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Hybrid Rings of Fixed 8T Superconducting Magnets and Iron Magnets Rapidly
Cycling between -2T and +2T for a Muon Collider �

D. J. Summers
Department of Physics and Astronomy, University of Mississippi–Oxford, University, MS 38677 USA

ABSTRACT

Two 2200 m radius hybrid rings of fixed superconducting
magnets and iron magnets ramping at 200 Hz and 330 Hz are
used to accelerate muons. Muons are given 25 GeV of RF en-
ergy per orbit. Acceleration is from 250 GeV/c to 2400 GeV/c
and requires a total of 86 orbits in both rings; 82% of the muons
survive. The total power consumption of the iron dipoles is 4
megawatts. Stranded copper conductors and thin Metglas lami-
nations are used to reduce power losses.

I. INTRODUCTION

For a �+�� collider, muons must be rapidly accelerated to
high energies while minimizing the kilometers of radio fre-
quency (RF) cavities and magnet bores. Cost must be moderate.
Some muons may be lost to decay but not too many.

Consider a ring of fixed superconducting magnets alternating
with iron magnets rapidly cycling between full negative and full
positivefield [1]. Table I shows the range of average dipolemag-
netic field for various mixes of the two types of magnets. One
might use more than one ring in succession. Now proceed with
a few back–of–the–envelope calculations.

Table I: Hybrid ring parameters.

8T �2T Initial Final
Magnets Magnets B Field B Field

22% 78% 0.2T 3.3T
25% 75% 0.5T 3.5T
35% 65% 1.5T 4.1T
40% 60% 2.0T 4.4T
50% 50% 3.0T 5.0T
52% 48% 3.2T 5.1T
55% 45% 3.5T 5.3T
60% 40% 4.0T 5.6T
70% 30% 5.0T 6.0T
80% 20% 6.0T 6.8T

II. MAGNET SAGITTAS

The sagitta of a muon in a magnet increases linearly with in-
creasing magnetic field, B. It decreases linearly with increas-
ing momentum, p. And it increases as the square of the length
of a magnet, `. The size of the sagitta directly affects the size
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of magnet bores because the sagitta changes throughout a cy-
cle. Table II shows sagitta for various magnets and momenta.
As momentum increases, the sagitta in the 8 Tesla magnets de-
creases towards zero and the sagitta in the 2 Tesla magnets goes
somewhat past zero. Note that for a given bore size the magnets
can be longer given a higher injection momentum.

Sagitta = R�
p
R2
� (`=2)2; R =

p

:3B
(1)

Table II: Sagitta as a function of momentum, magnetic field, and
magnet length.

Momentum B Field Length Sagitta
(GeV) (Tesla) (meters) (mm)

250 8 1.5 3
250 2 4.5 6
250 8 2 5
250 2 6 11
250 8 3 11
250 2 9 24

III. POWER CONSUMPTION

Consider the feasibilityof an iron dominated design for a mag-
net which cycles from a full -2 Tesla to a full +2 Tesla [2]. First
calculate the energy,W , stored in a 2 Tesla field in a volume 6 m
long, .03 m high, and .08 m wide. The permeability constant,
�0, is 4� � 10�7.

W =
B2

2�0
[Volume] = 23 000 Joules (2)

Next given 6 turns, an LC circuit capacitor, and a 250 Hz fre-
quency; estimate current, voltage, inductance, and capacitance.
The height, h, of the aperature is .03 m. The top and bottom
coils may be connected as two separate circuits to halve the
switching voltage.

B =
�0NI

h
! I =

Bh

�0N
= 8000 Amps (3)

W = :5L I2 ! L =
2W

I2
= 720�H (4)

f =
1

2�

r
1

LC
! C =

1

L (2�f)2
= 560�F (5)

W = :5C V 2
! V =

r
2W

C
= 9000 Volts (6)
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Now calculate the resistive energy loss, which over time is
equal to one-half the loss at the maximum current of 8000 Amps.
The one-half comes from the integral of cosine squared. Table
III gives the resistivities of copper and other metals. A six-turn
copper conductor 3 cm thick, 10 cm high, and 7800cm long has
a power dissipation of 15 kilowatts.

R =
7800 (1:8�
-cm)

(3) (10)
= 470�
 (7)

P = I2R

Z
2�

0

cos2(�) d� = 15 000 watts/magnet (8)

Table III: Conductor, cooling tube, and soft magnetic material
properties of resistivity, magnetic saturation in Tesla, and coer-
cive force in Oersteds [3].

