Fitting The Unknown

Joshua Lande

Stanford

September 1, 2010

1/28

Motivation: Why Maximize

It is frequently important in physics to find the maximum
(or minimum) of a function

m Nature will maximize entropy

m Economists Maximize (Minimize?)
the Cost Function

m In classical mechanics, minimizes the
action

m Build experiments to maximize
performance

m Model parameter estimation.

2/28

Parameter Estimation

m Common when analyzing data to fit a model to data

m X2 =2 (yi — y(@i)/00)?
m logLikelihood = log(Prob(datajmodel))

m Model is generally a function of free parameters

m Interesting to find parameters that maximize the
likelihood.

3/28

m Typically, physicists pull
out an off the shelf
optimizer to fit their
function and be done
with it

m Today, lets dig under the
hood and figure out how
they work

4/28

Ad Hoc Methods

m Given an arbitrary function F(Z) of n variables &,

m how would you go about minimizing it?
Grid Search

m Divide space into an n dimensional grid
m evaluate the function along the grid

m avoids local minimum

m Useful to seed other algorithms

Bisection Algorithm

Random points method
These are slow /inefficient - O(2")

5,/28

Alternating Variables

m Maximize one parameter .,
at a time

m Ignore correlation
between variables

m Algorithm is inefficient
and unreliable

m Can cause oscillatory %
. Figure 2.2.3 The method of alternating variables
behavior

6,/28

Gradient Descent

m Function decreases in the direction of
the negative gradient

m The negative of the gradient should
lead to the minimum

] fi—i—l = fz - ’7§F<I_")
m Iterate until [VF(Z;)| < ¢

m Well suited when VF is
easily /analytically calculated

m Often, perform a grid search in the
direction of —V F' before next
iteration

7/28

Simplex Fitting Algorithm (What’s a Simplex???)

m A simplex is a generalization of a
triangle or tetrahedron to arbitrary
dimension

dimensions

m all equidistant

m For example,
m a 2-simplex is a triangle

a 3-simplex is a tetrahedron

a 4-simplex is a pentachoron

a b-simplex is a hexateron
a 6-simplex is a heptapeton

m An n-simplex has n + 1 vertices in n f

8/28

Simplex (continued)

~
m Define a simplex in the n e
dimensional fit space --P—})
m Evaluate the function at -7
all points old New
m Reflect the highest point simplex simplex
through the centroid of
the other points Reflection

m If the reflected point is still the highest, reflect the

second highest point
m When a certain vertex has remained in the current
simplex for many iterations, contract all other vertices

towards it by 1/2 9/28

10/28

.Pb
@F
m
ay]
VA

Ea
o

=
@F
—
=

mn

Simplex (continued)

m Pros:
m Ignores the gradient/curvature of the function
m Works well for noisy data,
m Good for functions with local minimum
m Works well when curvature varies rapidly

m Cons:
m Requires an initial simplex choice
m Slow convergence for smooth functions (compared to

gradient descent)
m Inflexible to changes in local function structure

B E.G. wouldn’t work well in a long valley

11/28

Nedler Mead Algorithm

m Improvement of Simplex algorithm
m “Adapts itself to the local landscape,

m elongating down long inclined planes,

m changing direction on encountering a valley at an

angle,

m and contracting in the neighborhood of a minimum”

m “Copies of the routine, written in Extended Mercury
Autocode, are available from the authors”!

m Used by Minuit’s SIMPLEX algorithm and scipy’s
fmin function

1J.A. Nedler and R. Mead ”A Simple Method for Function
Minimization “

12/28

Nedler Mead Algorithm

m P is the simplex centroid. P, is the largest F},. P, has
the smallest F},

m Reflection: Evaluate the function F'x on the reflected
part of the simplex P* = (1 +)P — aP,

m Ezpansion: If Fx < F; (reflected point new
minimum), then expland simplex futher in the
direction by a ratio ~y

m P =P+ (1—7)P

m Contraction: If F* > F; for i # h, then we contract by

using as our new point

m P** =P, + (1—B)P
m Replace P, with P**

13/28

Quit When. ..

m End when /> (F; — F)2/n < ¢

m End criteria is well suited for minimizing x? or log
likelihood, where curvature at minimum gives
information about parameter uncertainty

m Fit error only has to be small compared to parameter
uncertainty!

14/28

Newton-Raphson algorithm

Assume your function is a parabola and calculate the
extrema of the estimated parabola

use curvature information to take a more direct route
Taylor expand the derivative, set it to 0

f(@+ Az) = /(@) + Arf"(z) = 0

Az = —f'(z)/f"(x)

Ty = i — V[(@) [f" (2s)

Iterate until | f'(z;) < €

Excellent local convergence!

Often, instead perform a grid search in direction of
steepest descent

15,28

Newton Algorithm (Issues)

m May end up converging on a saddle point/local
maximum

m May overshoot by quite a bit

m Formula undefined for F” = 0.

