

EM Physics

Koi, Tatsumi SLAC National accelerator Laboratory

Slides based on

Vladimir Ivanchenko, CERN

Michel Maire, IN2P3

Sebastien Incerti, IN2P3

on behalf of Geant4 electromagnetic working groups

Contents

Electromagnetic (EM) physics

Low Energy CATEGORY

Multiple scattering

EM Physics Lists

Documentation and Web sites

Electromagnetic (EM) physics Overview

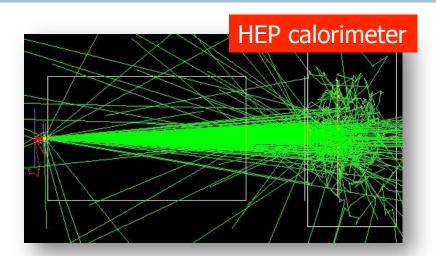
SLAC

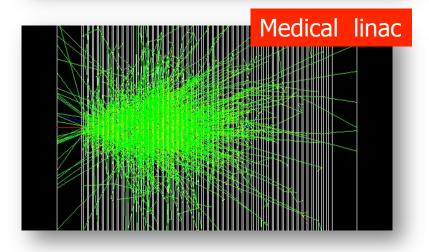
Geant4 EM Package
Software design
Brief introduction of EM Physics List

Geant4 EM packages

- Standard
 - γ, e± up to 100 TeV
 - hadrons up to 100 TeV
 - ions up to 100 TeV
- Muons
 - up to 1 PeV
 - energy loss propagator
- □ X-rays
 - X-ray and optical photon production proc.
- High-energy
 - processes at high energy (E>10GeV)
 - physics for exotic particles
- Polarisation
 - simulation of polarized beams
- Optical
 - optical photon interactions

- Low-energy
 - Livermore library γ, e- from 10 eV up to 1 GeV
 - Livermore library based polarized processes
 - PENELOPE code rewrite, γ, e-, e+ from 100 eV
 up to 1 GeV (2008 version)
 - hadrons and ions up to 1 GeV
 - atomic de-excitation (fluorescence + Auger)
- □ Geant4-DNA
 - microdosimetry models for radiobiology (Geant4-DNA project) from 0.025 eV to 10 MeV
- Adjoint
 - New sub-library for reverse Monte Carlo simulation from the detector of interest back to source of radiation
- Utils
 - general EM interfaces


Gamma and electron transport


Photon processes

- γ conversion into e+e- pair
- Compton scattering
- Photoelectric effect
- Rayleigh scattering
- Gamma-nuclear interaction in hadronic sub-package

Electron and positron processes

- Ionisation
- Coulomb scattering
- Bremsstrahlung
- Positron annihilation
- Nuclear interaction in hadronic sub-package
- Suitable for HEP & many other Geant4 applications
 with electron and gamma beams

Software design

- Since Geant 4 9.3beta (June, 2009) the design is uniform for all EM packages
 - Allowing a coherent approach for high-energy and low-energy applications
- A physical interaction or process is described by a process class
 - Naming scheme : « G4ProcessName »
 - For example: G4Compton for photon Compton scattering
 - Assigned to Geant4 particle types
 - Inherits from G4VEmProcess base class
- A physical process can be simulated according to several models, each model being described by a model class
 - Naming scheme : « G4ModelNameProcessNameModel »
 - For example: G4LivermoreComptonModel
 - Models can be assigned to certain energy ranges and G4Regions
 - Inherit from G4VEmModel base class
- Model classes provide the computation of
 - Cross section and stopping power
 - Sample selection of atom in compound
 - □ Final state (kinematics, production of secondaries...)

Physics lists

- A Physics list is the mandatory user class making the general interface between the physics the user needs and the Geant4 kernel
 - It should include the list of particles
 - The G4ProcessManager of each particle maintains a list of processes
- Geant4 provides several configurations of EM physics lists called constructors (G4VPhysicsConstructor) in the physics_lists library of Geant4
- These constructors can be included into a modular Physics list in a user application (G4VModularPhysicsList)

Low Energy CATEGORY

Purpose

Physics

- Livermore models
- Penelope models
- Ion energy loss model
- Geant4-DNA
- MuElec processes & models
- Monash U. models
- Atomic de-excitation

When/Why to use the "Low Energy" EM models

Purpose

- Extend the coverage of Geant4 electromagnetic interactions with matter
 - for photons, electrons, positrons and ions
 - down to very low energies (sub-keV scale)
- Possible domains of applications
 - Space science
 - Medical physics
 - Underground physics
 - Microdosimetry for radiobiology and microelectronics
 - **-** ...
- Choices of physics models include
 - Livermore : electrons and photons [250 eV 1 GeV]
 - Penelope : electrons, positrons and photons [100 eV 1 GeV]
 - Microdosimetry models
 - Geant4-DNA project: [eV ~ few 100 MeV]
 - MuElec for Silicon : [eV 1 GeV/u]

