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Abstract

Plasma-based accelerators use the propagation of a drive bunch through plasma to

create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments,

carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled

the energy for some of the 42 GeV drive bunch electrons in less than a meter; this

feat would have required 3 km in the SLAC linac. This dissertation covers one phe-

nomenon associated with the PWFA, electron trapping. Recently it was shown that

PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released

by ionization inside the plasma wake and accelerate them to high energies. These

trapped electrons occupy and can degrade the accelerating portion of the plasma

wake, so it is important to understand their origins and how to remove them. Here,

the onset of electron trapping is connected to the drive bunch properties.

Additionally, the trapped electron bunches are observed with normalized trans-

verse emittance divided by peak current, εN,x/It, below the level of 0.2 µm/kA. A

theoretical model of the trapped electron emittance, developed here, indicates that

the emittance scales inversely with the square root of the plasma density in the non-

linear “bubble” regime of the PWFA. This model and simulations indicate that the

observed values of εN,x/It result from multi-GeV trapped electron bunches with emit-

tances of a few µm and multi-kA peak currents. These properties make the trapped

electrons a possible particle source for next generation light sources.

This dissertation is organized as follows. The first chapter is an overview of the

PWFA, which includes a review of the accelerating and focusing fields and a survey

of the remaining issues for a plasma-based particle collider. Then, the second chapter

examines the physics of electron trapping in the PWFA. The third chapter uses theory

and simulations to analyze the properties of the trapped electron bunches. Chapters
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four and five present the experimental diagnostics and measurements for the trapped

electrons. Next, the sixth chapter introduces suggestions for future trapped electron

experiments. Then, Chapter seven contains the conclusions. In addition, there is

an appendix chapter that covers a topic which is extraneous to electron trapping,

but relevant to the PWFA. This chapter explores the feasibility of one idea for the

production of a hollow channel plasma, which if produced could solve some of the

remaining issues for a plasma-based collider.
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Chapter 1

Plasma Wakefield Acceleration

1.1 Introduction

Particle accelerators are an essential tool for particle physicists [59], who use them

to search for subatomic particles. The utility of accelerators to science, however,

extends well beyond just as a means to assemble a catalog of particles; they create a

means to study the underlying forces in nature. Moreover, they enable man to probe

fundamental questions about the existence of the universe. For example, why is there

more matter than antimatter? Beyond this, all of the known particles, including

antimatter, only account for 4% of the universe; what is the rest? What happened in

the first moments after the big bang? Why do particles have mass? Are there extra

hidden dimensions? These are few of the questions to be explored by the recently

constructed Large Hadron Collider (LHC) [24,18]. In addition to the questions listed

above, there is also the exciting possibility of discovering the unexpected.

A key feature of any accelerator is the amount of energy available to create new

particles. As the center of mass collisional energy of these machines rises, they allow

for the production of increasingly massive particles and open the door to new areas

of physics. Thus, it is critical to drive the particle accelerators to higher energies.

However, the increasingly high particle energies needed to explore new areas of physics

requires larger, and therefore also more expensive, particle accelerators. Through

the years, particle accelerators have grown from the size of a table top to the LHC,

which is 27 kilometers in circumference. Conventional accelerators use radio frequency

1



2 CHAPTER 1. PLASMA WAKEFIELD ACCELERATION

(RF) cavities to advance particle energy; this technology is ultimately limited to

accelerating fields below which damage occurs to the RF cavity: on the order of 100

MV/m. Currently there is an advanced RF-based concept for a collider, the compact

linear collider (CLIC), which utilizes an accelerating field of 150 MV/m [74]. The

size and cost of accelerators could be reduced by inventing methods for the particles

to reach their required energy in shorter distances. Shorter wavelength radiation can

sustain a higher accelerating field [61]. Thus, there is a significant effort to scale

down the size of accelerating structures so that they can be driven by an optical

laser [33, 55,32,60].

Efforts presented here, however, concern an entirely different technology. The

passage of a particle bunch through plasma creates a wake, which is capable of accel-

erating particles [68]. Plasma can not be damaged so it is not constrained to the same

accelerating fields as conventional technology. For example, plasma-based accelera-

tors have sustained an accelerating field of 100 GV/m [51], which is three orders of

magnitude larger than those produced in conventional RF-based accelerating struc-

tures. For this reason plasma-based accelerators have gained a significant amount of

interest [45, 9, 43].

The remainder of this chapter is organized as follows. First, there is a general

description of the interaction between an ultrarelativistic electron bunch and plasma.

This is followed by an examination of the accelerating and focusing properties of

a plasma wakefield accelerator (PWFA). These basic properties have been demon-

strated and show great promise for plasma-based accelerators; however, there are

many remaining concerns. The next section of this chapter is devoted to a survey of

these lingering issues. Finally, there is a summary of the codes used to simulate a

PWFA.

1.2 Plasma-Based Accelerators

Plasma-based accelerators use a particle bunch to drive a wake through plasma. As

the drive bunch traverses the plasma, its electromagnetic fields couple to the charge

density, and therefore also the accelerating and focusing fields, of the plasma. Con-

ventional acceleration techniques fail when the electric fields become large enough to
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break down material; however, plasma-based accelerators require such fields to pro-

duce their accelerating medium. Experiments described here utilize intense electron

drive bunches, which possess large enough electric fields to tunnel ionize the atoms

in their vicinity [57]. Thus, these experiments do not require an external means to

produce plasma; the drive bunch creates plasma as it passes through a neutral vapor.

First, the front part of the bunch field ionizes the vapor, producing plasma. The

electron density of the drive bunch exceeds that of the plasma, so the bunch then

expels all the plasma electrons from the region around it. Next, the ions pull the

plasma electrons back to the axis of bunch propagation with a time scale set by the

inverse of the plasma frequency (1/ωp).

ω2
p =

npe
2

mε0

, (1.1)

where np is the plasma density, e is magnitude of the charge of an electron, m is the

mass of an electron, and ε0 is the permittivity of free space. This produces a bubble

containing a region of uniformly charged ions behind the drive bunch (see Fig. 1.1),

which is characteristic of the bubble regime. The drive bunch travels at nearly the

speed of light, c, so this bubble has an intrinsic length scale of c/ωp = 1/kp. Figure

1.1 shows a simulation of a PWFA.

1.3 Accelerating Field

A relationship between time and the longitudinal position coordinate simplifies cal-

culations of the focusing and accelerating fields, so a presentation of this relationship

is now required. For simplicity, calculations use cylindrical coordinates, (r, φ, z), with

cylindrical symmetry, ∂φ = 0, and Jφ = 0, where z denotes the direction of drive

bunch propagation, and t denotes time. The time scale at which the plasma elec-

trons respond to the focusing forces of the ions in the bubble is 1/ωp. Due to the

high energy of the ultrarelativistic drive bunch electrons, the time it takes them to

respond to the focusing forces is longer by a factor of
√

γ, where γ is their relativistic

Lorentz factor. As an example,
√

γ was almost 300 in recent experiments. Thus,

the drive bunch electrons respond to the focusing forces of the ions at a much slower
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Figure 1.1: The drive bunch (green) and plasma electron density (blue) in the x
and z − ct plane for a PWFA, from an OSIRIS simulation [22]. A sheath of plasma
electrons surrounds a region of ions with uniform charge density. The drive bunch
had 1.8 · 1010 electrons, σx = σy = 1.74 µm, σz = 20 µm, and drove a wake in a
plasma of density, np = 2.7 · 1023 m−3 (c/ωp = 10 µm).

rate. Relative to the plasma electrons, the drive bunch electrons remain approxi-

mately frozen relative to each other and travel at roughly the speed of light in the z

direction, which makes the drive bunch fields a function of (z − ct) instead of z and

t separately. The resulting plasma wake then has fields and potentials that are also

dependent on (z − ct) instead of z and t separately. Any field or potential, F , in a

PWFA driven by an ultrarelativistic bunch has the following relationship between its

z and t partial derivatives.

− c
∂F

∂z
=

∂F

∂t
. (1.2)

This simple relationship between z and t is now combined with Maxwell’s equa-

tions to derive the source term for the accelerating field, Ez [12]. The φ component of

Faraday’s law and the r component of Ampere’s law are required for this derivation.

Equation 1.3 is Ampere’s law with t derivatives replaced by z derivatives.

∂Bφ

∂z
= −µ0Jr +

1

c

∂Er

∂z
. (1.3)



1.3. ACCELERATING FIELD 5

A substitution of Eq. 1.3 into the φ component of Faraday’s law yields Eq. 1.4.

∂Ez

∂r
=

∂Er

∂z
− c

∂Bφ

∂z
. (1.4)

=
∂Er

∂z
− c(−µ0Jr +

1

c

∂Er

∂z
).

= µ0cJr.

As r approaches infinity Ez goes to zero, so the integral over r of ∂rEz yields Ez:

Ez(r, z − ct) = −µ0c

∫ ∞

r

dr
′
Jr(r

′
, z − ct). (1.5)

Thus, the radial current is the source term for Ez. As the drive bunch expels the

plasma electrons, there is a negative radial current, which results in a positive Ez.

Likewise, a negative Ez occurs as the ions in the bubble pull the plasma electrons

back to the axis. When the plasma sheath reaches its maximum radius, Rm, the

integrated radial current goes to zero, as does Ez.

A simple model for a PWFA is now developed, which connects the accelerating

field to features of the plasma wake. Let R denote the radial extent of the ion bubble.

Assume all the plasma electrons initially inside R occupy a plasma sheath with the

radial range of R to R + w. Let vr denote the average radial velocity of the electrons

in this region. Under the assumption that w ¿ R, the electron density in the sheath

is npR/(2w). Note, there is no radial current inside the bubble, so Ez(r, z − ct) is

independent of r inside the plasma sheath. Equation 1.6 displays Ez for r < R.

Ez = µ0cnpeRvr/2 = (mcωp/e)(vr/c)(kpR/2). (1.6)

This equation shows that the accelerating field has a scale of mcωp/e when R is

significant compared to the plasma length scale (1/kp) and plasma electrons have

radial velocities near c. While this is a simplistic model, it still shows the basic scale

and nature of the accelerating field in a PWFA. Figure 1.2 displays the on-axis Ez

from the simulation corresponding to Fig. 1.1.

An exact analytic solution to the interaction of the drive bunch and the plasma

does not exist, so particle-in-cell (PIC) codes are used to calculate fields and wake
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Figure 1.2: Longitudinal electric field in a PWFA, from an OSIRIS simulation. The
drive bunch had 1.8 · 1010 electrons, σx = σy = 1.74 µm, σz = 20 µm, and drove a
wake in a plasma of density np = 2.7 · 1023 m−3 (mcωp/e = 50 GV/m, and c/ωp = 10
µm).

properties. There is, however, a simple nonlinear theory that describes the basic

physics of the interaction between the drive bunch and the plasma in the nonlinear

bubble regime [48,47]. In this regime, the plasma electrons reside in a sheath outside

of the ion bubble. The simple nonlinear theory models the ρ − Jz/c source term

from these plasma electrons as constant in the radial range of the plasma sheath.

Simulations show that the plasma electrons remain confined in the sheath as they

follow a trajectory around the ion bubble. The simple theory calculates the trajectory

of an electron on the innermost part of the plasma sheath, at r = R, and assumes

that the plasma sheath follows the trajectory of this electron. Thus, the innermost

electron path determines the trajectory of R. Then, R and its derivatives with respect

to z specifies the charge and current distribution, which governs the fields in the

system. The simple theory requires an assumption for the width of the plasma sheath.

However, for R large compared to 1/kp, the simple theory becomes independent of
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the width assumption, resulting in the following differential equation for R [48, 47].

R
d2R

dτ 2
+ 2(

dR

dτ
)2 + 1 =

8λre

k2
pR

2
, (1.7)

where τ = z−ct, λ is the number of drive bunch electrons per unit longitudinal length

as a function of τ , and re is the classical electron radius. Inside the bubble,

Ez = −npeR

2ε0

dR

dτ
. (1.8)

Equation 1.7 is useful for finding the scale of how Ez changes as a function of τ .

Consider a position in the bubble behind the drive bunch. In this region Eq. 1.7

becomes

R
d2R

dτ 2
+ 2(

dR

dτ
)2 + 1 = 0, (1.9)

which is equivalent to
d

dτ
(R

dR

dτ
) + (

dR

dτ
)2 + 1 = 0. (1.10)

Near Rm, where dR/dτ ≈ 0, this equation is simplified to

d

dτ
(R

dR

dτ
) = −1. (1.11)

This implies the following relationship for the partial derivative of Ez with respect to

τ inside the wake, which is used in Ch. 3 to investigate the focusing fields experienced

by the trapped electrons.

∂Ez

∂τ
= −npe

2ε0

d

dτ
(R

dR

dτ
) =

npe

2ε0

. (1.12)

At the front and back of the ion bubble, where there is significant radial motion of

the sheath, the assumption of dR/dτ ≈ 0 is no longer appropriate. Thus, Eq. 1.12 is

not valid for these locations.
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1.4 Focusing Fields

Transverse focusing forces are an important property of the PWFA. The use of

Maxwell’s equations in conjunction with the relationship shown in Eq. 1.2 produces

the source term for the focusing forces. A substitution of Gauss’ law, Eq. 1.13, into

the z component of Ampere’s law, Eq. 1.14, yields a formula for Er − cBφ inside the

bubble [12,64].
∂Ez

∂z
=

ρ

ε0

− ∂

r∂r
(rEr). (1.13)

1

r

∂

∂r
(rBφ) = µ0Jz − 1

c

∂Ez

∂z
. (1.14)

= µ0Jz − 1

c
(
ρ

ε0

− ∂

r∂r
(rEr)).

∂

∂r
(r(Er − cBφ)) =

r

ε0

(ρ− Jz

c
). (1.15)

Thus, Er − cBφ is determined entirely by the charge density and the longitudinal

component of the current density.

Since the electron density of the drive bunch is much greater than that of the

plasma, it clears the plasma electrons from its volume. However, consider an electron

on the axis of bunch propagation. This electron would not experience a transverse

electric field so it would remain on axis as the drive bunch passed. Before proceeding

into an interpretation of the source terms for the focusing fields, it is worth presenting

a quantitative description of the electrons close to the axis. Consider the effects of a

Gaussian electron drive bunch with Nd electrons, σx = σy, longitudinal length of σz,

and peak electron density of nb on one of these electrons. Near the peak density of

the drive bunch, Er is linear in r. Let t = 0 denote the time when the middle of the

bunch is aligned with the plasma electron. The plasma electron experiences a time

dependent electric field of

Er(t) = −nber(t)

2ε0

exp(−c2t2

2σ2
z

). (1.16)

Equation 1.17 is then appropriate for describing the radial position of the plasma
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electron as a function of time (assuming nonrelativistic motion).

d2r(t)

dt2
− r(t)

nbe
2

2mε0

exp(−c2t2

2σ2
z

) = 0. (1.17)

A combination of a change in variable to u = ct/σz and the use of a dimensionless

constant, Ap, yields the following differential equation for the evolution of r.

d2r(u)

du2
− r(u)Ap exp(−u2

2
) = 0. (1.18)

Ap =
nb(kpσz)

2

2np

. (1.19)

The initial conditions for Eq. 1.18 are r = r0 and dr/du = 0 at t = −∞. A

point of interest is the radial position of the plasma electron after the core of the

bunch has just passed at t = σz/c (u = 1). Since this is a linear differential equation,

it does not depend on the absolute value of r0, it only depends on the value of Ap.

Figure 1.3 shows the position of the plasma electron after the bunch has passed for

various values of Ap. The quantity r(t = σz/c)/r0 is extremely large even for small
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Figure 1.3: The position of a plasma electron after the passing of an electron bunch,
plotted as a function of Ap, a dimensionless variable.

values of Ap. Typical drive bunch parameters have σz on the order of 1/kp. Also,

nb À np in the nonlinear bubble regime. For kpσz = 1 and nb = 10np, Ap = 5. The

corresponding value of r(t = σz/c)/r0 is 122. This means that plasma electrons from

outside a radius of σx/122 would be expelled to σx or greater as the bunch passes.
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Thus, the drive bunch electrons are effectively the only free electrons inside the

bubble; however, they do not produce a net contribution to the source term for

focusing in Eq. 1.15. Therefore, the source term in the bubble results entirely from

the static ions (ρ = npe). By symmetry Er and Bφ = 0 at r = 0, so the integral over

r of Eq. 1.15 yields Er − cBφ inside the plasma bubble:

Er − cBφ =
nper

2ε0

. (1.20)

The remaining fields that contribute to the transverse focusing forces are: Eφ, Br,

and Bz. An important term for examining these fields is Aφ. In the Lorentz gauge,

the current density is the source term for the vector potential:

A(x, t) =
µ0

4π

∫
d3x′

J(x’, t− |x− x’|/c)
|x− x’| . (1.21)

The φ component of the vector potential is determined by the azimuthal and radial

current density:

Aφ(r, φ, z, t) =
µ0

4π

∫ ∞

0

dr′r′
∫ ∞

−∞
dz′

∫ π

−π

d(φ′ − φ)× (1.22)

Jφ(r
′, φ′ − φ, z′, t′) cos(φ′ − φ) + Jr(r

′, φ′ − φ, z′, t′) sin(φ′ − φ)√
r2 + r′2 − 2rr′ cos(φ′ − φ) + (z − z′)2

.

t′ = t− 1

c

√
r2 + r′2 − 2rr′ cos(φ′ − φ) + (z − z′)2. (1.23)

Recall, Jφ is assumed to be zero. Since there is azimuthal symmetry, Jr is even in

φ′− φ. The denominator of the above equation is also even in φ′− φ, but sin(φ′− φ)

is odd in φ′− φ. Thus, the argument of the integral is odd in φ′− φ, making Aφ = 0.

Since Aφ = 0 and ∂φ = 0, Eφ, Br, and Bz are all zero:

Eφ = −1

r

∂Φ

∂φ
− ∂Aφ

∂t
= 0. (1.24)

Br =
1

r

∂Az

∂φ
− ∂Aφ

∂z
= 0. (1.25)

Bz =
1

r

∂(rAφ)

∂r
− 1

r

∂Ar

∂φ
= 0. (1.26)
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Therefore, the only fields that contribute to the transverse focusing forces are Er and

Bφ.

It is now important to introduce the transverse emittance, which is the area of a

particle bunch in the x − px (or y − py) phase space. This is a crucial property for

the application of any particle bunch. For example, the transverse emittance controls

the minimum wavelength that can be produced coherently from a particle bunch in

a free electron laser. Also, the transverse emittance limits the minimum transverse

spot size achievable in a collider, which in turn controls the colliders luminosity.

For this reason, the effect of propagation on the transverse emittance in a PWFA is

particularly important.

The linear focusing forces created by the fields shown in Eq. 1.20 are ideal; they

conserve the transverse normalized emittances, εN,x and εN,y, of a particle bunch.

This property is apparent from an investigation of the Lorentz force equation. An

ultrarelativistic electron bunch has vz ≈ c, so the Lorentz force equation renders the

following differential equation for the propagation of the transverse coordinates.

dpx

dt
= −e(Ex − cBy). (1.27)

= −e(Er − cBφ) cos(φ).

= −npe
2x

2ε0

.

Since vz is not exactly c, it is worth investigating the size of the corrections to this

formula. First, the terms Er and −cBφ are of the same order, so all errors come

from the difference between vz and c. Let ẋ = dx/dz, and v denote the velocity of

the particle. Consider an ultrarelativistic particle traveling in the x − z plane; its

longitudinal velocity is

vz = v cos(ẋ) = c

√
1− 1

γ2
cos(ẋ). (1.28)

Both 1/γ and ẋ are much smaller than one, so this equation can be simplified as

vz ≈ c(1− 1

2γ2
)(1− ẋ2

2
). (1.29)
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The angular size of a matched bunch is given by the following equation.

〈ẋ2〉 =
kpεN,x√

2γ3
. (1.30)

As an example, in recent experiments kpεN,x = 6. Thus, ẋ2 is of order γ−3/2, which

makes the difference between vz and c of order cγ−3/2. Recent experiments utilized a

drive bunch with γ > 80,000, making this a very small correction.

Since vz ≈ c, the time derivatives of Eq. 1.27 can be converted to z derivatives,

resulting in the following equation for the transverse propagation of an electron.

ẍ +
γ̇

γ
ẋ + Kx = 0. (1.31)

K =
k2

p

2γ
, (1.32)

where K denotes the focusing strength. Equation 1.33 shows the definition of the

geometric emittance for the x coordinate.

ε2
x = 〈x2〉〈ẋ2〉 − 〈xẋ〉2. (1.33)

The geometric emittance is related to the normalized emittance by a factor of γ:

εN,x = γεx. A z derivative of the geometric emittance reveals that εN,x is conserved:

ε̇2
x = 2〈x2〉〈ẋẍ〉 − 2〈xẋ〉〈xẍ〉. (1.34)

= −2γ̇

γ
ε2
x.

˙(γεx) = ˙εN,x = 0. (1.35)

Note, the transportation properties of y are the same as x.

1.4.1 Emittance Growth from Multiple Coulomb Scattering

Emittance growth is an important issue for the PWFA. The previous section shows

that the normalized emittance is conserved for linear focusing forces. These linear

focusing fields result from the assumption of a uniform charge distribution in the
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ion bubble. The actual charge is not uniformly distributed; it is allocated in delta

functions (ions), which are uniformly distributed. This type of charge distribution

leads to multiple Coulomb scattering (MCS) and causes emittance growth [35]. Here,

the MCS emittance growth of an electron bunch traveling through a PWFA in the

nonlinear bubble regime is calculated. The calculation uses well-established formulas

for angular scatter in a neutral vapor and then extends the range of the Coulomb

interaction to include the effects of traveling through an ion bubble. Emittance

growth is negligible for materials with a low atomic number; however, it becomes

large for high atomic numbers.

The emittance growth of a bunch traveling through a neutral vapor can be found

from the angular scatter through the vapor, which is related to the radiation length.

Equation 1.36 is a formula for this length, Lr [75].

Lr =
716.4cm−2NA

nZ(Z + 1) log(287/
√

Z)
, (1.36)

where Z is the atomic number of traversed material, NA is Avogadro’s number in

units of mole−1, and n is the density of the neutral vapor. The rate of angular scatter

for an ultrarelativistic electron through a neutral vapor is related to Lr through the

following equation [73].

d〈θ2〉vapor

dz
=

1

2γ2Lr

(
20MeV

mc2
), (1.37)

where θ is angle in the x− z plane relative to the z axis.

In recent PWFA experiments, the electric field from the drive bunch was strong

enough to completely expel electrons from its volume, which created an ion bubble

in the plasma. Scattering through an ion bubble extends the range of the Coulomb

interaction. In a neutral vapor, if the incident particle does not come within the

atomic dimensions of an atom, the nucleus of the atom is shielded by its electrons.

The same is not true when the incident particle travels through a uniform region

of atoms. To account for the fact that there are charged ions, another Coulomb

scattering term is added with a range from the atomic radius, Ra, to the radius of

the ion bubble, R.
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The radial kick in momentum that an incident electron receives from a charged

ion is found from a time integration of the ion’s radial electric field. This radial kick

is then projected onto the x plane and is converted into an angle after dividing by

the electron’s momentum.

θ =
∆px

p
=

e2Q cos(φ)

2πpvε0b
, (1.38)

where p is the electrons momentum, b is the ion’s impact parameter, v is the electron

velocity, Qe is the ion charge, and φ is the azimuthal angle of the ion. Next, Eq. 1.38

is converted to a squared angle expectation value by integrating over an ion that is

randomly placed with Ra < b < R. Since the incident particle is ultrarelativistic, pv

= γmc2.

〈θ2〉 = (
Qe2

2πγmc2ε0

)2 log(R/Ra)

(R2 −R2
a)

. (1.39)

Angular scatters from individual ions add in quadrature. The reason for this is

seen from an investigation of the expectation value for the addition of two angles.

〈θ2
f〉 = 〈(θ1 + θ2)

2〉 = 〈θ2
1〉+ 〈θ2

2〉. (1.40)

Angular scatter from individual ions are just as likely to be positive as negative, so

〈θ1θ2〉 is zero. A total rate of change in the mean square scatter from the ions is

found by multiplying the number of ions that the incident particle will intercept per

unit length by the expected mean square scatter from one:

d〈θ2〉ion

dz
= 〈θ2〉nπ(R2 −R2

a). (1.41)

=
nQ2e4

4πγ2m2c4ε2
0

log(R/Ra).

The total rate of angular scatter growth, d〈θ2
T 〉/dz, is the addition of the vapor (Eq.
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1.37) and the ion (Eq. 1.41) scattering terms:

d〈θ2
T 〉

dz
=

d〈θ2〉ion

dz
+

d〈θ2〉vapor

dz
, (1.42)

=
k2

pre

γ2
S,

S = Q[log(R/Ra) +
1.78Z(Z + 1)

Q2
log(287/

√
Z)],

where np = Qn. As the impact parameter increases from below the atomic radius to

above it, the scatter transitions from nuclear to ionic. Here, the analysis evaluates

the ion scattering as though it abruptly turns on at an impact parameter of Ra. A

choice of Ra that is too large or too small would under- or overestimate the scattering,

respectively. However, Eq. 1.42 is only logarithmically dependent on Ra. For the

experiments presented in this dissertation, R exceeds Ra by roughly five orders of

magnitude, so even an order of magnitude error in the choice of Ra would not produce

an appreciable difference to the calculated scattering. Thus, the exact value chosen

for Ra is not critical. For Z = 1, the terms from the ion bubble and neutral vapor

are roughly the same size; however, for higher Z the term from the neutral vapor

dominates.

The transverse size of the bunch in the plasma relates the rate of angular scatter to

the emittance growth. This size is found from an investigation of the focusing forces.

Equation 1.31 is appropriate for describing an ultrarelativistic electron oscillating

through the bunch axis of the ion bubble. For a bunch of constant energy, there

are conditions in which its transverse size does not change along the accelerator. A

matched bunch is one that satisfies these conditions. The conditions for matching are

found from z derivatives of the transverse bunch size.

d〈x2〉
dz

= 2〈xẋ〉. (1.43)

d2〈x2〉
dz2

= 2(〈ẋ2〉+ 〈xẍ〉). (1.44)

The second derivative of x with respect to z is substituted from Eq. 1.31, assuming

γ̇ = 0, into these equations. By setting the first two z derivates equal to zero, it

insures that all higher order derivatives are also zero. This makes 〈x2〉 a constant,
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with the following criteria for a matched bunch [50].

〈xẋ〉 = 0. (1.45)

〈ẋ2〉 =
k2

p

2γ
〈x2〉.

A substitution of these criteria into Eq. 1.33 yields the following relationship between

the emittance and the bunch transverse size.

εx =
kp√
2γ
〈x2〉. (1.46)

Note, an accelerating bunch that starts matched retains the conditions expressed in

Eq. 1.45 [50].

The rate of emittance growth is found from a z derivative of Eq. 1.33.

εxε̇x = 〈x2〉〈ẋẍ〉 − 〈xẋ〉〈xẍ〉. (1.47)

A substitution for ẍ is now required. The quantity ẍ must include not only the

contributions from Eq. 1.31, but also the rate of angular growth from scattering (as

shown in the following equation).

ẍ = − γ̇

γ
ẋ− k2

p

2γ
x + θ̇T . (1.48)

Next, this equation is substituted into Eq. 1.47, yielding

εxε̇x = − γ̇

γ
ε2
x + 〈x2〉〈ẋθ̇T 〉+ 〈xẋ〉〈xθ̇T 〉. (1.49)

As long as the relative angular growth for one oscillation in the x− ẋ plane is small,

a bunch that starts matched will remain closely matched. Thus, the 〈xẋ〉 term is

dropped. Recall, the other scattering term for Eq. 1.49 was calculated for Eq. 1.42.

〈ẋθ̇T 〉 =
1

2

d〈θ2
T 〉

dz
. (1.50)

The rate of the normalized emittance growth is found by substituting Eq. 1.42 and
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Eq. 1.50 into Eq. 1.49, multiplying by γ, and dividing by εx.

γε̇x + γ̇εx = ˙εN,x =
k2

preS

2εxγ
〈x2〉. (1.51)

This equation is further simplified by a substitution of the relationship between the

emittance and the transverse size (see Eq. 1.46):

˙εN,x =
kpreS√

2γ
. (1.52)

The derivative in z can be converted to a derivative in γ [52].

dεN,x

dγ
=

kpreS

γ̇
√

2γ
. (1.53)

An integral of this equation from the initial Lorentz factor, γi, to the final Lorentz

factor, γf , yields the following formula for the change in the normalized emittance,

∆εN,x.

∆εN,x =

√
2kpreS

γ̇
(
√

γf −√γi). (1.54)

This equation is simplified a step further by assuming that the bunch is accelerated

with an electric field of mc2kp/e, which yields that γ̇ = kp.

