
Version 10.0-p01

Geometry III

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

•  Magnetic field

•  Field integration and other types of field

•  GDML/CAD interfaces

•  Geometry checking tools

•  Geometry optimization

•  Parallel geometry

•  Moving objects

Geometry III - M.Asai (SLAC) 2

Version 10.0-p01

Defining a magnetic field

Magnetic field (1)

•  Create your Magnetic field class. It must be instantiated in
ConstructSDandField() method of your DetectorConstruction

–  Uniform field :

•  Use an object of the G4UniformMagField class

 G4MagneticField* magField =

 new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.);

–  Non-uniform field :

•  Create your own concrete class derived from G4MagneticField and
implement GetFieldValue method.

 void MyField::GetFieldValue(

 const double Point[4], double *field) const

•  Point[0..2] are position in global coordinate system, Point[3] is time

•  field[0..2] are returning magnetic field

Geometry III - M.Asai (SLAC) 4

Global and local fields
•  One field manager is associated with the ‘world’ and it is set in

G4TransportationManager

•  Other volumes can override this

–  An alternative field manager can be associated with any logical volume

•  The field must accept position in global coordinates and return field in
global coordinates

–  By default this is propagated to all its daughter volumes

G4FieldManager* localFieldMgr

 = new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr, true);

where ‘true’ makes it push the field to all the volumes it contains, unless a
daughter has its own field manager.

•  Customizing the field propagation classes

–  Choosing an appropriate stepper for your field

–  Setting precision parameters

Geometry III - M.Asai (SLAC) 5

Magnetic field (2)

 MyField* fMagneticField = new MyField();

 G4Fieldmanager* fFieldMgr = new G4FieldManager();

 fFieldMgr->SetDetectorField(fMagneticField);

 fFieldMgr->CreateChordFinder(fMagneticField);

 G4bool forceToAllDaughters = true;

 fMagneticLogical->SetFieldManager(fFieldMgr,

 forceToAllDaughters);

 // Register the field and its manager for deleting

 G4AutoDelete::Register(fMagneticField);

 G4AutoDelete::Register(fFieldMgr);

•  /example/basic/B5 is a good starting point

Geometry III - M.Asai (SLAC) 6

Field integration

•  In order to propagate a particle inside a field (e.g. magnetic, electric or both), we
solve the equation of motion of the particle in the field.

•  We use a Runge-Kutta method for the integration of the ordinary differential
equations of motion.

–  Several Runge-Kutta ‘steppers’ are available.

•  In specific cases other solvers can also be used:

–  In a uniform field, using the analytical solution.

–  In a smooth but varying field, with RK+helix.

•  Using the method to calculate the track's motion in a field, Geant4 breaks up this
curved path into linear chord segments.

–  We determine the chord segments so that they closely approximate the
curved path.

Geometry III - M.Asai (SLAC) 7

‘Tracking’ Step
Chords

Real Trajectory

Tracking in field

•  We use the chords to interrogate the G4Navigator, to see whether the track has
crossed a volume boundary.

•  One physics/tracking step can create several chords.

–  In some cases, one step consists of several helix turns.

•  User can set the accuracy of the volume intersection,

–  By setting a parameter called the “miss distance”

•  It is a measure of the error in whether the approximate track intersects a
volume.

•  It is quite expensive in CPU performance to set too small “miss
distance”.

Geometry III - M.Asai (SLAC) 8 "miss distance"

‘Tracking’ Step
Chords

Real Trajectory

Tunable parameters

•  In addition to the “miss distance” there are two more
parameters which the user can set in order to adjust the
accuracy (and performance) of tracking in a field.

–  These parameters govern the accuracy of the
intersection with a volume boundary and the accuracy
of the integration of other steps.

•  The “delta intersection” parameter is the accuracy to which
an intersection with a volume boundary is calculated. This
parameter is especially important because it is used to limit
a bias that our algorithm (for boundary crossing in a field)
exhibits. The intersection point is always on the 'inside' of
the curve. By setting a value for this parameter that is much
smaller than some acceptable error, the user can limit the
effect of this bias.