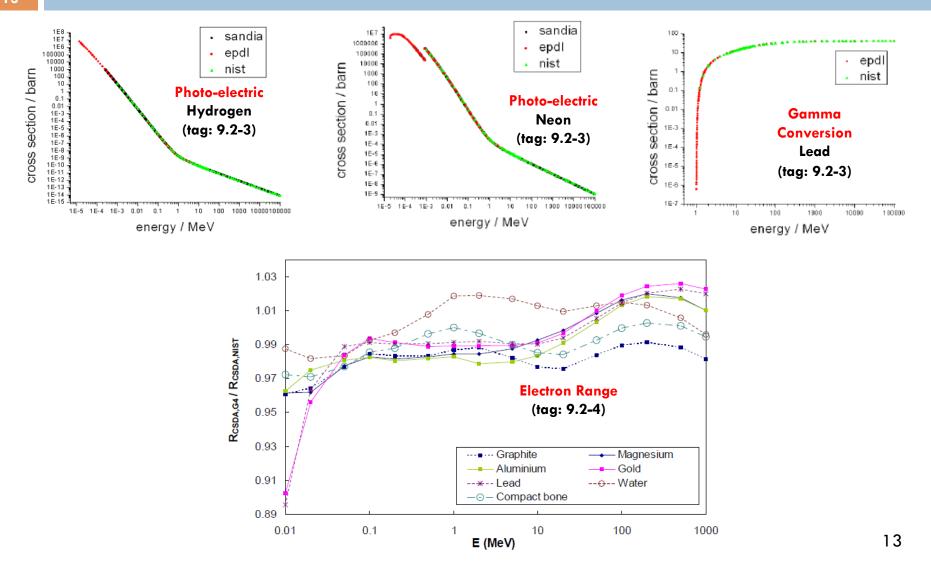
Physics 1/7

Livermore models

Livermore models

- Full set of models for electrons and gammas
- Based on publicly available evaluated data tables from the Livermore data library
 - EADL : Evaluated Atomic Data Library
 - EEDL : Evaluated Electrons Data Library
 - EPDL97 : Evaluated Photons Data Library
 - Mixture of experiments and theories
 - Binding energies: Scofield
- Data tables are interpolated by Livermore model classes to compute
 - Total cross sections: photoelectric, Compton, Rayleigh, pair production, Bremsstrahlung
 - Shell integrated cross sections: photo-electric, ionization
 - Energy spectra: secondary e- processes
- Validity range (recommended): 250 eV 100 GeV
 - Processes can be used down to 100 eV, with a reduced accuracy
 - In principle, down to ~10 eV
- □ Included elements from Z=1 to Z=100
 - Include atomic effects (fluorescence, Auger)
 - Atomic relaxation : Z > 5 (EADL transition data)
- Naming scheme: G4LivermoreXXXModel (eg. G4LivermoreComptonModel)

http://www-nds.iaea.org/epdl97


Available Livermore models

Physics Process	Process Class	Model Class	Low Energy Limit	High Energy Limit	
Gammas					
Compton	G4ComptonScattering	G4LivermoreComptonModel	250 eV (kill)	100 GeV	
Polarized Compton	G4ComptonScattering	G4LivermorePolarizedComptonModel 250 eV (kill)		100 GeV	
Rayleigh	G4RayleighScattering	G4LivermoreRayleighModel	10 eV (kill)	100 GeV	
Polarized Rayleigh	G4RayleighScattering	G4LivermorePolarizedRayleighModel 250 eV (kill)		100 GeV	
Conversion	G4GammaConversion	G4LivermoreGammaConversionModel	1.022 MeV	100 GeV	
Polarized Conversion	G4GammaConversion	G4LivermorePolarizedGammaConversionModel 1.022 MeV		100 GeV	
Photo-electric	G4PhotoElectricEffect	G4LivermorePhotoElectricModel	~ few eV	100 GeV	
Polarized Photo-electric	G4PhotoElectricEffect	G4LivermorePolarizedPhotoElectricModel	10 eV	100 GeV	
Electrons					
lonization	G4elonisation	G4LivermorelonisationModel	100 eV	100 GeV	
Bremsstrahlung	G4eBremsstrahlung	G4LivermoreBremsstrahlungModel	10 eV	100 GeV	

Eg. of verification of Livermore models

See Nucl. Instrum. and Meth. A 618 (2010) 315-322

13

Polarized Livermore models

- Describe in detail the kinematics of polarized photon interactions
- Based on the Livermore database
- Possible applications of such developments
 - design of space missions for the detection of polarized photons
- Naming scheme: G4LivermorePolarizedXXXModel
 - eg. G4LivermorePolarizedComptonModel
- More in the following publications

Nucl. Instrum. Meth. A 566 (2006) 590-597 (Photoelectric) Nucl. Instrum. Meth. A 512 (2003) 619-630 (Compton and Rayleigh) Nucl.Instrum. Meth. A 452 (2000) 298-305 (Pair production)

Physics 2/7

Penelope models

Penelope physics

Geant4 includes the low-energy models for electrons, positrons and photons from the Monte
 Carlo code PENELOPE (PENetration and Energy LOss of Positrons and Electrons) version 2008

Nucl. Instrum. Meth. B 207 (2003) 107-123

- Physics models
 - Specifically developed by the group of F. Salvat et al.
 - Great care dedicated to the low-energy description
 - Atomic effects, fluorescence, Doppler broadening...
- Mixed approach: analytical, parameterized & database-driven
 - Applicability energy range: 100 eV 1 GeV
- Also include positrons
 - Not described by Livemore models
- G4PenelopeXXXModel (e.g. G4PenelopeComptonModel)