∆εN,x =
√

2reS(
√

γf −√γi). (1.55)

One current scheme for the PWFA is to use it at the end of a conventional linear

collider to double the energy of a witness electron bunch [42]. As an example, Eq. 1.55

was used to calculate the emittance growth from doubling the energy of an electron

bunch initially at 500 GeV through various materials that have been singly ionized

(see Fig. 1.4). The ion bubble radius was set to 2.5·10−5 m, and the atomic radius

was set to 10−10 m. Projected emittances for the International Linear Collider are

εN,y = 4 ·10−8 m and εN,x = 9.6 ·10−6 m [62]. At Z ≈ 60 the y normalized emittance is

doubled. This example shows that emittance growth is negligible for low Z materials;

however, becomes important for high Z materials.
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Figure 1.4: Normalized emittance growth from MCS during the energy doubling
of a 500 GeV electron bunch, shown for various singly-ionized materials. The red
dotted lines represent the normalized emittance growth of the following elements: Li
= 2.0 · 10−10 m, Na = 1.7 · 10−9 m, K = 4.6 · 10−9 m, Rb = 1.6 · 10−8 m, and Cs =
3.3 · 10−8 m.

1.5 Remaining Issues

Recent experiments demonstrated the extraordinary focusing and accelerating prop-

erties of electron bunches in a PWFA [56, 26, 9] (see Ch. 5). In addition, there has

also been preliminary experimental tests of positron acceleration in a PWFA [7], but

more work is needed. There are several issues for both electron and positron bunches

that develop during long propagation, which are not yet fully understood. Future

experiments will test the remaining obstacles in the path to creating a plasma-based

collider. This section is an outline of these remaining issues.

1.5.1 Plasma Electron Trapping

Recent experiments exhibited the trapping of plasma electrons in the wake of the

drive bunch [58]. A plasma-based collider would use one particle bunch to drive the

wake and a witness bunch to capture the energy of the wake. The trapped electrons

reside at positions near an optimal place for the witness bunch and are capable of

draining energy from the wake. Figures 1.5 and 1.6 illustrate how trapping affects the
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wake. Chapter 2 presents the physics of electron trapping in a PWFA and methods

of relieving the effects of the trapped electrons. These electrons can be detrimental

to plasma-based colliders; however, their properties establish them as interesting all

on their own. Chapter 3 covers the physics of the trapped electron properties.
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Figure 1.5: Electric field loading by the trapped electrons, from an OSIRIS simula-
tion. The black line represents the on-axis Ez before a significant amount of trapped
electrons accumulate, the red line denotes the on-axis Ez after the trapped electrons
have loaded the electric field, and the green dotted line shows the current profile of
the trapped electrons, It. The drive bunch had 1.8 · 1010 electrons, σx = σy = 1.74
µm, σz = 30 µm, and drove a wake in a vapor with a lithium density of 2.7 · 1023 m−3

and a helium density of 8.1 · 1021 m−3.

1.5.2 Positron Acceleration and Propagation

It is not enough to accelerate electrons to high energies in a PWFA. To build high

energy electron-positron linear colliders, positron bunches must also be accelerated.

Experiments have shown that positron acceleration in a PWFA is possible [7]. How-

ever, they also indicate that the transverse focusing forces are nonlinear [54]. The

focusing forces of the ion bubble are only ideal for electron witness bunches; prop-

agation of positrons requires a zero or negative on-axis charge density. Since the

plasma electrons are not static or uniform in density, the regions of positron focus-

ing change rapidly with z − ct and are nonlinear. Figures 1.7 and 1.8 contrast the
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Figure 1.6: Wake loading by the trapped electrons, from an OSIRIS simulation.
a) The wake before a significant amount of trapped electrons accumulate. b) The
wake after being loaded by the trapped electrons. The colors red, green, and blue
represent the electron density of the trapped electrons, the drive bunch, and the
plasma electrons (from lithium). The drive bunch had 1.8 · 1010 electrons, σx = σy =
1.74 µm, σz = 30 µm, and drove a wake in a vapor with a lithium density of 2.7 · 1023

m−3 and helium density of 8.1 · 1021 m−3.

focusing and accelerating properties of an electron and positron driven plasma wake,

respectively. One method to avoid the focusing problems for positrons is to propagate

them through a hollow channel plasma, which has a density depression on the bunch

axis. However, there is not yet a proven method for generating one.
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Figure 1.7: The focusing and accelerating properties of a plasma wake driven by an
electron bunch, from a QuickPIC simulation [27]. The red dotted line represents
Ez and the black line denotes the focusing strength of the wake, where positive is
focusing for electrons. Note, the region of uniformly charged ions has a uniform
focusing strength. The drive bunch had 1.8 · 1010 electrons, σx = σy = 5 µm, σz = 20
µm, and drove a wake in a lithium vapor of density 2.7 · 1023 m−3.
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Figure 1.8: The focusing and accelerating properties of a plasma wake driven by a
positron bunch, from a QuickPIC simulation. The red dotted line represents Ez and
the black line denotes the focusing strength of the wake, where positive is focusing
for positrons. Note, the varying on-axis charge density results in a varying focusing
strength. The drive bunch had 1.8 · 1010 positrons, σx = σy = 15 µm, σz = 20 µm,
and drove a wake in a lithium vapor of density 2.7 · 1023 m−3.

1.5.3 Ion Motion

The linear focusing forces, shown in Eq. 1.20, rely on the ions remaining static and

uniform. However, current bunch parameters for plasma-based colliders indicate that

the drive bunches will have transverse fields large enough to substantially affect the

ion positions as they pass [65]. Consider the effect of a Gaussian electron drive bunch

with Nd electrons, σx = σy, longitudinal length of σz, and peak density of nb on an

ion of mass M and charge Qe. Near the peak density of the drive bunch, Er is linear

in r. Let t=0 denote the time when the middle of the bunch is aligned with the ion.

The ion experiences the time dependent electric field of Eq. 1.16. Equation 1.56 is

then appropriate for describing the radial position of the ion as a function of time.

d2r(t)

dt2
+ r(t)

Qnbe
2

2Mε0

exp(−c2t2

2σ2
z

) = 0. (1.56)
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A combination of a change of variable to u = ct/σz and the use of a dimensionless

constant, Aion, yields the differential equation for the evolution of r as

d2r(u)

du2
+ r(u)Aion exp(−u2

2
) = 0. (1.57)

Aion =
Qnbe

2σ2
z

2Mε0c2
. (1.58)

A manipulation of the constant Aion yields

Aion =
QσzrekpNd

εN

m

M

√
γ

4π
. (1.59)

Since Aion is the only constant in Eq. 1.57, the amount of ion motion is entirely

determined by it.

The initial conditions for Eq. 1.57 are r = r0 and dr/du = 0 at t = −∞. A point

of interest is the radial position of the ion after the core of the bunch has just passed

at t = σz/c (u = 1). Since this is a linear differential equation, it does not depend

on the absolute value of r0, it only depends on the value of Aion. Figure 1.9 shows

the position of the ion after the bunch has passed. There is a catastrophic collapse
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Figure 1.9: The position of an ion after the passing of an electron bunch, plotted as
a function of Aion, a dimensionless variable.

of the ion when r = 0 at t = σz/c; this occurs for Aion = 0.473. A less severe collapse

occurs for Aion = 10−1, and a negligible collapse occurs for Aion = 10−2.
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Current parameters for the witness bunch in a PWFA-based collider are 1010

electrons, σz = 10 µm, np = 1023 m−3 (1/kp = 16.8 µm), εN,x = 2 µm, εN,y = 0.05

µm, and an energy of 500 GeV (γ = 978,475). Since εN,x is much larger than εN,y, σx

is also much larger than σy. Thus, this bunch would not be cylindrically symmetric.

In this case, a substitution of εN =
√

εN,xεN,y/2 is appropriate for Aion. Consider the

effect the drive bunch has on a singly-ionized lithium atom. The quantity Aion =

2.34, which corresponds to a catastrophic amount of ion motion. In this case, the ion

density would not be uniform, so the wake would not posses the linear radial focusing

forces shown in Eq. 1.20. This would create transverse emittance growth for the

bunch traveling in this wake. The effect of ion motion can be reduced with higher

mass ions, but multiple ionizations are problematic for these ions. Also, as shown in

Sec. 1.4.1, emittance growth from multiple coulomb scattering becomes a significant

issue for high Z materials [35].

1.5.4 Electron-Hosing Instability

As a drive bunch traverses plasma it expels the plasma electrons from the bunch axis,

which creates a sheath of plasma electrons surrounding a region of ions. If the back

of the drive bunch is displaced transversely from the front of the drive bunch, the

electrons in the back would pass closer to one side of the plasma sheath than the

other. This would result in a displacement to the center of the plasma sheath, which

would then act back on the drive bunch. A transverse instability occurs from this

interaction. The basic physics of this instability is described by the following set of

coupled differential equations [72,41]:

∂2xb

∂z2
+

k2
p

2γ
(xb − xs) = 0, (1.60)

∂2xs

∂τ 2
+

k2
p

2
(xs − xb) = 0, (1.61)

where xb and xs are the x position of the center of the bunch and of the plasma

sheath, respectively, at a given longitudinal position. These equations are useful for

quantifying the growth of the transverse instability as the drive bunch travels along

z. As an example, consider a drive bunch that has a discontinuity in its transverse
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position at τ = 0. At positions in front of this discontinuity both xb and xs are zero,

but for τ < 0 the initial discontinuity leads to the transverse hosing instability. The

initial conditions for this example are

xb(z = 0, τ) = xb0Θ(−τ), (1.62)

xs(z = 0, τ ≥ 0) = 0,

∂xb(z = 0, τ)

∂z
= 0,

∂xs(z = 0, τ ≥ 0)

∂τ
= 0,

where Θ is a step function. The asymptotic solution of these initial conditions for

τ < 0 and 1 ¿ −kpτ/
√

2 ¿ kpz/
√

2γ is [41]

xb(z, τ) = xb0(6π)−1/2(
kpz√
2γ

)−1/6(
−kpτ√

2
)−1/3

× exp(
3
√

3

4
(

kpz√
2γ

)1/3(
−kpτ√

2
)2/3)

× cos(
kpz√
2γ
− 3

4
(

kpz√
2γ

)1/3(
−kpτ√

2
)2/3 +

π

12
). (1.63)

These equations show an exponential growth in xb, which is characteristic for an insta-

bility. This instability should appear when kpz/
√

2γ and −kpτ/
√

2 are large. Recent

experiments utilized drive bunches that were comparable or larger in length than√
2/kp and propagated these drive bunches until (kpz/

√
2γ)1/3 = 5.89. However, this

transverse instability has not yet appeared to be a showstopper for the PWFA. More

detailed analyses suggest the hosing growth occurs at a slower rate than that given

by Eq. 1.60 [28]. Future experiments will further probe this transverse instability.

1.5.5 Head Erosion

Section 1.4 showed that a PWFA has ideal focusing properties for electrons; however,

this is only true inside the ion bubble. Since the drive bunch creates the bubble by

field ionizing neutral vapor and expelling the plasma electrons, there exist electrons

at the front of the bunch which do not experience this focusing. In the absence of

the focusing from the ion bubble, the electrons in this region expand transversely,
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which causes the front of ionization to move further into the head of the bunch. This

process is termed as head erosion. In recent experiments this effect kept the drive

bunch from reaching energy depletion [9]. Figure 1.10 shows an illustration of head

erosion from a QuickPIC simulation.
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Figure 1.10: The erosion of the drive bunch, from a QuickPIC simulation; a), b),
and c) show the wake at propagation distances of 0.5, 15, and 30 cm, respectively.
The color green denotes the drive bunch electron density and blue represents the
plasma electron density. The drive bunch had 1.77 · 1010 electrons, σx = σy = 2.9
µm (εN,x = εN,y = 100 µm), σz = 20 µm, γ = 41, 000, and drove a wake in a lithium
vapor with c/ωp = 10 µm.

The rate of head erosion, ve, is expressed as a dimensionless ratio of the distance

of erosion into the bunch over the distance of bunch propagation. Figure 1.10’s

corresponding simulation suggests that the first half of the bunch is eroded after a

propagation distance of 30 cm. Thus, ve ≈ σz/30 cm ≈ 6.7 · 10−5. The scale for

this erosion rate can be understood through simple arguments. Recall Eq. 1.17,

which describes the expulsion of plasma electrons from the bunch. The time scale in

this differential equation is ω−1
p (2np/nb)

1/2. Thus, k−1
p (2np/nb)

1/2 is the scale for the

distance in the bunch between no focusing and the perfect focusing of the ion bubble.

Now consider the transverse propagation of an electron at the front of the bunch,

where there is no focusing. Let x0 and ẋ0 represent this electron’s initial transverse

coordinates. The transverse coordinate as a function of propagation distance, z, is

x(z) = x0 + ẋ0z. (1.64)
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A collection of these freely propagating electrons has a transverse size of

〈x2〉 = 〈x2
0〉+ 2z〈x0ẋ0〉+ z2〈ẋ2

0〉. (1.65)

The simulation used a matched bunch, so the above equation (using 〈x0ẋ0〉 = 0 and

Eq. 1.30) is simplified as

〈x2〉 = 〈x2
0〉+ z2(

kpεN,x√
2γ3

). (1.66)

Above a certain transverse size, σionize, the electric field of the bunch is no longer

large enough to ionize the surrounding gas. The front of ionization passes a position

in the bunch once its transverse size increases above σionize. Note, the peak electric

field required to ionize lithium for a Gaussian bunch with σz = 20 µm is 5.5 GV/m

(see Sec. 2.5). For the peak current of the simulated bunch this field corresponds to

σionize = 84 µm. This is much greater than the initial transverse bunch size, so the

propagation distance for the transverse size to become equal to σionize, zionize, is

zionize = σionize
(2γ3)1/4

√
kpεN,x

. (1.67)

The quantity ve is then expressed as

ve =
1

kpzionize

√
2np

nb

. (1.68)

A substitution of the quantities in this equation yields ve ≈ 3.1 · 10−5. Note, this

rate is roughly a factor of two below that shown in the simulation. This should be

expected since this calculation only describes the erosion rate at the bunch’s peak

current position. The simulated bunch was Gaussian, so the erosion rate was higher

away from the peak current position. A more detailed derivation and discussion of

head erosion is shown in Ian Blumenfeld’s dissertation [8].

1.5.6 Plasma Wake Loading

Recent PWFA experiments used one bunch to both create the wake and sample

the accelerating field. This type of interaction inherently produces a large energy
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spread and is naturally not a way to build a collider. Instead, a plasma-based collider

would use a drive bunch to create a plasma wake and a witness bunch to sample it.

Multiple drive bunches would then be used to successively increase the energy of a

single witness bunch.

Particle colliders rely on being able to accurately control the center of mass energy

at the interaction point. Thus, a plasma-based particle accelerator must be able to

deliver its witness bunch with a small energy spread. Another quantity of interest is

the transformer ratio. This is the ratio of the accelerating field experienced by the

witness bunch over the maximum decelerating field experienced by the drive bunch.

The transformer ratio governs the number of drive bunches required to get a witness

bunch to a given energy: as this ratio increases the number of drive bunches required

decreases. Also, the power consumption of a particle accelerator is of concern. For

this reason, the efficiency of the energy transfer from the drive to the witness bunch

is also important. Figure 1.11 displays the energy spread, transformer ratio, and

efficiency from a set of QuickPIC simulations, which varied the separation between

a drive and a witness bunch. In addition, Fig. 1.12 shows the loaded wake from the

simulation which minimized the energy spread of the witness bunch.
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Figure 1.11: The relative rms energy spread (a), transformer ratio (b), and efficiency
(c) calculated in a set of QuickPIC simulations, which varied the distance between the
drive and the witness bunch, ∆z. The drive bunch had 3 ·1010 electrons with σz = 30
µm, and the witness bunch had 1010 electrons with σz = 10 µm; both bunches had
σx = σy = 3 µm (εN,x = εN,y = 84 µm) and γ = 48, 924. The wake was driven in a
lithium vapor of density 1023 m−3.
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Figure 1.12: A properly loaded accelerating field along with the corresponding current
profiles of the drive and witness bunches, from a QuickPIC simulation. The drive
bunch had 3 · 1010 electrons with σz = 30 µm, and the witness bunch had 1010

electrons with σz = 10 µm; both bunches had σx = σy = 3 µm (εN,x = εN,y = 84 µm)
and γ = 48, 924. These bunches were separated by 115 µm, and the wake was driven
in a lithium vapor of density 1023 m−3.

The QuickPIC simulations show that Gaussian drive and witness bunches achieve

reasonable accelerating properties. Furthermore, a combination of theory and simula-

tion work shows that a proper shaping of the drive and witness bunch current profile

is capable of yielding smaller energy spreads, higher transformer ratios, and better

efficiencies [70]. Future experiments will test the energy spread, transformer ratio,

and efficiency of a drive and witness bunch in a PWFA.

1.6 Simulations

Exact analytic solutions for the electric and magnetic fields of a PWFA in the non-

linear bubble regime do not exist. A considerable amount of work was devoted to

developing approximate solutions [48, 47]. Simulations are useful for deriving more

detailed information about the dynamics in a PWFA. Additionally, simulations can

provide a benchmark for the approximate solutions and yield insight into the phys-

ical processes. For these reasons, simulations are particularly important to PWFA

research.
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The specific simulation codes used in this dissertation are OSIRIS [22] and Quick-

PIC [27]. These codes both use a particle-mesh method of simulating the interactions

of particle bunches with plasma. In this method, plasma electrons and drive bunch

particles are represented by simulation particles. At present, computers do not have

the capability to simulate each individual drive bunch and plasma particle. Instead,

a macro-particle represents a group of particles. These macro-particles have the same

charge to mass ratio as the individual particles so they follow the same trajectory in

response to the fields of the system. The macro-particles have continuous coordinates;

however, their charge and current are deposited on a grid. Both codes, as used in

this dissertation, model the ions in the plasma as static. These codes solve Maxwell’s

equations on the simulation grid, subject to the boundary conditions. The electric

and magnetic fields from this solution are used in conjunction with the Lorentz force

equation to iterate the macro-particle coordinates to the next time step. This leads

to a new distribution of the macro-particles, which become re-deposited on the grid,

and so forth.

The natural unit for distance in the system is 1/kp, so the spatial grid size is

typically a small fraction of this. Similarly, the simulation time steps are a small

fraction of 1/ωp. These simulation codes have been run for lengths of time which

exceed 105/ωp. The drive bunch moves at the speed of light so it interacts with

plasma over a distance that is greater than 105/kp. A simulation of this entire region

would require millions of grid points in z, which is computationally intractable. For

this reason, both OSIRIS and QuickPIC implement a moving window algorithm.

The window moves at the same speed as the drive bunch, so the bunch remains fixed

relative to it. For the simulations in this dissertation, the moving window algorithm

allows for a reduction of the window size in z to on the order of 10/kp.

OSIRIS and QuickPIC allow for the initialization of multiple drive bunches, plas-

mas, and neutral vapors, with numerous types of distributions. Both of these codes

include the physics of field ionization for the neutral vapor, modeled according to the

Ammosov, Delone, and Krainov (ADK) ionization formula (more detail shown in Ch.

2). The second chapter demonstrates that the inclusion of field ionization is crucial

for the simulation of plasma electron trapping.
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1.6.1 OSIRIS

The preceding paragraphs give a basic description of OSIRIS [22]. This code was

benchmarked to PWFA experimental results and shows good agreement [7]. In con-

trast to QuickPIC, this code is available in both two- and three-dimensional versions.

Also, for reasons discussed in the next section, OSIRIS generated all of the plasma

electron trapping simulations in this dissertation.

1.6.2 QuickPIC

Three-dimensional simulations can be computationally cumbersome, but are at times

necessary. The code QuickPIC [27] was developed to decrease the computational time

required for these simulations. As is discussed earlier in this chapter, the time scale

for the drive bunch transverse oscillation is much larger than that for the plasma

electrons. While OSIRIS advances all particle coordinates with a time step that is

a small fraction of 1/ωp, QuickPIC only iterates the drive bunch coordinates with a

time step that is a small fraction of
√

γ/ωp. The quantity γ can be quite large, so this

allows QuickPIC to be orders of magnitude faster than the three-dimensional version

of OSIRIS.

One of the key assumptions utilized by QuickPIC is the relationship shown in Eq.

1.2. Consider the effect of this relationship on the wave equation for the scalar and

vector potential, Φ and
−→
A , respectively.

∇2Φ− 1

c2

∂2

∂t2
Φ = − ρ

ε0

⇒ ∇2
⊥Φ = − ρ

ε0

. (1.69)

∇2−→A − 1

c2

∂2

∂t2
−→
A = −µ0

−→
J ⇒ ∇2

⊥
−→
A = −µ0

−→
J . (1.70)

These equations show that the potentials are only coupled to the sources at the same

z−ct position. QuickPIC finds a solution for the fields in three dimensions by solving

the two-dimensional Poisson’s equations at each z − ct position.

The following is a simplified description of the iteration routine used in QuickPIC.

First, the simulation box is split into grids in x, y, and z − ct. The iteration starts

with an initialization of the plasma electrons at the front of the box in z− ct. Plasma

electrons at this location have yet to react to the incoming drive bunch, so the plasma
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is neutral and produces no contribution to the source terms in the wave equation.

Thus, at the front of the box, the only fields come from the drive bunch. The plasma

electrons then move in response to these fields, leading to plasma charge separation

and current. These sources then become the initialization for the plasma at the

next z − ct grid, making the grid size in z − ct determine the iteration time step for

the plasma electrons. The plasma interaction to the fields in this new grid is again

calculated, now including the fields from the plasma. This creates a new plasma

distribution that is passed to the next grid, and so forth. Once this iteration process

gets to the back of the box, the code has simulated how the plasma responds to the

drive bunch and the resultant wakefield. The plasma electron simulation particles are

discarded at this point.

Next, the code calculates the response of the drive bunch to the fields of the

plasma. A grid size in z− ct is usually some small fraction of 1/kp, so the simulation

time step for the plasma electrons is a small fraction of 1/ωp; however, the drive

bunch particles do not require this small of a time step. QuickPIC assumes that

the fields from the plasma in the moving simulation box remain fixed and utilizes the

Lorentz force equation to iterate the coordinates of the drive bunch electrons. Instead

of moving the bunch forward in time by a small fraction of 1/ωp, it is advanced by a

small fraction of
√

γ/ωp. The drive bunches in recent PWFA experiments had a value

of γ that exceeded 80,000, so the required simulation time step for its electrons is more

than two orders of magnitude larger than that of the plasma electrons. Once the drive

bunch particles are iterated, the response of the plasma electrons to the new drive

bunch distribution is calculated. This simulation method saves orders of magnitude

in computation time by not re-simulating the response of the plasma electrons to

the drive bunch before the bunch has had time to evolve. The QuickPIC code has

been benchmarked to OSIRIS [27] and is found to be in good agreement with recent

experiments [9].

This decrease in computation time comes at an extreme price, at least for the

trapped electron. By discarding the plasma electrons at the end of each drive bunch

time step, QuickPIC makes a clear distinction between plasma and drive bunch elec-

trons. Once a plasma electron starts to become trapped it acquires a vz close to c

and remains in the simulation box longer than a drive bunch time step, so QuickPIC
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can no longer delete it. However, at least initially, the drive bunch time steps are too

large for these trapped electrons. For QuickPIC to properly simulate the evolution

of these trapped electrons, it would have to decrease its drive bunch time step to a

small fraction of 1/ωp. This defeats the purpose of QuickPIC’s assumptions. For this

reason, this code is not used to model plasma electron trapping.



Chapter 2

Plasma Electron Trapping

2.1 Introduction

It was found experimentally that a drive bunch with a peak current on the order of 10

kA or greater could trap and accelerate plasma electrons in the wake of a PWFA. The

trapping of plasma electrons was apparent from the comparison of charge measuring

toroids upstream and downstream of the plasma source: there was as much as four

times as many electrons coming out of the plasma than went into it. In addition,

some of these trapped electrons were accelerated to tens of GeV in energy and emitted

partially coherent optical Cherenkov radiation.

This chapter examines the physics of electron trapping in a PWFA. First, a con-

stant of motion yields a theoretical framework to study trapping. Next, the limita-

tions of this framework are discussed. A connection is then made between the onset

of trapping and the drive bunch properties. The ionization of neutral atoms is an

important part of the trapping process, so the next section presents the formalism for

field ionization. Then, there is an investigation of the effect of the plasma density and

species on electron trapping. As was briefly discussed in Ch. 1, trapped electrons can

be a hindrance to a PWFA, so this chapter concludes with a discussion of methods

to terminate plasma electron trapping.

33
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2.2 Constant of Motion

An Investigation of a constant of motion yields a basic understanding of electron

trapping in a PWFA. The Hamiltonian is only a function of position, xi, the mo-

mentum conjugate to the position, Pi, and of time, t. Since the only dependence the

electromagnetic Hamiltonian, H, has to the position and time coordinates is through

the potentials, H is only dependent on (z−ct) instead of z and t separately. Thus, H

also has the property displayed by Eq. 1.2. This is apparent from a partial derivative

of H with respect to z.

H(xi, Pi, t) =

√∑
i

(Pi − qAi)2c2 + m2c4 + qΦ. (2.1)

∂H

∂z
=

∑
i

∂H

∂Ai

∂Ai

∂z
+

∂H

∂Φ

∂Φ

∂z
, (2.2)

=
∑

i

∂H

∂Ai

−1

c

∂Ai

∂t
+

∂H

∂Φ

−1

c

∂Φ

∂t
,

=
−1

c

∂H

∂t
,

where Ai represents the components of the vector potential and Φ represents the

scalar potential. Particles in a system with this property have a constant of motion,

H − cPz.

H − cPz = γmc2 − cpz + qΨ, (2.3)

Ψ = Φ− cAz, (2.4)

where pz is the z component of the momentum, q is the charge of the particle, and

Pz is the canonical momentum conjugate to the z position (pz + qAz). A substitution

of Hamilton’s equations of motion,

− dPi

dt
=

∂H

∂xi

, (2.5)

dxi

dt
=

∂H

∂Pi

, (2.6)
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into a derivative of H − cPz with respect to time yields zero, proving the quantity is

a constant of motion.

d

dt
(H − cPz) =

dH

dt
+ c

∂H

∂z
, (2.7)

=
∑

i

(
∂H

∂xi

· dxi

dt
+

∂H

∂Pi

· dPi

dt
) +

∂H

∂t
+ c

∂H

∂z
,

=
∑

i

(−dPi

dt
· dxi

dt
+

dxi

dt
· dPi

dt
) +

∂H

∂t
+ c

∂H

∂z
,

= (
∂

∂t
+ c

∂

∂z
)H = 0.

The drive bunch is ultrarelativistic, so the plasma wake that follows has a phase

velocity that is extremely close to the speed of light. To become trapped in this

wake, an electron’s speed must approach the speed of light and do so fast enough

that it does not fall out the back of the plasma bubble. The electrons start at rest,

so initially γmc2 − cpz = mc2. Field ionization creates the plasma [57], so electrons

escape atoms with different initial values of Ψ, Ψi. The constant of motion enforces

a condition between Ψ and Ψi:

γmc2 − cpz − eΨ = mc2 − eΨi. (2.8)

Note, the quantity γmc2 − cpz > 0, so an inequality between Ψ and Ψi must be

satisfied:

Ψi −Ψ <
mc2

e
. (2.9)

An electron can not go to a location where the difference between its initial Ψ and

that of its position is greater than mc2/e.

Trapping of electrons is governed by Ψ, so it is important to now present the basic
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behavior of Ψ. Partial derivatives of Ψ yield how it changes with r and z:

∂Ψ

∂r
=

∂φ

∂r
− c

∂Az

∂r
, (2.10)

=
∂φ

∂r
+

∂Ar

∂t
− ∂Ar

∂t
− c

∂Az

∂r
,

= −Er + c(
∂Ar

∂z
− ∂Az

∂r
),

= −(Er − cBφ).

∂Ψ

∂z
=

∂φ

∂z
− c

∂Az

∂z
, (2.11)

=
∂φ

∂z
+

∂Az

∂t
,

= −Ez.

Equation 1.20 demonstrates that Er − cBφ is a positive quantity inside the plasma

bubble. Section 1.3 showed that at the center of the plasma bubble Ez = 0 (because

Jr ≈ 0), at positions in front of the center Ez is positive, and behind the center Ez is

negative. Thus, the quantity Ψ reaches a maximum, Ψm, on axis at the center of the

bubble, where its partial derivatives are zero and the radius of the bubble, R, reaches

a maximum, Rm. Figure 2.1 displays the Ψ contours from an OSIRIS simulation.

Although the drive bunch has large transverse fields, it makes no direct contribution

to Ez or Er − cBφ. Thus, it does not contribute directly to the shape of Ψ.

At the back of the bubble, where the plasma sheath reaches the bunch axis, the

fields switch from accelerating and focusing. Since Ez is connected to the radial

current and Er − cBφ is related to the on-axis charge density, the position where the

wake changes to decelerating can differ slightly from where it turns to defocusing. Let

Ψf denote Ψ on axis at the back of the bubble, where fields change from accelerating

and focusing to either decelerating or defocusing (whichever occurs first). An electron

that satisfies Ψi > mc2/e + Ψf can not slip out of the back of the bubble; thus, it

becomes trapped in the wake. Figure 2.2 illustrates this trapping mechanism. The

value of Ψf can extend below zero, but will not be below −mc2/e. Otherwise, the

electrons that support the wake, which have Ψi ≈ 0, would become trapped and

quickly load Ez at this position and increase Ψf .
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Figure 2.1: Ψ contours in a plasma wake, from an OSIRIS simulation. The drive
bunch had 1.8 · 1010 electrons, σx = σy = 1.74 µm, σz = 20 µm, and drove a wake in
a plasma of density, np = 2.7 · 1023 m−3 (c/ωp = 10 µm).

