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TOLERABLE SYSTEMATIC ERRORS IN
REALLY LARGE HADRON COLLIDER DIPOLES

S. Peggs, F. Dell, Brookhaven National Laboratory

ABSTRACT

Maximum allowable systematic harmonics for arc dipoles in
a Really Large Hadron Collider are derived. The possibility of
half cell lengths much greater than 100 meters is justified. A
convenient analytical model evaluating horizontal tune shifts is
developed, and tested against a sample high field collider.

I. INTRODUCTION

Both “low field” and “high field” concepts of a future Re-
ally Large Hadron Collider (RLHC) were discussed at Snow-
mass 96. Both concepts invoke novel magnet designs. The goal
of this paper is to establish semi-quantitative estimates of what
would constitute good or bad field quality in arc dipoles in ei-
ther machine, and to directly draw the connection between field
quality and maximum (optimum) half cell length. It is implic-
itly assumed (after the discussion immediately below) that sys-
tematic errors dominate random errors, and that they therefore
deserve the closest attention. It is fortunate that this appears
to be true for contemporary superconducting magnets - if not
for future magnets using high temperature superconductor tech-
nology - since it is far harder to make even semi-quantitative
mathematical statements about random errors.

A. Do systematic or random errors dominate?

In 1983, when the Ann Arbor SSC workshop was held, the
SSC was little more than a gleam in the physicists eye. The
proceedings of that workshop contain the first systematically
documented attempts to predict SSC dipole harmonic errors [1].
These predictions rested heavily on extrapolations from the lim-
ited experience with superconducting magnets then available -
from the Tevatron and Isabelle/CBA. It was judged that, in gen-
eral,random errors were expected to dominatesystematic errors
in SSC magnets. From the time that the official lattice was es-
tablished in 1986 - in the Conceptual Design Report (CDR) of
the SSC [2] - until the demise of the project in 1993, the SSC
half cell length was consistently in the rangeLSSC = 100� 10

meters. The tables of expected dipole harmonic errors that were
used for tracking purposes did not change significantly in this
period. However, an analysis of 10 or so of the last SSC dipoles
built shows that theas builtharmonics were, in most cases, 3 to
10 times smaller than theexpectedCDR harmonics [3]. This
implies that the SSC half cell length could have been much
longer than 100 meters, and/or that it might have been possi-
ble to remove some of the nonlinear correctors.

Considerable experience has been gained since then, and the
state of the art has been significantly advanced, with the con-
struction of superconducting magnets for HERA-p and RHIC.

RHIC experience is that, to the contrary of the SSC canon,
systematic errors dominate random errors. Preliminarily, it also
appears that systematic errors dominate random errors in LHC
magnets [4]. RHIC demonstrated that systematic harmonic er-
rors can be adjusted during industrial production, using mil-size
adjustments of mid-plane caps and coil pole shims [5]. This was
done without interrupting the production line schedule - without
adjusting the coil/collar/yoke geometry, and with only negligi-
ble redistribution of stress patterns. As a result, it was possible
to reduce systematic harmonics in standard RHIC dipoles and
quadrupoles to such an extent that the octupole and decapole
correctors installed in the arcs will not be powered - except,
perhaps, for the purpose of Landau damping. The only nonlin-
ear correctors that will be powered in the arcs are two families
of chromatic sextupoles.

High field quality in arc dipoles is most important at injec-
tion, when the beams are at their largest. It may therefore
seem irrelevant that “tuning shims” in RHIC interaction region
quadrupoles have been discovered to significantly improve top
energy performance. However, the same tuning shim technol-
ogy can also be used in arc dipoles at injection for the same pur-
pose - to easily adjust several harmonics in an individual magnet
after that magnet has been constructed and measured. Tuning
shims could be used on each and every RLHC dipole magnet,
to remove both systematic and random errors. Or, they could be
applied to a single dipole at one end of each half cell, and a sin-
gle dipole in the middle, in a “pseudo Simpson Neuffer scheme”
that would correct many harmonics - at a single excitation.

B. Really Large Hadron Collider

It is fiscally imperative that RLHC designs stress simplic-
ity, reliability, and economy - three virtues that are closely re-
lated. Complicated and copious magnet interconnects and spool
pieces should be avoided wherever possible, in order to keep the
average cost per meter low. One way to reduce the number of
spools is to increase the half cell length as far as possible, be-
yond the conventional 53.4 meters of the LHC, and 100 meters
of the SSC. Spool complexity can be reduced by eliminating
most or all of the nonlinear correctors from the arcs. It may
even be possible to correct the closed orbit and the chromaticity
with sparse dipole and sextupole correctors - less than one of
each per half cell [6].

