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Introduzione

Dopo la sua formulazione negli anni ’60, il Modello Standard delle Interazioni Fondamentali

è passato attraverso un’impressionante serie di successi, iniziata con la scoperta delle correnti

deboli neutre [1] e l’osservazione sperimentale dei portatori massivi delle interazioni deboli, i

bosoni W± e Z0 [2], [3]. Misure di alta precisione effettuate a LEP e SLAC verificano la validità

della teoria ad un livello di accuratezza senza precedenti e non mostrano alcuna deviazione

significativa dalle previsioni del Modello Standard.

Una delle caratteristiche più attraenti del Modello Standard è la descrizione dei fenomeni

che violano la simmetria tra materia ed antimateria (simmetria CP), e questa violazione dipende

unicamente (nel settore dei quark) da una fase debole nella matrice che descrive gli accoppiamenti

tra quark di diverso sapore.

La violazione di CP fu scoperta nel 1964 come un piccolo effetto nel mescolamento del

sistema K0− K̄0 [12] ma, dopo alcuni decenni di studi della fisica dei mesoni K, non si è potuta

ottenere una forte conferma del Modello Standard sul meccanismo che genera la violazione di

CP .

D’altro canto la fisica dei mesoni B si presta ad un numero piuttosto elevato di misure che

possono confermare o smentire questo aspetto della teoria.

L’obiettivo principale del programma di fisica degli esperimenti BABAR e Belle è la verifica

della descrizione della violazione di CP e della fisica dei sapori principalmente dallo studio

dei decadimenti dei mesoni Bu e Bd. Poco dopo l’inizio della presa dati nel 1999, è stata

scoperta la violazione di CP nell’interferenza tra decadimento e mescolamento nel canale d’oro

B0 → J/ψK0 [17] [18], mentre nel 2004 una cospicua asimmetria di carica è stata osservata nel

canale B0 → K+π− [16].

Esiste un terzo tipo di violazione di CP che può essere esibito dal sistema Bd− B̄d, la cosid-

detta violazione di CP nel mescolamento. Il Modello Standard prevede che questa asimmetria

sia molto piccola, potenzialmente fuori dalla portata degli esperimenti attuali, tuttavia numerosi

modelli di Nuova Fisica contengono nuove particelle ed accoppiamenti che possono innalzarla

fino a valori misurabili.

In questa tesi cercheremo di misurare effetti di violazione di CP nel mescolamento Bd − B̄d

all’esperimento BABAR. Uno dei due mesoni B prodotti al collisore elettromagnetico PEP-II

viene ricostruito utilizzando la tecnica della ricostruzione parziale, mentre il sapore dell’altro è

dedotto dalla carica di un kaone identificato tra i suoi prodotti di decadimento.

Data l’esiguità dell’effetto che vogliamo misurare, un aspetto cruciale di quest’analisi riguarda

il controllo delle asimmetrie di carica fittizie che sorgono dall’interazione delle particelle con il

materiale del rivelatore. Questo è ottenuto utilizzando un campione di controllo di kaoni carichi
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8 INTRODUZIONE

sugli stessi dati che impieghiamo per l’analisi della violazione di CP .

Dopo una breve introduzione sul formalismo teorico e sulla fenomenologia dei decadimenti

dei mesoni B ad una B-factory (capitoli 1 e 2), passeremo in rassegna nel capitolo 3 gli attuali

risultati sperimentali in questo campo.

Descriveremo quindi le caratteristiche del collisore e dell’apparato sperimentale (capitolo 4)

usati per effettuare la nostra misura. Il campione di dati disponibile e le tecniche di pre-selezione

degli eventi sono trattate nel capitolo 5, mentre il metodo di analisi è discusso in dettaglio nel

capitolo seguente.

Nei capitoli 7 e 8 diamo le definizioni delle funzioni densità di probabilità usate per descrivere

ciascuna componente del nostro campione e queste vengono validate utilizzando eventi simulati.

Campioni di Monte Carlo Toy e Monte Carlo ripesato sono usati nel capitolo 9 per verificare

la sensibilità della nostra procedura di fit ai parametri fisici collegati alla violazione di CP ; il

capitolo 10 discute la possibilità di modellizzare alcune delle componenti del nostro campione

direttamente sui dati.
Infine il fit sui dati reali è descritto nel capitolo 11 e la trattazione delle incertezze sistematiche

è svolta nel capitolo 12, mentre il risultato finale è presentato nel capitolo 13.



Introduction

After its formulation in 1960’s the Standard Model of Fundamental Interactions has gone through

an impressive series of successes, begun with the discovery of neutral weak currents [1] and the

experimental observations of the massive carriers of weak interactions, the W± and Z0 bosons

[2], [3]. High precision measurements performed at LEP and SLAC test the validity of the theory

to an unprecedented level of accuracy and do not show any significant deviations with respect

to the Standard Model predictions.

One of the attractive features of the Standard Model is the description of the phenomena

which violate the matter-antimatter symmetry (CP), and this violation uniquely depends (in

the quark sector) on a weak phase in the matrix describing the couplings among different quark

flavors.

CP -violation was discovered in 1964 as a tiny effect in the mixing of the K0 − K̄0 system

[12] but, after a few decades of study of the physics of K mesons, no strong confirmation of the

Standard Model can be obtained on the mechanism which generates CP -violation.

On the other hand the physics of B mesons is suitable for a pretty large number of measure-

ments which can confirm or disprove this aspect of the theory.

The main goal of the BABAR and Belle experiments physics program is to test the description

of CP -violation and flavor physics mainly from the decays of Bu and Bd mesons. Soon after

the beginning of data-taking in 1999, CP -violation was discovered in the interference between

mixing and decay in the golden channel B0 → J/ψK0 [17] [18], while in 2004 a large direct

charge asymmetry was observed in the B0 → K+π− channel [16].

There is a third kind of CP -violation which can be exhibited by the Bd − B̄d system, the

so called CP -violation in mixing. The Standard Model predicts this asymmetry to be small,

possibly out of reach of current experiments, but several New Physics models contain new

particles and couplings which can enhance it up to detectable levels.

In this thesis we search for CP -violation in Bd − B̄d mixing at the BABAR experiment. We

reconstruct one of the two B mesons produced at the PEP-II electromagnetic collider using the

partial reconstruction technique, while the flavor of the other B is inferred by the charge of a

kaon identified among its decay products.

Given the smallness of the physical asymmetry we want to measure, a crucial aspect of this

analysis is the control of spurious charge asymmetries arising from the interaction of particles

with the detector material. We accomplish this by using a control sample of charged kaons on

the same data we use in our analysis.

After a brief introduction of the theoretical framework and the phenomenology of the de-
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10 INTRODUCTION

cays of B mesons at a B-factory (chapters 1 and 2), we will review in chapter 3 the current

experimental results on this topic.

We will then describe the characteristics of the collider and the experimental apparatus

(chapter 4) used to perform our measurement. The available dataset and the event pre-selection

techniques are treated in chapter 5, while the analysis method is discussed in detail in the

following one.

In chapters 7 and 8 the definitions of the probability density functions used to model each

component of our sample are given and then they are tested in samples of simulated data.

Toy and reweighted Monte Carlo data are used in chapter 9 to test the sensitivity of our fitting

procedure to the physical parameters related to CP violation; chapter 10 discusses the possibility

of modeling some of the components of our sample directly on the data.
Finally the fit on the real data sample is described in chapter 11 and the treatment of

systematic uncertainties is done in chapter 12, while the final result is given in chapter 13.



Chapter 1

Theoretical Framework

In this chapter, a brief introduction of the Standard Model of fundamental interaction will be
given, with particular emphasis on the mechanism which gives rise to phenomena where the
symmetry between matter and anti-matter is broken. We will then review the phenomenology
of mixing and decay of a coherent state B0B0.

The different kinds of CP -violation in the BB system will then be discussed and finally
we will focus on the theoretical predictions of CP -violation in B0B0 mixing and their potential
implications in the search for New Physics beyond the Standard Model.

1.1 The Standard Model of Fundamental Interactions

The Standard Model (SM) is a global theory that unifies strong, weak and electromagnetic
interactions in a gauge theory formalism. In the Standard Model, the elementary particles,
or fields, are divided in two groups: half-integer spin particles (fermions), that represent the
constituents of matter, and integer-spin particles (bosons), mediating the interactions. Bosons
are divided into vector and scalar bosons, according to the value of their spin being 1 or 0
respectively.

Fermions are organized in two categories (quarks and leptons), each of which is divided into
three generations.

• Lepton doublets:
(

νe
e−

) (

νµ
µ−

) (

ντ
τ−

)

,

where the elements in the upper line have 0 electric charge and the elements in the lower
one have charge equal to -1.

• Quark doublets:
(

u
d

) (

c
s

) (

t
b

)

,

where the elements in the upper line have electric charge equal to +2/3 (electron charges)
and the elements in the lower one have charge equal to -1/3.

with their relative anti-particles.

The gauge (vector) bosons are:

• the photon, mediator of the electromagnetic interaction;

• the W± and the Z0, gauge bosons of weak interactions;

• 8 gluons, mediators of the strong interactions.

11



12 CHAPTER 1. THEORETICAL FRAMEWORK

The Higgs boson, a scalar field whose coupling with the other fields generates their masses
while preserving the gauge-invariance of the theory, has not been experimentally observed yet.

In the Standard Model [5], interactions are generated by a Lagrangian density that is in-
variant under transformations of the group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , which is made up
by the strong interaction symmetry group (or color symmetry) SU(3)C and the electro-weak
interaction group SU(2)L ⊗ U(1)Y , product of the weak isospin and hypercharge symmetries.
This Lagrangian density can be expressed as a sum of four contributions:

LSM = Lfermions + LY ang−Mills + LHiggs + LY ukawa , (1.1)

describing respectively:

• the dynamics of fermions in terms of their kinetic energy and their couplings to the gauge
bosons (Lfermions);

• the dynamics of gauge bosons in terms of their kinetic energy and their self-couplings,
associated to local (non-Abelian) symmetry groups (LY ang−Mills);

• the spontaneous symmetry breaking term, derived from the Higgs mechanism, by which
bosons acquire a finite mass (LHiggs);

• the fermion mass terms, derived from the same symmetry breaking mechanism and the
Yukawa couplings of the fermions with the Higgs scalar (LY ukawa).

The last two terms, that would not appear in a massless particle theory, stem from the
spontaneous breaking of the invariance of the SM Lagrangian in the group SU(3)C ⊗ U(1)Q,
where U(1)Q is the symmetry associated to electric charge conservation. This is due to the
introduction of a scalar Higgs field with a non-zero vacuum expectation value. The Lagrangian
1.1 not only accounts for massive fermions and gauge bosons, but also allows the violation of
the fundamental symmetry (CP symmetry) that is given by the composition of two discrete
symmetries, namely the parity inversion and the charge conjugation.

1.1.1 Violation of the CP symmetry in the Standard Model

For a given field theory, symmetry operators can be defined to describe peculiar invariances of the
Lagrangian density. We will refer to discrete symmetries when the corresponding operators have
a finite number of eigenvalues. Three among the most important discrete symmetry operators
are:

• the Parity operator (P ), whose action generates an inversion of the spatial field coordinates
(t, x) 7→ (t, −x). This is equivalent to a reversal of the momentum direction and the
helicity sign of a particle;

• the Time reversal operator (T ), that corresponds to an inversion of the time coordinate
(t, x) 7→ (−t, x);

• the Charge conjugation operator (C), that changes the field associated to a particle into
that of its anti-particle, i. e. reverses its charge and all its intrinsic quantum numbers.

The composition of all these symmetries (CPT ) is particularly meaningful since, according
to the CPT theorem [6], all Lorentz-invariant relativistic field theories must be strictly invariant
under the product of C, P and T . CP symmetry becomes therefore a very important property
of the theory because its violation implies also a violation of T . No violation of either C, P or
T has ever been observed experimentally in processes involving only the strong and electromag-
netic interactions. In weak interactions, conversely, C and P are largely violated as separate
symmetries [7], while the product CP (and so the T symmetry) is, to a very good approximation,



1.2. THE CKM MATRIX 13

Table 1.1: Transformation under CP of the fermionic bilinear forms (top lines). Transformation
under CP of scalar (H), pseudoscalar (A) and vector (W±.µ) bosons and of the derivative
operator (bottom lines). η = 1 for µ = 0 and η = −1 for µ = 1, 2, 3.

Term ΨjΨ
k iΨjγ

5Ψk Ψjγ
µΨk Ψjγ

µγ5Ψk

CP transformed ΨkΨ
j −iΨkγ

5Ψj −ηΨkγ
µΨj −ηΨkγ

µγ5Ψj

Term H A W±,µ ∂µ

CP transformed H −A −ηW±,µ η∂µ

conserved. Nevertheless, CP -violation has been detected in some rare weak processes involving
decays of neutral K and B mesons.

It is interesting to apply the CP transformation to the SM Lagrangian to check under
which assumption CP -violation can be theoretically allowed. Since eq. 1.1 must be covariant
under Lorentz transformations, the generic fermion fields (Ψ) can enter the Lagrangian only
in particular combinations known as bilinear and their first derivatives, while there are no
restrictions for boson fields. In table 1.1 all fermionic bilinear terms that are present in the
SM Lagrangian, the boson fields and the derivative operator are listed together with their
corresponding transformed term under CP . The Lagrangian must be a linear combination of
these terms with coefficients (e. g. masses, coupling constants, etc.) that can be real or complex.
When imposing the hermiticity of the Lagrangian, hermitian conjugate terms also appear in its
expression, therefore CP is not necessarily preserved in presence of complex coefficients.

More precisely, a physically meaningful complex coefficient is one that cannot be transformed
into a real quantity by a mere global phase rotation. When, in a given field theory, coefficients
whose phases are not convention-dependent are present, CP -violation can occur. In the SM
case, the complex phase appears in the term that determines the coupling of quarks to the W±

bosons (contained in the Lfermions part of eq. 1.1). This kind of coupling can be effectively
described by means of a complex quark mixing matrix, as we will now see in detail.

1.2 The CKM Matrix

The terms in the SM Lagrangian which describe the coupling between quarks and the W±

bosons are of the (maximally parity violating) form:

Lfermions = − g√
2
(J µW+

µ + J µ†W−
µ ) , (1.2)

where the W+
µ operator annihilates a W+ or creates a W− (vice-versa for the W−

µ ) and the
current operator J µ can be explicitly written as:

J µ =
∑

i

ūiγ
µ 1

2
(1 − γ5)Vijdi , (1.3)

for quarks. The field operators ūi annihilate u, c and t or create their antiparticles, while the di
operators annihilate d, s and b or create their antiparticles.

In the quark case, transitions between different generations are determined by the quantities
Vij, (with the indices i, j running through the three quark generations) that are the elements of
a 3 × 3 unitary matrix, the Cabibbo-Kobayashi-Maskawa (CKM) matrix [15].

From a physical point of view, theCKM matrix can be regarded as a rotation matrix between
the mass eigenstates basis (d, s, b) and a set of new states (d′, s′, b′) with diagonal couplings to
(u, c, t). Feynman amplitudes of processes where a W− is emitted (dj → W−ui, ūi → W−d̄j)
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Figure 1.1: Feynman box diagrams for charged-current weak interaction vertices.

are then proportional to Vij , while when a W+ is emitted (ui → W+dj , d̄j → W+ūi) they are
proportional to V ∗

ij, as depicted in figure 1.1.

The standard notation for the CKM matrix [8] is:







d′

s′

b′






=







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb













d
s
b






. (1.4)

The dominant terms in the CKM matrix are the diagonal ones, thus transitions between two
different quark generations are suppressed with respect to u → d, c → s and t → b transitions.
The key feature of the CKM matrix is that its elements can be non-trivially complex, allowing
for CP -violation phenomena in charged-current transitions.

Like fermion masses, the CKM elements are free parameters in the Standard Model and
their values are not predicted by the theory.

1.2.1 Parametrization of the CKM matrix - the Unitarity Triangle

Several representations of the CKM elements exist, according to particular choices of the
parametrization.

First we have to notice that the number of free parameters is smaller than the number
of independent coefficients of a generic 3 × 3 complex matrix, due to the physical constraints
the CKM matrix needs to satisfy. A general n × n complex matrix is specified by 2n2 real
parameters; the request of unitarity (V †V = V V † = 1) removes n2 free parameters. Moreover,
with n quark generations, we are free to arbitrarily re-define 2n − 1 quark field phases. So the
physically meaningful parameters are 2n2 − n2 − (2n − 1) = (n − 1)2 thus, with 3 generations,
the physics of the CKM matrix is determined by 4 real parameters. This is a remarkable result
because, since a real unitary matrix is specified by just 3 rotation angles, we are left with one
complex phase that cannot be removed by a re-definition of the quark fields.

One common parametrization for the CKM matrix is, in fact, expressed in terms of three
rotation angles, θ12, θ23 and θ13 and a complex phase, δ13 [4]:

V =







c12c13 s12s13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

−iδ13 −c12s23 − s12c23s13e
iδ13 c23c13






l, (1.5)

where cjk = cos θjk and sjk = sin θjk.

A more useful representation, as far as the hierarchy in the magnitude of its elements is
concerned, is the Wolfenstein representation [9], where the four real parameters are: A, ρ, η and
λ = sin θC ≃ 0.2272 ± 0.0010 [4], θC being the Cabibbo mixing angle. In this parametrization,
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the matrix elements can be expanded in powers of λ, yielding:

V =







1 − 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1 − 1

2λ
2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1






+ O(λ4) . (1.6)

The parameters of the two representations are connected by the relations:

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη). (1.7)

A very useful pictorial representation of the CKM parameters is offered by the Unitarity
Triangle formalism. Explicitly, the unitarity conditions of V are stated as:

∑

j=u,c,t

VjiV
∗
jk = δik , (1.8)

Let us consider eq. 1.8 in the case i 6= k. The sum of three complex numbers being equal
to zero corresponds to a triangle of vectors in the complex plane; we can in this way define
6 unitarity triangles made up by products of CKM parameters as sides. All triangles are
connected to one another by having the same area, proportional to the Jarlskog invariant [10]:

Area =
J

2
∝ Im [VudVcsV

∗
usV

∗
cd] (1.9)

This quantity is non-vanishing under the assumptions that the quark masses are not degenerate,
the mixing angles are different from 0 and π/2 and there is a non-zero complex phase.

Even though the areas are equal, the shapes of the triangles can be very different, since the
size of the sides depends on the powers of λ appearing in their definitions. Considering the
particular case i = d and k = b in eq. 1.8, we have:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.10)

and considering the Wolfenstein parametrization, all sides are found to be of order λ3. We will
take this particular triangle as the Unitarity Triangle. Figure 1.2 shows a common representation
of it; usually its sides are rescaled and rotated so that one of its sides lies on the real axis and its
vertices have coordinates (0, 0) and (1, 0). This choice is particularly useful, since the amount
of CP -violation generated by the CKM matrix is determined by the coordinates of the upper
vertex.

The position of the apex of the Unitarity Triangle can be determined (and even over-
constrained) by measurements performed at the B-factories, while additional information is

provided by CP -violation in the K0 −K
0

system and by the mixing of Bs − B̄s.

The upper vertex is usually represented using the coordinates (ρ̄, η̄) in the complex plane,
related to (ρ, η) by:

ρ̄ = ρ

(

1 − λ2

2

)

, η̄ = η

(

1 − λ2

2

)

. (1.11)

Since CP -violation is related to the displacement of the apex of the Unitarity Triangle from
the real axis, the measurement of its angles being non trivial (0 or π) would be a proof of CP -
violation. The angles of the Unitarity Triangle are related to the elements of the CKM matrix
through the relations:

φ2 ≡ α ≡ arg

[

− VtdV
∗
tb

VudV
∗
ub

]

, φ1 ≡ β ≡ arg

[

−VcdV
∗
cb

VtdV
∗
tb

]

, φ3 ≡ γ ≡ arg

[

−VudV
∗
ub

VcdV
∗
cb

]

. (1.12)
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Figure 1.2: The Unitarity Triangle, before (a) and after (b) the rotation of VcdV
∗
cb and the

normalization of its sides by the factor 1/|VcdV ∗cb|.

1.2.2 Experimental tests of the CKM mechanism

As we have seen, the presence of a non-trivial complex phase in the CKM mechanism can lead
to processes where the CP symmetry is violated. A crucial question is then whether this is the
only source of CP -violation in the Standard Model or its extensions.

In the last decade, the CKM mechanism has undergone a vast campaign of experimental
tests which has confirmed its substantial correctness. Potential deviations from its predictions
are now constrained to be small, carrying to the implication that either New Physics occurs at
energy scales much higher than the one accessible by present experiments or there are not new
sources of CP -violation other than the CKM phase.

Figures 1.3 and 1.4 depict the allowed regions in the (ρ̄, η̄) plane for the apex of the Uni-
tarity Triangle derived from several measurements performed at the B-factories and by other
experiments.

We are not going to discuss in detail each measurement, but we limit ourselves to stress the
overall consistency of the CKM picture and the very good agreement of the pretty large sample
of experimental observables employed in this analysis. The results of the global fit [11] are:

ρ̄ = 0.147 ± 0.029 ,

η̄ = 0.342 ± 0.016 .

1.3 B0 Mixing and Decay

In this section we will focus on the phenomenology of Bd mixing and decay. The same formalism
can be applied to the mixing and decay of K0, D0 and Bs mesons.
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Figure 1.3: Constraints on the position of the apex of the Unitarity Triangle on the (ρ̄, η̄)
complex plane. On the left plot the constraints from measurements of the angles α, β, γ and
2β + γ are shown. On the right one, all the other constraints, coming from measurements of
the Bd − B̄d and Bs − B̄s mass differences, the ratio |Vub/Vcb| and the εK parameter driving
CP -violation in the K0 − K̄0 system. The two independent set of measurements constrain the
apex to lie in two regions very well consistent with one another.
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Figure 1.4: Constraint on the position of the apex of the Unitarity Triangle obtained by com-
bining all the observables separately used in figure 1.3.
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Figure 1.5: Feynman box diagrams entering the B0B0 mixing.

We will call |B0〉 and |B̄0〉 the antiquark-quark (b̄d) and (d̄b) bound states. These are the
flavor (or interaction) eigenstates of the BB system.

A |B0〉 (|B̄0〉) can oscillate into a |B̄0〉 (|B0〉) through one of the amplitudes depicted by the
Feynman diagrams of figure 1.5.

The effective Hamiltonian which drives the mixing and decay of Bd mesons can be written
as:

H =

(

M − i
Γ

2

)

, (1.13)

where M and Γ are 2×2 Hermitian matrices. If CPT is preserved (as we will assume throughout
this thesis), we have M11 = M22 and Γ11 = Γ22.

The time evolution of the neutral B mesons doublet follows the Schroedinger equation:

i
d

dt

(

B0

B̄0

)

=

(

M11 − i
2Γ11 M∗

21 − i
2Γ∗

21

M2
21 − i

2Γ21 M22 − i
2Γ22

)(

B0

B̄0

)

. (1.14)

The Hamiltonian (mass) eigenstates, having masses mL and mH and decay widths ΓL and
ΓH respectively, can be written as:

|BL〉 =
1

√

1 + (q/p)2
(

p|B0〉 + q|B̄0〉) (1.15)

|BH〉 =
1

√

1 + (q/p)2
(

p|B0〉 − q|B̄0〉) , (1.16)

where p and q are complex parameters1. If |p| = |q|, |BL〉 and |BH〉 are also CP -eigenstates.

An initial state, produced as B0 or B0 at t = 0 evolves respectively as [30]:

|B0
phys(t)〉 = g+(t)|B0〉 − q

p
g−(t)|B̄0〉 (1.17)

|B̄0
phys(t)〉 = g+(t)|B̄0〉 − p

q
g−(t)|B0〉, (1.18)

where:

g±(t) =
1

2
(e−iωH t ± e−iωLt) , (1.19)

and

ωH,L = mH,L − i

2
ΓH,L . (1.20)

The experimental observables in B0 mixing are the mixing frequency ∆m = mH −mL, the
decay width difference ∆Γ = ΓL − ΓH and |q/p|, which drives CP -violation in mixing, as will
be shown in the following. In terms of M21 and Γ21, those observables can be expressed as:

1Throughout the rest of this thesis the ratio q/p will always be referred to the Bd system, whereas for the Bs,
we will use (q/p)s.
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(∆m)2 − 1

4
(∆Γ)2 = 4|M21|2 − |Γ21|2 (1.21)

∆m∆Γ = −4Re(M∗
21Γ21) (1.22)

|q/p| =

∣

∣

∣

∣

∣

√

2M21 − iΓ21

2M∗
21 − iΓ∗

21

∣

∣

∣

∣

∣

. (1.23)

In theB0B0 system, the ratio Γ21/M21 is O(m2
b/m

2
t ) ≃ 10−3, thus neglecting terms O(m4

b/m
4
t )

we can write:

∆m = 2|M21| (1.24)

∆Γ = −2|M21|Re

(

Γ21

M21

)

(1.25)

|q/p| = 1 +
1

2
Im

(

Γ21

M21

)

. (1.26)

The Matrix ElementsM21 and Γ21 have been computed at different perturbative orders in the
Standard Model and in several extensions. We will summarize the predictions on CP -violation
in B0B0 mixing in section 1.5.

1.4 CP violation in neutral and charged B mesons

CP -violation could manifest itself in the BB system in different ways. We will call Af (Āf ) the
amplitude of a B0 (B0) decaying to the final state f .

We can have Direct CP -violation (either in charged or in neutral B mesons) when we
have:

|Af | = |〈f |H|B〉| 6= |〈f̄ |H|B̄〉| = |Āf̄ | (1.27)

This kind of violation arises in decay channels where two or more amplitudes Aj of com-
parable magnitude are characterized by different strong (δj , CP -even) and weak (φj , CP -odd)
phases:

Af =
∑

j

Aje
iδjeiφj (1.28)

Āf̄ =
∑

j

Aje
iδje−iφj . (1.29)

The different behavior under the CP transformation of δj and φj determines the asymmetry.

This kind of CP violation has been first observed in the B0 → K+π− decay channel [16]
and is yet to be observed in charged B mesons.

The Indirect CP -violation or CP -violation in Mixing, which is the subject of this
thesis, arises from |q/p| being different from 1.

In this case, the probability of a B0 to oscillate into a B0 is different from the probability of
the conjugate process. As we will see in the following, the Standard Model predicts |q/p| to be
very close to 1 and no hint of CP -violation in mixing has been detected by recent and current
experiments.

The third case is the CP -violation in the interference between mixing and decay. It
is given by processes where B0’s and B0’s decay to a common final state f . Even if |Af | = |Āf |
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and |q/p| = 1, we can have CP -violation if:

Im(λ) = Im

(

q

p

Āf
Af

)

6= 0 (1.30)

The Standard Model prediction of large values of Im(λ) for decay channels such as B →
J/ψK0 motivated the construction of the B-factories which led, in 2001, to the discovery of
CP -violation in the BB system [17], [18].

1.5 Theoretical predictions

Given that the mass of the b quark (mb) is much larger than ΛQCD, an Operator Product
Expansion (OPE) can be used to compute the B meson decay width Γ [19].

As for the ∆Γ and |q/p| parameters, which we are interested in, the leading term in the
expansion is given by the so-called spectator effect contributions. This involves the computation
of the matrix elements M21 and Γ21, which are related to the dispersive and absorptive parts of
the ∆B = 2 transitions respectively.

A computation of M12 at the Next to Leading Order (NLO) in QCD has been carried out
in [20] and leads to:

M12 =
G2
FM

2
WηB

(4π)2(2MB0)
(V ∗
tbVtd)

2S0(xt)
〈

B̄|(b̄iγµ(1 − γ5)di)(b̄jγµ(1 − γ5)dj)|B
〉

, (1.31)

where xt = m̄2
t /m

2
W , ηB is the QCD correction factor and S0 is the Inami-Lim function. The

sum over the color indices i and j is implied.

The calculation of Γ21 differs from the one on M21 because of the presence of two expansion
parameters: Λ̄/mb and αs(mb), where mb is the mass of the b quark and Λ̄ ∼ (MB0 −mb) is
the relevant hadronic scale of the problem.

A calculation of Γ21 with NLO QCD corrections can be found in [21]. The effects of a non-
zero charm quark mass mc cannot be neglected in computing the amount of CP -violation in
mixing: in the limit of a vanishing mc, |q/p| is exactly equal to 1.

