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ABSTRACT

Whether the higher-order terms in the momentum-compaction
factor, �1 and �2, can be obtained reliably from lattice codes is
an important issue for some quasi-isochronous rings. A FODO
lattice consisting of thin quadrupoles, dipoles filling all spaces,
and two families of thin sextupoles is solved and �1 and �2 are
derived analytically. We find accurate agreement with SYNCH
for�1 but not �2. Possible error in SYNCH is examined. Some
methods of measurement of �1 and �2 are discussed.

I. INTRODUCTION

The high luminosity of the recently proposed 2 TeV-2 TeV
muon-muon collider [1] calls for a collider ring of circumference
C0 � 8000m with an rms bunch length of 3 mm (10 ps) and rms
momentum spread of 0.15%. The short bunch length, as well as
a reasonable rf voltage, limits the slippage factor of the collider
to j�j <

�
1 � 10�6 for every particle in the muon bunch [2, 3].

This implies that the spread of � as a function of momentum off-
set � needs to be less than �1� 10�6 also.

The slippage factor and closed-orbit length C of an off-
momentum particle can be expanded as power series in momen-
tum offset �,

� = �0 + �1� + �2�
2 + � � � ; (1.1)

C = C0(1 + �0� + �1�
2 + �2�

3 + � � � ) ; (1.2)

where �i is the ith-order term of the momentum-compaction
factor. For a 2 TeV muon having �2 = 2:73 � 10�9, which
is very much less than the required j�j, it can be readily shown
that �1 � �1 and �2 � �2 [3].

With so tiny a value of j�0j, the contributions of the higher-
order term of the momentum-compaction factor can bring in a
large spread in the slippage factor. To satisfy the zeroth-order
momentum-compaction factor �0, the collider lattice can be de-
signed rather easily, for example, using flexible momentum-
compaction modules [4]. The first order �1 brings in momen-
tum asymmetry of the rf bucket and will lead to severe longi-
tudinal head-tail instability [5]. Fortunately this instability can
be avoided by reducing or eliminating the contribution of �1

through the deployment of sextupoles [3]. However, the second
order term �2 will come into play.

For lattice structure that is as complicated as the flexible
momentum-compaction module, analytic computations of �1

and �2 are almost impossible. The other design tool that we can
rely on will be lattice codes such as the more common SYNCH
[6] and MAD [7]. An obvious important question to ask is how
reliable are these code-generated results, when higher orders of
the momentum-compaction factor are concerned.
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In this paper, we look into a FODO lattice consisting of thin
quadrupoles, dipoles filling all spaces, and two families of sex-
tupoles. When the exact solution is compared with the results
from SYNCH, we find that SYNCH does not provide the cor-
rect �2. The source of error is investigated in Section III, and
some possible ways to measure �2 experimentally are discussed
in Section IV. Section V is devoted to remarks and conclusions.

II. SIMPLIFIED FODO LATTICE

A. Momentum-Compaction Factor
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Figure 1: A FODO half cell with thin F- and
D-quadrupoles and a dipole filling all spaces.

A simplified FODO lattice with only thin quadrupoles and
with dipoles filling all spaces is soluble analytically [8]. Con-
sider a half cell shown in Fig. 1. The half F-quadrupole is at
FF 0 while the half D-quadrupole is at DD0. In between lies the
dipole of bend angle �0. The designed orbit in the half cell is
the arc FD and is of length `0 = �0�0 with radius of curvature
�0, while the off-momentum closed orbit corresponding to � is
the arc F 0D0 and is of length `, radius of curvature �, and bend
angle � = `=�. Passing through the thin half F-quadrupole, the
off-momentum orbit acquires, according to the bending due to
the Lorentz force, an angular change of

��
F
=

�

1+�

Z
ds

B0D̂�

B0�0
=

SD̂

`0

�

1+�
; (2.1)

where
S = `0

����
Z

ds
B0

B0�0

���� (2.2)

is the integrated strength of the quadrupole and B0 the field gra-
dient. The off-momentum orbit then turns through an angle �
inside the dipole and another

��
D
= �

S �D

`0

�

1+�
(2.3)
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through the half D-quadrupole to complete the half cell. In the
above, D̂ and �D represent the values of the dispersion function
at the F- and D-quadrupoles, respectively. The total angle turned
is obviously �0. Therefore,

