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ABSTRACT

Whether the higher-order termsinthe momentum-compaction
factor, «v; and «», can be obtained reliably from lattice codesis
an important issue for some quasi-isochronousrings. A FODO
lattice consisting of thin quadrupoles, dipolesfilling al spaces,
and two families of thin sextupolesis solved and «; and o, are
derived analytically. We find accurate agreement with SYNCH
for oy but not oo, Possible error in SYNCH isexamined. Some
methods of measurement of «; and o5 are discussed.

. INTRODUCTION

The high luminosity of the recently proposed 2 TeV-2 TeV
muon-muon collider [1] callsfor acollider ring of circumference
Cy ~ 8000 mwith an rmsbunch length of 3 mm (10 ps) and rms
momentum spread of 0.15%. The short bunch length, aswell as
areasonable rf voltage, limitsthe slippage factor of the collider
to |n| <1 x 10~ for every particle in the muon bunch [2, 3].
Thisimpliesthat the spread of n asafunction of momentum off-
set 6 needs to be lessthan ~1 x 10~° aso.

The dippage factor and closed-orbit length C' of an off-
momentum particle can be expanded as power seriesin momen-
tum offset 6,

n=10+mé+mnb"+ -, (11)
CICQ(1+Oz06+Oz162+Oé263—|— ), (12)

where «; is the ith-order term of the momentum-compaction
factor. For a2 TeV muon havingy=2 = 2.73 x 10~2, which
isvery much less than the required |7|, it can be readily shown
that N~ o and N2 = Q3 [3]

With so tiny a value of ||, the contributions of the higher-
order term of the momentum-compaction factor can bring in a
large spread in the dlippage factor. To satisfy the zeroth-order
momentum-compaction factor «, the collider | attice can be de-
signed rather easily, for example, using flexible momentum-
compaction modules [4]. The first order «; bringsin momen-
tum asymmetry of the rf bucket and will lead to severe longi-
tudinal head-tail instability [5]. Fortunately thisinstability can
be avoided by reducing or eliminating the contribution of «
through the depl oyment of sextupoles[3]. However, the second
order term o5 Will come into play.

For lattice structure that is as complicated as the flexible
momentum-compaction module, anaytic computations of «
and o, areamost impossible. The other design tool that we can
rely on will be lattice codes such as the more common SYNCH
[6] and MAD [7]. An obviousimportant question to ask is how
reliable are these code-generated results, when higher orders of
the momentum-compaction factor are concerned.

* Operated by the Universities Research Association, Inc., under contract
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In this paper, we look into a FODO lattice consisting of thin
quadrupoles, dipolesfilling al spaces, and two families of sex-
tupoles. When the exact solution is compared with the results
from SYNCH, we find that SYNCH does not provide the cor-
rect «w». The source of error isinvestigated in Section 111, and
some possi blewaysto measure «» experimentally are discussed
in Section 1V. Section V is devoted to remarks and conclusions.

1. SIMPLIFIED FODO LATTICE
A. Momentum-Compaction Factor

Figure1: A FODO half cdl with thin F- and
D-quadrupolesand adipolefilling al spaces.

A simplified FODO lattice with only thin quadrupoles and
with dipolesfilling al spaces is soluble andytically [8]. Con-
sider a half cell shown in Fig. 1. The half F-quadrupoleis at
F F" whilethe half D-quadrupoleisa DD’. In between liesthe
dipole of bend angle #,. The designed orbit in the half cell is
thearc F'D and isof length £, = po6, with radius of curvature
po, while the off-momentum closed orbit corresponding to ¢ is
thearc F' D’ andisof length ¢, radius of curvature p, and bend
angle§ = ¢/p. Passing through the thin half F-quadrupole, the
off-momentum orbit acquires, according to the bending due to
the Lorentz force, an angular change of

