
Geant4 version 10.0.p01

Event Biasing

Michael Kelsey, Thu 6 Mar 2014

Geant4 Tutorial: version 10.0.p01

Geant4 version 10.0.p01

2

Outline

• Motivation
• What Is Event Biasing?
• Geometric Biasing in GEANT4
• Physics Biasing in GEANT4
• User Defined Biasing
• NEW General Biasing Interface
• Bremsstrahlung Splitting
• Summary

Geant4 version 10.0.p01

3

Motivation

If you want a fully realistic simulation, you need to generate,
model, and track as much as possible of what would happen in
real life.

“Too many events get rejected by my cuts.”
“Why track secondaries in my support structure?”

“I don’t care about 1 MeV photons!”
“GEANT4 is too slow.”

If you need fast results, or high statistics, maybe give up some
realism (or low-probability tails) in exchange for getting right
answers on average, and worry about tails elsewhere.

Geant4 version 10.0.p01

4

What is Event Biasing?

Method of accelerating simulation of useful events at the expense of
accurate fluctuations

Analogue simulation uses natural PDFs N(x) to generate correct
mean and correct fluctuations, including far-off tails

•  Often includes a significant fraction of events/particles outside final
•  acceptance (physical or phase space) or interest
•  Poor net efficiency

Biased simulation replaces N(x) with an artificial PDF B(x), which
enhances production of interesting events/particles

•  Increases MC efficiency: more events survive detector model, cuts, etc.
•  Distribution and fluctuations are not correct: must apply weight

correction, but still won’t get tails

Geant4 version 10.0.p01

5

Geant4 Built-In Biasing (Application Guide, Sec
3.7)

GEANT4 does analogue simulation by default

For expert/specialty users, provides methods to manipulate processing
stages and apply B(x) bias early

Geometric or acceptance biasing
•  Uses a combination of scoring and biasing functions
•  Suppress/enhance events on the basis of coordinates or angles

Physics biasing
•  Changes production of primary or secondary particles
•  Changes relative branching fractions

User-defined biasing
•  Available through the G4WrapperProcess interface
•  For situations not covered by the built-in algorithms

Geant4 version 10.0.p01

6

Geometric Sampling (3.7.1)

Intended for non-active material, such as shielding

• Uses scoring to assign a weight to a generated track, and
accept/reject algorithms to evaluate that weight

•  Importance sampling uses geometrical splitting plus
“Russian roulette” to select tracks through each cell

• Weight roulette uses windows (upper and lower bounds) or
a simple cutoff to keep or remove tracks

Geant4 version 10.0.p01

7

Geometric Sampling (3.7.1)

Scoring done with G4MultiFunctionalDetector

•  Scorers may themselves be biased; see
G4MultiFunctionDetector (different class!)

•  Scoring and importance sampling apply to particle types
chosen by the user, not globally.
-  examples/extended/biasing

-  examples/advanced/Tiara

Geant4 version 10.0.p01

8

Geometry Models (3.7.1.1)

Biasing generally requires a parallel geometry equivalent to
the detector model (mass geometry) used for simulation

• World volumes for parallel and mass must be identical

• Divide large non-sensitive volumes into cells
(G4GeometryCell)

• Cells and parameters collected into a store (G4IStore, etc.)

•  Volume must be fully populated with cells (no holes!)

• Cells must not share boundaries with world volume

Geant4 version 10.0.p01

9

Geometry Models (3.7.1.1)

class B02ImportanceDetectorConstruction : public G4VUserParallelWorld

{ ... };

G4VPhysicalVolume* ghostWorld = pdet->GetWorldVolume();

G4GeometrySampler pgs(ghostWorld,"neutron");

pgs.SetParallel(true);

...

pgs.PrepareImportanceSampling(&aIstore, 0);

pgs.Configure();

Geant4 version 10.0.p01

10

Importance Sampling (3.7.1.3)

Must have good understanding of problem physics
• Which particle types require importance sampling?
• Define the cells appropriately (size, location)
•  Assign importance values to the cells

If not done properly, results cannot be interpreted as
describing real experiment

Importance store used to store values related to cells
• User creates an object which inherits from G4VIstore: built-

in G4IStore may be used
• Constructed with reference to the world-volume of the

geometry (mass or parallel) used for sampling
• User fills the store with cells and their importance values