For the experiments described in this dissertation, trapping occurs due to the

presence of two gas species in the vapor: helium and lithium, with ionization energies

of 24.6 and 5.4 eV, respectively. A heat-pipe oven is the source for the neutral

vapor [53]. Over the central heated region of this oven there is pure lithium vapor

with a density of 2.7 · 1023 m−3 and a full width at half maximum (FWHM) length of

85 cm, but in the cool regions on either side of the heated region there is pure helium.

In between, there is a transition region where both species are present (see Sec. 4.3).

Ionization of lithium atoms occurs first from the drive bunch electric field, releasing

the electrons that support the plasma wake. As the fields of the bunch and the wake

increase, the helium atoms become ionized inside the wake. This allows the electrons

from helium to satisfy the trapping criterion, making them the source of the observed

trapped electrons.

2.3 Wake Loading by Trapped Electrons

The formalism for electron trapping, just developed, relies on the fields and potentials

being functions of (z − ct) instead of z and t separately. However, as the wake

collects trapped electrons, they begin to load the accelerating field. Thus, as the

wake propagates further in z, its shape in (z − ct) can vary. Once enough trapped
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Figure 2.2: An illustration of electron trapping, calculated with OSIRIS [22]. A
few example helium electron trajectories overlay an image of lithium electron den-
sity (teal), where the asterisks display the ionization location, and the dotted lines
represent Ψ contours. The electrons that escape their atoms within the Ψf + mc2/e
contour (1 and 2) become trapped, while electron 3 slips out of the wake. Reprinted
with permission from [39]. Copyright 2009, American Physical Society.

electrons accumulate at the back of the wake, they can load the wake enough to push

some of them into a decelerating field. These decelerating electrons would then no

longer be trapped.

A two-dimensional OSIRIS simulation of a drive bunch creating a plasma wake

in a mixed lithium-helium plasma serves as an illustration of this loading process.

The drive bunch is a Gaussian with 1.8 · 1010 electrons, matched transverse sizes of

σx,y = 1.74 µm, and σz = 20 µm. The lithium density is 2.7 · 1023 m−3 and there

is a relative background helium density of 10%. In r and z the simulation grid size

is 0.5 µm with 9 particles per cell. For this simulation, only electrons from helium

atoms become trapped. Figure 2.3a shows the loading of Ez by the trapped electrons

at several different propagation distances, and Fig. 2.3b displays the corresponding

pz versus z − ct phase space of the trapped electrons. At a propagation distance of

84 c/ωp (denoted by red in Fig. 2.3), the trapped electrons begin to load the wake.

By z = 146 c/ωp (blue), the loading is enough to push some of the formerly trapped

electrons into a decelerating phase of the wake. This causes some of them to be picked

up and trapped again by the next accelerating wake at z−ct near 6 c/ωp, which leads

to the production of multiple trapped electron bunches (3 shown for z = 270 c/ωp).

The wake loading by the trapped electrons creates problems defining whether an
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Figure 2.3: a) Ez versus z − ct at several different propagation distances. b) The pz

versus z − ct phase space of the trapped electrons at several different propagation
distances.

electron in a simulation is indeed trapped. If the fields of the wake remained only

functions of (z − ct), the comparison of a simulation particle’s constant of motion

with Ψf would yield whether it would remain trapped. As Fig. 2.3 illustrates, the

trapped electrons load the wake, which changes Ez and the value for Ψf . If there is

a continuous source for trapped electrons, an electron that is classified as trapped on

one time step could be pushed into a decelerating wake on the next time step. The

black line of Fig. 2.4 shows the amount of trapped electrons in the first bubble for the

simulation described in the previous paragraph. At very low values of z the amount

of trapped charge increases very rapidly; however, this quickly loads the wake and

pushes most of this charge into the decelerating phase of the wake, which quickly

reduces the amount of charge classified as trapped. Then, the wake begins to slowly

acquire additional trapped electrons. These newly trapped electrons begin to load the

wake and eventually push themselves into the decelerating phase of the wake. This
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process then repeats itself, causing a fluctuation in the number of trapped electrons

(see Fig. 2.4). Note, the fluctuation in Fig. 2.4 is amplified by the noise on Ez

in the simulation. The trapped electrons reside at the very back of the bubble, so

small variations in Ez at this location cause large changes in the amount of trapped

electrons.
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Figure 2.4: The number of electrons in the first bubble versus propagation distance.
The black line denotes the number of trapped electrons, determined by the constant
of motion, and the magenta line represents the total number of electrons. The rest
of the line colors represent the number of electrons above a γ cutoff. Note, re is the
classical electron radius.

As Fig. 2.4 displays, the amount of trapped charge changes rapidly throughout

the course of the simulation. This does not represent something fundamental to the

system, but is an artifact of how the simulation was run. In the simulation there

was a constant source of helium electrons, so the wake continually collected trapped

electrons. If instead the helium atoms were removed from the system at the first

spike in the black line, the amount of trapped charge would stay fixed at the value

of the spike. For more detail refer to Sec. 3.7, which discusses a method to avoid the

fluctuation of the trapped charge and how to use the trapped electrons as a particle

source.

The use of the constant of motion to determine the number of trapped electrons

is problematic, so a different method is used to quantify the amount of trapped

charge. This method only includes the electrons with γ greater than a cutoff. Figure

2.4 shows the number of electrons classified as trapped by this method for several

different values of the cutoff. For z higher than 2000 c/ωp the number of electrons
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for cutoffs greater than and including γ = 30 converge to roughly the same value, ≈
2/(kpre). In addition, the value at which they converge is not entirely inconsistent

with the peak values shown for the black line. For this reason a γ cutoff of 80 is

used for quoting the number of trapped electrons. Also, unless stated otherwise, the

number of trapped electrons quoted in simulations only includes those in the first

bubble.

2.4 Drive Bunch Requirements for Trapping

This section derives the critical properties of the drive bunch that are needed to

cause the onset of electron trapping. First, the simplistic model for Ez, shown in Eq.

1.6, connects the trapping requirements between Ψi and Ψf to requirements on the

plasma wake. Then, the wake requirements are connected to the properties of the

drive bunch. Since the scale of the distance from the center of the ion bubble to the

back is set by c/ωp = 1/kp, to reach Ψi −Ψf = mc2/e the value of ∂zΨ = −Ez must

be on the scale of mcωp/e. The quantity vr < c, so R must exceed 2/kp to reach

Ez = mcωp/e (in Eq. 1.6). Also, the time scale of the plasma electron oscillation is

1/ωp and R =
∫

vr · dt, so vr must be comparable to c to reach R > 2/kp. Thus, to

trap electrons, the drive bunch must expel plasma electrons to R > 2/kp with vr ≈ c.

This requirement on the bubble radius is also apparent without the simplified Ez

model. An integration of ∂rΨ gives

Ψ(r = 0) =

∫ ∞

0

dr(Er − cBφ). (2.12)

The difference between Ψm and Ψf is dominated by the difference in their correspond-

ing integrals over the interior of the bubble. Considering only this part of the integral

results in Ψ(r = 0) =
∫ R

0
dr(Er−cBφ), which implies Ψf = 0 and Ψm = npeR

2
m/(4ε0).

For trapping to be possible Ψm −Ψf > mc2/e, so Rm must be greater than 2/kp.

The R and vr requirements for plasma electron trapping are now connected to

drive bunch parameters. A calculation of the bunch field requirements to transfer a

radial momentum of mc to the plasma electrons in the sheath partially addresses the

vr constraints. Assuming vφ = 0 and that all drive bunch electrons have r < R, the
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t derivative of the radial momentum transferred from the drive bunch to the sheath

electrons is

dpr

dt
= −e(Er − vzBφ), (2.13)

=
λe2

2πrε0

(1− vz

c
), (2.14)

where λ is the number of drive bunch electrons per unit longitudinal length. Let τ

denote z− ct. A change of variables from t to τ yields a simpler differential equation:

dpr

dτ
= − λe2

2πrε0c
. (2.15)

The quantity pr(τ = ∞) is the initial radial momentum of the sheath electron, and

pr(τ = −∞) is the radial momentum of the sheath electron after the interaction with

the drive bunch. Thus, the integral of Eq. 2.15 from τ = ∞ to −∞ represents the

radial momentum transferred as the drive bunch passes the sheath electron. A plasma

sheath with R = 2/kp contains electrons initially at r < 2/kp. Since the number of

plasma electrons in the sheath per unit initial r is proportional to r, a higher percent-

age of the total number of electrons originate from larger radii. Recall, vr represents

the average radial velocity of the electrons in the sheath. Therefore, to reach vr ≈ c,

the plasma electrons initially at r = 2/kp must have radial velocities comparable to

c. The quantity r increases as the drive bunch transfers radial momentum to the

electrons, making r a variable. However, the movement of r only becomes an issue

once the radial velocity becomes comparable to c. Thus, to find the condition that

causes the sheath electrons to move relativistically, r can be treated as a constant,

2/kp. The radial momentum transferred from the drive bunch to the sheath electrons

initially at r = 2/kp is

∆pr = Ndrekpmc, (2.16)

where Nd is the total number of drive bunch electrons and re is the classical electron

radius. For vr to approach c, ∆pr must at least be mc. This results in a critical

number of drive bunch electrons, Ncrit = 1/(kpre), to initiate trapping.

As the drive bunch expels plasma electrons, an ion bubble forms that screens the

bunch’s electric field. To create a wake with R > 2/kp, the drive bunch must have a
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large enough peak current to overcome this screening. A rough method of satisfying

this constraint is for λ to exceed the number of ions per unit length in a cylinder of

radius 2/kp:

λ > π(
2

kp

)2np =
1

re

. (2.17)

The corresponding drive bunch peak current required for trapping is then ec/re ≈ 17

kA, which is the Alfvén current (IA). This is a basic way to connect Rm to the drive

bunch peak current. Wei Lu et al [47] use a combination of theory and simulations to

derive a more accurate relationship between Rm and the drive bunch peak current,

Id:

Rmkp/2 ≈
√

2Id/IA. (2.18)

Although it is not how this relation is found, Eq. 2.18 can also be obtained as the

steady state solution (d/dτ = 0 and d2/dτ 2 = 0) to Eq. 1.7. To achieve Rm = 2/kp

requires a critical peak current, Icrit = IA/2. Note, accounting for the part of the

integration of ∂rΨ in Eq. 2.12 that is outside the bubble allows electron trapping to

occur with Id slightly below IA/2. Thus, IA/2 only sets the approximate scale for the

peak current required to induce electron trapping [39].

Three-dimensional particle-in-cell simulations of the experiment, using the code

OSIRIS [22], provide support to the requirements on the drive bunch peak current to

initiate electron trapping. These simulations have a lithium density of 2.7 · 1023 m−3

and a relative helium density of 3%. As in the experiment, the helium only serves as

the source for the trapped electrons. The simulations are of Gaussian drive bunches

with 1.8 · 1010 electrons, matched transverse sizes of σx,y = 1.74 µm, and Id = 34.5,

17.2, 11.5, 8.62, and 6.90 kA; the quantity of trapped electrons dramatically reduces

for Id < 6.90 kA. In x, y, and z, the simulation grid size is 0.5 µm with either 2

or 4 particles per cell (second order interpolation [20]). The simulations run until

the trapped electrons load the wake and turn off further trapping. Figure 2.5 shows

how the amount of trapped electrons (γ >80) in the first bubble, Nt, increases with

increasing drive bunch peak current, showing a clear onset in electron trapping near

a peak current of IA/2 and a saturation of trapped charge near a peak current of IA.

For the simulations with Id = 17.2, 11.5, 8.62, and 6.90 kA, all of the trapped
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Figure 2.5: The number of trapped electrons, Nt, versus the drive bunch peak current,
Id, calculated with OSIRIS [22]. The red dotted line represents the critical current of
IA/2 (8.5 kA). For these simulations 1/(kpre) = 3.6 · 109.

electrons originate from helium atoms. However, at the highest peak current, 34.5 kA,

the electric field in the plasma is large enough to cause the ionization and subsequent

trapping of the electrons from the second ionization lithium. Thus, the corresponding

trapped electron bunch consists partially of electrons from lithium. Note, however, a

peak current of 34.5 kA is outside of the experimental range.

An additional set of three-dimensional simulations provides support to the require-

ments on the drive bunch charge to initiate electron trapping. These simulations have

the same plasma and grid size setup as the previous set, but a different variation of

the drive bunch. This set of simulations uses Gaussian drive bunches with Id = IA,

matched transverse sizes of σx,y = 1.74 µm, and Nd = 1/(kpre), 2/(kpre), 3/(kpre),

4/(kpre), and 5/(kpre). Similarly, these simulations run until the trapped electrons

load the wake and turn off further trapping. Figure 2.6 shows how the amount of

trapped electrons in the first bubble depends on the drive bunch charge. At a drive

bunch charge of Ncrit there is not a significant amount of trapped electrons, but the

trapped charge rapidly increases for Nd above Ncrit.

2.5 Field Ionization

Plasma electron trapping requires that Ψm > mc2/e + Ψf . This, however, is not

enough to create trapping; a trapped electron must escape its atom with Ψi >
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Figure 2.6: The number of trapped electrons, Nt, versus the number of drive bunch
electrons, Nd, calculated with OSIRIS [22]. The red dotted line represents the critical
number of drive bunch electrons (1/(kpre)), which is 3.6 · 109 for these simulations.

mc2/e+Ψf . Thus, an overview of ionization is required to further understand electron

trapping. The electric field of the drive bunch is large enough to cause an electron

to tunnel out from the potential well of its atom. Ammosov, Delone, and Krainov

(ADK) developed an ionization rate formula for tunnel ionization [1]. An adaptation

of their formula [14] is appropriate for this experiment [57]:

Γ = A · E−B · exp(
−D

E
), (2.19)

B = 2n∗ − 1, (2.20)

n∗ ≈ 3.69Z√
I

, (2.21)

A[
(GV/m)B

s
] = 1.52 · 1015 4n∗I

n∗G(2n∗)
(20.5I3/2)B, (2.22)

D[GV/m] = 6.83I3/2, (2.23)

where Γ is the ionization rate, I is the atomic ionization energy in units of eV, E is

the magnitude of the applied electric field, Z is the charge residue of the atom (1 for

single ionization, 2 for double, ...), and G is the Gamma function.

Equation 2.19 properly represents the ionization rate due to tunnel ionization.

Above a critical electric field, Ecrit, barrier suppression becomes the dominant term

for the ionization rate [14,6]; thus, Eq. 2.19 is not appropriate for electric fields above
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Ecrit:

Ecrit[GV/m] = 1.5I3/2. (2.24)

The critical field for the ionizations that are of interest to this experiment are 18.8

GV/m for Li, 987 GV/m for Li+, 2.03 TV/m for Li++, 183 GV/m for He, and 602

GV/m for He+ [14].

The critical field for the first ionization of lithium, 18.8 GV/m, is less than the

maximum electric field achieved in the experiment. However, this does not mean that

the ionization formula is invalid for the experiment. If the electric field rises slowly,

then atoms ionize before they reach the critical field. The ADK formula is only invalid

when the electric field rises fast enough that atoms are not ionized before reaching

Ecrit. Let Ėcrit denote the rate of field increase which corresponds to ionization at a

field equal to Ecrit.

A quantification of Ėcrit is now necessary to understand the range of applicability

for the ADK ionization formula. Let the applied electric field increase linearly in

time: E(t) = Ėt. The probability of an atom becoming ionized, P , is

P = 1− exp(−
∫

Γdt). (2.25)

Under a linearly increasing electric field, the ionization probability becomes

P (t) = 1− exp(−
∫ t

0

A · (Ėt′)−B · exp(
−D

Ėt′
)dt′). (2.26)

As this probability never fully reaches 1, a more natural choice to denote ionization is

P = 0.5. Let P (ti) = 0.5, then the electric field that the atom becomes ionized at is

Ei = Ėti. The constants in the ADK formula, A, B, and D, are entirely determined

by I and Z. Thus, Ei is a function of I, Z, and Ė. Figure 2.7 shows the solution

of Ei over a range of Ė for the first ionization level of helium. The value of Ėcrit for

the ionizations of interest to this experiment are 3.82 · 1026, 7.96 · 1027, 5.85 · 1028,

2.72 · 1026, and 7.71 · 1027 V/(m·s) for Li, Li+, Li++, He, and He+, respectively.
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Figure 2.7: The electric field corresponding to ionization, Ei, versus Ė for the first
ionization level of helium. The red lines denote the location of Ecrit and the corre-
sponding value Ėcrit.

2.5.1 Densities Applicable for the ADK Formula

There is now an investigation of the plasma densities that are applicable for the

ADK formula. The scale for the electric field from the plasma is mcωp/e. This field

multiplied by the plasma frequency, mcω2
p/e, is a basic scale for the rate of field

increase. The density at which the plasma field reaches Ecrit, np,Ecrit, is

np,Ecrit =
ε0E

2
crit

mc2
. (2.27)

These densities are 3.82 · 1022, 1.05 · 1026, 4.47 · 1026, 3.62 · 1024, and 3.92 · 1025 m−3

for Li, Li+, Li++, He, and He+, respectively. The density at which the rate of electric

field increase reaches Ėcrit, np,Ėcrit, is

np,Ėcrit =
ε0Ėcrit

ec
. (2.28)

These densities are 7.04 · 1025, 1.47 · 1027, 1.08 · 1028, 5.01 · 1025, and 1.42 · 1027 m−3

for Li, Li+, Li++, He, and He+, respectively. The ADK formula is valid for E < Ecrit

or Ė < Ėcrit; this is satisfied for densities below np,Ėcrit. Above these densities, the

ADK formula underestimates the ionization rate.
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2.5.2 Drive Bunches Applicable for the ADK Formula

The electric field of the system also includes that from the drive bunch. Thus, there

is also a range of applicability for the ADK formula based on the drive bunch. Let a

Gaussian charge density represent the drive bunch:

ρbunch =
−Ne

(2π)3/2σ2
xσz

exp(
−r2

2σ2
x

) exp(
−z2

2σ2
z

). (2.29)

The radial electric field from this bunch is maximized radially at r = ασx ≈ 1.59σx,

where the field is

Er =
−Ne

(2π)3/2ασxσzε0

exp(
−z2

2σ2
z

)[1− exp(
−α2

2
)]. (2.30)

Also, the radial electric field is maximized longitudinally at z = 0, yielding a maxi-

mum electric field of

Er,max =
−Ne

(2π)3/2ασxσzε0

[1− exp(
−α2

2
)]. (2.31)

The quantity Er,max reaches Ecrit for N/(σxσz) = 3.62 · 1019, 1.90 · 1021, 3.92 · 1021,

3.53 · 1020, and 1.16 · 1021 m−2, for Li, Li+, Li++, He, and He+, respectively. A z

derivative of Eq. 2.30 multiplied by c is the rate of change in Er at r = ασx. This

rate is maximized at z = σz, where the rate is

Ėr,max =
Nec

(2π)3/2ασxσ2
zε0

exp(
−1

2
)[1− exp(

−α2

2
)]. (2.32)

The quantity Ėr,max reaches Ėcrit at N/(σxσ
2
z) = 4.05 · 1027, 8.44 · 1028, 6.21 · 1029,

2.88 · 1027, and 8.17 · 1028 m−3, for Li, Li+, Li++, He, and He+, respectively. For the

ADK ionization formalism to be invalid, it must have both N/(σxσz) and N/(σxσ
2
z)

above these critical values.
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2.6 Ionization Induced Electron Trapping

As was discussed earlier in this chapter, electron trapping occurs due to the simul-

taneous presence of both helium and lithium vapor in the heat-pipe oven. Lithium

electrons support the plasma wake, while the higher ionization potential of helium

allows its electrons to become trapped. The ADK ionization formalism, presented in

the previous sections, is now used for a quantitative examination of ionization induced

electron trapping.

Recall the simulation shown in Figs. 2.2, 2.1, and 1.1. The parameters of this

simulation are typical for the experiment. In reference to the previous sections, the

plasma density of 2.7 · 1023 m−3 and the simulation bunch value of N/(σxσ
2
z) =

2.59 · 1025 m−3 are both well within the range of applicability for the ADK formula.

Thus, this formula can be applied to electron trapping in the experiment.

Figure 2.8 shows the magnitude of the electric field for the simulation displayed in

Figs. 2.2, 2.1, and 1.1, along with a few radial positions of interest for the simulation.

These radial positions correspond to r = 0, 1.59σx, and 4σx. From the magnitude

of the electric field, P for the first ionization level of helium can be calculated along

z− ct. The negative of a (z− ct) derivative of P yields the range in z− ct over which

helium is ionized. Figure 2.9 displays the distribution of the ionization locations for

the three radial positions.

In the simulation, Ψf = -0.33 mc2/e. The absolute value of a Ψ derivative of P

yields the probability distribution of Ψi for the atoms at the three radial positions,

which is shown in Fig. 2.10. An integration of this distribution for Ψi greater than

Ψf + mc2/e yields the total probability that an electron from that radial position

would be trapped. For this specific simulation, the helium electrons at r = 0, 1.59σx,

and 4σx have a probability of 0.09, 0.00, and 0.78 of becoming trapped. The atoms

at r = 1.59σx experience the maximum radial electric field from the drive bunch and

are ionized very quickly, before they reach Ψ > Ψf + mc2/e. In contrast, lithium

atoms at all of these radial positions become ionized too quickly to create trapping:

the Ψi distribution for lithium is effectively a delta function centered about Ψi = 0.

This type of analysis is useful for finding the location and probability of electron

trapping. However, there is no analytic solution to the electric fields in a PWFA, so
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Figure 2.8: A contour plot for the magnitude of the electric field in a plasma wake,
calculated with OSIRIS. In this simulation, the drive bunch had 1.8 · 1010 electrons,
σx = σy = 1.74 µm, σz = 20 µm, and drove a wake in a plasma of density np = 2.7·1023

m−3 (mcωp/e = 50 GV/m, and c/ωp = 10 µm). The green, blue, and magenta lines
correspond to x = 0, 1.59σx, and 4σx, respectively.
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Figure 2.9: The position of ionization in a plasma wake, calculated from the output
of an OSIRIS simulation. In this simulation, the drive bunch had 1.8 · 1010 electrons,
σx = σy = 1.74 µm, σz = 20 µm, and drove a wake in a plasma of density np = 2.7·1023

m−3 (c/ωp = 10 µm). The green, blue, and magenta lines correspond to x = 0, 1.59σx,
and 4σx, respectively. For all of these positions the total probability of ionization is
100%, so the integrals under the curves are 1.

this approach must be combined with simulation results. When detailed information

is not required, simpler methods can be used to explore the onset of trapping for
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Figure 2.10: The probability distribution of Ψi for helium in a plasma wake, calculated
from the output of an OSIRIS simulation. In this simulation, the drive bunch had
1.8 · 1010 electrons, σx = σy = 1.74 µm, σz = 20 µm, and drove a wake in a plasma
of density np = 2.7 · 1023 m−3 (c/ωp = 10 µm). The green, blue, and magenta lines
correspond to x = 0, 1.59σx, and 4σx, respectively. For all of these positions the total
probability of ionization is 100%, so the integrals under the curves are 1.

different gas species and ionization levels. For example, simulations show that the

electrons from the first ionization of lithium can not become trapped. This conclusion

can be reached without the use of a simulation. Consider the atoms on the bunch

axis. Since Ez is independent of r inside the bubble, the minimum |E|, and therefore

also ionization rate, occurs on axis (where Er = 0). If the on-axis atoms become

ionized before reaching Ψ = Ψf +mc2/e, the atoms with a finite r will also be ionized

before Ψf + mc2/e. Thus, the electrons from these atoms will not become trapped.

The formalism for Ei, shown in Sec. 2.5, can be applied to the on-axis atoms to test

whether they are ionized too quickly for electron trapping to occur.

Under the approximation of a linear increasing electric field in time, a solution of

Ψi for the on-axis electrons can be found. The quantity Ψ = 0 in front of the wake.

Let the position of z − ct = 0 correspond to Ψ = 0. The linearly increasing field in

time then has the following dependence on z − ct for z < ct.

E = (t− z/c)Ė. (2.33)

Recall, ∂zΨ = −Ez. The only electric field on the axis is Ez, so Ei = Ez when the
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atom is ionized. Thus,

Ψi =
cEiti

2
. (2.34)

The quantity Ei/Ė can replace the time for ionization, ti, which yields

Ψi =
cE2

i

2Ė
. (2.35)

Since Ei is only a function of I, Z, and Ė, then Ψi is also only a function of I, Z,

and Ė. The quantity Ψf can extend below zero, but for simplicity it can be assumed

as zero. Under this assumption, the trapping condition becomes

Ψi =
cE2

i

2Ė
>

mc2

e
. (2.36)

Recall from Fig. 2.7 that Ei is only very weakly dependent on Ė. In this figure, Ei

only increases by a factor of three as Ė varies over four orders of magnitude. Thus,

the dependency of Ψi on Ė is dominated by the direct relationship shown in the

above equation, rather than through Ei. For each species of ionization (I and Z)

there is a critical value of Ė, Ėtrap, where Ψi = mc2/e. As Ė increases Ψi decreases.

Therefore, for Ė above Ėtrap ionization induced trapping of the species turns off.

Figure 2.11 displays Ψi for the first ionization level of lithium as a function of Ė and

the corresponding value for Ėtrap. The values of Ėtrap for the ionizations that are

of interest to this experiment are 9.04 · 1021, 8.39 · 1025, 2.96 · 1026, 2.97 · 1024, and

2.35 · 1025 V/(m·s) for Li, Li+, Li++, He, and He+, respectively.

An assumption of mcω2
p/e for the scale of Ė turns the values of Ėtrap into plasma

densities, above which ionization induced trapping does not occur. For Li, Li+, Li++,

He, and He+ the plasma densities that correspond to Ėtrap are 1.67·1021 m−3, 1.55·1025

m−3, 5.45·1025 m−3, 5.48·1023 m−3, and 4.34·1024 m−3, respectively. However, mcω2
p/e

only represents the scale for Ė, so these densities are only rough estimates of where

trapping of these species would cease. For example, consider Ez as displayed by Fig.

1.2. At the front of the wake, Ez increases by (1/2)mcωp/e in a time of 3/ωp. Thus,

Ė = (1/6)mcω2
p/e. Since ω2

p ∝ np, trapping for this wake would cease at a plasma

density that is six times higher than that suggested by setting Ė = mcω2
p/e.

Most of the experiments occurred at np = 2.7 · 1023 m−3. This density is more
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Figure 2.11: The Ψ of ionization, Ψi, versus Ė for the first ionization level of lithium.
The red lines denote the location of Ψi = mc2/e and the corresponding value of Ė
(Ėtrap).

than two orders of magnitude above the scale at which trapping ceases for the first

ionization level of lithium, 1.67·1021 m−3. Thus, the electrons from the first ionization

of lithium were not trapped in the experiments presented in this dissertation.

2.7 Termination of Trapped Electrons

As discussed in Sec. 1.5.1, plasma electron trapping can degrade the strength of the

accelerating field, which would hinder the ability to accelerate a witness bunch in the

plasma wake. Consider, for example, the effect of electron trapping on the loading

simulation displayed in Fig. 1.12. This simulation was repeated in two-dimensional

OSIRIS to test the effect of electron trapping on the loaded wake. Figure 2.12 displays

the effect that trapping has on the accelerating field. The trapped electrons severely

load the wake near the core of the witness bunch, which would result in a large energy

spread for the witness bunch. Such an energy spread would be unacceptable for a

high energy collider.

The preceding sections covered the requirements to induce plasma electron trap-

ping. This information is now used for a discussion of methods to terminate trapping.

Electron trapping is caused by a combination of driving a strong wakefield (R > 2/kp

with vr ≈ c) and having atoms ionized inside the plasma bubble. Therefore, trapping
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Figure 2.12: The effect of trapped electrons on the accelerating field of a plasma wake,
calculated with OSIRIS. The drive bunch had 3 ·1010 electrons with σz = 30 µm, and
the witness bunch had 1010 electrons with σz = 10 µm; both bunches had σx = σy = 3
µm (εN,x = εN,y = 84 µm) and γ = 48, 924. These bunches were separated by 115
µm. The simulation “with trapping” had a lithium density of 1023 m−3 and a helium
density of 1022 m−3. The simulation with “no trapping” only included lithium at a
density of 1023 m−3.

can be controlled by either producing weak wakefields or restricting the position of

atom ionization.

2.7.1 Weak Plasma Wakes

The theory and simulations in this chapter show that when either Id < IA/2 or

Nd < 1/(kpre) electron trapping no longer occurs. Thus, reducing either of these

bunch parameters below the critical values is a trivial physics fix for the trapping

of plasma electrons. However, the question is not just whether trapping can be

terminated. There is an additional constraint that the wake must retain reasonable

accelerating properties. Recall the simulations discussed in Sec. 1.5.6. This set of

simulations was repeated with the peak current in both the drive and witness bunch

at IA/2 and then again at IA/4. Figure 2.13 displays the achieved transformer ratios,

energy spreads, and efficiencies from the simulations of Sec. 1.5.6 and those with a

reduced peak current. The low current simulations achieved similar values to that of

the original set of simulations. However, the witness bunch experiences a decreased



2.7. TERMINATION OF TRAPPED ELECTRONS 55

accelerating field for the low current simulations. At the minimum energy spread, the

accelerating field for the witness bunch was 33, 18, and 8.8 GV/m for the peak currents

of 1.12, 0.5, and 0.25 IA, respectively. Even at the lowest current, the accelerating

field is still orders of magnitude larger than it is for conventional technologies. Thus,

this is a viable method to terminate trapping.
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Figure 2.13: The a) relative rms energy spread, b) transformer ratio, and c) efficiency
calculated in a set of QuickPIC simulations, which varied the distance between the
drive and the witness bunch, ∆z. The drive bunch had σz = 30 µm, and the witness
bunch had σz = 10 µm; both bunches had σx = σy = 3 µm (εN,x = εN,y = 84 µm)
and γ = 48, 924. These bunches drove a wake in a pure lithium vapor of density
1023 m−3. The black circles, blue squares, and red triangles correspond to drive and
witness bunch peak currents of 1.12·IA, IA/2, and IA/4, respectively.