6 B'D§ SD 6
Ap, = — | ds—— = — — 21
¢F 1—|—6/ SBopo Eo 1—|—6’ ( )
where B
S =4 /ds (2.2)
Bopo

istheintegrated strength of the quadrupoleand B’ thefield gra-
dient. The off-momentum orbit then turns through an angle 6
inside the dipole and another

SD 6

Ad =
%o by 146

(2.3)
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through the half D-quadrupole to complete the half cell. In the
above, D and D represent the values of the dispersion function
at theF- and D-quadrupol es, respectively. Thetotal angleturned
isobvioudly 0. Therefore,

(2.4)

Since the two orbits are in the same dipole field, their radii of
curvature are related by p = po(1 + é). Combining Egs. (2.4)
and (2.5), we have for the two orbit lengths exactly

S D-D
1+6(1- 2 .
+ ( 90 EO )‘|

We can aso include two families of half thin sextupoles of

strengths
BS S
S, = [dl—=2 S, = [ dl—=
" / 2Bops " / 2Bypy

placed, respectively, on each side of the F- and D-quadrupoles.
Theangletheoff-momentum orbit turnsat the half F-quadrupole
and F-sextupolewill change from Eq. (2.1) to

{=1

(2.5)

1" 1"

(2.6)

SDs S, D*8?
Ap, = — £ 2.7
Or 1+6 1+6 27)
Similarly, A¢ , of Eq. (2.2) will change to
SDs S, D8
B0 =15 T s 28)

Equation (2.5) should al so be changed accordingly. Notethat the
£y has been removed since we have simplified the notations by
measuring all lengthsin terms of it.

With the expansions

D = Dy + D6+ D98” + 0(8%) (2.9)
D = Do+ D16 + D28 + O(6°) (2.10)

for the dispersion function D, and Eq. (1.2) for the orbit length
C', wearrive at each order of the momentum-compaction factor,

=1 S(Dy — Dy) |
to
o _S(Dy=Dy)  8.D} S,Df
b b b o
S(Dy— Do) 25.DoDy 25, DoDy
= - - 2.11
s % 7o 7o , (21

which are exact to all orders of 4.

B. A Geometric Solution

The off-momentum closed orbit F” D’ isan arc of acirclewith
radiusp = po(1+ ). The equation of thearc containsonly two
constantsplus D and D. However, thisarc isconstrained by its
positionsand slopes at the dipol € sentrance and exit. Therefore
the two constants together with D and 1 can be determined.

Consider OF’ of Fig. 1 as the y-axis and O the origin. The
xz-axisisonthedipolesideof O F’. Thepoint F” is (0, po+Dé)

and thearc I"D’ isat an angle A¢,. given by Eq. (2.7). The
equation of thearc F' D’ istherefore given by

2
[ + psinquSF]2 + |y —po— D6+ pcosAqu] =,
(2.12)
Now rotatethe z- and y-axes by an angle %90 so that the new y-
axis passes through the center of the dipole. Interms of the new
axes, the equation of the circular arc becomes

0 0 :
[a:cos?o—i—ysin?o—i—psinAqu] +
0 0 . :
[—xsin;o + y cos ?0 —po— D64 pcosAé,.| =p?.
(2.13)

We can dso start with OD’ as the y-axis. Theanglea D’ is
now A¢  asgivenby Eq. (2.8). Theaxesarethenrotated inthe
opposite direction by 16, so the the equation of the arc F” D
becomes

0 0 ?
[xcos;o — ysin;o —|—psinA¢D] +

f f
[xsin—o—i—ycos—o—po

2
5 5 —Dé—i—pcosAqu] =,

(2.14)

Equations (2.13) and (2.14) are exactly the same because they
describethesamearc F’ D’. By equating coefficients, weobtain
with¢ = tan %90,

psin A¢g, — [pcosAqSF —Dé —po] t=

psin Ag, + [p cos Ag,, — Db — po] t, (215)

tpsin A¢g, + [pcos A¢, — 156] =

_tpsin Ad,, + [p cos A, — Dé] t. (216)