Up to the order of 1/mb, Γ21 can be written as

Γ21 = − G2
Fm

2
b

24πMB0

[

c1(µ2)
〈

B̄|O1(µ2)|B
〉

+ c2(µ2)
〈

B̄|O2(µ2)|B
〉

+ δ1/m
]

(1.32)

where

O1 = b̄iγµ(1 − γ5)di b̄jγµ(1 − γ5)dj (1.33)

O2 = b̄i(1 − γ5)di b̄j(1 − γ5)dj , (1.34)

µ2 is the scale of the ∆B = 2 operators, ci are the Wilson coefficients and δ1/m corresponds to
the 1/mb sub-leading corrections. They can be written as

ci = (V ∗
tbVtd)

2Duu
i + 2V ∗

cbVcdV
∗
tbVtd(D

uu
i −Dcu

i )

+ (V ∗
cbVcd)

2(Dcc
i +Duu

i − 2Dcu
i ) (1.35)

δ1/m = (V ∗
tbVtd)

2δuu1/m + 2V ∗
cbVcdV

∗
tbVtd(δ

uu
1/m − δcu1/m)

+ (V ∗
cbVcd)

2(δcc1/m + δuu1/m − 2δcu1/m) . (1.36)

The labels cc, cu and uu denote the intermediate quark pair contributing to Γ21, as depicted in
figure 1.6.
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Figure 1.6: Feynman diagram contributing to Γ21 at the Leading Order (LO) in QCD. q refers
to the light quark in the B meson, the d quark in our case.

Figure 1.7: Feynman diagram contributing at the NLO to the ∆B = 2 transitions
.

The computation of NLO corrections to Γ21 involves the calculation of the Feynman diagrams
shown in figure 1.7 and the ones containing one-loop self-energy corrections to the external fields.

The final results show that NLO corrections on the evaluation of |q/p| are numerically im-
portant, as can be seen from figures 1.8 and 1.9.

The first shows the theoretical distributions for |q/p| - 1 before and after applying the NLO
corrections, the second shows the (pretty strong) dependence of it on the CKM angle β.

The numerical result reported by [21] is:

∣

∣

∣

∣

q

p

∣

∣

∣

∣

− 1 = (2.96 ± 0.67) × 10−4 . (1.37)

The amount of CP violation predicted by the Standard Model is therefore one order of
magnitude smaller than the current experimental limits (see chapter 3). For completeness, we
give also the result for the Bs system, where CP -violation in mixing is further suppressed by a
factor sinβs ∼ λ2, where λ is the sine of the Cabibbo angle:

∣

∣

∣

∣

q

p

∣

∣

∣

∣

s

− 1 = (1.28 ± 0.27) × 10−5 . (1.38)

The uncertainties on the Bd and Bs mixing parameters are dominated by the ones on mc/mb

and the CKM parameters. The dependence on the B-parameters, derived from Lattice QCD
(see e.g. [22]), is very weak, thus these predictions are basically free from hadronic uncertainties.
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Figure 1.8: Theoretical distributions for |q/p| - 1 at the LO (red histogram) and at the NLO
(blue).

Figure 1.9: Dependence of |q/p| - 1 as a function of the CKM angle β, again shown at the LO
(dashed red line) and at the NLO (solid blue).
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1.6 Theoretical interest in |q/p|d
There is a strong interest in the community of theorists on the experimental measurements (or
limits) of |q/p|. We have seen in the previous section that the theoretical prediction on CP -
violation in mixing is pretty strong and precise in the Standard Model, thus any significant
deviation from it would be a hint of new particles or interactions entering the box diagrams of
figure 1.5.

Moreover, an extensive experimental campaign on the properties of the Bs − B̄s system has
begun or is about to begin at the hadronic colliders. It has been pointed out ([21], [23]) that
the measurement of ratios of observables of the Bd− B̄d and Bs− B̄s systems could be basically
free of hadronic uncertainties and would therefore be a strong test of the theory in sight of a
high precision era made possible by a Super B-factory [25].

The quantity which is often measured to refer to CP -violation in B0 B0 mixing is ASL (see
also eq. 2.9):

ASL =
1 − |q/p|4
1 + |q/p|4 ≃ 2

(

1 −
∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

. (1.39)

It has been already pointed out by [24] that, within a Superweak theory of CP -violation,
ASL could be enhanced up to the percent level. Despite the loss of interest for this framework,
more recently the effects of New Physics in a scenarios where the CKM matrix is real have been
taken into account in [26]. While preserving the consistency with other CP -observables like
AB0→ψK0 or AB0→π+π− , it is shown that ASL could reach the current experimental limit.

It is generally believed (simply assuming the unitarity of the CKM matrix and that tree level
processes are dominated by the exchange of SM gauge bosons) that New Physics, contributing
to an enhancement of ASL would enter the dispersive part of the Hamiltonian M21, leaving Γ21

basically unchanged.

Under the above (weak) assumptions, we can parametrize the NP effects introducing the
amplitude CBd

and the phase ϕBd
:

MNP
21 = C2

Bd
e2iϕBdMSM

21 . (1.40)

The semileptonic asymmetry can then be written as (see [27]):

ASL = Im

(

Γ21

M21

)SM cos 2ϕBd

CBd

− Re

(

Γ21

M21

)SM sin 2ϕBd

CBd

. (1.41)

Given the size of Im(Γ21/M21), even a small ϕBd
can enhance induce a significant enhance-

ment of ASL. Depending on the value of ϕBd
, the sign of the asymmetry could also be opposite

to the one predicted by the Standard Model.

Several New Physics models are taken into account in the literature. Some Supersymmetric
(SUSY) scenarios are treated in [28]. An enhancement by up to one order of magnitude on
the SM prediction can be achieved in some particular scenario through the contributions of soft
scalar masses at a scale of few hundreds of GeV. It is also stressed that, if SUSY is responsible
of a significant contribution to CP -violation in mixing, ASL can be used to distinguish among
different soft supersymmetry-breaking models.

The effects of New Physics in Littlest Higgs models are treated in [27]. In these models,
new flavor interactions are introduced, besides the ones coming from the CKM matrix. These
new contributions affect several CP -observables and the correlations between them are studied.
In particular, the correlation between AB0→ψK0 and ASL is shown in figure 1.10, showing that
there is still room for significant deviations from the Standard Model predictions.

Precision measurements of the mixing parameters of the Bd−B̄d systems are also required for
the reduction of theory uncertainties which will be possible once new measurements on Bs− B̄s
will be available from the Tevatron or the Large Hadron Collider. A measurement of the possible
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Figure 1.10: The ratio ASL/A
SM
SL is plotted versus the CP -asymmetry measured on B0 → ψK0

(data points). The shaded areas represent the regions allowed by current experimental data.

New Physics contribution φ∆
s to the mixing phase of the Bs − B̄s system recently performed by

the D∅ Collaboration ([29]) in an angular analysis of Bs → J/ψφ decays, combined with other
experimental information (see [23]), yields the result:

sin(φ∆
s − 2βs) = −0.77 ± 0.04 ± 0.34 , (1.42)

(the first quoted error comes from theoretical uncertainties, the second from the experiments),
which is compared to the Standard Model prediction sin(−2βs) = −0.04 ± 0.01 ± 0.34. A
discrepancy of about 2 standard deviations is certainly not sufficient to claim for New Physics,
but nevertheless points to something which needs to be carefully inspected in the near future.



Chapter 2

Phenomenology of B decays at a
B-factory

In this section, we will treat the phenomenology of a coherently produced pair of B0B0 mesons,
which is the case of a B-factory. Different methods of determining the flavor of a B meson will
be briefly presented and the difference between lepton tags and kaon tags, due to the presence
of Doubly Cabibbo Suppressed decays, will be discussed. Finally, in section 2.5, we will treat
the experimental attractiveness of B0 → D∗+ℓ−ν̄ℓ decays, which will be used in our analysis.

2.1 Time evolution of a coherent B0B0 pair

In the B-factory environment, B0 mesons are produced through the decay of the vector meson
Υ (4S), created by the collision of an e+e− pair with an energy, in the center of mass frame,
corresponding to the mass of the Υ (4S).

The Υ (4S), which carries the quantum numbers JPC = 1−−, decays mostly, and with ap-
proximately the same probability, to a pair of B+B− or B0B0 mesons. The decay of the Υ (4S)
is driven by the strong interaction, thus the quantum number relative to charge conjugation is
preserved.

As long as both the B mesons have not decayed, they are forced to carry opposite flavor;
in the neutral case, once one of the mesons decays, the other is free to oscillate to the opposite
flavor, with frequency given by ∆m.

If one of the B mesons decays to the final state f1 and the other to the final state f2, we will
call A1,2 and Ā1,2 the amplitudes of respectively a B0 or B0 decay to the final states f1,2 [30].
The overall amplitude of the coherent state is given by:

A = a+g+(t) + a−g−(t) , (2.1)

where

a+ = −A1Ā2 + Ā1A2 (2.2)

a− =
p

q
A1A2 −

q

p
Ā1Ā2 . (2.3)

We can now write the differential decay rate,

dN

dt
= ∝ e−Γ|∆t|

[

1

2
(|a+|2 + |a−|2) cosh(∆Γ∆t/2) +

1

2
(|a+|2 − |a−|2) cos(∆m∆t) −

− Re(a∗+a−) sinh(∆Γ∆t/2) + Im(a∗+a−) sin(∆m∆t)

]

(2.4)
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where ∆t is the difference between the decay times of the two B mesons. Given the current
experimental limits on ∆Γ [30], we will neglect, from now on, the term Re(a∗+a−) sinh(∆Γ∆t/2).

2.2 Probability Density Functions - lepton tag

Besides fully reconstructing a B meson to final states accessible only by a specific flavor (the so
called flavor eigenstates, Bflav), which has a very low efficiency (only a few permille), several
techniques are used to measure the flavor of a B meson. A tagging technique is characterized
by its efficiency ε (i. e. the fraction of B mesons which are selected by the algorithm) and by
the probability ω of assigning the wrong flavor to the B meson under study. Having defined
the dilution as D = 2(1− ω), the statistical power (tagging efficiency) of a tagging technique is
given by:

Q = εD2 . (2.5)

The highest purity is achieved by the lepton tag methods, which exploits the identification of
semileptonic B decays. Those decays are dominated by tree level amplitudes, where the b quark
decays to a c (or a u) through the emission of a virtual W− boson, which decays to a charged
lepton (either ℓ− or µ−) and its relative anti-neutrino1. Given that the semileptonic decays are
dominated by a single tree level amplitude, we do not expect to have direct CP -violation at
observable levels in these decays.

A positively charged primary lepton tags a B0 while a negative one tags a B0. Wrong flavor
attributions (mistags) arise from hadrons incorrectly identified as leptons of from secondary
leptons originating from semileptonic decays of charmed mesons among the decay products of
the original B, which have opposite charge with respect to the primary ones. This source of
mistags can be effectively reduced by applying a cut on the lepton momentum.

The typical performance for this method of B-flavor tagging shows an efficiency of ∼ 8.5 %,
with a mistag probability of ∼ 3 % [31].

Due to the existence of B0B0 mixing, the two B’s can be tagged as B0-B0, B0-B0 (Unmixed
Events) or as B0-B0, B0-B0 (Mixed Events).

Neglecting mistags, the Probability Density Function (PDF) normalized to unity for having
an Unmixed Event is:

F(∆t) =
Γ

2
e−Γ|∆t|

[

cosh(∆Γ∆t/2) + cos(∆m∆t)

]

. (2.6)

In the case of Mixed Events, we need to distinguish between B0-B0 events (Mixed Positive)
and B0-B0 (Mixed Negative). The PDF’s for these two categories are, respectively:

F(∆t) =
Γ

2
e−Γ|∆t|

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2 [

cosh(∆Γ∆t/2) − cos(∆m∆t)

]

(2.7)

F(∆t) =
Γ

2
e−Γ|∆t|

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2 [

cosh(∆Γ∆t/2) − cos(∆m∆t)

]

. (2.8)

The effect of |q/p| being different from 1, while preserving the PDF’s shapes of the CP -
conserving case, affects the relative normalization of Mixed Positive and Negative events. CP -
violation in mixing can be measured through the Semileptonic Asymmetry ASL, computed from
the number of Positive and Negative Mixed events:

ASL =
N(B0B0) −N(B0B0)

N(B0B0) +N(B0B0)
=
N(ℓ+ℓ+) −N(ℓ−ℓ−)

N(ℓ+ℓ+) +N(ℓ−ℓ−)
=

1 − |q/p|4
1 + |q/p|4 ≃ 2

(

1 −
∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

, (2.9)

where the last equality holds for |q/p| close to 1, which is our case.

1The same applies to the conjugate process.
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Figure 2.1: Cabibbo favored (left) and Doubly Cabibbo suppressed (right) amplitudes for the
final state D+π−. The interference between the CKM-favored amplitude (left diagram) and the
doubly CKM-suppressed (right) gives rise to distortions in the theoretical pdf’s which need to
be taken into account.

Current experimental limits on |q/p| obtained with lepton tags will be presented in chapter
3.

2.3 Effects of Doubly Cabibbo Suppressed Decays

The statistical power of the lepton tag technique can be superseded by identifying charged kaons
among the decay products of a B meson. As in the lepton case, the charge of the K is correlated
to the flavor of the mother B, even though in this case the mistag rate is significantly higher. A
positive kaon is likely to originate from a B0 while a negative one is likely to come from a B0.

The typical efficiency of kaon tagging is in the range 11 − 17 %, with mistag probability
4.5 − 15 %, depending on the requirements applied in the selection of the K± track [31].

The lower purity is not the only feature distinguishing lepton tags from kaon tags. It has
been pointed out in [32] that the existence of Doubly Cabibbo Suppressed decays could lead to
observable effects in the measurements of CP -violating processes in the B0B0 system.

Let us consider a decay channel of interest for flavor tagging: B → D+π− (the D+ decays
with a probability of ∼ 30% to a K−). As shown in figure 2.1, this final state can be accessed
by a B0 through the Cabibbo favored (CF) process b → cūd or by a B0 through the Doubly
Cabibbo suppressed (DCS) b̄→ ūcd̄.

The magnitude of the DCS amplitude ADCS is expected to be, with respect to the CF one
ACF :

ADCS

ACF
≈
∣

∣

∣

∣

∣

V ∗
ubVcd
VcbV

∗
ud

∣

∣

∣

∣

∣

≈ 0.02 , (2.10)

and the relative weak phase between the two is the CKM angle γ.

For B-flavor tagging purposes we are going to consider the tagging category T , which is
given by all the final states with a charged kaon which passes our selection. Considering a final
state f , belonging to the tagging category T, and accessible to a B0 through a CF amplitude
ACF,f and to a B0 through a DCS amplitude ADCS,f , we have the usual parameter:

λf =
q

p

ADCS,f

ACF,f
= rfe

i(2β+γ)eiδf , (2.11)

where rf is a real number of order 0.02, δf is the strong phase difference between the two
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amplitudes and 2β is the weak phase of the B0B0 mixing:

q

p
=

∣

∣

∣

∣

q

p

∣

∣

∣

∣

e−2iβ . (2.12)

Now considering all the final states in the tagging category T , and neglecting quadratic terms
in rf as it is reasonable to do, we get:

r′eiδ
′

=

∑

f∈T εf |Af |2rfeiδf
∑

f∈T εf |Af |2
, (2.13)

where εf is the relative tagging efficiency for the state f .

From the inequality:

|r′| ≤
∑

f∈T εf |Af |2|rf |
∑

f∈T εf |Af |2
, (2.14)

we notice that, unless all the final states have roughly the same strong phases, the different
contributions tend to cancel out.

In section 2.4, we will discuss how the presence of Doubly Cabibbo suppressed decays affect
our analysis of CP -violation in mixing.

2.4 Probability Density Functions - Kaon tag

In this analysis, we will identify one of the B mesons through partial reconstruction (see 2.5)
of the decay B0 → D∗+ℓ−ν̄ℓ (the charge of the lepton tags its flavor). We will refer to it as the
Brec, or the B in the decay side. We will assume throughout the rest of this thesis that there is
no CP -violation in the decay side.

Of the other B, which will be called Btag or B in the tag side, we will select only a charged
kaon among its decay products. Doubly Cabibbo suppressed decays will affect only the tag side.

In the computation of the overall PDF, we re-write equations 2.2, 2.3 as:

a+ = −AtagĀrec + ĀtagArec (2.15)

a− =
p

q
AtagArec −

q

p
ĀtagĀrec . (2.16)

Considering Doubly Cabibbo suppressed decays affecting Atag and Atag, and defining the
two effective parameters:

b = 2r′ sin(2β + γ) cos(δ′) (2.17)

c = −2r′ cos(2β + γ) sin(δ′) , (2.18)

we are now able to write the global PDF’s for Unmixed (B0B0) and Mixed (B0B0 or B0B0)
events. Unlike the lepton tag case, we will need to separate the Unmixed events Btag = B0

(which we will call Positive from the most likely charge of the tag side kaon) from the Negative
ones Btag = B0.

In order to separate the four categories of events, we introduce the indices st and sm. st
is 1 (-1) for the Btag being a B0 (B0), sm is 1 (-1) for an Unmixed (Mixed) event, as it is
summarized in table 2.1.

The four PDF’s are then written as:

st = 1, sm = −1 :

F(∆t) =
Γ

2(1 + r′2)
e−Γ|∆t|

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2[
(

1 +

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

r′2
)

cosh(∆Γ∆t/2) − (2.19)
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Table 2.1: Value of st and sm indexes for the four possible signal final states.

Brec is a Btag is a st sm
B0 B0 1 -1
B0 B0 1 1
B0 B0 -1 1
B0 B0 -1 -1

−
(

1 −
∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

r′2
)

cos(∆m∆t) +

∣

∣

∣

∣

q

p

∣

∣

∣

∣

(b+ c) sin(∆m∆t)

]

st = 1, sm = 1 :

F(∆t) =
Γ

2(1 + r′2)
e−Γ|∆t|

[

(

1 +

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

r′2
)

cosh(∆Γ∆t/2) + (2.20)
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q

p
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∣

∣

∣

q

p

∣

∣

∣

∣

(b+ c) sin(∆m∆t)

]

st = −1, sm = 1 :

F(∆t) =
Γ

2(1 + r′2)
e−Γ|∆t|
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1 +
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p

q
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∣

∣
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cosh(∆Γ∆t/2) + (2.21)
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]

st = −1, sm = −1 :
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∣
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(b− c) sin(∆m∆t)

]

The above PDF’s with arbitrary (and unrealistically large) values of the CP -violating pa-
rameters are drawn in figures 2.2, 2.3.

It can be seen that the only effect of |q/p| being different from 1 is to cause a difference in
the normalization of Mixed Positive and Mixed Negative events, with no effect on PDF’s shapes
and on the normalization of Unmixed Events.

On the other side, DCS decays, adding terms proportional to sin(∆m∆t), do not affect the
overall normalization of the PDF’s, but cause distortions on their shapes, which are more evident
in the Mixed samples.

2.5 The B0 → D∗+ℓ−ν̄ℓ decay

The B0 → D∗+ℓ−ν̄ℓ semileptonic decay is characterized by a clear experimental signature and
a large branching fraction: (5.29 ± 0.19) × 10−2 [4]. These properties allow the selection of big
samples of events with favorable signal/background ratio.
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Figure 2.2: PDF’s for Unmixed Positive (top left plot), Mixed Positive (top right), Unmixed
Negative (bottom left) and Mixed Negative (bottom right) in the case where |q/p| is the only CP
violating parameter. To enhance the effect, an unrealistically large value has been chosen: the
black curve represents the CP -conserving case, the red one has been generated with |q/p| = 1.05
and the blue curve has |q/p| = 0.95.
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Figure 2.3: PDF’s for Unmixed Positive (top left plot), Mixed Positive (top right), Unmixed
Negative (bottom left) and Mixed Negative (bottom right) in the case where the effective pa-
rameters b and c are the only CP violating parameters. To enhance the effect, unrealistically
large values have been chosen: the black curve represents the CP -conserving case, the red one
has been generated with (b, c) = (0.15, 0.) and the blue curve has (b, c) = (0., 0.05).
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For this reason this process has been widely used in the past to determine several properties
of the B0 mesons, such as the lifetime τB0 and the mixing frequency ∆m [33], [34]. In those
measurements, the D∗+ is reconstructed through its decay D∗+ → D0π+ and the D0 is identified
by means of few final states which provide high selection efficiency and high background rejection.
We will refer to this method as exclusive reconstruction.

Due to the restricted phase-space of the D∗+ → D0π+ transition, it is however possible
to tag this process by identifying only the charged pion, without reconstructing the D0. This
inclusive approach allows the selection of a sample of events about ten times larger than the
one used by the exclusive analysis.

This method has been extensively used by the ARGUS and CLEO collaborations (taking
data at the Υ (4S)) to determine several B0 and D0 properties [35] and by DELPHI and OPAL
to measure Vcb, τB0 and ∆m [36], [37].

More recently, the BABAR collaboration performed several measurements using the inclusive
(or partially reconstructed, since only the charged pion is used among the D∗+ decay products)
sample. These include the measurement of τB0 [38], of ∆m [39], of the Branching Fraction
Υ (4S) → B0B0 (with double tagging) [40] and the measurement of the Branching Fraction
D0 → K−π+ [41].

The basic kinematical property that allows the partial reconstruction of B0 → D∗+ℓ−ν̄ℓ is
the fact that the charged pion is emitted with a very low momentum (roughly 40 MeV/c) in the
D∗+ rest frame. Hereafter it will be referred to as the soft pion (πsoft). In a B0 → D∗+ℓ−ν̄ℓ
decay, the πsoft flight direction lies in a cone of ∼ 1 rad aperture, with axis coincident with the
flight direction of the mother D∗+. The magnitude of the D∗+ momentum can be estimated
through a polynomial function of the magnitude of the soft pion momentum.

TheB0 → D∗+ℓ−ν̄ℓ decay can thus be detected with high efficiency by selecting an oppositely
charged (ℓ, πsoft) pair, where ℓ (as we will intend throughout the rest of this thesis) is either an
electron or a muon.

Assuming (as it is reasonable to do, due to the low momentum of the B0 meson, pB ≃ 340
MeV/c in the Υ (4S) rest frame, as compared to its energy, EB ≃ mB = 5.27 GeV) that the B0

is produced at rest in the c.m. frame, we can compute the quantity:

m2
ν = (PB0 − PD∗ − Pℓ)2, (2.23)

where Px indicates the four-momentum of particle x. m2
ν is an efficient discriminating variable.

For a true B0 → D∗+ℓ−ν̄ℓ decay it coincides with the quadratic invariant mass of the neutrino,
which is the only undetected particle in the event.

Figure 2.4 shows the m2
ν distributions for the BABAR data sample which will be used in

this analysis and the properly normalized Monte Carlo events. It can be seen that signal events
distribute over a peak centered at zero whose width is dominated by the approximations taken in
the computation of m2

ν , while background events, besides a small peaking component, populate
a wider region which extends towards negative values of m2

ν .
Figure 2.4 clearly shows the large number of B0B0 events which can be selected by using

the partial reconstruction technique, with the favorable signal/background ratio. The detailed
discussion of the composition of our data sample will be treated in section 5.5.
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Figure 2.4: m2
ν distribution for data (points) and the various components of Monte Carlo (his-

tograms) in events with at least one charged kaon candidate. The white histogram represents
signal events, while the other colors are referred to the different kind of backgrounds which will
be thoroughly discussed in section 5.5. Monte Carlo has been normalized to match the differ-
ence between on-peak data and properly renormalized off-peak data, which we use to model the
continuum background.
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Chapter 3

Experimental Results

In this chapter, we will review the recent experimental activity carried on by BABAR and other
High Energy Physics experiments in this field and summarize the current experimental limits
on |q/p|.

3.1 |q/p| from dileptons at the B-factories

As we have seen in chapter 2, the measurement of the asymmetry ASL allows the measurement
of |q/p|, through the relation expressed by equation 2.9.

The large statistics of B mesons collected by the B-factories, their clean environment and the
high resolution in decay vertices reconstruction permit to perform very precise measurements
which would not be possible at a hadronic collider.

The Belle Collaboration presented a measurement of ASL, based on a data sample of 78 fb−1

of Υ (4S) decays, which corresponds to roughly 84 millions of BB events [42].

The B mesons are flavor-tagged by selecting two leptons (either electrons or muons) with
momentum (in the Υ (4S) rest frame) in the range 1.2 < pℓ < 2.3 GeV/c. The lower cut is
imposed in order to exclude leptons originating from semileptonic decays of charmed mesons
(which carry opposite charge with respect to the primary leptons from semileptonic B decays)
while the higher cut is used to suppress continuum events (for the definition of continuum
background see section 4.1.3). Several other requests are applied to reject events with photon
conversions (γ → e+e−) in the detector material, events with a J/ψ candidate and misidentified
hadrons coming from continuum jet-like events.

For the measurement of ASL, the leptons are requested to carry the same electric charge.
Although not strictly necessary for the overall determination of ASL, a binned Maximum Like-
lihood fit on the distance ∆z between the projections onto the beam axis (z) of the two decay
vertices is performed. The PDF used has the form:

P±± = N±±e−|∆z|/τ
B0 (1 − cos(∆m∆z)) , (3.1)

where N±± are the normalization factors for Mixed Positive and Negative events (from which
ASL is computed).

Charge asymmetries in the detector response are studied by means of the following control
samples: e+e− → e+e−(e+e−) (for electrons) and simulated muon tracks added to data hadronic
events for muons. The probability of selecting a hadron as a lepton (mostly a muon) is studied
with samples of K0

S → π+π−, φ→ K+K− and Λ→ pπ− (Λ̄→ p̄π+).

The largest contribution to the systematic uncertainty comes from the subtraction of con-
tinuum background (taken from 9 fb−1 of data collected using a collision energy slightly below
the mass of the Υ (4S)).

35
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Figure 3.1: The top plot shows the results of the binned fit on |∆z|. Points with error bars
represent the data, the dotted line is the background caused by wrong tags (WT), the dot-
dashed line is the background with correct tags (CT), the dashed line is the signal component
and the sum of all the components is given by the solid line. The bottom plot shows the residuals
of the |∆z| fit.

Figure 3.2: ASL as a function of |∆z|.
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Figure 3.3: Results of the Maximum Likelihood fit of the BABAR dilepton analysis. In the top
plot the asymmetry between equally charged leptons is shown (this is equivalent to ASL), while
in the bottom plot the asymmetry ACP/CPT is represented. Both results are consistent with
zero.

Figures 3.1 and 3.2 show the results of the fit and the dependence of the measured ASL as
a function of |∆z|.

The final result is:
ASL = (−1.1 ± 7.9 ± 7.0) × 10−3 , (3.2)

which corresponds to:
|q/p| − 1 = (0.5 ± 4.0 ± 3.5) × 10−3 , (3.3)

where the first quoted error is the statistical one, while the second is the systematic.

The dilepton sample is also exploited by the BABAR Collaboration, in an analysis on a data
sample of about 232 million of BB pairs [43].

With respect to Belle’s one, this analysis is more sophisticated and allows a test also on CPT
violation, by taking into account also oppositely charged leptons. The asymmetry measured, in
this case is:

ACP/CPT =
N+−(∆t > 0) −N+−(∆t < 0)

N+−(∆t > 0) +N+−(∆t < 0)
. (3.4)

The momentum range used in the preselection of lepton candidates is 0.8 < pℓ < 2.3 GeV/c;
the dilution originating from semileptonic decays of charmed mesons is restored by means of
a neural network which discriminates between primary and secondary leptons using a set of
kinematic variables. Also, the effects of a non-zero ∆Γ are taken into account.

As in the previous case, detector related charge asymmetries need to be taken care of by
means of suitable control samples: radiative Bhabha events for electrons and e+e− → µ+µ−γ
for muons. The probability of mis-identifying a hadron is estimated on the control samples:
D0 → K−π+, Λ̄ → pπ− (and charge conjugates), K0

S → π+π−, and one-prong and three-prong
τ decays.

Figure 3.3 shows the results of the nominal fit, which takes into account both the CP -
violation in mixing due to |q/p| being different from 1 and other potential CPT -violating effects.
The quoted result, which is currently the leading measurement, for CP -violation in mixing is:
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Figure 3.4: The four different configurations of the magnetic field in the D∅ detector used in
the data-taking.

|q/p| − 1 = (−0.8 ± 2.7 ± 1.9) × 10−3 , (3.5)

where again the first error is statistical and the second systematic.