Available Penelope models

Physics Process	Process Class	Model Class	Low Energy Limit	High Energy Limit	
Gammas					
Compton	G4ComptonScattering	G4PenelopeComptonModel	100 eV	1 GeV	
Rayleigh	G4RayleighScattering	G4PenelopeRayleighModel	100 eV	1 GeV	
Conversion	G4GammaConversion	G4PenelopeGammaConversionModel	1.022 MeV	1 GeV	
Photo-electric	G4PhotoElectricEffect	G4PenelopePhotoElectricModel	100 eV	1 GeV	
Electrons/Positrons					
lonization	G4elonisation	G4PenelopelonisationModel	100 eV	1 GeV	
Bremsstrahlung	G4eBremsstrahlung	G4PenelopeBremsstrahlungModel	100 eV	1 GeV	
Positrons					
Annihilation	G4eplusAnnihilation	G4PenelopeAnnihilationModel	100 eV	1 GeV	

Physics 3/7

lons

Ion energy loss model

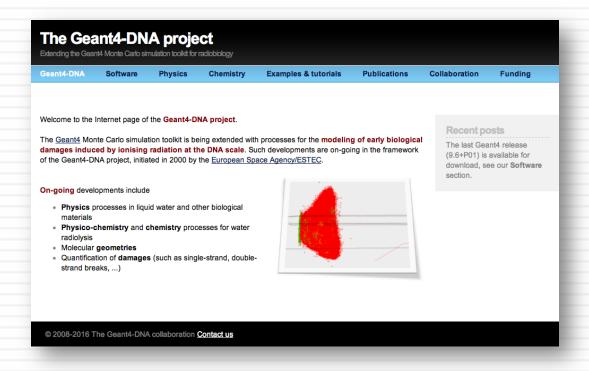
- Describes the energy loss of ions heavier than Helium due to interactions with atomic shells of target atoms
- This model computes
 - Cross sections for the <u>discrete</u> production of <u>delta rays</u>
 - Delta rays are only produced <u>above the production threshold</u>, which inherently also governs the discrete energy loss of ions
 - Restricted electronic stopping powers, that is the <u>continuous</u> energy loss of ions as they slow down in an absorber
 - Below the production threshold
- Primarily of interest for medical and space applications
- See more in Nucl. Instrum. Meth. B 268 (2010) 2343-2354

Ion energy loss model

- Restricted stopping powers are calculated from
 - $T < T_{low}$: Free electron gas model
 - $T_{low} \leq T \leq T_{High}$: parameterization (ICRU'73) approach
 - $T > T_{Hiah}$: Bethe-Bloch formula (using an effective charge and higher order corrections)
- ICRU'73 parameterization
 - Large range of ion-materials combination:
 - Incident ions: Li to Ar, and Fe
 - 25 elemental materials, 31 compounds
 - Stopping powers based on the binary theory, effective charge approach for Fe
 - Special case: water
 - Revised ICRU'73 tables by P. Sigmund
 - Mean ionization potential is 78 eV
 - Energy limits
 - $T_{High} = 10 \text{ MeV/nucleon (except Fe ions: } T_{H} = 1 \text{ GeV/nucleon)}$
 - $T_{Low} = 0.025 \text{ MeV/nucleon (lower boundary of ICRU'73 tables)}$

How to use the ion model?

- Model name: G4lonParametrisedLossModel
- \square Only applicable to ions with $Z \ge 3$
- Already included in Geant4 EM physics constructors
 - Low energy EM: G4EmLivermorePhysics, G4EmLivermorePolarizedPhysics, G4EmPenelopePhysics, G4EmLowEPPhysics
 - Standard EM: G4EmStandard option3, G4EmStandard option4
- Designed to be used with the G4ionlonisation() process (from the Standard EM category)
 - Not activated by default when using G4ionIonisation
 - Users can employ this model by using the SetEmModel method of the G4ionlonisation process
- Restricted to one Geant4 particle type: G4Genericlon
 - The process G4ionlonisation is also applicable to alpha particles (G4Alpha) and He3 ions (G4He3), however the G4IonParametrisedLossModel model must not be activated for these light ions
 - Below Z<3, we use G4BraggModel (p) or G4BraggIonModel (alpha), and G4BetheBlochModel with the G4hlonisation and G4ionIonisation processes


ICRU 73 data tables

- The ion model
 - uses ICRU'73 stopping powers, if corresponding ion-material combinations are covered by the ICRU'73 report
 - otherwise applies a Bethe-Bloch based formalism
- Elemental materials are matched to the corresponding ICRU 73 stopping powers by means of the atomic number of the material. The material name may be arbitrary in this case.
- For compounds, ICRU 73 stopping powers are used if the material name coincides with the name of Geant4 NIST materials
 - e.g. "G4_WATER"
- □ For a list of applicable materials, refer to the ICRU 73 report
- All needed data files are in the G4LEDATA set of data

http://geant4-dna.org

Physics 4/7

Geant4-DNA

Geant4 for microdosimetry in radiobiology

- History
 - initiated in 2001 by Petteri Nieminen (European Space Agency / ESTEC) in the framework of the « Geant4-DNA » project
- Objective: adapt the general purpose Geant4 Monte Carlo toolkit for the simulation of interactions of radiation with biological systems at the cellular and DNA level (« microdosimetry for radiobiology »)
- A full multidisciplinary activity of the Geant4 low energy electromagnetic
 Physics working group, involving physicists, theoreticians, biophysicists...
- Applications:
 - Radiobiology, radiotherapy and hadrontherapy
 - eg. early prediction of direct & non-direct DNA strand breaks from ionising radiation
 - Radioprotection for human exploration of Solar system
- Dedicated web site & publications : http://geant4-dna.org