2.7.2 Control of Ionization Location

As shown earlier in this chapter, electrons can become trapped by being released

from their atoms inside the plasma bubble. To cease the trapping of plasma electrons

in strong wakes, all atomic species and levels must be ionized very quickly, before

reaching Ψ = mc2/e, or not at all. A trivial physics fix to this problem would be to

completely pre-ionize the vapor. This is, however, a nontrivial engineering feat, so

the remainder of this section is devoted to the termination of electron trapping in a

self-ionized PWFA.
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In the experiment, electron trapping occurred due to the presence of both helium

and lithium. The lithium electrons supported the wake in which the helium electrons

became trapped. If the helium atoms were removed from the plasma, electron trap-

ping would have stopped. However, this would not also be true for a plasma-based

collider. Future linear colliders require incredibly small transverse emittances for the

electron bunches. For example, current concepts of a PWFA-based linear collider

indicate required emittances of εN,x = 2 µm and εN,y = 50 nm [63]. These emittances

yield small transverse bunch sizes and large transverse electric fields. This can result

in trapping from a single gas species: a lower ionization level supports the wake, while

a higher level becomes trapped. As an example, the matched transverse sizes for the

suggested emittances at np = 1023 m−3 for a 500 GeV electron bunch are σx = 219 nm

and σy = 34.7 nm. The peak transverse electric field of an electron bunch with these

transverse sizes and a peak current of IA is 4.40 TV/m, which is more than enough to

multiply ionize any element. Near the peak field position of the bunch, atoms would

become ionized very quickly, before reaching a significant Ψ. However, the ionization

probability decreases to zero at larger radii. Between these two regions is a radial

range where trapping can occur. For this reason, gases with multiple ionization levels

create trapping problems for PWFA-based colliders.

The use of hydrogen vapor in a PWFA would not produce multiple ionizations, but

does have its own complications. Its 13.6 eV ionization potential causes ionization

problems at large radii. This constrains the peak current of the drive bunch and

the plasma density. To illustrate this problem, Fig. 2.14 displays the ionization

probability from the electric field of an electron drive bunch with Id = IA and σz =

30 µm as a function of radius from the bunch axis. The ionization probability begins

to roll off between r = 30 and 40 µm. Ideally, the radial range of ionization should be

much greater than the maximum radius of the ion bubble, Rm. Otherwise, electrons

in the sheath are expelled past the radial range of the ions in the bubble. As they

pass outside of the ions, the ion restoring force changes from being proportional to

being inversely proportional with radius. When the restoring force is proportional to

r, the oscillation times for all of the sheath electrons are roughly the same, so they

act as a coherent sheath. This is no longer true when the electron’s restoring force is

inversely proportional to r. The electrons return to the bunch axis at different times.
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Since Ez is related to the radial current, this destroys the strength of the accelerating

field in the back of the wake. Thus, it is important for the radial range of ionization

to far exceed Rm.
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Figure 2.14: The ionization probability of hydrogen from the electric field of an
electron drive bunch with Id = IA and σz = 30 µm as a function of radius from the
bunch axis (assuming σx = σy = 0).

Most current concepts for a PWFA-based collider have a plasma density of 1023

m−3, where 1/kp = 16.8 µm. From Eq. 2.18, a drive bunch with Id = IA at this density

creates a wake with Rm = 48 µm, which is larger than the radial range of hydrogen

ionization. Thus, these parameters can not be used in a self-ionized hydrogen PWFA.

To make a viable PWFA, the parameters can be changed in one of two ways: the

use of higher density plasma or higher peak current drive bunches. At higher plasma

densities Rm decreases (see Eq. 2.18), while the radial range of ionization remains

roughly the same. Also, the radial range of ionization is proportional to Id, but Rm

is only proportional to square root of Id. As the peak current increases, the radial

ionization range eventually exceeds Rm.

A set of two-dimensional OSIRIS simulations tested the accelerating wake for

several values of drive bunch peak current in a hydrogen plasma. The drive bunches

had σz = 30 µm, σx = σy = 3 µm (εN,x = εN,y = 84 µm), γ = 48, 924, and Id =

1.12, 2, 4, and 8 IA. These bunches drove a plasma wake in a pure hydrogen vapor of

density 1023 m−3. In r and z the simulation grid size was 0.5 µm with 9 particles per

cell. Figure 2.15 shows the resulting accelerating field for the different drive bunch

peak currents. There is not a significant accelerating phase of the wake for Id = 1.12
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IA, but at Id = 4 IA one is completely formed.
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Figure 2.15: The on-axis Ez versus z−ct in a field-ionized hydrogen plasma for several
values of drive bunch peak current (IA ≈ 17 kA).

An additional set of two-dimensional OSIRIS simulations explored the accelerating

wake produced by scaling the drive bunch to higher plasma density. The drive bunches

had σz = 1.79/kp, σx = σy = 0.179/kp, γ = 48, 924, and Id = 1.12 IA. These drive

bunches drove a plasma wake in pure hydrogen vapor with the densities of 1023 m−3,

2 · 1023 m−3, 4 · 1023 m−3, and 8 · 1023 m−3. In r and z the simulation grid size was

0.05/kp with 9 particles per cell. Figure 2.16 displays the resulting accelerating field

for the different plasma densities. There is not a significant accelerating phase of the

wake for np = 1023 m−3, but at np = 4 · 1023 m−3 one is almost completely formed.

2.7.3 Termination Conclusions

In conclusion, plasma electron trapping can be terminated by one of three methods.

First, complete pre-ionization of the plasma, is a trivial physics fix, but a nontrivial

engineering feat. Next, a self-ionized hydrogen PWFA, under the right drive bunch

and plasma density configuration, is also able to terminate trapping. Lastly, the

plasma wake could be created with a drive bunch that has a peak current below IA/2

(or Nd < 1/(kpre)). This method results in a lower accelerating field, but is still

able to create energy spreads, transformer ratios, and efficiencies similar to the wakes

generated at higher peak currents.
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Chapter 3

Trapped Electron Bunch

Properties

3.1 Introduction

Low emittance electron bunches have applications that include next generation light

sources and particle accelerators [71]. At present, thermionic and photoemission

based electron sources are widely used [25]; however, plasma based electron sources

are an active topic of research due to their potential to produce high current and low

emittance electron bunches [67, 23, 17, 3, 40, 44, 49, 16]. Recently it was shown that

PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released

by ionization inside the plasma wake [58] and accelerate them to high energies. How-

ever, more than just high energy is required for an electron source. This chapter uses

simple theoretical models and simulations to investigate the necessary properties of

the trapped electrons as a particle source.

This chapter is organized as follows. First, there is a detailed investigation of

the trapped electron transverse emittance. Next, there is a discussion of the other

trapped electron bunch properties: peak current, total charge, longitudinal bunch

length, and energy spread. This is then followed by a comparison of the properties

for the electron bunches trapped behind the first bubble. Finally, this chapter ends

with a discussion of how to develop the trapped electrons into a particle source.

60
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3.2 Transverse Emittance

Each plasma electron has a radial position and zero momentum when it escapes its

atom. The focusing fields then rotate the electrons in the x − px (or y − py) phase

space, where x = r cos φ, and θ denotes the angle in the x − px plane. As the drive

bunch propagates through the plasma and the trapped electrons rotate in this plane,

the wake collects additional electrons at θ = 0, resulting in a uniform distribution in

θ and a finite emittance. Figure 3.1 illustrates this process. The focusing forces are

linear in x, so after the phase space is filled there is no additional emittance growth.

Thus, the first phase space rotation determines the transverse normalized emittance,

expressed in Eq. 3.1.

εN,x =
1

mc

√
〈x2〉〈p2

x〉 − 〈xpx〉2, (3.1)

where 〈x〉 = 0 and 〈px〉 = 0. The strength of the focusing force determines the area

in phase space filled by the trapped electrons. As the trapped electrons accelerate

in the wake, the focusing force applied to them changes from Er to Er − cBφ. The

exact trajectory of the electrons in the x − px plane depends on the specifics of this

transition. An appropriate assumption for Ez in the back of the bubble, behind the

drive bunch, is ∂zEz = ne/(2ε0) [48] (see Eq. 1.12). Gauss’ law combined with this

assumption implies that

Er = nper/(4ε0), (3.2)

which is only a factor of 2 smaller than Er − cBφ. Therefore, either Er or Er − cBφ

can be used as the focusing field to set the scale for the emittance. The electrons

are accelerated by an electric field of scale mcωp/e, and the time for the first phase

space rotation is of order 1/ωp. Therefore, the trapped electrons can acquire mo-

mentum that is of order mc within the first rotation. However, they do not become

very relativistic, so a nonrelativistic harmonic oscillator approximates their motion.

A justification for this approximation is made later in this section. The quantity

Er cos(φ) is then the x focusing field, so the following differential equation describes

the motion in the x− px plane.

d2x

dt2
+

ω2
p

4
x = 0. (3.3)
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Let the trapped electrons have an initial mean square size in x of 〈x2
0〉 and zero initial

transverse momentum. Since x = x0 cos θ,

〈x2〉 = 〈x2
0〉/2. (3.4)

The uniform distribution of θ yields a relationship between the sizes in x and px,

〈p2
x〉 = m2c2k2

p〈x2〉/4, (3.5)

and that 〈xpx〉 = 0. Thus,

εN,x = kp〈x2
0〉/4. (3.6)

x

px

x

px

a) b)

Figure 3.1: a) The initial distribution of trapped electrons in the x− px phase space
immediately following ionization. b) The distribution of trapped electrons as they
rotate in the x− px phase space and the wake collects additional trapped electrons.

Equation 3.6 represents the connection between the initial transverse size and

the transverse emittance for a nonrelativistic harmonic oscillator. Since the trapped

electrons can become moderately relativistic in their first oscillation, it is important to

compare the nonrelativistic results to fully-relativistic simulations. As the electrons

become relativistic, they are affected by the magnetic fields. A combination of Eq.

3.2 and Eq. 1.20 yields Bφ as

cBφ = −nper/(4ε0). (3.7)

Consider the evolution of an electron in the x− z plane subject to Er (from Eq. 3.2),

Bφ (from Eq. 3.7), and Ez = −ηmcωp/e, where η is a dimensionless constant. The
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following equations describe the evolution of this electron.

dpx

dt
=

mcω2
px

4c
(1 +

vz

c
). (3.8)

dpz

dt
= ηmcωp. (3.9)

These equations have the following initial conditions.

x(0) = x0, y(0) = z(0) = 0, px(0) = py(0) = pz(0) = 0. (3.10)

Figure 3.2 shows the integration of this differential equation for η = 1 and x0 =

c/ωp, using the fourth order Runge-Kutta method of integration. The electron’s

trajectory creates ellipses in phase space. As the electron accelerates, the ellipse size

in x decreases and its size in px increases, keeping its area constant.

−1 −0.5 0 0.5 1
−4
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0

2

4

x [c/ω
p
]

p x [m
c]

Figure 3.2: The x-px trajectory taken by a particle subject to Eqs. 3.8 - 3.10 with η
= 1 and x0 = c/ωp, plotted for t = 0 to 1000/ωp.

The trajectory from the fully-relativistic simulation is now compared to the emit-

tance predictions of Eq. 3.6. As the electron accelerates, the relative amount of

change in γ during one oscillation becomes small. Thus, during a given oscillation

Eq. 3.8 is simplified as
d2x

dt2
=

ω2
px

2γ
. (3.11)
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This differential equation has the following solution.

x(t) = xi cos(
ωpt√
2γ

+ θi), (3.12)

px(t) = −mωpxi

√
γ

2
sin(

ωpt√
2γ

+ θi), (3.13)

where xi is the amplitude of the oscillation when px = 0, and θi is a phase constant.

The expectation values required for the determination of the emittance are

〈x2〉 =
x2

i

2
, (3.14)

〈p2
x〉 =

γm2ω2
px

2
i

4
, (3.15)

〈xpx〉 = 0. (3.16)

A substitution of these expectation values into Eq. 3.1 yields the emittance of this

particle as

εN,x = kpx
2
i

√
γ

8
. (3.17)

Each rotation yields two values of xi. Figure 3.3 shows the evaluation of Eq. 3.17 with

x0 = 1/kp for several values of η. The corresponding value for εN,x from Eq. 3.6 is

1/(4kp). Initially, the determined value for εN,x varies, but it converges as the electron

becomes relativistic. For large values of η the final emittance becomes very large. At

a value of η = 1, εN,x = 0.32/kp, but at smaller values of η, εN,x converges near to

1/(4kp). Despite being built from a nonrelativistic formalism, Eq. 3.6 describes well

the connection between initial size and emittance for values of η less than or equal to

one. However, it is an underestimate for larger values of η.

The location of ionization within the wake determines 〈x2
0〉, with ionization occur-

ring in regions of high electric field. Recall Fig. 2.8, which is a contour plot for the

magnitude of the electric field, |E|, in the ion bubble (from an OSIRIS simulation).

The magnitude of Ez peaks at the front and back of the bubble, and Er peaks at the

front, near the drive bunch. This causes atoms to be ionized either in the front or the

back of the bubble, as displayed in Fig. 2.9. An electron that escapes its atom in the

front, near the drive bunch, does so in a large defocusing field (from the drive bunch),
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Figure 3.3: The evolution of the transverse emittance for several values of η, where
x0 = 1/kp.

and one that escapes in the back of the ion bubble is initially in a large focusing field.

This difference in initial focusing conditions results in the need to calculate the initial

size of the electrons from the two regions in a different way.

First, consider the electrons released from their atoms in the front of the bubble.

Electron trapping only occurs if R exceeds 2/kp (see Sec. 2.4), so the drive bunch

expels the trapped electrons that are released by ionization near it to similar radial

distances. After the drive bunch passes, these electrons only experience the focusing

force of the ion bubble. Thus, the radial distance to which the electrons are expelled

determines their initial size. This sets a minimum scale for the initial size as

〈x2
0〉 ≈ 1/k2

p, (3.18)

which yields a scale for the minimum achievable emittance of trapped electrons that

escape their atoms near the drive bunch:

εN,x =
1

4kp

. (3.19)

Analysis of 〈x2
0〉 for the electrons that are released from their atoms in the back

of the bubble is more detailed and requires an understanding of the field ionization

process. The quantity Ψi controls whether a particle becomes trapped and its final

τ location in the bubble. Therefore, any longitudinal location in a trapped electron

bunch consists of electrons that were ionized along a Ψ contour. Recall Fig. 2.2,
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electrons released along the Ψf +mc2/e contour eventual gather at the Ψf contour on

axis, despite being from different initial τ locations. Thus, the initial size of electrons

released in back of the bubble results from the transverse size of the ionization rate

along a Ψ contour.

The transverse size along a Ψ contour also has a minimum scale. To find this

scale, first consider the mathematical condition for a Ψ contour, where Ψ is only a

function of τ and r.

dΨ =
∂Ψ

∂τ
dτ +

∂Ψ

∂r
dr = 0. (3.20)

This condition yields a differential equation for τ(r) along the contour:

dτ

dr
= −∂Ψ

∂r
/(

∂Ψ

∂τ
). (3.21)

Recall the relationships for the partial derivates of Ψ (Eqs. 2.10 and 2.11). Equation

1.20 shows that Er − cBφ = nper/(2ε0), and the following equation is an appropriate

representation for Ez in the back of the ion bubble (see Eq. 1.12).

Ez =
npe(τ − τ0)

2ε0

, (3.22)

where τ0 denotes the point where Ez = 0. Thus,

dτ

dr
=

r

τ0 − τ
. (3.23)

Let τ(0) = τa, which yields the following solution for τ(r) along a Ψ contour in the

back of the ion bubble.

τ(r) = τ0 −
√

(τ0 − τa)2 − r2. (3.24)

This Ψ contour reaches its maximum radius of τ0 − τa in the middle of the bubble,

where τ = τ0. A substitution of the solution for τ(r) into the Eq. 3.22 yields Ez(r)

along a Ψ contour. A combination of this with Eq. 3.2 yields the magnitude of the
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electric field as a function of r along a Ψ contour:

|E| =
√

E2
z + E2

r ,

=
npe

2ε0

√
(τ − τ0)2 +

r2

4
,

=
npe

2ε0

√
(τ0 − τa)2 − 3r2

4
. (3.25)

This equation indicates that the scale for the falloff of |E| in r is set by τ0 − τa.

The scale for τ0 − τa can not be arbitrarily small. For an electron to be released

from its atoms in the back of the bubble, it must be true that it was not released

in the front, where electric fields are of order mcωp/e. An atom that is ionized with

electric fields significantly below mcωp/e would become ionized in the front of the

bubble. Therefore, to ionize atoms in the back of the bubble, the accelerating field

in the back must at least be on the scale of mcωp/e. From Eq. 3.22, τ0 − τa must be

2/kp to have Ez = mcωp/e. Inserting τ0 − τa = 2/kp into Eq. 3.25 yields

|E| = mcωp

e

√
1− 3r2k2

p

16
. (3.26)

Figure 3.4 displays |E| from this equation as a function of r (denoted by E0). The

Ψ contour corresponding to E0 has a maximum radial extent of 2/kp. At positions

farther back in the bubble this radial extent increases.

In addition to the requirements on |E| to induce trapping of the electrons released

in the back of the bubble, there are also requirements from the ionization rate. The

time scale for the ion bubble is 1/ωp, so the ionization rate must be on the order

of ωp to cause ionization inside the bubble. Consider the parameters relevant to

the experiment. At a plasma density of 2.7·1023 m−3 the ionization rate of helium

created by E0 is too small for electrons to be released along its corresponding Ψ

contour (Γ(E0) < ωp/470). At this density the ionization rate equals ωp on axis for

the Ψ contour with τ0 − τa = 3.244/kp. Along this contour, the magnitude of the

electric field as a function of r is

|E| = mcωp

e

√
3.2442

4
− 3r2k2

p

16
. (3.27)
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Figure 3.4: a) The magnitude of the electric field along a Ψ contour for τ0 − τa =
2/kp, E0, and τ0 − τa = 3.244/kp, E1. b) The ionization rate of helium along a Ψ
contour at τ0− τa = 2/kp for np = 8.0·1023 m−3 , Γ0, and at τ0− τa = 3.244/kp for np

= 2.7·1023 m−3, Γ1. Reprinted with permission from [39]. Copyright 2009, American
Physical Society.

Figure 3.4a shows |E| from this equation as a function of r, E1, and Fig. 3.4b shows

the corresponding ionization rate for helium, Γ1, as a function of r. The radial extent

of this rate corresponds to 〈x2
0〉 = 0.92/k2

p. Similarly, the ionization rate from E0 for

helium equals ωp at a density of 8.0·1023 m−3 . Figure 3.4b shows the ionization rate

corresponding to E0 at this plasma density, Γ0, as a function of r. The radial extent

of this rate corresponds to 〈x2
0〉 = 0.36/k2

p.

Both ionization locations, front and back, therefore have a minimum initial size of

order 1/kp. It is then appropriate to characterize the minimum achievable emittance

with 〈x2
0〉 ≈ 1/k2

p. This yields a minimum value of εN,x = 1/(4kp), which is propor-

tional to n
−1/2
p . The previous paragraph indicates that an initial transverse size can

occur slightly below 1/kp, so 1/(4kp) only sets the scale for the minimum achievable

emittance. Since electrons in a laser wakefield accelerator [43] are expelled to radial

distances significant compared to 1/kp before becoming trapped, similar arguments

and scales are applicable for the emittance of these electron bunches.

Three-dimensional OSIRIS [22] simulations provide support to the trapped elec-

tron emittance calculations. These simulations are of Gaussian drive bunches with

Id = 34.5, 17.2, 11.5, 8.62, and 6.90 kA driving a wake in a helium-lithium mixed

plasma. For more detail refer to Sec. 2.4, where these simulations are introduced.

Trapped electrons are not of a single energy, so εN,x (from Eq. 3.1) is calculated in
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energy bins. Figure 3.5 displays the simulated εN,x for the trapped electrons as a

function of energy. The mean values of εN,x for the trapped electrons in these sim-
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Figure 3.5: The normalized transverse emittance of the trapped electrons versus
energy for several different values of Id.

ulations in descending Id order are 13.6±2.0, 9.94±0.33 , 2.74±0.61, 1.76±0.43, and

1.95±0.69 µm. These values correspond to the mean and rms of εN,x from a charge

weighting of the energy bins. The relative small size of the rms values shows that εN,x

is weakly dependent on the energy. These simulations indicate that trapped electrons

can achieve εN,x at a fraction of 1/kp (10 µm), as predicted by the model. Figure 3.6

shows the emittance values versus the drive bunch peak current. The large values of

peak current create a large initial transverse size for the trapped electrons, leading

to a large transverse emittance. For the lower values of peak current, the transverse

emittance reduces and dips just below 1/(4kp) before electron trapping turns off.

Two additional simulations test the scaling of the emittance with plasma density.

Similar to the Id = 17.2 kA simulation at np = 2.7 · 1023 m−3, these simulations are

of Gaussians with Id = 17.2 kA (≈ IA), matched transverse sizes of σx,y = 0.17/kp,

σz = 2.0/kp, and have a simulation grid size of 0.05/kp in x, y, and z. The simulations

are at the plasma densities of 8.7 · 1020 m−3 and 2.7 · 1025 m−3. Note, the plasma

for these simulations does not consist of lithium with a small relative background

of helium. At these plasma densities different species and ionization levels become

trapped. For example, recall the discussion at the end of Sec. 2.6. This discussion

shows that at the lowest of these plasma densities, lithium is no longer ionized very
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Figure 3.6: The mean normalized transverse emittance of the trapped electrons ver-
sus the drive bunch peak current, where error bars represent the rms spread of the
emittance from a charge weighting of the energy bins.

quickly so its electrons can become trapped. Conversely, the first level of helium

is ionized too quickly for its electrons to become trapped at a plasma density of

2.7 · 1025 m−3. Thus, to accommodate for the trapping of different ionization species

and levels, the relative percent of helium, lithium, and pre-ionized gas was different

at the different densities.

At np = 8.7 · 1020 m−3 the plasma is pre-ionized with a 3% background of lithium

atoms, where the trapping occurs from the first ionization of lithium; at np = 2.7 ·1025

m−3 the plasma is helium with a 3% background of lithium atoms, where the trapping

occurs mainly from the second and third ionization of lithium. The corresponding

emittance numbers for the low and high density simulations are 135.5 and 0.747

µm with 5.2 and 0.081 µm rms emittance spreads, respectively. Earlier calculations

suggest emittance scales as k−1
p ; a fit of the mean emittance numbers, weighted by

their rms spreads, for the three simulations with Id ≈ IA yields that εN,x scales like

kp to the power of -0.94 ± 0.02. Figure 3.7 displays the simulated emittance of the

trapped electrons versus kp.
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Figure 3.7: The mean normalized transverse emittance of the trapped electrons versus
kp. The black plot points are for the three simulations with Id ≈ IA, and the other
simulations appear as green plot points.

3.3 Charge and Peak Current

Plasma electron trapping causes charge to accumulate at the back of the ion bubble.

As the amount of trapped charge increases, the transverse electric field of the trapped

electron bunch increases, which decreases the radial current of the plasma sheath

electrons at the back of the bubble. This loads Ez and changes the shape of Ψ,

forcing the position for trapping farther back in the bubble. Eventually the wake

loading from the trapped electrons ceases trapping at a given longitudinal position,

which limits the total charge and peak current of the trapped electron bunch.

Section 2.4 discusses the requirements for inducing trapping. The drive bunch

must have a peak current greater than IA/2 and a total number of electrons greater

than 1/(kpre). This drive bunch transfers an outward radial momentum to the plasma

sheath electrons at the front of the bubble. Then, the ion bubble turns this outward

radial momentum into an inward one at the back of the bubble. To load the ra-

dial current associated with the inward moving plasma sheath electrons, the trapped

bunch must have properties that are similar to the drive bunch. Thus, the maximum

peak current and number of trapped electrons have scales that are characterized by

those of the drive bunch.
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Figures 2.5 and 2.6 provide support to the scale for the total number of trapped

electrons. In addition, the corresponding OSIRIS simulations of the experiment,

introduced in Sec. 2.4, run until the trapped electrons load the wake and turn off

further trapping. This yields a maximum achievable trapped electron peak current,

It,m. For Id = 34.5, 17.2, 11.5, 8.62, and 6.90 kA, It,m = 125, 80.3, 42.2, 17.3, and 2.60

kA, respectively (see Fig. 3.8). Figure 3.9 displays the saturation of It as a function

of propagation distance in the plasma for the simulation with Id = 17.2 kA.
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Figure 3.8: The maximum achievable trapped electron peak current versus the drive
bunch peak current.
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Figure 3.9: The peak current of the trapped electron bunch versus the drive bunch
propagation distance.
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3.4 Longitudinal Bunch Length

The scale for the longitudinal bunch length of the trapped electrons is found from an

investigation of the time scale for ionization. If the ionization rate (Γ) of an atom is

much less than ωp, the atom will not be ionized. Conversely, if Γ À ωp, the atom will

become ionized too quickly for its electron to be trapped. Thus, the time scale in the

wake over which the trapped electrons are released is 1/ωp, which corresponds to a

longitudinal distance of 1/kp. This spread in the longitudinal position of ionization,

dzi, creates a spread in the initial Ψ: dΨi = |∂zΨ|dzi = |Ez,i|dzi, where Ez,i is Ez at

the location of ionization.

The constant of motion for an electron (γmc2 − cpz − eΨ) relates dΨi to the

longitudinal bunch length at the back of the bubble, dzb. As an electron accelerates in

the plasma wake, cpz converges to γmc2. Therefore, the electron’s constant of motion

becomes −eΨ and is equal to mc2 − eΨi. If all of the electrons that are released by

ionization become trapped, the spread of Ψ for the electrons at the back of the bubble,

dΨb, would equal dΨi. However, only the electrons with Ψi > Ψf +mc2/e are trapped,

so dΨb < dΨi. The quantity dΨb is connected to dzb: dΨb = |Ez,b|dzb, where Ez,b is

Ez at the back of the bubble. This means that |Ez,i|dzi > |Ez,b|dzb. Thus, the bunch

length for the trapped electrons is given by dzb < dzi|Ez,i|/|Ez,b| ≈ k−1
p |Ez,i|/|Ez,b|.

Recall from Fig. 1.2 that |Ez,b| can exceed |Ez,i|, so the trapped electron longitudinal

bunch length, dzb, can be a small fraction of 1/kp.

The three-dimensional OSIRIS simulations from Sec. 2.4 are now compared to this

scale for the trapped electron longitudinal bunch length. At np = 2.7·1023 m−3, where

1/kp = 10 µm, the trapped electrons have the rms longitudinal bunch lengths of 1.7,

2.2, 2.1, 1.4, and 2.2 µm for Id = 34.5, 17.2, 11.5, 8.62, and 6.90 kA, respectively. In

addition, at np = 8.7·1020 m−3 and 2.7·1025 m−3 (1/kp = 180 and 1 µm) the trapped

electrons have the rms longitudinal bunch lengths of 36 and 0.15 µm, respectively, for

Id = 17.2 kA. These simulations indicate that the trapped electron bunches achieve

longitudinal bunch lengths that are a fraction of 1/kp, as displayed in Fig. 3.10.



74 CHAPTER 3. TRAPPED ELECTRON BUNCH PROPERTIES

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

σ z [m
]

k
p
 [m−1]

 

 

1/k
p

I
d
 = I

A
 Sim.

Other Sim.

Figure 3.10: The rms bunch length of the trapped electron bunches, σz, versus kp.
The black plot points represent the three simulations with Id ≈ IA, and the other
simulations appear as green plot points.

3.5 Energy Distribution

Figure 3.11 displays the trapped electron energy profile for the simulations of the

experiment at a propagation distance of 103/kp. For more detail refer to Sec. 2.4,

where these simulations are introduced. The trapped electrons have large energy

spreads, which are caused by two different aspects of the trapping process. First,

the trapped electrons reside at the very back of the bubble, near the position where

the electric field rapidly flips from accelerating to decelerating. Thus, the trapped

electrons experience an accelerating field ranging from near zero to a scale of mcωp/e.

In addition, the energy spread is broadened by the wake collecting trapped electrons

at different times. Two electrons at the same τ position in the wake experience the

same Ez; however, if they are trapped at a different time, then their energy can

be drastically different. For example, consider the wake loading displayed in Fig.

3.9. The trapped electron peak current saturates near a propagation distance of

800/kp. With Ez = mcωp/e, the energy difference between an electron trapped at

the beginning of this propagation compared to one near the saturation position is 800

mc2.
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Figure 3.11: The trapped electron energy profile for a few different values of Id at the
propagation distance of 103/kp.