3.2 |q/p| from dimuons at the Tevatron

The parameter |q/p| can be measured also in the very different environment of a hadronic
collider, such as the Tevatron at FNAL, where protons and anti-protons collide head-on with an
energy (the laboratory frame coincides with the center of mass frame) of 1.96 TeV.

The D∅ Collaboration recently presented a measurement of ASL, based on an integrated
luminosity of 1.0 fb−1, from dimuon events [44]. Given that Bd and Bs are produced in roughly
the same amount and that the two states are not distinguishable in this kind of analysis, this
is a measurement of an average between |q/p|d and |q/p|s and it is therefore complementary to
the other measurements presented in this chapter.

The measurement of tracks momenta is performed by the D∅ detector taking advantage of
the magnetic field produced by a central solenoid, surrounded by external toroids. The polarity
of both the solenoid and the toroids can be inverted, giving the possibility of taking data with
four different configurations of the magnetic field (see figure 3.4).

This feature is particularly useful for controlling the charge asymmetries which could arise
from mechanical imperfections on the detector, displacements of the beam spot and so on. By
swapping the polarity of either the solenoid or the toroids, a track that has been called positive
in the first configuration, will be called negative in the second; by taking the same amount of
data in the four possible configurations, all the asymmetries due to geometrical imperfections
are canceled out, at the first order.

The events preselection consists of a series of quality cuts on the two candidate tracks in order
to suppress the hadronic and cosmic backgrounds and to ensure that the two muon candidates
originate from the beam spot. A positive charge asymmetry is measured in the tracking efficiency
of the central tracker, due to the presence of charged particles originating from interactions of
primary tracks with the detector material.

The asymmetry ASL is computed from the number of µ+µ+ and µ−µ− events, once all
detector related effects have been corrected and a correction factor f , which takes into account
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the other physical processes which could give a dimuon event and dilute the asymmetry, is
calculated.

The final result is:
ASL = (−9 ± 4 ± 3) × 10−3 , (3.6)

the dominant systematic uncertainty comes from the presence of prompt muons and the decays
of K±.

3.3 |q/p| from Partially Reconstructed B0 → D∗+ℓ−ν̄ℓ events - lep-
ton tag

The limiting factor of BABAR dileptons analysis is the need to rely on dedicated control samples
in order to manage the detector related charge asymmetries. This can be superseded by per-
forming an analysis in which the reconstruction and flavor-tagging are carried out using different
techniques for the two B mesons.

The BABAR Collaboration recently presented a preliminary measurement of CP -violation in
B0B0 mixing, using a data sample roughly equivalent to the one used in [43]. In this work
one of the two B mesons is partially reconstructed (for details about the partial reconstruction
technique, see section 2.5) through the decay chain B0 → D∗+ℓ−ν̄ℓ, D

∗+ → D0π+; its flavor
is tagged by the electric charge of the lepton. As for the other B, its flavor is determined by
identifying a high momentum lepton (1.0 < pℓ < 2.35 GeV/c for electrons, 1.1 < pℓ < 2.35
GeV/c for muons) among its decay products.

The loss in statistics due to the tighter selection criteria is compensated by the gain in
sensitivity due to the strong reduction of the B+B− component and the time-dependent fit to
both mixed and unmixed events, which allows one to separate and fit to the data the charge
asymmetries from the two sides.

Figure 3.5 shows the results of the time-dependent fit to the four possible combinations of
flavors for the two B mesons in the partially reconstructed and tag side.

While using a data sample an order of magnitude smaller than the one used by the dileptons
analysis, the sensitivity of this analysis is not substantially worse. The preliminary result quoted
reads:

|q/p| − 1 = (6.5 ± 3.4 ± 2.0) × 10−3 , (3.7)

where the first error is statistical and the second systematic. The most important contributions
to the systematic error come from the determination of the charge asymmetries on the combina-
torial and continuum background and from the determination of the data sample composition,
which is performed prior to the time-dependent fit.

In this thesis, we will adopt the same strategy used by the partially reconstructed B0 → D∗+ℓ−ν̄ℓ
analysis, but we will use charged kaons instead of leptons to tag the flavor of the unreconstructed
B. Despite the higher probability of wrong assignments given by this approach, the tagging effi-
ciency of kaon tagging is slightly better than the lepton one and, due to the presence of Doubly
Cabibbo Suppressed decays (see 2.3), can allow a first estimate of the related effective param-
eters b and c. Finally, being completely independent of the lepton tag, the two results can be
combined in an almost straight-forward way.

Table 3.1 summarizes the most recent results on the determination of CP -violation in B0B0

mixing.
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Figure 3.5: Results of the time-dependent fit of the partially reconstructed B0 → D∗+ℓ−ν̄ℓ anal-
ysis with lepton tags. Data (points) are superimposed to the sum of continuum background
(dark gray), combinatorial (light Gray), peaking background (black) and signal (white) compo-
nents for unmixed (top plots) and mixed events. Left (right) plots show events in which the
non-reconstructed B has been tagged as a B0 (B0).

Table 3.1: Recent results on |q/p| or ASL. The first quoted error is the statistical one, while the
second is the systematic.

Analysis Luminosity Result

Belle dileptons 78 fb−1 ASL = (−1.1 ± 7.9 ± 9.5) × 10−3

BABAR dileptons 210 fb−1 |q/p| − 1 = (−0.8 ± 2.7 ± 1.9) × 10−3

D∅ (µµ) 1.0 fb−1 ASL = (−9 ± 4 ± 3) × 10−3

BABAR PR D∗ℓν leptonic tag 200 fb−1 |q/p| − 1 = (6.5 ± 3.4 ± 2.0) × 10−3



Chapter 4

The PEP-II B-factory and the
BABAR detector

In this chapter we will briefly describe the outline of the B-factory PEP-II, located at the
Stanford Linear Accelerator Center, and the BABAR detector, along with their performance
for the years relevant for this thesis. Some emphasis will be used in the aspects particularly
important for the analysis of CP -violation in B0B0 Mixing.

4.1 The B-factory PEP-II

The clean experimental environment of an e+e− collider can be used to study the properties of B
mesons by producing a large number of Υ (4S) mesons. The Υ (4S) whose mass is 10.58 GeV/c2,
is the lightest bottomonium vector state which can decay to pairs of open beauty mesons: B+

u B
−
u

and B0
dB̄

0
d in roughly the same amount. Table 4.1 summarizes the cross sections for the various

processes accessible by colliding two e+e− beams at the energy corresponding to the mass of the
Υ (4S) in the center of mass (c.m.) reference frame [46].

Table 4.1: Cross sections for the different processes taking place at an e+e− collider with c.m.
energy corresponding to the mass of the Υ (4S).

e+e− → Cross section (nb)

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

µ+µ− 1.16

e+e− ∼ 40

Given that the mass of the Υ (4S) is slightly larger than twice the mass of a B meson, the
BB pair is emitted with a momentum of ∼ 335 MeV/c in the c.m. frame, and considering the
lifetime of the B mesons being ∼ 1.5 ps, the average distance of the two decay vertices would
be roughly 60 µm. With the state of the art vertex detectors, this value is too small to allow
time-dependent analyses of the B0B0 system in a traditional symmetric e+e− collider.

This motivated the proposal [47] for the construction of an asymmetric e+e− collider, where
the B mesons are boosted in the laboratory frame, so that the average separation between the

41
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two B decay vertices is inflated to measurable values.
The Conceptual Design Report for the construction of the PEP-II B-factory at the Stanford

Linear Accelerator Center was submitted in 1993 [48] as a proposal of an upgrade of the existing
PEP facility and first colliding beams were stored in 1999.

4.1.1 Design and machine parameters

At the PEP-II B-factory a 9.0 GeV electron beam collides head-on against a 3.1 GeV positron
beam, resulting in a βγ = 0.56 boost of the c.m. frame with respect to the laboratory. The
beams are stored in two different rings: the High Energy Rings (HER) for the electrons, while the
Low Energy Ring (LER) for the positrons. The interaction region, placed inside the magnetic
field of the BABAR solenoid, comprises a series of samarium-cobalt permanent magnets which
separate the bunches along the horizontal plane outside the luminous region.

The main machine parameters are collected in table 4.2; the design values are compared to
the record running values reached in 2006 and to the ultimate goals that the PEP-II team plans
to reach during the last year of data-taking [49].

Table 4.2: Main machine parameters of the PEP-II collider. The design values are compared
to the ones reached during the summer 2006 and to the ultimate parameters which should be
reached at the end of the data-taking.

Parameter Design Current (2006) Ultimate (2008)

Energy LER/HER (GeV) 3.1/8.9918 3.1/8.9918 3.1/8.9918

Current LER/HER (A) 2.15/0.75 3.0/1.9 4.0/2.2

Number of bunches 1658 1730 1730

Bunch length (mm) 15 11 9

Luminosity (1033 cm−2s−1) 3.0 12.0 20.0

Daily integrated luminosity (pb−1d−1) 135 910 1500

The design luminosity has been reached pretty quickly at the end of the first year of data-
taking and in the following few years the record values have superseded the design ones by a
factor of four in terms of instantaneous luminosity and a factor of seven for the integrated one.

The instantaneous luminosity is monitored by the PEP-II operators by measuring the Bhabha
scattering rates, while a more precise value is computed offline, by studying other QED processes
(primarily e+e− and µ+µ− production). The r.m.s. energy spreads for the LER and HER beams
are 2.3 MeV and 5.5 MeV, while the systematic uncertainty in the absolute beam energies is of
the order of 5-10 MeV.

The beam directions, the position and size of the luminous region (which are critical in time-
dependent analyses) are continuously monitored on a run by run basis (a run is a data-taking
period typically lasting one hour). These parameters are measured by using well reconstructed
two-tracks events, like e+e− → e+e−, µ+µ−. The uncertainties in the average beam position
are of the order of a few µm in the transverse plane, and ∼ 100µm in the longitudinal direction.
Variations of these parameters over two consecutive runs are typically of the same order of
magnitude of their uncertainties.

4.1.2 Machine backgrounds

Several components contribute to the machine-related background [50]:

• Synchrotron Radiation in the proximity of the interaction region, caused by the bending
of the beams in the proximity of the permanent magnets. Careful design of the interaction
region has been studied in order to limit the effects of this source of background.
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Figure 4.1: The data-taking progression since the beginning of operations is shown here. The
blue line represents the luminosity delivered by PEP-II, while the red one corresponds to the
luminosity actually recorded by the BABAR detector. The light green line shows the amount of
data recorded in off-resonance mode.

• Beam-Gas Scattering, caused by the interaction of the beams with residual gas in the beam
pipe. Even though the quality of vacuum has superseded the expectations, this is the most
severe source of radiation damage to the SVT and the dominant source of background for
all the sub-systems, except the DIRC.

• Luminosity Background, caused by energy-degraded electrons produced in radiative Bhabha
events which enter the BABAR detector causing electromagnetic showers. This source of
background is directly proportional to the luminosity and is already the largest source of
background for the DIRC.

Other sources of background include beam losses during injection, intense bursts of radiation
caused by tiny dust particles which become trapped in the beams and non-Gaussian tails from
beam-beam interactions. The last background sources are a concern especially for the radiation
protection of the SVT.

4.1.3 Delivered luminosity

The data-taking operations begun in 1999 and are currently underway.

Figure 4.1 shows the progression of delivered luminosity; the data-taking has been subdivided
into the following periods:
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• Run1, which corresponds to data taken in the period: May 1999 through October 2000;

• Run2 January 2001 through July 2002;

• Run3 November 2002 through July 2003;

• Run4 September 2003 through July 2004;

• Run5 April 2005 through August 2006;

• Run6 January 2007 through September 2007;

The last period of operations (Run7) is scheduled to begin by middle-December 2007 and last
till September 2008.

During the first years of PEP-II running, data-taking was held only with the beams in
coasting mode, that is without injecting new bunches of electrons/positrons to compensate for
the beam dispersions. Data-taking runs were interleaved by short periods during which the
beam currents were restored to the desired values.

Since the beginning of Run4, thanks to the improvements in the accelerator stability and the
reduction in the injection backgrounds, data-taking can be conducted in trickle injection mode,
that is injecting (with a frequency of a few Hz) fresh bunches to both the LER and the HER in
order to keep the beam currents to a constant level. A system has been developed in order to
skip the collisions (which are affected by a higher background level) of a bunch during its first
orbits.

Most of data are collected setting the c.m. collision energy to the mass of the Υ (4S) (we call
them on-resonance data). In order to study the events which do not originate from the decay
of a Υ (4S), the so called continuum events, about 10% of the data are collected lowering by 40
MeV the energy of the collisions, which is enough to avoid the production of the Υ (4S) (whose
width is ∼ 20 MeV).

It is particularly important to get a reliable estimate of the number of B mesons produced
during a particular data-taking period. The procedure (called B counting), which computes this
number compares the ratio of the number hadronic events over the number of e+e− → µ+µ−

events produced in on-resonance and off-resonance data samples, assuming that the excess seen in
the on-resonance is entirely due to Υ (4S) decays. The number of events passing the kinematical
selection NΥ is given by:

NΥ = NMH −Nµµ ·Roff · κ (4.1)

where NMH is the number of events passing the selection in the on-resonance sample, Nµµ is the

number of µ+µ− events in the on-resonance sample, Roff = Noff
MH/N

off
µµ is the ratio of hadronic

events to muon pairs in the off-resonance sample and κ is a numerical factor close to 1, which
accounts for the energy dependence of the e+e− → µ+µ− cross section and variations in the
selection efficiencies.

Monte Carlo simulations carefully validated on data are used to compute the selection effi-
ciencies; the overall systematic error on the B counting procedure is estimated to be ∼ 1%.

4.2 The BABAR detector

The BABAR detector is described in detail in [51]. Its design has been optimized for the measure-
ment of time-dependent CP -violation of the B mesons, but it is also suitable for rare decays of
the B and D mesons, τ physics, searches of new hadronic states and Initial State Radiation. It
should also be mentioned the recent discovery of the D0D̄0 oscillations achieved by the BABAR

and Belle collaborations [52], [53].

The required characteristics of BABAR are:
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Figure 4.2: Longitudinal view of the BABAR detector.

Figure 4.3: Front view of the BABAR detector.
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• a large and uniform acceptance down to small polar angles relative to the boost direction;

• excellent reconstruction efficiency for charged particles down to 60 MeV/c and for photons
to 20 MeV;

• very good momentum resolution to separate small signals from background;

• excellent energy and angular resolution for the detection of photons from π0 and η0 decays,
and from radiative decays in the range from 20 MeV to 4 GeV;

• very good vertex resolution, both transverse and parallel to the beam direction;

• efficient electron and muon identification, with low misidentification probabilities for hadrons;

• efficient and accurate identification of hadrons over a wide range of momenta for B flavor-
tagging. This feature is crucial for this analysis;

• a flexible, redundant and selective trigger system;

• detailed monitoring and automated calibration;

• detector components that can tolerate significant radiation doses and operate reliably
under high-background conditions.

Figures 4.2 and 4.3 show respectively the longitudinal and front views of the detector. It
is installed around the interaction region; in order to maximize the acceptance, due to the
asymmetry of the beam energies, its center is displaced by 37 cm with respect to the luminous
region towards the lowest energy beam direction. The detector axis is off-set by about 20 mrad
with respect to the collision axis in order to minimize the perturbations to the beams induced by
its magnetic field. The asymmetric energy collisions naturally define a forward and a backward
side of the detector: most particles (and radiation) produced in the luminous region fly in the
hemisphere (the forward one) of the outgoing HER beam. For this reason the radiation-sensitive
electronics have been placed in the backward side of the detector, when possible.

A standard cartesian reference frame is defined, with the z axis parallel to the longitudinal
axis of the detector and pointing in the direction of the HER, the y axis oriented vertically and
upward and the x axis, which lays on the horizontal plane pointing in the opposite direction of
the center of PEP-II rings.

The detector is constituted by a superconducting solenoid which provides a magnetic field of
1.5 T, surrounded by a steel return yoke. The five sub-detectors used in physics measurements
are, from the center of the detector to the outside: a silicon vertex tracker (SVT) and a drift
chamber (DCH) devoted to tracking and decay vertices identification. A Čerenkov ring imaging
detector (DIRC) provides information to discriminate among different particles species (mostly
to the K /π separation) and a CsI crystals calorimeter (EMC) is used to detect electromagnetic
showers produced by photons and electrons. All these detectors are locate inside the solenoid;
the fifth sub-detector (IFR), is placed in the return yoke and is devoted to the identification of
neutral hadrons and the tracking of muons.

A full simulation of the BABAR detector has been implemented, based on GEANT4 [54]. Parti-
cles production and decays are simulated by an event generator interfaced to the LUND/JETSET
[55] packages and the description of radiation from charged particles is provided by the PHOTOS
[56] program.

Each sub-detector and its performance will be briefly described in the next sections.
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4.2.1 SVT: Silicon Vertex Tracker

The Silicon Vertex Tracker is the innermost sub-detector and, together with the DCH, performs
the tracking of charged particles. Its crucial (mostly for time-dependent analyses) task is to
provide precise and accurate determination of the secondary decay vertices with a resolution
considerably better than the average separation of the two B decay vertices (∼ 250 µm in the
PEP-II environment). Due to the more precise track-hit position determination, the SVT is more
important than the DCH in the measurement of high momentum tracks. On the other side, due
to the bending caused by the solenoidal field, the SVT is often the only device which can detect
very low momentum (less than 120 MeV/c) particles, a feature that will be crucial for the analysis
described in this thesis. Finally, the SVT provides some information for particle identification
(PID), through the measurement of energy loss (dE/dx) inside the detector material.

Figure 4.4: Longitudinal view of the Silicon Vertex Tracker.

Figures 4.4 and 4.5 show a schematical representation (on a longitudinal and transverse view,
respectively) of the SVT. Due to the presence of the permanent magnets close to the interaction
region, the acceptance is limited to polar angles larger than 20◦ in the forward direction, while
in the backward tracks can be detected down to 30◦ from the beam line. The proximity to
the beam spot causes an intense exposure to ionizing radiation; the SVT has been designed to
withstand an integrated dose of 2 MRad. The heat generated by the electronics is removed by
a cooling system.

The SVT is made up of five layers of double-sided silicon strips sensors, organized in 6, 6, 6,
16 and 18 modules respectively, as can be seen from figure 4.5. The sensors are 300 µm thick
double-sided silicon strip devices, built on high-resistivity n-type substrates with p+ and n+ on
the two opposite sides. These strips are oriented orthogonally to each other: the φ measuring
strips (φ strips) run parallel to the beam and the z measuring strips (z strips) are oriented
transversely to the beam axis. The modules of the inner three layers are straight, while the
modules of layers 4 and 5 are arch-shaped (see figure 4.4). This arch design has been chosen to
minimize the amount of silicon required to cover the solid angle, while increasing the crossing
angle for particles near the edges of acceptance.

To satisfy the different geometrical requirements of the five SVT layers, five different sensor
shapes are required to assemble the planar sections of the layers. The smallest detectors are 42
× 42 mm2 (z × φ) and the largest are 68 × 53 mm2. Two identical trapezoidal sensors are
added (one each at the forward and backward ends) to form the arch modules. The half-modules
are given mechanical stiffness by means of two carbon fiber/kevlar ribs. The φ strips sensors in
the same half-module are electrically connected with wire bonds to form a single readout strip.
This results in a total strip length up to 140 mm (240 mm) in the inner (outer) layers. The total
number of readout channels is approximately 150,000; some ambiguity arising from connecting
together 2 z strips in layer 4 and 5 is resolved by means of pattern recognition algorithms.

The inner modules are tilted in φ by 5◦, allowing an overlap region between adjacent modules,
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Figure 4.5: Front view of the Silicon Vertex Tracker.

Table 4.3: Geometrical parameters of the different SVT layers.

Layer/ Radius R-O pitch Strip length
view (mm) (µm) (mm)

1 z 32 100 40
1 φ 32 50-100 82
2 z 40 100 48
2 φ 40 55-100 88
3 z 54 100 70
3 φ 54 110 128
4 z 91-127 210 104
4 φ 91-127 100 224
5 z 114-144 210 104
5 φ 114-144 100 265

a feature that provides full azimuthal coverage and is advantageous for alignment, The outer
modules cannot be tilted, because of the arch geometry. To avoid gaps and to have a suitable
overlap in the φ coordinate, layers 4 and 5 are divided into two sub-layers and placed at slightly
different radii. The relevant geometrical parameters of each layer are summarized in table 4.3.

In order to minimize the material in the acceptance region, the readout electronics are
mounted entirely outside the active detector volume. An optical survey of the SVT in its
assembly jig indicated that the global error in placement of the sensors with respect to design
was ∼ 200µm. The total active silicon area is 0.96 m2 and the material traversed by particles
is ∼ 4% of a radiation length. The geometrical acceptance of the SVT is 90% of the solid angle
in the c.m. frame, typically 86% is used in charged particle tracking.

The SVT is mounted inside the 4.5 m long support tube, which can move independently of
the rest of BABAR along the longitudinal axis, thus the need of measuring and monitoring its
position on a run-by-run basis.

The challenges set by the requirements of the SVT front-end electronics led to the devel-
opment of the ATOM (A Time-Over-Threshold Machine, [57]) dedicated circuit, which ensures
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reliable data transmission within the limited amount of acceptable information.

4.2.2 DCH: Drift CHamber

The Drift Chamber is devoted to the reconstruction of charged particles tracks, the measurement
of their momenta and energy loss (dE/dx). It is a cylindrical crown shaped tank 3 m long, whose
inner radius is 24 cm (surrounding the support tube) and the outer one is 84 cm.

It contains a 80:20 mixture of helium:isobutane gas kept 4 mbar above the atmospheric
pressure; this composition has been chosen in order to minimize the effects of Coulomb scattering
of a particle traversing the chamber volume. The DCH is made up of 7104 hexagonal cells 17.0
to 19.2 mm wide (see figure 4.6), each containing six grounded 120 µm aluminum field wires,
surrounding a 20 µm tungsten-rhenium sense wire, which is kept at a voltage which varies
between 1900 and 1960 V, depending on the data-taking periods. Guard and clearing wires,
held at positive voltage, are added to improve the electrostatic performance of the cell and to
collect charges created through proton conversions in the material of the walls. The typical gas
gain factor is 5 × 104 for an operating voltage of 1960 V.

Figure 4.6: Two DCH drift cells are depicted. Besides the sense, field and guard wires, also the
electric field and isochrones are shown. The latter are the contours of equal drift times of ions
inside those cells and are spaced by 100 ns in this plot.

The cells are grouped into 40 layers, which are in turn grouped into 10 superlayers, with the
wires is each superlayer oriented either in axial (that is, parallel to the longitudinal axis of the
detector) or in stereo (at a small angle with respect to the detector axis): in this configuration,
it is possible to get some information on the z coordinate. Figure 4.7 shows the configuration
of the four innermost superlayers of the DCH.

The two end plates are made from 24 mm thick aluminum plates; in the forward side, the
thickness is reduced to 12 mm outside a radius of 46.9 cm, in order to minimize the amount of
material in front of the electromagnetic calorimeter. The inner cylindrical wall is made up by
different sections of beryllium and aluminum tubes, while the outer wall is built from carbon
fiber skins laminated to a 6 mm thick honeycomb core. The total thickness of the DCH at
normal incidence is 1.08% X0, of which the gas and the wires contribute with 0.2% X0 and the
inner wall with 0.28% X0.
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Figure 4.7: Schematic view of the four innermost layers of the DCH. Lines across field and guard
wires have been drawn to help visualize the cell boundaries. The numbers on the right side give
the stereo angles (in mrad) of sense wires in each layer.
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The time-to-distance relation is performed offline using samples of e+e− → e+e−, µ+µ−

events, where the drift distance is computed as the distance of closest approach between the
track and the wire. To avoid biases, the fit on the track discards the hit of the wire under
investigation.

The measurement of the electric charge deposited in each cell allows the determination of
the specific energy loss (dE/dx). A resolution on this quantity of roughly 7% (see figure 4.8)
permits a clean K/π separation up to 700 MeV/c, where the DIRC performance is not effective.

Figure 4.8: dE/dx resolution of the DCH during typical running conditions. The curve repre-
sents the result of a Gaussian fit to the data with a resolution of 7.5%.

Due to severe constraints of space, radiation and the need to minimize the material in
front of the electromagnetic calorimeter, the Front End Electronics has been arranged with a
compact and highly modular design. Calibrations to determine channel-by-channel corrections
are performed on a daily basis by an automated procedure.

4.2.3 DIRC: Detector of Internally reflected Čerenkov light

The need of a high efficiency in B flavor-tagging using charged kaons and the study of CP -
asymmetries in the channels B0 → π+π−, K+π− motivated the development of a high per-
formance device, capable of performing clean K/π separation in the momentum range 0.7-4.2
GeV/c.

The choice of the BABAR collaboration has been a newly developed ring-imaging Čerenkov
detector, called the DIRC [58]. This device should be thin and uniform in order not to degrade
the performance of the electromagnetic calorimeter and not to inflate its cost.

Particle identification of a charged particle is achieved by combining the measurement of its
Čerenkov angle θC performed by the DIRC with its momentum. Čerenkov photons are produced
by the passage of the particle through 17 mm thick, 35 mm wide and 4.9 m long fused synthetic
silica bars, which have an index of refraction n = 1.473.

The principle exploited by the DIRC is the fact that the magnitude of the angles of Čerenkov
light are preserved during multiple reflections from flat surfaces. The quartz bars serve both
as radiators and as light pipes to convey the photons into the standoff box, a water filled tank
instrumented with 10752 photomultipliers, where the light is collected. The 144 bars are ar-
ranged in 12 sections, each one made up of a hermetically sealed bar box containing 12 quartz
bars each. The non-instrumented (forward) end of the bars is terminated with a mirror, while
the interface between quartz bars and water is provided by a fused silica wedge.

The total radial thickness of DIRC radiators is 80 mm, corresponding to 17% X0 at normal
incidence; the solid angle subtended by the radiation bars corresponds to 94% of the azimuthal
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Figure 4.9: Scheme of a radiator bar (left picture) and exploded view of the DIRC (right).

angle and 83% of the c.m. polar angle cosine. Given the geometrical and optical properties of
the system, the overall angular resolution on a single photon corresponds to 10 mrad.

The choice of the material for the radiator bars is due to the excellent properties of fused
silica in terms of resistance to ionizing radiation, index of refraction, attenuation length, low
chromatic dispersion and the possibility to get very accurate optical finish of surfaces (which is
crucial to preserve the original information on θC). Figure 4.9 shows a schematic picture of the
DIRC and its principle.

The Čerenkov light pattern expected at the standoff box is a conic section; besides the
position of the associated hits, also the timing is measured in order to get rid of potential
ambiguities and reduce the background, as can be seen from figure 4.10.

Figure 4.10: DIRC light pattern from a typical two-tracks event. On the left plot, all hits within
the ±300 ns trigger window are shown, while on the right only the signals within 8 ns of the
expected photon arrival time are shown. The background reduction factor is of the order of 40.

Background originate mostly from low energy photons coming from the PEP-II rings hitting
the standoff box and is also reduced by lead shielding around the beam line.

The calibration procedure involves two steps. The first one is performed online by means
of a light pulser system which generates 1 ns duration light pulses to determine the mean time
delay of each photomultiplier. The global time delay is determined at the second step, where
real data tracks are used to fit ∆tγ , that is the difference between the uncalibrated time minus
the expected arrival time of a Čerenkov photon.
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Figure 4.11: Number of standard deviations achievable in K/π separation with the DIRC as a
function of the particle momentum.

Figure 4.11 shows the K/π which is achievable using the DIRC alone. More on its perfor-
mance will be shown in section 4.2.8.

4.2.4 EMC: ElectroMagnetic Calorimeter

The electromagnetic calorimeter (EMC) is designed to measure electromagnetic showers with
excellent efficiency and energy and angular resolutions over the energy range from 20 MeV to 9
GeV.

Figure 4.12: Longitudinal cross section of the EMC, showing the 56 crystal rings. The detector
is axially symmetric around the z axis. All dimensions are expressed in mm.

Figure 4.12 shows the layout of the EMC. It is constituted by two sections: a cylindrical
barrel, containing 5760 crystals disposed in 48 rings, and a conical endcap, carrying 820 crystals,
arranged in 8 rings. The material chosen for the crystals is the tallium-doped CsI, whose
properties match the desired energy and angular resolution. Depending on the position, the
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crystal are 29.6 cm to 32.4 cm long and they have trapezoidal shape, with the front face having
an area of 4.7 × 4.7 cm2 and the back face 6.1 × 6.0 cm2.