Geometry III - M.Asai (SLAC) 9

boundary

real
trajectory

Chord

estimated
intersection

correct
intersection

“delta
intersection”	

Tunable parameters
•  The “delta one step” parameter is the accuracy for the endpoint of 'ordinary'

integration steps, those which do not intersect a volume boundary. This parameter
is a limit on the estimation error of the endpoint of each physics step.

•  “delta intersection” and “delta one step” are strongly coupled. These values must
be reasonably close to each other.
–  At most within one order of magnitude

•  These tunable parameters can be set by

theChordFinder->SetDeltaChord(miss_distance);

theFieldManager->SetDeltaIntersection(delta_intersection);

theFieldManager->SetDeltaOneStep(delta_one_step);

•  Further details are described in Section 4.3 (Electromagnetic Field) of the
Application Developers Manual.

Geometry III - M.Asai (SLAC) 10

Version 10.0-p01

Field integration
and
Other types of field

Customizing field integration

•  Runge-Kutta integration is used to compute the motion of a charged track in a
general field. There are many general steppers from which to choose, of low and
high order, and specialized steppers for pure magnetic fields.

•  By default, Geant4 uses the classical fourth-order Runge-Kutta stepper
(G4ClassicalRK4), which is general purpose and robust.
–  If the field is known to have specific properties, lower or higher order

steppers can be used to obtain the results of same quality using fewer
computing cycles.

•  In particular, if the field is calculated from a field map, a lower order stepper is
recommended. The less smooth the field is, the lower the order of the stepper
that should be used.
–  The choice of lower order steppers includes the third order stepper

G4SimpleHeum, the second order G4ImplicitEuler and G4SimpleRunge, and
the first order G4ExplicitEuler. A first order stepper would be useful only for
very rough fields.

–  For somewhat smooth fields (intermediate), the choice between second and
third order steppers should be made by trial and error.

Geometry III - M.Asai (SLAC) 12

Customizing field integration

•  Trying a few different types of steppers for a particular field or application is
suggested if maximum performance is a goal. 	

•  Specialized steppers for pure magnetic fields are also available. They take into
account the fact that a local trajectory in a slowly varying field will not vary
significantly from a helix.

–  Combining this in with a variation, the Runge-Kutta method can provide
higher accuracy at lower computational cost when large steps are possible.

•  To change the stepper

theChordFinder

->GetIntegrationDriver()

->RenewStepperAndAdjust(newStepper);

	

•  Further details are described in Section 4.3 (Electromagnetic Field) of the
Application Developers Manual.	

Geometry III - M.Asai (SLAC) 13

Other types of field
•  The user can create their own type of field, inheriting from G4VField, and an

associated Equation of Motion class (inheriting from G4EqRhs) to simulate other
types of fields. Field can be time-dependent.

•  For pure electric field, Geant4 has G4ElectricField and G4UniformElectricField
classes. For combined electromagnetic field, Geant4 has G4ElectroMagneticField
class.

•  Equation of Motion class for electromagnetic field is G4MagElectricField.

G4ElectricField* fEMfield

 = new G4UniformElectricField(G4ThreeVector(0., 100000.*kilovolt/cm, 0.));
G4EqMagElectricField* fEquation = new G4EqMagElectricField(fEMfield);
G4MagIntegratorStepper* fStepper = new G4ClassicalRK4(fEquation, nvar);
G4FieldManager* fFieldMgr

 = G4TransportationManager::GetTransportationManager()-> GetFieldManager();
fFieldManager->SetDetectorField(fEMfield);
G4MagInt_Driver* fIntgrDriver

 = new G4MagInt_Driver(fMinStep, fStepper,
 fStepper->GetNumberOfVariables());

G4ChordFinder* fChordFinder = new G4ChordFinder(fIntgrDriver); 14

Version 10.0-p01

GDML/CAD interfaces

GDML	 and	 CAD	 Interfaces	

•  Up	 to	 now,	 the	 course	 has	 shown	 how	 to	 define	 materials	 and	 volumes	 from	 C++.	
•  This	 part	 of	 slides	 shows	 some	 alternate	 ways	 to	 define	 geometry	 at	 runCme	 by	

providing	 a	 file-‐based	 detector	 descripCon.	

