debugging geometries 
•  An protruding volume is a contained daughter volume which actually protrudes from its 

mother volume. 

•  Volumes are also often positioned in a same volume with the intent of not provoking 

intersections between themselves. When volumes in a common mother actually 

intersect themselves are defined as overlapping. 

•  Geant4 does not allow for malformed geometries, neither protruding nor overlapping.  

–  The behavior of navigation is unpredictable for such cases. 

•  The problem of detecting overlaps between volumes is bounded by the complexity of 

the solid models description. 

•  Utilities are provided for detecting wrong positioning 

–  Optional checks at construction 

–  Kernel run-time commands 

–  Graphical tools (DAVID, OLAP) 
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Optional checks at construction 

•  Constructors of G4PVPlacement and G4PVParameterised have an optional 
argument “pSurfChk”. 
G4PVPlacement(G4RotationMatrix* pRot, 

const G4ThreeVector &tlate,  
G4LogicalVolume *pDaughterLogical,  
const G4String &pName,  
G4LogicalVolume *pMotherLogical,  
G4bool pMany, G4int pCopyNo,  
G4bool pSurfChk=false);  

•  If this flag is true, overlap check is done at the construction. 
–  Some number of points are randomly sampled on the surface of creating 

volume. 
–  Each of these points are examined 

•  If it is outside of the mother volume, or 
•  If it is inside of already existing other volumes in the same mother 

volume. 
•  This check requires lots of CPU time, but it is worth to try at least once when you 

implement your geometry of some complexity. 
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Debugging run-time commands 

•  Built-in run-time commands to activate verification tests for the user geometry 
are defined 
–  to start verification of geometry for overlapping regions based on a 

standard grid setup, limited to the first depth level 
geometry/test/run  or  geometry/test/grid_test 

–  applies the grid test to all depth levels (may require lots of CPU time!) 
geometry/test/recursive_test 

–  shoots lines according to a cylindrical pattern 
geometry/test/cylinder_test 

–  to shoot a line along a specified direction and position 
geometry/test/line_test 

–  to specify position for the line_test 
geometry/test/position 

–  to specify direction for the line_test 
geometry/test/direction 
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Debugging run-time commands 

•  Example layout: 
 
GeomTest: no daughter volume extending outside mother detected. 
GeomTest Error: Overlapping daughter volumes 
    The volumes Tracker[0] and Overlap[0], 
    both daughters of volume World[0], 

    appear to overlap at the following points in global coordinates: (list 
truncated) 

  length (cm)    ----- start position (cm) -----  ----- end position (cm) ----- 
    240           -240      -145.5      -145.5     0       -145.5      -145.5 
Which in the mother coordinate system are: 
  length (cm)    ----- start position (cm) -----  ----- end position (cm) ----- 
    . . . 
Which in the coordinate system of Tracker[0] are: 
  length (cm)    ----- start position (cm) -----  ----- end position (cm) ----- 

    . . . 
Which in the coordinate system of Overlap[0] are: 
  length (cm)    ----- start position (cm) -----  ----- end position (cm) ----- 
    . . . 
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Debugging tools: DAVID 

•  DAVID is a graphical debugging tool for detecting 
potential intersections of volumes 

•  Accuracy of the graphical representation can be 
tuned to the exact geometrical description. 
–  physical-volume surfaces are automatically 

decomposed into 3D polygons 
–  intersections of the generated polygons  are 

parsed. 
–  If a polygon intersects with another one, the 

physical volumes associated to these polygons 
are highlighted in color (red is  the default). 

•  DAVID can be downloaded from the Web as external 
tool for Geant4 
–  http://geant4.kek.jp/~tanaka/ 
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Version 10.0-p01 

Geometry optimization 
("voxelization") 



Smart voxelization 

•  In case of Geant 3.21, the user had to carefully implement his/her geometry to 

maximize the performance of geometrical navigation. 

•  While in Geant4, user’s geometry is automatically optimized to most suitable to the 

navigation. - "Voxelization" 

–  For each mother volume, one-dimensional virtual division is performed. 

–  Subdivisions (slices) containing same volumes are gathered into one. 

–  Additional division again using second and/or third Cartesian axes, if needed. 