The busy or disinterested reader may wish to skip the next
two sections of this paper, “TUNE SHIFTS” and “MAXIMUM
TUNE SHIFTS”, which develop the mathematical model and
demonstrate its accuracy with a high field RLHC example. It
should be possible to go directly to section IV, “MAXIMUM
ALLOWABLE HARMONICS”, and pick up the story when it
focuses on practical consequences and real numbers.
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II. TUNE SHIFTS

The normal harmonic errors in a standard arc dipole are pa-
rameterized by the coefficientsbn in the expression
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whereBy is the vertical field at a horizontal displacement of
xt from the design trajectory at the center of the dipole, andr0
is the reference radius. As a test particle moves along a dipole
with a single harmonic, the horizontal anglex0
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whereB� is the on-momentum magnetic rigidityand� = �p=p

is the relative momentum offset. Assuming a perfect closed or-
bit, the total horizontal displacement is given by

xt = x + �� (3)

x = Ax cos(�x) (4)

wherex is the betatron displacement contribution,Ax and�x
are the betatron amplitude and phase, and� is the dispersion
function at that location. The rate of change of betatron angle
is derived from Equation 2, after recognizing that the dispersion
itself is modified by the error harmonic. This gives
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To proceed to calculate the horizontal tune shift as a function of
Ax and�, it is next necessary to derive the additional betatron
phase advance as dipoles are traversed.

Consider a single discrete angular kick�x0. The additional
betatron phase advance is given by

��x = �
�x cos�x

Ax

�x0 (6)

where�x is the horizontal beta function at that location. The
total betatron phase advance in one turn, numbern, is therefore
given by an integral over all dipoles

��x(n) = �
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The one turn phase advance fluctuates from turn to turn, since
it depends on the initial betatron phase at the beginning of the
turn, while the betatron tune shift�Qx is found by averaging
the phase advance over many turns. That is,

�Qx =
h��xi

2�
(8)

where the angle brackets denote an average over many turns, or
equivalently (it is assumed), an average over the initial betatron
phase. Putting all this together,
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have been used. Angle brackets now denote a double average,
over all the dipoles in the lattice and over the betatron phase.

The tune shift is a function of the betatron amplitude and the
(constant) momentum offset, which are conveniently parame-
terized bymx andm� in writing

Ax = mx �x (12)

�� = m� �� (13)

where the root mean square betatron and momentum beam sizes
are
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Here�x is the horizontal normalized emittance, and�p=p is the
RMS relative momentum spread.

A. Master equation

This allows the master equation to be written as
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whereAn;i are optical averages over dipoles

An;i =


�x �

n�1�2i
�

�2i
x

�
(17)

andCn;i are constant coefficients
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1

22i+1
n!(2i+ 2)!

(n� 2i� 1)!(2i+ 1)!(i+ 1)!(i+ 1)!
(18)

These coefficients result from betatron phase averages of
cosm(�) terms, multiplied by binomial coefficients generated
when Equation 9 is expanded into a polynomial series. Their
values, up to 14-pole, are displayed in Table I.

For illustration purposes, consider a simple lattice with a sin-
gle short dipole in the middle of each half cell. The optical
averages depend only on optical function values at the dipole.
Tune shifts for different harmonic errors are given in Table II.

B. Scaling with cell length, emittance, and energy

The optical averagesAn;i depend on the lattice, the emittance,
the momentum spread, and the energy. To see how the tune
shift scales, assume that there is a standard FODO cell in the
arcs, with a phase advance per cell of�c. It is also necessary to
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Table I:Cn;i coefficients for harmonics up to 14-pole.

n Multipole i = 0 1 2

1 Quadrupole 1=2
2 Sextupole 1
3 Octupole 3=2 3=8
4 Decapole 2 3=2
5 12-pole 5=2 15=4 5=16
6 14-pole 3 15=2 15=8

Table II: Tune shifts for the simple example of one thin dipole
in the middle of each half cell.b0n = bn=(1 + �).

Multipole �Qx

Quadrupole b
0
1
�x

1

2

Sextupole b
0
2
�x(��)

Octupole b
0
3�x[3=2(��)

2 + 3=8A2
x]

Decapole b
0
4
�x[2(��)

3 + 3=2(��)A2

x]

12-pole b
0
5
�x[5=2(��)

4 + 15=4(��)2A2

x + 5=16A4

x]

14-pole b
0
6�x[3(��)

5 + 15=2(��)3A2
x + 15=8(��)A4

x]

assume some relationship between the betatron and momentum
contributions to the total horizontal beam size. For example,
suppose that the RMS momentum spread is manipulated with a
fixed longitudinalemittance by adjusting the RF voltage, so that
the two contributions are equal where they are largest

c�� = c�x (19)

at the center of the horizontally focusing quadrupole. This
is physically reasonable for a high field 30 TeV hadron col-
lider [7]. It is then easy to show that
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whereL is the half cell length, and�n;i is a non-trivial function
of (only) the phase advance per cell. This makes it possible (fi-
nally!) to write down how the tune shift scales with cell length,
emittance, and energy. Substituting Equation 20 into the master
equation, Equation 16, gives
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This relatively ugly expression has the virtue of laying bare the
dependence of the tune shift on all the parameters of interest.