Geant4 version 10.0.p01

11

Importance Store

class G4IStore : public G4VIStore {

public:

 explicit G4IStore(const G4VPhysicalVolume &worldvolume);

 virtual ~G4IStore();

 virtual G4double GetImportance(const G4GeometryCell &gCell) const;

 virtual G4bool IsKnown(const G4GeometryCell &gCell) const;

 virtual const G4VPhysicalVolume &GetWorldVolume() const;

 void AddImportanceGeometryCell(G4double importance,

 const G4GeometryCell &gCell);

 void AddImportanceGeometryCell(G4double importance,

 const G4VPhysicalVolume &, G4int aRepNum=0);

 void ChangeImportance(G4double importance, const G4GeometryCell &gCell);

 void ChangeImportance(G4double importance, const G4VPhysicalVolume &,

 G4int aRepNum=0);

 G4double GetImportance(const G4VPhysicalVolume &, G4int aRepNum=0) const;

 private:

};

Geant4 version 10.0.p01

12

Importance Sampling Algorithm

Value must be assigned to every cell

Store must be fully occupied (no missing cells)

User creates class inheriting from G4VImportanceAlgorithm
•  Built-in G4ImportanceAlgorithm will be used if none passed to

sampler
-  Cell is not in store: causes an exception (job terminates)
-  Importance = 0: Tracks of the chosen particle type will be killed
-  Importance > 0: Normal allowed values
-  Importance < 0: Not allowed!

•  User-defined algorithm must handle all cases above, perhaps with
different behaviour

Geant4 version 10.0.p01

13

Weight Windows (3.7.1.5)

Alternative to importance sampling
•  Applies splitting and Russian roulette depending on space (cells)

and energy
•  User defines weight windows in contrast to defining importance

values as in importance sampling
•  Importance sampling is “weight blind,” this technique uses particle

weight in evaluation

Apply in combination with other variance reduction techniques
•  cross-section biasing, implicit capture
•  A weight window may be specified for every geometric cell and for

different energy ranges
•  Space-energy cell, using same G4GeometryCell as importance

sampling
•  Cells with no window will pass all particles through

Geant4 version 10.0.p01

14

Weight Window Definition

•  Global lower bound WL (all cells)
•  Scale factors CS and CU for each

cell, or globally
•  Upper bound WU = CUWL
•  Survival cut WS = CSWL

•  CS = CU = 1 equivalent to
importance sampling

•  User may apply at boundaries,
on collisions or both

Cells stored in subclass of G4VWeightWindowStore
• Built-in implementation G4WeightWindowStore available
• Tracks below WL may be killed, or weight reset to WS
• Tracks above WU are split (replicated n times, nWS ≤ WU)

Geant4 version 10.0.p01

15

Weight roulette (3.7.1.6)

Also called weight cutoff
•  Weight of particle may become so low that no result can change

significantly: propagating all tracks wastes computing time.
•  Usually applied if importance sampling and implicit capture are used

together.
•  Implicit capture reduces particle’s weight at every collision, instead

of killing outright with some probability.

Weight roulette scales particle’s weight by importance ratio
 R = Is/Ic of current cell (Ic) and original source (Is)

•  If weight falls below a lower bound, Russian roulette is applied
•  If particle survives, weight is reset to a specified survival weight

Geant4 version 10.0.p01

16

Physics Based Biasing (3.7.2)

Replaces the natural distribution of some process with
“fake” PDFs that limit events to what is useful for your
simulation

•  Primary particle biasing: e.g., cosmic ray experiments

• Radioactive decay biasing: e.g., shielding or underground
detectors

• Hadronic leading-particle biasing: only the highest-energy
secondary(ies) at each step of a shower are kept

• Hadronic cross-section biasing: cross-sections or branching
ratios can be arbitrarily rescaled

Geant4 version 10.0.p01

17

Primary Particle (3.7.2.1.1)

Increases number of primary particles generated
in particular phase space region of interest

•  Primary particle’s weight is modified as appropriate
•  Implemented in G4GeneralParticleSource

•  Possible to bias position, angular and/or energy distributions

Use in subclass of G4VUserPrimaryGeneratorAction

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction() {

 generator = new G4GeneralParticleSource;

}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) {

 generator->GeneratePrimaryVertex(anEvent);

}

Geant4 version 10.0.p01

18

Radioactive decay (3.7.2.1.2)

G4RadioactiveDecay simulates the decay of radioactive
nuclei, with optional biasing