Geant4 for microdosimetry in radiobiology

- Several models are available for the description of physical processes involving e⁻, p, H, He, He⁺, He²⁺, C⁶⁺, N⁷⁺, O⁸⁺, Fe²⁶⁺
- Include elastic scattering, excitation (electronic + vibrations), ionisation and charge exchange
- For now, these models are valid for liquid water medium only
- Models available in Geant4-DNA
 - are published in the literature
 - may be purely analytical or use interpolated cross section data
- They are all discrete processes
 - See examples/advanced/dnaphysics
- Can be combined with other EM categories (Standard, LowE common software design)
 - See examples/advanced/microdosimetry

Geant4-DNA physics processes and models

Particles	е-	р	Н	He ⁺⁺ , He ⁺ , He ⁰	C, N, O, Fe,
Elastic scattering	> 9 eV - 1 MeV Screened Rutherford >7.4 eV - 1 MeV Champion	-	-	-	-
Excitation	9 eV – 1 MeV Born	10 eV - 500 keV Miller Green 500 keV - 100 MeV Born	10 eV - 500 keV Miller Green	Effective charge scaling from same models as for proton 1 keV – 400 MeV	-
Charge Change	-	100 eV - 100 MeV Dingfelder	100 eV - 100 MeV Dingfelder		-
Ionisation	11 eV – 1 MeV Born	100 eV – 500 keV Rudd 500 keV – 100 MeV Born	100 eV - 100 MeV Rudd		Effective charge scaling 0.5 MeV/u — 10 ⁶ MeV/u
Vibrational excitation	2 – 100 eV Michaud et al.		_		
Attachment	4 – 13 eV Melton				

Physics 5/7

MuElec processes & models

New processes and models for microelectronics

- Purpose
 - extend Geant4 with processes and models for the simulation of particlematter interactions in highly integrated microelectronic components
 - for electrons, protons, heavy ions in Silicon
- They use the same step-by-step approach as Geant4-DNA processes and models
 - Similarly based on the complex dielectric function theory
- Applicable to the « G4_Si » NIST material
- Named as « MicroElec » for microelectronics

New processes and models for microelectronics

Processes and models

Physics Process	Process Class	Model Class	Low Energy Limit	High Energy Limit		
Electrons						
Elastic scattering	G4MicroElecElastic	G4MicroElecElasticModel	5 eV (kill < 16.7 eV)	100 MeV		
lonization	G4MicroElecInelastic	G4MicroEleclnelasticModel	16.7 eV	100 MeV		
Protons and heavy ions						
lonization	G4MicroElecInelastic	G4MicroElecInelasticModel	50 keV/u	1 GeV/u		

- A dedicated advanced user example was delivered in G4 10 (« microelectronics »)
- Validation range
 - Electrons: 50 eV 50 keV
 - □ Protons: 50 keV/u 23 MeV/u

Physics 6/7

Monash U. models

Improved Compton model

- Monash U. (J. Brown et al.) recently proposed to improve Livermore gamma models
 - Unpolarized Compton scattering off atomic bound electrons in the relativistic impulse approximation, derived from Livermore Compton model
 - As an alternative to Compton scattering models (Livermore and Penelope) developed from Ribberfor's Compton scattering framework
 - More accurate Compton electron ejection direction algorithms below 5 MeV
 - Special relativistic formalism + energy & momentum conservation, in order to compute
 - Energy and angular distribution of Compton scattered photons off non-stationary atomic bound electrons
 - Energy and ejected angular distributions of Compton electrons

Improved Compton model

- Model class is G4LowEPComptonModel
- □ You can register it easily to your Physics list

```
G4ComptonScattering* cs = new G4ComptonScattering;

cs->SetEmModel(new G4KleinNishinaModel(),1);

G4VEmModel* theLowEPComptonModel = new G4LowEPComptonModel();

theLowEPComptonModel->SetHighEnergyLimit(2*MeV);

cs->AddEmModel(0, theLowEPComptonModel);

ph->RegisterProcess(cs, particle);
```

- You can also use two Physics constructors
 - G4EmLowEPPhysics identical to G4EmLivermorePhysics except for Compton
 - G4EmStandard_option4 « best » of Geant4 EM

Physics 7/7

Atomic de-excitation

Atomic de-excitation effects

- Atomic de-excitation is initiated by other EM processes
 - E.g.: photo-electric effect, Compton, ionisation by e- and ions
 - Leave the atom in an excited state
- EADL data contain transition probabilities
 - radiative: fluorescence
 - non-radiative:
 - Auger e-: inital and final vacancies in different sub-shells
 - Coster-Kronig e-: identical sub-shells
- Thanks to a common interface (G4UAtomicDeexcitation), atomic deexcitation is compatible with both Standard & Low Energy electromagnetic physics categories
 - See more in X-Ray Spec. 40 (2011) 135-140