The material in front of the calorimeter is 0.3-0.6 X0 thick, for the barrel and the five outer
rings of the endcap, while for the innermost rings of the endcap it reaches 3 X0, mainly due to
the SVT support structure and electronics and the permanent magnets.

Each crystal is read by a 2 × 1 cm2 silicon PIN diode glued on the back face, connected
to a low-noise preamplifier. Light pulses used for calibration issues are brought to each crystal
through two optical fibers attached to the back face. Due to calibration stability and the need
to avoid mechanical stress on the PIN diodes joints, it is crucial that the crystals be maintained
at an accurately monitored constant temperature. This is achieved by two separated cooling
systems for the barrel and the endcap sections of the calorimeter.

The energy resolution, measured in a wide energy range through different physical processes
(Bhabha scattering, χc1 → J/ψγ, photons from π0 and η decays) is determined to be (see figure
4.13):

σE
E

=
(2.32 ± 0.30) %

4
√

E(GeV)
⊕ (1.85 ± 0.12) % , (4.2)

while the angular resolution, determined using π0 and η decays to pairs of photons with roughly
equal energies, is:

σθ = σφ =

(

3.87 ± 0.07√
EGeV

± 0.04

)

mrad . (4.3)

Figure 4.13: Performance of the EMC. Left: ratio of the measured energy to the expected one
for Bhabha electrons of 7.5 GeV/c. Right: the energy resolution for the EMC for electrons and
photons from various physical processes. The solid line represents the fit result of equation 4.2,
while the shaded area displays the rms error associated to the fit.

Concerning the energy calibration of the EMC, it happens in two steps. First, the measured
pulse height on each crystal has to be translated to the actual energy deposited. Second, the
energy deposited in a shower spreading over several adjacent crystals has to be related to the
energy of the incident particle by correcting for energy losses.

The calibration of the single crystals is performed at two energies at the opposite ends of the
spectrum. The calibration at low energy uses a 6.13 MeV radioactive photon source provided
by a low-energy neutron generator activating the cooling liquid which circulates on through the
EMC. At high energies, Bhabha scattering events are used to constrain the deposited energy
to the value predicted by a GEANT-based simulation of the detector. These two types of
calibration are performed monthly.
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As for the cluster energy correction, it is computed as a function of the incident energy and
polar angle. At low energy it is performed by using π0 decays in a mass constrained fit, while
at higher energies, radiative Bhabha scattering events are utilized.

4.2.5 IFR: Instrumented Flux Return

The Instrumented Flux Return (IFR) is devoted to high efficiency muon tracking and the iden-
tification of neutral hadrons (K0

L, neutrons) which traverse the inner part of the detector. Since
the beginning of the data-taking the IFR has undergone several problems which led to an al-
most complete substitution of the original detectors; in this subsection we will briefly recall the
original design, the major problems the IFR went through and the solutions which have been
implemented.

Figure 4.14: IFR layout: the barrel sector and the forward (FW) and backward (BW) end doors
are displayed.

Original design

The return flux is finely segmented (see figure 4.14) into 18 steel plates, of thickness increasing
from 2 cm for the inner nine plates to 10 cm of the outermost one. In the gaps between adjacent
steel plates have been instrumented with 19 layers of Resistive Plate Chambers (RPC) in the
barrel and 18 layers in the endcaps. Moreover, 2 layers of RPC’s have been installed inside the
superconducting solenoid (cylindrical RPC’s).

The RPC concept ([59]) allows the easy and cheap instrumentation of a large volume with odd
shapes with basically no dead regions. Figure 4.15 shows the cross section of a planar RPC, which
consists of two bakelite sheets, 2 mm thick, separated by a 2 mm gap. The two external surfaces
are coated with graphite and are connected to high voltage and ground. Streamers produced
inside the gap by ionizing particles are readout by capacitive aluminum strips, glued outside
a layer on insulating foam. Strips on opposite faces of a chamber are disposed orthogonally
to each other, so it is possible to measure both the horizontal and the vertical coordinate of a
streamer.

The chambers operate in limited streamer mode. The gas mixture has this typical composi-
tion: 57.7% Argon, 38.8% Freon 134 a and 4.5% isobutane. This mixture is non-flammable and
the typical flow rate corresponds to four gas exchanges per day.

Several problems showed up during the early months of data-taking: due to production
defects and operating temperatures way higher than expected (the cooling system was installed
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Figure 4.15: Cross section of a planar RPC.

after the first year of data taking), a large fraction of chambers exhibited a steadily decreasing
rate in the detection efficiency and a significant increase of the dark current.

IFR upgrade

Even though the IFR is a highly redundant detector, the large decrease in efficiencies (and even-
tually the death) of a significant number of chambers severely impacted the muon identification
efficiency, with consequent decrease in the B flavor-tagging and J/ψ reconstruction efficiencies.

This situation motivated the replacement of the chambers in the forward endcap (which
collects almost 50% of the muons produced at the interaction point, due to the boost of the c.m.
frame) with a new generation of RPC’s during the pause between Run2 and Run3. The accurate
quality control on the new production and the close monitoring of the running conditions allowed
the new generation of detectors to survive till present days with an overall good efficiency
(∼ 90%) and smooth data-taking.

During Run5 and Run6, the operating mode of the inner middle chambers of the forward
endcap has been switched from streamer to avalanche mode. This change was motivated by the
fact that those chambers are heavily subject to beam-induced backgrounds, which causes higher
rates, lower efficiencies and faster aging of the detectors. The gas mixture for avalanche running
is typically: 22% Argon, 73% Freon and 5% isobutane and the high voltage is set to ∼ 9500 V,
compared to ∼ 6700 V for the new generation RPC’s in streamer mode.

The first experience of avalanche running showed a significant decrease of the charge produced
by ionizing particles (thus a slower aging) and a recovery of the efficiency in the regions close to
the beam line. For these reasons the forward endcap middle chambers of the seven innermost
layers will continue running in avalanche mode till the end of data-taking.

On the other side, the original cylindrical chambers have been switched off at the beginning
of Run6, since their efficiencies dropped to insufficient values; it is not planned to replace them.

A different strategy has been undertaken for recovering the efficiency in the barrel, adopting
a different kind of detectors to replace the RPC’s: the Limited Streamer Tubes (LST) [60].
Figure 4.16 shows a picture of a LST actually installed in BABAR.

LST’s are made from PVC extrusion having either 7 or 8 17 × 17 mm2 cells and covering
the length of the barrel along the z axis. PVC surfaces are treated with a graphite paint, with
a resistivity in the range 0.2 to 1.0 MΩ/cm2. A 100 µm diameter silver wire is strung along the
z axis at the center of each cell and is sustained at intervals of 50 cm by plastic holders. The
wires are kept at ∼ 5600 V, where the plateau conditions are met with the gas mixture being
used: 89% CO2, 8% isobutane and 3% Argon.

Signals are read directly on the wires for the φ coordinate, while the z coordinate is read
through cathode strips glued outside the modules. The detection efficiency is close to the limit
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Figure 4.16: Picture of a LST installed in the barrel of BABAR.

of 95% set by the presence of dead material on each layer of LST’s. The capability of separating
muons from charged hadrons has been improved by adding 4 brass layers.

The first two sextants of LST’s have been installed during the shutdown between Run4 e
Run5, and the remaining four between Run5 and Run6. The first experience of running of the
LST’s showed a completely restored efficiency of the barrel and no hints of degradations of its
performance have been manifested so far.

4.2.6 Trigger

The basic requirement for the trigger system is the selection of events of interest with a high,
stable and well-understood efficiency while rejecting background events and keeping the total
event rate to manageable levels.

The total trigger efficiency was required to exceed 99% for all BB events and at least 95%
for continuum qq̄ events. Less stringent requirements apply to other type of events, e.g. τ+τ−

events should have a 90-95% trigger efficiency, depending on the specific τ± decay channel.

The trigger is implemented as a two-level hierarchy, the Level 1 (L1) in hardware followed
by the Level 3 (L3) in software (a Level 2 trigger could have been developed in case L1 and L3
alone had not matched the requirements).

During normal operation at current luminosities, the L1 is configured to have an output rate
of typically 1 kHz. Triggers are produced within a fixed latency window of 11-12 µs after the e+e−

collision and delivered to the Fast Control and Timing System (FCTS). Data used to form the
trigger decision are preserved with each event for efficiency studies. The L3 receives the output
from L1, performs a second stage rate reduction for the main physics sources, and identifies
and flags the special categories of events needed for luminosity determination, diagnostic and
calibration purposes. The typical L3 output rate is 250 Hz.

The L1 trigger decision is based on charged tracks in the DCH above a preset transverse
momentum, showers in the EMC, and tracks detected in the IFR. Trigger data are processed
by three specialized hardware processors. The drift chamber trigger (DCT) and electromag-
netic calorimeter trigger (EMT) both satisfy all trigger requirements independently with high
efficiency, and thereby provide a high degree of redundancy, which enables the measurement
of trigger efficiency. The instrumented flux return trigger (IFT) is used for triggering µ+µ−

and cosmic rays, mostly for diagnostic purposes. Some concerns on the L1 trigger are present
for the last periods of data-taking when due to the high luminosity and potentially high back-
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grounds the L1 rate could hit the 5 kHz hardware limit. The overall structure of the L1 trigger
is illustrated in figure 4.17.

Figure 4.17: Simplified L1 trigger schematic. Indicated on the figure are the number of com-
ponents (in square brackets) and the transmission rates between components in terms of total
signal bits.

The L3 trigger software comprises event reconstruction and classifications, a set of event
selection filters, and monitoring. This software runs on the online computer farms within the
Online Event Processing (OPE) framework. Many events which pass L1 but must be rejected
by L3 are beam-induced charged particle background that are produced in material close to
the IP. The Level 3 trigger combines DCT tracks and EMT clusters with the full DCH and
EMC information. The L3 DCH algorithm performs fast pattern recognition and fits L1 tracks
to helices and is able to determine the z coordinate of closest approach of tracks, which is
important for rejecting the above mentioned background. The L3 EMC based trigger identifies
energy clusters with a higher sensitivity than L1 and filters events with either high energy
deposits of high cluster multiplicity. The output of both the DCH and EMC L3 filters is
dominated by Bhabha events which are mostly rejected, but also prescaled in L3 for calibration
and luminosity online monitoring and offline measurements.

4.2.7 Tracking

Track reconstruction uses information from the SVT, the DCH and the L3 trigger. A track is
defined by the following parameters:

• d0, the distance in the x−y plane of the point of closest approach of the helix to the beam
spot;

• φ0, the azimuthal angle corresponding to the track direction in the x− y plane;

• ω, the signed geometrical curvature;

• z0, the distance along the z-axis of the point of closest approach;

• s = tanλ, the tangent of the dip angle, λ = π/2 − θ, where θ is the polar angle in the lab
frame.
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The absolute event timing information (the event start time t0) is determined iteratively by
the track finding algorithms along with the five helix parameters.

The track finding and the fitting procedures make use of a Kalman filter algorithm that
takes into account the detailed distribution of material in the detector and the full map of the
magnetic field.

The track pattern recognition begins in the DCH, starting from tracks segments identified by
the L1 trigger. Helix fits are performed on the hits used by the L3 track finding algorithm and
then additional hits that may belong to the track under consideration are added. The re-fitted
track is then extrapolated into the SVT and track segments are added, provided they are consis-
tent with the errors in the extrapolation through the detector material and the inhomogeneous
magnetic field.

Any remaining SVT hits are passed to the SVT standalone tracking algorithms. These are
particularly important for the detection of D∗ decays, where a charged slow pion is produced.
Figure 4.18 shows the mass difference ∆M = M(K−π+π+)−M(K−π+) for the total sample and
the subsample in which the slow pion track has been detected by both the SVT and the DCH.
The difference in these two distributions demonstrates the contribution from SVT standalone
tracking, both in terms of the gain of signal events and of resolution.

Figure 4.18: Reconstruction of low momentum pions originating from D∗+ → D0π+, D0 →
K−π+. The mass difference ∆M = M(K−π+π+) − M(K−π+) both for all detected events
(data points) and for events in which the low momentum pion is reconstructed both in the SVT
and DCH (histogram). Background from combinatorics and fake tracks, as well as non-resonant
data have been subtracted.

The resolution in the five track parameters is monitored using e+e− and µ+µ− events. It is
further investigated offline in multi-hadron events and cosmic ray muons.

Cosmic rays that are recorded during normal data-taking offer a simple way of studying the
track parameter resolution. The upper and lower halves of the cosmic ray tracks traversing
the DCH and the SVT are fitted as two separate tracks, and the resolution is derived from the
difference of the measured parameters for the two track halves. Based on the full width at half
maximum of the distributions of those differences, the resolutions for single tracks can be stated
as:

σd0 = 23µm σφ0
= 0.43 mrad

σd0 = 29µm σtanλ = 0.53 · 10−3 .
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Figure 4.19 shows the resolution in the parameters d0 and z0 for tracks in multi-hadron events,
as a function of the transverse momentum. The resolution is determined from the width of the
distribution of the difference between the measured parameters, d0 and z0, and the coordinates
of the vertex reconstructed from the remaining tracks in the event. These distributions peak at
zero, but have a tail for positive values due to the effect of particle decays. Consequently, only
the negative part of the distributions reflects the measurement error and is used to extract the
resolution. The d0 and z0 resolutions so measured are about 25 µm and 40 µm respectively at
a transverse momentum pt = 3 GeV/c. These values agree well with expectations, and are also
in reasonable agreement with the results obtained from cosmic rays.

Figure 4.19: Resolution in the parameters d0 and z0 for tracks in multi-hadron events as a
function of the transverse momentum. The data are corrected for the effects of particle decays
and vertexing errors.

While the position and angle measurements near the interaction region are dominated by the
SVT, the DCH contributes primarily to the pt measurement. The resolution in the transverse
momentum is:

σpt

pt
= (0.13 ± 0.01)% · pt + (0.45 ± 0.03)% , (4.4)

where pt is measured in GeV/c. These values for the resolution parameters are very close to the
initial estimates and can be well reproduced by Monte Carlo simulations.

The performance of the different selectors are checked by using some high purity data control
samples.

4.2.8 Particle Identification

Each of the five sub-detectors of BABAR can contribute to the determination of the particle
specie of a given track. In this section we will not treat extensively the general topic of Particle
Identification (PID), rather we will focus on the information used by the PID selectors relevant
for our analysis.

Electrons

The PID selector used in our analysis for the selection of electrons, named PIDLHElectrons,
uses the information from DCH (dE/dx), DIRC (number of detected photons and Čerenkov
angle) and EMC (deposited energy, lateral and longitudinal shower shape).
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For each discriminating variable, probability density functions are constructed and, under the
assumption of independent measurements from the individual subdetectors, they are combined
to compute the likelihood L(ξ) for each particle hypothesis ξ ∈ {e; π; K; p}:

L(ξ) = P (xEMC , xDCH , xDIRC ; ξ) = P (xEMC ; ξ)P (xDCH ; ξ)P (xDIRC ; ξ) , (4.5)

where xEMC , xDCH and xDIRC represent vectors of discriminating variables from each subsys-
tem. Weighting the individual likelihoods with a priori probabilities pξ, the likelihood fraction
fL is computed:

fL =
peL(e)

peL(e) + pπL(π) + pKL(K) + ppL(p)
. (4.6)

Using pe : pπ : pK : pp = 1 : 5 : 1 : 0.1, a track is selected as electron if it passes some preselection
cuts and a given cut on fL, which may vary between 0 and 1.

Figure 4.20: Performance of the PIDLHElectrons selector. The selection efficiency, as a function
of momentum, in three different bins of the polar angle, is shown separately for e− (blue dots)
and e+ (red).

Figure 4.20 shows the typical performance of the PILHElectrons selector. The selection
efficiency is typically above 90% and there are no large charge asymmetries, excluding the
forward region, severely affected by backgrounds.

Muons

The identification of muons relies mostly on the performance of the IFR. A set of simple cut based
selectors has been developed for the selection of muon tracks at the beginning of the experiment.
However, due to the non-optimal quantity of iron affecting the original design of the IFR and the
fast degradation of the performance of RPCs, the development of more sophisticated algorithms
proved to be necessary.

In our analysis, muons are selected by using the NNLooseMuonSelection selector, which is
based on the use of the Neural Network (NN) technique. The variables used in the selection are
(in the order as they appear on the input layer of the NN):

• ∆λ = λexp − λmeas: the difference between the expected and the measured number of
interaction length traversed by the track in the muon hypothesis;

• χ2
mat = χ2/d.o.f of the IFR hit strips in the cluster with respect to the track extrapolation;

• σm: the standard deviation of the average multiplicity of hit strips per layer;

• TC : the continuity of the track in the IFR;
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• Ecal: the energy deposited in the EMC;

• λmeas: the number of interaction length traversed by the track;

• χ2
fit = χ2/d.o.f of the IFR hit strips with respect to a third order polynomial fit of the

cluster;

• m̄: the average multiplicity of hit strips per layer.

The NN implemented uses one input layer accepting the 8 variables listed above, one hidden
layer with 16 nodes and one output layer with one node. Due to the different performance of
the chambers in the different sections of the IFR (old and new RPC’s, LST’s) and the decrease
with time of RPC’s’ performance, the training sample for the Neural Network has been split
into several subsamples.

Figure 4.21: Performance of the NNLooseMuonSelection: the selection efficiency for separately
µ+ and µ− as a function of momentum is shown in three different ranges of the polar angle.

Figures 4.21 and 4.22 show the efficiency and the pion mis-identification rate for the selector
we use in our analysis, averaged over Run1-Run5 data-taking periods.

Figure 4.22: Performance of the NNLooseMuonSelection: the probability of π+ and π− to pass
the selection as a function of momentum is shown in three different ranges of the polar angle.

Kaons

The selection of charged kaon tracks is one of the key issues of our analysis. Their signature in
different detectors is complicated because they can decay or interact with the material of the
detector. Furthermore, the hadronic interactions have different rates for the two charged modes.
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About 20% of the kaons decay before they reach the DIRC, and they mostly decay to a final
state where there is only one charged track, which may be not distinguishable from the original
one.

We use the LooseKaonMicroSelection selector, which combines the dE/dx measurements
from SVT and DCH and the information from the DIRC. Concerning the latter, every single
hit is considered to compute a global likelihood, without fitting a single Čerenkov ring on a given
pattern, as most selectors do.

The output for each sub-detector, expressed as a likelihood Lx = Lkaon;x/(Lkaon;x +Lpion;x)
(only pions are considered as background and x = SVT, DCH or DIRC), and the track momen-
tum are taken as inputs of a Neural Network using one 10-node hidden layer.

Figure 4.23: Performance of the LooseKaonMicroSelection: the selection efficiency for sep-
arately K+ and K− as a function of the polar angle is shown in three different ranges of
momentum. Charge asymmetries can be clearly seen.

Figure 4.24: Performance of the LooseKaonMicroSelection: the probability of π+ and π− to
pass the selection as a function of the polar angle is shown in three different ranges of momentum.
Charge asymmetries can be clearly seen.

Figures 4.23 and 4.24 show respectively the selection efficiency and pion mis-identification
probability for different ranges of the polar angle and momentum. It can be clearly seen that
a pretty large charge asymmetry exists in both the efficiency and the pion-fake rate, arising
mainly from the different cross sections for K+ hadronic interactions in the detector material
with respect to K−.

Given that CP -violation in B0B0 mixing is a tiny effect influencing the relative number of
B0B0 and B0B0 events we need to control and reliably measure on data the detector related
charge asymmetries.
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4.2.9 Data taking performance

Besides the major problems on the IFR, the BABAR detector performed as expected, with data-
taking efficiency close to 100%. After eight years of running, with PEP-II having reached a peak
luminosity four times higher than design, only minor effects of degradation have shown up so
far.

As two examples, we cite the SVT reconstruction efficiency for low momentum pions, which
has decreased by a few percent due to the radiation damage on the sensors lying around the
horizontal plane and the slight drop in the gain of DIRC photomultipliers due to some aging
affecting the cathodes. The capability of the detector to achieve its physics goals remains
basically unchanged for the last data-taking period, scheduled for 2008, when the total integrated
luminosity should reach 750 fb−1.

Some concerns arise from potential high background conditions which could be encountered
when the accelerator reaches its ultimate configuration. This could cause the L1 trigger to reach
the 5 kHz hardware limit; strategies are being developed in order to reduce the redundancy of
the trigger design, causing negligible loss in the physics reach.



Chapter 5

Data sample and events preselection

5.1 Data processing in BABAR

The quality of data collected by the BABAR detector is checked online by the shifter on duty
who discards the samples affected by sub-detectors bad performance or unacceptably high back-
grounds.

The raw data undergo then the Prompt Calibration and Event Reconstruction stages. In the
former all calibration parameters and alignments which can vary over the time are updated; this
phase is done by SLAC’s computing resources within a few hours from the data taking. In the
latter, charged tracks and neutral particles are reconstructed from the single hits and energy
deposits in each subdetector: this is performed at the dedicated processing farm in Padova,
within the following 48 hours.

After the final validation, the data are subdivided into smaller samples (skims) which satisfy
the needs of the main branches of physical analysis and are distributed over the computing
facilities dedicated to data analysis.

Most of the work presented in this thesis has been done using the Gridka analysis farm,
located in Karlsruhe, Germany.

5.2 Data and Monte Carlo samples

The current analysis is based on the data collected by BABAR during the data-taking periods
Run1-Run5 (see 4.1.3 for details). Root-tuples have been produced over the InclSemiLept skim,
which pre-selects events with at least one partially reconstructed B0 → D∗+ℓ−ν̄ℓ candidate. The
full integrated luminosity of on-peak data used is equal to 348.1 fb−1, equivalent to about 383
million BB pairs. Details on data samples are summarized in Table 5.1.

Table 5.1: Integrated luminosities of data samples

Data set off-peak (fb−1) on-peak (fb−1) NBB (106)

Run1 2.5 20.3 22.0

Run2 6.9 60.7 67.0

Run3 2.5 32.3 35.7

Run4 9.9 100.9 110.5

Run5 14.1 134.0 147.5

Total 35.9 348.1 382.7

This analysis has been set up using the generic BB Monte Carlo (MC) simulation available
to the Collaboration. Again, simulated events are requested to pass the InclSemiLept skim
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criteria; the number of BB events is about 3 times larger than the data. Details can be found
in Table 5.2.

No requests of special MC samples have been submitted for our analysis; control samples
have been produced either by generating special Toy Monte Carlo samples or by reweighting
the generic sample.

Table 5.2: Number of Generic Monte Carlo generated events

Data set B0B0 (106) B+B−(106)

Run1 35.8 35.6

Run2 103.5 102.9

Run3 50.6 46.1

Run4 167.1 168.3

Run5 166.4 168.8

Total 523.4 521.7

5.3 Selection of partially reconstructed B0 → D∗−ℓ+νℓ events

We reconstruct the B0 → D∗+ℓ−νℓ (charge conjugation is always implied in this section) decay
using only the information coming from the ℓ− and the charged pion originating from the
D∗+ → D0π+ decay (we will refer to the charged pion as the πsoft). We recall that the B0

which is partially reconstructed will be called Brec in the following.
The momenta of the two particles are requested to satisfy the following cuts: 0.06 < |~pπsoft

| <
0.20 GeV/c and 1.40 < |~pℓ| < 2.30 GeV/c. We veto, based on dE/dx measured in the SVT,
electron tracks which could fake a πsoft, while for the two species of leptons we require them to
pass the PIDLHElectrons and muNNLoose selectors, which have been briefly discussed in section
4.2.8.

The vertex of the (ℓ, πsoft) pair is computed constraining the x-y coordinates to the beamspot
position (the width of the beamspot is enlarged to 50 µm in the vertical (y) direction, to account
for theB-motion in the transverse plane). The momenta of the two particles and their probability
to originate from a common vertex are combined into a Likelihood Ratio variable χ, which can
vary from 0 (background like) and 1 (signal like), see figure 5.1. Events with χ < 0.3 are rejected.
Figure 5.2 shows the plot of the difference between the measured and the true z coordinate for
Brec mesons and the relative pull distribution at the end of our selection.

The size and purity of our B0B0 enriched sample can be seen by using the m2
ν discriminating

variable (figure 2.4), as anticipated in section 2.5.

5.4 Selection of charged kaons

The sign of a charged kaon identified as a decay product of the other B meson (the Btag) is used
to determine the flavor of the Btag itself. The z coordinate of the Btag decay vertex is computed
by extrapolating the K track to the x, y coordinates of the beamspot. The extrapolation is
performed assuming that the particle which gave that track has the pion mass; this causes a
dependence of some of the parameters entering the resolution model on the kaon momentum,
as discussed in chapter 7. In figure 5.3 we show the dependence of the width of the narrow
component in the resolution function for Btag signal events for genuine K± and pions faking
kaons.

Figure 5.4 shows the distribution of the difference of the measured z coordinate and the
true one along with its pull for Btag kaons. The RMS of the latter deviates significantly from
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Figure 5.1: Likelihood Ratio variable χ for data (red dots), signal B0B0 Monte Carlo (white
histogram), peaking B+B− background (purple hatched histogram), BB combinatorial (green
hatched histogram) and rescaled off-peak data (blue hatched histogram).
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Figure 5.2: Measured z - true z (left plot) and pull (right) distributions for Brec mesons.
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Figure 5.3: Pull of the narrow component in the resolution model for signal Btag events for true
kaons (left) and mid-identified pions (right). Direct decays (red circles) are shown separately
from cascades (blue squares).

1 because of the contribution of charmed mesons, whose finite lifetime affects the measurement
of the z coordinate.
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Figure 5.4: Measured z - true z (left plot) and pull (right) distributions for Btag mesons.

The separation between the two B vertices ∆z is defined as ∆z = z(Brec) − z(Btag) and its
uncertainty σ(∆z) is computed by propagating the uncertainties on the determinations of the
two vertices.

K± tracks are requested to pass the LooseKaonMicro PID selector (see 4.2.8). Furthermore,
we request |∆z| < 0.3 cm and σ(∆z) < 0.05 cm.

The proper time difference ∆t between the decays of Brec andBtag is computed neglecting the
motion of the B mesons along the plane perpendicular to the beam axis (boost approximation).
Thus it is given by:

∆t = ∆z/βγc , (5.1)

with βγ ≃ 0.56 being the experimental boost of PEP-II and c is the speed of light.
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5.5 Sample Composition

The selected data originate from several different sources, listed below.

1. B0 → D∗+ℓ−ν̄ℓ (direct) decays;

2. B0 → D∗∗+ℓ−ν̄ℓ, D∗∗+ → D∗+X (D∗∗) decays ;

3. B0 → D∗+τ−ν̄τ , τ− → ℓ−ν̄ℓντ (τ cascade) decays;

4. B0 → D∗+D−
s X, D−

s → ℓ−ν̄ℓX
′ (Ds cascade) decays;

5. B0 → D∗+D−X, D− → ℓ−ν̄ℓX
′ (CP -eigenstate) decays;

6. B0 → D∗+h−, h− → ℓ− (fake hadron), where a pion or a kaon are wrongly identified as
a lepton, most frequently a muon;

7. B− → D∗∗0ℓ−ν̄ℓ, D∗∗0 → D∗+X (D∗∗) decays;

8. B0 combinatorial, where a lepton is combined randomly with a low-momentum track in a
e+e− → B0B0 event;

9. B− combinatorial;

10. continuum events, where the lepton and the soft pion candidates are produced in a non-BB
event.

It must be noted that events from different sources might be distinguished by either their
different kinematic properties or by their different dependence on ∆t. All the B0 states listed
above share in fact approximately the same time distributions, except the CP -eigenstates; sim-
ilar considerations hold for all B− states. The situation for continuum events is more entangled
(as four light quarks, leptons, and γγ events all contribute), but we take all their properties
from rescaled off-peak events.

To determine the sample composition at this stage of the analysis, we rely on the kinematical
properties of the decays, and we group events accordingly.

We first note that all the events in the list above, excepted the last three, exhibit a peak
near to zero in the m2

ν distribution (defined as above). This is obvious for direct decays (item 1),
where m2

ν represents in fact the mass of the unobserved neutrino, and for fake hadrons (item 6),
where no further particles are produced. It is also true for the other events (items 2, 3, 4, 5 and
7), although, due to the production of other particles in addition to the leptons and the D∗+,
the peak of the distribution is displaced towards positive values. In fact, decays from sources
2 and 7 are indistinguishable on a kinematical basis, whereas the peak in m2

ν is displaced by
∼ +0.5 Gev2/c4 with respect to the primary decays. Combinatorial (8 and 9) events do not
present any peak at all.