3.6 Multiple Trapped Bunches

The theory presented here focuses mainly on the trapped electron bunch in the first

bubble. However, as discussed in Sec. 2.3, additional electron bunches become

trapped in the multiple bubbles of the wake. A set of two-dimensional OSIRIS sim-

ulations of the experiment compares the properties of the trapped electron bunches

in the first three bubbles of the wake. The drive bunches in these simulations are

Gaussian with 1.8 · 1010 electrons, matched transverse sizes of σx,y = 1.74 µm, and Id

= 34.5, 17.2, and 11.5 kA. These drive bunches create a wake in a lithium vapor of

density 2.7 ·1023 m−3 with a relative helium density of 10%. In r and z the simulation

grid size is 0.5 µm, with 9 particles per cell. These simulations run until the trapped

electrons load the wake and turn off further trapping. Table 3.1 displays a comparison

of the mean transverse emittance, total number, and peak current for the first three

bunches at the point in the propagation where the bunch charge saturates.

The trapped electron bunch in the first bubble has better properties than those

trapped in the subsequent bubbles. As trapped electrons collect at the back of the

bubbles, they load the wake. This loading decreases the energy of the plasma sheath

electrons, which makes the wake easier to load in the subsequent bubbles. For this

reason, the first trapped bunch contains the highest total charge and peak current.

Note, the smallest transverse emittance occurs in the third bubble for the simulation
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Id [kA] Bunch # 〈εN,x〉 [µm] Nt It [kA]
34.5 1 8.7 1.2·1010 85
34.5 2 13 6.6·109 33
34.5 3 9.6 5.6·109 29
17.2 1 5.7 7.9·109 70
17.2 2 7.5 4.6·109 38
17.2 3 6.4 3.5·109 18
11.5 1 1.9 3.2·109 34
11.5 2 1.9 1.7·109 16
11.5 3 0.94 2.3·108 2.7

Table 3.1: A comparison of properties for the electron bunches trapped in the first
three plasma bubbles. The bunch # corresponds the bubble that the bunch is trapped
in (1 for the first bubble).

with Id = 11.5 kA. The bunch in this bubble achieves a transverse emittance that

is roughly half of that for the bunch in the first bubble; however, the third bunch’s

total charge is only about 7% of that for the first bunch. Thus, the actual density of

the electrons in phase space is higher for the first bunch.

3.7 Design of a Particle Source

The preceding sections cover the basic properties of the trapped electron bunches.

This information is now used to explore the possibility of their use as a particle source.

The primary issue for the trapped electron bunches is their longitudinal normalized

emittance, expressed in Eq. 3.28.

εN,z =
√
〈δz2〉〈δp2〉 − 〈δzδp〉2, (3.28)

where δp = pz − 〈pz〉 and δz = z − 〈z〉. The trapped electron bunches have small

longitudinal bunch lengths. However, due to their considerable size in δp, they acquire

a large longitudinal emittance. Thus, it is important to discuss methods to minimize

this momentum spread.

Conventional RF sources can generate electron bunches with longitudinal emit-

tance of order MeV·ps [16] (300 MeV·µm/c). To be useful as a particle source, the

trapped electron bunches must have significantly smaller longitudinal emittance than
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this value. Section 3.4 shows that at the experimental plasma density, 2.7 · 1023 m−3,

longitudinal bunch lengths of a few µm are achieved. To produce εN,z that is an order

of magnitude better than conventional sources, these trapped bunches must have a

longitudinal momentum spread of 10 MeV/c.

Section 3.5 discusses the two fundamental reasons for the large longitudinal mo-

mentum spread of the trapped electron bunches: the extended region over which

electrons are trapped and the rapid variation of Ez at the back of the bubble. The

first of these issues could be resolved by limiting the presence of the trapping species

to only a small region in the plasma. Since Ez is of order mcωp/e, this region must be

20/kp in length or less to keep the momentum spread below 10 MeV/c. The second

of the issues could be resolved by rapidly shifting to a lower plasma density after

the trapping region. This shift in plasma density would increase the length of the

ion bubble and push the location of the rapid variation in Ez to behind the trapped

bunch.

At a plasma density of 2.7 · 1023 m−3, 20/kp ≈ 200 µm. The production of a

variation in the vapor density or gas species over this short of a distance would be

difficult. Instead, pre-ionization of a single gas species at a uniform density can mimic

the variation in the density of both the plasma and the trapping species. Consider a

uniform vapor of a trapping species, such as helium in the experiment, with a density

of n and the pre-ionization profile displayed in Fig. 3.12. The electrons from pre-

ionization can not satisfy the trapping condition so they would support the plasma

wake, while the leftover neutral atoms would seed the trapped electrons. At the

region denoted by ∆z, the plasma density is nP1 and the neutral atom density is

n(1−P1). The plasma density then drops to nP2 after the ∆z region. As the plasma

density decreases (from nP1 to nP2), the location for the back of the ion bubble

extends beyond the electrons trapped in ∆z. The trapping of electrons could then

still continue at the new location of the back of the bubble, but these electrons would

not affect the bunch trapped in the ∆z region.

Note, the drive bunch could further ionize the atoms in its vicinity, which would

alter the plasma density from nP1 and nP2 in the two different regions. Outside of

the drive bunch’s ionization radius the plasma density would equal the pre-ionized

values, but inside the plasma density would be higher. Thus, it is important for the
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Figure 3.12: The level of pre-ionization versus z for a method to control the momen-
tum spread of the trapped electron bunch.

drive bunch’s ionization radius to be significantly smaller than the maximum radius

of the ion bubble. This allows the density of the pre-ionized electrons to dominate

the ion bubble length.

Figure 3.13 shows one idea for the production of such a pre-ionization profile. As

usual, z denotes the drive bunch propagation direction. In the figure, a laser beam

propagates perpendicular to the drive bunch, in the x direction, and collides with

two obstructions. A full obstruction blocks the photons for z below the ∆z region,

while a partial obstruction transmits a fraction of the laser intensity for z above

the ∆z region; the light within the ∆z region is not obstructed. The pre-ionization

profile would be controlled by the laser intensity, the obstruction separation, and the

transparency of the partial obstruction.

z

x

Drive Bunch

Partial Full

Laser Beam

Dz

ObstructionObstruction

Figure 3.13: A method to control the trapped electron momentum spread. An ob-
struction placed in the path of a laser beam allows for the control of laser intensity,
and therefore also the level of pre-ionization, along the drive bunch path.



3.7. DESIGN OF A PARTICLE SOURCE 79

A set of two-dimensional OSIRIS simulations test the trapped electron bunch

properties created with these methods. The simulations use drive bunch parameters

and a plasma density similar to those in the experiment. As displayed in Fig. 3.6,

the decrease in drive bunch peak current from 17.2 to 11.5 kA yields a reduction in

εN,x from 9.94 to 2.74 µm. This significant reduction in emittance only came at the

cost of a factor of two reduction in the trapped electron bunch peak current. For

this reason, the simulations use a drive bunch with Id = 11.5 kA. Also, as in the

experiment, the drive bunch has 1.8·1010 electrons and matched transverse sizes of

σx,y = 1.74 µm. The gas vapor is pure helium with a density of 2.7·1023 m−3. In r

and z the simulation grid size is 0.5 µm with 9 particles per cell.

The remaining parameters for these simulations are P1, P2, and ∆z. To reduce

this three-dimensional simulation space to two, P2 is set as constant times P1: P2 =

0.6·P1. This way the relative growth of the ion bubble remains fixed. To insure that

the electrons from pre-ionization dominate the time scale of the ion bubble, P1 is set

to be greater than or equal to 0.5. Also, to allow for sufficient helium atoms from

which to trap, P1 does not exceed 0.9. These simulations use P1 varied from 0.5 to

0.9 in steps of 0.1. The quantity ∆z is varied from 5/kp to 30/kp in steps of 5/kp, and

the final propagation distance is z = 200/kp.

Figure 3.14 shows pz versus z − ct and the corresponding pz distribution for the

simulation with P1 = 0.9 and ∆z = 25/kp. As discussed, electron trapping continues

behind the mono-energetic bunch, so there is a large spread in the low momentum

electrons. To examine the properties of the mono-energetic part of the distribution,

cutoffs are made in z − ct and pz (red lines in Fig. 3.14a). Figures 3.15, 3.16,

and 3.17 display the characteristics of the trapped bunches from the simulations.

These simulations show that the trapped bunches can simultaneously achieve small

transverse and longitudinal emittances, large peak currents, and low longitudinal

momentum spreads. The longitudinal emittances, displayed in Fig. 3.16a, are all

an order of magnitude better than conventional sources. However, these simulations

have a relatively short propagation distance of 200/kp (2 mm). As is shown later, the

longitudinal emittances increases for longer propagation distances.

The two-dimensional OSIRIS simulations are noisy, so a three-dimensional OSIRIS

simulation is run to further test this method of producing mono-energetic trapped
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Figure 3.14: a) The quantity pz versus z−ct and b) the projected momentum spectrum
for a mono-energetic trapped bunch, from the simulation with P1 = 0.9 and ∆z =
25/kp.
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Figure 3.15: a) The total number, Nt, and b) peak current, It, for the simulated
mono-energetic trapped electron bunches versus ∆z. The markers in the plot denote
the corresponding values of P1.
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Figure 3.16: a) The longitudinal and b) transverse normalized emittances, εN,z and
εN,x, for the simulated mono-energetic trapped electron bunches versus ∆z. The
markers in the plot denote the corresponding values of P1.
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Figure 3.17: a) The rms longitudinal bunch length, σz, and b) the relative rms longitu-
dinal momentum spread, σpz/〈pz〉, for the simulated mono-energetic trapped electron
bunches versus ∆z. The markers in the plot denote the corresponding values of P1.

electron bunches. Also, the three-dimensional simulation has a longer propagation

distance than the two-dimensional ones, which enables an investigation into the effect

of propagation on the trapped electron bunch. This simulation has P1 = 0.9, ∆z =

25/kp, and a 2 cm propagation distance. The drive bunch in this simulation is a

Gaussian with 1.8 · 1010 electrons, matched transverse sizes of σx,y = 1.74 µm, and Id

= 11.5 kA (σz = 30 µm). In addition, the simulation grid size in x, y, and z is 0.5 µm

with 2 or 4 particles per cell. Figure 3.18 shows pz versus z − ct at the propagation

distance of 2 cm.
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Figure 3.18: The quantity pz versus z − ct for a mono-energetic trapped bunch at a
propagation distance of 2 cm, where P1 = 0.9 and ∆z = 25/kp. The dotted lines show
several (z − ct) cutoffs for analyzing the bunch properties, where only electrons with
z − ct above the cutoff are included in the property calculations.
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The properties of the bunch change depending on the location chosen for the

(z − ct) cutoff. Figure 3.19 displays the transverse and longitudinal emittance of the

trapped bunch for the different (z− ct) cutoffs as a function of propagation distance.

Similarly, Fig. 3.20 shows the total charge and relative longitudinal momentum spread

of the trapped bunch for the cutoffs as a function of propagation distance.
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Figure 3.19: a) The quantities εN,z and b) εN,x versus propagation distance for a
mono-energetic trapped bunch, where P1 = 0.9 and ∆z = 25/kp. The markers denote
the (z − ct) cutoffs used to analyze the bunch properties.
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Figure 3.20: a) The total number of electrons, Nt, and b) the relative longitudinal mo-
mentum spread, σpz/〈pz〉, versus propagation distance for a mono-energetic trapped
bunch, where P1 = 0.9 and ∆z = 25/kp. The markers denote the (z− ct) cutoffs used
to analyze the bunch properties.

The three-dimensional simulation confirms that the trapped electron bunches can

obtain small longitudinal emittance. Note, however, the longitudinal emittance grows
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as a function of propagation distance (see Fig. 3.19a). This is due to the nonlinearity

of the accelerating field at the back of the bubble. Thus, minimizing the longitudinal

emittance requires minimizing the propagation distance, but this comes at the cost

of the mean energy for the trapped electron bunch. For all three (z − ct) cutoffs,

the mean energy of the bunch rises linearly to roughly 560 MeV (559, 565, and 569

MeV) at the end of the 2 cm propagation distance. If these bunches were only able

to propagate to half of this distance, they would only have half of this energy. Also,

the choice for the cutoff affects the determined longitudinal emittance. The bunch

corresponding to the highest (z − ct) cutoff has the smallest longitudinal emittance,

which is an order of magnitude better than conventional electron sources even at the

full propagation length. However, this cutoff naturally yields the lowest bunch charge.

Due to the trade-offs that occur between the different bunch properties, the best-case

properties for this bunch depend on the specifics of the application.



Chapter 4

Experimental Overview

4.1 Introduction

Chapter 2 shows that electron trapping in a PWFA requires drive bunches of high

charge (> 1/(kpre)) and high peak current (> IA/2 = 8.5 kA). Many accelerators

utilize electron bunches that satisfy the charge requirement; however, the same is

not true for the peak current requirement. The SLAC linac uses several stages of

longitudinal compression to produce high peak current electron drive bunches. A

detailed discussion of the compression process appears in Sec. 4.2.

In addition, Ch. 2 discusses the requirements on the plasma density and atomic

species to create electron trapping. These requirements are satisfied by a lithium

heat-pipe oven with a helium buffer gas [53]. The drive bunches easily ionize the

relatively low first ionization level of lithium (5.4 eV), producing plasma electrons.

These electrons support the plasma wake, while the higher ionization energy of helium

(24.6 eV) permits some of its electrons to satisfy the trapping criterion [58]. Thus,

the heat-pipe oven is a crucial component in the trapping process. Section 4.3 covers

the physics of this oven.

Experimental diagnostics yield measurements of the onset in plasma electron trap-

ping and the trapped electron bunch properties. An energy spectrum of the drive

bunch, before it enters the heat-pipe oven, yields the bunch’s longitudinal current pro-

file. In addition, a pyroelectric detector collects coherent transition radiation (CTR),

84
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emitted from the drive bunch as it passes through a titanium foil, for use as a com-

plementary bunch length measurement. Charge measuring toroids, placed up- and

downstream of the heat-pipe oven, measure the number of trapped electrons. Also,

a combination of several energy spectrometers provides a total momentum spectrum

of the drive bunch and trapped electron bunch following the heat-pipe oven. Section

4.4 gives an overview of these diagnostics.

4.2 Production of High Peak Current Bunches

The SLAC injector accelerates and bunches electrons emitted from a dispenser type

cathode thermionic gun [66]. These electron bunches then enter a damping ring, which

reduces their transverse and longitudinal emittances. Upon exiting the damping ring,

the bunches have 1.8·1010 electrons, a longitudinal length of 6 mm, a mean energy of

1.19 GeV, and a relative rms energy spread of 0.074%. This corresponds to a peak

current of only 57 A.

Several stages of longitudinal compression on the drive bunch create a peak current

large enough to induce plasma electron trapping. The compression process consists

of two different types of longitudinal phase space (z and pz) manipulations: shearing

of the bunch in the z and pz coordinates. Let δp = pz − 〈pz〉 and δz = z − 〈z〉. An

acceleration of the bunch with a δz-dependent Ez changes a particle’s pz based on

its z, shearing the bunch distribution in δp (see Fig. 4.1a). Similarly, a momentum

dependent path length changes a particle’s z based on its pz, shearing the bunch

distribution in δz (see Fig. 4.1b). The following sections describe the compression

of the electron bunches from the damping ring. Note, the electrons are ultrarela-

tivistic and propagating in the z direction, so pzc and the energy of an electron are

interchangeable.

Nonlinear effects are important for the compression of the SLAC electron bunch;

however, linear shears demonstrate the basic compression process. Thus, a matrix,

Mz,p, multiplication represents compression:

(
δzf

δpf

)
= Mz,p

(
δzi

δpi

)
=

(
R55 R56

R65 R66

)(
δzi

δpi

)
, (4.1)
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Figure 4.1: Longitudinal phase space manipulations. a) The shearing of a bunch in
pz and b) in z.

where the subscripts i and f denote initial and final, respectively. A shear in δp is

given by

Mz,p =

(
1 0

R65 1

)
, (4.2)

and a shear in δz is given by

Mz,p =

(
1 R56

0 1

)
. (4.3)

Thus, matrices with a determinant of 1 represent the linear shears. The determinant

for a product of matrices is equal to the product of the determinants for the matrices,

so a matrix describing any arbitrary combination of these linear shears also has a

determinant of 1. A bunch’s longitudinal normalized emittance, εN,z, is given by

ε2
N,z = 〈δz2〉〈δp2〉 − 〈δzδp〉2. (4.4)

The propagation of the longitudinal phase space coordinates with Mz,p yields

εN,z,f = det(Mz,p)εN,z,i, (4.5)

making the longitudinal normalized emittance a conserved quantity for linear shears.

Thus, the electron bunches can only compress in δz if they decompress in δp. A bunch

with 1.8·1010 electrons requires a bunch length of σz = 20 µm to obtain a peak current
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equal to IA . The initial phase space from the damping ring has no correlation term.

Therefore, the reduction of σz from 6 mm to 20 µm requires at least an increase in the

energy spread from 0.88 MeV to 0.26 GeV. In addition, the propagation of electron

bunches with relative energy spreads greater than 10−2 is difficult; a multiplication

of the final required energy spread with 100 yields the final mean energy needed to

create these high peak current bunches: 26 GeV.

4.2.1 Radio Frequency Cavities

The pz shearing of the bunch distribution occurred in S-band radio frequency (RF)

accelerating cavities, which have a frequency of 2.856 GHz and a wavelength, λRF ,

of 10.5 cm. In these cavities, accelerating modes have a phase velocity equal to the

speed of light, so the phase of the ultrarelativistic electrons relative to the mode, φRF ,

remains fixed. The integral of Ez over the length of the cavity results in a change to

an electron’s energy based on its phase:

∆U = U0 sin(φRF ), (4.6)

where ∆U is the change in energy, and U0 is the change in energy for an electron at

the crest of the accelerating mode (see Fig. 4.2).

0 π/2 φ
RF

π 3π/2 2π

−U
0

0

∆U

U
0

Figure 4.2: The phase-dependant acceleration of a particle bunch in a radio frequency
cavity.

In addition to the change in the energy from the accelerating mode, the electron

bunches experience longitudinal wakefields as they pass through the irises of the
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accelerating cavities. The length between cavity irises is 3.449 cm, and the radius of

the irises is 1.163 cm. Figure 4.3 displays the resulting wakefield, Wf , [4] for a single

particle. The resulting accelerating field at a given longitudinal position, τ(z− ct), is
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Figure 4.3: The longitudinal wakefield in the RF cavities.

the convolution of this wakefield with the charge per unit length, Q:

Ez(τ) = −
∫ ∞

τ

Wf (τ
′ − τ)Q(τ ′)dτ ′. (4.7)

4.2.2 Longitudinal Compression

Magnetic elements create momentum dependent path lengths, which result in a shear

to the electron bunch in δz. FODO-cell arcs, magnetic chicanes, and doglegs are

examples of the elements used for compression. Nonlinear path length dependencies

require a modification to the formalism for linear shears. The change in δz for an

electron is given as

δzf = δzi + R56δpi + T566δp
2
i . (4.8)

4.2.3 LiTrack

The code LiTrack [4] is used to simulate the longitudinal phase space evolution from

the damping ring to the experiment. This code includes the pz shearing of the bunch,

as expressed in Eqs. 4.6 and 4.7, and the z shearing of the bunch, shown in Eq. 4.8.

Figure 4.4 displays the compression elements in the SLAC linac leading up to the

experimental hall.
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Figure 4.4: The longitudinal compression elements in the SLAC linac. The ring to
linac, chicane, and dogleg shear the bunch in z, while the cavities shear the bunch in
pz.

4.2.4 Damping Ring to the Linac

During the first step of compression, the compressor cavity shears the bunch distribu-

tion in δp. In reference to Eq. 4.6, the phase of an electron is φ = φRF + 2πδz/λRF ,

and U0 = 42 MeV. Inside the compressor cavity φRF = 0. The mean energy of the

bunch does not change; however, the electrons at the front of the bunch receive more

energy than those in the back, shearing the distribution in δp. Next, the electrons

travel through a FODO-cell arc. The dispersion of the arc creates longer path lengths

for larger momentum particles. In this arc, R56 = -0.495 m·c/GeV and T566 = -0.744

m·(c/GeV)2. Electrons with energies more than 2 to 3 % off of the nominal energy

get clipped and do not make it to the linac. Figure 4.5 displays the results for a

LiTrack simulation of the propagation from the damping ring to the linac.
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Figure 4.5: The first stage of bunch compression. The δz − δp phase space a) at the
end of the damping ring, b) after the compressor cavity, and c) after propagation
through the FODO-cell arc in the ring to linac.
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4.2.5 Acceleration in Sectors 2 through 6 of the Linac

During the next stage of compression, the accelerating cavities in Sectors 2 through 6

of the main linac shear the bunch distribution in δp and raise the mean bunch energy

from 1.19 GeV to roughly 9 GeV. In these sectors, φRF = 1.911 + φramp and U0 =

8.444 GeV, where φramp is a quantity that is varied during the experiment.

4.2.6 Magnetic Chicane at Sector 10

Next, the electron bunches pass through a magnetic chicane. The dispersion of this

chicane creates longer path lengths for lower momentum particles. In the chicane,

R56 = 8.44 mm·c/GeV and T566 = -1.41 mm·(c/GeV)2. Figure 4.6 displays the results

for a LiTrack simulation of the propagation from the start of the main linac through

the magnetic chicane.
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Figure 4.6: The second stage of bunch compression. The δz− δp phase space a) after
the ring to linac arc, b) following the accelerating cavities in Sectors 2 through 6, and
c) after the magnetic chicane.

4.2.7 Acceleration in Sectors 10 through 30 of the Linac

The accelerating cavities in Sectors 10 through 30 of the main linac take the mean

energy of the electron bunches from roughly 9 GeV to 42.2 GeV. In these sectors,

φRF = π/2 + φramp. The electron bunch lengths are significantly smaller in these

sectors than they are in Sectors 2 through 6, which lessens the shearing effects of the

RF and increases the shearing effects of the wakefields.
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4.2.8 Transport into the FFTB

Finally, the electron bunches pass through a dogleg into the FFTB. The dispersion

of this dogleg creates longer path lengths for higher momentum particles. Note,

the properties of the dogleg are not constant during the experiment, but typical

compression values are R56 = -35.5 µm·c/GeV and T566 = -1.68 µm·(c/GeV)2. Figure

4.6 displays the results for a LiTrack simulation of the propagation from Sector 10

to the experimental chamber. This final stage completes the compression of the

longitudinal bunch size from 6 mm to tens of µm.
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Figure 4.7: The third stage of bunch compression. The δz − δp phase space a) after
the magnetic chicane, b) following the accelerating cavities in Sectors 10 through 30,
and c) after the FFTB dogleg.

4.3 Heat-Pipe Oven

An investigation into the properties of a liquid-gas phase transition yields a basic

understanding of the heat-pipe oven. These properties are revealed by the first and

second laws of thermodynamics [15]. The first law of thermodynamics states that the

change in the energy of a system, dU , is equal to the energy added to the system,

dQ, minus the work done the system, which is the pressure, P , times the change in

the volume, dV .

dU = dQ− PdV. (4.9)

The second law of thermodynamics states that the change in entropy of a system, dS,

times its temperature, T , is greater than or equal to the energy added to the system,
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where they are equal for a reversible process.

TdS ≥ dQ. (4.10)

A liquid-gas phase transition is a reversible process, so the greater than part of Eq.

4.10 is dropped. The combination of the first and second laws of thermodynamics

yields

dU = TdS − PdV. (4.11)

Equation 4.11 represents the internal energy of the system with S and V as its

independent variables. The quantity T is the canonical conjugate to S, and −P is

the canonical conjugate to V . Three other thermodynamic potentials result from

a change of the independent variable: the Gibbs function, the enthalpy, and the

Helmholtz function. The Gibbs function, G, has P and T as independent variables.

G = U + PV − TS. (4.12)

dG = dU + V dP + PdV − TdS − SdT = V dP − SdT. (4.13)

For a liquid-gas phase transition, the pressure and temperature of the liquid is

equal to that of the gas. Suppose that a system containing liquid and gas in equi-

librium is kept at a constant temperate and pressure while expanding the volume.

This would result in molecules changing from the liquid to the gas phase. There is

no change in temperature or pressure, so the Gibbs function of the system remains

constant. Since there is a net change of molecules from the liquid to the gas phase,

the Gibbs function per molecule in the liquid phase, gl, must be equal to that in the

gas phase, gg. This is true for all the points along the vapor pressure curve, so the

changes in the Gibbs function along this curve are also equal.

gg = gl → dgg = dgl. (4.14)

Let v = V/N , and s = S/N , where N is the number of molecules. A substitution of
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P [N/m2] 1 10 100 1,000 10,000 100,000
T [K] 797.45 885.45 995.25 1,144.35 1,337.45 1,610.25

Table 4.1: The vapor pressure of lithium versus temperature.

Eq. 4.13, divided by N , into Eq. 4.14 yields

vgdP − sgdT = vldP − sldT → dP (vg − vl) = dT (sg − sl). (4.15)

Equation 4.15 is simplified by the substitution of vg − vl ≈ vg = kBT/P (for an ideal

gas), where kB is Boltzmann’s constant. The second law of thermodynamics gives

sg − sl = h/T , where h is the heat of vaporization. These manipulations yield a

simplified version of the Clausius-Clapeyron equation:

dP

dT
=

hP

kBT 2
. (4.16)

The pressure is given by the integration of the above equation:

P = Pi exp[
1

kB

∫ T

Ti

h(T ′)
T ′2 dT ′]. (4.17)

This equation requires one point along the vapor pressure curve as initial conditions,

Pi and Ti. The heat of vaporization is technically a function of temperature; however,

it can be treated as a constant (2.442 · 10−19 J for lithium [19]). This yields the

following equation for the vapor pressure as a function of temperature.

P = Pi exp[
h

kB

(
1

Ti

− 1

T
)]. (4.18)

Table 4.1 displays six points on the vapor pressure curve of lithium [46].

The six points in Tbl. 4.1 allow for a check of how well Eq. 4.18 models the vapor

pressure curve. Of the six points, the one at a temperature of 1337.45 K is closest to

the temperature in the experiment so it is used as the initial condition. Figure 4.8

displays the vapor pressure curve generated by Eq. 4.18 and the data points from

Tbl. 4.1. The ideal gas law yields the lithium vapor density from the pressure and

temperature of the gas: n = P/(kBT ). Equation 4.18 divided by kBT generates the
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Figure 4.8: The vapor pressure of lithium versus temperature. The plus signs rep-
resent known points on the curve [46], and the red line denotes the vapor pressure
curve generated from the Clausius-Clapeyron equation.

dependence of the vapor density on the temperature, shown in Fig. 4.9. A parametric
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Figure 4.9: The temperature versus density of lithium, from the Clausius-Clapeyron
equation.

plot displays the relationship between the pressure and the density (see Fig. 4.10).

Figure 4.11 is an illustration of the heat-pipe oven. This oven is built from a

stainless steel tube, heaters, cooling jackets, and a wire mesh. The heaters create a

hot region at the middle of the tube, which is bounded by cooling jackets. Inside the

tube, the mesh acts as a wick for the molten lithium.

A summary for the initialization of the heat-pipe oven follows. First, a solid piece

of lithium is placed on the wire mesh. Then, the tube is filled with helium gas at the

required pressure and the heaters are turned on. As the oven temperature increases,
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Figure 4.10: The pressure versus density of lithium, from the Clausius-Clapeyron
equation.
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Figure 4.11: The heat-pipe oven, where the letter H denotes the heaters, and the
letter C denotes the cooling jackets.

a hot region forms in the middle of the oven. The lithium begins to melt, vaporize,

and flow out of the hot region. When the lithium vapor enters the cool region, it

condenses on the mesh, and the capillary action of the wick draws it back to the hot

region of the oven. This repeated process of vaporization, condensation, and wicking

creates a flow of lithium that pushes the helium buffer gas out from the hot region of

the oven.

The heat-pipe oven has two inputs: the pressure of the buffer gas and the power of

the oven heaters. The vapor pressure of the lithium moves along the vapor pressure

curve shown in Fig. 4.8. To produce a uniform density profile in the oven, the

pressure of the buffer gas is set equal to the needed lithium vapor pressure and the

oven heater power is increased until the lithium vapor pressure becomes equal to that

of the system. The pressure in the oven is equal to the sum of the buffer gas and

lithium vapor pressures; thus, in the hot region of the oven the vapor pressure of the

buffer gas drops to zero.

The pressure in the system is constant, so the temperature in the oven can not
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increase above the critical temperature where the lithium vapor pressure equals the

system pressure. Thus, an increase in the heater power does not increase the temper-

ature in the hot region of the oven beyond the critical temperature; it only increases

the length of the oven at the critical temperature. The temperature along the heat-

pipe controls the lithium density according to Eq. 4.18. Outside of the hot region, the

temperature drops below the critical temperature, which allows the buffer gas to mix

with the lithium. The cooling jackets sharpen the drop off of the temperature outside

of the hot region, which sharpens the density drop off. Figure 4.12 displays the par-

tial pressure of lithium and helium in the heat-pipe oven, determined by temperature

measurements along the oven.
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Figure 4.12: The partial pressures of lithium and helium in the heat-pipe oven. Beryl-
liums windows located up- and downstream of the heat-pipe oven created boundaries
between the helium buffer gas and the beam-line vacuum. Reprinted with permission
from [37]. Copyright 2008, American Institute of Physics.