Geometry III - M.Asai (SLAC) 16

Silicon Pixel & Microstrip
Tracker for Collider
Detector
N. Graf, J. McCormick,
LCDD, SLAC

GDML	 :	 Geometrical	 DescripCon	 Modeling	 Language	

•  An	 XML-‐based	 language	 designed	 as	 an	 applicaCon	 independent	 persistent	 format	 for	
describing	 the	 geometries	 of	 detectors.	
–  Implements	 “geometry	 trees”	 which	 correspond	 to	 the	 hierarchy	 of	 volumes	 a	

detector	 geometry	 can	 be	 composed	 of	
–  Allows	 materials	 to	 be	 defined	 and	 solids	 to	 be	 posiConed	

•  Because	 it	 is	 pure	 XML,	 GDML	 can	 be	 used	 universally	
–  Not	 just	 for	 Geant4	
–  Can	 be	 format	 for	 interchanging	 geometries	 among	 different	 applicaCons.	
–  Can	 be	 used	 to	 translate	 CAD	 geometries	 to	 Geant4	

•  XML	 is	 simple	
–  Rigid	 set	 of	 rules,	 self-‐describing	 data	 validated	 against	 schema	

•  XML	 is	 extensible	
–  Easy	 to	 add	 custom	 features,	 data	 types	

•  XML	 is	 Interoperable	 to	 OS’s,	 languages,	 applicaCons	
•  XML	 has	 hierarchical	 structure	

–  Appropriate	 for	 Object-‐Oriented	 programming	
–  Detector/sub-‐detector	 relaConships	

Geometry III - M.Asai (SLAC) 17

GDML	 structure	

•  Contains	 numerical	 values	 of	 constants,	 posiCons,	 rotaCons	 and	 scales	 that	 will	 be	 used	
later	 on	 in	 the	 geometry	 construcCon.	
–  Uses	 CLHEP	 expressions	

•  Constants	
<constant	 name=“length”	 value=“6.25”/>	

•  Variables	
<variable	 name=“x”	 value=“6”/>	

–  Once	 defined,	 can	 be	 used	 anywhere	 later,	 e.g.	
<variable	 name=“y”	 value=“x/2”/>	
<box	 name=“my_box”	 x=“x”	 y=“y”	 z=“x+y”/>	

•  PosiCons	
	 	 <posiCon	 name=“P1”	 x=“25.0”	 y=“50.0”	 z=“75.0”	 unit=“cm”/>	

•  RotaCons	
<rotaCon	 name=“RotateZ”	 z=“30”	 unit=“deg”/>	

•  Matrices	
	 	 <matrix	 name=“m”	 coldim=“3”	 values=“	 0.4	 9	 126	
	 	 	 	 	 	 	 	 	 	 	 8.5	 7	 21	
	 	 	 	 	 	 	 	 	 	 	 34.6	 7	 9”/>	

Geometry III - M.Asai (SLAC) 18

GDML	 structure	

•  Simple	 Elements	
<element	 Z="8"	 formula="O"	 name="Oxygen"	 >	
	 	 <atom	 value="16"	 />	
</element>	

•  Material	 by	 number	 of	 atoms	 (“molecule”)	
<material	 name="Water"	 formula="H2O">	

<D	 value="1.0"	 />	
<composite	 n="2"	 ref="Hydrogen"	 />	
<composite	 n="1"	 ref="Oxygen"	 />	

</material>	
•  Material	 as	 a	 fracConal	 mixture	 of	 elements	 or	 materials,	 (“compound”):	

<material	 formula="air"	 name="Air"	 >	
<D	 value="0.00129"	 />	
<fracCon	 n="0.7"	 ref="Nitrogen"	 />	
<fracCon	 n="0.3"	 ref="Oxygen"	 />	