The other relations are redundant. Thus, we can solvefor D and
Dintermsof 0, and § exactly. Since we areinterested in solu-
tion up to the second order in 6 only, Egs. (2.15) and (2.16) can
be expanded and simplified. We then obtain for the zeroth order

iné,
1 —t SDy N\ _( 1 t SDq
t 1 1—90ﬁ0 - —t 1 1—90D0 ’
(2.17)
for thefirst order in 4,
1 —t SDy+5.D3 \ _
t 1)\ -1s*D2—0,D1) "~
1t SDy — S, D3
(—t 1) (-%52[)3—90[)1 - (218

and for the second order in é,
(1 —t) ( SDy — LS3D3 + 25, Dy Dy
t 1)\ 152D%—S*DyDy — 0Dy — 5SS, D}
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Solving Eq. (2.17), we obtain

SDy — §53D3 =25, Do Dy
S?2DZ — S?DoDy — 00Dy + SS, D3
(2.19)

(2.20)

which are the usual expressions for the dispersions at the F-
and D-quadrupoles of a FODO cell. The zeroth order of the
momentum-compaction factor is, according to Eq. (2.11),
257t
00(S? +63)
Solving Eqg. (2.18), we obtain thefirst order dispersion,

(e X =

(2.21)

. S2D2(St? 4 2600t — S)
Dy =— —

44(S? + 63)

S3DE(1+17)
44(S? + 62)

8, D3(25t — 6ot* + 6o)
20(S% +63)

S, D20o(1 +t2)
20(S% +63)

, (2.22)

- SPD3(1+17)
P a(S? 4 62)
S, D20o(1 + 1)
21(S? 4 03)

S?DZ(200t + S — St?)
44(S? + 602)

S, D2(0y — 25t —

21(S? 4 03)

00t?)

. (2.23)

The first-order term of the momentum-compaction factor can
now be obtained from Eq. (2.11). It can be simplified to

SH(S*? + 362)
00 (52 + 62)3
We see from Eq. (2.24) that «; can be reduced or eliminated by

suitable deployment of sextupoles.

In the situation of avery large ring where 6, < S, the above
equations reduce to

] = — _(SFDS—i—SDDS)

(2.24)

02 2
— 2 (1-= 2.25
w—g(1-5). 229
3603 52 . iy
o= oy (1 + E) — (S, Dy +5,D}). (2.26)
Solution of Eq. (2.19) gives
~ S tgo ~. S+t00
— 37 3
Da = Do = 55°D 052+92_% 057+ 03
+§S2(f)3 — D3 - S*(D2D, — D2Dy)
.S —th, S+t
—25, DoDy =—— — 25, DyD
S DoDrgr g ~ 2 DoDrgr o
—5(8,. Di+5,D}) . (2.27)

Subgtituting into Eq. (2.11) will give a,. As is seen in
Egs. (2.22) and (2.23), D, and D; arelinear in S, and S, avs
will have quadratic terms in the sextupol e strengths, indicating
that the sextupolestalk to each other in their contributionsto the
second-order term of the momentum-compaction factor.

In the large ring approximation, #2 << 1, Eq. (2.27) can be
simplified considerably. Inthe absence of sextupoles, we obtain

02 3502
0[2_>_€ <1+ 54 3

where we have included the O[(/5)?] term because the
0[(6/5)?] term happens to have canceled out. Notethat ag, oy
and v» aredl of order 62. Therefore, it may be more convenient
to quotetheir ratiosinstead; i.e.,
( 1+
1252

aq 3 1 + L Sz
o 1 Sz )
(2.29)