� = �0 �
S�

1+�

D̂� �D

`0
: (2.4)

Since the two orbits are in the same dipole field, their radii of
curvature are related by � = �0(1 + �). Combining Eqs. (2.4)
and (2.5), we have for the two orbit lengths exactly

` = `0

"
1 + �

 
1�

S

�0

D̂� �D

`0

!#
: (2.5)

We can also include two families of half thin sextupoles of
strengths

S
F
=

Z
d`

B00

S
F

2B0�0
S
D
=

Z
d`

B00

S
D

2B0�0
; (2.6)

placed, respectively, on each side of the F- and D-quadrupoles.
The angle the off-momentum orbit turns at the half F-quadrupole
and F-sextupole will change from Eq. (2.1) to

��
F
=

SD̂�

1+�
+

S
F
D̂2�2

1+�
: (2.7)

Similarly, ��
D

of Eq. (2.2) will change to

��
D
= �

S �D�

1+�
+

S
D

�D2�2

1+�
: (2.8)

Equation (2.5) should also be changed accordingly. Note that the
`0 has been removed since we have simplified the notations by
measuring all lengths in terms of it.

With the expansions

D̂ = D̂0 + D̂1� + D̂2�
2 + O(�3) ; (2.9)

�D = �D0 + �D1� + �D2�
2 + O(�3) ; (2.10)

for the dispersion function D, and Eq. (1.2) for the orbit length
C, we arrive at each order of the momentum-compaction factor,

�0 = 1�
S(D̂0 �

�D0)

�0
;

�1 = �
S(D̂1 �

�D1)

�0
�

S
F
D̂2

0

�0
�

S
D

�D2

0

�0
;

�2 = �
S(D̂2 �

�D2)

�0
�

2S
F
D̂0D̂1

�0
�

2S
D

�D0
�D1

�0
; (2.11)

which are exact to all orders of �0.

B. A Geometric Solution

The off-momentum closed orbitF 0D0 is an arc of a circle with
radius � = �0(1+ �). The equation of the arc contains only two
constants plus D̂ and �D. However, this arc is constrained by its
positions and slopes at the dipole’s entrance and exit. Therefore
the two constants together with D̂ and �D can be determined.

Consider OF 0 of Fig. 1 as the y-axis and O the origin. The
x-axis is on the dipole side of OF 0. The point F 0 is (0; �0+D̂�)

and the arc F 0D0 is at an angle ��
F

given by Eq. (2.7). The
equation of the arc F 0D0 is therefore given by

[x+ � sin��
F
]
2
+
h
y � �0 � D̂� + � cos��

F

i2
= �2 :

(2.12)
Now rotate the x- and y-axes by an angle 1

2
�0 so that the new y-

axis passes through the center of the dipole. In terms of the new
axes, the equation of the circular arc becomes�
x cos

�0

2
+ y sin

�0

2
+ � sin��

F

�2
+

�
�x sin

�0

2
+ y cos

�0

2
� �0 � D̂� + � cos ��

F

�2
= �2 :

(2.13)

We can also start with OD0 as the y-axis. The angle at D0 is
now ��

D
as given by Eq. (2.8). The axes are then rotated in the

opposite direction by 1

2
�0 so the the equation of the arc F 0D0

becomes�
x cos

�0

2
� y sin

�0

2
+ � sin��

D

�2
+

�
x sin

�0

2
+ y cos

�0

2
� �0 � �D� + � cos ��

D

�2
= �2 :

(2.14)

Equations (2.13) and (2.14) are exactly the same because they
describe the same arc F 0D0. By equating coefficients, we obtain
with t = tan 1

2
�0,

� sin��
F
�

h
� cos ��

F
� D̂� � �0

i
t =

� sin��
D
+
h
� cos ��

D
� D̂� � �0

i
t ; (2.15)

t� sin��
F
+
h
� cos ��

F
� D̂�

i
=

�t� sin��
D
+
h
� cos ��

D
� D̂�

i
t : (2.16)

The other relations are redundant. Thus, we can solve for D̂ and
�D in terms of �0 and � exactly. Since we are interested in solu-
tion up to the second order in � only, Eqs. (2.15) and (2.16) can
be expanded and simplified. We then obtain for the zeroth order
in �,�

1 �t

t 1

��
SD̂0

1� �0D̂0

�
=

�
1 t

�t 1

��
S �D0

1� �0 �D0

�
;

(2.17)
for the first order in �,�

1 �t

t 1

��
SD̂1 + S

F
D̂2

0

�
1

2
S2D̂2

0
� �0D̂1

�
=

�
1 t

�t 1

��
S �D1 � S

D
D̂2

0

�
1

2
S2 �D2

0
� �0 �D1

�
; (2.18)

and for the second order in �,�
1 �t

t 1

��
SD̂2 �

1

6
S3D̂3

0
+ 2S

F
D̂0D̂1

1

2
S2D̂2

0
� S2D̂0D̂1 � �0D̂0 � SS

F
D̂3

0

�
=
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�
1 t

�t 1

��
S �D2 �

1

6
S3 �D3

0
� 2S

D

�D0
�D1

1

2
S2 �D2

0
� S2 �D0

�D1 � �0 �D0 + SS
D

�D3

0

�
:

(2.19)
Solving Eq. (2.17), we obtain

D̂0; �D0 =
�0 � St

S2 + �2
0

; (2.20)

which are the usual expressions for the dispersions at the F-
and D-quadrupoles of a FODO cell. The zeroth order of the
momentum-compaction factor is, according to Eq. (2.11),

�0 = 1�
2S2t

�0(S2 + �2
0
)
: (2.21)

Solving Eq. (2.18), we obtain the first order dispersion,

D̂1 = �
S2D̂2

0
(St2 + 2�0t� S)

4t(S2 + �2
0
)

�
S3 �D2

0
(1 + t2)

4t(S2 + �2
0
)

�
S
F
D̂2

0
(2St � �0t

2 + �0)

2t(S2 + �2
0
)

�
S
D

�D2

0
�0(1 + t2)

2t(S2 + �2
0
)

; (2.22)

�D1 =
S3D̂2

0
(1 + t2)

4t(S2 + �2
0
)
�

S2 �D2

0
(2�0t+ S � St2)

4t(S2 + �2
0
)

�
S
F
D̂2

0
�0(1 + t2)

2t(S2 + �2
0
)

�
S
D

�D2

0
(�0 � 2St � �0t

2)

2t(S2 + �2
0
)

: (2.23)

The first-order term of the momentum-compaction factor can
now be obtained from Eq. (2.11). It can be simplified to

�1 = �
S4t(S2t2 + 3�2

0
)

�0(S2 + �2
0
)3

� (S
F
D̂3

0
+ S

D

�D3

0
) : (2.24)

We see from Eq. (2.24) that �1 can be reduced or eliminated by
suitable deployment of sextupoles.

In the situation of a very large ring where �0 � S, the above
equations reduce to

�0!
�2
0

S2

�
1�

S2

12

�
; (2.25)

�1 !
3�2

0

2S2

�
1 +

S2

12

�
� (S

F
D̂3

0
+ S

D

�D3

0
) : (2.26)

Solution of Eq. (2.19) gives

D̂2 �
�D2 = 1

6
S3D̂3

0

S � t�0

S2 + �2
0

� 1

6
S3 �D3

0

S + t�0

S2 + �2
0

+1

2
S2(D̂3

0
� �D3

0
)� S2(D̂2

0
D̂1 � �D2

0
�D1)

�2S
F
D̂0D̂1

S � t�0

S2 + �2
0

� 2S
D

�D0
�D1

S + t�0

S2 + �2
0

�S(S
F
D̂4

0
+ S

D

�D4

0
) : (2.27)

Substituting into Eq. (2.11) will give �2. As is seen in
Eqs. (2.22) and (2.23), D̂1 and �D1 are linear in S

F
and S

D
, �2

will have quadratic terms in the sextupole strengths, indicating
that the sextupoles talk to each other in their contributions to the
second-order term of the momentum-compaction factor.