Table III lists the �n;i values for a lattice with thin
quadrupoles in which the FODO cells are fully packed with
dipoles - a fair approximation for an RLHC - with a 90 degree
phase advance per cell. The application of Tables I and III to
Equation 21 is then straightforward, if messy.

Table III: Numerically calculated values for�n;i for fully
packed FODO cells with�c = 90 degrees per cell.

n Multipole i = 0 1 2

1 Quadrupole 1:667
2 Sextupole 2:412
3 Octupole 3:608 3:467
4 Decapole 5:555 5:381
5 12-pole 8:753 8:536 8:340
6 14-pole 14:06 13:78 13:53

III. MAXIMUM TUNE SHIFTS

A numerical study of two high field RLHC designs has been
performed, in order to verify the accuracy of the mathematical
model, and to establish an approximate value for the maximum
tolerable horizontal tune shift. Tables IV and V summarize the
common primary parameters, and the different lattice parame-
ters, for SHORT and LONG cell high field machines that are
described in more detail elsewhere in these proceedings [7].

A. Tracking results

Figure 1 shows the tune shift versus momentum in the
SHORT machine for various values ofmx, with a systematic
octupole harmonic ofb3 = 5� 10�4 in the top plot, and a de-

Table IV: Primary parameters for a high field RLHC.

Parameter units value
Storage energy [TeV] 30.0
Injection energy [TeV] 1.0
Dipole field (store) [T] 12.5
Dipole coil ID [mm] 50 - 60
Transverse RMS emittance,� [�m] 1.0

Table V: Lattice parameters for SHORT and LONG cell high
field machines, at injection.

Parameter units SHORT LONG
Half cell length,L [m] 110 260
Max. cell beta,b� [m] 376 898
Max. cell dispersion,b� [m] 3.85 22.9
Max. betatron size,b�� [mm] .594 .918
Circumference,C [km] 55.44 54.08
Horizontal tune,Qx 65.195 28.195
Vertical tune,Qy 66.185 29.185
Number of dipoles 2888 2900
Number of sextupoles 456 168
Mmtm. width,�p=p [10�3] .1545 .0401
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capole systematic ofb4 = 30 � 10�4 in the bottom plot. A
reference radius ofr0 = 16 mm is used throughout. Solid lines
in the figure show the predictions of the model developed above,
while data points represent the tune shifts measured using the
tracking code TEAPOT.

The most striking general feature of these plots is that a sys-
tematic octupole (decapole) harmonic generates curves with an
even (odd) symmetry. Agreement between prediction and mea-
surement is quite good at smallmx and smallm�, but not per-
fect. This discrepancy is mostly due to the presence of disper-
sion supressors, and the fact that the dipole packing fraction is
only 81.8%, and not the 100% assumed in the model. Both
of these factors throw the predicted optical averagesAn;i into
error. The packing fraction in the LONG machine is 86.5%,
leading to a significant reduction of the total circumference by
1.36 km, or 2.5%.

The horizontal base tune was lowered toQx = 65:145 for this
exercise, in order to place it approximately midway between the
integer and fourth order resonances at 65.0 and 65.25, respec-
tively. In principle, a perfectly smoothly distributed systematic
octupole harmonic does not drive the fourth order resonance,
due to vector cancellation. In practice, the cancellation is not
perfect, and so the top plot clearly saturates at a tune shift of
approximately+0:1, when the fourth order resonance is ap-
proached. The bottom plot shows minimum tune shifts of ap-
proximately�0:1, when the integer resonance is approached.
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Figure 1: Tune shifts due to systematic octupole (top) and de-
capole (bottom) harmonics in SHORT machine dipoles. Solid
lines are predictions, while data points are measured results.

It is entirely within the semi-quantitative spirit of this paper
that the model and the analysis only discuss 1-D motion, in the
horizontal. A more rigorous discussion would also include ver-
tical betatron motion - and would also include synchrotron os-
cillations, and a whole host of realistic effects. As RLHC de-
signs become more refined, so too must the simulations. At this
point, when the RLHC is hardly even a gleam in the physicists
eye, clarity and simplicity are more important than rigor.