Including atomic effects

The activation of atomic deexcitation in a user physics list can be done
 ('by hand') using the G4EmProcessOptions class

```
G4EmProcessOptions emOptions;
emOptions.SetFluo(true); // To activate deexcitation processes and fluorescence
emOptions.SetAuger(true); // To activate Auger effect if deexcitation is activated
emOptions.SetPIXE(true); // To activate Particle Induced X-Ray Emission (PIXE)
```

- □ It is possible to specify the region in which de-excitation is needed emOptions.SetDeexcitationActiveRegion (const G4String&, G4bool, G4bool);
 - If no Region command is used, by default atomic de-excitation is applied everywhere
 - If any Region is defined, then de-excitation should be applied to the World volume

Including atomic effects

Alternativeley, we recommend the usage of physics constructors and Geant4 physics lists, where activation can be easily done directly via UI commands

```
/run/initialize
/process/em/deexcitation region true false false
/process/em/deexcitation region true true true
/process/em/fluo true
/process/em/auger true
/process/em/pixe true
```

- Boolean parameters in the "/process/em/deexcitation" command correspond to activation of fluorescence,
 Auger, and PIXE respectively
- region is the name of the G4Region in which de-excitation should be activated
 - use the string World if the G4Region is the World volume
- Note that fluorescence is activated by default in the G4EmDNAPhysics, G4EmLivermorePhysics,
 G4EmLivermorePolarizedPhysics, G4EmLowEPPhysics., G4EmPenelopePhysics, G4EmStandard_option3 and
 G4EmStandard_option4 physics constructors while Auger production and PIXE are not
- □ As an example, look into examples/extended/electromagnetic/TestEm5 and macro pixe.mac

Note on production thresholds

- Remember that production cuts for secondaries are specified as range cuts. These are converted at initialisation time into energy thresholds for secondary gamma, electron, positron and proton production.
- A range cut value is set by default to 0.7 mm in Geant4 reference physics lists. This value can be specified in the optional SetCuts() method of the user physics list or via UI commands:
 - for eg. to set a range cut of 10 micrometers, one can use /run/setCut 0.01 mm
 - or, for a given particle type (for e.g. electron) /run/setCutForAGivenParticle e- 0.01 mm
- If a range cut equivalent to an energy lower than 990 eV is specified, then the energy cut is still set to 990 eV. In order to decrease this value (for eg. down to 250 eV, to see low energy emission lines of the fluorescence spectrum), one can use the UI command:

```
/cuts/setLowEdge 250 eV
```

or alternatively directly in the user physics list, in the optional SetCuts() method, using:

G4ProductionCutsTable::GetProductionCutsTable()->SetEnergyRange(250*eV, 1*GeV);

In your macro, these UI commands should be put before the UI command

/run/initialize

Changing shell cross section models

The user has the possibility to select different ionisation cross section models for PIXE.

Again, it is possible to use methods of the G4EmProcessOptions class in the user Physics list:

```
G4EmProcessOptions::SetPIXECrossSectionModel(const G4String&);
where the string can be "Empirical" or "ECPSSR FormFactor" or "ECPSSR Analytical"
```

Alternatively, when using the Geant4 reference physics lists (and "physics constructors"), the following UI command is available:

```
/process/em/pixeXSmodel value
```

where value is equal to Empirical or ECPSSR_FormFactor or ECPSSR_Analytical.

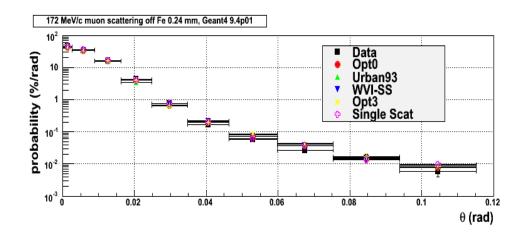
This UI command should be put after the UI command:

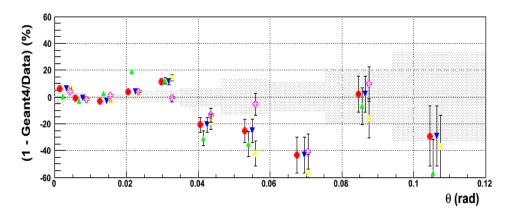
```
/run/initialize
```

- □ Shell cross sections models are available for K, L and selected M shells:
 - the Empirical models are from Paul "reference values" (for protons and alphas for K-Shell) and Orlic empirical model for L shells (only for protons and ions with Z>2);
 - the ECPSSR_FormFactor models derive from A. Taborda et al. calculations of ECPSSR values directly form Form Factors and it covers K, L shells in the range 0.1-100 MeV and M shells in the range 0.1-10 MeV;
 - the ECPSSR Analytical models derive from an in-house analytical calculation of the ECPSSR theory.
- The Empirical models are the models used by default. Out of the energy boundaries of these models, the "ECPSSR_Analytical" models are used. We recommend to use default settings if not sure what to use.
- Note that shell cross section selection is also available for electrons via the following UI command:
 - /process/em/pixeElecXSmodel Livermore
 - /process/em/pixeElecXSmodel Penelope