•  "Smart voxels" are computed at initialisation time 

–  When the detector geometry is closed 

–  Does not require large memory or computing resources 

–  At tracking time, searching is done in a hierarchy of virtual divisions 
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Detector description tuning 
•  Some geometry topologies may require ‘special’ tuning for ideal and efficient 

optimisation 

–  for example: a dense nucleus of volumes included in very large mother 
volume 

•  Granularity of voxelisation can be explicitly set 

–  Methods Set/GetSmartless() from G4LogicalVolume 

•  Critical regions for optimisation can be detected 

–  Helper class G4SmartVoxelStat for monitoring time spent in detector 
geometry optimisation 

•  Automatically activated if /run/verbose greater than 1 

Percent      Memory     Heads    Nodes   Pointers    Total CPU    Volume 

-------      ------     -----    -----   --------    ---------    ----------- 

  91.70          1k         1       50         50         0.00    Calorimeter 

   8.30          0k         1        3          4         0.00    Layer 
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Visualising voxel structure 

•  The computed voxel structure can be visualized with the final detector geometry 

–  Helper class G4DrawVoxels 

–  Visualize voxels given a logical volume 

G4DrawVoxels::DrawVoxels(const G4LogicalVolume*) 

–  Allows setting of visualization attributes for voxels 

G4DrawVoxels::SetVoxelsVisAttributes(…) 

–  useful for debugging purposes 
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Version 10.0-p01 

Parallel geometry 



Parallel navigation 

•  In the previous versions, we have already had several ways of utilizing a 
concept of parallel world. But the usages are quite different to each other. 

–  Ghost volume for shower parameterization assigned to 
G4GlobalFastSimulationManager 

–  Readout geometry assigned to G4VSensitiveDetector 

–  Importance field geometry for geometry importance biasing assigned to 
importance biasing process 

–  Scoring geometry assigned to scoring process 

•  We merge all of them into common parallel world scheme. 

–  Readout geometry for sensitive detector will be kept for backward 
compatibility. 

–  Other current “parallel world schemes”  became obsolete.  
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Parallel navigation 

•  Occasionally, it is not straightforward to define sensitivity, importance or 
envelope to be assigned to volumes in the mass geometry. 

–  Typically a geometry built machinery by CAD, GDML, DICOM, etc. has this 
difficulty. 

•  New parallel navigation functionality allows the user to define more than one 
worlds simultaneously. 

–  New G4Transportation process sees all worlds simultaneously. 

–  A step is limited not only by the boundary of the mass geometry but also by 
the boundaries of parallel geometries.  

–  Materials, production thresholds and EM field are used only from the mass 
geometry. 

–  In a parallel world, the user can define volumes in arbitrary manner with 
sensitivity, regions with shower parameterization, and/or importance field for 
biasing.  

•  Volumes in different worlds may overlap. 
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Parallel navigation 

•  G4VUserParrallelWorld is the new base class where the user implements a 
parallel world. 

–  The world physical volume of the parallel world is provided by 
G4RunManager as a clone of the mass geometry. 

–  All UserParallelWorlds must be registered to UserDetectorConstruction. 

–  Each parallel world has its dedicated G4Navigator object, that is 
automatically assigned when it is constructed. 

•  Though all worlds will be comprehensively taken care by G4Transportation 
process for their navigations, each parallel world must have its own process to 
achieve its purpose. 

–  For example, in case the user defines a sensitive detector to a parallel world, 
a process dedicated to this world is responsible to invoke this detector. 
G4SteppingManager sees only the detectors in the mass geometry. The 
user has to have G4ParallelWorldProcess in his physics list. 
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example/extended/runAndEvent/RE06 

•  Mass geometry 
–  sandwich of 

rectangular 
absorbers and 
scintilators 

•  Parallel scoring 
geometry 
–  Cylindrical layers 
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Layered mass geometries in parallel world 

•  Suppose you implement a wooden brick floating on the water. 

•  Dig a hole in water… 

 
•  Or, chop a brick into two and place them separately… 
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Layered mass geometries in parallel worlds 

•  Parallel geometry may be stacked on top of mass geometry or other parallel 
world geometry, allowing a user to define more than one worlds with materials 
(and region/cuts). 
–  Track will see the material of top-layer, if it is null, then one layer beneath. 
–  Alternative way of implementing a complicated geometry  

•  Rapid prototyping 
•  Safer, more flexible and powerful extension of the concept of “many” in 

Geant3 
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Layered mass geometries in parallel worlds - continued 

•  A parallel world may be associated only to some limited types of particles. 
–  May define geometries of different levels of detail for different particle types 
–  Example for sampling calorimeter: the mass world defines only the crude 

geometry with averaged material, while a parallel world with all the detailed 
geometry. Real materials in detailed parallel world geometry are associated with 
all particle types except e+, e- and gamma. 

