Why Supersymmetry is Super

Andrew Larkoski
Outline

• Introduce Quantum Field Theory
• Incorporating Supersymmetry in a Quantum Field Theory
• The MSSM
• Motivations for Supersymmetry in the “Real World”
Definition of a Quantum Field Theory
Quantum Mechanics and Relativity

\[i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi \]

- Not Lorentz invariant
 - Unequal number of time and space derivatives
 - Explicit mass in denominator
 - Potential usually depends explicitly on position
Quantum Mechanics and Relativity

• Different approach:
 Make a relativistic theory quantum mechanical!
• A Classical Field Theory is Lorentz invariant
• How to make it quantum mechanical:
 • Promote classical fields to operators!

\[
[p_i, x_j] = i\hbar\delta_{ij}
\]

\[
[\pi(\vec{x}, t), \phi(\vec{x}', t)] = i\hbar\delta(\vec{x} - \vec{x}')
\]
Quantum Mechanics and Relativity

• Moral:

Quantum Mechanics + Lorentz Invariance =

Quantum Field Theory
Quantum Field Theory

- Spin defines transformations under rotations and boosts
- Quantum Field Theory naturally explains spin
 - Not added ad hoc as in non-relativistic qm

\[\begin{array}{ccc}
0 & \pi & 2\pi \\
Scalar & Scalar & Scalar \\
Fermion & Fermion & Fermion \\
\overrightarrow{Vector} & \overleftarrow{Vector} & \overrightarrow{Vector}
\end{array} \]
Example: Scalar (spin 0) theory

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 = \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 \]

- Kinetic energy
- Shear energy
- Mass energy
- Potential Energy

Euler-Lagrange Equation: \((\partial^2 + m^2)\phi = 0\)

Quantum Mechanical identification: \(\partial_\mu = i p_\mu\)

Einstein’s relation:
\[-p^2 + m^2 = -E^2 + |\vec{p}|^2 + m^2 = 0\]
Example: Fermion (spin 1/2) theory

\[\mathcal{L} = i \bar{\psi} \sigma^\mu \partial_\mu \psi - m \bar{\psi} \psi \]

- Aligns spins
- Displaces fermions
- Mass
- Spins anti-aligned

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 \]

“\(\psi^2 = \phi \)”
Supersymmetry
Familiar Quantum Operators

• Example: Momentum

\[P_\mu |\text{boson}\rangle = p_\mu |\text{boson}\rangle \]

\[P_\mu |\text{fermion}\rangle = p_\mu |\text{fermion}\rangle \]

\[P_\mu \xrightarrow{2\pi \text{ rotation}} P_\mu \]

• Momentum is a vector (a boson)
• Momentum is Hermitian
• Momentum satisfies commutation relations
Unfamiliar Quantum Operators

\[Q|\text{fermion}\rangle = |\text{boson}\rangle \]

\[Q|\text{boson}\rangle = |\text{fermion}\rangle \]

\[Q \quad \xrightarrow{2\pi\text{ rotation}} \quad 0 \]

- \(Q \) is a fermion! (spin 1/2)
- \(Q \) is not Hermitian!
 - Eigenstates of \(Q \) do not have well-defined spin
Unfamiliar Quantum Operators

• Q satisfies anti-commutation relations:

$$\{Q, Q^\dagger\} = 4E \quad \left(E = P_0 = -i \frac{\partial}{\partial t} \right)$$

$$\{Q, Q\} = 0$$

$$\{Q^\dagger, Q^\dagger\} = 0$$

$$Q^\dagger = \mathcal{O} \neq Q$$

• Look familiar?
Unfamiliar Quantum Operators

• Rescale Q:

$$a = \frac{Q}{\sqrt{4E}}$$

$$a^\dagger = \frac{Q^\dagger}{\sqrt{4E}}$$

$$\{a, a^\dagger\} = 1$$

$$\{a, a\} = 0$$

$$\{a^\dagger, a^\dagger\} = 0$$

• Spin 1/2 or two-state raising and lowering operators!
Summary

• Q satisfies the algebra:

\[
\{Q, Q^\dagger\} = 4E
\]

\[
\{Q, Q\} = 0
\]

\[
\{Q^\dagger, Q^\dagger\} = 0
\]