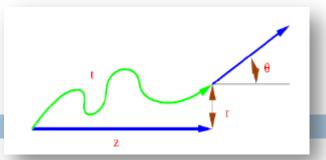
Summary: when/why to use the "Low Energy" EM models

- Use Low-Energy models (Livermore or Penelope),
 as an alternative to Standard models, when you:
 - need precise treatment of EM showers and interactions at low-energy (keV scale or below)
 - are interested in atomic effects, as fluorescence x-rays, Doppler broadening, etc.
 - can afford a more CPU-intensive simulation
 - want to cross-check another simulation (e.g. with a different Physics List)
- Do not use when you are interested in EM physics > MeV
 - same results as Standard EM models
 - strong performance penalty


Multiple scattering



Geant4 Tutorial Cource


Multiple Coulomb Scattering (MSC)

- Charged particles
 traversing a finite thickness
 of matter suffer elastic
 Coulomb scattering
- The cumulative effect of these small angle scatterings is a net deflection from the original particle direction
- MSC implementation determine accuracy and CPU performance of simulation

MSC algorithm

Legend

- True path length: t
- Longitudinal or geometrical displacement : z
- Lateral displacement : r
- Angular deflection : (θ, Φ)
- The algorithm performs several steps for the simulation of MSC which are essentially the same for many « condensed » simulations
 - The physics processes and the geometry select the step length;
 MSC performs the t ↔ z transformation only
 - The transport along the initial direction is not MSC's business
 - \square Sampling of scattering angle (θ , Φ)
 - Computing of lateral displacement and relocation of particle

MSC and single scattering models

Model	Particle type	Energy limit	Specifics and applicability
Urban (Urban 2006)	Any	-	Default model for electrons and positrons below 100 MeV, (Lewis 1950) approach, tuned to data, <u>used for LHC production</u> .
Screened Nuclear Recoil (Mendenhall and Weller 2005)	p, ions	< 100 MeV/A	Theory based process, providing simulation of nuclear recoil for sampling of radiation damage, focused on precise simulation of effects for space app.
Goudsmit-Saunderson (Kadri 2009)	e ⁺ , e ⁻	< 1 GeV	Theory based cross sections (Goudsmit and Saunderson 1950). EPSEPA code developed by Penelope group, final state using EGSnrc method (Kawrakov et al. 1998), precise electron transport
Coulomb scattering (2008)	any	-	Theory based (Wentzel 1927) single scattering model, uses nuclear form-factors (Butkevich et al. 2002), focused on muons and hadrons
WentzelVI (2009)	any	-	MSC for small angles, Coulomb Scattering (Wentzel 1927) for large angles, focused on simulation for muons and hadrons.
lon Coulomb scattering (2010) Electron Coulomb scattering (2012)	lons e ⁺ , e ⁻	-	Model based on Wentzel formula + relativistic effects + screening effects for projectile & target. From the work of P. G. Rancoita, C. Consolandi and V. Ivantchenko.

MSC classes

- Processes per particle type are available
 - G4eMultipleScattering for e+/e-
 - G4MuMultipleScattering for μ +/ μ -
 - G4hMultipleScattering for hadrons and ions
- L. Urban model
 - G4UrbanMscModel:
 - The most established Geant4 scattering model
- Combined multiple and single scattering model:
 - G4WentzelVIModel + G4eCoulombScatteringModel
 - Applied for high energy e+-, muons, hadrons
- Alternative single and multiple scattering models are available to users
 - see extended examples...

Step limitation for charged particle transport

- Step size of a charged particle may be limited by several Geant4 processes
 - Ionisation
 - discussed in previous slide
 - Multiple scattering
 - strong step limitation new geometry boundary
 - 3 modes: Minimal, UseSafety, UseDistanceToBoundary
 - Delta-electron production and bremsstrahlung
 - cut dependent
 - User defined step limit
- Simulation results strongly depend on step limit method

EM Physics Lists

Geant4 Tutorial Cource

Physics lists

- A user can
 - use reference physics lists provided with Geant4 (QBBC,)
 - build his/her own physics list in his/her application
 - or use <u>already available</u> EM physics constructors
- 1. If you choose to build your own Physics list
 - refer to the Geant4 Low Energy EM working group website, Processes section
 - also you may refer to Geant4 examples
 - examples/extended/electromagnetic/TestEm14
- 2. <u>Much more safe</u>: use the available physics constructors, these are named as
 - G4EmLivermorePhysics
 - G4EmLivermorePolarizedPhysics
 - G4EmPenelopePhysics
 - G4EmDNAPhysics
 - G4EmLowEPPhysics

Geant4 10.00:

EM Physics constructors for HEP

- List of particles: for which EM physics processes are defined
 - lacksquare γ , e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p, Σ^{\pm} , Ξ^{-} , Ω^{-} , anti $(\Sigma^{\pm}, \Xi^{-}, \Omega^{-})$
 - \bullet τ^{\pm} , B^{\pm} , D^{\pm} , D_{s}^{\pm} , Λ_{c}^{+} , Σ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{+} , $\underline{anti}(\Lambda_{c}^{+}, \Sigma_{c}^{+}, \Sigma_{c}^{++}, \Xi_{c}^{+})$
 - d, t, He3, He4, Genericlon, anti(d, t, He3, He4)

