
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

Development of Methods and Means of Configuration Data Transfer
For Use in an FPGA Based Trigger Controller Device

Kelton D. Stefan
Office of Science, Science Undergraduate Laboratory Internship

Program

Purdue University

SLAC National Accelerator Laboratory
Menlo Park, California

August 14th, 2009

Prepared in partial fulfillment of the requirement of the Office of Science,
Department of Energy's Science Undergraduate Laboratory Internship under the
direction of Ronald Akre in the Klystron/Microwave Department at SLAC
National Accelerator Laboratory .

Participant:
Signature

Research Adviser:
Signature

SLAC-TN-10-019

Kelton Stefan, August 14th, 2009

Table of Contents:

Abstract...1

Introduction...2
Methods and Materials..3
Results…...6
Discussion and Conclusions..8

Acknowledgments...10
References...10

Figures...Appendix A

Page i Table of Contents

Kelton Stefan, August 14th, 2009

Abstract:

To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent

Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave

Department Test Laboratory. The controller needed to be programmed and Windows based user

interface software needed to be written to interface with the device over a USB (Universal Serial

Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed

Integrated Circuits) hardware description language), and the Windows interface software was

written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL

code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++

based Windows software. The device was programmed in such a way as to easily allow

read/write operations to it using a simple addressing model, and Windows software was

developed to interface with the device over a USB connection. A method of setting configuration

registers in the trigger device is absolutely necessary to the development of a new triggering

system, and the method developed will fulfill this need adequately. More work is needed before

the new trigger system is ready for use. The configuration registers in the device need to be fully

integrated with the logic that will generate the RF signals, and this system will need to be tested

extensively to determine if it meets the requirements for low noise trigger outputs.

Page 1 of 11

Kelton Stefan, August 14th, 2009

Introduction:

Control is a very important part of almost anything going on at the SLAC National

Accelerator Laboratory. This certainly holds true for the Klystron/Microwave Department Test

Laboratory where new and reworked klystrons are constantly undergoing burn-in and testing

routines. In an effort to improve the control system of each station in the test lab, a new digital

FPGA (Field Programmable Gate Array) device was built and programmed to replace the old

mostly analog systems. This upgrade was to meet the need of determining if klystrons will

perform to the specifications of the LCLS project. Precise measurement of phase requires a low

noise source. This new FPGA device will fulfill this requirement as well as introduce the

possibility of synchronizing multiple test stations so that multiple klystrons can be operated in

phase.

The FPGA device will control the various pieces of equipment at a test station using

trigger signals. These trigger signals are precisely timed signals that have various parameters (see

Figure 2). These parameters include rep rate (repetition rate), pulse delay, pulse width, and time

slot. Rep rate is simply the frequency of the trigger pulses measured in Hz. Pulse delay is the

time between the start of the signal to the rising edge of the pulse measured in ns. Pulse width is

the time between the rising and the falling edges of the signal measured in ns. Finally, time slot is

one of several possible clock pulses within a block of the 360Hz signal defined by the desired

rep rate. For example, if you require a 60Hz rep rate, there are 360/60 = 6 different time slots you

have the freedom to operate on.

Central to the new trigger device is a Xilinx Spartan FPGA (Field Programmable Gate

Array) [1] that will be programmed to do everything required for triggering. There are four

inputs, three of which we have plans of using. There are eight output channels, all of which are

used in the design. These eight channels are divided into a six channel group and a two channel

Page 2 of 11

Kelton Stefan, August 14th, 2009

group. Each group can be operated on a different time slot.

The triggering logic in the FPGA will get its operating parameters from a set of registers.

These parameters will be set from a computer. A USB port is used to connect this device to the

computer. Computer software was written to interface with the device, so that all operating

parameters could easily be adjusted using a GUI (graphical user interface). My assignment was

to write the computer software to interface with this device, as well as to write the logic for the

FPGA to read and write data through the USB connection and to store and retrieve this data from

registers.