• Q interpolates between two states:

\[
Q^\dagger |f\rangle = |b\rangle
\]

\[
Q |b\rangle = |f\rangle
\]

• Q called the supercharge
• f and b are superpartners and form a supermultiplet
Simplest Supersymmetric Model

- Massless, noninteracting Wess-Zumino model:
 \[
 \mathcal{L}_{\text{W-Z}} = \partial_{\mu} \phi \partial^{\mu} \phi^{*} + i\bar{\psi}\sigma^{\mu} \partial_{\mu} \psi
 \]

- \(\phi\) is a complex scalar field:
 \[
 \phi = \phi_{1} + i\phi_{2}
 \]

- \(\psi\) is a spin 1/2 fermion field:
 \[
 \psi = \begin{pmatrix} a \\ b \end{pmatrix}
 \]
Wess-Zumino Model

- Transformations of fields under supersymmetry:
 \[Q\phi = \psi \]
 \[Q^\dagger \psi = i\sigma^\mu \partial_\mu \phi \]

- Leave the Wess-Zumino Lagrangian invariant:
 \[L_{W-Z} = \partial_\mu \phi \partial^\mu \phi^* + i\bar{\psi}\sigma^\mu \partial_\mu \psi \]

- Wess-Zumino Lagrangian is *supersymmetric*!
What does Supersymmetry mean?

• Consider two electrons; one at rest, one with velocity v:

 $e \quad e \quad v$

• Lorentz transformations can change velocities
 • Doesn’t change laws of physics
 • Consequence: velocity is not a quantum number

• Consider a fermion and boson:

 $f \quad b$

• Supersymmetry doesn’t change laws of physics
 • Does change spin!
 • Consequence: spin is not a quantum number!
What does Supersymmetry mean? Summary

• Maps boson degrees of freedom to fermion degrees of freedom:

\[\begin{align*}
\text{Bosons} & \leftrightarrow \text{Fermions} \\
Q, Q^\dagger & \\
\end{align*} \]

• Theory must have equal numbers of fermion and boson d.o.f.s
• Boson and fermion superpartners must have same interactions
 • Same mass, same charges
• Moral:

Supersymmetry:

Bosons \sim \text{Fermions}
The Minimal Supersymmetric Standard Model
Minimal Supersymmetric Standard Model

• “Minimal Supersymmetric”: The absolute minimum number of additional particles to make the Standard Model supersymmetric

• Can particles in the Standard Model be superpartners?
Minimal Supersymmetric Standard Model

• “Minimal Supersymmetric”: The absolute minimum number of additional particles to make the Standard Model supersymmetric

• Can particles in the Standard Model be superpartners?
 • No! No particles have same charges or mass and spin differing by 1/2
 • Need to double particle content!
Minimal Supersymmetric Standard Model

- Superpartners in the MSSM:
 - Scalar partner to a fermion = sfermion
 - Partner to electron = selectron
 - Partner to top quark = stop
 - Fermion partner to a boson = bosino
 - Partner to photon = photino
 - Partner to gluon = gluino

- I make no apology for the nomenclature; it is terribly silly
Minimal Supersymmetric Standard Model

• A (major) problem
 • Supersymmetry demands superpartners have same mass
 • We don’t observe a negatively charged, scalar with mass of 511 keV (the selectron)
 • Supersymmetry cannot be an exact symmetry of our world!
• Sparticle masses must be > 100 GeV to escape detection
• Many models predict masses in LHC range
 • Very exciting! (pending LHC problems)
Motivations for Supersymmetry in the Real World
Unification of Coupling Constants
Unification of Electricity and Magnetism

\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \]

\[\nabla \cdot \mathbf{B} = 0 \]

\[\nabla \times \mathbf{E} + \frac{\partial}{\partial t} \mathbf{B} = 0 \]

\[\nabla \times \mathbf{B} - \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \mathbf{E} = \mu_0 \mathbf{J} \]
Unification of Electricity and Magnetism

