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Diffraction model of a step-out transition for a sheet beam in planar geometry
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ABSTRACT

Using a diffraction model, we derive the longitudinal high-
frequency impedance of a small step-out transition for a sheet
beam in planar geometry.

I. Sheet Beam and Planar Impedance

Consider an infinitely wide 'sheet beam' between two per-
fectly conducting planar surfaces, each having a discontinuous
step outward. Denoting the current and the power loss per hori-
zontal unit length bydJ=dx = dĴ=dx exp(�i!(t� s=c)) and
dP=dx, respectively, we define the real part of the longitudinal
planar impedance~Zk0 by the equation:
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In our convention the units of the longitudinalplanar
impedance, ~Z

k

0 , are
m. (The tilde over~Zk0 emphasizes these
peculiar units.) The electromagnetic fields accompanying the
beam are:B0x = �E0y = �2(�=c) dJ=dx, where the two
signs correspond to the regions above and below the sheet beam,
respectively. The fields are independent of the vertical beam
size, and are identical to those of a plane wave. The incident
energy flux isF0 = c(B2

0x +E2
0y)=(8�) = �=c (dJ=dx)2:

II. Planar Impedance for a Small Step Out

Let b be the initial transverse distance between the sheet
beam and the upper (or lower) boundary surface. Suppose that
at locations = 0 both surfaces undergo a step-out transition
of sized. If d is small (d � b), we can ignore multiple re-
flections and the interference of waves diffracted at the upper
and lower edge, and we can directly apply the results of Ref.
[1]. There, we extended the conventional diffraction model for
a round beam passing a cavity in a circular pipe [2, 3] to the
case of a small step-out, by introducing a single image current
of opposite polarity at a transverse distance� = (2b+2d) from
the beam. From Ref. [1] we infer that the beam loss power for
our sheet beam isdP=dx � 4dF0. Comparison with Eq. (1)
yields
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k

0
= Z0d (2)

whereZ0 = 4�=c (= 377
) denotes the vacuum impedance.
This may be compared with the high-frequency impedance of a
small transition step for a circular beam in a cylindrical beam
pipe of radiusb, which isReZk0 � Z0d=(�b) [1].

III. Outlook

If the stepd is not small, we must include the interference of
the two waves diffracted at the lower and upper edge and also
the multiple reflections. In this case, theboundary conditions
can still be satisfied in a diffraction model, namely by intro-
ducing an infinite set of image currents of alternating polarity,
which are spaced a distance� � (2b + 2d) apart. The calcula-
tion is simplified by assuming that the step-out is symmetric and
that the beam is centered between the two conducting surfaces.
Note that, according to the planar wake theorem [4], the energy
loss of the beam is independent of its vertical offset.

Instead of the situation just described, Babinet's principle
allows us to consider the complementary problem of an infinite
number of plane waves of alternating phase impinging on an
infinite grid of slits of width2d separated by opaque screens of
size2b.

The amplitude of the diffracted wave is now proportional to
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where
Dn �

p
s2 + (n�+ y � y0)2: (4)

Noting that at sufficiently large distancess behind the step we
havejy � y0j �

p
s2 + n2�2, the functionDn in Eq. (3) can

be approximated as
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It is not obvious how to further simplify the resulting expres-
sions.

Finally, it is interesting to notice that the conventional
diffraction model for a cylindrical geometry [2, 3] gives correct
results for the high-frequency impedance of a deep cavity, al-
though this model does include neither multiple reflections nor
interference of waves diffracted at different azimuthal locations.
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