16/28

Newton-Raphson in Many Dimensions

Perform a n dimensional Taylor
expansion
VF(Z+ AZ)=VF (&) + HAZ =0
Where the Hessian matrix
H;j = aiia%F
The recursion condition is

w Ty = Z, —yH;'VF(&,)

Tterate until [V F(i,)] < &

Figure: gradient
descent (green)
and Newton’s
method (red) for
minimizing a

function 17 / 28

Performance

m No reason that H,, has to be invertible

m Newton-Raphson works particularly well near the
minimum

m Gradient descent (ignore curvature) works better when
far from the minimum and higher order terms are more
significant

m Gradient descent converges very slowly near the
minimum

18/28

Levenberg-Marquardt

m Algorithm devised to naturally interpolate between
Gradient and Newton-Raphson

m Replace equation to solve with
(H(Z) 4+ pl)AZ = =V F ()

m 1 << 1 reduces to the Newton-Raphson algorithm

m 1 >> 1 reduces to the Gradient algorithm with
v=1/u

m Many different algorithms for adaptively changing pu
based upon function

19/28

BFGS Method

m Often H(Z) is very costly to evaluate

m Desirable to find an intelligent approximation of the
curvature

m BFGS is modification of Newton’s algorithm that
approximates the Hessian

m Uses Hessian at previous points and values of the
derivative to estimate new one.

20/28

BFGS Method

m Same general formula as Newton’s Method
m Zpp =3, — H'VF(i,)
m Approximate the Hessian
B Spp1 =Tpy1 —In
B Jnp1 = VF(Znt1) — VF(Tn)
m Hyy = Hy, + 9098 /525, — Hy$,(Bnsn)? /st B3,
m Invert H,.; Using the Sherman Morrison formula:

(59 + U By ') (Sn5n)

H—l :H—l
n+1 n + (5‘5%)2

BFGS Method

m Advantageof BFGS:

m the inevitability of the Hessian approximation is
ensured directly
m Well suited for problems where H is costly to compute

m Disadvantage: Convergence slower than Newton’s
Method?
m fmin_bfgs in scipy

m ROOT::Math::MinimizerOptions::SetDefault Minimizer
(”GSLMultiMin”,” BFGS”)

’http://www.math.mtu.edu/~msgocken/ma5630spring2003/
lectures/global2/

22/28

http://www.math.mtu.edu/~msgocken/ma5630spring2003/lectures/global2/
http://www.math.mtu.edu/~msgocken/ma5630spring2003/lectures/global2/

Physical Constrains

m Frequently, parameter values are constrained
m E.G, experiment constrained by upper limit on cost
m unable to observer negative counts
m A common strategy is to change to unconstrained
variables
m instead of fitting x,y on a circle, fit 0
m When a fit parameter must be positive, it is easy to
instead fit the log of the parameter
m Remember that you have to correct the fit error

1
m To first order, ojog, = 9 %gx(x) o

B 0; = T0logz

23/28

Constrains

Minuit fitter allows two sided limits of each fit
parameters?

It internally fits unconstrained variables but
transformed them into constrained variables

P, = arcsin (2—P it — 1)
Py =a+ b_T“(sin P+ 1)

Mapping is non-linear, causes distortions in errors

3http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

24/28

http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

Penalty Functions

m Another strategy to for constrains are penalty
functions

m Replace the function you are fitting with a function
which increases rapidly in forbidden regions
m Want to minimize F'(Z) such that
m g (Z)<0
mh(2)=0
m g; are inequalities (Flux > 0) and h; are fixed
constraints (cost = 1,000)

m Many types of penalty functions have been suggested

25/28

Static Penalty functions?

m Constant Penalty Functions
m Replace function with Fy,(Z) = F(Z) + Y C;0;

1 if constrain 4 is violated
m where §; =) o)
0 if constrain 7 is satisfied

m No obvious way to pick the C;
m “Cost to Completion” Penalty Function
m Let penalty increase further farther from allowed

region
m Fy(%) = F(T) + > Cidf
m Where d; = 5191(?)
|hi ()]

m Frequently xis 1 or 2
‘http://www.eng.auburn.edu/users/smithae/publications/
bookch/chapter.pdf

2628

http://www.eng.auburn.edu/users/smithae/publications/bookch/chapter.pdf
http://www.eng.auburn.edu/users/smithae/publications/bookch/chapter.pdf

Dynamic Penalty Functions

static penalty functions lack a robust strategy for
picking C}

m Dynamic penalties use the length of time of search ¢
m F,(7,t) = F(Z) + > s(t)df

m d; is an increasing function of time

m Often have to tune s;(¢) to particular problem

m If 5;(¢) is too lenient, infeasible solution may result
from fit

m If 5;(¢) is too strict, search may converge to
non-optimal feasible solution

m Lots of research into adaptive penalty functions. ..

2728

Questions?

28/28