</material>	

Geometry III - M.Asai (SLAC) 19

GDML	 solids	

•  Box	
•  Cone	 Segment	
•  Ellipsoid	
•  EllipCcal	 Tube	
•  EllipCcal	 Cone	
•  Orb	
•  Paraboloid	
•  Parallelepiped	
•  Polycone	
•  Polyhedron	
•  Sphere	
•  Torus	 Segment	

•  Trapezoid	 (x&y	 vary	 along	 z)	
•  General	 Trapezoid	
•  Tube	 with	 Hyperbolic	 Profile	
•  Cut	 Tube	
•  Tube	 Segment	
•  Twisted	 Box	
•  Twisted	 Trapezoid	
•  Twisted	 General	 Trapezoid	
•  Twisted	 Tube	 Segment	
•  Extruded	 Solid	
•  Tessellated	 Solid	
•  Tetrahedron	

Geometry III - M.Asai (SLAC) 20

GDML	 Boolean	 solid	

•  The	 Boolean	 operaCons	 union,	 subtracCon	 and	 intersecCon	 are	 also	 supported,	 e.g.	
<box	 name=“box_1”	 x=“1”	 y=“5”	 z=“20”	 />	
<box	 name=“box_2”	 x=“4”	 y=“4.5”	 z=“18”	 />	
<union	 name=“union”	 >	
	 	 <first	 ref=“box_1”	 />	
	 	 <second	 ref=“box_2”/>	
	 	 <posiConref	 ref=“union_posiCon”	 />	
	 	 <rotaConref	 ref=“union_rotaCon”	 />	
</union>	

Geometry III - M.Asai (SLAC) 21

GDML	 volumes	

•  Volumes	 are	 created	 from	 solids	 and	 materials	 that	 were	 previously	 defined	 in	 this	 or	 a	
linked	 GDML	 file	

•  Both	 logical	 and	 physical	 volumes	 are	 defined	 in	 one	
<volume	 name="World">	
	 	 <materialref	 ref="Air"/>	
	 	 <solidref	 ref="WorldBox"/>	
	 	 <physvol>	
	 	 <volumeref	 ref="vol0"/>	
	 	 	 <posiConref	 ref="center"/>	
	 	 	 <rotaConref	 ref="idenCty"/>	
	 	 </physvol>	
</volume>	

Geometry III - M.Asai (SLAC) 22

ImporCng	 GDML	 file	

•  GDML	 files	 can	 be	 directly	 imported	 into	 Geant4	 geometry,	 using	 the	 GDML	 plug-‐in	
facility:	

#include	 “G4GDMLParser.hh”	
•  Generally	 you	 will	 want	 to	 put	 the	 following	 lines	 into	 your	 DetectorConstrucCon	 class:	

G4GDMLParser	 parser;	
parser.Read(“geometryFile.gdml”);	
G4VphysicalVolume*	 W=parser.GetWorldVolume();	

•  To	 include	 the	 Geant4	 module	 for	 GDML,	 	
–  Install	 the	 XercesC	 parser	 (version	 2.8.0	 or	 3.0.0)	

hrp://xerces.apache.org/xerces-‐c/download.cgi	
–  Set	 appropriate	 environment	 variables	 when	 G4	 libraries	 are	 built	

•  Examples	 available	 in:	
$G4INSTALL/examples/extended/persistency/gdml	

Geometry III - M.Asai (SLAC) 23

ImporCng	 CAD	 geometry	

•  Users	 with	 3D	 engineering	 drawings	 may	 want	 to	 incorporate	 these	 into	 their	 Geant4	
simulaCon	 as	 directly	 as	 possible	