B
Material Composition � Max Hc

(�
-cm) (Tesla) (Oe)
Copper Cu 1.8 — —
Stainless 316L Fe 70, Cr 18, Ni 10, 74 — —

Mo 2, C .03
Stainless 330 Fe 43, Ni 35, Cr 19 103 — —
Hastelloy B Ni 66, Mo 28, Fe 5 135 — —
Thermostat [4] Mn 72, Cu 18, Ni 10 175 — —
Thermenol Fe 80, Al 16, Mo 4 162 0.61 .02
Pure Iron [5] Fe 99.95, C .005 10 2.16 .05
1008 Steel Fe 99, C .08 12 2.09 0.8
Grain–Oriented Si 3, Fe 97 47 1.95 .1
Supermendur [6] V 2, Fe 49, Co 49 26 2.4 .2
Hiperco 27 [7] Co 27, Fe 71, C .01 19 2.36 1.7
Metglas Fe 81, B 14, Si 3, 135 1.6 .03

2605SC [8, 9] C 2

Calculate the dissipation due to eddy currents in this conduc-
tor, which will consist of transposed strands to reduce this loss
[10–12]. To get an idea, take the maximum B-field during a cy-
cle to be that generated by a 0.05m radius conductor carrying
24000 amps. This ignores fringe fields from the gap which will
make the real answer higher. The eddy current loss in a rectan-
gular conductor made of square wires 1/2 mm wide with a per-
pendicular magnetic field is as follows. The width of the wire is
w.

B =
�0 I

2�r
= 0:096 Tesla (9)

P = [Volume]
(2� f B w)2

24�
(10)

= [:03 :10 78]
(2� 250 :096 :0005)2

(24) 1:8� 10�8
= 3000 watts

Cooling water will be needed, so calculate the eddy current
losses for cooling tubes made from type 316L stainless steel.

More exotic metals with higher resistivities are also available as
shown in Table III. Choose 2 tubes per 3 cm � 10 cm stranded
copper conductor for a total length of 78 � 2 = 156 m. Take a
12 mm OD and a 10 mm ID. Subtract the losses in the inner miss-
ing round conductor. The combined eddy current loss in the cop-
per plus the stainless steel is 4200 watts (3000 + 2400 - 1200).

P (12mm) = [Volume]
(2� f B d)2

32 �
(11)

= [� :0062 156]
(2� 250 :096 :012)2

(32) 74� 10�8

= 2400 watts

P (10mm) = [Volume]
(2� f B d)2

32 �
(12)

= [� :0052 156]
(2� 250 :096 :010)2

(32) 74�10�8

= 1200 watts

Eddy currents must be reduced in the iron not only because of
the increase in power consumption and cooling, but also because
they introduce multipole moments which destabilize beams. If
the laminations are longitudinal, it is hard to force the magnetic
field to be parallel to the laminations near the gap. This leads to
additional eddy current gap losses [13]. So consider a magnet
with transverse laminations as sketched in Fig. 1 and calculate
the eddy current losses. The yoke is either 0.28 mm thick 3%
grain oriented silicon steel [14–17] or 0.025 mm thick Metglas
2605SC [8, 9]. The pole tips are 0.1 mm thick Supermendur [6]
to increase the field in the gap [18].

P(3% Si–Fe) = [Volume]
(2� f B t)2

24�
(13)

= [6 ((:42 :35)� (:20 :23))]
(2� 250 1:6 :00028)2

(24) 47� 10�8

= 27 000 watts

P(Metglas) = [Volume]
(2� f B t)2

24�
(14)

= [6 ((:42 :35)� (:20 :23))]
(2� 250 1:6 :000025)2

(24) 135� 10�8

= 75 watts

P(Supermendur) = [Volume]
(2� f B t)2

24�
(15)

= [6 :09 :02]
(2� 250 2:2 :0001)2

(24) 26� 10�8

= 210 watts

Eddy currents are not the only losses in the iron. Hystere-
sis losses,

R
H�dB, scale with the coercive force, Hc, and in-

crease linearly with frequency. Anomalous loss [5] which is dif-
ficult to calculate theoretically must be included. Thus I now
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Figure 1: A two dimensional picture of an H frame magnet lam-
ination with grain oriented 3% Si–Fe steel. The arrows show
both the magnetic field direction and the grain direction of the
steel. Multiple pieces are used to exploit the high permeabil-
ity and low hysteresis in the grain direction [19]. If Metglas
2605SC is used for the yoke, multiple pieces are not needed, ex-
cept for the poles. The pole tips are an iron–cobalt alloy for flux
concentration exceeding 2 Tesla.

use functions fitted to experimental measurements of 0.28 mm
thick 3% grain oriented silicon steel [20], 0.025 mm thick Met-
glas 2605SC [8], and 0.1 mm thick Supermendur [20].