In the large ring approximation, �2
0
<< 1, Eq. (2.27) can be

simplified considerably. In the absence of sextupoles, we obtain

�2 !�
�2
0

6

�
1 +

35�2
0

S4

�
; (2.28)

where we have included the O[(�=S)4] term because the
O[(�=S)2] term happens to have canceled out. Note that �0, �1

and �2 are all of order �2
0

. Therefore, it may be more convenient
to quote their ratios instead; i.e.,

�1

�0

!
3

2

�
1 + 1

12
S2

1� 1

12
S2

�
;

�2

�0

!�
S2

6

 
1 +

35�
2

0

S4

1� 1

12
S2

!
:

(2.29)

C. Comparison with SYNCH and MAD

A numerical comparison of �2 had been made in Ref. 8 with
the theoretical results of a simplified FODO lattice with only thin
quadrupoles and with dipoles fillingall spaces. A ring consisting
of 150 equal FODO cells and another one consisting of 15 equal
FODO cells were considered. The half-cell length was fixed at
`0 = 2� m, and the half quadrupole strength was varied from
S = 0:020 to 0.999. The first-order momentum-compaction
factor�1 was extracted from SYNCH in each case and was com-
pared with the analytic expression derived above. The agree-
ments had been excellent, up to at least 3 significant figures. A
comparison had also been made with the additionof two families
of sextupoles. The agreement had also been excellent, thus veri-
fying the validity of Eq. (2.24). This does not, however, exclude
the possibility of a disagreement of �1 with lattice consisting of
thick quadrupoles and thick sextupoles. This is because the ex-
act integration of the particle trajectory inside a quadrupole or
sextupole is tedious and time consuming, and lattice codes usu-
ally resort to approximations.

Here, we continue to use a lattice consisting of 150 equal
FODO cells to study the second-order term of the momentum-
compaction factor �2. The half sextupole strength is chosen to
be S = 1

2
or a phase advance of � = 2 sin�1 1

2
= �

3
.

What we obtain from SYNCH are the transition gammas t’s
at various momentum offsets, with t defined as

�2t =
�

C

dC

d�
; (2.30)

which can be expanded as a power series in momentum offset �,

�2
t

= a0 + a1� + a2�
2 + � � � : (2.31)

Comparing with the power expansion of the closed-orbit length
in Eq. (1.2), the various orders of the momentum-compaction
factor are obtained:

�0 = a0 ;

2�1 = a1 � a0 + a2
0
;

3�2 = a2 � a1 + a0 +
3

2
a0a1 �

3

2
a2
0
+ 1

2
a3
0
: (2.32)

When the �2t ’s from SYNCH for momentum offset varying
between �0:0004 are fitted by a polynomial of degree two as
indicated in Eq. (2.31), we obtain the three coefficients: a0 =

0:00171503, a1 = 0:00705748, and a2 = 0:00853026. The
corresponding orders of the momentum-compaction factor are
extracted according to Eq. (2.32) and are listed in Table I along
with the analytically computed values of Eq. (3.11). The results
of MAD were obtained in exactly the same way. Notice that the
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approximate expressions of Eqs. (2.25), (2.26), and (2.28) for
the �’s are pretty accurate. It is obvious that �2 has not been
given correctly by SYNCH and MAD. We also tried to fit the
�2

t ’s obtained from the codes to polynomials of degree 3; the
first three �’s do not change in their first 4 significant figures.

Table I: Comparison of SYNCH and MAD with
theoretical results for the simplified FODO lattice.

SYNCH MAD Theory
�0 0.00171503 0.00171503 0:00171518
�1 0.00267272 0.00267421 0:00267273
�2 0.00105371 0.00064879 �0:00009099

III. SYNCH AND MAD COMPUTATIONS

In a lattice code, the usual way to compute t for an off-
momentum particle is (1) to compute the off-momentum closed
orbit and (2) to compute the derivative in Eq. (2.30) by offset-
ting the momentum slightly. The second step seems to be fine,
because both SYNCH and MAD give us the correct t for the
on-momentum particle.

As for the off-momentum closed orbit, SYNCH [6] first tracks
an initial “first guess” particle state vector V0 through one com-
plete revolution so as to produce a new state vector V1. These
state vectors are 7-element vectors; for example,

V = (x; x0; y; y0;�ds; �; 1) ; (3.1)

where the first 4 entries are for the horizontal and vertical devi-
ations and slopes, the 5th denotes the shortening in orbit length,
the 6th momentum offset, and the 7th is reserved for misalign-
ment calculation. The transfer matrices of the ring’s elements
are then linearized about this initial single-turn trajectory, gen-
erating new transfer matrices, R, and a linearized single-turn
transfer matrix T = RNRN�1 � � �R2R1.