•  DifficulCes	 include:	
–  Proprietary,	 undocumented	 or	 changing	 CAD	 formats	
–  Usually	 no	 connecCon	 between	 geometry	 and	 materials	
–  Mismatch	 in	 level	 of	 detail	 required	 to	 machine	 a	 part	 and	 that	 required	 to	 transport	

parCcles	 in	 that	 part	
•  CAD	 is	 never	 as	 easy	 as	 you	 might	 think	 (if	 the	 geometry	 is	 complex	 enough	 to	 require	 CAD	 in	

the	 first	 place)	
•  CADMesh	 is	 a	 direct	 CAD	 model	 import	 interface	 for	 GEANT4	 opConally	 leveraging	 VCGLIB,	

and	 ASSIMP	 by	 default.	 Currently	 it	 supports	 the	 import	 of	 triangular	 facet	 surface	 meshes	
defined	 in	 formats	 such	 as	 STL	 and	 PLY.	 A	 G4TessellatedSolid	 is	 returned	 and	 can	 be	 included	
in	 a	 standard	 user	 detector	 constructor.	
–  hrps://code.google.com/p/cadmesh/	 	

•  One	 output	 format	 most	 CAD	 programs	 do	 support	 is	 STEP	
–  Not	 a	 complete	 soluCon,	 in	 parCcular	 does	 not	 contain	 material	 informaCon	
–  There	 are	 movements	 under	 way	 to	 get	 new	 formats	 that	 contain	 addiConal	

informaCon,	 but	 none	 yet	 widely	 adopted.	

Geometry III - M.Asai (SLAC) 24

ConverCng	 STEP	 to	 GDML	

•  Imperfect,	 but	 sCll	 helpful	 soluCons	 are	 tools	 to	 convert	 STEP	 to	 GDML	 and	 provide	 the	
user	 a	 way	 to	 add	 materials	 informaCon	

•  There	 are	 two	 cases	 where	 exisCng	 CAD	 programs	 have	 added	 GDML	 export	 features.	
Since	 these	 CAD	 programs	 can	 also	 read	 in	 STEP,	 they	 can	 be	 used	 as	 STEP	 to	 GDML	
converters.	
–  Neither	 opCon	 is	 free,	 neither	 opCon	 works	 perfectly	
–  ST-‐Viewer	

•  hrp://www.steptools.com	
–  FastRad	

•  GDML	 export	 extension	 was	 funded	 by	 European	 Space	 Agency	
•  Not	 free	 except	 for	 limited,	 trial	 mode	 that	 can	 handle	 only	 a	 small	 number	 of	
volumes	

•  hrp://www.fastrad.net/	 	
•  Discussion	 of	 these	 soluCons	 takes	 place	 in	 the	 Geant4	 Persistency	 forum:	

hrp://hypernews.slac.stanford.edu/HyperNews/geant4/get/persistency.html	
•  Useful	 technical	 note:	

–  Linking	 computer-‐aided	 design	 (CAD)	 to	 Geant4-‐based	 Monte	 Carlo	 simulaCons	 for	
precise	 implementaCon	 of	 complex	 treatment	 head	 geometries.,	 ConstanCn	 et.	 al.,	
Phys	 Med	 Biol.	 2010	 Apr	 21;55(8):N211-‐20.	 Epub	 2010	 Mar	 26	

Geometry III - M.Asai (SLAC) 25

Version 10.0-p01

Geometry checking tools

Debugging geometries
•  An protruding volume is a contained daughter volume which actually protrudes from its

mother volume.

•  Volumes are also often positioned in a same volume with the intent of not provoking

intersections between themselves. When volumes in a common mother actually

intersect themselves are defined as overlapping.

•  Geant4 does not allow for malformed geometries, neither protruding nor overlapping.

–  The behavior of navigation is unpredictable for such cases.

•  The problem of detecting overlaps between volumes is bounded by the complexity of

the solid models description.

•  Utilities are provided for detecting wrong positioning

–  Optional checks at construction

–  Kernel run-time commands

–  Graphical tools (DAVID, OLAP)

Geometry III - M.Asai (SLAC) 27 protruding overlapping

Optional checks at construction

•  Constructors of G4PVPlacement and G4PVParameterised have an optional
argument “pSurfChk”.
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector &tlate,
G4LogicalVolume *pDaughterLogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, G4int pCopyNo,
G4bool pSurfChk=false);

•  If this flag is true, overlap check is done at the construction.
–  Some number of points are randomly sampled on the surface of creating

volume.
–  Each of these points are examined

•  If it is outside of the mother volume, or
•  If it is inside of already existing other volumes in the same mother

volume.
•  This check requires lots of CPU time, but it is worth to try at least once when you

implement your geometry of some complexity.