The USB interface is facilitated by a small stamp called USBMOD4 [2]. It has an on-

board USB interpreter, so that knowledge of the USB protocol is not required. This stamp is

bundled with a DLL (Dynamic Linked Library) that can be easily incorporated into a another

program. This software had to have several input fields and drop down menus. It allows the user

to select the global rep rate, then the time slot for each group of output channels, and finally the

delay and width of the pulse trigger for each channel output. When the “Enter” key is pressed,

the data in the selected field is sent to the appropriate register. The data is then read back and

compared to the original to make sure that there was no corruption during the transfer.

Methods and Materials:

The device itself (See Figure 1) is constructed on a custom board designed at SLAC. The

heart of the device is a Xilinx Spartan XC3S500E FPGA [1]. This chip is relatively low cost, yet

has more than enough functionality for our current project. The board has voltage regulators and

routs power from the input power jack to each active component. The board also connects the

Xilinx chip to twelve BNC (Bayonet Neill-Concelman) connections through buffers. Eight of

Page 3 of 11

Kelton Stefan, August 14th, 2009

these twelve ports are output ports, and the other four are input ports. Two of these input ports

are for RF signals only as they are magnetically coupled whereas the other two are direct

connections. Another key to this device and hence the project was the USB interface. This

function was performed by the stamp USBMOD4 by ELEXOL [2]. This stamp is based around

the FTDI FT245BM USB FIFO (First In First Out) IC (integrated circuit) [3]. This chip handles

the USB protocol, and comes with a DLL [4] that can be integrated into one of several

commonly used software programming languages. My use of this device and the DLL [4] in my

software made the software programming side of things quit simple.

Aside from the device itself, I had an assortment of other resources available to me for

my project. I had all of the equipment in the lab of the second floor of building 44

(Klystron/Microwave Department Test Laboratory) available to me. The tools I used regularly

from this lab were a soldering iron, a portable oscilloscope with the related probes and cables, a

parallel JTAG (Joint Test Action Group) cable, a small 5VDC power supply, and an assortment

of small hand tools such as screwdrivers, precision cutting instruments, etc. Some of these items,

the oscilloscope for instance, was relocated to my office for convenience. In my office, probably

the one object used most to facilitate the completion of this project was the computer workstation

assigned to me. Of course it seems natural that this was the case considering the nature of my

assignment. The software applications most used were: Microsoft Visual Studio 2005, Xilinx ISE

11 suite, and Mozilla Firefox.

The online references proved to be of the greatest assistance in this project. I very

regularly referred to several different internet sources [1-18] for information regarding the

programming languages used (C++ and VHDL) as well as for the technical documents required

to adequately understand the hardware I was working with. I referenced several data sheets

regularly. These included the data sheet for the Xilinx FPGA [1], USBMOD4 stamp [2], and the

Page 4 of 11

Kelton Stefan, August 14th, 2009

FT245BM USB IC [3]. Aside from the references I used for the hardware pieces I was working

with, a reference [4] on the DLL for the USB interface was vital to the rapid development of first

console based test software, and then finally to the finished GUI based software.

As mentioned previously, my assignment was to get certain device setting parameters

from a GUI on a computer workstation through a USB interface to certain registers on the device

and then be able to read these registers back to verify error free data transfer. The methodology

of this data movement evolved considerably during the initial work on this project. I considered

several options. At first I considered writing all data in one large chunk but finally, I decided that

some sort of addressing was the best option. I decided on a method based around five octet

words. The first octet would be an address octet and the four octets after would be data octets. At

first I was thinking that it would work well to automatically send back to the computer the data

that was written to the device. Directly after five octets were written to the device, those same

five octets would be written back to the computer without any command from the computer.

Although this might work alright, it would not allow the configuration settings to be read back

from the FPGA during the software startup. It was decided that the best way to setup the system

was to be able to read from or write to any of the four octet registers in the device at any time. To

write a register, an address octet and four data octets would be sent to the device. To read from

the device, only the address octet would be sent. This idea for the system seemed to be the best at

the time, and so I decided to implement it in my design.

To accomplish this required a count selector, an intermediate five octet register, a 128

octet register, and some additional control logic (see Figure 3). Each piece was written in VHDL.