We exploit these differences to compute the individual contributions to our data set. We
group events in the list above in six basic classes, according to the shape of m2

ν :

• D∗, corresponding to category (1) above;

• D∗∗, corresponding to the sum of (2)+(7);

• CPeigenstates corresponding to item (5);

• Other − P eaking, corresponding to the sum of (3)+(4)+(6);

• BB − combinatorial, (9)+(8);

• continuum.
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We fit the m2
ν data distribution with the sum of the sources defined above, with shapes assumed

from the simulation. In the fit we determine the relative amounts of D∗, D∗∗, and BB − c,
while we get the shape and the fraction of continuum from the rescaled off-peak events. The
contributions from Other − P and CPe are fixed to the simulation. The relative amounts of
B0 and B− in the D∗∗ and in the BB − c, at this stage of the analysis, are obtained from the
Monte Carlo.

Before fitting, we tune the simulation to the data, correcting for some slight discrepancies
in the lepton (pℓ) and soft pion (pπsoft

) momentum spectra of combinatorial events. For this
purpose, we use events in the side band region −10 < m2

ν < −4 GeV2/c4, where very few peaking
events are left (see plots in the next pages). We proceed as follows:

• we normalize the simulation to the data using luminosity information (wL);

• we then compare the simulated pπsoft
spectrum to the continuum-subtracted data. We

interpolate the ratio between the data and the Monte Carlo with a second order polynomial,
wp∗(pπsoft

). We determine two separate functions, depending on whether the pion has the
same electric-charge as the tag-kaon or the opposite charge;

• subsequently we analyze again the same data, weighting each simulated event with the
function obtained above. We compare now the pℓ spectra, and we determine a second
function wℓ(pℓ). We split the data into four sets, separating e from µ and equal from
opposite charges;

• finally, we perform the fit to m2
ν in the full range ([−10,+2] GeV2/c4) to compute the

sample composition. In the fit, each event from BB − c decays has a weight equal to
the product: wL × wp∗(pπsoft

) × wℓ(pℓ), while peaking events and off-peak events are
weighted by the relative luminosities only. At this last stage, we perform in fact eight
different fits, splitting the data according to the lepton type and the charge correlations:
e+K+, e−K+, e+K−, e−K− and µ+K+, µ−K+, µ+K−, µ−K−.

As stated above, the fits determine the amount of D∗, D∗∗ and BB − c in each data set, by
computing the scaling factors which must be applied to events from those sources to obtain
the best matching. By definition, the scaling factor for the combinatorial events is very well
consistent with unity, while it is about 0.95 for D∗ and 1.10 for D∗∗. In the full m2

ν range,
D∗ account for about 25% of the sample, D∗∗ for about 4%, continuum for about 10% , and
BB − c for about 55%. Only few per mille is due to other sources. Figures 5.5 and 5.6 show a
comparison between the data and the best fit for each of the eight data sets considered.

Sample Function Sample Function

fD∗∗(x) eP5(x) fcont.(x) P0(x) + G(x)

fOther−P (x) eP3(x) fBB−c(x) P1(x) + G(x) + G(x)

fCPe(x) G(x) fD∗(x) 1 − (fD∗∗ + fOther−P + fCPe + fcont. + fBB−c)(x)

Table 5.3: Parametric functions describing the fraction of events from each source considered.
The symbol Pn indicates a polynomial of degree n, G is a Gauss function. The variable x is in
fact m2

ν .

We finally determine the fraction of events from each of the sources defined above as a
function of m2

ν . We interpolate the corresponding distributions with some ad-hoc parametric
function, listed in table 5.3. These functions are also displayed in figures 5.7-5.14, for B0B0

peaking (top left plot of each figure), B+B− peaking (center left), CP -eigenstates (bottom left),
continuum (top right), B0B0 combinatorial (center right) and the total combinatorial (bottom
right).
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Figure 5.5: m2
ν distributions for data (points) and fit results (histogram), electron sample. In

each plot we overlay, bottom to top, the contributions from: continuum, combinatoric, other
peaking, D∗∗, and D∗. Below each plot, we show also the ratio between the data and the fit
result. Top left: e+K+; top right: e+K−; bottom left: e−K+; bottom right: e−K−.



72 CHAPTER 5. DATA SAMPLE AND EVENTS PRESELECTION

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

120

140

310×

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

120

140

310×

dat_mpkp

-12 -10 -8 -6 -4 -2 0 2
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

dat_mpkpdat_mpkp -12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

310×

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

310×

dat_mpkm

-12 -10 -8 -6 -4 -2 0 2
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

dat_mpkmdat_mpkm

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

310×

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

310×

dat_mmkp

-12 -10 -8 -6 -4 -2 0 2
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

dat_mmkpdat_mmkp -12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

120

140

310×

-12 -10 -8 -6 -4 -2 0 2
0

20

40

60

80

100

120

140

310×

dat_mmkm

-12 -10 -8 -6 -4 -2 0 2
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

dat_mmkmdat_mmkm

Figure 5.6: m2
ν distributions for data (points) and fit results (histogram), muon sample. In each

plot we overlay, bottom to top, the contributions from: continuum, combinatoric, other peaking,
D∗∗, and D∗. Below each plot, we show also the ratio between the data and the fit result. Top
left: µ+K+; top right: µ+K−; bottom left: µ−K+; bottom right: µ−K−.
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Figure 5.7: Sample composition, e+K+. We show the fraction of peaking B0B0 (top left plot),
peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0 combi-
natorial (center right) and the total combinatorial (bottom right) as a function of m2

ν .
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Figure 5.8: Sample composition, e+K−. We show the fraction of peaking B0B0 (top left plot),
peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0 combi-
natorial (center right) and the total combinatorial (bottom right) as a function of m2

ν .



74 CHAPTER 5. DATA SAMPLE AND EVENTS PRESELECTION

-12 -10 -8 -6 -4 -2 0 20
0.1
0.2
0.3
0.4
0.5
0.6

Dst_emkpDst_emkp

-12 -10 -8 -6 -4 -2 0 2
0

0.05

0.1

0.15

0.2

Dss_emkp

 / ndf 2χ  175.8 / 15
p0        0.004± -2.607 
p1        0.0073± 0.8448 
p2        0.0066± -0.2588 
p3        0.00516± -0.06069 
p4        0.00173± 0.02349 
p5        0.000808± 0.009565 

Dss_emkp

-12 -10 -8 -6 -4 -2 0 20

CPe_emkp

 / ndf 2χ   12.7 / 5

Constant  1800948480± 1.171e+09 

Mean      2.79± 37.52 
Sigma     0.29±  4.79 

CPe_emkp

-12 -10 -8 -6 -4 -2 0 20
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

dat_emkp

 / ndf 2χ  39.48 / 21
p0        0.0017± 0.1531 
p1        0.00290± -0.08555 
p2        0.168± 1.148 
p3        0.141± 1.977 

dat_emkp

-12 -10 -8 -6 -4 -2 0 20
0.05

0.1
0.15

0.2
0.25

0.3
0.35
0.4

Cmb_emkp

 / ndf 2χ  26.61 / 17
p0        0.0022± 0.3494 
p1        0.0003159± 0.0003468 
p2        0.0134± -0.1751 
p3        0.055± 1.823 
p4        0.083± 1.117 
p5        0.0109± -0.2081 
p6        0.1042± -0.4769 
p7        0.049± 1.358 

Cmb_emkp

-12 -10 -8 -6 -4 -2 0 20
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Cmb_emkp

 / ndf 2χ  22.21 / 17
p0        0.0034± 0.8503 
p1        0.0004890± 0.0003924 
p2        0.0179± -0.4136 
p3        0.028± 1.889 
p4        0.044± 1.063 
p5        0.0129± -0.5172 
p6        0.0526± -0.3677 
p7        0.027± 1.363 

Cmb_emkp

Figure 5.9: Sample composition, e−K+. We show the fraction of peaking B0B0 (top left plot),
peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0 combi-
natorial (center right) and the total combinatorial (bottom right) as a function of m2

ν .
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Figure 5.10: Sample composition, e−K−. We show the fraction of peaking B0B0 (top left
plot), peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0

combinatorial (center right) and the total combinatorial (bottom right) as a function of m2
ν .
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Figure 5.11: Sample composition, µ+K+. We show the fraction of peaking B0B0 (top left
plot), peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0

combinatorial (center right) and the total combinatorial (bottom right) as a function of m2
ν .
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Figure 5.12: Sample composition, µ+K−. We show the fraction of peaking B0B0 (top left
plot), peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0

combinatorial (center right) and the total combinatorial (bottom right) as a function of m2
ν .
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Figure 5.13: Sample composition, µ−K+. We show the fraction of peaking B0B0 (top left
plot), peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0

combinatorial (center right) and the total combinatorial (bottom right) as a function of m2
ν .
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Figure 5.14: Sample composition, µ−K−. We show the fraction of peaking B0B0 (top left
plot), peaking B+B− (center left), CP -eigenstates (bottom left), continuum (top right), B0B0

combinatorial (center right) and the total combinatorial (bottom right) as a function of m2
ν .



Chapter 6

Measurement technique and charge
asymmetries

In this chapter, we will discuss in detail the main physical assumption we make to measure
simultaneously |q/p| and the detector related charge asymmetries, without relying on the pre-
dictions of the Monte Carlo. After the introduction on the analysis technique (sections 6.1 and
6.2), we will discuss the crucial topic of charge asymmetries in the detection and identification
of charged particles (6.3) and present the results we obtained in the feasibility study of this
analysis. Finally, in section 6.4 we will show a study (aside from the main analysis stream) on
the reduction of proton contamination in our kaon sample, which constitutes a potential source
of systematic error in our analysis.

6.1 Analysis Method

In case of CP Violation in B0B0 Mixing, the probability of oscillation of a B0 state into a B0

is different from the probability of the inverse process. Therefore the number of B0B0 decays,
integrated over the decay times, is different from the number of B0B0 events.

 z∆

tagB recB

Tag K

softπ

l

0D

 KtagD

Figure 6.1: Schematic drawing of a possible signal event

Figure 6.1 shows a schematic picture of a possible signal event. We flag as Brec the B-meson
partially reconstructed by using only the (πsoft, ℓ) pair.
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Charged kaons may originate from the decay of the unreconstructed Btag and are used to tag
its flavor; we will call them Btag kaons. Kaons could also come from the decay of the D0 on the
Brec side (Dtag kaons); most of them have the same charge of the lepton coming from Brec. The
small fraction of Dtag kaons having opposite charge with respect to the lepton originate from
(doubly) Cabibbo Suppressed decays (D0 → K+K−,K+π−, ...), mistags (D0 → K−π+X,π+ →
fake K+).

Given the difference between D0 and B0 lifetimes and the fact that the Btag decay vertex
is computed by using only the K track, Dtag and Btag kaons exhibit different ∆z distributions,
the former being much narrower than the latter (see figure 6.2).

There is then (at least) another difference between the two samples. A Dtag kaon is emitted
preferentially in the direction opposite to the lepton, whereas a Btag kaon is emitted randomly.
Therefore we can separate the two event sets from the different distributions of cos(θKℓ), where
θKℓ is the angle between the lepton and the charged kaon.
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Figure 6.2: ∆z distributions (left plots) and relative pull (right) forDtag (top) and Btag (bottom)
events. In the computation of Dtag pull the true value of ∆z is 0 by definition, since the kaon and
the ℓ, πsoft pair originate from the same B meson. For the Btag events, we show the contributions
of direct b→ K decays (red circles) and of the cascade b→ c→ K decays (blue squares).

Under the hypothesis that CP -violation in D0 decays is negligible, we use the Dtag K sample
to measure directly on data the charge asymmetries induced by event reconstruction and particle
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identification, which give a different probability of reconstructing a B0B0 event rather than a
B0B0 one.

Basically, we compare the asymmetry in the yield of “mixed” ℓ+K+ events to ℓ−K− events
in the Btag and in the Dtag sample. The observed asymmetries can be expressed in terms of
ASL and of the detector related effects according to the relations:

A(Btag) ≃ Arec +Atag + ASL (6.1)

A(Dtag) ≃ Arec +Atag + χdASL, (6.2)

where we neglect mistags and all the terms containing a product of asymmetries. Arec is the
asymmetry induced by event reconstruction, Atag is the asymmetry introduced by charged kaon
tagging (see also details in section 7.1), and χd is the integrated mixing probability. If the
experimental asymmetries are the same in the Btag and in the Dtag samples (this hypothesis is
inspected in detail as explained in section 6.3), we can invert equations 6.1, 6.2 and solve for
ASL.

In practice, Btag and Dtag events can be separated only on a statistical basis, exploiting
differences in proper time distribution and in other kinematical variables. For this reason, we
determine ASL with a fit to several experimental distributions sensitive to differences between
Btag and Dtag events. The fit functions provide a precise analytical description of our data,
including mistags and higher order terms neglected in the formulas above, which are introduced
in this section only for illustration. In addition to the events where the lepton and the kaon
have the same electric charge (“mixed events”), we fit also opposite charge (“unmixed”) events,
ℓ±K∓. We use this sample mainly to measure mistags, but it also provides additional constraints
on the detector related asymmetries. In particular, its use permits to disentangle Atag from Arec.

We describe briefly in the next section the variables that we use in our fit, while the next
section of this chapter is reserved for a discussion of detector related asymmetries. A detailed
description of the pdf’s used to characterize the signal and the backgrounds is reported in the
next chapter.

6.2 Fitting technique

The main physics parameters, along with the ones related to detector response and resolution
are fitted simultaneously in a binned Maximum Likelihood fit on the variables ∆t, σ(∆t). In
the fit, we account explicitly for the dependence of ∆t and σ(∆t) on the kaon momentum |~pK |.

We use 100 bins for ∆t, 25 bins for σ(∆t) and 5 bins for |~pK |. The Likelihood value is
computed at the center of each bin. Several constraints (e.g. that the fraction of mixed events
should be equal to χ2

d/[2(1 + χ2
d)], where χd = ∆mdτB0) are applied to the Likelihood; this is

equivalent to the use of an Extended Maximum Likelihood formalism.

The fractions of B0B0 and B+B− peaking and combinatorial events, of CP -eigenstates and
continuum are determined from an external fit to the m2

ν distributions, as shown in section 5.5.

The fraction of Dtag kaons is extracted by exploiting their correlation with the Brec side ℓ
flight direction. Figure 6.3 shows the cosine of the angle between the candidate K and the ℓ
(cos(θKℓ)) for signal and background Btag and Dtag events.

As the kaon and the lepton originate from different B-mesons in Btag events, their flight
directions are un-correlated and thus the cos(θKℓ) distributions are roughly constant.

On the other hand, for Dtag events, K and ℓ tracks originate from the decay of the same
B meson, which has a very little momentum in the Υ (4S) rest frame. The kinematics of the
B0 → D∗−ℓ+ν, D∗− → D̄0π−soft, D̄

0 → K+X decay chain is such that the angle between the
kaon and the lepton is preferentially large. Figure 6.3 shows that cos(θKℓ) peaks towards -1 for
both signal and background events and that there is a very small dependence on the value of
m2
ν .
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Figure 6.3: cos(θKℓ) for Btag (left plots) andDtag (right) events. Top plots show the distributions
for events where the (ℓ, πsoft) pair is a signal one, while bottom plots show B0B0 combinatorial
events in four different ranges of m2

ν . All distributions are normalized to the same arbitrary
area.
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The Dtag fraction is determined from a fit to the cos(θKℓ) distribution, where the Dtag and
Btag shapes are modeled using a polynomial function.

6.3 Charge Asymmetries

Detector related charge asymmetries on the Btag and Dtag samples can be measured on generic
Monte Carlo (which is generated with no physical source of charge asymmetry) by simply count-
ing K+ and K− and using the MC truth.

The results for this test, run over Run1-5 generic B0B0 MC, are presented in table 6.1, where
we show the quantity:

AℓK =
N(ℓ+K+) −N(ℓ−K−)

N(ℓ+K+) +N(ℓ−K−)
, (6.3)

separately for K from the tag side and from the decay side. Only signal events and true kaons
are considered and events where the Brec lepton is identified as a muon are separated from the
electron case (AℓK includes also the asymmetry in the reconstruction of Brec).

Table 6.1: Results of the test of charge asymmetries on Run1-5 generic B0B0 MC. Only true
kaons have been selected.

Electrons Muons

AℓK(Btag) 0.0149 ± 0.0013 0.0196 ± 0.0016

AℓK(Dtag) 0.0152 ± 0.0009 0.0205 ± 0.0010

AℓK(Btag) - AℓK(Dtag) -0.0003 ± 0.0016 -0.0009 ± 0.0019

There is a very good agreement between the charge asymmetries measured in Btag and Dtag

samples for separately electrons and muons, so the method of constraining the detector related
asymmetries to the ones found on the Dtag sample looks feasible.

As the momentum (|~pL|) and the polar angle (ϑL) spectra are different for Btag and Dtag

kaons (see figures 6.4 and 6.5) and charge asymmetries depend on those variables, we need to
check that there is not a strong dependence of the asymmetries on small variations of the spectra
predicted by our Monte Carlo.
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Figure 6.4: Distributions of Btag and Dtag momenta in the laboratory frame, separately for K+

(left plot) and K− (right). Dtag spectra have been normalized to Btag ones.

First of all we check that the charge asymmetry for Btag and Dtag detection is the same in
a given (small) range of |~pL| and ϑL. We divide the (|~pL|, ϑL) 2-dimensional spectrum in 400
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Figure 6.5: Distributions of Btag and Dtag polar angles in the laboratory frame (ϑL), separately
for K+ (left plot) and K− (right). Dtag spectra have been normalized to Btag ones.

squared bins and for each of them (if it contains at least 50 events), compute the quantity:

pull(Asy) =
ABtag −ADtag

√

σ2(ABtag) + σ2(ADtag)
.

The result is shown in figures 6.6 and 6.7; it can be seen that, as expected, the two charge
asymmetries are well compatible with each other within statistical uncertainties.
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Figure 6.6: Distribution of pull(Asy) for Run1-4 generic B0B0 Monte Carlo as a function of
(|~pL|, ϑL).

To check the dependence of charge asymmetries on the shapes of |~pL| and ϑL spectra, we
generate 11 datasets with modified spectra, according to the following procedure. To generate
a dataset with modified |~pL| spectra, we randomly select, from the initial sample, Dtag kaons
with a probability:

prob(|~pL|) = 0.9 +m(|~pL| − 2),

(with |~pL| in GeV/c), independently of ϑL and regardless of the kaon charge. m is specific for
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Figure 6.7: Distribution of pull(Asy) for bins containing at least 50 events of Btag and Dtag

kaons.

each dataset and is chosen from [−0.5, . . . ,+0.5] at steps of 0.1. We do the same generating
datasets with ϑL spectra modified according to the probability:

prob(ϑL) = 0.9 +m(ϑL − 1.575),

and m chosen as before. Figure 6.8 shows the modified |~pL| and ϑL spectra for the extreme
cases and the unmodified shapes. The difference between the original and the modified samples
is at the level of a few % and should cover the uncertainty of our generic MC.
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Figure 6.8: Modified |~pL| (left plot) and ϑL (right) spectra for the extreme cases (m = ±0.5,
red and blue histograms) and the original shape (m = 0, black histogram).

For each generated dataset, we compute the charge asymmetries (separately for electrons
and muons). The results are reported in figure 6.9.

No sizable deviations appear on the modified spectra with respect to the original case.
We conclude that the method of constraining detector related charge asymmetries to the ones
measured on the Dtag sample is reliable, within the uncertainties on the generic Monte Carlo.

6.4 Charge Asymmetries due to proton contamination

Early studies on our Monte Carlo sample showed that the tracks sample passing the LooseKaonMicro
selector is affected by a significant contamination of (anti)protons. Furthermore we observe a
large charge-asymmetry on this sub-sample, with the number of positive tracks being several
times larger than the number of negative ones.
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Figure 6.9: Charge asymmetries for modified |~pL| spectra (left plot) and ϑL (right) separately
for electrons (red squares) and muons (blue triangles). We stress the fact that there is a strong
overlap among the generated samples, thus the differences between the computed asymmetries
are much smaller than the associated statistical uncertainty.

This effect can be explained (and Monte Carlo studies confirm this) by taking into account the
interaction of particles and anti-particles coming from the decays of B mesons (or other particles
produced in the e+e− collisions) with a detector made up by matter only. Nuclear interactions
involving particles coming from the beam spot with the detector material may produce detectable
protons, while nuclear interactions producing anti-protons are strongly suppressed.

Our simulation shows that only ∼ 16% of the (anti)proton tracks (p and p̄ in roughly the
same amount as expected) come from a B0 decay chain, while the remaining (∼ 84%) are p
produced by the interaction of particles coming from the beam spot with the detector material;
p̄ production in the matter is confirmed to be negligibly small.

In this section, we use the Monte Carlo truth to subdivide our sample into kaon (K±) tracks,
protons and anti-protons (p and p̄) and other particles (O±). Also, we assign the charge sign to
each particle according to its generated value.

We use the Monte Carlo truth to separate the non-K particles coming from a decay chain of
a B0 meson (suffix int) from the ones produced inside the detector material (suffix mat). Table
6.2 summarizes the yields we get on our generic B0B0 Monte Carlo samples. In each sample we
also compute the charge asymmetry, defined as A = (N+ −N−)/(N+ +N−).

Figure 6.10 shows the production vertices in the (x, y) plane for protons separated into pint
and pmat. The structure of the beam pipe and of the SVT appears clearly for protons coming
from interactions in the material. A significant number of pint and p̄int come from decays of long
lived Λ baryons, hence the large fraction of tracks originating several centimeters away from the
beam spot.

Concerning the O± sample, the dominant contribution is coming from π± (56.6 %), followed
by e± (22.4 %) and µ± (21.0 %). There is also a small, but not negligible contribution coming
from deuterons (d) and alpha particles (α); we do not observe d̄ or ᾱ, hence the small charge
asymmetry in the O± sample. For more details, see table 6.4.

The only use of vetoes on particle selectors passed or not passed by the tracks is not efficient
in suppressing the proton component while retaining most of K±, hence the need of considering
a wider set of variables with more or less sophisticated statistical tools.
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Table 6.2: Number of selected tracks, divided by category, for generic B0B0. Monte Carlo truth
has been used to separate protons coming from a decay chain of a B0 meson (pint) from the
ones produced inside the detector material (pmat), and the same applies for the other particles:
O±
int and O±

mat. The charge asymmetry A in each sample is also reported.

Run1 Run2 Run3 Run4

K+ 660 674 2 004 618 1 006 139 3 033 202

K− 639 575 1 937 999 963 601 2 903 872

A(K±) 1.62 ± 0.09 % 1.69 ± 0.05 % 2.16 ± 0.07 % 2.18 ± 0.04 %

pint 6 168 18 566 9 553 28 972

p̄int 6 413 19 350 10 048 30 129

A(pint − p̄int) -1.95 ± 0.89 % -2.07 ± 0.51 % -2.52 ± 0.71 -1.96 ± 0.41 %

pmat 33 995 102 581 52 565 157 116

p̄mat 10 27 22 38

A(pmat − p̄mat) 99.94 ± 0.54 % 99,95 ± 0.31 % 99.92 ± 0.44 % 99.95 ± 0.25 %

O+
int 49 371 150 616 70 646 219 065

O−
int 49 902 151 698 71 008 217 552

A(O±
int) -0.53 ± 0.32 % -0.36 ± 0.18 % -0.25 ± 0.27 % 0.35 ± 0.15 %

O+
mat 40 828 126 923 62 701 199 823

O−
mat 36 998 114 966 56 227 181 922

A(O±
mat) 4.92 ± 0.36 % 4.94 ± 0.20 % 5.44 ± 0.29 % 4.69 ± 0.16 %

Total A 3.81 ± 0.08 % 3.87 ± 0.05 % 4.37 ± 0.07 % 4.37 ± 0.04 %

Figure 6.10: Positions in the (x, y) plane of the production vertex for pint (left plot) and pmat
(right).
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The tracking variables (available in our rootuples) considered in the various analyses are
listed below:

• |~pL|, the magnitude of the particle momentum in the Laboratory frame;

• θL, the polar angle in the Laboratory frame of the track;

• φL, the azimuthal angle of the track;

• DOCA and eDOCA: Distance Of Closest Approach (to the beam spot) and its error;

• POCA and ePOCA: z coordinate of the Point Of Closest Approach and its error;

• dE/dXSV T , the ionization energy loss measured by the SVT;

• nHitSV T , number of hits in the SVT;

• nHitDCH , number of hits in the DCH;

• PidL: a PID word containing the information of all the available electron and muon
selectors;

• PidH: a PID word containing the information of all the available kaon, pion and proton
selectors;

Figure 6.11-6.17 show the distributions of some of those variables for K±, p and p̄ (either
pint or pmat) and O±.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

160

310×
 +| - K

L
p|  +| - K

L
p|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

160

310×
 -| - K

L
p|  -| - K

L
p|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5000

10000

15000

20000

25000

30000

35000

| - p 
L

p| | - p 
L

p|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 p| - 
L

p|  p| - 
L

p|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5000

10000

15000

20000

25000

| - other+ 
L

p| | - other+ 
L

p|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5000

10000

15000

20000

25000

| - other- 
L

p| | - other- 
L

p|

Figure 6.11: |~pL| for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right), O+

(bottom left) and O− (bottom right). The shaded histograms show the contributions of particles
produced in the detector material.
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Figure 6.12: θL for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right), O+

(bottom left) and O− (bottom right). The shaded histograms show the contributions of particles
produced in the detector material.
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Figure 6.13: φL for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right), O+

(bottom left) and O− (bottom right). The shaded histograms show the contributions of particles
produced in the detector material.
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Figure 6.14: DOCA for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right),
O+ (bottom left) and O− (bottom right). The shaded histograms show the contributions of
particles produced in the detector material.
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Figure 6.15: POCA for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right),
O+ (bottom left) and O− (bottom right). The shaded histograms show the contributions of
particles produced in the detector material.
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Figure 6.16: nHitSV T for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right),
O+ (bottom left) and O− (bottom right).
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Figure 6.17: nHitDCH for K+ (upper left), K− (upper right), p (middle left), p̄ (middle right),
O+ (bottom left) and O− (bottom right).
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6.4.1 Cut and count analysis

A quick and transparent reduction of the contamination from non-K tracks in our sample can
be achieved by imposing a small set of cuts on the variables considered.

An acceptable trade-off between purity and efficiency is given by the following requests:

• the track is requested to pass the VeryLooseLHProtonSelection selector;

• nHitSV T ≥ 6 ;

• |DOCA| < 0.4 ;

• −3 < POCA < 1.5 ;

The above cuts have been set trying to suppress the pmat component while retaining most of
the K± component and indeed we reject ∼ 95% of the pmat − p̄mat component while retaining
about 89% of genuine kaons. Furthermore, we achieve a significant suppression also on the pint
and O± components. Details about the performance of our selection can be found in table 6.3.

Table 6.3: Rejection efficiencies of our set of cuts on each subsample. The whole Run1-4 B0B0

generic Monte Carlo has been taken into account.

Before cuts After Cuts 1 - ε

K+ 6 704 633 5 978 030 10.84 ± 0.01 %

K− 6 445 047 5 740 580 10.93 ± 0.01 %

pint 63 259 23 327 63.12 ± 0.19 %

pmat 346 257 15 546 95.51 ± 0.04 %

p̄int 65 940 26 037 60.51 ± 0.19 %

p̄mat 97 6 93.81 ± 2.45 %

O+
int 490 058 272 212 44.45 ± 0.07 %

O+
mat 430 275 110 515 74.31 ± 0.07 %

O−
int 490 160 272 220 44.46 ± 0.07 %

O−
mat 390 113 110 490 71.67 ± 0.07 %

Total A 4.169 ± 0.025 % 1.995 ± 0.028 % -

On the backgrounds only, our set of cuts reduces the charge asymmetry from 16.85 ± 0.07%
to 1.55 ± 0.11%; the global asymmetry we observe after the cuts is therefore almost entirely
due to the detection asymmetry of K± tracks.

The performances of the above set of cuts on the single components of the O± sample
are illustrated on table 6.4. The cuts suppress most of d and α and significantly reduce the
background from e±, µ± and π± and the charge asymmetry of the whole O± sample.

While it is apparent that this small set of cuts significantly improves the quality of our K±

sample, it is also evident that only a limited part of the available information is used and even
on the variables involved in the cuts some more rejection power is left.