As discussed in Ch. 2, plasma electron trapping in this experiment is created by

the presence of both helium and lithium atoms. Over the central heated region of

the heat-pipe oven there is pure lithium vapor with a density of 2.7 · 1023 m−3 and a

FWHM length of 85 cm, but in the cool regions on either side of the heated region

there is pure helium (see Fig. 4.12). In between, there are transition regions where

both species are present. Electron trapping occurs in both the up- and downstream

transition regions of the heat-pipe oven.

4.4 Experimental Diagnostics

Figure 4.13 displays a diagram of the experimental diagnostics in the FFTB.
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Figure 4.13: The experimental setup.

4.4.1 X-Ray Chicane Energy Spectrometer

A measurement of the drive bunch’s energy spectrum as it enters the FFTB provides

information of the bunch’s longitudinal phase space. This measurement occurs at a

region of high dispersion for the electrons in the x direction. In this region, the drive

bunch electrons pass through a vertical (y) magnetic chicane, which causes a vertical

deflection of the electrons (see Fig. 4.14). This vertical deflection induces the emission

of synchrotron radiation directed into the y − z plane. A cerium doped yttrium

aluminum garnet scintillator, located above the bunch axis, absorbs this synchrotron

radiation and re-emits optical light. Then, a 16-bit charge coupled device (CCD)

camera (C1) images the light from the scintillator. The signature of an electron

passing through the chicane is optical light emitted from the scintillator at the x

position of the electron. Since the x position of an electron is correlated to its energy,

images from the CCD camera, summed onto the x axis, yield an energy spectrum of

the drive bunch.
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Figure 4.14: The X-ray chicane energy spectrometer.

4.4.2 Charge Measuring Toroids

Integrated current transformers provide a measurement of the total amount of charge

that goes into and comes out of the heat-pipe oven. These transformers consist of a

ring-shaped toroidal ferrite with wire coiled through its center. After multiple turns

through the toroid center, the ends of the wire are connected with a resistor (R). The

wire and toroid act as an inductor (L), so the combination of these with the resistor

acts as an LR circuit. As an electron bunch traverses the center of the toroid, its

azimuthal magnetic field induces a change in the magnetic flux through the toroid

windings, which produces an electromotive force in the LR circuit. Then, an analog

to digital converter records the voltage difference across the resistor. The time scale

for the electron bunch to pass through the toroid is much less than the L/R time

constant, so the LR circuit is only sensitive to the integrated current that passes

through it. In addition, there is a single calibration winding through the center of

the toroid. The toroid is calibrated to the amount of charge that passes through this

calibration winding. Figure 4.15 shows an illustration of the charge measuring toroid.

r

z

f

to ADC

Resistor

Wire

Ferrite

Electrons

B

Figure 4.15: An illustration of a charge measuring toroid.
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4.4.3 Optical Transition Radiation

The passage of a charged particle through a transition in the index of refraction results

in the emission of transition radiation. In the experiment, transition radiation results

as the drive bunch electrons pass through 1 µm thick titanium foils, which are placed

at a 45 degree angle with respect the drive bunch propagation direction to direct the

radiation off of the bunch axis. Cameras C2 and C3 image the incoherent optical

transition radiation (OTR) that is emitted from foils F2 and F3. The transverse (x

and y) distribution of the drive bunch is determined from these images and is used

to triangulate the waist location, which is important for properly focusing the drive

bunch into the heat-pipe oven. Note, the spatial resolution of the OTR is a critical

issue for this measurement. A detailed analysis of this resolution in given in [2]. The

OTR spatial resolution in this experiment is discussed in [5], which concludes that

the resolution limit is much smaller than the transverse bunch size on these foils.

4.4.4 Coherent Transition Radiation

Transition radiation is also used as a qualitative longitudinal bunch length measure-

ment. For this measurement, a Molectron P1-45-CC pyroelectric detector collects

the transition radiation emitted from F1. This detector is sensitive to wavelengths on

the order of the drive bunch longitudinal length (tens of µm). At wavelengths that

are much larger than the drive bunch length, the bunch emits coherent transition

radiation (CTR). Shorter drive bunches emit CTR over a larger range in wavelength,

and therefore also emit more total transition radiation. Thus, the amount of transi-

tion radiation collected by the pyroelectric detector is correlated to the drive bunch

length.

An investigation of the spectral composition for transition radiation reveals this

correlation. The number of photons, Nγ, emitted per unit of angular frequency, ω, is

dNγ

dω
=

2αZ2

πω
(log(

γωp

ω
)− 1), (4.19)

where α is the fine structure constant, Z is the unit charge of the particle, and ωp is

the plasma frequency for the transition material [75]. Note, γωp is orders of magnitude
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greater than ω for wavelengths of tens of µm, so the logarithm term can be treated

as a constant. This allows for the simplification of dNγ/dω as

dNγ

dω
∝ Z2

ω
. (4.20)

A multiplication of Eq. 4.20 by a form factor and the substitution of the number of

drive bunch electrons, Nd, as Z gives a formula for dNγ

dω
from the drive bunch:

dNγ

dω
∝ N2

d

ω
exp(−σ2

zω
2

c2
). (4.21)

The pyroelectric detector measures the total energy deposited in it, pyro. Assuming

perfect absorption yields a pyroelectric detector signal that is inversely proportional

to the bunch length:

pyro ∝
∫ ∞

0

ω
N2

d

ω
exp(−σ2

zω
2

c2
)dω ∝ N2

d

σz

(4.22)

The pyroelectric detector is not a perfect absorber, but this calculation is still useful

for illustrating the inverse relationship between the pyroelectric detector signal and

the electron bunch length.

4.4.5 Low Energy Mask Spectrometer

Most of the trapped electron charge occurs at low energies (tens of MeV). A low

energy spectrometer measures the distribution for these low energy electrons. This

spectrometer consists of a magnetic dipole (D1), a tungsten mask, and a charge

measuring toroid (T2). The integrated magnetic field of the dipole,
∫

Bxdz, is variable

up to a maximum of 0.033 Tm and creates a transverse momentum kick to the

electrons:

∆py = −ec

∫
Bxdt = −e

∫
Bxdz. (4.23)

This momentum kick yields an angular kick of

∆ẏ = − e

pz

∫
Bxdz. (4.24)
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The front of the tungsten mask is located 6.67 cm downstream of the dipole center.

This mask collects electrons that are dispersed from the magnet by more than 3.18

mm. Thus, the mask collects electrons with angular kicks of 0.0477 radians or greater.

Equation 4.24 translates this angular cutoff into a momentum cutoff. At the maxi-

mum
∫

Bxdz of the dipole, the mask intercepts electrons with momentum less than

207 MeV/c. The mask is 15 radiation lengths thick (5.1 cm). Electron gamma shower

(EGS) simulations of 1 GeV electrons passing through this many radiation lengths

of tungsten indicate that only photons make it out from the back of the mask; thus,

the toroid only measures the charge not intercepted by the mask. A change of the

dipole magnetic field changes the momentum cutoff. The amount of charge through

the toroid as a function of dipole magnetic field yields a low energy spectrum. Figure

4.16 illustrates this spectrometer.

z
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x
Dipole

Mask

Toroid

 Dy
.

-

Figure 4.16: The low energy mask spectrometer.

4.4.6 Cherenkov Cell Energy Spectrometer

An additional energy spectrometer also uses the deflections from D1. A gas cell,

contained by beryllium windows (B2 and B3), is located downstream of D1. This cell

contains helium gas at a pressure of 1 atmosphere and a temperature of 294 K, which

corresponds to an index of refraction equal to 1.0000325 (for optical wavelengths).

Electrons with energy greater than 63 MeV travel faster than the speed of light in

the gas so they emit Cherenkov radiation. A titanium foil inside this cell (F3) reflects

the Cherenkov light off of the bunch axis. Then, a 12-bit optical CCD camera (C3)

images the far-field of this light. Cherenkov radiation occurs in a narrow angular

distribution about θ = arccos(1/(βn)), where θ is the angle off of the z axis, β = v/c,
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and n is the index of refraction. Let β = 1− δ. For small θ, cos(θ) ≈ 1− θ2/2. Thus,

θ =
√

2/n
√

n− 1− δ. While δ is on the same scale as n − 1, energy information

is contained in the Cherenkov angle. However, for δ ¿ n − 1 the Cherenkov angle

asymptotically approaches θ =
√

2− 2/n. Therefore, Cherenkov radiation produced

by electrons with energy much greater than the critical energy of 63 MeV does not

have energy information contained in its angle. An image of the far-field for this

radiation appears as a ring; the dispersion from the magnet makes different energy

electrons appear as rings with different displacements. The maximum measurable

energy, 10 GeV, corresponds to the minimum displacement that can be resolved from

the Cherenkov ring of the drive bunch. Figure 4.17 illustrates the Cherenkov cell

spectrometer.
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Figure 4.17: The Cherenkov cell energy spectrometer, which had an energy range
from 63 MeV to 10 GeV.

4.4.7 Large Dipole Energy Spectrometer

Downstream of the bunch-plasma interaction, the electrons pass through an additional

energy spectrometer, which consists of a magnetic dipole (D2), two air gaps (A1 and

A2), and two CCD cameras (C4 and C5) [9]. The electrons acquire an angular kick

from the magnetic dipole. Then, as the electrons pass through the air gaps they emit

Cherenkov radiation, which is imaged by the cameras. The positions of the two air

gaps correspond to low and high dispersion. One of the positions has higher energy

resolution (A2), and the other has a broader energy range (A1) [29]. The combination

of the two air gaps allows for the correction of an error in the experiment. Electrons

are found to exit the plasma with a significant transverse angular deflection, θ0 [9].

This angular deflection is created by a transverse offset of the back of the drive bunch
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from the front. At one air gap, the angular deflection could be confused with the

deflection of the magnetic dipole, which would cause energy measurement errors.

However, since the electrons are measured on two air gaps, both the angular kick

from the plasma and from the dipole are simultaneously determined. Figure 4.18

displays an illustration of this spectrometer.

Heat-Pipe

L1L0 L2

Dipole q1

q0

q2

y1 y2

A1 A2

Figure 4.18: The large dipole energy spectrometer, where the gray line represents the
trajectory of a 42 GeV electron in the absence of the heat-pipe oven.

Two linear equations follow from the geometry of the setup in Fig. 4.18:

y1 = θ0(L0 + L1) + θ1L1 − θ2L1, (4.25)

y2 = θ0(L0 + L1 + L2) + θ1(L1 + L2)− θ2(L1 + L2). (4.26)

The solution of these equations for θ2 is

θ2 = θ1 +
y1(L0 + L1 + L2)− y2(L0 + L1)

L0L2

. (4.27)

Equation 4.24 yields θ1 from the nominal energy of the bunch (42 GeV) and the∫
Bxdz setting of the magnet. A measurement of the distances y1 and y2 results in

the determination of the angular deflection imparted to the electrons from the dipole,

which is related to its energy by Eq. 4.24. The highest energy electrons measured in

the experiment had an energy of 85 GeV. These electrons received an angular kick

equal to 4.2 mrad from the dipole. The angular kicks from the plasma occurred, at

times, in excess of 0.5 mrad, making energy measurement corrections from this two

screen method necessary for the highest energy electrons.

The trapped electrons appeared with energies up to 30 GeV, which corresponds

to an angular kick from the dipole of 12 mrad. This makes the corrections from the
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plasma angular kicks less significant for the trapped electrons. For this reason and to

make use of the full broad energy range of A1, only this screen is used for the trapped

electrons. The dipole disperses electrons in the y direction according to their energy,

which allows for the measurement of the x rms size in the air gap, σ, as a function of

energy. For most of the experiment the dipole has
∫

Bxdz = 1.2 or 0.27 Tm; however,

for several data sets the dipole strength is varied, where it has a minimum value of∫
Bxdz = 0.016 Tm. The corresponding minimum measurable energies are 11, 2.3,

and 0.14 GeV, respectively.

As is shown in Ch. 5, the spatial resolution of A1 is important. Two terms

account for the resolution limit of the system: the resolution of the camera and the

resolution limit from multiple Coulomb scattering in the various elements traversed

by the electrons from the plasma to A1 [36]. Camera resolution is measured by

imaging a back illuminated 5 µm pinhole that is located 2.5 m from the camera, just

as in the experiment. In addition, a mask is placed over the camera lens to simulate

a Cherenkov ring. This mask is translated along the lens to simulate the fact that

the Cherenkov rings from different energy electrons hit the camera lens at different

positions. Also, the finite thickness of the air gap is simulated by translating the

camera towards and away from the pinhole by a length equal to that of the air gap.

These measurements give the camera resolution limit as a function of the position on

the camera, which is translated to a resolution limit versus energy.

There are several multiple Coulomb scatterers in between the plasma and the

spectrometer, so even a bunch that initially has zero transverse emittance inside the

plasma would acquire a finite size at A1. The resolution limit of the system due to

multiple Coulomb scattering is the calculated size at A1 for a bunch that initially

has zero divergence and size. This size is calculated from the angular scatter of

each element and its distance to the spectrometer. A summary of the scatterers in

the system, along with their distances from the spectrometer and their thicknesses,

follows. At 193 cm, is a 75 µm beryllium foil; at 166 cm, is another 75 µm beryllium

foil; at 4 cm, is a 50 µm stainless steel foil; at 7.5 mm, is a 420 µm silicon wafer. The

total resolution of the system is the addition of the camera and multiple Coulomb

scattering resolutions in quadrature. Figure 4.19 displays the total resolution of the

system for two different integrated magnetic field settings.
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Figure 4.19: The transverse size resolution for the first screen of the large dipole
spectrometer, A1, due to multiple Coulomb scattering and the camera resolution.
Above 10 GeV the resolution limit for

∫
Bxdz = 1.2 Tm is shown, and below 10

GeV the resolution limit for
∫

Bxdz = 0.27 Tm is shown. Reprinted with permission
from [36]. Copyright 2007, Institute of Electrical & Electronics Engineers.

4.5 Longitudinal Phase Space Determination

The energy spectra from the X-ray chicane are used in conjunction with LiTrack

simulations to determine the longitudinal phase space for the drive bunches. A dis-

cussion of this determination follows. In the experiment, variations in the SLAC

linac parameters produce variations in the longitudinal current profile and energy

spectrum of the drive bunches. LiTrack simulations are performed over the expected

range of variation for these parameters (see Tbl. 4.2). This simulation base yields

a longitudinal current profile and energy spectrum for each set of linac parameters.

A least-square fit of the LiTrack energy spectra to an experimental energy spectrum

yields the parameters of the linac which best represent the experimental event and

the corresponding longitudinal phase space. Figure 4.20 displays several examples of

LiTrack fits to experimental events.

Figure 4.21 displays the sum of the squared difference between the LiTrack energy

spectra and an experimental energy spectrum plotted versus the LiTrack peak current.

As the least-square difference decreases, the LiTrack simulations converge to a single

value in peak current. Thus, the drive bunch’s energy spectrum is uniquely related

to its longitudinal peak current.

As discussed in Sec. 4.4.4, the pyroelectric detector is used as a qualitative bunch
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Variable Value and Range Units
Initial Number of Electrons 1.75 : 0.05 : 2.00 1010

Initial Bunch Length, σz, 5.5 : 0.1 : 5.8 mm
Initial Bunch Asymmetry 0.230 : 0.010 : 0.260 dimensionless

Initial Bunch Position -1.8 : 0.15 : 0 mm
U0 of the Compressor Cavity 41.5 : 0.1 : 42.8 MeV

Energy Acceptance of the RTL 0.02 : 0.005 : 0.03 δE/〈E〉
φramp -2.55 : 0.15 : 0.6 degrees

Table 4.2: The values and ranges of the SLAC linac parameters.
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Figure 4.20: A few randomly chosen examples of LiTrack matches to data, courtesy
of I. Blumenfeld.

length measurement. In addition, the pyroelectric detector is paired with LiTrack sim-

ulations to produce a quantitative bunch length measurement. The LiTrack matching

for a single set of data is used to determine an empirical relationship between the py-

roelectric detector signal and the drive bunch peak current. Note, the data contained

in this dissertation came from experiments in August of 2005 and April of 2006. As

the experimental setups were not identical, the exact relationship between the pyro-

electric detector signal and the peak current differ. Figures 4.23 and 4.22 display the

pyroelectric detector signal dependence on the drive bunch peak current for April 3rd

of 2006 and August 14th of 2005, respectively, as measured with LiTrack matching.
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Figure 4.21: The sum of the squared difference between the LiTrack energy spectra
and an experimental energy spectrum plotted versus the LiTrack peak current. This
demonstrates the uniqueness of LiTrack matching.
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Figure 4.22: The drive bunch peak current versus the pyroelectric signal on August
14th of 2005, where LiTrack matching determined the peak current.

LiTrack matching is time consuming, so this data is used to determine a drive bunch’s

peak current, Id, from the pyroelectric detector signal, pyro. The fit for April 3rd of

2006 yields

Id = 41.3 · pyro + 6330, (4.28)
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Figure 4.23: The drive bunch peak current versus the pyroelectric signal on April 3rd

of 2006, where LiTrack matching determined the peak current.

and the fit for August 14th of 2005 yields

Id = 30.2 · pyro + 4600, (4.29)

where Id is in units of Amps.



Chapter 5

Experimental Results

5.1 Introduction

This chapter presents experimental measurements of the onset in plasma electron

trapping and of the trapped electron bunch properties. The onset of trapping is mon-

itored with charge measuring toroids that are up- and downstream of the heat-pipe

oven. A measurement of more charge exiting the heat-pipe oven than went into it

indicates that plasma electrons were trapped in the drive bunch’s wake. System-

atic variations of the plasma density and the drive bunch parameters demonstrate

the dependence of the onset in electron trapping on these quantities. In addition,

a combination of the experimental diagnostics, presented in the previous chapter,

yield a general picture of the six-dimensional (−→x and −→p ) distribution of the trapped

electrons.

5.2 Overview of PWFA Experimental Results

Plasma electron trapping was auxiliary to the main thrust of the PWFA experiments,

which was to examine the basic propagation and acceleration properties of plasma

wakes driven by intense electron drive bunches. Before proceeding to the trapped

electron measurements it is important to present an overview of the other results

achieved within the same set of experiments.

Earlier experiments demonstrated the basic focusing properties of the ion bubble

109
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[56] and the scale of the fields in a PWFA [26]. The most recent set of experiments

investigated these properties with a plasma column that was long enough to drive

the minimum energy of the drive bunches to near zero (meter scale). Although these

experiments did not reach complete energy depletion, they did achieve the significant

milestone of energy doubling for some of the electrons in the back of the drive bunch [9]

(see Fig. 5.1).
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Figure 5.1: Energy doubling of 42 GeV electrons. a) An image from A2 of the large
dipole spectrometer. b) The measured energy spectrum of the drive bunch compared
to a QuickPIC simulation of the experiment. Reprinted by permission from Macmillan
Publishers Ltd: Nature (445, 741), copyright (2007).

As a drive bunch propagates through plasma, the ionization front recedes into the

bunch and causes the head of the bunch to erode (see Fig. 5.2a and Sec. 1.5.5). Head

erosion kept the maximum energy of the drive bunch electrons from extending beyond

energy doubling. During the experiment, the erosion was fast enough to cause the
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location of the decelerating part of the plasma wake to slip to the former location of

the accelerating part of the wake. As displayed in Fig. 5.2b, this caused the maximum

observed energy in the experiment to decrease as the plasma oven length increased

beyond 85 cm.
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Figure 5.2: Head erosion of a 42 GeV electron bunch. a) The plasma wake at the
beginning of the heat-pipe oven and b) after a significant amount of head erosion
has occurred (from a QuickPIC simulation). c) The maximum energy of electrons
measured in the experiment and from the simulations at the experimental measure-
ment threshold versus propagation length. Reprinted by permission from Macmillan
Publishers Ltd: Nature (445, 741), copyright (2007).

In addition to the useful propagation properties of the plasma wake, the strong

focusing of the ion bubble causes the emission synchrotron radiation from the drive

bunch electrons. The energy that a drive bunch electron loses to synchrotron radia-

tion, Wloss, per unit length is

Wloss =
4π2

3
mc2r3

en
2
pγ

2r2
0, (5.1)

where r0 is the maximum radius of the electron. A set of experiments found that this

radiation consists of photons with tens of MeV in energy, which could be used with

a target as a positron source for high energy colliders [30].
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5.3 Onset of Plasma Electron Trapping

Earlier experiments first observed plasma electron trapping in a PWFA and identified

the underlying trapping mechanism, ionization induced electron trapping [58]. These

experiments focused on the longitudinal electric field in the plasma wake required

to cause the onset of electron trapping. At a plasma density of 1.6·1023 m−3, they

observed a sudden onset in electron trapping for an average drive bunch energy loss

above 0.9 GeV. This average energy loss value was linked, using simulations, to a 36

GV/m accelerating field at the back of the wake.

Instead of using simulations to connect the onset of trapping to the maximum

accelerating field, the onset can be directly related to the maximum decelerating field

sampled by the drive bunch. The maximum energy lost by the drive bunch electrons

divided by the length of the plasma is a measurement of this maximum decelerating

field. A change in the amount of longitudinal compression on the drive bunch varies

the bunch’s peak current and the value for the maximum decelerating field. Figure

5.3 displays the number of trapped electrons versus the maximum decelerating field,

where the number of trapped electrons results from the subtraction of the amount of

charge measured in an upstream toroid from a downstream one. As discussed in Sec.
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Figure 5.3: The number of trapped electrons, Nt, versus the maximum decelerating
field. An onset in electron trapping occurs above a decelerating field of 10 GV/m.

2.4, longitudinal accelerating fields of order mcωp/e are required to initiate electron

trapping. The data in Fig. 5.3 corresponds to a plasma density of 2.7 · 1023 m−3,

where mcωp/e = 50 GV/m. This data shows that the threshold for trapping occurs

below mcωp/e at a value of 10 GV/m (0.2 ·mcωp/e). Note, the scale calculation in
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Sec. 2.4 treats the distance from the center of the ion bubble to the back as 1/kp. This

distance actually exceeds 1/kp, which allows trapping to occur at field strengths below

mcωp/e. In simulations the onset of electron trapping occurs at a similar decelerating

field. Recall Fig. 2.5, which showed an onset of trapping at Id = 8.62 kA (≈ IA/2).

The maximum decelerating field experienced by the core of the drive bunch in this

simulation is 0.21 ·mcωp/e.

The drive bunch and plasma properties are the controllable experimental param-

eters, so it is important to focus on the onset of trapping with these parameters.

Chapter 2 derives the requirements on the drive bunch to cause the onset of plasma

electron trapping: the drive bunch must at least have a critical number of electrons,

Ncrit = 1/(kpre), and a critical peak current, Icrit = ec/(2re) ≈ 8.5 kA. At a plasma

density of 2.7 ·1023 m−3, where most of the experiment took place, Ncrit = 3.6 ·109. In

the experiment, the drive bunches had a fixed number of electrons equal to 1.8 · 1010

(5Ncrit); however, they had a variable peak current on the order of Icrit. A variation

in the amount of longitudinal compression on the drive bunch produces peak currents

that extend above and below Icrit. Figure 5.4 displays the number of trapped elec-

trons versus the drive bunch peak current. This data shows that the onset in electron

trapping occurs at the theoretically predicted value of Id = Icrit ≈ 8.5 kA.
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Figure 5.4: The number of trapped electrons, Nt, versus the drive bunch peak current.
An onset in electron trapping occurs above a peak current of IA/2 (denoted by the
red dotted line).

There was also an onset in electron trapping measured versus plasma density.

Figures 5.5 and 5.6 display this onset for drive bunches with peak current from 12
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to 14 kA and 15 to 17 kA, respectively. Note, the data contained in these plots

was taken in conjunction with the experiment on gamma ray production [30]. Recall

from Eq. 5.1 that more radiation results from larger oscillations of the drive bunch

electrons (larger r0). Thus, the signal in the gamma ray production experiment was

maximized with drive bunches that have large transverse sizes in the plasma. This

is an important fact needed to explain the onset of electron trapping versus plasma

density.
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Figure 5.5: The number of trapped electrons, Nt, versus plasma density for drive
bunches with Id in the range of 12 to 14 kA, where error bars denote a standard
deviation of the data points.

A properly matched transverse size for the drive bunch’s transverse normalized

emittance of εN,x = 60 µm is of order σx ≈ 2 µm (and is smaller in y). However, more

gamma rays result from a larger transverse size, so the drive bunches that correspond

to the data (Figs. 5.5 and 5.6) were purposely mismatched. At the entrance to the

heat-pipe oven, the drive bunches were focused transversely to a size of 10 µm. While

a properly matched bunch would be focused further by the roll-up in plasma density,

a purposely mismatched bunch could have a transverse size of 10 µm or larger. Recall

Eq. 2.31; the maximum electric field for a drive bunch with σx = 10 µm and Id = 12

kA is 32.5 GV/m, which is of the same order as mcωp/e for these plasma densities

(30.4 GV/m for np = 1023 m−3). Also, recall Ez from Fig. 1.2; this shows Ez reaches

3 ·mcωp/e at the back of the bubble. Thus, the maximum magnitude of the electric

field in this system is some factor of order unity times mcωp/e.
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Figure 5.6: The number of trapped electrons, Nt, versus plasma density for drive
bunches with Id in the range of 15 to 17 kA, where error bars denote a standard
deviation of the data points.

Near the plasma density range of Figs. 5.5 and 5.6, the ionization rate of helium

from an electric field of mcωp/e becomes on the order of ωp. For densities significantly

below this range, Γ(mcωp/e) ¿ ωp, so helium atoms would not become ionized in

the wake. Thus, trapping would not occur. Figure 5.7 further illustrates this point.

This figure shows the probability of helium ionization for several electric fields near

mcωp/e over a time of 1/ωp versus plasma density. At the point of the onset in electron

trapping, the fields in the system become large enough to ionize helium. Thus, this

is the reason for the onset of electron trapping versus plasma density.

The onset of electron trapping at a plasma density of 1023 m−3 is not intrinsic

to the PWFA, but is due to the large transverse size of the drive bunches in this

data set. If the drive bunches had matched transverse sizes, they would have ionized

helium without the aid of the plasma fields. For example, compare the locations of

the onset in electron trapping for Figs. 5.5 and 5.6. The drive bunches with Id from

15 to 17 kA (Fig. 5.6) had larger transverse electric fields than those with Id from 12

to 14 kA (Fig. 5.5), which caused the onset of electron trapping at a lower plasma

density.
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Figure 5.7: The probability of helium ionization from the electric fields of |E| =
mcωp/e, 2 ·mcωp/e, and 3 ·mcωp/e over a time of 1/ωp (1− exp[−Γ(|E|)/ωp]) versus
plasma density, where the ionization rate is calculated with Eq. 2.19.

5.4 Trapped Electron Bunch Properties

A combination of the spectra from the large dipole and the low energy mask spec-

trometers creates a total momentum spectrum for the trapped electrons. In addition,

the transverse size of a trapped electron bunch on the large dipole spectrometer is

a measurement of the bunch’s transverse emittance over peak current. This mea-

surement is combined with insights from simulations to yield an upper limit for the

transverse emittance of the trapped electron bunch.

5.4.1 Trapped Electron Momentum Spectrum

The dispersion of the small dipole magnet allows the mask to collect electrons below

a momentum cutoff and the toroid to measure the total number of electrons with mo-

mentum above the cutoff [34]. Figure 5.8 displays the number of electrons measured

by the toroid versus the momentum cutoff. This data shows that a large amount of

this charge is at or below a momentum of 10 MeV/c. These very low energy electrons

originate from the downstream transition region of the heat-pipe oven.

The low energy mask spectrometer had a maximum momentum cutoff at around

200 MeV/c, so the large dipole energy spectrometer was required to measure the

electrons of higher energies. Many of the measurements for the trapped electron

properties came from this high energy spectrometer. As mentioned in the previous
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Figure 5.8: The number of trapped electrons with momentum above the cutoff, N>,
versus the momentum cutoff, from the low energy mask spectrometer. The various
data markers denote different ranges in the drive bunch peak current. This data
corresponds to a plasma density of 2.7 · 1023 m−3 and a plasma FWHM length of 85
cm.

chapter, the large dipole spectrometer images the dispersion of the electrons from the

Cherenkov radiation that they emit through air gaps. The accelerating and deceler-

ating fields were of order 50 GV/m and the plasma had a FWHM length of 85 cm,

so the trapped electrons were accelerated to energies comparable to the decelerated

electrons from the drive bunch. This places some of the trapped electrons at the same

location in the spectrometer as the drive bunch electrons. Before progressing further

into the measurement of the trapped electrons on the large dipole spectrometer, it is

important to first present how the trapped electrons are distinguished from the drive

bunch electrons.

Figure 5.9 displays a typical large dipole spectrometer image. In addition to

the signature for energy loss on the drive bunch, when Id approaches IA/2, narrow

electron streaks appeared in the spectrometer images [34]. Since the streaks had

energies lower than the initial drive bunch energy (42 GeV), they were the result of

either the wake accelerating plasma electrons from 0 GeV or decelerating drive bunch

electrons from 42 GeV. A variation of the drive bunch longitudinal length changed

the magnitude of Ez in the wake. Figures 5.10a and 5.10b show that as stronger

plasma wakes decreased the minimum energies of the drive bunches, the maximum
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Figure 5.9: a) An image from the large dipole energy spectrometer, viewed with
a saturated color map. b) Root mean square x width in the spectrometer image
versus energy. The thinnest part of the streak was determined to be trapped plasma
electrons, while the wider part consists of drive bunch electrons. Reprinted with
permission from [36]. Copyright 2007, Institute of Electrical & Electronics Engineers.

energies of the electron streaks increased, so the streaks were in the accelerating part

of the wakes. Thus, the streaks were trapped plasma electrons.