Constructor	Components	Comments
G4EmStandardPhysics	Default (QGSP_BERT, FTFP_BERT)	ATLAS, and other HEP productions, other applications
G4EmStandardPhysics_option1	Fast due to simple step limitation, cuts used by photon processes (FTFP_BERT_EMV)	Similar to one used by CMS, good for crystals, not good for sampling calorimeters
G4EmStandardPhysics_option2	Experimental: updated photon models and bremsstrahlung on top of Opt1	Similar to one used by LHCb

48

Geant4 10.00: EM Physics constructors for Space and medical applications

Constructor	Components	Comments
G4EmStandardPhysics_option3	standard models when applicable	The most accurate standard
G4EmStandardPhysics_option4	photon models from Livermore and Penelope, Penelope ionisation for e-	The most accurate EM physics
G4EmLivermore	Livermore models when applicable	Livermore
G4EmPenelope	Penelope models when applicable	Penelope
G4EmLivermorePolarized	Polarized models	
G4EmDNA	Example of DNA physics	

How to use the already available physics constructors?

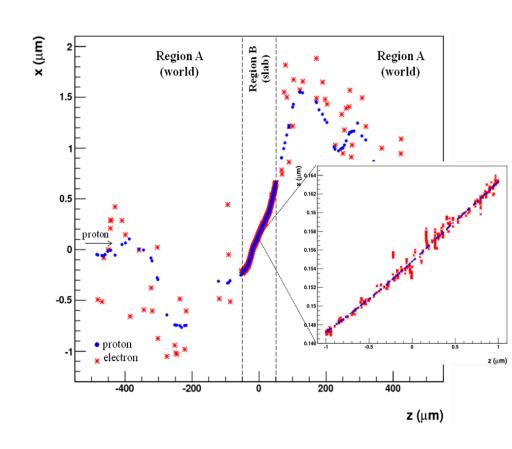
- □ These classes derive from the G4VPhysicsConstructor abstract base class
- The source code for physics list constructors is available in the following directory
 - source/physics_list/builders
- An implementation example of physics list that uses EM physics constructors is available in
 - examples/extended/electromagnetic/TestEm2
 - easy
 - in the header file of your physics list, declare: G4VPhysicsConstructor* emPhysicsList;
 - in the implementation file of your physics list: emPhysicsList = new G4EmDNAPhysics();
 - then, in the ConstructParticle() method of your physics list, call the ConstructParticle() method of emPhysicsList
 - and in the ConstructProcess() method of your physics list, call the ConstructProcess() method of emPhysicsList
- If some hadronic physics is needed additionally to EM Physics
 - examples/extended/electromagnetic/TestEm7
- These constructors are added to the Geant4 reference physics lists via the method RegisterPhysics (G4VPhysicsConstructor*)
 - See source/physics list/lists subdirectory

User interfaces and helper classes

- □ G4EmCalculator
 - easy access to cross sections and stopping powers (TestEmO)
- □ G4EmProcessOptions
 - C++ interface to EM options alternative to UI commands
- □ G4EmSaturation
 - Birks effect (recombination effects)
- □ G4ElectronlonPair
 - sampling of ionisation clusters in gaseous or silicon detectors
- □ G4EmConfigurator
 - add models per energy range and geometry region

Example: G4EmStandardPhysics

```
G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
G4String particleName = particle->GetParticleName();


if ( particleName == "gamma" ) {
    ph->RegisterPhysics(new G4PhotoElectricEffect, particle);
    ph->RegisterPhysics(new G4ComptonScattering, particle);
    ph->RegisterPhysics(new G4GammaConversion, particle);
} else if ( particleName == "e+" ) {
    ph->RegisterPhysics(new G4eMultipleScattering, particle);
    ph->RegisterPhysics(new G4eIonisation, particle);
    ph->RegisterPhysics(new G4eBremsstrahlung, particle);
    ph->RegisterPhysics(new G4eplusAnnihilation, particle);
```

☐ G4PhysicsListHelper provides

- Activation of a process AtRest, AlongStep, PostStep according to the process SubType
- Process ordering for process manager

Specialized models per G4Region: example of Geant4-DNA physics

- Standard EM physics constructor as a base
- G4EmConfigurator is used to add Geant4-DNA models
- Geant4-DNA models are enabled only in the small G4Region for energy below 10 MeV
- CPU performance optimisation

How to extract Physics?