In the following sections we will apply more sophisticated and powerful statistical tools,
beginning (subsection 6.4.2) with Neural Networks in one of the most popular implementa-
tions in HEP and then applying some of the less popular (in HEP) tools available in the
StatPatternRecognition package (subsection 6.4.3).
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Table 6.4: Breakdown of the O± components, before and after applying the set of cuts; selection
efficiencies are also reported.

Before cuts After Cuts Efficiency

e+ 197 811 82 283 41.6 ± 0.1 %

e− 203 338 81 623 40.1 ± 0.1 %

µ+ 186 967 75 005 40.1 ± 0.1 %

µ− 188 462 77 102 40.9 ± 0.1 %

π+ 490 454 224 824 45.8 ± 0.1 %

π− 488 301 223 880 45.8 ± 0.1 %

d 16 662 163 1.0 ± 0.1 %

d̄ 0 0 n.a.

α 19 698 258 1.3 ± 0.1 %

ᾱ 0 0 n.a.

6.4.2 Neural Network Analysis

In this section we will apply to our selection problem a feedforward with backpropagation neural
network, implemented in the TMultiLayerPerceptron class, available in the most recent ROOT
distributions.

Given the size of our data sets, we can produce many independent samples to be used for
training and validation. We start by considering only positive kaons and protons; the perfor-
mance of the network will be tested on the negative tracks and on the O± sample once the setup
has been optimized and frozen.

Learning Methods

The TMultiLayerPerceptron package offers six Learning Methods. The choice of the optimal
one for our purposes has been made by building a neural network with one hidden layer (8
nodes) and one output node utilizing each real variable considered. The network has been
trained and validated by using a sample of 30k K+ tracks and 10k p (either pint or pmat) split
in two samples (Training and Validation) having the same size. 300 training cycles have been
run for each learning method; to compare the efficiencies of the different learning methods, we
compare the fractions of protons rejected with a cut on the output value which keeps ∼ 90% of
K+ tracks.

In the following we list the results of our tests and the reasons which motivated our choice:

• Steepest Descent with Fixed Step Size (Batch Learning): the algorithm fails
during the validation process after a few tens of cycles;

• Steepest Descent: this algorithm terminates successfully the training cycles, but the
fraction of rejected protons is rather poor: 73.5 ± 0.4%;

• Conjugate Gradients with Fletcher-Reeves Updating Formula: the fraction of
rejected protons is 86.8 ± 0.3%;

• Conjugate Gradients with Polach-Ribiere Updating Formula: the fraction of re-
jected protons is 88.5 ± 0.3%;

• Stochastic Minimization: this method gives a very good proton rejection efficiency
(93.4 ± 0.2%) but the validation error curve (see fig. 6.18, left) is rather spiky;
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• Broyden, Fletcher, Goldfarb, Shanno Method (BFGS): this method achieves the
best performance (94.8 ± 0.2%) and the training and validation error curves look well
behaved (see fig. 6.18, right);

Figure 6.18: Training and validation errors as a function of the training cycle for Stochastic
Minimization (left) and BGFS (right) learning methods.

Given its performance and stability, we choose the BFGS learning method for the following
refinements and optimizations of the network. In this method, the search precision (and training
speed) is set by the parameter τ (the lower it is, the more precise and slower is the search).

We perform a brief scan on the same training and validation samples to look for any optimal
setting of the τ parameter; results are shown in figure 6.19.
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Figure 6.19: Results of the scan on the τ parameter of the BFGS learning method. We compare
the proton rejection efficiencies (red dots) achieved by a cut on the NN output which preserves
∼ 90% of K+.

As no evident trend is visible in the scan, we conservatively keep the default value of τ = 3.

Network Optimization

We use a sample of 100k K+ and 17k p to test if the rejection efficiency of protons produced in
the material could be improved by training the network only on a sample of pmat.

This quick test actually shows that the pmat rejection efficiency is slightly degraded (it moves
from 97.00 ± 0.13% to 96.22 ± 0.15%) by training on the pmat component only. On the other
side, the pint rejection efficiency drops from 77.9 ± 0.7% to 65.6 ± 0.8%.
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In order to preserve the performance and the stability of the neural network (also in sight of
an effective reduction of the p̄int component), we decide to keep training the network on both
components.

We then vary the number of nodes in the hidden layer and compare the efficiency of each
network. As before, we cut on the output value of the network in order to preserve ∼ 90% of
K+; results are shown in figure 6.20.
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Figure 6.20: Results of the scan on the number of nodes in the hidden layer of NN.
the BFGS learning method.

We choose 12 as the optimal number of hidden nodes; some concern on the stability of this
choice could arise from the fact that the solutions with 11 and 13 hidden nodes give results
significantly worse than the optimal solution and the average over the scanned range: some
thorough study on this will be necessary, should we actually use this tool in the actual analysis.

We also try to put a second hidden layer, but we quickly discard this kind of networks
because, while having roughly the same efficiency on the rejection of the pmat component, they
reach significantly worse results with pint.

In figure 6.21 we show the output of our optimized Neural Network for K+, pint and pmat.
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Figure 6.21: Output of the optimized neural network for K+ (continuous black line), pint (red
dashed) and pmat (blue dots). The histograms have been normalized to the same area.

Table 6.5 shows the efficiencies of the cut on Neural Network output for e, µ and π and
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figure 6.22 shows its distributions separately for positive and negative tracks.
With respect to the cut based strategy, while there is a substantial improvement on the

rejection of µ±, the Neural Network has a significantly poorer performance on e± and works
slightly worse for π±.

Table 6.5: Breakdown of the O± components, before and after applying the cut on Neural
Network output; selection efficiencies are also reported.

Before cuts After Cuts Efficiency

e+ 197 811 122 340 60.2 ± 0.1 %

e− 203 338 119 749 60.5 ± 0.1 %

µ+ 186 967 49 100 26.1 ± 0.1 %

µ− 188 462 48 289 25.8 ± 0.1 %

π+ 490 454 230 536 47.0 ± 0.1 %

π− 488 301 229 079 46.9 ± 0.1 %
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Figure 6.22: Neural Network output for positive (left plot) and negative (right) e, µ and π. The
distributions have been normalized to the same conventional area.

6.4.3 StatPatternRecognition Analysis

In this subsection we apply to our selection the more sophisticated (and less popular in HEP)
statistical tools available in the package StatPatternRecognition. Extensive documentation
on this package and the statistical techniques involved can be found in [61], [62] and references
therein.

We will use the AdaBoost technique, which can handle several elementary classifiers in a
very flexible way. The hard split decision (signal or background) which is used e.g. in Bump
Hunting and simple Decision Trees is replaced here by soft splits.

At each training cycle, the algorithm performs a series of splits minimizing the fraction of
misclassified events; the weight of misclassified events is enhanced with respect to the weight of
correctly classified ones and a new training cycle is performed. The procedure is repeated until
a stopping criterion is satisfied. The final classification of an event is given by a weighted vote
of all the binary splits; given the large number of splits in practice we get a continuous output,
similar to the one we get from a Neural Network.

For our analysis, we will use the SprAdaBoostDecisionTreeApp implementation of AdaBoost.
We choose the Gini index as the FOM to be maximized, as highly recommended by the Author.

One of the main advantages of AdaBoost with respect to Neural Networks is the possibility
to efficiently exploit integer variables as well as floats in the same analysis. We therefore use,
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in addition to the variables used in the Neural Network analysis, nHitSV T , and nHitDCH . We
leave out the PID information in order to apply vetoes or select control sample using variables
independent from the ones used in the AdaBoost.

Number of Classifiers

There are basically two parameters to be optimized in using SprAdaBoostDecisionTrees: the
minimum number of events per node in each decision trees and the number of classifiers to be
used in the whole process.

In order to avoid the possibility of overtraining, we conservatively set the minimum number
of events per node to 1000. We then perform a scan by varying the number of classifiers to be
used in order to find the optimal setting.

The training sample contains 67 046 K+ and 20 480 p, the validation and test samples are
independent from the training sample and have half its size. We evaluate the performance on
the test sample by setting a cut on the AdaBoost output variable which preserves ∼ 90% of K+

and computing the rejection efficiency of the protons.

The results of this scan are reported in figure 6.23.
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Figure 6.23: Scan over the number of classifiers used by AdaBoost

As we can see, the performance increases with the number of classifiers. As the improvement
over 100 is marginal compared to the additional computing time requested, we choose 100 as
default value for the following studies.

Figure 6.24 shows the output of AdaBoost for K+, pint and pmat. The plot has been drawn
on a sample (independent from the ones previously used for training, validation and test) of 67k
K+, 13k pint and 69k pmat; the training and the cut position have been kept frozen.

On this sample we get a K+ selection efficiency of 90.45 ± 0.11% while the protons rejection
efficiencies are 92.87 ± 0.23% for pint and 99.10 ± 0.04% for pmat.

Figure 6.25 shows the output distributions of the same AdaBoost on e±, µ± and π±. A
summary of the performance on those tracks with the same cut on the AdaBoost output is
given in table 6.6.

Comparison with Neural Network

As it is apparent from the preliminary checks done so far, the AdaBoost technique is significantly
more powerful than the Neural Network set up on the same problem. We may ask how much
this additional power is due to the inclusion of the integer variables nHitSV T and nHitDCH .
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Figure 6.24: Output of AdaBoost for K+ and separately for pint and pmat. The distributions
have been normalized to the same area.

NN output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

AdaBoost output
+e
+µ
+π

AdaBoost output

NN output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

AdaBoost output
-e
-µ
-π

AdaBoost output

Figure 6.25: AdaBoost output for positive (left plot) and negative (right) e, µ and π.

Table 6.6: Breakdown of the O± components, before and after applying the cut on the AdaBoost
output; selection efficiencies are also reported.

Before cuts After Cuts Efficiency

e+ 197 811 114 606 56.4 ± 0.1 %

e− 203 338 117 115 59.2 ± 0.1 %

µ+ 186 967 62 613 33.2 ± 0.1 %

µ− 188 462 60 679 32.5 ± 0.1 %

π+ 490 454 191 350 39.0 ± 0.1 %

π− 488 301 188 761 38.7 ± 0.1 %
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To quickly answer this question, we re-train, on the same samples used before and again
using 100 classifiers, a new SprAdaBoostDecisionTree which does not take into account the
two integer variables.

The results on the test sample (33 523 K+ and 10 240 p) show that with a K+ selection effi-
ciency of 89.94 ± 0.16%, we reject 97.78 ± 0.0015% of the protons, a result perfectly compatible
with the one obtained by using the two discarded variables.

Charge Asymmetries

We compute the charge asymmetry on the selection of K± tracks on a large (∼ 670k K+ and
∼ 645k K−) Monte Carlo sample, with the usual selection technique.

The results are: ε(K+) = 89.88 ± 0.04% and ε(K−) = 89.41 ± 0.04%, the ratio between
the two being 1.0054 ± 0.0006.

Figure 6.26 shows the output of the AdaBoost for K+ and K− separately. While there is
an overall consistency between the two distributions, some differences are apparent on the tails.
Fitting the ratio histogram with a constant, we get c = 0.9964 ± 0.0018 with χ2/NDOF =
769.2/64.
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Figure 6.26: Output of AdaBoost trained only on K+, separately for K+ and K− (upper plot)
and ratio ε(K+)/ε(K−) between the two (lower plot). The distributions have been normalized
to the same area.

The charge asymmetry in K± selection is significantly reduced by training the AdaBoost
on a sample containing K+ and K− in roughly the same amount. By repeating the whole
procedure on training, validation and test samples of comparable in size to the ones used above,
we get: ε(K+) = 89.84 ± 0.04%, ε(K−) = 89.72 ± 0.04%, and the ratio between the two:
1.0013 ± 0.0006. The fit with a constant gives c = 0.9984 ± 0.0018, χ2/NDOF = 321.4/64.

If we train by using only K− what we get is: ε(K+) = 89.50 ± 0.04%, ε(K−) = 89.80 ±
0.04%, and the ratio is 0.9967 ± 0.0006. The fit result is: c = 0.9995±0.0018 with χ2/NDOF =
96.5/64.



98 CHAPTER 6. MEASUREMENT TECHNIQUE AND CHARGE ASYMMETRIES

ada
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5000

10000

15000

20000

25000

30000

35000

AdaBoost output
+K
-K

AdaBoost output

ada
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RatioRatio

Figure 6.27: Output of AdaBoost trained on both K+ and K−, separately for K+ and K−

(upper plot) and ratio ε(K+)/ε(K−) between the two (lower plot). The distributions have been
normalized to the same area.

ada
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5000

10000

15000

20000

25000

30000

35000

AdaBoost output
+K
-K

AdaBoost output

ada
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RatioRatio

Figure 6.28: Output of AdaBoost trained only on K−, separately for K+ and K− (upper plot)
and ratio ε(K+)/ε(K−) between the two (lower plot). The distributions have been normalized
to the same area.
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6.4.4 Conclusions

The optimization on the selection of K± tracks to be used in the CP -violation analysis showed
that the contamination from protons (and in particular from protons produced in the interaction
with the detector material) is already reduced to negligible levels, so we do not need to apply
the algorithms developed in this separate study to the main analysis stream.
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Chapter 7

Probability density functions

In this chapter we describe the probability density functions (pdf’s) we use to parametrize the
(∆t, σ(∆t)) distributions for the various components entering our fit.

We will not use the parametrization here defined for the Dtag kaons in peaking B0B0 and
B+B− events and B+B− combinatorial due to the fact that it is possible to obtain a more
reliable description based on the data of these components. The parametrization given in this
chapter will be used anyway to estimate the systematic uncertainties.

7.1 Reconstruction and tagging asymmetries

Theoretical signal and background pdf’s have to be properly modified in order to take into
account physical and detector related asymmetries. These can be schematically grouped as
follows:

1. Reconstruction Asymmetry. If ρ is the reconstruction efficiency of a (ℓ+, π−s ) pair and ρ̄
is the reconstruction efficiency for its conjugate, we define the reconstruction asymmetry
Arec = (ρ − ρ̄)/(ρ + ρ̄) and the average reconstruction efficiency R = (ρ + ρ̄)/2. ρ and ρ̄
can then be expressed as:

ρ = R(1 +Arec)

ρ̄ = R(1 −Arec) (7.1)

Given that the reconstruction efficiencies for (e±, π∓s ) pairs is different from the ones for
(µ±, π∓s ), we will distinguish the two lepton flavors in the fit and quote Arec(e) and Arec(µ).

2. Tagging Asymmetry (Physics). We define ω+ the probability for a B0 to have among its
decay products the hadron h− and ω− the probability for a B0 to decay to h+. We have
∆ω = ω+ − ω− and ω = (ω+ + ω−)/2.

3. Tagging Asymmetry (Detector). If τ is the probability that the hadron h+ is identified as
a K+ and τ̄ the probability that h− is identified as K−, we define: Atag = (τ − τ̄)/(τ + τ̄)
and T = (τ + τ̄)/2. τ and τ̄ can be written as:

τ = T (1 +Atag)

τ̄ = T (1 −Atag) (7.2)

We will assume that Btag and Dtag samples share the same Arec and Atag asymmetries,
while ω and ∆ω are kept separated because they originate from different underlying physical
processes.

101
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Because of these effects, the theoretical pdf’s Fχ(st, sm), where χ defines the different compo-
nents (signal Btag, signal Dtag, combinatorial Btag, combinatorial Dtag, peaking and continuum),
are related to measured pdf’s Fmeas

χ (st, sm), in this way:

Fmeas
χ (∆t, st = 1, sm = −1) = ρτ

[

(1 − ω+
χ )Fχ(∆t, 1,−1) + ω−

χFχ(∆t,−1, 1)
]

= (7.3)

= RT (1 +Arec)(1 +Atag)
[

(1 − ω+
χ )Fχ(∆t, 1,−1) + ω−

χFχ(∆t,−1, 1)
]

Fmeas
χ (∆t, st = 1, sm = 1) = ρ̄τ

[

(1 − ω+
χ )Fχ(∆t, 1, 1) + ω−

χFχ(∆t,−1,−1)
]

= (7.4)

= RT (1 −Arec)(1 +Atag)
[

(1 − ω+
χ )Fχ(∆t, 1, 1) + ω−

χFχ(∆t,−1,−1)
]

Fmeas
χ (∆t, st = −1, sm = −1) = ρ̄τ̄

[

(1 − ω−
χ )Fχ(∆t,−1,−1) + ω+

χFχ(∆t, 1, 1)
]

= (7.5)

= RT (1 −Arec)(1 −Atag)
[

(1 − ω−
χ )Fχ(∆t,−1,−1) + ω+

χFχ(∆t, 1, 1)
]

Fmeas
χ (∆t, st = −1, sm = 1) = ρτ̄

[

(1 − ω−
χ )Fχ(∆t,−1, 1) + ω+

χFχ(∆t, 1,−1)
]

= (7.6)

= RT (1 +Arec)(1 −Atag)
[

(1 − ω−
χ )Fχ(∆t,−1, 1) + ω+

χFχ(∆t, 1,−1)
]

where st and sm have been defined in chapter 2.

The observed distributions are obtained from the convolution of the resolution functions
with the Fmeas

χ (st, sm) defined above, as discussed in the following sections 7.2- 7.10 for each
component of the global pdf.

Even if for Dtag kaons in B0B0 signal and B+B− signal and combinatorial we will get the
pdf’s from the data (see chapter 10), we describe the analytical pdf’s and resolution models,
since these will be used in the evaluation of systematic uncertainties.

7.2 Signal Btag

The theoretical pdf’s FBtag,sig(st, sm) for signal Btag events are those described in section 2.

The resolution model we need to use is complicated by the fact that a large fraction of
Btag kaons originate from cascade decays (b → c → K); the effect of the finite lifetime of the
charmed meson and the experimental boost cause a distortion towards negative values of the
∆t distribution. This effect is accounted for by using gaussians convoluted with a decaying
exponential (Gexp’s) instead of simple gaussians in the resolution model.

Moreover, the dependence on |~pK | of the resolution function has to be parametrized. The
resolution model, for signal Btag events, is defined as follows:

RBtag,sig(δ∆t, σ∆t, |~pK |) = fn exp

(

− (δ∆t− on)
2

2(sn(|~pK |)σ∆t)2

)

+

+ |1 − fn − fo| exp
(

− (δ∆t− ow)2

2(sw(|~pK |)σ∆t)2

)

+

+ fo exp

(

−(δ∆t− oo)
2

2s2o

)

(7.7)

where δ∆t = ∆ttrue−∆tmeas and sx and ox (x = n,w, o) are the offsets and widths, respectively,
of the gaussian components.
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RBtag,sig(δ∆t, σ∆t, |~pK |) is convoluted with two decaying exponentials:

RBtag ,sig(δ∆t, σ∆t, |~pK |) = (1 − fG2(|~pK |)) RBtag,sig(δ∆t, σ∆t, |~pK |) ⊗ exp

(

−δ∆t
τG1

)

+

+ fG2(|~pK |) RBtag ,sig(δ∆t, σ∆t, |~pK |) ⊗ exp

(

− δ∆t

τG2(|~pK |)

)

(7.8)

The dependence on |~pK | of some of the parameters entering the resolution model is

sx(|~pK |) = sx,0 +
sx,1
√

|~pK |
x = n,w (7.9)

τG2(|~pK |) = τG2,0 +
τG2,1
√

|~pK |
(7.10)

fG2(|~pK |) = fG2,0 + fG2,1|~pK | (7.11)

The left plot of figure 7.1 shows the resulting resolution model for a kaon with |~pK | = 1
GeV/c.

The mistag probability ω+ (ω−) of incorrectly tagging a B0 (B0) reduces the statistical
significance of our measurement by the dilution factor D = (1 − 2ω). The dilution is also
dependent linearly on |~pK |:

D(|~pK |) = D0 +D1 |~pK | , (7.12)

that is:

ω± =
1 −D

2
± ∆ω . (7.13)

7.3 Signal Dtag

Signal Dtag events are parametrized by using a double exponential with an effective D0 lifetime
τD0. This pdf is convoluted with the following resolution model:

RDtag,sig
(δ∆t, σ∆t, |~pK |) = fnn exp

(

−(δ∆t− onn)
2

2(snn σ∆t)2

)

+

+ fn exp

(

− (δ∆t− on)
2

2(sn(|~pK |)σ∆t)2

)

+

+ fw exp

(

− (δ∆t− ow)2

2(sw(|~pK |)σ∆t)2

)

+

+ fo exp

(

−(δ∆t− oo)
2

2s2o

)

, (7.14)

where fnn, fn, fw and fo are normalized to unity.

The resolution function RDtag ,sig
(δ∆t, σ∆t, |~pK |) is computed by convoluting each of the

gaussian components with a Gexp with lifetimes τnn, τn, τw and τo(|~pK |).
As in the Btag case, we allow a dependence on |~pK | for the widths of the narrow and the

wide components; moreover we allow the lifetime of the outlier Gexp to have a dependence on
the kaon momentum:

sx(|~pK |) = sx,0 +
sx,1
√

|~pK |
x = n,w (7.15)

τo(|~pK |) = τo,0 +
τo,1
|~pK |

. (7.16)
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The right plot of figure 7.1 shows the resulting resolution model for a kaon with |~pK | = 1
GeV/c.
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Figure 7.1: Resolution models for Btag (left plot) and Dtag (right) signal events. The models
shown are referred to a kaon with |~pK | = 1 GeV/c.

7.4 Combinatorial Btag (B0B0)

For this category of events, the same pdf and resolution model described in section 7.2 is used.
Given that in this case the (ℓ, πsoft) are uncorrelated the parameters τB0 and ∆md have no
direct physical interpretation but are used as two effective parameters.

7.5 Combinatorial Btag (B+B−)

The pdf is a double exponential, decaying with an effective lifetime τBch,bkg.
The resolution model is defined as follows:

RBch,bkg(δ∆t, σ∆t, |~pK |) = fn exp

(

− (δ∆t− on)
2

2(sn(|~pK |)σ∆t)2

)

+

+ fw exp

(

− (δ∆t− ow)2

2(sw(|~pK |)σ∆t)2

)

+

+ fo exp

(

−(δ∆t− oo)
2

2s2o

)

(7.17)

RBch,bkg(δ∆t, σ∆t, |~pK |) is convoluted with an exponential:

RBch,bkg(δ∆t, σ∆t, |~pK |) = RBch,bkg(δ∆t, σ∆t, |~pK |) ⊗ exp

(

−δ∆t
τG

)

The only parameters depending on |~pK | are:

sx(|~pK |) = sx,0 +
sx,1
√

|~pK |
x = n,w

7.6 Combinatorial Dtag

We use the same pdf found for signal Dtag events for both B0B0 and B+B− combinatorial events.
While we can use the same parameters for B+B− as for signal Dtag , we must use independent
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parameters for B0B0 combinatorial events.

7.7 Peaking Btag

The same pdf and resolution model used in 7.5 is also used for peaking background Btag events,
with the same dependence on |~pK | for sn and so.

7.8 Peaking Dtag

The same resolution model used for signalDtag is used (see section 7.3), forcing all the parameters
to be the same for the two samples.

7.9 Continuum background

The pdf used for modeling the background originating from continuum events is a decaying
exponential with effective lifetime τoff .

The resolution model is very similar to the one used for signal Btag:

Roff (δ∆t, σ∆t, |~pK |) = fn exp

(

− (δ∆t− on)
2

2(sn(|~pK |)σ∆t)2

)

+

+ |1 − fn − fo| exp
(

− (δ∆t− ow)2

2(sw(|~pK |)σ∆t)2

)

+

+ fo exp

(

−(δ∆t− oo)
2

2s2o

)

(7.18)

Roff (δ∆t, σ∆t, |~pK |) is convoluted with two exponentials:

Roff (δ∆t, σ∆t, |~pK |) = (1 − fG2) Roff (δ∆t, σ∆t, |~pK |) ⊗ exp

(

−δ∆t
τG1

)

+

+ fG2 Roff (δ∆t, σ∆t, |~pK |) ⊗ exp

(

−δ∆t
τG2

)

(7.19)

The basic difference with respect to the resolution model used in signal Btag events is that
the only parameters depending on |~pK | are the widths of the narrow and wide gaussians:

sx(|~pK |) = sx,0 +
sx,1
√

|~pK |
x = n,w

7.10 CP -eigenstates

A small subsample (roughly 1.2% of B0B0) of our selected events originate from B0 (either on the
reconstructed or on the tag side) decays to CP -eigenstates (mostly B0 → D∗D̄(∗)). Given that
the probability of having a K+ is equal to the one of having a K− among its decay products and
that there is interference between mixing and decay, these events need to be treated separately
from the rest of Btag B

0 decays.

When the kaon comes from the tag side, we model these decays with the usual pdf:

FCP−eigen =
Γ

4
e−Γ|∆t| [1 ± Seff sin(∆md∆t) ± Ceff cos(∆md∆t)] . (7.20)
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The + sign is used when the other B is tagged as a B0 and - to the other B tagged as a B0 by
means of the charge sign of either the lepton or the kaon. We take the same resolution model
we use for the other B0 Btag events.

When the kaon is a Dtag one, we use the same pdf’s and resolution models used for (peaking
or combinatorial) non-CP decays.

Given the smallness of this sample, we fit the Ceff and Seff parameters to the Monte Carlo
and fix their values on the nominal fit to the data.



Chapter 8

Validation on Monte Carlo

In this chapter, we describe the different steps of the validation of our fit model on Monte Carlo.
Apart from sub-sections 8.8 and 8.9, the samples used in this section correspond to generic
Run1-4 Monte Carlo.

Throughout this chapter, every fit is performed keeping |q/p|−1, ∆Γ, b and c fixed to 0, the
value used in the generation of generic MC.

We also report the values of tagging and reconstruction asymmetries; for the latter, we
separate the cases when the Brec lepton is an electron from the muon case.

The purpose of some of the fits which are shown here, is just to debug our fit code, therefore
we report the results even if a fit has not properly converged and the errors associated to the
parameters are not realistic.

8.1 Signal Btag - true ∆t, true tag

As a first step of the validation process, we fit signal Btag events using the Monte Carlo truth
for both ∆t and the flavor of Btag.

Table 8.1: Results of the fit to generic Btag Run1-4 MC, using true ∆t and the true flavor of
Btag.

Parameter Generated value Fit result

τB0 1.540 1.5303 ± 0.0008
∆md 0.489 0.4856 ± 0.0002

Atag - 0.0130 (fixed)
Arec(e) - 0.0020 (fixed)
Arec(µ) - 0.0070 (fixed)

We let τB0 and ∆md as the only free parameters in the fit. Results are in good agreement
with expectations and are reported in table 8.1 and in figure 8.1.

8.2 Signal Btag - true ∆t, experimental tag

Table 8.2 and figure 8.2 summarize the results of the fit on signal Btag sample, using the MC
truth for ∆t, but considering the experimental dilution.

Besides τB0 and ∆md only the parameters D0, D1 and ∆ω are left floating in the fit. Again,
the fit results are consistent with expectations.

107



108 CHAPTER 8. VALIDATION ON MONTE CARLO

20

40

60

80

100

120

140

160

180

200

220

+Unmixed K

time nosc   

t (ps)∆
-15 -10 -5 0 5 10 150.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

20

40

60

80

100

120

140

160

180

200

-Unmixed K

time nosc   

t (ps)∆
-15 -10 -5 0 5 10 150.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

2000

4000

6000

8000

10000

12000

14000

16000

+Mixed K

time osc

t (ps)∆
-15 -10 -5 0 5 10 150.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

2000

4000

6000

8000

10000

12000

14000

-
Mixed K

time osc

t (ps)∆
-15 -10 -5 0 5 10 150.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

Figure 8.1: Fitted distributions for the four samples (top plots). The generated ∆t value has
been used and Btag has been tagged using the MC truth. The box at the bottom of each plot
shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.2: Fitted distributions for the four samples (top plots). The generated ∆t value has
been used, while the flavor of Btag is determined with the experimental dilution. The box at
the bottom of each plot shows the ratio between the histograms and the fitted pdf’s.
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Table 8.2: Results of the fit to generic Btag Run1-4 MC, using true ∆t and the flavor of Btagis
determined considering the experimental dilution.