•  e+, e- and gamma do not see volume boundaries defined in the parallel 
world, i.e. their steps won’t be limited 

–  Shower parameterization such as GFLASH may have its own geometry 
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Geometry seen by e+, e-, γ	
 Geometry seen by other particles  



Defining a parallel world with layered mass geometry 
main() (RE04.cc) 

 
 G4String paraWorldName = "ParallelWorld";  
 G4VUserDetectorConstruction* realWorld = new RE04DetectorConstruction; 
 G4VUserParallelWorldConstruction* parallelWorld 
   = new RE04ParallelWorldConstruction(paraWorldName); 
 realWorld->RegisterParallelWorld(parallelWorld); 
 runManager->SetUserInitialization(realWorld); 
 // 
 G4VModularPhysicsList* physicsList = new FTFP_BERT; 
 physicsList->RegisterPhysics 
       (new G4ParallelWorldPhysics(paraWorldName,true)); 
 runManager->SetUserInitialization(physicsList); 
 
–  The name defined in the G4VUserParallelWorld constructor is used as the 

physical volume name of the parallel world, and must be given to 
G4ParallelWorldPhysics.	
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Switch of layered 
mass geometry 



Defining a parallel world 
void RE04ParallelWorldConstruction::Construct() 
{ 
  // 
  // World 
  G4VPhysicalVolume* ghostWorld = GetWorld(); 
  G4LogicalVolume* worldLogical = ghostWorld->GetLogicalVolume(); 
  // 
  // material defined in the mass world 
  G4Material* water = G4Material::GetMaterial("G4_WATER"); 
  // 
  // parallel world placement box 
  G4VSolid* paraBox = new G4Box("paraBox",5.0*cm,30.0*cm,5.0*cm); 
  G4LogicalVolume* paraBoxLogical  
      = new G4LogicalVolume(paraBox, water, "paraBox"); 
  new G4PVPlacement(0,G4ThreeVector(-25.0*cm,0.,0.),paraBoxLogical, 
                    "paraBox",worldLogical,false,0); 

 
–  The world physical volume of the parallel is provided as a clone of the world 

volume of the mass geometry. The user cannot create it. 
–  You can fill contents regardless of the volumes in the mass geometry. 
–  Logical volumes in a parallel world needs not to have a material. 
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Moving objects 
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Moving objects 

•  In some applications, it is essential to simulate the movement of some 
volumes. 

–  E.g. particle therapy simulation 

•  Geant4 can deal with moving volume 

–  In case speed of the moving volume is slow enough compared to speed of 
elementary particles, so that you can assume the position of moving 
volume is still within one event. 

•  Two tips to simulate moving objects : 

1.  Use parameterized volume to represent the moving volume. 

2.  Do not optimize (voxelize) the mother volume of the moving volume(s). 
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Moving objects - tip 1 

•  Use parameterized volume to represent the moving volume. 
–  Use event number as a time stamp and calculate position/rotation of the 

volume as a function of event number. 
 
void MyMovingVolumeParameterisation::ComputeTransformation 
     (const G4int copyNo, G4VPhysicalVolume *physVol) const 
{ 
  static G4RotationMatrix rMat; 
  G4int eID = 0; 
  const G4Event* evt = G4RunManager::GetRunManager()->GetCurrentEvent(); 
  if(evt) eID = evt->GetEventID(); 
  G4double t = 0.1*s*eID; 
  G4double r = rotSpeed*t; 
  G4double z = velocity*t+orig; 
  while(z>0.*m) {z-=8.*m;} 
  rMat.set(CLHEP::HepRotationX(-r)); 
  physVol->SetTranslation(G4ThreeVector(0.,0.,z)); 
  physVol->SetRotation(&rMat0); 
} 
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Null pointer must be protected. 
This method is also invoked while  

geometry is being closed at 
the beginning of run, i.e.  

event loop has not yet began. 

You are responsible not to make  
the moving volume get out of 

(protrude from) the mother volume. 

Here, event number is converted 
to time. 

(0.1 sec/event) 

Position and rotation 
are set as the function 

of event number. 



Moving objects - tip 2 

•  Do not optimize (voxelize) the mother volume of the moving volume(s). 
–  If moving volume gets out of the original optimized voxel, the navigator gets 

lost. 
 
motherLogical -> SetSmartless( number_of_daughters ); 
 
–  With this method invocation, the one-and-only optimized voxel has all 

daughter volumes. 
–  For the best performance, use hierarchal geometry so that each mother 

volume has least number of daughters. 
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