For most of the experiment the large dipole had
∫

B ·dl = 1.2 or 0.27 Tm; however,

for several data sets the dipole strength was varied, where it had a minimum value

of
∫

B · dl = 0.016 Tm. The corresponding minimum measurable energies for these

values of
∫

B · dl are 11, 2.3, and 0.14 GeV, respectively. A combination of the

measurements from these three magnet settings results in a momentum spectrum for

the trapped electrons from just above 200 MeV/c to 10 GeV/c. Trapped electrons also

appeared with momentum above 10 GeV/c; however, their maximum momentum was

at times greater than the minimum momentum of the drive bunch. This placed the

trapped electron streak on top of the drive bunch electrons in the spectrometer images.

To avoid the inclusion of drive bunch electrons in the trapped electron momentum

distribution, only data points below a momentum of 10 GeV/c are incorporated in

the distribution. Figure 5.11 displays the trapped electron momentum distribution
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Figure 5.10: a) A saturated image from the energy spectrometer, where the black
contour lines show the drive bunch spot size in the absence of plasma acceleration.
Trapped electrons appeared as streaks with rms x sizes that were much smaller than
that of the drive bunch. The black plus signs denote the maximum energy of the
electron streak, Emax, and the minimum energy of the drive bunch, Emin, after ac-
counting for the natural spot size of the electron bunches [10]. b) The quantity Emax

versus Emin, where the difference between the streak and drive bunch x rms size al-
lows for a measurement of Emax, even when it extends above Emin. Reprinted with
permission from [39]. Copyright 2009, American Physical Society.

from the large dipole spectrometer for several ranges of drive bunch peak current.

A combination of the data from the mask spectrometer and the large dipole spec-

trometer yields a total momentum spectrum of the trapped electrons. However, the

raw data from the mask spectrometer must first be converted to a momentum spec-

trum. The momentum spectrum for the trapped electrons is given by the derivative

in pz of the raw data from the mask spectrometer. Instead of taking the derivative of

raw data, the data is first fit and then differentiated with respect to pz. The spectra

resemble lines in a logarithmic plot, so a power law is a natural assumption for the

fit. Equation 5.2 displays the assumed form of this power law.

N> = Apβ
z , (5.2)

where N> is the number of electrons above a momentum of pz. A Hall probe that

was inserted into the small magnetic dipole determined the momentum cutoff. This

probe was calibrated to known integrated magnetic field settings. The normal error

in this measurement was 2.4 MeV/c. Thus, to avoid fitting errors, only data points

with momentum greater than 5 MeV/c are included in the fits. These fits of N> are
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Figure 5.11: The spectral density of the trapped electron, dNt/dpz, versus momentum,
pz, for several different ranges of drive bunch peak current, from the large dipole
spectrometer. Error bars denote a standard deviation of the spectral density. At
times the standard deviation approached or exceeded the mean value, so the total
ranges for some of these error bars are not plotted.

converted to a momentum density as follows.

dNt/dpz = −dN>/dpz = −βApβ−1
z . (5.3)

Figure 5.12 displays the total trapped electron momentum spectrum.

Electron trapping occurred at both the up- and downstream transition regions

between helium and lithium; the electrons trapped in these different regions had dif-

ferent properties. As the drive bunch traversed the heat-pipe oven, electrons became

trapped in small regions at the back of the accelerating portions of the wake. In the

upstream boundary, the plasma wavelength shortened as the drive bunch traversed

the boundary, but remained fixed inside the pure lithium region. Electrons trapped

at densities significantly lower than 2.7 · 1023 m−3 ended up in the decelerating part

of the wake as the plasma wavelength shortened, so they did not remain trapped.

This resulted in small longitudinal bunch lengths for the trapped electrons from the

upstream transition region. In addition, these electrons accelerated throughout the

85 cm of lithium, so they reached high energies (≈30GeV). The same was not true for

the trapped electrons from the downstream boundary. There, the plasma wavelength



5.4. TRAPPED ELECTRON BUNCH PROPERTIES 121

10
−3

10
−2

10
−1

10
0

10
1

10
8

10
10

10
12

p
z
 [GeV/c]

dN
t/d

p z [c
/G

eV
]

 

 

15 kA < I
d
 < 18 kA

18 kA < I
d
 < 21 kA

21 kA < I
d
 < 24 kA

Figure 5.12: The spectral density of the trapped electron, dNt/dpz, versus momentum,
pz, for several different ranges of drive bunch peak current, from a combination of the
large dipole spectrometer (data points) and the low energy mask spectrometer (solid
lines). The linear trends from the mask spectrometer agree with that from the large
dipole spectrometer.

increased as the drive bunch traversed the boundary. As this plasma wavelength in-

creased, additional trapping occurred at the new position for the back of the wake,

resulting in a relatively large amount of low energy charge with long longitudinal

bunch lengths.

The measured maximum energy and total charge of the trapped electrons are

evidence that electron trapping occurred in both transition regions. First, the accel-

erating field was of order 50 GV/m, so the high energy (30 GeV) trapped electrons

must have accelerated through the plasma for on the order of a meter. Since the

lengths of the transition regions were only a few cm, these high energy trapped elec-

trons must have originated from the upstream region.

Now, consider the total charge of the trapped electrons. Figure 5.6 shows that

the number of trapped electrons reached almost 6·1010. As is discussed in Ch. 2 and

is shown in Fig. 2.5, only a charge of scale 1/(kpre) is required to completely load the

wake and turn off further trapping. For np = 2.7 ·1023 m−3, 1/(kpre) = 3.6 ·109, which

is much smaller than the measured trapped charge. Even considering the additional

trapped charge that appears in multiple buckets (see Tbl. 3.1) does not account for

the total amount of charge. Note, however, these simulations and discussions concern

the loading of the wake when the plasma density is constant.
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Since the trapped electrons from the upstream transition region accelerated through

the full length of the plasma at a constant density, the loading arguments properly

describe the amount of trapped electrons that originate from this region. However,

as the drive bunch traversed the roll-off in plasma density at the downstream tran-

sition region, the plasma wavelength increased, which created additional trapping at

the new position for the back of the bubble. This allowed the amount of trapped

charge to exceed that expected for plasma of constant density. Thus, the total charge

measured for the trapped electrons is evidence of trapping in the downstream region.

5.4.2 Cherenkov Cell Energy Spectrometer

Measurements of the trapped electrons were also made with the Cherenkov cell spec-

trometer. The data from this spectrometer corresponds to lithium vapor FWHM

lengths of 13, 22.5, and 30.5 cm, a plasma density of 2.7 · 1023 m−3, and a drive

bunch initial energy of 28.5 GeV. These relatively short plasma oven lengths kept

the minimum energy of the drive bunch above the maximum energy for the trapped

electrons, which allowed for the distinction between the two. The drive bunch peak

current varied throughout the data runs, which changed the amount of trapped elec-

trons. For about 50 % of the shots in the data runs, there appeared two distinct

Cherenkov rings. One ring was from the drive bunch, and the other was from the

trapped electrons. Figure 5.13 shows an example of the two rings. The lack of az-

imuthal symmetry in the Cherenkov rings indicates a lack of azimuthal symmetry in

the bunches that produced the Cherenkov light.

Figure 5.14 displays the energy of the trapped electron Cherenkov ring versus

plasma length. The energy of this ring scaled linearly with the plasma length, which

indicates that the trapped electrons stayed at a fixed accelerating field in the plasma

wake and that they did not slip relative to the drive bunch. Thus, these electrons

were truly trapped.

The Cherenkov ring intensities were at least three orders of magnitude brighter

than the rings from incoherent emission, which were measured from the drive bunch

in the absence of the plasma oven. This meant that the distribution of both the

drive bunch and the trapped electrons had a significant Fourier component at optical

wavelengths along the direction of Cherenkov emission. Put in simpler terms, the
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Figure 5.13: Images from the Cherenkov cell spectrometer with and without the
plasma. Without the plasma only a drive bunch Cherenkov ring appeared.

drive and trapped electron bunches had sub-micron features. In this system, the

characteristic length scales are the drive bunch dimensions and the plasma length

scale. The drive bunch was focused to a transverse spot size of 10 µm and compressed

longitudinally to about 20 µm at the entrance of the plasma [26]. In addition, the

plasma length scale, 1/kp, was 10 µm. Thus, the bunch-plasma interaction produced

sub-micron features in a system that was initially characterized by tens of µm.

5.4.3 Trapped Electron Divergence

The relationship between the trapped electron streak widths on the large dipole spec-

trometer and their emittance is found from an examination of the transverse propaga-

tion properties from the heat-pipe oven to the energy spectrometer. As will be shown

later, ionization of helium in the buffer gas is an important effect to consider in this

propagation; however, the first step in the analysis is to consider just the focusing

forces from the lithium ions [36]. While exiting the plasma, the electrons traverse a

roll-off in lithium density which creates a roll-off in the focusing forces of the plasma.

A substitution of a variable plasma density into Eq. 1.27 yields a differential equation

that describes the transverse evolution of the electrons through the roll-off:

ẍ +
np(z)e2x

2ε0γmc2
= 0, (5.4)
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Figure 5.14: The energy of the trapped electron Cherenkov ring versus plasma length.
The error bars denote a standard deviation in the ring energy at a given plasma length.

where dots represent derivatives in z, np(z) is the ion density as a function of z, and γ̇

is assumed to be zero. The density roll-off is fit well by a Gaussian with an rms width

of σp = 3.97 cm. Thus, the following equation represents the transverse propagation

through the roll-off.

ẍ + K exp(
−z2

2σ2
p

)x = 0, (5.5)

K =
npe

2

2ε0γmc2
. (5.6)

The propagation of the electrons from the beginning of the roll-off, z = 0, to the

position of the air gap, z = 3.04 m, is described by a transfer matrix, R [13]. This

transfer matrix determines the final transverse position, xf , and the final transverse

angle, ẋf , from the initial transverse position, x0, and the initial transverse angle, ẋ0:

(
xf

ẋf

)
= R

(
x0

ẋ0

)
=

(
R11 R12

R21 R22

)(
x0

ẋ0

)
. (5.7)

The final transverse width at the spectrometer, 〈x2
f〉, is determined by the initial

bunch properties and by the cosine-like term, R11 = C, and the sine-like term, R12 =
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S, of the transfer matrix:

〈x2
f〉 = 〈x2

0〉C2 + 〈x0ẋ0〉2CS + 〈ẋ2
0〉S2. (5.8)

Equation 5.5 was solved numerically for C and S as a function of energy. Figure 5.15

displays C and SK1/2 versus electron energy. As is to be expected, the cosine-like

and sine-like terms are π/2 out of phase with each other.
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Figure 5.15: The cosine-like, C, and sine-like, S, (plotted as SK1/2) terms of the
transfer matrix from within the plasma to A1 of the large dipole spectrometer versus
electron energy. Reprinted with permission from [36]. Copyright 2007, Institute of
Electrical & Electronics Engineers.

From the oscillatory nature of C and S, shown in Fig. 5.15, a modulation in the

streak widths as a function of energy might be expected; however, these widths did

not exhibit such a modulation. Due to the sinusoidal natures of C and S, the only

way for the width not to oscillate in energy is for the C2 and S2 terms (of Eq. 5.8)

to have the same amplitude and for the amplitude of the CS term to be zero. Figure

5.15 shows that C and SK1/2 have the same amplitude. Thus, the initial phase space

of the trapped electrons satisfied the following criterion.

〈x0ẋ0〉 = 0. (5.9)

〈x2
0〉 = K〈ẋ2

0〉. (5.10)

Recall from Eq. 1.45 that these are the definitions for a matched bunch. Therefore,

the absence of an oscillation in the transverse width of the streaks versus energy is
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evidence that the trapped electrons were matched to the plasma.

The conditions in Eqs. 5.9 and 5.10 are substituted into Eq. 5.8 to yield the

relationship between the size on the diagnostic and the size in the plasma:

〈x2
f〉 = 〈x2

0〉(C2 + KS2). (5.11)

Also, the conditions of Eqs. 5.9 and 5.10 are combined with the definition for trans-

verse emittance to give the relationship between the emittance and the bunch size in

the plasma. Then, this is inserted into Eq. 5.11 to yield the relationship between

the transverse normalized emittance, εN,x, and the transverse bunch size at the large

dipole spectrometer:

εN,x =
γK1/2〈x2

f〉
C2 + KS2

≈ 0.0022m−1γ1.06〈x2
f〉. (5.12)

As displayed in Eq. 5.12, the factor in front of the bunch transverse size is fit well

by a power law in γ. This fit was performed for γ greater than 4,000 and less than

60,000, which was the range over which the trapped electron transverse emittance

was determined. Figure 5.16 displays a contour plot of the measurements for the

transverse normalized emittance of the trapped electrons versus energy, as determined

by Eq. 5.12. Recall that this measurement ignores the effects of helium ionization.

The lowest emittances determined by this method extended below 1 µm. Note, the

trapped electrons appeared with transverse sizes near the camera resolution [36].

Thus, as γ increases so do the measurements of εN,x; this is a consequence of a fixed

camera resolution instead of a property of the trapped electrons.

So far the propagation has only included the focusing forces of the Gaussian

density roll-off in lithium ions, ignoring the effects of helium ionization [36]. Under

this assumed propagation model, the trapped electrons appear to achieve emittances

better than 1 µm with transverse sizes that are matched to the plasma. A comparison

between these conclusions and measurements from the energy spectrometer results in

self-consistency problems. Trapped electron bunches that have matched transverse

sizes for µm level emittances and the amount of charge indicated on the energy

spectrometers could ionize helium, which makes the assumed Gaussian quadrupole

focusing model invalid.
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Figure 5.16: The measured transverse normalized emittance of the trapped electrons
versus energy, ignoring the effect of helium ionization. The black line represents the
system resolution.

The following sections show how the measurement of the trapped electron bunch

properties changes in the presence of helium ionization. First, there is an overview

of the requirements to ionize helium. Then, simulations and charge measurements

from the energy spectrometer combine to show that the trapped electrons satisfied

these requirements. Finally, upper bounds on the transverse size and divergence of

the trapped electron bunches, at the point they started to diverge freely, yield an

upper limit measurement of the transverse emittance over the peak current for these

bunches [37,39].

Ionization depends heavily on the applied electric field: small increases in the

electric field lead to large increases in the ionization rate [1, 14]. The probability

of ionization depends on the ionization rate and the duration of the applied field.

Gaussian bunches with σz = 0.5, 1.9, and 5 µm have a 0.5 probability of helium

ionization with peak electric fields of 113, 95.7, and 86.1 GV/m, respectively. Despite

an order of magnitude increase in the bunch length, from 0.5 to 5 µm, the electric field

required for ionization only decreases by 24%. The peak electric field of an electron

bunch with σx = σy is proportional to It/σx, where It denotes the bunch’s peak

current. For a given longitudinal bunch length, the maximum transverse size capable

of ionizing helium, σm, is proportional to the peak current: σm = αIt, where α is the

proportionality constant when the ionization probability at the peak field position of
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a Gaussian bunch is equal to 0.5. Due to the high sensitivity of the ionization rate to

the electric field, the quantity α is only weakly dependent on the bunch length: for

σz = 0.5,1.9, and 5 µm, α = 2.39, 2.83, and 3.14 · 10−10 m/A, respectively.

Three-dimensional OSIRIS [22] simulations provided the basic length scale of the

trapped electrons in the experiment. These simulations were for Gaussian drive

bunches with 1.8 · 1010 electrons, σx,y = 1.74 µm, σz varied from 10 to 50 µm in

10 µm steps, and represent the experimental drive bunches. The lithium density

was 2.7 · 1023 m−3, with a small background helium density of 8.1 · 1021 m−3. In x,

y, and z, the simulation grid size was 1/2 µm with either 2 or 4 particles per cell.

Second order particle shapes were used to reduce numerical noise [20]. The trapped

electron bunches had longitudinal FWHM lengths ranging from 2.7 to 6.3 µm, which

correspond to Gaussian bunches with σz = 1.1 and 2.7 µm, respectively. Since σz

= 1.9 µm is in the middle of the simulation range, the corresponding value of α =

2.83 ·10−10 m/A is most appropriate for describing the experiment. Note, the simula-

tions did not include the Gaussian roll-offs of the heat-pipe oven, so the longitudinal

characteristics from the simulations are only representative of the trapped electrons

from the upstream boundary.

A combination of the emittance measurements (from Fig. 5.16), simulation results,

and charge measurements of the upstream trapped electrons shows that the trapped

electron bunches could ionize helium [37]. The total momentum spectrum (see Fig.

5.12) includes trapped electrons from both the up- and the downstream transition

regions, but the latter could not reach energies as high as the former. Let Em denote

the maximum energy achievable for the downstream trapped electrons. An integral

of the accelerating field scale, mcωp/e (
√

mc2np(z)/ε0), over the downstream lithium

density profile yields Em as

Em = e
√

mc2np(z0)/ε0

∫ ∞

z0

exp(
−(z − z0)

2

4σ2
L

)dz = 3.5 GeV. (5.13)

As the plasma wavelength increases, the position of the maximum accelerating field

changes. Equation 5.13 ignores this effect, but is still useful for setting the scale for

Em. The integration of the trapped electron energy profiles above 3.5 GeV yields a

lower limit for the total amount of trapped charge from the upstream boundary. For
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drive bunch peak currents in the intervals of 8.3 to 11.0, 11.0 to 13.2, 13.2 to 15.1,

15.1 to 16.8, and 16.8 to 18.4 kA, the trapped bunch from the upstream transition

region had more than 1.34, 1.67, 1.65, 1.90, and 2.06·109 electrons, respectively. The

matched transverse size for a 3.5 GeV electron bunch with εN,x = 1.0 µm is 0.42

µm at a plasma density of 2.7 · 1023 m−3. Recall that a bunch can ionize helium if

It > σx/α. Therefore, a Gaussian bunch with 1.34·109 electrons and σx = σy = 0.42

µm can ionize helium for σz < 17 µm, which is an order of magnitude larger than

the simulations indicate. Thus, an analysis of the trapped electron properties when

assuming no helium ionization yields the conclusion that the trapped electrons could

ionize helium. This is a proof by contradiction of the helium ionization. In addition,

the drive bunches, if properly matched to the plasma, were also capable of ionizing

helium. Therefore, the helium buffer gas is an important factor to include in the

propagation of the trapped electrons to the energy spectrometer.

In the presence of helium ionization, an upper limit measurement of εN,x/It results

from the determination of upper bounds for the trapped electron bunch’s transverse

size and divergence at the point it started to diverge freely [37]. The trapped electrons

diverged freely either before or when they reached the downstream beryllium window.

Thus, the transverse size at the spectrometer air gap, σ, divided by the length from

the beryllium window to this air gap, L = 193 cm, is an upper limit measurement of

the angular divergence.

Ionization of helium created an ion bubble that was capable of confining the

trapped electrons transversely in the helium buffer gas. Note, the driver of the helium

wake was subject to head erosion: the front of the bunch did not experience a focusing

field so it expanded, which caused the front of ionization to move further into the

bunch [9]. As mentioned earlier, both the drive and trapped bunches were capable of

ionizing helium. For the trapped electrons to have diverged before they reached the

downstream beryllium window, the ionization front had to move through both the

drive and trapped bunch. A bunch that was too large transversely to ionize helium

would have diverged freely. Thus, the maximum transverse size for the trapped

electron bunches at the point they started to diverge freely was σm = αIt.
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Equation 5.14 expresses the transverse normalized emittance.

εN,x = γ
√
〈x2〉〈ẋ2〉 − 〈xẋ〉2. (5.14)

Until the bunches began to diverge freely, the xẋ correlation term was small. An

inequality then replaces Eq. 5.14:

εN,x < γσxσẋ, (5.15)

where σẋ represents the rms size of the bunch in ẋ. The substitution of σm and σ/L

into this upper limit for emittance yields an upper limit measurement of εN,x/It:

εN,x

It

<
γασ

L
. (5.16)

Figure 5.17 shows the measurement of εN,x/It from this equation, where contours

represent the density of data points.
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Figure 5.17: A contour plot of the measured upper limit for εN,x/It of the trapped
electrons versus energy, obtained from Eq. 5.16, where the black line represents the
system resolution. Reprinted with permission from [39]. Copyright 2009, American
Physical Society.
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5.4.4 Transverse Emittance and Peak Current

Information from simulations can turn the measurements of εN,x/It into upper and

lower limits for the trapped electron transverse emittance and peak current, respec-

tively [39]. Once enough electrons become trapped, they load the accelerating field

and cease additional trapping. The OSIRIS simulations (presented in the previous

section) ran until the trapped electrons loaded the wake and turned off further trap-

ping, resulting in a maximum achievable trapped electron peak current, It,m. For

Id = 34.5, 17.2, 11.5, 8.62, and 6.90 kA, It,m = 125, 80.3, 42.2, 17.3, and 2.60 kA,

respectively. For more detail, consult Sec. 3.3.

From the simulated relationship between Id and It,m, a likely It,m was determined

for each experimental event; this value combined with the upper limit for εN,x/It yields

an upper limit of εN,x for each event [39]. The trapped electron bunches appeared with

rms x sizes near the system resolution [36]. Thus, as γ increases so does the upper

limit of εN,x/It; this is a consequence of the system resolution instead of a property

of the trapped electrons. Both the theoretical model and simulations indicate εN,x is

not very dependent on energy (see Sec. 3.2), so the upper limit of εN,x/It for each

event came from an average over a low energy interval of 2.3 to 3.0 GeV, where there

is the best resolution. Figure 5.18 shows the determined upper limits of εN,x from the

experiment compared to the simulated values of εN,x (presented in Ch. 3). As would

be expected, the upper limits are larger than the simulated values; however, they are

not gross overestimates. The minimum value achieved for the upper limit of εN,x is 4

µm, which is close to the theoretical prediction of 1/(4kp) (2.5 µm) and smaller than

the drive bunch transverse emittance.

Similarly, the theoretical model shows there is a minimum scale for εN,x; a combi-

nation of this scale with the measured upper limit for εN,x/It results in a lower limit

for It. Since simulations achieved emittance below 1/(4kp), the minimum emittance

in the simulations, 1.76 µm (see Sec. 3.2), is used for the minimum emittance scale.

The experimental shot with a 4 µm upper limit for εN,x had a measured value of

εN,x/It < 0.19 µm/kA, which suggests that the It was greater than 9.2 kA [39].

Measurement uncertainties are dominated by systematic errors. The definition of

α corresponds to a bunch with σz = 1.9 µm and an ionization probability at its peak

field position equal to 0.5. If the trapped bunch lengths varied over the same range
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Figure 5.18: The upper limit of εN,x for 65 experimental events (Lim.) and the
simulated values of εN,x (Sim.) versus the drive bunch peak current, Id. Reprinted
with permission from [39]. Copyright 2009, American Physical Society.

displayed in the simulations, it would lead to as much as a 6% error in α. In addition,

the definition of α by a 0.5 ionization probability is somewhat arbitrary. Determining

α by an ionization probability of 0.1 yields a 22% growth in α; however, simulations

using the code QuickPIC [27] indicate that the 0.5 probability condition is more than

sufficient in defining the maximum trapped electron transverse bunch size. Other

systematic errors are introduced by the camera resolution and the neglect of the xẋ

correlation term; both of these terms result in an overestimate of εN,x/It. The net

result of the errors is a measurement that is systematically larger than the actual

εN,x/It. Furthermore, the determination of εN,x and It from εN,x/It is done assuming

the maximum possible peak current and the minimum possible emittance, so these

determined values will be systematically larger and smaller, respectively, than the

actual values.

5.5 Conclusion

This chapter presents measurements addressing both the properties of the trapped

electron bunches and methods to terminate them. As discussed in Sec. 2.7, one of

the methods to terminate plasma electron trapping for a PWFA-based high energy

collider is to use an electron drive bunch with a peak current below IA/2. The

measurements here confirm this prediction.

A combination of the data from the energy spectrometers yields a measurement of



5.5. CONCLUSION 133

the trapped electron momentum distribution over more than 3 orders of magnitude

in momentum. In addition, the transverse width of the trapped electron bunches

at the large dipole energy spectrometer is related to their transverse emittance over

their peak current. This result and simulations indicate that the observed values of

εN,x/It result from multi-GeV trapped electron bunches with emittances of a few µm

and multi-kA peak currents.



Chapter 6

Future Experiments

6.1 Introduction

As shown in the prior chapters, trapped electrons can play a critical role in the drive

bunch-plasma interaction and are also a possible avenue to explore as a particle source.

The experiments described in this thesis yield a basic understanding of the properties

for these trapped electrons. So far, the trapped electron research has been a side study

to the plasma wakefield acceleration experiment. However, moving forward with the

trapped electron research requires for the trapped electrons to advance beyond a side

project.

The main problem with the use of the trapped electrons as a particle source is their

longitudinal emittance. Section 3.7 discusses one idea for improving the longitudinal

emittance. This material is not produced again here, but this would be an excellent

candidate for a future trapped electron experiment.

Other suggestions for future trapped electron experiments can be placed into two

categories: assessing the effect that trapped electrons have on a plasma-based collider

and measuring their properties. The first suggestion could still be run alongside the

plasma wakefield acceleration experiments. However, the second suggestion requires

a completely different plasma source. The remainder of this chapter provides an

overview for a few suggestions of experiments in the two categories.

134
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6.2 Effect of Trapped Electrons

Section 2.7 discusses some of the methods available to terminate electron trapping.

These methods include using low peak current electron bunches (< IA/2), complete

pre-ionization of the vapor, and self ionizing a hydrogen vapor. Measurements in this

dissertation have shown that below a drive bunch current of IA/2 plasma electron

trapping turns off. The next set of experiments could test whether a self-ionized

hydrogen PWFA could cease trapping while retaining a strong accelerating wake.

Another remaining issue is to measure how much of a detrimental effect the trapped

electrons have on the wake. The remainder of this section is devoted to this issue.

Ideally, the effect of the trapped electrons should be quantified by comparing the

energy transferred from a drive bunch to a witness bunch with and without trapping.

However, there is still some research that can occur with a single electron bunch.

Similar to recent experiments, this single bunch must be long enough to sample the

accelerating part of the wake. Then, by measuring the maximum energy achieved by

electrons in the back of the drive bunch, the effect that the trapped electrons have

on loading the wake can be quantified.

The biggest obstacle to performing such an experiment is turning trapping on and

off. One method to turn off trapping is to reduce the peak current of the drive bunch.

This is, however, not ideal for measuring the loading effect of the trapped electrons.

As the drive bunch peak current decreases it naturally creates a weaker accelerating

field, which would make it difficult to differentiate the effect of the trapped electrons

from that of the variation in the drive bunch peak current.

Pre-ionization of the vapor is a more direct method of monitoring the effect of the

trapped electrons. The trapping in recent experiments occurred from the presence of

both helium and lithium, so the termination of trapping only requires a pre-ionization

of the helium-lithium boundary region. Also, only the trapping from the upstream

boundary affects the acceleration of the electrons through the lithium core of the

heat-pipe oven. As the drive bunch traverses the upstream boundary it transitions

from low to high lithium density, which causes the length of the plasma bubble to

shorten. Since trapped electrons reside at the back of the bubble, only the electrons

that are trapped at a plasma density near that of the maximum, 2.7·1023 m−3, remain
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in the accelerating part of the bubble. Figure 6.1 shows an illustration of the bubble

shortening from a two-dimensional OSIRIS simulation. Thus, only a small region of

the upstream boundary would require pre-ionization to terminate the effect of the

trapped electrons.
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Figure 6.1: The loaded accelerating field (black line) and trapped electron current
profile (blue line) from a drive bunch creating a wake in a lithium vapor of density
1.5·1023 m−3 with a background helium vapor density of 1.2·1023 m−3 compared to an
unloaded accelerating field (red line) from a drive bunch creating a wake in a lithium
vapor of density 2.7·1023 m−3. These simulations are for a Gaussian drive bunch with
1.8 · 1010 electrons, matched transverse sizes of σx,y = 1.74 µm, and σz = 20 µm. In
r and z, the simulation grid size is 0.5 µm with 9 particles per cell.

Since this type of pre-ionization only stops trapping in the upstream boundary,

the charge measuring toroid will still measure additional charge from electron trap-

ping in the downstream transition region. Thus, the experimental signature for the

termination of electron trapping at the upstream boundary does not come from the

charge measuring toroid, but would be the absence of the high energy trapped elec-

trons (shown in Fig. 5.9). The presence of these high energy streaks could then be

correlated to the energy spectrum of the drive bunch to determine the loading effect

of the trapped electrons.
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6.3 Trapped Electron Bunch Properties

Chapter 5 showed that the trapped electrons created a plasma wake in the down-

stream helium buffer gas, which kept them confined transversely. The effect of this

confinement made the determination of the trapped electron transverse emittance

difficult: a combination of measurements and simulations was only able to yield an

upper limit for the trapped electron emittance. In addition, the buffer gas affected

the trapped electron energy distribution. A mono-energetic trapped electron bunch

produced in the lithium part of the oven would not appear mono-energetic on down-

stream diagnostics; the bunch would acquire a large energy spread as it drove a

decelerating wake in the buffer gas. Thus, it is important to remove the effect of the

buffer gas to measure the properties of the trapped electron bunches. Helium already

has the highest ground state ionization energy, so the buffer gas can not simply be

switched to another element. Dispensing the buffer gas altogether is the only way

to remove the effect of this region, which requires a complete redesign of the plasma

source.