Parameter Fit result

τB0 1.5298 ± 0.0009
∆md 0.4824 ± 0.0006

Atag 0.0146 ± 0.0018
Arec(e) 0.0029 ± 0.0009
Arec(µ) 0.0074 ± 0.0010

D0 0.3988 ± 0.0017
D1 0.1731 ± 0.0021
∆ω 0.0033 ± 0.0015

8.3 Signal Btag - measured ∆t, true tag

We repeat the fit by using the Monte Carlo truth information for the flavor of Btag and the
measured value of ∆t, leaving the parameters of the resolution floating. Results are reported in
table 8.3 and figure 8.3.

Table 8.3: Results of the fit to generic Btag Run1-4 MC, using measured ∆t and the true flavor
of Btag.

Parameter Fit result

τB0 1.5286 ± 0.0013
∆md 0.4839 ± 0.0006

Atag 0.0113 (fixed)
Arec(e) -0.0002 (fixed)
Arec(µ) 0.0090 (fixed)

fn 0.9050 ± 0.0022
fo 0.0048 (fixed)

on 0.0114 ± 0.0012
ow -0.1862 ± 0.0113
oo 0.0000 (fixed)

sn,0 0.5911 ± 0.0050
sn,1 0.3838 ± 0.0037
sw,0 1.1537 ± 0.0360
sw,1 1.0881 ± 0.0275
so 11.35 (fixed)

fG2 0.3973 ± 0.0029
τG1 0.0996 ± 0.0057
τG2,0 0.9925 ± 0.0088
τG2,1 -0.0752 ± 0.0033

8.4 Signal Btag - measured ∆t, experimental tag

We now fit the Btag sample using the reconstructed ∆t and the realistic tagging. All the
parameters separately left free in the two previous stages of the validation are floating.

The results are reported in table 8.4 and figure 8.4.
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Figure 8.3: Fitted distributions for the four samples (top plots). The measured ∆t value has
been used, while the flavor of Btag is got from MC truth. The box at the bottom of each plot
shows the ratio between the histograms and the fitted pdf’s.
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Table 8.4: Results of the fit to generic Btag Run1-4 MC, using measured ∆t and realistic tagging.

Parameter Fit result

τB0 1.5324 ± 0.0016
∆md 0.4786 ± 0.0011

Atag 0.0134 ± 0.0023
Arec(e) 0.0025 ± 0.0010
Arec(µ) 0.0070 ± 0.0011

D0 0.3720 ± 0.0032
D1 0.2089 ± 0.0038
∆ω -0.0087 ± 0.0003

fn 0.9071 ± 0.0026
fo 0.0048 (fixed)

on 0.0122 ± 0.0014
ow -0.1848 ± 0.0128
oo 0.0000 (fixed)

sn,0 0.5639 ± 0.0046
sn,1 0.3997 ± 0.0034
sw,0 1.0895 ± 0.0328
sw,1 1.1615 ± 0.0224
so 11.35 (fixed)

fG2 0.3964 ± 0.0032
τG1 0.1003 ± 0.0068
τG2,0 0.9915 ± 0.0102
τG2,1 -0.0674 ± 0.0042
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Figure 8.4: Fitted distributions for the four samples (top plots). The measured ∆t value has
been used and the flavor of Btag is determined with the experimental dilution. The box at the
bottom of each plot shows the ratio between the histograms and the fitted pdf’s.
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8.5 Signal Dtag - measured ∆t, experimental tag

We apply the pdf and the resolution model described in section 7.3 to fit only signal Dtag events.
The generic Run1-4 Monte Carlo has been used; results are shown in table 8.5 and figure 8.5.

Table 8.5: Results of the fit to signal Dtag on generic Run1-4 MC, using measured ∆t and
realistic tagging.

Parameter Fit result

Atag 0.0071 ± 0.0006
Arec(e) 0.0062 ± 0.0008
Arec(µ) 0.0122 ± 0.0010

D0 0.4083 (fixed)
D1 0.1961 (fixed)
∆ω -0.0092 (fixed)

fnn 0.0980 ± 0.0002
fn 0.9237 ± 0.0003
fo 0.0351 ± 0.0003

onn 0.0714 ± 0.0048
on -0.1051 ± 0.0013
ow -0.3251 ± 0.0136
oo 1.4675 ± 1.1398

snn 0.7028 ± 0.0017
sn,0 0.6044 ± 0.0009
sn,1 0.4330 ± 0.0006
sw,0 1.0922 ± 0.0113
sw,1 1.2415 ± 0.0097
so 24.212 ± 0.0034

τnn 0.0441 ± 0.0006
τn 0.3992 ± 0.0012
τw 0.8403 ± 0.0103
τo,0 1.6898 ± 0.0002
τo,1 0.0029 ± 0.0002

8.6 BB combinatorial - measured ∆t, experimental tag

In this section we show (without numerical outputs) the results of the fits of each background
components, using the pdf’s and the resolution models described in section 7.

Figures 8.6-8.9 show the fitted distributions for the various BB combinatorial samples.

8.7 Peaking B+B− - measured ∆t, experimental tag

Figure 8.10 shows the fitted distributions of peaking B+B− Btag events.

We fit the distributions of Dtag events coming from B± decays using the same model which
describes the signal Dtag sample.

Figure 8.11 shows the ∆t distributions of peaking Dtag events with overlaid the fitting func-
tion obtained for the signal Dtag sample. It can be seen that the agreement is pretty good and
justifies the choice of using the same model for the two parameters.
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Figure 8.5: Fitted distributions for the four samples (top plots) of signal Dtag events. The
bottom box under each plot shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.6: Fitted distributions for B0B0 combinatorial Btag events. The bottom box under
each plot shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.7: Fitted distributions for B+B− combinatorial Btag events. The bottom box under
each plot shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.8: Fitted distributions for B0B0 combinatorial Dtag events.
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Figure 8.9: Fitted distributions for B+B− combinatorial Dtag events. The bottom box under
each plot shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.10: Fitted distributions for B+B− peaking Btag events. The bottom box under each
plot shows the ratio between the histograms and the fitted pdf’s.
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Figure 8.11: Distributions for the four samples (top plots) of B+B− peaking Dtag events with
overloaded the fitting function found for the signal Dtag sample. The bottom box under each
plot shows the ratio between the histograms and the fitted pdf’s.
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We conclude the discussion on the BB components observing that, while the description is
satisfactory for the Btag components, the discrepancies in the tails and in the position of the
maxima in the Dtag components are quite sizable. This motivated the choice to model the shape
of the Dtag components from the data, as explained in chapter 10.

8.8 Continuum background

We use the off-peak data sample to study the contribution of continuum events.

Table 8.6 and figure 8.12 show the results of a fit to off-peak Run1-4 events, using the pdf
and the resolution model described in 7.9.

Table 8.6: Results of the fit to off-peak events. The bottom box under each plot shows the ratio
between the histograms and the fitted pdf’s.

Parameter Fit result

τoff 0.4431 ± 0.0055

fn 0.8097 ± 0.0087
fo 0.0200 ± 0.0006

on -0.0249 ± 0.0050
ow -0.1442 ± 0.0283
oo 0. (fixed)

sn,0 0.5840 ± 0.0200
sn,1 0.3610 ± 0.0167
sw,0 2.1348 ± 0.0263
sw,1 0.0000 ± 0.0006
so 6.1610 ± 0.0001

fG2 0.2997 ± 0.3856
τG1 0.0000 ± 0.0025
τG2 0.1000 ± 1.1033

8.9 CP -eigenstates

Several components of B decays to CP -eigenstates are present in our sample: the (ℓ, πsoft) pair
can be either signal or combinatorial, the B decaying to a CP -eigenstate can be in the tag side
or in the decay side and finally the candidate kaon can be either a Btag one or a Dtag one.

As explained in section 7.10, Dtag kaons are fitted with the same pdf’s used for non-CP B
decays, while for Btag kaons we use a pdf containing the two effective parameters Ceff and Seff .

In figure 8.13 we show the result of our fit to the CP -eigenstates on the decay side on the
full Run1-5 Monte Carlo statistics. In figure 8.14 we show the same plots for CP -eigenstates on
the tag side.

Finally, in figure 8.15 we show the fit on the sum of all CP -eigenstates events. The results
we get on Ceff and Seff (reported in table 8.7) are the ones we actually use (keeping them
fixed) in the nominal fit.

Systematic uncertainties will be estimated by varying those parameters inside an interval
which covers our uncertainty in their determination (see section 12.7).
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Figure 8.12: Fitted distributions for the four samples and the asymmetry for off-peak events.

Table 8.7: Results of the fit to CP -eigenstates.
Parameter Fit result

Ceff -0.0144 ± 0.0066
Seff -0.0780 ± 0.0056
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Figure 8.13: Fitted distributions for the four samples and the asymmetry for CP -eigenstates
events in the decay side.
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Figure 8.14: Fitted distributions for the four samples and the asymmetry for CP -eigenstates
events in the tag side.
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Figure 8.15: Fitted distributions for the four samples and the asymmetry for the sum of all the
CP -eigenstates events.
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8.10 Test on Fitted Asymmetries

We validate the test on charge asymmetries performed on section 6.3, by comparing the fit
results for Arec(e), Arec(µ) and Atag obtained by separately fitting each of the eight Monte
Carlo samples, keeping |q/p| fixed to 1.

Results are shown in figures 8.16 and 8.17. The agreement we find for every sample is
impressively good, with deviations with respect to the average well within 2.5 σ.
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Figure 8.16: Reconstruction asymmetries Arec(e) (left plot) and Arec(µ) (right) for the 8 Monte
Carlo samples. The red line represents the weighted average of the asymmetries.
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Figure 8.17: Reconstruction asymmetries Atag for the 8 Monte Carlo samples. The red line
represents the weighted average of the asymmetries.
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Chapter 9

Validation on Toy and Reweighted
Monte Carlo

Given the very large number of events we select in our analysis, it is not possible to generate
signal Monte Carlo samples of adequate size. The validation of the fitting technique therefore
proceeds on Toy or Reweighted Monte Carlo generated data samples.

9.1 Continuum

Monte Carlo samples of continuum events are generated from real off-peak data events according
to the procedure which is explained in the following.

For each event, we consider the variables: |~pK |, ∆t, cos(θKℓ) and m2
ν . For each of the above

variables xi, we define a gaussian pdf Gi(xi, σi), with mean value xi and width σi. The value of
σi is fixed for every event and is chosen empirically as the bin width of a histogram where the
statistical fluctuations of xi become evident. Each Gi(xi, σi) is used to generate the variable x′i.

With this procedure, the generated event, with variables (|~pK |′, ∆t′, cos(θKℓ)
′, m2 ′

ν ), is
close to the original one in the 4-dimensional parameter space and the correlations between the
variables are preserved.

Figure 9.1 shows the comparison between the original distributions got from off-peak data
events and the generated ones for the four variables of interest.

9.2 Generation of Toy MC with non-zero CP -violating param-

eters

We select several samples of Monte Carlo events with non-zero CP -violating parameters by
selectively discarding events from the initial generic MC sample.

The probability of keeping a BB event with generated difference of decay times of the two B
mesons ∆ttrue is computed from the ratio of the ∆t pdf with non-zero CP -violating parameters
with the original one (|q/p| = 1, b = c = 0). In order to avoid the divergences which arise where
the original pdf is zero and the modified one is not, we compute the ratio of the integrals of the
two pdf’s in 0.5 ps wide bins (significantly smaller than our resolution in ∆t).

Figure 9.2 shows the distributions of the probability of keeping a B0B0 event as a function
of (the generated) ∆t. No significant effects are expected to originate from the pretty large dis-
continuities in correspondence of the zeroes of the original pdf, as long as the realistic resolution
is used in the fits.
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Figure 9.1: Original off-peak distributions (histograms) and modified ones (data points) for m2
ν
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Figure 9.2: Probability of keeping a B0B0 event for Unmixed Positive (top left plot), Un-
mixed Negative (top right), Mixed Positive (bottom left) and Mixed Negative (bottom right)
as a function of ∆t. The generated CP -violating parameters which have been used are:
(|q/p|, r′, δ′) = (1., 0.03, 0.5).
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9.3 Fits of Reweighted MC with non-zero DCS decays parame-
ters

We begin with generating 13 samples of generic B0B0 MC, with r′ = 0.05 and δ′ varying from 0
to 6 by steps of 0.5. We fit each sample (separating the data-taking periods Run1-3, Run4 and
Run5), requesting the (ℓ, πsoft) pair to be a signal one, using realistic tagging and resolution.

The results of this sequence of fits are graphically represented in figure 9.3.
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Figure 9.3: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.05. The data points correspond
to the fit results, while the continuous lines represent the predicted values.

It can be seen that the predicted behavior of the two fitted parameters roughly follows the
expected values, although with a pretty large bias on c which does not show any dependence on
δ′. The results on b are closer to the expectations, but a significant dependence on δ′ is seen.

To investigate deeper on these biases, we repeat this kind of fits on 13 samples (Run1-3
only), generated with r′ = 0.01 (a value much closer to the expected one on our data) and δ′

varying as before.
The bias we observe on c remains basically the same as in the case with r′ = 0.05 and it is

roughly at -0.026. As we can see from the theoretical pdf’s in chapter 1, a negative value of c
tends to enhance the peak at negative values of ∆t for mixed events, where the effects of DCS
decays are larger. This effect goes on the same direction of the finite lifetime of the charmed
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Figure 9.4: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.01. The data points correspond
to the fit results, while the continuous lines represent the predicted values.
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mesons, which causes a tail towards negative ∆t. The interplay of these two effects causes the
bias we observe.

On the other side, the bias on b shrinks significantly with respect to the previous case.

We repeat the same kind of study adding the Btag B
0B0 combinatorial background compo-

nent. We begin by floating all the main physical and resolution parameters both for the peaking
and the combinatorial components. Results are shown in figures 9.5 and 9.6. While the bias
on b shows the same behavior exhibited on the signal-only fits, the bias on c is now strongly
dependent on the strong phase δ′.
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Figure 9.5: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.05. The sample used in the fit
carries both the peaking and combinatorial components; the parameters of the two components
have been floated.

In order to investigate deeper on the source of the large biases on c, we repeat the fits, fixing
the parameters of the combinatorial background to the ones we found in the fits of chapter 8.
Results are shown in figures 9.7 and 9.8. No significant variations are seen on b central values,
while the bias on c continues to be unmanageable.

We therefore conclude that even giving a rough estimate on c will not be possible in our
analysis.
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Figure 9.6: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.01. The sample used in the fit
carries both the peaking and combinatorial components; the parameters of the two components
have been floated.
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Figure 9.7: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.05. The sample used in the fit
carries both the peaking and combinatorial components; the parameters of the combinatorial
background have been fixed.
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Figure 9.8: Fit results (left plots) and residuals with respect to the generated values (right) for
the DCS decays parameters b (top) and c (bottom), with r′ = 0.01. The sample used in the fit
carries both the peaking and combinatorial components; the parameters of the combinatorial
background have been fixed.
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9.4 Fits of Reweighted MC with non-zero |q/p| − 1

We generate sub-samples of Reweighted MC, with |q/p| − 1 varying in the range [−0.05, +0.05]
(at steps of 0.01) for the three data-taking periods Run1-3, Run4, Run5. B0B0 samples have
been produced using the procedure explained in section 9.2. Since the variation of |q/p| does
not affect the properties of charged B’s events, B+B− MC has been rescaled (by randomly
discarding events) in order to keep the fraction of neutral/charged B’s equal to the generic MC.
We stress here that, since every selected sample is a (pretty large) subsample of the original one,
there is a very strong statistical correlation among the generated samples of each data-taking
period.

Varying |q/p| produces an imbalance of the number of B0B0 events with respect to the
number of B0B0 and thus the yields of both Btag and Dtag kaons vary as a function of |q/p| for
the four categories of Unmixed/Mixed and Positive/Negative events.

The basic idea of this measurement is that the simultaneous determination of |q/p| and of
the detector related asymmetries can be performed because the Btag mixed, Btag unmixed and
Dtag samples have different sensitivities to these variables (see equations 6.1, 6.2).

To check the correctness of our model, we first perform a series of exercise fits separately
to Dtag and Btag events. In these fits we allow to float only the tagging asymmetry Atag, the
dilutions and |q/p| for the Btag case. The reconstruction asymmetries are kept fixed to the
values derived by counting the reconstructed events on generic MC.

Results for peaking B0B0 events are shown in figure 9.9. No dependence on the generated
value of |q/p| − 1 is seen, as we would expect if the modeling of our pdf’s is correct.

We then fit together Dtag and Btag (mixed and unmixed) events and repeat the exercise.
In this case, we are able to measure both Atag and Arec in addition to |q/p|. The left plot of
figure 9.10 shows the result for a test case, where we neglect in the fit the dependence of the
Dtag asymmetry on |q/p|. (We do that by fixing the fractions of Dtag events over the total for
each charge correlation to the value obtained for |q/p| = 1). As a consequence Atag and Arec
vary almost linearly with |q/p|. If we restore in the fit the correct dependence, we obtain the
results shown in the right plot of figure 9.10, which do no exhibit any sensible variation of the
detector-induced asymmetries with the value of |q/p|.
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Figure 9.9: Fit results of Atag for Dtag kaons (left plot) and Btag (right) as a function of the
generated value of |q/p| − 1 for peaking B0B0 events.

The results for combinatorial B0B0 events are shown in figure 9.11. With respect to B0B0

peaking, in the combinatorial case the treatment of the dependence on |q/p| of the asymmetries
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Figure 9.10: Fit results of Atag, Arec(e) and Arec(µ) in a simultaneous fit of Dtag and Btag kaons
in B0B0 peaking events. In the left plot, the fractions of Dtag events over the total have been
kept fixed to the value obtained in the |q/p| = 1 case, while in the right one these have been
floated, as it should be done. The spurious dependence on the asymmetries on the generated
values of |q/p| − 1 is thus removed.

(see equation 6.2) of Dtag kaons is less straight-forward. This dependence is proportional, in
peaking B0B0 events, to the value of χd. In combinatorial events, we combine a lepton and a
soft pion (likely to come from the decay of a D∗) originating from two different B’s and the
probability of doing so is higher in mixed events. Based on our generic Monte Carlo, we apply
a correction, and use χd,bkg = χd · 1.41. After this correction has been applied, no dependence
on Atag is visible in the scan over the whole range of variation of |q/p|. A discussion of the
systematic uncertainty associated to this correction factor will be carried out in section 12.4.
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Figure 9.11: Fit results of Atag for Dtag kaons (left plot) and Btag (right) as a function of the
generated value of |q/p| − 1 for combinatorial B0B0 events.

The results on fitted |q/p| − 1, separately for B0B0 peaking and combinatorial events are
shown in figure 9.12, in the three considered data taking periods. Reconstruction and tagging
asymmetries and mistag probabilities have been left floating in the fits.
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Figure 9.12: Fit results of |q/p|− 1 for B0B0 peaking (left plots) and combinatorial (right). The
top plots show the fitted values of |q/p|−1 as a function of the generated one, while the bottom
ones display the residuals of fit results with respect to the generated value.
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It can be seen that the fit results reproduce correctly the generated values. The slope of both
sets of points is very well consistent with unity: in this way we verify that the value of |q/p| − 1
fitted in combinatorial events coincides with the one fitted on peaking. This result was expected
(since the measurement of the reconstructed vertex is dominated by the lepton track), but we
could not assume it a priori. We stress once more that there is a strong statistical correlation
among the reweighted MC samples within the same data-taking period, so a fluctuation (additive
bias) on the |q/p| ≡ 1 sample is to be seen also in the other samples with non-zero CP -violation
parameters.

Finally, we fit together peaking and combinatorial B0B0 events. Results are shown in figure
9.13. Again, we observe a very good linearity of fit results over the wide range scanned and no
significant dependence on the generated value of |q/p| − 1.
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Figure 9.13: Fit results of |q/p| − 1 for B0B0 peaking and combinatorial events together. The
top plot shows the fitted values of |q/p|−1 as a function of the generated one, while the bottom
ones displays the residuals of fit results with respect to the generated value.

We summarize in table 9.1 the results we get on the three run ranges fitting together all
B0B0 components. Given the large correlations between the reweighted Monte Carlo samples
within one data-taking period, we limit ourselves to quote the results for generated |q/p| = 1
only.

We complete the survey over our reweighted Monte Carlo samples adding also the B+B−

components.
Figure 9.14 and table 9.2 show the results of the fits run on the data-taking periods Run3,

Run4 and Run5. The addition of the B+B− component thus does not shift the fitted values of
|q/p| − 1 and the asymmetries by values incompatible with statistical fluctuations.

To further check that the downward shift we observe in the fitted value of |q/p| − 1 (par-
ticularly remarkable in the Run5 sample), we perform another set of fits to study the effects of
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Table 9.1: Results of |q/p| − 1 and the tagging and reconstruction asymmetries for the fits on
all the components of B0B0 Monte Carlo.

Period |q/p| − 1 Atag Arec(e) Arec(µ)

Run1-3 -0.0010 ± 0.0010 0.0130 ± 0.0010 0.0010 ± 0.0007 0.0090 ± 0.0008

Run4 -0.0024 ± 0.0018 0.0126 ± 0.0014 -0.0011 ± 0.0009 0.0084 ± 0.0009

Run5 -0.0021 ± 0.0015 0.0103 ± 0.0014 -0.0022 ± 0.0009 0.0038 ± 0.0008
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Figure 9.14: Fit results of |q/p| − 1 for all the components of our BB generic Monte Carlo.
We show here only the residuals with respect to the generated value of |q/p| − 1 for the three
data-taking periods and for the weighted average of these results (black dots).

Table 9.2: Results of |q/p| − 1 and the tagging and reconstruction asymmetries for the fits on
all the components of BB Monte Carlo.

Period |q/p| − 1 Atag Arec(e) Arec(µ)

Run3 -0.0032 ± 0.0030 0.0090 ± 0.0012 0.0002 ± 0.0010 0.0083 ± 0.0010

Run4 -0.0037 ± 0.0018 0.0110 ± 0.0008 -0.0007 ± 0.0006 0.0096 ± 0.0006

Run5 -0.0062 ± 0.0018 0.0087 ± 0.0008 -0.0009 ± 0.0006 0.0044 ± 0.0006
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the addition of the B+B− components. Since the sample composition (see section 5.5) has been
performed on the complete Run1-5 sample and there could be some slight differences between
the data-taking periods, we subdivide our MC sample into 20 equally sized subsamples. These
subsamples are homogeneous with respect to data-taking periods, that is they contain the same
amount of events from each Run.

We then run the same kind of fits we used to draw the results summarized in tables 9.1 and
9.2 to the B0B0 only components and to all BB components and compare each result. Averaging
the fit results, we get:

B0 only: (|q/p| − 1) = −0.0013 ± 0.0011 (9.1)

all BB: (|q/p| − 1) = −0.0020 ± 0.0010 . (9.2)

We conclude that the shift we observe after adding the B+B− component is compatible with a
statistical fluctuation.

9.5 Selection bias

As we have seen, our results on the reweighted MC samples yield results for |q/p| − 1 typically
lower than 0 (at the ∼ 2 σ level of significance).

To verify if this deviation is caused by a bias in the fitting procedure, we perform a quick
check on the MC truth of the events in our generic B0B0 Monte Carlo sample. We compare
the number of events we get in each of the four categories (keeping separated the partially
reconstructed and tag sides): B0B0, B0B0, B0B0 and B0B0. We do not require the presence
of a tag kaon in the event.

Table 9.3: Yields for the four categories in the generic Run1-5 B0B0 Monte Carlo. In the second
column the raw yields are reported, while in the third, the number of events with a B0 on the
reconstructed side have been corrected to account for reconstruction asymmetries. MC truth
has been used.

Category (BrecBtag) Raw yields Corrected yields

B0B0 7 210 249 7 286 678

B0B0 7 268 505 7 268 505

B0B0 1 890 285 1 890 285

B0B0 1 852 486 1 872 122

In order to get rid of the reconstruction asymmetries on the selection of the (ℓ, πsoft) pair,
we rescale the number of events with a B0 on the reco side, so they equal the number of events
with a B0 on the reco side; raw and corrected yields are reported in table 9.3.

We then compare the asymmetries in the tag side for both mixed and unmixed events:

Aunmix =
N(B0B0) −N(B0B0)

N(B0B0) +N(B0B0)
= 0.00125 ± 0.00026 , (9.3)

Amix =
N(B0B0) −N(B0B0)

N(B0B0) +N(B0B0)
= 0.0048 ± 0.0005 . (9.4)

The results show that we have a significantly larger number of events with a B0 in the tag
side with respect to a B0, even though we did not apply any request besides the selection of an
oppositely charged (ℓ, πsoft) pair. Recalling equation 2.9, the fit results for |q/p| − 1 seem to be
in good agreement with the asymmetry we measure in our preselected sample.
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Concerning the origin of this asymmetry, we verify that it is not present in the AllEvents

Monte Carlo collections, thus it arises at the preselection level.
The discussion on the treatment of this bias is reported in section 12.13, along with the

assignment of its systematic uncertainty.



Chapter 10

Dtag modeling from exclusively

reconstructed B0 → D∗−ℓ+ν

In this chapter, we will use a high purity sample of exclusively reconstructed B0 → D∗−ℓ+ν
events to derive from the on-peak data the modeling of Dtag kaons for peaking B0B0 and
peaking and combinatorial B+B−.

10.1 Selection of B0 → D∗−ℓ+ν events

A subsample of exlusively reconstructed B0 → D∗−ℓ+ν events can be selected inside our sample
of Brec mesons by reconstructing the D̄0 decaying into the final states K+π−, K+π−π0 and
K+π−π+π−.

The candidate K is requested to pass the same LooseKaonMicro PID selector used for the
standard selection of the main sample and to have opposite charge with respect to the πsoft.
The mass of the D∗ candidate has to satisfy the cut 2.008 < mD∗ < 2.012 GeV/c2 and the
probability of the charged D0 daughters to originate from a common vertex must exceed 1 %. A
mode dependent cut on the mass of the D0 candidate is applied: 1.845 < mD0 < 1.880 GeV/c2

(Kπ), 1.850 < mD0 < 1.880 GeV/c2 (Kππ0) and 1.855 < mD0 < 1.875 GeV/c2 (K3π).

As in the partial reconstruction case, we compute m2
ν using equation (2.23). Given that in

this case the D∗ is fully reconstructed, the resolution on m2
ν is considerably better. We do not

apply any cut on m2
ν .

Kaon tracks originating from the D0 decay are treated in the same way of candidate tag K
tracks in the main sample; the variables ∆t, σ(∆t) and cos(θKℓ) are computed in the same way.

Figure 10.1 shows the m2
ν and ∆t distributions for the selected events in generic B0B0 Monte

Carlo; the contribution from background is of the order of a few percent in all the three samples.

Table 10.1 summarizes the yields of exclusively reconstructed B0 → D∗+ℓ−ν̄ℓ events we have
in our data samples.

Table 10.1: Number of exclusively reconstructed B0 → D∗+ℓ−ν̄ℓ events, separated by D0 decay
channel and data kind.

B0B0 MC B+B− MC off-peak data on-peak data

D → Kπ 327 285 42 707 730 119 185

D → Kππ0 637 810 101 488 1 490 232 445

D → K3π 397 939 62 650 999 142 275

145
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Figure 10.1: m2
ν (left plots) and ∆t (right) distributions for exclusively reconstructed B0 →

D∗−ℓ+ν events with D0 → Kπ (top plots), D0 → Kππ0 (middle) and D0 → K3π (bottom) for
generic B0B0 MC. The background contribution is shown in blue.
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10.2 Fit on the exclusive samples

We begin fitting the peaking and combinatorial B0B0 exclusive samples (requesting the event
to be a true Dtag event from the MC truth), using the same pdf’s defined in chapter 7.

The results of these two fits are shown in figure 10.2. The agreement between the fitted pdf’s
and data points is satisfactory and most of the fitted parameters are compatible with the ones
we find in the inclusive sample.
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Figure 10.2: Results of the fits on the B0B0 exclusive sample for the peaking component (left
plot) and the B0B0 combinatorial (right).

In order to look for any difference between the threeD0 decay channels we are reconstructing,
we superimpose the fitted signal Dtag pdf to each channel of the peaking B0B0 sample (figure
10.3), the peaking and combinatorial B+B− (figure 10.4) and the B0B0 combinatorial (figure
10.5).
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Figure 10.3: ∆t distributions for the exclusive Dtagsamples and B0B0 peaking, separating for
D0 → Kπ (left plot), D0 → Kππ0 (center), and D0 → K3π (right). The overlaid pdf is the
signal Dtag pdf whose parameters have been fitted on the sum of the three channels.