The count selector basically just counts to five while selecting different registers to either read

from or write to. The intermediate five octet register takes the octet data stream from the USB

card and writes it into parallel accessible registers. Finally the big register stores these four octets

Page 5 of 11

Kelton Stefan, August 14th, 2009

in one of 32 four octet divisions. The control logic simply coordinates steps taken by each of

these other pieces. In Figure 3, the control logic has been combined with the count selector and

labeled “Timing Controller”.

After programming the FPGA to read and write data to the registers in the way described,

I wrote the software that the users would use in the test lab on their workstations. This software

was written in C++ and used the FLTK (Fast Light Tool Kit) library for the GUI, the FTD2XX

DLL for USB communication, and the open-source functions IniReader and IniWriter for

working with the INI file that holds configuration data. The GUI (see Figure 5) has several

different settings available. There are settings for the rep rate, time slots for two separate groups

of channels and the delay and width times. When a user enters the desired settings, the software

sends the data to the device and writes it to the INI file for later use. After that, the software

sends only the address octets of the previously sent data. The data associated with that address is

sent back to the computer for transfer verification. If the received data matches the sent data, the

setting entered is displayed to the right of the input box. If the data received does not match what

was sent, then an error message will appear in the window warning the user about the fault.

Results:

The efforts put forth for this particular project have been very well rewarded. Although,

the objectives themselves evolved slightly as I became more fully acquainted with the obstacles I

was facing, I was able to satisfy most all of the initial design objectives.

Using the VHDL hardware description language I was successfully able to program the

FPGA used in this project to interface with the USBMOD4 module. The FPGA accepts incoming

data from the USBMOD4 module in the form of five octet words, stores the last four octets in

Page 6 of 11

Kelton Stefan, August 14th, 2009

one of 32 four octet registers based upon the first (address) octet, and finally can read back the

data to the USBMOD4 module after accepting a single octet address. This set of registers has a

synchronization input to enable the synchronization of the registers to the 119MHz clock that

clocks the rest of the logic on the FPGA.

I was also able to write the computer software to read and write this register data. I wrote

this software in C++ along with the FTD2XX DLL, the FLTK libraries and some open-source

INI functions. The code that I wrote myself ended up being ~1000 lines long. It is based around a

graphical user interface (see Figures 4 and 5) with several “Widgets” that make up the controls

available to the user.

The GUI has a nine option drop-down menu for the rep-rate selection and two value

entries for the slot selections for the first and second groups of trigger channels. It has a value

entry for the delay and width times of each channel. It even has a channel description text entry

for each channel. When values are entered for the delay and width of a channel, these values are

converted into start and stop times, rounded to the nearest 8.4ns division integer, and written to

the FPGA through the USB port. The software then reads back the values for that channel and

displays them under the header “Current Operation”. When the software first starts up, all of the

settings stored in the FPGA are read and displayed under the “Current Operation” heading and

all of the previous time values and channel descriptions are read back from an INI file and put in

their respective places. If there is any problem opening the USB communications during the

software startup process, a message is presented to the user which gives the options “Retry” or

“Quit”. After the software is first loaded, if there is any problem with USB communications, an

error message is presented to the user that states the presence of a USB error, and the necessity of

re-opening the software. The only option is for the user to click the button “Close” at which time

the software quits.

Page 7 of 11

Kelton Stefan, August 14th, 2009

Discussion and Conclusions:

When examining the results of this project and comparing them with the objectives at the

outset, I think it is reasonable to conclude that I had much success. Although I was not able to

test my design with the trigger generating logic to the extent initially desired, I believe that my

contributions to this new triggering system for the klystron test stations, will prove to be very

beneficial to SLAC in general, and the Klystron/Microwave Department Test Laboratory in

specific. Although the logic and software I wrote were aimed at a very specific purpose, they

could be very easily adapted to other applications relating to control using digital logic.

Looking back, I can see now that I would do things differently if given the opportunity.

