
Fitting The Unknown

Joshua Lande

Stanford

September 1, 2010

1/28

Motivation: Why Maximize

It is frequently important in physics to find the maximum
(or minimum) of a function

Nature will maximize entropy

Economists Maximize (Minimize?)
the Cost Function

In classical mechanics, minimizes the
action

Build experiments to maximize
performance

Model parameter estimation.

2/28

Parameter Estimation

Common when analyzing data to fit a model to data

χ2 =
∑

(yi − y(xi))/σi)
2

logLikelihood = log(Prob(data|model))

Model is generally a function of free parameters

Interesting to find parameters that maximize the
likelihood.

3/28

Plan

Typically, physicists pull
out an off the shelf
optimizer to fit their
function and be done
with it

Today, lets dig under the
hood and figure out how
they work

4/28

Ad Hoc Methods

Given an arbitrary function F (~x) of n variables ~x,

how would you go about minimizing it?

Grid Search

Divide space into an n dimensional grid
evaluate the function along the grid
avoids local minimum
Useful to seed other algorithms

Bisection Algorithm

Random points method

These are slow/inefficient - O(2n)

5/28

Alternating Variables

Maximize one parameter
at a time

Ignore correlation
between variables

Algorithm is inefficient
and unreliable

Can cause oscillatory
behavior

6/28

Gradient Descent

Function decreases in the direction of
the negative gradient

The negative of the gradient should
lead to the minimum

~xi+1 = ~xi − γ~∇F (~x)

Iterate until |~∇F (~xi)| < ε

Well suited when ~∇F is
easily/analytically calculated

Often, perform a grid search in the
direction of −~∇F before next
iteration

7/28

Simplex Fitting Algorithm (What’s a Simplex???)

A simplex is a generalization of a
triangle or tetrahedron to arbitrary
dimension

An n-simplex has n+ 1 vertices in n
dimensions

all equidistant

For example,

a 2-simplex is a triangle
a 3-simplex is a tetrahedron
a 4-simplex is a pentachoron
a 5-simplex is a hexateron
a 6-simplex is a heptapeton

8/28

Simplex (continued)

Define a simplex in the n
dimensional fit space

Evaluate the function at
all points

Reflect the highest point
through the centroid of
the other points

If the reflected point is still the highest, reflect the
second highest point
When a certain vertex has remained in the current
simplex for many iterations, contract all other vertices
towards it by 1/2 9/28

Simplex Example

10/28

Simplex (continued)

Pros:

Ignores the gradient/curvature of the function
Works well for noisy data,
Good for functions with local minimum
Works well when curvature varies rapidly

Cons:

Requires an initial simplex choice
Slow convergence for smooth functions (compared to
gradient descent)
Inflexible to changes in local function structure

E.G. wouldn’t work well in a long valley

11/28

Nedler Mead Algorithm

Improvement of Simplex algorithm

“Adapts itself to the local landscape,

elongating down long inclined planes,
changing direction on encountering a valley at an
angle,
and contracting in the neighborhood of a minimum”

“Copies of the routine, written in Extended Mercury
Autocode, are available from the authors”1

Used by Minuit’s SIMPLEX algorithm and scipy’s
fmin function

1J.A. Nedler and R. Mead ”A Simple Method for Function
Minimization“

12/28

Nedler Mead Algorithm

P̄ is the simplex centroid. Ph is the largest Fh. Pl has
the smallest Fh

Reflection: Evaluate the function F∗ on the reflected
part of the simplex P ∗ = (1 + α)P̄ − αPh
Expansion: If F∗ < Fl (reflected point new
minimum), then expland simplex futher in the
direction by a ratio γ

P ∗∗ = γP ∗ + (1− γ)P̄

Contraction: If F ∗ > Fi for i 6= h, then we contract by
using as our new point

P ∗∗ = βPh + (1− β)P̄

Replace Ph with P ∗∗

13/28

Quit When. . .

End when
√∑

(Fi − F̄)2/n < ε

End criteria is well suited for minimizing χ2 or log
likelihood, where curvature at minimum gives
information about parameter uncertainty

Fit error only has to be small compared to parameter
uncertainty!

14/28

Newton-Raphson algorithm

Assume your function is a parabola and calculate the
extrema of the estimated parabola

use curvature information to take a more direct route

Taylor expand the derivative, set it to 0

f ′(x+ ∆x) = f ′(x) + ∆xf ′′(x) = 0

∆x = −f ′(x)/f ′′(x)

xi+1 = xi − γf ′(xi)/f ′′(xi)
Iterate until |f ′(xi) < ε|
Excellent local convergence!

Often, instead perform a grid search in direction of
steepest descent

15/28

Newton Algorithm (Issues)

May end up converging on a saddle point/local
maximum

May overshoot by quite a bit

Formula undefined for F ′′ = 0.