One may now track a particle vector X0 in a small neighbor-
hood of V0 so that X0 = V0 + Z0. After one revolution, this
vector becomes X1 = V1 + Z1, where Z1 = TZ0. If X0 is a
closed orbit, we must have X0 = X1, or

X0 = V0 + Z0 = V1 + Z1 : (3.2)
Therefore,

X0 = V1 + TZ0 = V1 + T (X0 � V0) ; (3.3)

or the closed orbit is

X0 = V0 + (I � T )�1(V1 � V0) ; (3.4)

where I is the identity matrix. Then X0 is used as the new guess
vector, and the iterations are repeated. The exact off-momentum
closed orbit should then be available.

Let us examine this closed orbit for the simplified 150-cell
FODO lattice discussed above. We read out the maximum and
minimum dispersions from the SYNCH and MAD outputs for
different momentum offsets and fit polynomials of degree 3 to
extract the different orders of the dispersion. The results are
listed in Table II. Some numbers from MAD are omitted, be-
cause the �D’s are given to 3 figures only and are not accurate
enough to do a polynomial fitting. We see that only the zeroth
orders agree with theory.

Using the SYNCH results of D̂1 and �D1, we cannot arrive at
the correct value of�1 via Eq. (2.11) as listed in Table II. In fact,
SYNCH computes t separately using the derivative dC=d� ac-
cording to Eq. (2.30). Since �1 from SYNCH agrees with the-
ory (see Table I), we can conclude that the D̂1�

�D1 from analytic
calculation is correct and those from SYNCH and MAD are in-
correct. It is not impossible that there will be error in SYNCH
when the off-momentum closed orbit is computed. In fact, it is
non-trivial to propagate an off-momentum particle through lat-
tice elements having magnet field

B = B0+B
0

j0x+
1

2
B00

j0x
2+� � � = B0�0

�
1

�0
+Kx

�
; (3.5)

where x is the horizontal deviation from the designed orbit. Al-
though the zeroth and first order differential equations for x are
simple, the exact one is very complicated [8],

x00 =
x0

2

�0(1+x=�0)
+

�
1 +

x

�0

�"
1+

x0
2

(1+x=�0)2

#
�

�

8<
: 1

�0
�

1

1+�

"
1+

x0
2

(1+x=�0)2

# 1

2�
1+

x

�0

��
1

�0
+Kx

�9=
; :

Since only the zeroth order off-momentum closed orbit is cor-
rect in SYNCH, �2

t computed using Eq. (2.30) can only be cor-
rect to the first order in �. This explains why �2 has been com-
puted wrongly by SYNCH and MAD.

Table II: Comparison of SYNCH and MAD with
theoretical results for the dispersion function.

SYNCH MAD Theory

D̂0 0.65683 m 0.65683 m 0.65683 m
�D0 0.39409 m 0.394 m 0.39409 m
D̂1 1.70435 m 1.70236 m 0.52278 m
�D1 1.44461 m 1.463 m 0.52348 m
D̂2 4.61014 m 0.98741 m
�D2 4.88449 m

D̂2�
�D2 �0:27435m 0.00002395 m

IV. MEASUREMENT OF �1 AND �2

Since �2 is not predictable with lattice codes and is difficult
to calculate theoretically for a real accelerator consisting of, for
example, low-beta insertions, flexible momentum-compaction
modules, and dispersion suppressors, we must resort to mea-
surements [9]. The slippage factor can be inferred by the syn-
chrotron tune of a particle in an off-momentum orbit. This can
be done by altering the rf frequency from frf by an amount �frf
so that the synchronous particle is in a different closed orbit of
length C0 + �C at a momentum p0+�p = p0(1+�0). The
phase equation per turn for a particle with momentum offset � is

d��

dn
= 2��(�)(� � �0) : (4.1)

This is because the synchronous particle which is at � = �0
should have zero phase slip. With �� = ���0, Eq. (4.1) can
be rewritten as
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d��

dn
= 2�

�
�(�0)�� + �0(�0)��2 + 1

2
�00(�0)��3 + � � �

�
:

(4.2)
Thus the synchrotron tune, �s = �s0

p
�(�0)=�0, becomes

�s = �s0

�
1 +

�1

2�0
�0 +

�
�2

2�0
�

�2
1

8�2
0

�
�2
0
+ � � �

�
; (4.3)

where �s0 is the synchrotron tune for the on-momentum particle
when � = �0, and the �i’s with i = 1; 2; � � � are the higher-order
expansion terms of the slippage factor as given by Eq. (1.1).
From Eq. (1.2), the momentum offset can be written in terms of
the orbit-length offset,

�0 =
�C

�0C0

�
�1

�0

�
�C

�0C0

�2

+ � � � : (4.4)

Since �C=C0 = ��frf=frf , substituting Eq. (4.4) into
Eq. (4.3), we arrive at

�s = �s0

"
1�

�1

�2
0

�
�frf

frf

�
�

�
5�2

1

8�4
0

�
�2

2�3
0

��
�frf

frf

�2

+ � � �

#
;

(4.5)
where we have used �0 � �0 and �1 � �1.

The maximum momentum spread of the designed muon bunch
is �max = 0:003 and � � 1�10�6. Therefore a variation of the
rf frequency by �frf=frf � 3 � 10�9 will be required. Since
the figure of merit of a superconducting cavity can easily reach
Q = 1�109, such an rf frequency variation should be possible.

A low-intensity proton bunch with small momentum spread
is injected into the muon collider for the measurement. The
on-momentum synchrotron tune will give �0. The higher or-
ders �1 and �2 can be inferred by measuring the synchrotron
tune as a function of �frf=frf . If no asymmetric variation of
the synchrotron tune is observed when �frf=frf varies between
�3�10�9, we can conclude that the �1 contribution is insignifi-
cant in this collider lattice. Furthermore, if the synchrotron tune
remains flat during the variation of �frf=frf , the �2 contribu-
tion is also insignificant. The bucket will then be �0-dominated.
However, if we see a symmetric parabolic dependency of �s ver-
sus �frf=frf , we can tune the machine so that �0 becomes zero.
The bucket will then be �2-dominated and the magnitude of �2
can be determined easily.

Strictly speaking, Eqs. (4.3) to (4.4) are not valid when the
contribution �0 is small. Under that situation, we can write

�s =

�
heV

2��2E

�1

2

[�0 + �1�0 + �2�
2

0
]
1

2 ; (4.6)

and solve for �0 in terms of �C=C0 exactly from Eq. (1.2).
Here, h is the rf harmonic, V the rf voltage, E the energy of the
synchronous particle and � its velocity divided by the velocity
of light. After substituting the result into Eq. (4.6), we will then
obtain�s in terms of �frf=frf which is valid for all values of �0,
�1, and �2. For example, when the contribution of �2 overshad-
ows those of �0 and �1, we have,

�s =

�
heV

2��2E

�1

2

�
1

3

2

�����frf

frf

����
2

3

; (4.7)

except when �frf=frf is very close to zero. Similarly, for an
asymmetric �-like bucket [10],

�s =

�
heV

2��2E

�1

2

"
�0

2
+

�
�2
0

4
� �1

�frf

frf

� 1

2

#
: (4.8)

V. CONCLUSION

A simplified FODO lattice consisting of thin quadrupoles and
sextupoles with dipoles filling all spaces has been solved and an-
alytic expression for �2 has been presented. Comparison with
the results of SYNCH gives agreement with �1 but not �2.

We have examined the way SYNCH and MAD compute the
transition gamma for off-momentum particles, which consists
of computing the off-momentum closed orbit and then the t
around the closed orbit using a derivative. We have compared
each order of the dispersion with theory and found that only the
lowest order is accurate. The error appears to come from the in-
accurate tracking of an off-momentum particle across a quadru-
pole and/or sextupole. With the closed orbit only accurate to first
order in �, it is obvious that SYNCH and MAD cannot provide
the correct value for �2.

Some experimental measurements of �1 and �2 have been
suggested. The method consists of offsetting the closed orbit of
the synchronous particle by altering the rf frequency and mea-
suring the change in synchrotron frequency. Since a supercon-
ducting cavity can have a figure of merit as high as Q = 1�109,
accurate measurements of �1 and �2 should be feasible.
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