Geometry III - M.Asai (SLAC) 28

Debugging run-time commands

•  Built-in run-time commands to activate verification tests for the user geometry
are defined
–  to start verification of geometry for overlapping regions based on a

standard grid setup, limited to the first depth level
geometry/test/run or geometry/test/grid_test

–  applies the grid test to all depth levels (may require lots of CPU time!)
geometry/test/recursive_test

–  shoots lines according to a cylindrical pattern
geometry/test/cylinder_test

–  to shoot a line along a specified direction and position
geometry/test/line_test

–  to specify position for the line_test
geometry/test/position

–  to specify direction for the line_test
geometry/test/direction

Geometry III - M.Asai (SLAC) 29

Debugging run-time commands

•  Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes
 The volumes Tracker[0] and Overlap[0],
 both daughters of volume World[0],

 appear to overlap at the following points in global coordinates: (list
truncated)

 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 240 -240 -145.5 -145.5 0 -145.5 -145.5
Which in the mother coordinate system are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Tracker[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----

 . . .
Which in the coordinate system of Overlap[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .

Geometry III - M.Asai (SLAC) 30

Debugging tools: DAVID

•  DAVID is a graphical debugging tool for detecting
potential intersections of volumes

•  Accuracy of the graphical representation can be
tuned to the exact geometrical description.
–  physical-volume surfaces are automatically

decomposed into 3D polygons
–  intersections of the generated polygons are

parsed.
–  If a polygon intersects with another one, the

physical volumes associated to these polygons
are highlighted in color (red is the default).

•  DAVID can be downloaded from the Web as external
tool for Geant4
–  http://geant4.kek.jp/~tanaka/

Geometry III - M.Asai (SLAC) 31

Version 10.0-p01

Geometry optimization
("voxelization")

Smart voxelization

•  In case of Geant 3.21, the user had to carefully implement his/her geometry to

maximize the performance of geometrical navigation.

•  While in Geant4, user’s geometry is automatically optimized to most suitable to the

navigation. - "Voxelization"

–  For each mother volume, one-dimensional virtual division is performed.

–  Subdivisions (slices) containing same volumes are gathered into one.

–  Additional division again using second and/or third Cartesian axes, if needed.

•  "Smart voxels" are computed at initialisation time

–  When the detector geometry is closed

–  Does not require large memory or computing resources

–  At tracking time, searching is done in a hierarchy of virtual divisions

Geometry III - M.Asai (SLAC) 33

Detector description tuning
•  Some geometry topologies may require ‘special’ tuning for ideal and efficient

optimisation

–  for example: a dense nucleus of volumes included in very large mother
volume

•  Granularity of voxelisation can be explicitly set

–  Methods Set/GetSmartless() from G4LogicalVolume

•  Critical regions for optimisation can be detected

–  Helper class G4SmartVoxelStat for monitoring time spent in detector
geometry optimisation

•  Automatically activated if /run/verbose greater than 1

Percent Memory Heads Nodes Pointers Total CPU Volume

------- ------ ----- ----- -------- --------- -----------

 91.70 1k 1 50 50 0.00 Calorimeter

 8.30 0k 1 3 4 0.00 Layer

Geometry III - M.Asai (SLAC) 34

Visualising voxel structure

•  The computed voxel structure can be visualized with the final detector geometry

–  Helper class G4DrawVoxels

–  Visualize voxels given a logical volume

G4DrawVoxels::DrawVoxels(const G4LogicalVolume*)

–  Allows setting of visualization attributes for voxels

G4DrawVoxels::SetVoxelsVisAttributes(…)

–  useful for debugging purposes

Geometry III - M.Asai (SLAC) 35

Version 10.0-p01

Parallel geometry

Parallel navigation

•  In the previous versions, we have already had several ways of utilizing a
concept of parallel world. But the usages are quite different to each other.