•  Increase sampling rate of radionclides within observation
times through user-defined probability distribution function

• Nuclear splitting, where parent nuclide is split into a user
•  defined number of nuclides
• Branching ratio biasing where branching ratios are sampled

with equal probability

This is a process: register in physics list for G4GenericIon

Examples in examples/extended/radioactivedecay

Geant4 version 10.0.p01

19

Hadronic Leading Particle (3.7.2.1.3)

Keeps only most important part of each event, as well as
representative tracks of each given particle type:

•  Track with highest energy
• One of each of baryon (p, n), π0, meson (π±, K), lepton
•  Appropriate weights are assigned to the particles

Implemented in G4HadLeadBias utility

Environment variable SwitchLeadBiasOn activates

Geant4 version 10.0.p01

20

Hadronic cross-section (3.7.2.1.4)

Artificially enhances/reduces cross section(s) for some
process

• Useful for studying thin layer interactions or thick layer
shielding

•  Photon inelastic, electron nuclear and positron nuclear
processes

More details can be found in a talk presented at TRIUMF

http://legacyweb.triumf.ca/geant4-03/talks/03-Wednesday-AM-1/03-
J.Wellisch/biasing.hadronics.pdf

Geant4 version 10.0.p01

21

Cross-Section Biasing

Controlled via
G4HadronicProcess::BiasCrossSectionByFactor()

void MyPhysicsList::ConstructProcess() {

...

 G4ElectroNuclearReaction *theElectroReaction =

 new G4ElectroNuclearReaction;

 G4ElectronNuclearProcess theElectronNuclearProcess;

 theElectronNuclearProcess.RegisterMe(theElectroReaction);

 theElectronNuclearProcess.BiasCrossSectionByFactor(100);

 pManager->AddDiscreteProcess(&theElectronNuclearProcess);

...

}

Geant4 version 10.0.p01

22

User Defined Biasing (3.7.2.2)

G4WrapperProcess can be used to implement user
defined event biasing

•  G4WrapperProcess, which is a process itself, wraps an existing
process

•  All function calls forwarded to wrapped process
•  Non-invasive way to modify behaviour of existing (built-in) process

1.  Create derived class inheriting from G4WrapperProcess

2.  Override only the methods to be modified, e.g.,

PostStepDoIt()

3.  Register this class in place of the original
4.  Finally, register the original (wrapped) process with user class

Geant4 version 10.0.p01

23

User Defined Biasing

class MyWrapperProcess : public G4WrapperProcess {

 ...

 G4VParticleChange* PostStepDoIt(const G4Track& track,

 const G4Step& step) {

 // Do something interesting

 }

};

void MyPhysicsList::ConstructProcess() {

 ...

 G4LowEnergyBremsstrahlung* bremProcess =

 new G4LowEnergyBremsstrahlung();

 MyWrapperProcess* wrapper = new MyWrapperProcess();

 wrapper->RegisterProcess(bremProcess);

 processManager->AddProcess(wrapper);

}

Geant4 version 10.0.p01

24

General Biasing Interface (new for G4 10.0)

More “toolkit-based” approach to user-defined biasing, with
pre-written tools using common interface.

G4BiasingProcessInterface

• Wrapper class for physics processes

G4VBiasingOperation

•  Base class to define single biasing action

G4VBiasingOperator

• Configuration to apply one or more operations

Geant4 version 10.0.p01

25

General Biasing: Discrete Process Example

G4GammaConversion 

G4ComptonSca2ering 

G4PhotoelectricEffect 

GetPostStepPhysicalInteractionLength()
•  Returns the distance at which the

process will make an interaction
•  Analog exponential law is at play
•  Above analog behavior

superseded by biased behavior (if
wished)

1.  PostStepDoIt()
•  Called if the process has

responded the shortest of the
interaction distances

•  Generate final state, according to
specific process analog physical
law

•  Above analog behavior
superseded by biased behavior (if
wished)

75 cm

5 cm

9 cm

Geant4 version 10.0.p01

26

General Biasing: Discrete Process Example

G4GammaConversion 

G4ComptonSca2ering 

G4PhotoelectricEffect 

GetPostStepPhysicalInteractionLength()
•  Returns the distance at which the

process will make an interaction
•  Analog exponential law is at play
•  Above analog behavior

superseded by biased behavior (if
wished)