One thing I would probably investigate doing differently is the basic method of USB

communication. The way I set up the USB communication was that when the computer sends

five octets of data, the FPGA assumes that it is supposed to write it to a register block based on

the first octet which is treated as an address. If one octet is sent, the FPGA assumes that it is

supposed to read back data from the register block. These assumptions forced me to divide the

clock frequency of the read/write logic of the FPGA to ~1MHz to reduce the chances of a data

under-run. If I were to do the same or a similar project again, I would investigate alternative

methods of USB control, and would choose one that would eliminate the need for reducing the

clock frequency. Also my VHDL structure could definitely use some improvement. Although it

performs the job required of it, the structure is in some respects disorganized. In all, I am using

seven different .vhd files. Some of these files are several hundred lines of code whereas some of

them are under 50. The logic contained in these files could be more evenly and logically

distributed resulting in more maintainable source code.

There are also several improvements that could be made on the computer software that

Page 8 of 11

Kelton Stefan, August 14th, 2009

enables a user to read and write to the FPGA. One thing would be to have the software write and

maintain a log file. This file would simply be a record of the settings being entered into the

FPGA according to date and time. This would be useful for the operators to be able to look back

and see exactly when they or someone else made a change to the operating parameters. Other

improvements could be made in the general area of usability. It would be nice to have a button

and keyboard shortcut to load all time entries. It would also be nice if when the user tabbed from

one input field to the next, that the field jumped from would be written to the FPGA. The error

handling could also be improved. Right now, if something goes wrong during a USB read or

write operation, the only option available to the user is to close the software and reopen it.

Although this is not that much of annoyance, it could be remedied by writing the error messages

in such a way as to allow the user to retry instead of simply exiting.

Once again, with the C++ code that I wrote this software in, many structural

improvements could be made. I know that in many ways, it is inefficient and not according to

good coding practice. Given more time, this code could be re-factored and made easier to read.

I was able to contribute something significant to the Klystron/Microwave Department

Test Laboratory. I am confident that my results will be very useful and I am optimistic about this

project's future.

Page 9 of 11

Kelton Stefan, August 14th, 2009

Acknowledgments:

Special Thanks to :

U. S. Department of Energy & DOE Office of Science
For providing the Science Undergraduate Laboratory Internship program.

National Science Foundation
For funding this internship.

SLAC National Laboratory
For hosting my internship.

Ron Akre
For electing to be a mentor to me, and for giving assistance and direction.

Jeff Olson
For assistance in writing the the VHDL code for the FPGA.

Greg Dalit
For soldering components on my device board, and finding parts.

Darius Grey
For technical and moral support while acting as my partner in this project.

References:

[1] Xilinx, Inc., General Products Division (GPD), “Xilinx DS312 Spartan-3E FPGA Family
Data Sheet,” [Online Document], 2008 Apr 18 (v3.7), [cited 2009 Aug 10],
Available HTTP
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

[2] Jason Stolzenberg, “USBMOD4 Datasheet,” [Online Document], 2005 Apr 7 (v1.1),
[cited 2009 Aug 10], Available HTTP
http://www.elexol.com/Download/documents/USBMOD4DS2.PDF

[3] Fred Dart, “FT245BM USB UART (USB - Serial) I.C.,” [Online Document], 2005 Nov
30(v1.7), [cited 2009 Aug 10], Available HTTP
http://www.ftdichip.com/Documents/DataSheets/DS_FT245BM.pdf

[4] Future Technology Devices International Ltd., “D2XX Programmer's Guide,” [Online
Document], 2007 Jul 7, [cited 2009 Aug 10], Available HTTP
http://www.ftdichip.com/Documents/ProgramGuides/D2XXPG34.pdf

[5] Roger Traylor, “ECE 474 - VLSI System Design,” [Online Source], [cited 2009 Aug
10], Available HTTP http://classes.engr.oregonstate.edu/eecs/winter2007/ece474/

[6] “VHDL reference material,” [Online Source], 2009 Feb 5, [cited 2009 Aug 10],
Available HTTP http://www.csee.umbc.edu/help/VHDL/

[7] Auburn University Department of Electrical & Computer Engineering, “VHDL Tutorial,”

Page 10 of 11

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.csee.umbc.edu/help/VHDL/
http://classes.engr.oregonstate.edu/eecs/winter2007/ece474/
http://www.ftdichip.com/Documents/ProgramGuides/D2XXPG34.pdf
http://www.ftdichip.com/Documents/DataSheets/DS_FT232BM.pdf
http://www.elexol.com/Download/documents/USBMOD4DS2.PDF