• Maxwell’s equations unify E and B fields
• Relates electric and magnetic couplings:

$$\mu_0 \varepsilon_0 = \frac{1}{c^2}$$

• Conversely, if couplings can be related, fields can be unified!
 • (At least a very strong indication of unification)
Unification in the Standard Model

• Three forces in Standard Model
 • Electromagnetism
 • Weak
 • Strong
• Three couplings in Standard Model relating strengths of forces
• If these couplings can be related, forces could be unified!
 • Could “explain” forces and their strengths
Unification in the Standard Model

• How to relate them?
 • Couplings depend on distance (energy)!
 • An electron polarizes the region of space around it
 • Dipoles screen bare electron charge
 • Closer to electron, charge looks larger!
Unification in the Standard Model

- Standard Model: dashed
 - No unification
- Standard Model + Supersymmetry: solid
 - Unification!
Hierarchy Problem
A Problem with Fundamental Scalars

• Or, why a massless fermion stays massless

\[\frac{v = c}{\text{spin}} \]

Lorentz Transformation

\[\frac{v = c}{\text{spin}} \]

• Recall massless fermion Lagrangian:

\[\mathcal{L} = i \bar{\psi} \sigma^\mu \partial_\mu \psi \]
A Problem with Fundamental Scalars

- Mass term requires anti-aligned spins:

\[\mathcal{L}_{\text{mass}} = -m \bar{\psi} \psi \]

- Quantum Mechanics respects Lorentz invariance
 - Velocity and spin are locked in place
 - Such a term can never be generated!
 - Massless fermion stays massless!
A Problem with Fundamental Scalars

- Consider a massless, fundamental scalar:

 \[s \rightarrow \nu = c \quad | \quad \text{Lorentz Transformation} \quad | \quad s \rightarrow \nu = c \]

- Scalar has no intrinsic direction or vector
- Mass term of Lagrangian is not disallowed by any symmetries:

 \[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 \]

- Anything that is not forbidden will happen in QM
 - Mass term is generated quantum mechanically!
- (Composite scalars do not suffer this problem as they are made of fermions and inherit chiral symmetry)
Standard Model Higgs Scalar Boson

• In the Standard Model, Higgs boson is responsible for mass
 • All particles have mass proportional to Higgs mass
• How does quantum mechanics affect Higgs mass?
 • Interactions with bosons: increases mass
 • Interactions with fermions: decreases mass
• In Standard Model, these contributions are unrelated
 • Quantum mechanic shifts can be (essentially) unbounded!
 • Obviously a bad thing
• Requiring supersymmetry:
 • Fermions and bosons have same interactions with Higgs
 • Contributions to Higgs mass exactly cancel!
 • A good thing
Standard Model Higgs mass

• Resolves the hierarchy problem:
 Supersymmetry resolves the hierarchy problem by demanding that fermion and boson contributions to the higgs mass exactly cancel.
Things I Didn’t Discuss

• Other solutions to the Hierarchy problem:
 • Extra Dimensions
 • Randall-Sundrum Models, etc.
 • Composite Higgs models
 • Technicolor, etc.
• None, there is no Hierarchy problem
 • Split Supersymmetry, etc.
Things I Didn’t Discuss

• Other connections of Supersymmetry
 • Adding more supersymmetries
 • Have only considered $N = 1$
 • Can add more supercharges to consider larger supermultiplets
 • Conformal theories; AdS/CFT
• Gravity + Supersymmetry = Supergravity
 • Could be a way to control the divergences that trouble a quantum theory of gravity
• String Theory
 • Requires supersymmetry
 • Currently the best quantum theory of gravity
An Explanation of Dark Matter
An Explanation of Dark Matter

• I won’t motivate the existence of dark matter here
• Necessary to explain the rotation curves of galaxies
• Necessary to explain the distribution of mass and the gravitational potential well in the Bullet Cluster

• There are many reasons that Standard Model particles could not be dark matter

 • Dark matter is dark, must be neutral and stable

 • Could possibly be neutrinos but are much too light to remain contained in galaxies
An Explanation of Dark Matter

• Supersymmetry “naturally” includes heavy, neutral Weakly interacting particles!
 • Called WIMPs
 • Constraints on cosmological parameters demand its mass be in the 100 GeV-1 TeV range