MASTER COPY CoM SULTIWG-
DONOT REMoVE 5752

Fortran I Goodies Revisited (or, Son of Fortran H)

There are many useful functions hiding in the Fortran H compiler that can
be used by daring and resourceful coders to give that added boost in per-
formance to their programs. In the version I compiler (up to release 13),
these functions were available merely by naming them: they are described in
CGTM 41 (see reference 1). This, however, led to the problem that there were
Lidden reserved words in the Fortran language, which is of course unacceptable
to the common everyday user. In view of this restriction on users of this
compiler, IBM decided to remove these functions from the second version of
the compiler (releases 14 and after). (Due to an oversight, they were still
there in the releasec 14 version, but have been removed from later releases.)
Does this mean that such wonderful functions are lost forever? No:d
Superkludge comes to the rescue!

Because the H compiler itself is compiled in Fortran H with heavy use
of the hidden goodies, and because nobody expects that the release 15 version
is bugproof, it is clear that there must be some means to recampile the compiler
without at the same time burdening the merely mortal programmer with a host
of extraneous names he must avoid. An extensive analysis of core dumps, old
listings, and scraps of paper snitched from wastebaskets reveals that there is
indeed a way to make use of the functions listed in Table 1: include X"
among the parameters in the PARM field when invoking the compiler. I repeat
the warning from CGTM h1:

THERE IS NO ASSURANCE THAT THE HIDDEN FUNCTIONS IN FORTRAN H
WILL NOT IN FUTURE BECOME SO WELL HIDDEN AS TO BE INVISIBLE;

AND TURTHERMOKR, ANYQNE WHO USES THEM SHOULD UNDERSTAND THAT

HE IS COMPLETELY ON HIS OWN, SINCE THERE IS NO COMMITMENT QN THE
PART ¥ IBM (R SLAC TO PROVIDE LIBRARY ROUTINES TO PERF(RM
THESE FUNCTIONS IN THE EVENT THAT THEY ARE REMOVED FROM THE
CMPIIER., IF YOU REALLY NEED THEM, AND YOUR PROGRAM WILL

BE MODIFIED REGULARLY, USE THEM IN A SUBROUTINE THAT CAN

BE EASILY RECODED TN MACHINE LANGUAGE IF THE SPECTAL FUNCTIQNS

VANIGH. DURING DEBUGGING, USE THE LIST OPTIGN TO CHECK
THE GENERATED ~0DIE. THIS IS YOUR LAST WARNING.

First, we will tabulate the functions available, and then discuss the
STRUCTURE statement, which is of great use in constructing lists and other

data containing addresses as data.

TABLE T
NAVE TVE ARGUMENTS ACTIN
LAID Tk any *I , any*l Logical AND
Tk Tk any*h , any*4 Logical (R
IX(R Tk any*l , any*l Logical EXCILUSIVE (R
LC 'MPL I*k any*l Bitwise Complement
ATD R*l any*lt , any*l Logical AND
R Rk any*h , any*h Logical (R
CMPL Rk any*l Bitwise Complement
Mook any*4 any*h Clear High-order Byte (mod 2%*2L)
SHFTT, Tk any *h, T Shift Left Logical
SITPTR Tk any*4 , T*k Shift Right Logical
TRIT note(1) any, Integer see note(l)
BITMN note(2) any,Integer see note (2) Set Bit n (to 1)
BIT(FF note(2) any, Integer see note (2) Set Bit Off (to 0)
BTTFLP note (?) any, Tnteger see note (2) Invert Bit

Nntes:

(1) The TBIT function can be used to give either a Logical or an Integer
result. For example, one can write K=TBIT(X,5) and K would be set to O or 1
depending on whether the 5th bit after the address of X is O or 1. To use

the logical "value" of the TBIT function, one can write IF(TBIT(X,5))GO TO 7
and the code generated would consist of a TM followed by a BC. The same
applies to IF(.NOT. TRIT(X,5))GO TO 7, so that efficient bit-tests and
branches can be coded this way.

(2} To obtain correct code from these three functions, one must write the
same variable on the left-hand side of the assignment statement as is used
for the first argument. That is, write A(J) = BITON(A(J),3). No assigmment
is made to the variable other than the implied bit manipulation.

The notation used in the table is as follows:

T*i fullward integer (for arguments, variables or constants)
R*4 short real

any*4 any fullword-aligned quantity

any any variable name

Integer an integer constant, e.g. 5

The STRUCTURE statement (the analogue of the AIGOL W RECCRD statement)
allows the programmer to make use of base-displacement addressing in a very
natural way. 3Suppose there is a block of data in memory which has its own
data layout; it is cleaner to be able to refer to the components by name
rather than as part of a larger array containing the entire workspace.

If there is a way in Fortran to obtain addresses as data types, then structured
variables can be used. This of course implies that a machine-language routine
must be used to establish the addresses to be used as base addresses, since

it is not possible to generate addresses as values of variables under normal
circumstances.

The syntax of the STRUCTURE statement is

STRUCTURE // list-of-variables // list-of-variables // etec.

The double slashes have the effect of setting the displacement to zero;
then as the variables in the list are scanned, the displacement is
inecremented by the lenglhs of the variables. This naturally implies that
ALL VARIABLES APPEARING IN STRUCTURE STATEMENTS MUST BE PREDEFINED.

For example, the statements

LOGICAL * 1 BYTE, MARKER
INTEGER * 2 ISN, TYPE, MODE
TNTEGER CHAIN, VALUE

STRUCTURE // BYTE // CHAIN, TYPE, MODE // VALUE

STRUCTURE // MARKER
define blocks in which the first byte has the names BYTE and MARKER, the first
fullword has the names CHAIN and VALUE, and the third and fourth halfwords
have the names TYPE and M(E.

To refer to a structured variable, one must have available an integer
variable whose value is the address of the beginning of the block to be

referenced, and then use it as a subscript for the structured variable.

I''r sxample,

TOPE = TADDR(U(P5))
TG Cpyer (e) 7Y NYIR = rveR 4+)

vould oot Lhe valuce 0 one of the bits in BYTE and modify TYPR accordingly,

ascumin- Lhab the function TANDDR returns the address of the desired block
which i1 assumed to lic at X(058). It 15 a syntax error to use a structured
variable without a subscripb. Similarly, J=MODE(NPTR) would retrieve the

appropriate halfwerd from the structure whose address is in NPTR.

Referencesg:

1) Cemputation Group Technical Memorandum #41: "Hidden Goodies in Fortran

Il Version 1", G.A. Robinson and J.R.Ehrman, March 1968

2) OLAC Building I TReom 2 Trash Can on July 13, 1968.

3) Foriran il Compiler PLM.