We do not see any significant discrepancy between the three channels, thus from now on we
will consider the sum of the three D0 decay modes, whose kaon momentum spectrum is closer
to the inclusive one.
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Figure 10.4: ∆t distributions for the exclusive Dtagsamples and B+B− peaking + combinatorial,
separating for D0 → Kπ (left plot), D0 → Kππ0 (center), and D0 → K3π (right). The overlaid
pdf is the signal Dtag pdf whose parameters have been fitted on the sum of the three channels
in B0B0 peaking events.
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Figure 10.5: ∆t distributions for the exclusive Dtagsamples and B0B0 combinatorial, separating
for D0 → Kπ (left plot), D0 → Kππ0 (center), and D0 → K3π (right). The overlaid pdf is
the B0B0 combinatorial Dtag pdf whose parameters have been fitted on the sum of the three
channels.
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10.3 Modeling of Dtag pdf’s from the exclusive data sample

In order to verify the possibility to use the exclusive sample to model the inclusive one and then
constrain the Dtag shapes in the nominal fit, in figure 10.6 we compare the ∆t distributions of
the two, using B0B0 MC signal events.
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Figure 10.6: Top: comparison of the ∆t distributions for the inclusive Dtagsample (histogram)
and the exclusive one (points with error bars) for B0B0 MC signal events. The histograms have
been normalized to the same arbitrary number of events. Bottom: ratio (exclusive/inclusive) of
the two distributions.

Significant discrepancies are evident from the comparison of the two distributions. We ob-
serve anyway that the |~pK | spectra, though similar, still exhibit some differences (see figure
10.7).

Given that ∆t distributions are sensitive to the |~pK | spectrum, we reweight the exclusive
Dtag events so that their |~pK | spectrum coincides with the inclusive one and perform again the
comparison of the ∆t distributions (fig. 10.8).

The |~pK | reweighting procedure removes most of the discrepancies found in the original ∆t
distributions, besides some structure at ∆t ∼ −3 ps and some disagreement at the very end of
the tails. The misagreement is in any case at the level of a few percent and therefore the idea
of constraining the inclusive Dtag distributions to the exclusive ones looks reasonable.

We repeat the procedure in the MC including also the combinatorial background. Given that
the background is characterized by a wider ∆t distribution and the fraction of combinatorial is
different for the two samples (∼ 35 % for the inclusive and ∼ 6 % for the exclusive, see figure
10.9), we have to rescale background events so that the ∆t distributions we compare in figure
10.10 have the same fraction of combinatorial.

Again, the comparison between the two samples looks pretty good, with discrepancies at the
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Figure 10.7: Comparison of the |~pK | spectra for the inclusive Dtag sample (histogram) and the
exclusive one (points with error bars) for B0B0 MC signal events. The histograms have been
normalized to the same arbitrary number of events.
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Figure 10.8: Top: comparison of the ∆t distributions for the inclusive Dtag sample (histogram)
and the exclusive one (points with error bars) for B0B0 MC signal events, after the |~pK | reweight-
ing procedure has been applied. The histograms have been normalized to the same arbitrary
number of events. Bottom: ratio (exclusive/inclusive) of the two distributions.
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Figure 10.9: ∆t distributions for the inclusive sample (left plot) and the exclusive one (right)
with highlighted in color the contribution of combinatorial background.
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Figure 10.10: Top: comparison of the ∆t distributions for the inclusive Dtagsample (histogram)
and the exclusive one (points with error bars) for B0B0 MC signal+combinatorial events, after
the |~pK | reweighting procedure has been applied. The histograms have been normalized to the
same arbitrary number of events. Bottom: ratio (exclusive/inclusive) of the two distributions.
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order of a few percent level.
We would like to model the combinatorial background shapes directly on the data, using

wrongly charged (ℓ, πsoft) pairs on the m2
ν signal region. The comparison between correctly

charged (GC) combinatorial events and wrongly charged events (WC) shows unacceptable dis-
crepancies in the m2

ν signal region, while such discrepancies vanish in the sideband, see figure
10.11.
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Figure 10.11: Good Charge (histograms) and Wrong Charge (points with error bars) comparisons
on ∆t distributions for the exclusive sample in them2

ν signal region (left plot) and in the sideband
(right plot). All distributions have been normalized to the same arbitrary area.

Given that the combinatorial background is only a small fraction of the exclusive sample and
that the data-MC comparison shows good agrement both in the massband WC and the sideband
(WC and GC), see figure 10.12, we decide to take the combinatorial background shapes from
the Monte Carlo.

To get the signal Dtag shapes from the on-peak exclusive data sample we adopt the following
procedure:

• we split our exclusive data sample into the five sub-samples corresponding to the |~pK | bins
over which the nominal fit is run;

• we eliminate the continuum background by subtracting the properly rescaled off-peak
events;

• we subtract the combinatorial background, using the ∆t shape predicted by the Monte
Carlo;

• we reweight the exclusive events in order to match the inclusive signal Dtag spectrum as
predicted by the MC;

The effects of varying the MC distributions within the uncertainties will be taken into account
in the systematic uncertainties section.

The whole procedure has been successfully tested on a Monte Carlo + off-peak sample, where
proper luminosity weights have been taken into account. Figure 10.13 shows the comparison of
data Dtag shapes with signal Monte Carlo; in general we find pretty good consistency, besides
the bin with highest |~pK |, where some discrepancy is apparent.
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Figure 10.12: Comparisons of data (points with error bars) and Monte Carlo (histograms) for the
exclusive Dtag sample in the m2

ν signal region WC (left plot), in the m2
ν sideband WC (center)

and GC (right). Properly normalized off-peak data have been subtracted from on-peak data
and MC histograms have been normalized to the data.
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Chapter 11

Fit to data

In this chapter we will overview the procedure used to define our nominal fit to the data, after
the validation process on generic and reweighted Monte Carlo samples.

During the whole procedure, the value of |q/p| − 1 and some other physically relevant pa-
rameters are kept blind ; this means that randomly generated numbers are added to them and
these numbers are disclosed only until the procedure has been completely defined and all the
systematic uncertainties are established.

11.1 Data sideband

We begin fitting our data sample limiting ourselves to them2
ν sideband, dominated by continuum

and BB combinatorial events. Since B0B0 combinatorial events are sensitive to |q/p| in the
same way as peaking, we proceed blinding |q/p|. The other parameters which are kept blind are
τB0 , ∆m, ∆Γ and the two DCSD effective parameters b and c.

Figures 11.1 and 11.2 show the result of a fit to a homogeneous subsample of the available
statistics in the ∆t and cos(θKℓ) projections respectively. The parameters which have been
floated are the detector asymmetries, mistags, the effective parameters τB0 and ∆m for B0B0

combinatorial, the main parameters of the resolution model and the fractions of Dtag kaons over
the total. In general we find good consistency between the parameters we derived from MC and
the fit results.

For the Dtag modeling, we find that we get a better Likelihood by using the shapes derived
from the generic Monte Carlo, instead of the pdf’s derived from the exclusive sample, even
though the visual agreement is roughly coincident. We therefore decide to use the shapes of the
inclusive Monte Carlo in the nominal fit.

We plan to fix the parameters of the resolution of combinatorial backgrounds to the ones we
find in the fits to the m2

ν sideband. To check the correctness of this procedure, we compare in
the Monte Carlo the ∆t shapes in the four charge combinations of combinatorial massband and
sideband. The comparison is reported in figure 11.3; no evident structures appear in the ratio
of massband and sideband distributions, so we can keep the parameters we fit on the sideband
for the complete fit.

11.2 Fit to massband + sideband

We move to fitting the whole range of m2
ν . Keeping fixed the parameters of the resolutions, and

allowing to float |q/p| − 1, the reconstruction and tagging asymmetries, the dilutions, the Dtag

fractions and the main parameters of the resolution in the peaking B0B0 component, we find
the results shown in figures 11.4 and 11.5.

We find no large discrepancies of detector related asymmetries and dilutions with respect to
the predictions of the generic Monte Carlo. As for the parameters of the Dtag components, we
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Figure 11.1: Fitted ∆t distributions for m2
ν sideband on-peak data. The data used in this fit is

a homogeneous sample corresponding to 33% of the available statistics.
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Figure 11.2: Fitted cos(θKℓ) distributions for m2
ν sideband on-peak data. The data used in this

fit is a homogeneous sample corresponding to 33% of the available statistics.
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Figure 11.3: Ratio between the ∆t distributions of combinatorial backgrounds in the m2
ν mass-

band and in the sideband. The statistics used corresponds to 10% of the available statistics for
the generic Monte Carlo.
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Figure 11.4: Fitted ∆t distributions for m2
ν massband + sideband on-peak data. The data used

in this fit is a homogeneous sample corresponding to 5% of the available statistics.
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Figure 11.5: Fitted cos(θKℓ) distributions for m2
ν massband + sideband on-peak data. The data

used in this fit is a homogeneous sample corresponding to 5% of the available statistics.
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Table 11.1: Results of blinded |q/p| − 1 on the five series of fits performed on the on-peak data
sample.

Fit series (blinded) |q/p| − 1

series 15 0.0287 ± 0.0014

series 18 0.0280 ± 0.0025

series 20 0.0285 ± 0.0022

series 22 0.0275 ± 0.0025

series 25 0.0274 ± 0.0020

observe some instabilities in the value of ∆ω (which corresponds to direct CP -violation of D
mesons, as long as charge asymmetries are taken into account) for one or more components. This
leads to finding a secondary minimum of the Likelihood, with ∆ω for one or more components
clearly inconsistent with zero. The reason of this instability is to be found in the similarity of
the cos(θKℓ) distributions for each component, which gives no sufficient lever-arm to the fit to
clearly distinguish them.

The problem is solved by repeating one of those fits starting from the previously found
minimum (but setting all ∆ω parameters to the initial value of zero); it usually converges to
the proper minimum, so we allow all the ω, ∆ω and the Dtag fractions to float, besides the ones
of the charged peaking Btag component, too small to be reliably fit (its parameters are fixed to
the Monte Carlo predictions).

11.3 Fitting procedure

Given the number of parameters which we want to float in the nominal fit and the size of our
data sample (∼ 12 millions on-peak data events), we soon realized that it is not possible to run
a single fit on the single-CPU machines available to us on the whole statistics.

We thus decide to perform a series of fits on the N homogeneous (with respect to the data-
taking periods) subsamples into which the whole dataset is split. This way we can float all
the physical parameters and most of the parameters describing the resolution of the peaking
B0B0 component. The final result is given by the arithmetic average of the N results and the
associated error is given by RMS/

√
N − 1, where RMS is the root mean square of the N results.

One advantage of this approach is that in this way we overcome the problem of correcting
the error of a single fit for the effect introduced by events with two or more Btag kaons (which
represent ∼ 20% of the total), which tends to reduce - naively by ∼ 10% - the fit error on |q/p|−1.
The drawback is that we need to account for an additional source of systematic uncertainty:
the choice of the number of subsamples. As we will see in section 12.11 this systematic error is
perfectly acceptable.

We perform five series of fits, each with the same parameters being floated, on 15, 18, 20, 22
and 25 subsamples respectively. In table 11.1 we present the (blinded) results obtained in each
series along with the error computed with the method above explained. Also, in figure 11.3 we
show the distributions of the results of each series with a gaussian with mean value and width
set to the mean value and RMS of each distribution overlaid.

The results of the five different series are stable and within a 1 permille spread. We quote
as the central value of our measurement the average of the averages of the five series and as
statistical error we conservatively take the maximum statistical error we obtain from a single
series. The blinded result we get is therefore:

(blinded) |q/p| − 1 = 0.0280 ± 0.025 (stat.) (11.1)
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Figure 11.6: Distributions of the five series of nominal fits on the on-peak data. Overlaid to each
distribution is a gaussian whose mean and width are set respectively to the arithmetic average
and RMS of each distribution.

11.4 Unblinding τB0 and ∆m

Before proceeding to the complete unblinding, we unblind τB0 and ∆m of the peaking B0B0

component. The results we get (from the series of fits on 15 subsamples of the whole dataset)
are collected in table 11.2. The quoted errors are statistical only and are computed in the same
way we estimate the error on |q/p| − 1.

Table 11.2: Unblinded results for τB0 and ∆m (series 15) and comparison with the world aver-
ages. The error presented for the fit results is statistical only.

Fit results (series 15) World averages [4]

τB0 1.490 ± 0.004 1.530 ± 0.009

∆m 0.5699 ± 0.0022 0.507 ± 0.005

We observe a very large discrepancy between the fit results and the world averages. The
source of this discrepancy is to be found in a significant interplay between these two parameters
(particularly ∆m) and the parameters of the resolution. Repeating the nominal fit fixing τB0

and ∆m we get the results displayed in figure 11.7 and 11.8.

It can be seen that the visual agreement is analogous of the one we can see on the nominal
fits, thus the variations on τB0 and ∆m are re-absorbed by the variations on the parameters of
the resolution.

The impact of the incorrect measurement of τB0 and ∆m on our measurement of |q/p| − 1
is treated in section 12.12.
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Figure 11.7: Fitted ∆t distributions for m2
ν massband + sideband on-peak data. The data used

in this fit is a homogeneous sample corresponding to 6.7% of the available statistics.
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Figure 11.8: Fitted cos(θKℓ) distributions for m2
ν massband + sideband on-peak data. The data

used in this fit is a homogeneous sample corresponding to 6.7% of the available statistics.
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11.5 Fitted parameters on the nominal fit

We report in tables 11.3-11.5 the fit results for the parameters which have been floated in the
nominal fit. The averages presented have been computed on the results of the series on 15
subsamples and the errors are again computed as RMS/

√
14.

Table 11.3: Fit results for the parameters of the peaking B0B0 component (besides the detector
related asymmetries, common for each sample) floated in the nominal fit. Here the averages of
the series on 15 subsamples are shown.

Parameter Fit result

Atag 0.0111 ± 0.0030
Arec(e) 0.0007 ± 0.0023
Arec(µ) 0.0069 ± 0.0017

D0 0.440 ± 0.006
D1 0.250 ± 0.008
∆ω0 -0.014 ± 0.004
∆ω1 0.016 ± 0.005

fn 0.911 ± 0.007
sn,0 0.832 ± 0.012
sn,1 0.271 ± 0.011
sw,0 2.07 ± 0.13
sw,1 0.71 ± 0.05
on 0.057 ± 0.007
ow 0.23 ± 0.04

τG1 0.0024 ± 0.0011
τG2,0 0.83 ± 0.08
τG2,1 -0.04 ± 0.07
fG2,0 0.610 ± 0.029
fG2,1 -0.254 ± 0.027

ωDtag
0.0857 ± 0.0006

∆ωDtag
0.0008 ± 0.0011

Dtag fraction (Unmixed Positive) 0.0982 ± 0.0009
Dtag fraction (Unmixed Negative) 0.0988 ± 0.0008
Dtag fraction (Mixed Positive) 0.7120 ± 0.0008
Dtag fraction (Mixed Negative) 0.7116 ± 0.0007
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Table 11.4: Fit results for the parameters of the combinatorial B0B0 component floated in the
nominal fit. Here the averages of the series on 15 subsamples are shown.

Parameter Fit result

D0 0.269 ± 0.011
D1 0.399 ± 0.007
∆ω -0.0011 ± 0.0006

ωDtag
0.1344 ± 0.0011

∆ωDtag
0.0032 ± 0.0031

Dtag fraction (Unmixed Positive) 0.1527 ± 0.0018
Dtag fraction (Unmixed Negative) 0.1551 ± 0.0024
Dtag fraction (Mixed Positive) 0.6112 ± 0.0023
Dtag fraction (Mixed Negative) 0.6117 ± 0.0022

Table 11.5: Fit results for the parameters of the combinatorial B+B− component floated in the
nominal fit. Here the averages of the series on 15 subsamples are shown.

Parameter Fit result

ωBtag 0.3086 ± 0.0010

∆ωBtag 0.0044 ± 0.0019

ωDtag
0.1287 ± 0.0011

∆ωDtag
-0.0044 ± 0.0026

Dtag fraction (Unmixed Positive) 0.1010 ± 0.0016
Dtag fraction (Unmixed Negative) 0.0975 ± 0.0016
Dtag fraction (Mixed Positive) 0.6280 ± 0.0028
Dtag fraction (Mixed Negative) 0.6229 ± 0.0026



Chapter 12

Systematic uncertainties

In this chapter we will discuss each source of systematic uncertainty on our measurement and
give an estimate of it.

12.1 SVT alignment

The uncertainty in the alignment of the SVT has been checked following the standard recipe
suggested by the tracking group and using four different configuration files corresponding to a
relistic SVT misalignment. For each configuration, the generic BB Monte Carlo for Run2 has
been reproduced, with the same selection code and settings used for the nominal production of
data and Monte Carlo.

We run our standard fit over the nominal sample and the four samples produced with shifted
SVT alignment and compare the results on the fitted value of |q/p| − 1, which are graphically
presented in figure 12.1.

The largest deviation in the fitted value of |q/p| − 1 we observe between a pair of these
samples is 0.0008 and we take it as the systematic error given by the alignment of the SVT.

12.2 Modeling of Dtag kaons pdf’s

We compare the results on |q/p|−1 obtained by using the Dtag shapes derived from the inclusive
Monte Carlo (nominal fit) and from the on-peak data on the exclusive sample.

We take as systematic uncertainty associated toDtag modeling the largest difference we found
in fits run over data samples corresponding to 5% of the Run1-5 statistics, which is 0.0008.

12.3 Sample composition

We discuss here the effects of a potential incorrect determination of the sample composition
described in section 5.5. The strongest assumption we do here is to get from the Monte Carlo
the ratio between neutral and charged BB combinatorial events.

This ratio (slightly varying among the different charge combinations and lepton species) is
predicted to be roughly 40:60. We evaluate the impact of a wrong fraction by performing a scan
on the reweighted Monte Carlo samples (using only combinatorial events to enhance the effect)
with the fraction fixed to 50:50 and 30:70.

Results on the main fitted parameters are shown in figure 12.2. No significant trend is seen
by varying the generated value of |q/p| − 1; the only visible effect is a slight variation in the
average value of reconstruction asymmetries.

As systematic uncertainty associated to the sample composition, we take the average of the
moduli of the differences between the fit results in the modified configurations and the nominal

167
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Figure 12.1: Fitted results on |q/p| − 1 using the generic Run2 Monte Carlo with the nominal
(first bin) and shifted (other four bins) SVT alignment.
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Figure 12.2: Differences with respect to nominal fit in fitted parameters fixing the ratio of B0B0

over B+B− combinatorial to 50:50 (red squares) and 30:70 (green triangles). Results shown are
|q/p| − 1 (top left plot), Atag (top right), Arec(e) (bottom left) and Arec(µ) (bottom right).
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Figure 12.3: Differences with respect to nominal fit in fitted parameters using a correction factor
equal to 1. (red squares) and 1.82 (green triangles) to the dependence on Dtag fractions for B0B0

combinatorial. Results shown are |q/p|−1 (top left plot), Atag (top right), Arec(e) (bottom left)
and Arec(µ) (bottom right).

ones. This is equal to 0.0005.

12.4 Correction factor for B0B0 combinatorial

As we saw in section 9.4 the dependence on the generated value of |q/p| − 1 of the asymmetries
of Dtag kaons has to be corrected by a factor 1.41 (the value we get from our generic MC) in
B0B0 combinatorial with respect to peaking events.

We estimate the impact on the fitted |q/p| by changing the correction factor to 1. and 1.82
and comparing the results we get in a scan over the (B0B0) reweighted Monte Carlo samples.
Results are reported in figure 12.3.

It can be seen that the use of a wrong correction factor affects mostly the tagging and
reconstruction asymmetries, which assume a dependence on the generated value of |q/p| − 1.
The effect on the fitted value of |q/p| − 1 is very small when we use the same dependence of
B0B0 peaking events (factor = 1.), while it is more appreciable for a correction factor twice as
large as the nominal one.

As systematic uncertainty we take a multiplicative factor corresponding to the absolute value
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Figure 12.4: Fitted results on |q/p| − 1 (left plot) and Atag (right) versus the fraction of pions
passing the selection: 0 corresponds to no pions selected and 1 corresponds to the standard
fraction of pions accepted by our algorithm.

of the slope of the linear function which fits the set of results obtained with the correction factor
fixed to 1.82, which is 0.034.

12.5 Pion contamination in kaon sample

To estimate the effect of the presence of pions in our kaon sample, we vary on the Monte Carlo the
fraction of pions entering our selection. We consider five B0B0 MC samples with, respectively,
0%, 25%, 50%, 75% and 100% the amount of pions accepted by our selection cuts and run the
standard fit over these.

It can be seen (figure 12.5) that, with a statistics corresponding to Run2 generic MC, there
is a very slight trend in the fitted values of |q/p| − 1 and Atag as a function of the fraction of
pions entering the selection.

The difference in the fitted |q/p| − 1 of the nominal fit with respect to the no-pions case,
which we take as our systematic uncertainty, is 0.0006.

12.6 Fixed parameters of the resolution

We vary by ±1σ (the uncertainty is obtained from the fit in the m2
ν sideband) the parameters of

the resolution (for both the BB combinatorial background and the continuum) which are kept
fixed in the nominal fit. We take the conservative approach of floating |q/p| − 1 only, so every
effect is completely absorbed by it. Statistical correlations among the parameters are kept into
account.

The resulting systematic error is 0.0001.

12.7 Presence of decays to CP -eigenstates

We vary the effective parameters Ceff and Seff found in 7.10 and their relative fractions with
respect to the other B0B0 decays in order to cover for their uncertainty. We consider the
situations summarized in table 12.1.
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Table 12.1: Summary on the parameters used in the tests of the systematics associated to fitting
the CP -eigenstates components fixing their parameters to the values found on the generic Monte
Carlo. We report the values used for Ceff , Seff and the relative fractions of CP -eigenstates
with respect to the other B0B0 components (100% corresponds to the nominal fit).

Fit Ceff Seff fractions

nominal -0.0144 -0.0780 100%

CP1 -0.0077 -0.0390 100%

CP2 -0.0288 -0.1560 100%

CP3 -0.0144 -0.0780 50%

CP4 -0.0144 -0.0780 200%

CP5 -0.0144 -0.0780 0%

Sample
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Figure 12.5: Fitted results on |q/p| − 1 for the fits with parameters of the CP -eigenstates
component fixed to the configurations listed in table 12.1.

The results on the fitted values of |q/p| − 1 for the six configurations (the nominal and the
five non-standard) are displayed in figure 12.5; the largest deviation we observe between two
different configurations is 0.0003. We take this as the associated systematic uncertainty.

12.8 Measurement of the Dtag fractions

We compare the result obtained on the Monte Carlo by fixing the fractions of theDtag component
to the correct value given by the MC truth and the one given by floating allDtag fractions, besides
the ones relative to the peaking B+B− component.

The difference between the two fits, which we take as our systematic uncertainty is 0.0006.

12.9 Fraction of continuum

We vary the fraction of continuum background with respect to the amount given by the procedure
described in section 5.5 by ±2% (this variation covers conservatively our uncertainty on this
fraction) and repeat the nominal fit in several data subsamples carrying 5% of the available
statistics.
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The largest deviation we observe in the fitted value of |q/p| − 1 is 0.0003 and we take that
as our systematic uncertainty.

12.10 Fake leptons

We estimate the effect of the mis-identification of non-lepton particles as the Brec lepton by
performing a fit on generic BB Monte Carlo with those particles removed.

Only slight variations on the reconstruction asymmetries are seen and we observe negligible
deviations on the fitted value of |q/p| − 1: 0.0001.

12.11 Number of subsamples

We assume as systematic uncertainty on the choice of the number of subsamples into which the
whole dataset is split half of the difference seen in the five series of nominal fits described in
section 11.3.

The systematic uncertainty we quote on |q/p| − 1 is therefore 0.0007.

12.12 Variation of τB0 and ∆m

As we saw in section 11.4, the values of τB0 and ∆m for which the minimum of the nominal fit
is found are significantly different from the world average.

To evaluate the impact of the incorrect measurement of these two parameters on the mea-
surement of |q/p| − 1, we repeat a series of fits on data (15 samples) and on BB Monte Carlo
+ continuum (45 samples) with τB0 and ∆m fixed to the PDG values. The difference on the
average of the fit results is 0.0002 for the data and 0.0004 for the Monte Carlo.

To estimate the presence of a potential multiplicative bias caused by the incorrect estimate
of the fraction of mixed events over the total, we run a scan on a sample of Toy Monte Carlo
(generated with |q/p|−1 = 0.05), fixing the value of ∆m over a range 40% of its value wide. The
only parameters which are allowed to float are τB0 and ∆m. The results of the scan are reported
in figure 12.12. The fitted |q/p| − 1 varies by ∼ 10% of its value over the whole range scanned:
since our fitted value of ∆m differs by ∼ 12% from the world average, we apply (conservatively,
since the resolution parameters are not allowed to float) a multiplicative systematic uncertainty
of 3%.

The quite conservative systematic uncertainty we quote is therefore 0.0005⊕(|q/p|−1) ·0.03.

12.13 Fit bias

We estimate the potential bias introduced in the fitting procedure by performing two series of
fits on the whole BB generic + continuum Monte Carlo statistics. The dataset is subdivided
into 45 and 60 independent and homogeneous subsamples (having roughly the same size of the
data samples used in the nominal fit) and we fit them floating the same parameters which are
kept free in the nominal fit to the data. The results of the two series are displayed in table 12.2
and figure 12.13.

The fitted value of |q/p| − 1 on the generic + toy continuum Monte Carlo is below the
expected value by ∼ 3σ. As discussed in section 9.5, the source of this bias is not to be found
in the events preselection stage of the analysis.

We correct the central value found on the nominal fit to the data by the average of the
two results (0.004) and assign as systematic uncertainty half of this shift with its statistical
uncertainty added in quadrature.
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Figure 12.6: Results of the scan over ∆m: the fitted values of |q/p|−1 (left plot) and τB0 (right)
are shown. Note: the random numbers used in the blinding procedure have been added to τB0

and ∆m, so the values shown differ from the actual ones.

Table 12.2: Fitted |q/p| − 1 on the two series of nominal fits to generic BB Monte Carlo + toy
continuum.

Fitted |q/p| − 1

series 45 -0.0035 ± 0.0011

series 60 -0.0046 ± 0.0013
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Figure 12.7: Distributions of single fit results for the series on 45 subsamples (left plot) and 60
subsamples (right). Overlaid to each distribution is a gaussian whose mean and width is set
respectively to the arithmetic average and RMS of each distribution.



174 CHAPTER 12. SYSTEMATIC UNCERTAINTIES

The resulting systematic uncertainty associated to the fit bias is the dominant one and is
equal to 0.0023.

All the contributions entering the systematic error are summarized in table 12.3.

Table 12.3: Summary of systematic uncertainties on the measurement of |q/p|.

Source Systematic uncertainty

SVT alignment 0.0008

Dtag modeling 0.0008

Sample composition 0.0005

Combinatorial correction factor (|q/p| − 1) · 0.034
Pion contamination 0.0006

Fixed parameters of the resolution 0.0001

CP -eigenstates 0.0003

Measurement of Dtag fractions 0.0006

Fraction of continuum 0.0003

Fake leptons 0.0001

Number of samples 0.0007

Variation of τB0 and ∆m 0.0005 ⊕ (|q/p| − 1) · 0.03
Total without fit bias 0.0018 ⊕ (|q/p| − 1) · 0.045
Fit bias 0.0023

Total 0.0029 ⊕ (|q/p| − 1) · 0.045



Chapter 13

Conclusions

After making sure that the fit procedure has been frozen and the result is stable within the
systematic errors we have computed, the Review Committee internal of the BABAR Collaboration
authorized the unblinding on |q/p| − 1.

The result, corrected for the bias we observe in the Monte Carlo, is:

|q/p| − 1 = 0.0096 ± 0.0025 (stat.) ± 0.0029 (syst.) (13.1)

This result is 2.5 standard deviations away from the CP -conserving case and is in very good
agreement with the other BABAR result [45] obtained on the recoil of partially reconstructed
B0 → D∗+ℓ−ν̄ℓ, which uses the lepton tag. Also very good compatibility is found with Belle’s
result [42], while the compatibility of the BABAR measurement with dileptons [43] is at the 2.1σ
level.

The main limit of this result is the large systematic uncertainty associated to the bias we
observe in our Monte Carlo. With the full understanding of this source of systematic and
running a single fit over the whole statistics taking advantage of dedicated computing resources,
this analysis can aim at becoming the leading result in the measurement of CP -violation in
B0B0 Mixing.

175
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