Kelton Stefan, August 14th, 2009

[Online Source], [cited 2009 Aug 10], Available HTTP
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html

[8] Sudhakar Yalamanchili, VHDL Starters Guide, 2nd edition [Online Book], Prentice
Hall, 2005, [cited 2009 Aug 10], Available HTTP
http://users.ece.gatech.edu/~sudha/book/starters-guide/

[9] “Clock divider,” [Online Source], 2008 May 10, [cited 2009 Aug 10], Available HTTP
http://snipplr.com/view/6173/clock-divider/

[10] “C++ Library Reference,” [Online Source], [cited 2009 Aug 10], Available HTTP
http://www.cplusplus.com/reference/

[11] Alex, “C++ Tutorial,” [Online Source], [cited 2009 Aug 10], Available HTTP
http://www.learncpp.com/cpp-tutorial/

[12] F. Costantini, D. Gibson, M. Melcher, A. Schlosser, B. Spitzak and M. Sweet, “FLTK
Programming Manual,” [Online Manual], 2009, [cited 2009 Aug 10], Available HTTP
http://www.fltk.org/doc-1.3/index.html

[13] Robert Arkiletian, “Beginner FLTK Tutorial,” [Online Document], 2005 Jan 4, [cited
2009 Aug 10], Available HTTP http://www3.telus.net/public/robark/

[14] “Convert array of char[] to octet[] and vice versa? C++,” [Online Forum], 2009 May 18,
[cited 2009 Aug 10], Available HTTP http://stackoverflow.com/questions/876213/

 convert-array-of-char-to-octet-and-vice-versa-c

[15] “Hexadecimal variable help!,” [Online Forum], 2008 Feb 27, [cited 2009 Aug 10],
Available HTTP http://www.daniweb.com/forums/thread111263.html#

[16] Todd A. Gibson, “Tips and tricks for using C++ I/O (input/output),” [Online Document],
2007 Mar 1, [cited 2009 Aug 10], Available HTTP
http://augustcouncil.com/~tgibson/tutorial/iotips.html#prepare

[17] Dean DeFino, “Using Type Casting to "Round Off" a Value in Memory,” [Online
Document], [cited 2009 Aug 10], Available HTTP
http://faculty.salisbury.edu/~dxdefino/RoundOff.htm

[18] Xiangxiong Jian, “A Small Class to Read INI File,” [Online C++ Source Code], 2005 Jun
27, [cited 2009 Aug 10], Available HTTP
http://www.codeproject.com/KB/cpp/IniReader.aspx

Page 11 of 11

http://www.codeproject.com/KB/cpp/IniReader.aspx
http://faculty.salisbury.edu/~dxdefino/RoundOff.htm
http://augustcouncil.com/~tgibson/tutorial/iotips.html#prepare
http://www.daniweb.com/forums/thread111263.html
http://stackoverflow.com/questions/876213/convert-array-of-char-to-byte-and-vice-versa-c
http://stackoverflow.com/questions/876213/
http://www3.telus.net/public/robark/#me
http://www.fltk.org/doc-1.3/index.html
http://www.learncpp.com/cpp-tutorial/
http://www.cplusplus.com/reference/
http://snipplr.com/view/6173/clock-divider/
http://users.ece.gatech.edu/~sudha/book/starters-guide/
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html

Kelton Stefan, August 14th, 2009

Tables and Figures:

 Figure 1: The custom FPGA based trigger device used in this project

 Figure 2: Trigger signal features

Appendix A: Tables and Figures

Kelton Stefan, August 14th, 2009

 Figure 3: Simplified diagram of data flow from the USB port to the registers

 Figure 4: Block diagram showing the features of the Trigger Control software in relation

Appendix A: Tables and Figures

Kelton Stefan, August 14th, 2009

 Figure 5: Trigger Control software user interface with the console messages in background

Appendix A: Tables and Figures

	CoverSheet.pdf
	TOC.pdf
	kstefan_first_full_body.pdf
	figures.pdf