16/28

Newton-Raphson in Many Dimensions

Perform a n dimensional Taylor
expansion
~∇F (~x+ ∆~x) = ~∇F (~x) +H∆~x = 0

Where the Hessian matrix
Hij = ∂

∂xi

∂
∂xj
F

The recursion condition is

~xn+1 = ~xn − γH−1n ~∇F (~xn)

Iterate until |~∇F (~xn)| < δ

Figure: gradient
descent (green)
and Newton’s
method (red) for
minimizing a
function 17/28

Performance

No reason that Hn has to be invertible

Newton-Raphson works particularly well near the
minimum

Gradient descent (ignore curvature) works better when
far from the minimum and higher order terms are more
significant

Gradient descent converges very slowly near the
minimum

18/28

Levenberg-Marquardt

Algorithm devised to naturally interpolate between
Gradient and Newton-Raphson

Replace equation to solve with
(H(~x) + µI)∆~x = −~∇F (~x)

µ << 1 reduces to the Newton-Raphson algorithm

µ >> 1 reduces to the Gradient algorithm with
γ = 1/µ

Many different algorithms for adaptively changing µ
based upon function

19/28

BFGS Method

Often H(~x) is very costly to evaluate

Desirable to find an intelligent approximation of the
curvature

BFGS is modification of Newton’s algorithm that
approximates the Hessian

Uses Hessian at previous points and values of the
derivative to estimate new one.

20/28

BFGS Method

Same general formula as Newton’s Method
~xn+1 = ~xn −H−1n ~∇F (~xn)

Approximate the Hessian
~sn+1 = ~xn+1 − ~xn
~yn+1 = ~∇F (~xn+1)− ~∇F (~xn)

Hn+1 = Hn + ~yn~y
T
n /~y

T
n~sn −Hnsn(Bnsn)T/sTnBn~sn

Invert Hn+1 Using the Sherman Morrison formula:

H−1n+1 = H−1n +
(~sTn~yn + ~yTnB

−1
n ~yn)(~sn~s

T
n)

(~sTn~yn)2

− H−1n ~yn~s
T
n + ~sn~y

T
nH

−1
n

~sTk ~yk

21/28

BFGS Method

Advantageof BFGS:

the inevitability of the Hessian approximation is
ensured directly
Well suited for problems where H is costly to compute

Disadvantage: Convergence slower than Newton’s
Method2

fmin bfgs in scipy

ROOT::Math::MinimizerOptions::SetDefaultMinimizer
(”GSLMultiMin”,”BFGS”)

2http://www.math.mtu.edu/~msgocken/ma5630spring2003/

lectures/global2/

22/28

http://www.math.mtu.edu/~msgocken/ma5630spring2003/lectures/global2/
http://www.math.mtu.edu/~msgocken/ma5630spring2003/lectures/global2/

Physical Constrains

Frequently, parameter values are constrained

E.G, experiment constrained by upper limit on cost
unable to observer negative counts

A common strategy is to change to unconstrained
variables

instead of fitting x, y on a circle, fit θ

When a fit parameter must be positive, it is easy to
instead fit the log of the parameter

Remember that you have to correct the fit error
To first order, σlog x = ∂ log(x)

∂x σx
σx = xσlog x

23/28

Constrains

Minuit fitter allows two sided limits of each fit
parameters3

It internally fits unconstrained variables but
transformed them into constrained variables

Pint = arcsin
(
2Pext−a

b−a − 1
)

Pext = a+ b−a
2

(sinPint + 1)

Mapping is non-linear, causes distortions in errors

3http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

24/28

http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

Penalty Functions

Another strategy to for constrains are penalty
functions

Replace the function you are fitting with a function
which increases rapidly in forbidden regions

Want to minimize F (~x) such that

gi(~x) ≤ 0
hi(~x) = 0

gi are inequalities (Flux > 0) and hi are fixed
constraints (cost = 1, 000)

Many types of penalty functions have been suggested

25/28

Static Penalty functions4

Constant Penalty Functions
Replace function with Fp(~x) = F (~x) +

∑
Ciδi

where δi =

{
1 if constrain i is violated

0 if constrain i is satisfied
No obvious way to pick the Ci

“Cost to Completion” Penalty Function
Let penalty increase further farther from allowed
region
Fp(~x) = F (~x) +

∑
Cid

κ
i

Where di =

{
δigi(~x)

|hi(~x)|
Frequently κ is 1 or 2

4http://www.eng.auburn.edu/users/smithae/publications/

bookch/chapter.pdf
26/28

http://www.eng.auburn.edu/users/smithae/publications/bookch/chapter.pdf
http://www.eng.auburn.edu/users/smithae/publications/bookch/chapter.pdf

Dynamic Penalty Functions

static penalty functions lack a robust strategy for
picking Ci

Dynamic penalties use the length of time of search t

Fp(~x, t) = F (~x) +
∑
s(t)dκi

di is an increasing function of time

Often have to tune si(t) to particular problem

If si(t) is too lenient, infeasible solution may result
from fit
If si(t) is too strict, search may converge to
non-optimal feasible solution

Lots of research into adaptive penalty functions. . .

27/28

Questions?

28/28