–  Ghost volume for shower parameterization assigned to
G4GlobalFastSimulationManager

–  Readout geometry assigned to G4VSensitiveDetector

–  Importance field geometry for geometry importance biasing assigned to
importance biasing process

–  Scoring geometry assigned to scoring process

•  We merge all of them into common parallel world scheme.

–  Readout geometry for sensitive detector will be kept for backward
compatibility.

–  Other current “parallel world schemes” became obsolete.

Geometry III - M.Asai (SLAC) 37

Parallel navigation

•  Occasionally, it is not straightforward to define sensitivity, importance or
envelope to be assigned to volumes in the mass geometry.

–  Typically a geometry built machinery by CAD, GDML, DICOM, etc. has this
difficulty.

•  New parallel navigation functionality allows the user to define more than one
worlds simultaneously.

–  New G4Transportation process sees all worlds simultaneously.

–  A step is limited not only by the boundary of the mass geometry but also by
the boundaries of parallel geometries.

–  Materials, production thresholds and EM field are used only from the mass
geometry.

–  In a parallel world, the user can define volumes in arbitrary manner with
sensitivity, regions with shower parameterization, and/or importance field for
biasing.

•  Volumes in different worlds may overlap.

Geometry III - M.Asai (SLAC) 38

Parallel navigation

•  G4VUserParrallelWorld is the new base class where the user implements a
parallel world.

–  The world physical volume of the parallel world is provided by
G4RunManager as a clone of the mass geometry.

–  All UserParallelWorlds must be registered to UserDetectorConstruction.

–  Each parallel world has its dedicated G4Navigator object, that is
automatically assigned when it is constructed.

•  Though all worlds will be comprehensively taken care by G4Transportation
process for their navigations, each parallel world must have its own process to
achieve its purpose.

–  For example, in case the user defines a sensitive detector to a parallel world,
a process dedicated to this world is responsible to invoke this detector.
G4SteppingManager sees only the detectors in the mass geometry. The
user has to have G4ParallelWorldProcess in his physics list.

Geometry III - M.Asai (SLAC) 39

example/extended/runAndEvent/RE06

•  Mass geometry
–  sandwich of

rectangular
absorbers and
scintilators

•  Parallel scoring
geometry
–  Cylindrical layers

Geometry III - M.Asai (SLAC) 40

Layered mass geometries in parallel world

•  Suppose you implement a wooden brick floating on the water.

•  Dig a hole in water…

•  Or, chop a brick into two and place them separately…

Geometry III - M.Asai (SLAC) 41

Layered mass geometries in parallel worlds

•  Parallel geometry may be stacked on top of mass geometry or other parallel
world geometry, allowing a user to define more than one worlds with materials
(and region/cuts).
–  Track will see the material of top-layer, if it is null, then one layer beneath.
–  Alternative way of implementing a complicated geometry

•  Rapid prototyping
•  Safer, more flexible and powerful extension of the concept of “many” in

Geant3

Geometry III - M.Asai (SLAC) 42

Mass world Parallel world

Layered mass geometries in parallel worlds - continued

•  A parallel world may be associated only to some limited types of particles.
–  May define geometries of different levels of detail for different particle types
–  Example for sampling calorimeter: the mass world defines only the crude

geometry with averaged material, while a parallel world with all the detailed
geometry. Real materials in detailed parallel world geometry are associated with
all particle types except e+, e- and gamma.

•  e+, e- and gamma do not see volume boundaries defined in the parallel
world, i.e. their steps won’t be limited

–  Shower parameterization such as GFLASH may have its own geometry

Geometry III - M.Asai (SLAC) 43

Geometry seen by e+, e-, γ	
 Geometry seen by other particles

Defining a parallel world with layered mass geometry
main() (RE04.cc)

 G4String paraWorldName = "ParallelWorld";
 G4VUserDetectorConstruction* realWorld = new RE04DetectorConstruction;
 G4VUserParallelWorldConstruction* parallelWorld
 = new RE04ParallelWorldConstruction(paraWorldName);
 realWorld->RegisterParallelWorld(parallelWorld);
 runManager->SetUserInitialization(realWorld);
 //
 G4VModularPhysicsList* physicsList = new FTFP_BERT;
 physicsList->RegisterPhysics
 (new G4ParallelWorldPhysics(paraWorldName,true));
 runManager->SetUserInitialization(physicsList);

–  The name defined in the G4VUserParallelWorld constructor is used as the

physical volume name of the parallel world, and must be given to
G4ParallelWorldPhysics.	