- Possible to retrieve Physics quantities using a G4EmCalculator object
- Physics List should be initialized
- Example for retrieving the total cross section of a process with name procName, for particle and material matName

```
#include "G4EmCalculator.hh"
...
G4EmCalculator emCalculator;

G4Material* material =
    G4NistManager::Instance()->FindOrBuildMaterial(matName);

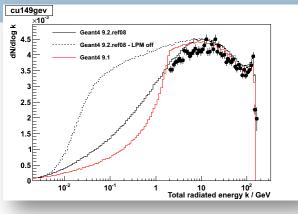
G4double density = material->GetDensity();

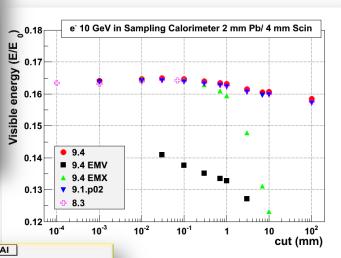
G4double massSigma = emCalculator.ComputeCrossSectionPerVolume (energy,particle,procName,material)/density;

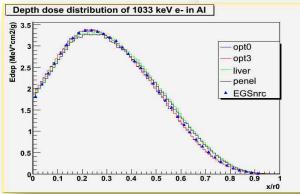
G4cout << G4BestUnit(massSigma, "Surface/Mass") << G4endl;</pre>
```

A good example: \$G4INSTALL/examples/extended/electromagnetic/TestEm14. Look in particular at the RunAction.cc class

Documentation and Web sites


Geant4 Tutorial Cource


Suggestions


- The list of available EM processes and models is maintained by the EM working groups, see more in the EM web pages
 - http://cern.ch/geant4/collaboration/working_groups/electromagnetic/index.shtml
- Geant4 extended and advanced examples show how to use
 EM processes and models
 - Located in examples
- Visit the Geant4 HyperNews forum, section
 "electromagnetic processes" for discussion
- Use Geant4 bug report system for problems
- User feedback is always welcome

57

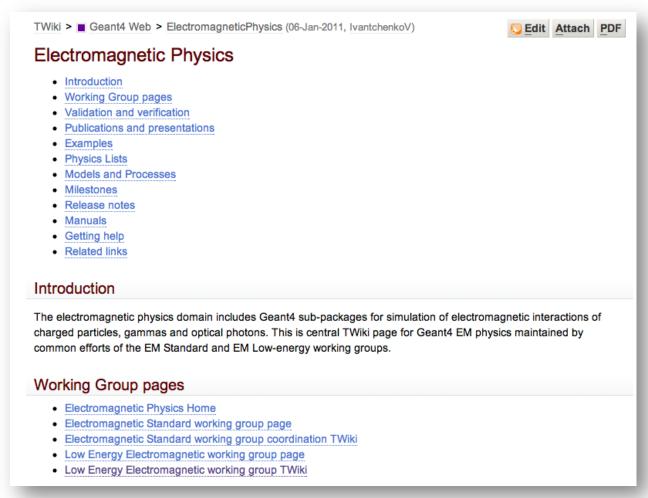
verification tool has been developed for easy comparison of EM physics results obtained with different Geant4 version, and with measurements

To learn more

\$G4INSTALL/examples/extended/electromagnetic

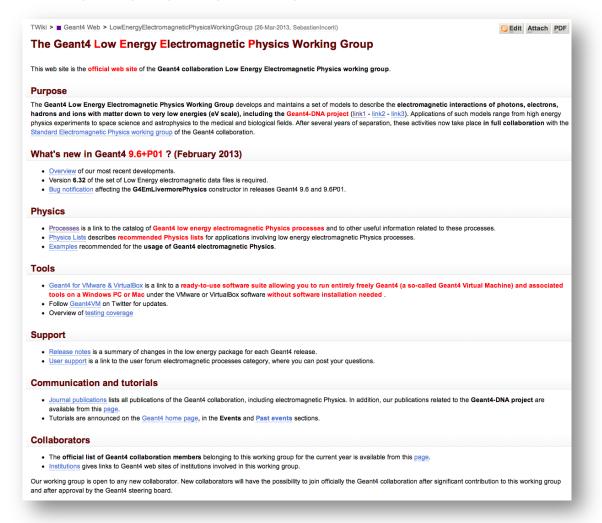
Check basic quantities

Total cross sections, mean free paths ... TestEm0, Em13, Em14 Stopping power, particle range ... Em0, Em1, Em5, Em11, Em12 **Em14** Final state: energy spectra, angular distributions **Energy loss fluctuations Em18 Multiple Coulomb scattering** as an isolated mechanism Em15 as a result of particle transport Em5 More global verifications Single layer: transmission, absorption, reflexion, atomic deexcitation, msc Em5 Bragg curve, tallies Em7 Depth dose distribution Em11, Em12 Shower shapes, Moliere radius Em2 Sampling calorimeters, energy flow Em3 **Crystal calorimeters** Em9 Other specialized programs High energy muon physics Em17 Other rare, high energy processes Em6 Synchrotron radiation **Em16 Transition radiation** Em8 Em10 Photo-absorption-ionization model


Refer to section on extended examples in App. User Guide.

Web sites

- A unique reference web page on Geant4 EM Physics
 - http://geant4.cern.ch/collaboration/EMindex.shtml
- □ From there, links to
 - Geant4 Standard Electromagnetic Physics working group pages
 - Geant4 Low Energy Electromagnetic Physics working group pages
- Also from Geant4 web site
 - http://geant4.org
 - Who we are
 - Standard Electromagnetic Physics
 - Low Energy Electromagnetic Physics


EM Physics TWiki

https://twiki.cern.ch/twiki/bin/view/Geant4/ElectromagneticPhysics

Low Energy EM WG TWiki

https://twiki.cern.ch/twiki/bin/view/Geant4/LowEnergyElectromagneticPhysicsWorkingGroup