PostStepDoIt()
•  Called if the process has

responded the shortest of the
interaction distances

•  Generate final state, according to
specific process analog physical
law

•  Above analog behavior
superseded by biased behavior (if
wished)

75 cm

5 cm

9 cm

e+

e-

Geant4 version 10.0.p01

27

General Biasing: Discrete Process Example

G4BiasingProcessInterface 

G4GammaConversion 

G4BiasingProcessInterface 

G4ComptonSca2ering 

G4BiasingProcessInterface 

G4PhotoelectricEffect 

GetPostStepPhysicalInteractionLength()
•  Returns the distance at which the

process will make an interaction
•  Analog exponential law is at play
•  Above analog behavior

superseded by biased behavior (if
wished)

PostStepDoIt()
•  Called if the process has

responded the shortest of the
interaction distances

•  Generate final state, according to
specific process analog physical
law

•  Above analog behavior
superseded by biased behavior (if
wished)

12 cm

10 cm

7 cm

G4BiasingProcessInterface wrapper intercepts physics-
related function calls

Geant4 version 10.0.p01

28

General Biasing: Discrete Process Example

G4BiasingProcessInterface 

G4GammaConversion 

G4BiasingProcessInterface 

G4ComptonSca2ering 

G4BiasingProcessInterface 

G4PhotoelectricEffect 

GetPostStepPhysicalInteractionLength()
•  Returns the distance at which the

process will make an interaction
•  Analog exponential law is at play
•  Above analog behavior

superseded by biased behavior (if
wished)

PostStepDoIt()
•  Called if the process has

responded the shortest of the
interaction distances

•  Generate final state, according to
specific process analog physical
law

•  Above analog behavior
superseded by biased behavior (if
wished)

12 cm

10 cm

7 cm

e-

γ

e-

e-

e-

G4BiasingProcessInterface wrapper intercepts physics-
related function calls

Geant4 version 10.0.p01

29

Example: Bremsstrahlung Splitting

•  Implemented via G4WrapperProcess (details shown)

• Assume only interested in scoring photon hits

•  Increase MC performance by reducing tracking of
secondary electrons

• Demonstrates biasing through enhanced production of
secondaries

Geant4 version 10.0.p01

30

Brem Splitting Algorithm

Sample photon energy, angular distributions N times

Generate N unique secondaries (vs. once per interaction)
•  This is called “splitting”
• Don’t confuse with importance sample splitting, where N

identical copies are created

Reduce electron energy by just one of the chosen photons

Remove bias introduced in photon energy and angular
distributions

•  Assign each secondary a statistical weight
• wsec = wparent / N

Geant4 version 10.0.p01

31

Brem Splitting Implementation

User process inherits from G4WrapperProcess

class BremSplittingProcess : public G4WrapperProcess {

public:

 BremSplittingProcess();

 virtual ~BremSplittingProcess();

 // Override only this method

 G4VParticleChange* PostStepDoIt(const G4Track& track,

 const G4Step& step);

private:

 G4int fNSplit; // Number of secondaries per split

};

Geant4 version 10.0.p01

32

Brem Splitting Implementation

G4VParticleChange*

BremSplittingProcess::PostStepDoIt(const G4Track& track,

 const G4Step& step) {

 G4double weight = track.GetWeight()/fNSplit;

 ...

 std::vector<G4Track*> secondaries(fNSplit); // Secondary store

 // Loop over wrapped PSDI method to generate multiple secondaries

 for (G4int i=0; i<fNSplit; i++) {

 particleChange = pRegProcess->PostStepDoIt(track, step);

 assert (0 != particleChange);

 particleChange->SetVerboseLevel(0);

 // Save the secondaries generated on this cycle

 for (G4int j=0; j<particleChange->GetNumberOfSecondaries(); j++) {

 secondaries.push_back(new G4Track(*(particleChange->GetSecondary(j))));

 }

 }

 ...

}

Geant4 version 10.0.p01

33

Brem Splitting Implementation

Register wrapped process and wrapper with process manager

G4LowEnergyBremsstrahlung* bremProcess =

 new G4LowEnergyBremsstrahlung();

BremSplittingProcess* bremSlitting =

 new BremSplittingProcess;

bremSplitting->RegisterProcess(bremProcess);

pmanager->AddProcess(bremSplitting);

Geant4 version 10.0.p01

34

Uniform Bremsstrahlung Splitting

Splitting Factor 100 No Splitting

Scoring
Surface