6.3.1 Need for a New Plasma Source

Since there can no longer be a buffer region, a heat-pipe oven can not be used as

the plasma source. However, the new source must still create a boundary between

the beam-line vacuum of the accelerator and the vapor. Physical boundaries, such as

beryllium windows, would be ruined by contact with the plasma. A couple of other

possibilities are the use of a gas jet or differential pumping. Both of these possibilities

require active vacuum pumping, so they would need to use elements that remain in the

gas phase throughout the pumping process. Otherwise, the elements would coat the

pumping system. Unfortunately, elements like lithium with low ionization potentials

could then no longer be used.

Of the elements that are in the gas phase at room temperature and at atmospheric

pressure, the lowest first ionization potentials occur for radon (10.7 eV), xenon (12.1

eV), chlorine (13.0 eV), and hydrogen (13.6 eV). Radon is radioactive, and chlorine

is toxic. Although xenon has a slightly smaller ionization potential than hydrogen,

its second ionization level (21.2 eV) is lower than the first ionization for helium, so
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multiple ionization would occur. The relative density of the trapping species to the

species that supports the wake would be a desirable experimental variable. However,

this would not be possible for xenon; its first ionization would release the electrons

that support the wake, while its second ionization would release electrons that become

trapped. Thus, the trapping species density would be equal to that of the wake

supporting species. For this reason, the use of a mixed hydrogen and helium vapor is

suggested.

While the ionization potential of hydrogen is much lower than the 24.6 eV required

for helium ionization, it is large enough to produce field ionization problems for the

drive bunch at large radii (discussed also in Sec. 2.7). The reduced radial range of

ionization from the drive bunch lessens the strength of the resulting plasma wake

and decreases the probability of electron trapping. Consider, for example, a standard

drive bunch from recent experiments. This bunch has 1.8 ·1010 electrons with σz = 20

µm (Id ≈ IA). Figure 6.2 shows the radial extend of ionization from this bunch in a

lithium and hydrogen vapor. The ionization probability for hydrogen starts to roll off

around r = 30 µm. At a plasma density of 2.7·1023 m−3, a drive bunch with Id = IA

has a maximum ion bubble radius, Rm, of ≈ 29 µm (see Eq. 2.18). Ideally, the radial

range of ionization should be much greater than Rm. Otherwise, the accelerating

phase of the wake is destroyed (see Sec. 2.7.2).
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Figure 6.2: The ionization probability of hydrogen and lithium versus radius from a
drive bunch with 1.8 · 1010 electrons and σz = 20 µm.

A set of two-dimensional OSIRIS simulations explored the effect of this limited

radial range of ionization on the plasma wake. These simulations were of a Gaussian

drive bunch with 1.8 · 1010 electrons, matched transverse sizes of σx,y = 1.74 µm, and

σz = 20 µm creating a wake in pre-ionized plasma, a hydrogen vapor, and a lithium
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vapor, all with a density of 2.7 · 1023 m−3. In r and z the simulation grid size is

0.5 µm with 9 particles per cell. Figure 6.3a shows the resulting on-axis Ez for the

three different plasma sources. The pre-ionized and lithium plasma wakes are similar;

however, the hydrogen wake differs from the others substantially, particularly in the

accelerating part of the wake. Figure 6.3b displays the resulting on-axis Ψ for the

three different plasma sources. The extent of the radial ionization also substantially

affects Ψ in the accelerating part of the wake, making Ψf considerably higher. This

increase in Ψf decreases the probability of electron trapping.
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Figure 6.3: a) The on-axis Ez and b) Ψ from a Gaussian drive bunch with 1.8 · 1010

electrons, matched transverse sizes of σx,y = 1.74 µm, and σz = 20 µm creating a
wake in pre-ionized plasma, hydrogen vapor, and lithium vapor, all with a density of
2.7 · 1023 m−3 m.

A Gaussian drive bunch with 1.8 · 1010 electrons and σz = 20 µm in a hydrogen-

helium mixed plasma of density 2.7 · 1023 m−3 is not an effective way of producing

trapped electrons. There are, however, a few possible modifications to these parame-

ters that make trapping possible. The first possibility is to increase the peak current
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of the bunch, which increases the radial range of ionization. Another possibility is to

pre-ionize, or at least partially pre-ionize, the hydrogen gas. This also increases the

radial range of the drive bunch-plasma interaction. Finally, the density of the plasma

could be increased. The radius of ionization would remain roughly the same; however,

at higher plasma density Rm decreases. The following sections give an overview of

the requirements for inducing trapping, along with supporting simulations, for these

approaches.

6.3.2 Short Drive Bunches

In recent experiments, a typical drive bunch had σz = 20 µm and a peak current

equal to the Alfvén current; however, shorter bunches were created. A set of two-

dimensional OSIRIS simulations tested the peak current that is required to initiate

trapping in a helium-hydrogen mixed plasma. As in the experiment, the drive bunches

had 1.8 ·1010 electrons, σx = σy = 1.74 µm, and had a variable σz, which changed the

bunch peak current. The plasma was made from a hydrogen vapor of density 2.7 ·1023

m−3 with a 10% relative helium vapor density. In r and z the simulation grid size was

0.5 µm with 9 particles per cell. These simulations ran until the trapped electrons

loaded the wake and turned off additional trapping. Figure 6.4 shows how the amount

of trapped charge increased with decreasing bunch length. Electron trapping begins

to increase at σz below 17 µm. This is near the design limit of the Facilities for

Accelerator Science and Experimental Test Beams (FACET), so the production of

trapped electrons by compressing the drive bunch length alone is marginal at FACET.

6.3.3 Partial Pre-Ionization

Partial pre-ionization of the hydrogen vapor extends the radial range of the bunch-

plasma interaction, which increases the probability of electron trapping. A set of two-

dimensional OSIRIS simulations tested the level of pre-ionization that is required to

initiate trapping in a helium-hydrogen mixed plasma. The drive bunch had 1.8 · 1010

electrons, σx = σy = 1.74 µm, and σz = 20 µm. This bunch created a wake in a

hydrogen vapor of density 2.7 · 1023 m−3 with a 10% relative helium vapor density.
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Figure 6.4: The number of trapped electrons, Nt, versus σz of the drive bunch, where
the drive bunch had fixed total charge of 1.8 · 1010 electrons.

The level of pre-ionization for the hydrogen was varied from zero to one (100%). In r

and z the simulation grid size was 0.5 µm with 9 particles per cell. These simulations

ran until the trapped electrons loaded the wake and turned off additional trapping.

Figure 6.5 shows how the amount of trapped charge increases with the level of pre-

ionization. The number of trapped electrons increases until reaching a pre-ionization

level of 0.4 and then decreases before rising again to reach a maximum for full pre-

ionization. Note, the pre-ionized and bunch-ionized plasma electrons are expelled

from the bunch axis at slightly different times. This causes the wakes produced by

these different electrons to be shifted relative to each other. When there is more of

one type of ionization than the other, that type dominates the wake. However, when

the relative amount of pre-ionized and bunch-ionized plasma electrons are equal, the

interference of the wakes causes a dip in the amount of trapped electrons.

6.3.4 High Vapor Density

The recent experiments had a plasma density of 2.7 ·1023 m−3; however, this could be

changed for future experiments. An increase in the plasma density decreases 1/kp and

the radial ionization range required to induce electron trapping. Note, the minimum

bunch length will not be too much smaller than 20 µm, so the plasma density can

not be raised arbitrarily. A set of two-dimensional OSIRIS simulations tested the
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Figure 6.5: The number of trapped electrons, Nt, versus the level of hydrogen pre-
ionization in a hydrogen-helium plasma.

plasma density increase required to initiate trapping in a helium-hydrogen mixed

plasma. The drive bunches had 1.8 · 1010 electrons, σx = σy = 1.74 µm, and σz = 20

µm. These drive bunches created a wake in four different hydrogen vapor densities:

2.7 ·1023 m−3, 5.4 ·1023 m−3, 8.1 ·1023 m−3, and 1.08 ·1024 m−3, all with a 10% relative

helium density. In r and z the simulation grid size was 0.05/kp with 9 particles per

cell. These simulations ran until the trapped electrons loaded the wake and turned

off additional trapping. Figure 6.6 shows how the amount of trapped charge increases

with the increasing plasma density. An increase of the plasma density by a factor of

two (to 5.4 · 1023 m−3) turns trapping on in a hydrogen-helium mixed plasma.
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Figure 6.6: The number of trapped electrons, Nt, versus the plasma density in a
hydrogen-helium plasma.

In conclusion, partial pre-ionization causes the onset of electron trapping, but
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would involve the added overhead of a pre-ionization system. Conversely, a small

increase in the plasma density causes the trapping of plasma electrons, without any

additional overhead. The production of trapped electrons through a compression of

the longitudinal drive bunch length is marginal to work. However, this compression

could be paired with the increase in plasma density to yield an added experimental

range at lower plasma density.

6.3.5 Trapped Electron Bunch Characterization

The absence of the buffer gas region allows for a more direct measurement of the

trapped electron bunch properties. For example, the trapped electron energy profile

measured on downstream diagnostics would no longer include the effect of the buffer

region. In addition, the absence of the buffer region allows for the determination

of the trapped electron bunch emittance from its transverse size. By measuring the

roll-off in the plasma density at the edges of either the gas jet or the differentially

pumped region, the transverse transportation properties are determined. Then, the

methods displayed in Sec. 5.4.3 would connect the transverse size to emittance.



Chapter 7

Conclusion

Electron trapping in a PWFA is an important subject from two different perspectives.

From the viewpoint of designing a plasma-based high energy collider, there is a need to

understand how to minimize the detrimental effects of electron trapping. In addition,

the trapped electrons might work as a low emittance and high current particle source.

Both of these topics are covered in this dissertation with a combination of theory,

simulations, and experimental measurements.

Chapter 2 presents a study of the drive bunch and plasma properties required to

cause the onset of ionization induced electron trapping. This includes a derivation

of the critical drive bunch peak current, IA/2, and number of drive bunch electrons,

1/(kpre), needed to cause trapping. Section 2.7 uses these results as the foundation

for a discussion of ways to terminate electron trapping. A summary of this section

follows. Complete pre-ionization of the plasma trivially rids the wake of trapped

electrons, but this is a nontrivial engineering feat. Also, the use of a self-ionized

hydrogen plasma at high plasma density (≥ 4 · 1023 m−3) or high drive bunch peak

current (≥ 4IA) would terminate the trapping of electrons. However, a hydrogen

plasma would suffer from ion motion issues. Another method to cease trapping is the

use of drive bunches with low charge (< 1/(kpre)) or low peak current (< IA/2). In

addition to the theoretical arguments and simulations supporting this, measurements

in Ch. 5 verified that electron trapping terminates below a drive bunch peak current

of IA/2.
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Chapter 3 uses theory and simulations to explore all aspects of the trapped elec-

tron bunch properties. This includes the development of a theoretical model for the

trapped electron transverse emittance, which reveals a fundamental scale for the min-

imum achievable emittance, 1/(4kp). Chapter 5 contains an upper limit measurement

of the trapped electron transverse emittance over peak current, εN,x/It. The theo-

retical model and simulations indicate that the observed values of εN,x/It result from

multi-GeV trapped electron bunches with emittances of a few µm, which is consistent

with the model, and multi-kA peak currents.

One of the fundamental problems for the use of trapped electrons as a particle

source is their large energy spread. Chapter 3 discusses the fundamental reasons

for these large energy spreads, and Ch. 5 shows supporting measurements of the

trapped electron momentum distribution over more than three orders of magnitude.

In response to this, Sec. 3.7 includes a discussion of one method to reduce the trapped

electron energy spread, along with supporting simulations. These simulations indicate

that this method could produce electron bunches with a longitudinal emittance that

is better than conventional electron sources.

Another topic of great importance to this thesis is suggestions for future exper-

iments. The theoretical arguments and measurements presented in this dissertation

give a glimpse of the trapped electron properties, but more work is needed. For ex-

ample, the effect that the trapped electrons have on the accelerating wake has not

yet been measured; Ch. 6 suggests experimental methods to quantify this. Also,

measurements of the trapped electron properties were hindered by the buffer gas in

the heat-pipe oven. Chapter 6 details several different methods to create trapping in

a helium-hydrogen mixed vapor, without the use of a buffer gas. In addition, Ch. 6

suggests a method to directly measure the trapped electron transverse emittance in

such a system.



Appendix A

Gas Jet-Produced Hollow Plasma

A.1 Introduction

The effect of ion motion and the need for practical positron propagation in a plasma

wakefield accelerator have incited interest in hollow plasma channels. These channels

are typically assumed to be cylindrically symmetric; however, a different geometry

might be easier to achieve. The introduction of an obstruction into the outlet of

a high Mach number gas jet can produce two parallel slabs of gas separated by a

density depression. Here, there is a detailed simulation study of the density depression

created in such a system [38]. This investigation reveals that the density depression

is insufficient at the desired plasma density. However, insights from the simulations

suggest another avenue for the creation of the hollow slab geometry.

Plasma-based particle accelerators have shown immense potential for future high

energy colliders [9,45]; however, there are several remaining issues. Two of the biggest

obstacles for the PWFA are ion motion [65] and the need for positron propagation [7].

A hollow channel plasma does not have ions on the axis of bunch propagation. The

absence of on-axis ions removes the possibility for ion motion and eliminates the

intrinsic defocusing they create for positrons. Thus, the creation of a hollow channel

plasma would be a tremendous asset for the PWFA.

While a hollow channel plasma offers solutions to PWFA problems, there is not

yet a proven method for generating one. A current idea for the production of a hollow

channel is to use a cylindrically-symmetric acoustic standing wave to create a density
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depression on the axis of bunch propagation; this is similar to methods used for the

purpose of laser guiding [21]. Another idea utilizes a high-order Bessel laser beam

with an intensity profile that peaks off axis. When applied to a gas of uniform density,

this laser could ionize a hollow channel of plasma centered about the axis [31]. These

ideas focus on the production of cylindrically-symmetric hollow channels. Consider

instead a different geometry, one with an evacuation of gas atoms from a small region

in the Cartesian y coordinate. This geometry consists of two parallel slabs of gas,

between which a drive bunch could create a plasma wake.

This appendix investigates one idea for a method to produce such a hollow channel

plasma. The basic concept is to insert an obstruction into a high Mach number gas

jet. In the absence of interatomic collisions, the atoms that contact the obstruction

scatter, producing a perfect hollow channel behind the obstruction (illustrated in

Fig. A.1). A computational technique is developed here to study the effect of the

atom-atom collisions on the density depression.

z

y

x Gas Jet Obstruction

Gas Flow

Figure A.1: A gas jet-produced hollow vapor channel. The drive bunch would travel
in the z direction, between the two slabs of flowing gas. Reprinted with permission
from [38]. Copyright 2009, Institute of Electrical & Electronics Engineers.

A.2 Hollow Slab Accelerator Physics

A plasma wake that is created between two parallel slabs of gas has different acceler-

ating and focusing properties than a typical PWFA. Thus, it is worth discussing the

accelerator physics issues associated with this type of a configuration. A cylindrically-

symmetric hollow channel has no focusing force and an accelerating field that is inde-

pendent of r inside the bubble. The same is not true for a Cartesian hollow channel.

While the channel is symmetric with translations in x, the drive bunch is not. The
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expulsion of the plasma electrons creates two opposing electric dipoles, as shown in

Fig. A.2, resulting in quadrupole focusing fields.
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Figure A.2: A plasma wake in a gas jet-produced hollow channel, where + and -
denote charge density. a) A y − z slice of the wake at x = 0, where the drive bunch
travels to the right. b) An x− y slice of the wake, where the drive bunch travels out
of the paper.

As Fig. A.2b shows, the quadrupole focusing force is focusing in one direction

and defocusing in the other. This is also apparent from Maxwell’s equations. The

following shows the x focusing force, Fx, for an ultrarelativistic particle of charge q

traveling in the z direction

Fx = q(Ex − cBy). (A.1)

A partial derivative of this with respect to x yields

∂Fx

∂x
= q(

∂Ex

∂x
− c

∂By

∂x
). (A.2)

Gauss’ law gives
∂Ex

∂x
= −∂Ey

∂y
− ∂Ez

∂z
+

ρ

ε0

, (A.3)

and the z component of Ampere’s law yields (assuming ∂t = −c∂z)

− c
∂By

∂x
=

∂Ez

∂z
− c

∂Bx

∂y
− µ0cJz. (A.4)

The substitution of Eqs. A.3 and A.4 into Eq. A.2 results in

∂Fx

∂x
= −q(

∂Ey

∂y
+ c

∂Bx

∂y
+

1

ε0

(
Jz

c
− ρ)). (A.5)

In the middle of the hollow channel the only charge and current come from the drive
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bunch, so the source terms cancel. This yields

∂Fx

∂x
= −q(

∂Ey

∂y
+ c

∂Bx

∂y
) = −∂Fy

∂y
. (A.6)

Let the center of the bunch be situated at x = 0 and y = 0. As Fig. A.2b shows,

the system is symmetric with reflections about the x and y axes at y = 0 and x = 0,

respectively. This means that a reflection about the x axis must change the sign of

Fy, but not the sign of Fx. Similarly, a reflection about the y axis must change the

sign of Fx, but not the sign of Fy. In other words, the terms of Fx are odd in x and

even in y, and the terms of Fy are odd in y and even in x:

Fx(x, y, z − ct) = Kxx + O(x3, xy2), (A.7)

Fy(x, y, z − ct) = Kyy + O(y3, yx2). (A.8)

From Eq. A.6, Kx = −Ky. Thus, if the system is focusing in x then it is defocusing

in y, and vice versa. The fact that the system is intrinsically defocusing in one

direction is a problem. In addition, the strength of the focusing fields is related to

the displacement of the electrons in the plasma sheath. This displacement changes

along the bunch, as illustrated in Fig. A.2a, which changes the focusing strength

along the bunch. Thus, Kx and Ky are both functions of z − ct.

The longitudinal accelerating field is no longer a constant inside the plasma sheath.

This can be seen from Faraday’s law. Consider the x and y components of this law:

∂Ez

∂y
− ∂Ey

∂z
= c

∂Bx

∂z
, (A.9)

∂Ex

∂z
− ∂Ez

∂x
= c

∂By

∂z
. (A.10)

A reorganization of these equations, combined with x and y derivatives, results in

∂2Ez

∂y2
=

∂

∂z
[
∂

∂y
(Ey + cBx)], (A.11)

∂2Ez

∂x2
=

∂

∂z
[
∂

∂x
(Ex − cBy)]. (A.12)
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A substitution of the results from Eq. A.6 into these equations yields

∂2Ez

∂x2
= −∂2Ez

∂y2
. (A.13)

An investigation of the system’s symmetry yields the non-zero terms in the expansion

of Ez. Since the force from Ez is perpendicular to x and y, then it must be even in

both x and y. An expansion of Ez then appears as

Ez(x, y, z − ct) = Ez(0, 0, z − ct) + Gx2 −Gy2 + O(x4, y4, x2y2), (A.14)

where G is also a function of z − ct. The opposite signs of the x2 and y2 terms are

mandated by Eq. A.13.

The intrinsic defocusing in one direction and the transverse variation of Ez are

both not ideal. However, a crossing of the hollow plasma channels can correct these

problems. Ideally, this crossing would occur at the same z position, but this is not

possible. For a gas jet to work properly, the width of the jet in y must be much

larger than a mean free path length. Thus, crossing the jets would produce a scatter

of atoms that would fill in the density depression of the hollow channel. Instead, the

jets can be crossed in a staggered configuration (see Fig. A.3).

x
z

y

Drive Bunch

Figure A.3: The staggered crossing of hollow channel cells.
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A staggered configuration corrects both the focusing and accelerating problems of

a single gas jet. By rotating successive jets by π/2 from the prior one, the focusing

force in any direction flips back and forth from focusing to defocusing. The strong

focusing principle then allows for net focusing of the bunch. Additionally, as long

as the drive bunch particles do not change their transverse position much before the

jet direction is rotated, the second order terms in Eq. A.14 cancel. This is apparent

from the fact that under rotation the quantity G in Eq. A.14 goes to −G.

A.3 Requirements of a Hollow Channel

Before progressing into the computational techniques used to test the feasibility of the

production of such a hollow plasma, it is important to quantify how deep the density

depression must be for the PWFA application. This allows for the interpretation of

results. Consider this question from the perspective of ion motion. Rosenzweig et

al [65] examined the motion of ions induced by the intense transverse electric field

of a matched drive bunch. They found that these intense fields could cause ions to

move significantly before the bunch passes, which creates nonlinear focusing forces

and transverse emittance growth. A summary of this issue is given in Sec. 1.5.3. This

section connects ion motion to a dimensionless constant, Aion, which depends on the

drive bunch and plasma parameters. A catastrophic amount of ion motion occurs

for Aion = 0.473, where the ions collapse from their initial radii to a radius of zero.

For ion motion smaller than this value, the ions have transverse positions that are

proportional to their initial positions. Thus, the ion density would still be uniform at

the core of the bunch, but at an increased magnitude. As is shown in Fig. 1.9, a less

severe amount of ion motion occurs for Aion = 10−1. For simplicity, let Aion = 10−1

set the scale for an endurable amount of ion motion.

Current concepts for a plasma-based linear collider utilize a bunch with 1010 elec-

trons, energy of 500 GeV (γ = 978,475), longitudinal bunch length equal to 10 µm,

and normalized transverse emittances, εN,x and εN,y, equal to 2 and 0.05 µm, respec-

tively [63]. In this case, a substitution of εN =
√

εN,xεN,y/2 into Eq. 1.59 is ap-

propriate for Aion. As is discussed later, simulations here are performed for helium.

Consider the effect the drive bunch has on a fully-ionized helium atom (Q = 2).
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For these parameters, the plasma density must be reduced to 1.5 · 1019 m−3 before

Aion = 10−1 (from Eq. 1.59). This is almost four orders of magnitude below the den-

sity used in current concepts for a PWFA-based collider, 1023 m−3. Thus, extremely

deep density depressions are required for this application of the PWFA.

A.4 Computational Techniques

A particle tracking method is used to simulate the flow of atoms around the obstruc-

tion. The number of particles in the physical system is too large for the simulation

of individual atoms, so a macro-particle represents the movement of a collection of

atoms. To properly represent the interatomic collisions, the mean free path of the

macro-particles must be equal to that in the physical system, λ = (4πr2
vn)−1, where

n is the gas density and rv is the van der Waals radius. Since the macro-particle

density, ns, is less than n, the macro-particle hard sphere radius, rs, must increase to

maintain λ: rs = rv

√
n/ns.

Proper boundary conditions are also required to accurately simulate the flow of

atoms. A discussion of the simulation boundaries, as illustrated in Fig. A.4, follows.

Let dt denote the simulation time step. At each time step, macro-particles with a

velocity of vx̂ are initialized at side 1 with a density of ns and in a space of size v · dt,

Dy, and Dz in x, y, and z, respectively. Then, the coordinates for all of the macro-

particles are propagated, based on the particle velocities, to the next time step. Upon

contacting sides 5 or 6, a particle is re-emitted from the opposing side with its same

momentum and x and y position. Contact to sides 1, 2, 3, or 4 results in deletion of

the particle. The obstruction surface is coarse compared to rv, so the scatter from it

must be diffuse. A macro-particle is elastically scattered from the obstruction with a

randomly distributed direction into the half-space facing away from the obstruction.

Next, the simulation code compares macro-particle positions. The particles with

a separation smaller than 2rs are propagated back to the time they first collided and

scattered elastically as hard spheres. Let Ns denote the number of simulation parti-

cles. The computational time required for the interatomic collisions is proportional

to N2
s . To minimize calculation time, the simulation box is divided into grids in the
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Figure A.4: The gas jet simulation boundaries. Reprinted with permission from [38].
Copyright 2009, Institute of Electrical & Electronics Engineers.

x− y plane, where macro-particle positions are only compared within the same grid.

The computational time is still proportional to N2
s , but is decreased roughly by a

factor of the number of grids.

A discussion of the computational techniques is not complete without addressing

the resolution issues. These issues involve rs, dt, v, ns, the obstruction position,

and the grid size. As was just introduced, the simulation space is divided into grids

in the x − y plane. The size of these grids in x, y, and z must be significantly

larger than rs. This ensures that the errors introduced at the boundaries of the grids

do not affect the results. Another resolution issue is that dt must be considerably

smaller than rs/v. Otherwise, macro-particles could pass through each other without

interacting. An additional critical resolution issue is that 2rs must be much smaller

than the average interatomic separation, n
−1/3
s . If not, the particles would function

as an incompressible fluid. Also, sides 1, 2, 3, and 4 must be sufficiently separated

from the obstruction.

A.5 Results

A discussion of the specific simulation parameters follows. Current PWFA experi-

ments utilize a plasma with a density near 1023 m−3, so the gas jet simulations are

performed for this density. Although the specifics of the gas jet are ignored here,

monatomic gases are easier to scale to high Mach numbers, so the simulations are of

a monatomic gas, helium. Helium has a van der Waals radius of 1.4 · 10−10 m [11].

The van der Waals radius for other monatomic gases is of the same order as helium,
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so the results here are also representative of other gas species.

Another parameter of importance is the width of the obstruction. This width

governs the separation of the gas slabs and the coupling between the drive bunch

and the plasma. For a non-hollow PWFA in the nonlinear bubble regime, the density

of the drive bunch exceeds that of the plasma, so the bunch expels all the plasma

electrons from the region around it. This produces a bubble containing a region of

uniformly charged ions that are surrounded by a sheath of plasma electrons, which

is characteristic of the bubble regime. The maximum radius of this bubble, Rm, is

representative of the coupling between the bunch and the plasma. This maximum

radius can be connected to the drive bunch peak current, Id, as Rmωp/(2c) ≈
√

2Id/IA

[47]. To produce accelerating wakes in a hollow plasma that are comparable to those

in a uniform plasma, the separation between the drive bunch and the gas must not

greatly exceed Rm. For Id = IA, Rm = 23/2c/ωp, which is 48 µm for a density of 1023

m−3. For this reason, the simulations are of cylinder obstructions with a radius at

and below 50 µm.

The density depression is deepest directly behind the obstruction, so the closer a

drive bunch can pass by the obstruction the better. However, if the bunch comes too

close it can cause breakdown of the obstruction surface. Consequently, the separation

between the drive bunch and the obstruction is another critical parameter. The

results of Thompson et al [69] are useful for choosing an appropriate separation.

They showed that drive bunches with 1.8·1010 electrons and a 10 kA peak current,

which are similar to drive bunches in recent PWFA experiments, created breakdown

when coming within 50 µm of a dielectric fiber. To account for the use of bunches

with peak current at or slightly above IA and to add an additional safety buffer, the

simulations presented here are specifically dealing with a separation of 200 µm.

Figures A.5a and A.5b show the resulting density in the x− y plane for cylinders

of radius 50 and 10 µm, respectively, in the path of a helium gas jet of density 1023

m−3. The density as a function of y at a 200 µm x separation from the obstructions is

shown in Figs. A.6a and A.6b. These results fall far short of the density depressions

required for the PWFA.

As the cylinder radius decreases in Fig. A.6b, the density depression deepens.
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Figure A.5: The density in the x − y plane for a helium gas jet of density 1023 m−3

flowing around cylinders of radius 50 (a) and 10 µm (b). Reprinted with permission
from [38]. Copyright 2009, Institute of Electrical & Electronics Engineers.
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Figure A.6: Density versus y at a 200 µm x separation from cylinders of various radii
in a helium gas jet of density 1023 m−3, a) for cylinders of radius 50, 40, 30, 20, b)
10, 4, 2, and 1 µm. Reprinted with permission from [38]. Copyright 2009, Institute
of Electrical & Electronics Engineers.

The mean free path for helium at a density of 1023 m−3 is 41 µm, which is signifi-

cantly larger than the cylinder radii of Fig. A.6b. For these small cylinder radii, the
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obstruction acts as a point source of scattered atoms. Some of these atoms are then

re-scattered to behind the obstruction. Smaller cylinder radii scatter fewer atoms, so

they naturally create deeper density depressions. Note, however, the simulations here

do not include the thermal spread of the gas jet atoms. The inclusion of a realistic

thermal spread would fill in the density depressions for these smaller radii. For this

reason, the cylinder radius can not be reduced to arbitrarily low values to obtain

deeper density depressions.

A.6 Conclusion

The gas jet and obstruction parameters, simulated here, fail to produce a sufficient

density depression for the PWFA application. However, the basic concept of the gas

jet produced hollow channel does become more effective when the mean free path

greatly exceeds the cylinder radius. As discussed above, the cylinder radius can not

be scaled to arbitrarily small values. Thus, methods to increase λ must be explored.

A significant reduction in the gas density would lengthen λ, but this would decrease

the accelerating gradient. The collisional cross section for plasma particles can be

significantly below that of neutral atoms, which means the plasma particles could

have a longer mean free path. Thus, the flow of plasma around an obstruction is an

alternative avenue to explore for the production of a hollow channel.
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