(8] - 2 1-—
C. Comparison with SYNCH and MAD

A numerical comparison of «, had been made in Ref. 8 with
thetheoretical resultsof asimplified FODO latticewithonly thin
guadrupolesand with dipolesfillingall spaces. A ring consisting
of 150 equal FODO cells and another one consisting of 15 equal
FODO cells were considered. The half-cell length was fixed at
£y = 27 m, and the half quadrupole strength was varied from
S = 0.020 to 0.999. The first-order momentum-compaction
factor oy was extracted from SY NCH in each case and was com-
pared with the analytic expression derived above. The agree-
ments had been excellent, up to at least 3 significant figures. A
comparison had al so been made with the addition of twofamilies
of sextupoles. The agreement had also been excellent, thusveri-
fyingthevaidity of Eq. (2.24). Thisdoesnot, however, exclude
the possibility of adisagreement of «; with lattice consisting of
thick quadrupolesand thick sextupoles. Thisis because the ex-
act integration of the particle trgjectory inside a quadrupole or
sextupoleis tedious and time consuming, and lattice codes usu-
ally resort to approximations.

Here, we continue to use a lattice consisting of 150 equal
FODO cdlsto study the second-order term of the momentum-
compaction factor «v,. The half sextupole strength is chosen to

11 _=m
be S = 1 or aphaseadvance of y = 2sin™"' 1 = Z.

2
What we obtain from SYNCH are the transition gammas +;'s

at various momentum offsets, with 4, defined as

(2.28)

359
54

a2

SZ
[,
(8] 6

6 dC

-2 _

W= E (2:30)

which can be expanded as apower seriesin momentum offset 6,
vt =ag 4 aré + azé? 4 - (2.31)

Comparing with the power expansion of the closed-orbit length
in Eqg. (1.2), the various orders of the momentum-compaction
factor are obtained:
Qg = agp ,
200 = ay — ag + aj

(2.32)

When the v, %’s from SYNCH for momentum offset varying
between +0.0004 are fitted by a polynomial of degree two as
indicated in Eq. (2.31), we obtain the three coefficients: ¢y =
0.00171503, a3 = 0.00705748, and a; = 0.00853026. The
corresponding orders of the momentum-compaction factor are
extracted according to Eq. (2.32) and are listed in Table | along
with the anaytically computed values of Eq. (3.11). Theresults
of MAD were obtained in exactly the same way. Noticethat the

_ 3 32,13
das = ay —a; +ag + Fapa1 — Jag + 3ay -
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approximate expressions of Egs. (2.25), (2.26), and (2.28) for
the «’s are pretty accurate. It is obvious that «» has not been
given correctly by SYNCH and MAD. We aso tried to fit the
~;%'s obtained from the codes to polynomials of degree 3; the
first three o’sdo not change in their first 4 significant figures.

Table I: Comparison of SYNCH and MAD with
theoretical resultsfor the simplified FODO lattice.

SYNCH MAD Theory
ag 0.00171503 0.00171503 0.00171518
o 0.00267272 0.00267421 0.00267273
Qs 0.00105371 0.00064879  —0.00009099

1. SYNCH AND MAD COMPUTATIONS

In a lattice code, the usua way to compute +; for an off-
momentum particleis (1) to compute the off-momentum closed
orbit and (2) to compute the derivative in Eq. (2.30) by offset-
ting the momentum dightly. The second step seems to be fine,
because both SYNCH and MAD give us the correct v, for the
on-momentum particle.

Asfor the off-momentum closed orbit, SYNCH [6] first tracks
aninitial “first guess’ particle state vector 14 through one com-
plete revolution so as to produce a new state vector V;. These
state vectors are 7-element vectors, for example,

V: ($a$/aya y/a_dsaéa 1) 3 (31)

wherethefirst 4 entries are for the horizontal and vertical devi-
ationsand dlopes, the 5th denotesthe shortening in orbit length,
the 6th momentum offset, and the 7th is reserved for misalign-
ment calculation. The transfer matrices of the ring's elements
are then linearized about thisinitia single-turn trajectory, gen-
erating new transfer matrices, R, and a linearized single-turn
transfer matrix 7' = Ry Rn—1--- RaRy.