Table IV: Magnet core materials.

Material Thickness Density Volume Mass
(mm) (kg/m3) (m3) (kg)

3% Si–Fe 0.28 7650 0.6 4600
Metglas 0.025 7320 0.6 4400
Supermendur 0.1 8150 0.01 90

P(3% Si–Fe) = 4:38� 10�4 f1:67B1:87 (16)

= 4:38� 10�4 2501:67 1:61:87

= 10:7 watts/kg

= 49 000 watts/magnet

P(Metglas) = 1:9� 10�4 f1:51B1:74 (17)

= 1:9� 10�4 2501:511:61:74

= 1:8 watts/kg

= 7900 watts/magnet

P(Supermendur) = 5:64� 10�3 f1:27B1:36 (18)

= 5:64� 10�3 2501:27 2:21:36

= 18 watts/kg

= 1600 watts/magnet

Table V: Power consumption for a 250 Hz dipole magnet.

Material 3% Si–Fe Metglas
Coil Resistive Loss 15 000 watts 15 000 watts
Coil Eddy Current Loss 4200 watts 4200 watts
Core Eddy Current Loss 27 210 watts 285 watts
Total Core Loss 50 600 watts 9500 watts
Total Loss 69 800 watts 28 700 watts

In summary, a 250 Hz dipole magnet close to 2 Tesla looks
possible as long as the field volume is limited and one is will-
ing to deal with stranded copper and thin, low hysteresis lamina-
tions. Total losses can be held to twice the I2R loss in the copper
alone, using Metglas.

IV. MUON ACCELERATION AND SURVIVAL

Now with a rough design for a fast ramping magnet in hand,
work out the details of ring radii, RF requirements, and the frac-
tion of muons that survive decay. The fraction of the circumfer-
ence packed with dipoles is set at PF = 70%. As an example,
consider two rings in a 2200 m radius tunnel with an injection
momentum of 250 GeV/c. The first has 25% 8T magnets and
75%�2T magnets and ramps from 0.5T to 3.5T. The second has
55% 8T magnets and 45% �2T magnets and ramps from 3.5T
to 5.3T.

B =
250GeV/c
:3PF R

=
250

(:3) (:7) (2200)
= 0:54Tesla (19)

p = (3:5Tesla) (:3) (PF ) (R) (20)

= (3:5) (:3) (:7) (2200) = 1600GeV/c

p = (5:3Tesla) (:3) (PF ) (R) (21)

= (5:3) (:3) (:7) (2200) = 2400GeV/c

Provide 25 GeV of RF. The first ring accelerates muons from
250 GeV/c to 1600 GeV/c in 54 orbits. The second ring accel-
erates muons from 1600 GeV/c to 2400 GeV/c in 32 orbits. At
what frequency do the two rings have to ramp?

Time (0:5T ! 3:5T ) =
(54) (2�) (2:2)

300 000
(22)

= 2:5ms

! 200Hz
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Time (3:5T ! 5:3T ) =
(32) (2�) (2:2)

300 000
(23)

= 1:5ms

! 330Hz

How many muons survive during the 86 orbits from 250
GeV/c to 2400 GeV/c? N is the orbit number, � = 2:2� 10�6

is the muon lifetime, and m = :106 GeV/c2 is the muon mass.

SURVIVAL =
86Y
N=1

exp

�
�2�Rm

[250 + (25N )] c�

�
= 82% (24)

Only 1/6 of the 18% loss occurs in the second ring, so it is not
crucial to run it as fast as 330 Hz; but the RF does allow this
speed.

V. SUMMARY

The 250! 1600 GeV/c ring has 1200 6 m long dipole mag-
nets ramping at 200 Hz. The 1600! 2400 GeV/c ring has 725
6 m long dipole magnets ramping at 330 Hz. The weighted av-
erage rate is 250 Hz. If running continuously, the 1925 magnets
would consume a weighted average of 29 kilowatts each for a
total of 56 megawatts. But given a 15 Hz refresh rate for the fi-
nal muon storage ring [21], the average duty cycle for the 250
! 2400 GeV/c acceleration rings is 6%. So the power falls to 4
megawatts, which is small.

Finally note that one can do a bit better than 82% on the muon
survival during final acceleration if the first ring is smaller, say
1000 meters, rather than 2200 meters. Given that RF is expen-
sive, a single line of cavities could still be used for all rings.
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