IV. MAXIMUM ALLOWABLE HARMONICS

While the previous section focused on the particular example
of a 30 TeV high field collider, the conclusion that the maximum
tolerable tune shift is

d�Qx � 0:1 (22)

is expected to hold in general - for any low or high field collider,
at low or high energy, that conforms with the physical assump-
tions made so far:
1) systematic errors dominate random errors
2) the collider has many fully packed FODO cells
3) momentum and betatron beam sizes at F quads are equal
4) �c = 90 degrees phase advance per cell
5) chromaticity sextupoles are not pathologically strong
It is relatively straightforward to derive the semi-quantitative re-
sults, below, for phase advances per cell other than 90 degrees.
For example, while maximum allowable harmonics are smaller
at 60 degrees per cell, there is not much advantage in increasing
�c beyond 90 degrees per cell.

What is the necessary field quality in such a machine? How
large can the half cell lengthL be? Suppose, for example, that
the horizontal tune shift must be guaranteed to be less thand�Qx

for all test particles in the betatron amplitude and momentum
distribution range

mx � m (23)

jm�j � m (24)

The extreme tune shift occurs whenmx = m� = m, and is
given by
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An irritating and negligible term(1 + �) has been unceremoni-
ously dropped from the denominator of this equation, in order
to make it as simple as possible in comparison with the more
general result of Equation 21, from which it is derived. The
sum in Equation 21 has been replaced byDn, a function of the
phase advance per cell, which is given by

Dn(�c) =

n�1�2i�0X
i=0

Cn;i�n;i(�c) (26)

Numerical values forDn, derived from Tables I and III, are
listed in Table VI.
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Table VI: Lowest orderDn values, with a phase advance of
�c = 90 degrees per FODO cell.

n Multipole Dn

1 Quadrupole :8333
2 Sextupole 2:412
3 Octupole 6:712
4 Decapole 19:18
5 12-pole 56:49
6 14-pole 170:9

Equation 25 is readily inverted, to give the maximum allowed
systematic harmonic

bn

rn0
� d�Qx

1

Dn

L�(n+1)=2
�

�

m2 �x

�(n�1)=2
(27)

For example, with�Qx(m) = d�Qx = 0:1, an injection energy
of 1 TeV, �x = 1 micron, and defining the edge of the particle
distribution of interest bym = 3, then the maximum systematic
harmonics are plotted for octupole through 14-pole harmonics
in Figure 2. The lowest allowed harmonic, sextupole, is not
shown in the Figure, since chromatic sextupoles are naturally
available to correctb2, and a proper analysis of its maximum tol-
erable value goes beyond the scope of this paper. The harmon-
ics of most concern are the unallowed octupoleb3, which has
the tightest tolerances but which is naturally relatively small,
and the allowed decapoleb4, which is probably the most critical
harmonic in practice.

It is worth inspecting the scaling in Equation 27 with a criti-
cal eye. The allowable systematic errors increase rapidly as the
injection energy is increased - from 1 TeV to 3 TeV, for exam-
ple - and as the injection emittance is decreased. Similarly, the
chosen value ofm is very important, and needs more discussion
than the simple assertion, in this paper, that a value ofm = 3 is
reasonable.

V. CONCLUSIONS

Lattices with relatively long arc cells have potential advan-
tages, including significant cost savings, in a Really Large
Hadron Collider. However, the susceptibility of the beam dy-
namics to systematic arc dipole errors increases as the cell gets
longer. Therefore, reasonable expectations for the achievable
dipole field quality at injection play a strong role in determining
the cell length - or vice versa.

For example, if beam with a normalized emittance of 1 micron
is injected at 1 TeV into a lattice with half cellsL = 300 meters
long, then dipoles with a systematic decapole ofb4 ' 3� 10�4

(at a reference radius of 16 mm) will provide barely adequate
performance. Higher values of this allowed harmonic would in-
crease the horizontal tune shift beyond the rule-of-thumb phys-
ical maximum ofd�Qx � 0:1. The systematic tolerance at the
same half cell length for the next allowed harmonic, the 14-pole,
is b6 ' 30 � 10�4. For the unallowed octupole and 12-pole
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Figure 2: Maximum allowable systematic harmonics versus half
cell length, whend�Qx = 0:1, �x = 1 micron, andm = 3, at an
energy of 1 TeV.

harmonics the equivalent tolerances areb3 ' 0:8 � 10�4 and
b5 ' 10� 10�4, respectively.

Future hadron colliders with half cell lengths of a few hun-
dred meters are cost effective, with adequate beam dynamics
performance. This is especially true for high field colliders, in
which the radiation damping forgivingly allows less stringent
field quality tolerances.
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