One may now track a particle vector X, in asmall neighbor-
hood of V; sothat Xq = Vi + Z,. After one revolution, this
vector becomes X, = Vi + 7, where 7, = TZ;. If Xy isa
closed orbit, we must have X, = X, or

Xo=Vo+Zo=Vi+ 2. (3.2)
Therefore,
Xo=WVi+TZy =V, + T(Xo — VO) , (3.3
or the closed orbit is
Xo=Vo+ (I -7tV = W), (3.4)

where ] istheidentity matrix. Then X, isused as the new guess
vector, and theiterationsare repeated. The exact off-momentum
closed orbit should then be available.

Let us examine this closed orbit for the simplified 150-cell
FODO lattice discussed above. We read out the maximum and
minimum dispersions from the SYNCH and MAD outputs for
different momentum offsets and fit polynomias of degree 3 to
extract the different orders of the dispersion. The results are
listed in Table II. Some numbers from MAD are omitted, be-
cause the D’s are given to 3 figures only and are not accurate
enough to do a polynomial fitting. We see that only the zeroth
orders agree with theory.

Using the SYNCH results of Dy and Dy, we cannot arrive at
the correct value of «; viaEq. (2.11) aslistedin Tablell. Infact,
SYNCH computes; separately using the derivative dC'/dé ac-
cording to Eqg. (2.30). Since «; from SYNCH agrees with the-
ory (see Table ), we can concludethat the D; —D; fromanalytic
calculation is correct and those from SYNCH and MAD arein-
correct. It isnot impossiblethat there will be error in SYNCH
when the off-momentum closed orbit is computed. Infact, itis
non-trivia to propagate an off-momentum particle through lat-
tice elements having magnet field

1
B = Bo+B'|oz+5B"|ox*+- - = Bopo [— + Kx] , (35)
Po

where x isthe horizonta deviation from the designed orbit. Al-
though the zeroth and first order differentia equationsfor x are
simple, the exact oneisvery complicated [8],

12

= v () [H(m/m)z] "

11 a1
L (1+_) (_+M) |
£o 1—|—(S po pPo
Since only the zeroth order off-momentum closed orbit is cor-
rectin SYNCH, v; computed using Eq. (2.30) can only be cor-

rect to thefirst order in 6. This explainswhy «- has been com-
puted wrongly by SYNCH and MAD.

12

RETyPaE

Table I1: Comparison of SYNCH and MAD with
theoretical resultsfor the dispersion function.

SYNCH MAD Theory

Dy 0.65683m 0.65683m 0.65683 m
Dy 0.39409 m 0.394m 0.39409 m
Dy 1.70435m 1.70236 m 0.52278 m
Dy 1.44461 m 1.463m 0.52348 m
D, 461014m 0.98741m
D, 4.88449 m

Ds—Dsy  —0.27435m 0.00002395m

V. MEASUREMENT OF «; AND «;

Since «» is not predictable with lattice codes and is difficult
to calculate theoretically for areal accelerator consisting of, for
example, low-beta insertions, flexible momentum-compaction
modules, and dispersion suppressors, we must resort to mea
surements [9]. The dippage factor can be inferred by the syn-
chrotron tune of a particlein an off-momentum orbit. This can
be done by atering therf frequency from f.; by anamount A f,¢
so that the synchronous particleisin a different closed orbit of
length Cy + AC a amomentum po+Ap = po(1+8;). The
phase equation per turn for a particlewith momentum offset é is

dA
d—nqj) =2mn(8)(6 — bo) . 4.2)
This is because the synchronous particle whichisat § = &g

should have zero phase dip. With Aé = §—ég, Eq. (4.1) can
be rewritten as
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dA
TR0 o [n(60)AS + 1 (6) A8 + Lof'(50) A8 + - ] .