	

Geometry III - M.Asai (SLAC) 44

Switch of layered
mass geometry

Defining a parallel world
void RE04ParallelWorldConstruction::Construct()
{
 //
 // World
 G4VPhysicalVolume* ghostWorld = GetWorld();
 G4LogicalVolume* worldLogical = ghostWorld->GetLogicalVolume();
 //
 // material defined in the mass world
 G4Material* water = G4Material::GetMaterial("G4_WATER");
 //
 // parallel world placement box
 G4VSolid* paraBox = new G4Box("paraBox",5.0*cm,30.0*cm,5.0*cm);
 G4LogicalVolume* paraBoxLogical
 = new G4LogicalVolume(paraBox, water, "paraBox");
 new G4PVPlacement(0,G4ThreeVector(-25.0*cm,0.,0.),paraBoxLogical,
 "paraBox",worldLogical,false,0);

–  The world physical volume of the parallel is provided as a clone of the world

volume of the mass geometry. The user cannot create it.
–  You can fill contents regardless of the volumes in the mass geometry.
–  Logical volumes in a parallel world needs not to have a material.

Geometry III - M.Asai (SLAC) 45

Version 10.0-p01

Moving objects

Geometry III - M.Asai (SLAC) 47

+ + + ……

 4D RT Treatment Plan
Source: Lei Xing, Stanford University

Upper
Jaws

Lower
Jaws

MLC

Ion
chamber

Moving objects

•  In some applications, it is essential to simulate the movement of some
volumes.

–  E.g. particle therapy simulation

•  Geant4 can deal with moving volume

–  In case speed of the moving volume is slow enough compared to speed of
elementary particles, so that you can assume the position of moving
volume is still within one event.

•  Two tips to simulate moving objects :

1.  Use parameterized volume to represent the moving volume.

2.  Do not optimize (voxelize) the mother volume of the moving volume(s).

Geometry III - M.Asai (SLAC) 48

Moving objects - tip 1

•  Use parameterized volume to represent the moving volume.
–  Use event number as a time stamp and calculate position/rotation of the

volume as a function of event number.

void MyMovingVolumeParameterisation::ComputeTransformation
 (const G4int copyNo, G4VPhysicalVolume *physVol) const
{
 static G4RotationMatrix rMat;
 G4int eID = 0;
 const G4Event* evt = G4RunManager::GetRunManager()->GetCurrentEvent();
 if(evt) eID = evt->GetEventID();
 G4double t = 0.1*s*eID;
 G4double r = rotSpeed*t;
 G4double z = velocity*t+orig;
 while(z>0.*m) {z-=8.*m;}
 rMat.set(CLHEP::HepRotationX(-r));
 physVol->SetTranslation(G4ThreeVector(0.,0.,z));
 physVol->SetRotation(&rMat0);
}

Geometry III - M.Asai (SLAC) 49

Null pointer must be protected.
This method is also invoked while

geometry is being closed at
the beginning of run, i.e.

event loop has not yet began.

You are responsible not to make
the moving volume get out of

(protrude from) the mother volume.

Here, event number is converted
to time.

(0.1 sec/event)

Position and rotation
are set as the function

of event number.

Moving objects - tip 2

•  Do not optimize (voxelize) the mother volume of the moving volume(s).
–  If moving volume gets out of the original optimized voxel, the navigator gets

lost.

motherLogical -> SetSmartless(number_of_daughters);

–  With this method invocation, the one-and-only optimized voxel has all

daughter volumes.
–  For the best performance, use hierarchal geometry so that each mother

volume has least number of daughters.

Geometry III - M.Asai (SLAC) 50