dn
(4.2
Thusthe synchrotron tune, v = v;0+/7(80)/ 10, becomes

2
m 2 Un 2
= Ve |14+ 26 —— — )&+, (43
’ V0[+27700+<2770 8773)0+ ] 43

where v isthe synchrotron tunefor the on-momentum particle
whenn = ng, andthen;'swithi = 1,2, - - - arethehigher-order
expansion terms of the dippage factor as given by Eq. (1.1).
From Eq. (1.2), the momentum offset can be writtenin terms of
the orbit-length offset,

s _ AC o (AC 2+

0= OéoCo (8] OéoCo
Since AC/Cy —Afu/ frr, subgtituting Eq. (4.4) into
Eq. (4.3), wearrive a

m (%)_<%_77_2) (Afrf)2+...
na \ fut 8ng 2m3) \ fut
(4.5)

(4.9

Vs = Vo |l — )

wherewe have used 1y & «p and 1, & o .

The maximum momentum spread of the designed muon bunch
iS6max = 0.003andn ~ 1 x 10~°. Therefore avariation of the
rf frequency by Af.e/fir ~ 3 x 1072 will be required. Since
the figure of merit of a superconducting cavity can easily reach
Q = 1 x 10°, such an rf frequency variation should be possible.

A low-intensity proton bunch with small momentum spread
is injected into the muon collider for the measurement. The
on-momentum synchrotron tune will give »n,. The higher or-
ders n; and 7, can be inferred by measuring the synchrotron
tune as a function of A f.¢/ f.¢. If no asymmetric variation of
the synchrotrontuneis observed when A f.¢/ f.¢ varies between
+3 x 10~?, we can concludethat the; contributionisinsignifi-
cant inthiscollider lattice. Furthermore, if the synchrotrontune
remains flat during the variation of A f.¢/ f.¢, the . contribu-
tionisalso insignificant. The bucket will then be 7,-dominated.
However, if we see asymmetric parabolic dependency of v, ver-
sus A fi¢/ fr, we can tune the machine so that 7, becomes zero.
The bucket will then be 7, -dominated and the magnitude of 1,
can be determined easily.

Strictly speaking, Egs. (4.3) to (4.4) are not vaid when the
contribution o is small. Under that situation, we can write

_ heV

Ve (%ﬁ?E

and solve for 4y in terms of AC/Cy exactly from Eq. (1.2).

Here, & istherf harmonic, V' therf voltage, £ the energy of the

synchronous particle and 3 its velocity divided by the velocity

of light. After subgtituting the result into Eq. (4.6), wewill then

obtainv, intermsof A f,¢/ f.r whichisvalidfor al valuesof 5,

11, and 7,. For example, when the contribution of 7, overshad-
owsthose of 7, and 7, we have,

) [0 + mi6o + 1263]% (4.6)

2
3

L[ heV \? 1 |Afy

T \mE) T

except when A f.¢/ fi is very close to zero. Similarly, for an
asymmetric «-like bucket [10],

, 4.7

V. = (—)% + (ﬁ — M
: 2132 E 2 4 for
V. CONCLUSION

A simplified FODO lattice consisting of thin quadrupolesand
sextupoleswith dipolesfilling all spaces has been solved and an-
alytic expression for «» has been presented. Comparison with
the results of SYNCH gives agreement with «; but not «,.

We have examined the way SYNCH and MAD compute the
transition gamma for off-momentum particles, which consists
of computing the off-momentum closed orbit and then the +,
around the closed orbit using a derivative. We have compared
each order of the dispersion with theory and found that only the
lowest order isaccurate. The error appears to come fromthein-
accurate tracking of an off-momentum particle across a quadru-
poleand/or sextupole. With theclosed orbit only accurate tofirst
order in é, it isobviousthat SYNCH and MAD cannot provide
the correct valuefor as.

Some experimental measurements of «; and «» have been
suggested. The method consists of offsetting the closed orbit of
the synchronous particle by atering the rf frequency and mea-
suring the change in synchrotron frequency. Since a supercon-
ducting cavity can have afigure of merit ashighasQ = 1 x 10,
accurate measurements of «; and «» should be feasible.

heV \* [no Afrf) ] s
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