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Introduction

After the discovery of strange particles in cosmic rays during the years after World War

II, the idea of associated production was introduced by Pais (1953) to explain the copious

production versus the long lifetime of these particles. In the same year, at the Bagnères-

de-Bigorre Conference, scientists from all over the world had the opportunity to compare

their cloud chambers results and the order emerged from chaos with a first classification

of these new states. They agreed that two states correspond to different particles if

they have different mass. In the following two years the basic properties of these particles

where known and the accelerators invaded the scene, allowing a great increase of statistics.

In 1955 Gell-Mann and Nishijima independently wrote the relation between the third

component of the isospin I3, the charge Q, the baryon number B and a new quantum

number S, the strangeness, Q = I3+(S+B)/2. Heisenberg’s idea of isospin was extended

to the new particles just two years before, by Gell-Mann. Among the new strange particles

there was one, the θ0 (now known as K0) that differed from its antiparticle. The value

of the strangeness S was +1 for the former and −1 for the latter. It was also clear

that the processes K0 → π+π− and K0 → π+π− were both possible, and therefore also

K0 → π+π− → K0. Gell-Mann and Pais [1] suggested that the K0 was not a physical

state with well-defined mass and lifetime but it was a particle mixture of the physical

states K1 and K2: K1,2 = (K0 ± K0)/
√
2. The particle that was actually observed was

the K1 being C-even as the π+π− state in which it decayed. They predicted the existence

of a second particle, not yet observed, the K2, corresponding to the orthogonal mixture

which should have a different lifetime and should decay into a C-odd state, such as three

pions. One year after its prediction, this particle was discovered [2] and meson mixing was

experimentally established. We now know that K1,2 are not the physical states but they

are the CP eigenstates, and the physical states are K0
S and K0

L, but this was not known

until CP violation (CPV ) was discovered in 1964.

P violation discovery in weak interaction was a consequence of the so-called θ − τ puz-

zle, involving again strange particles. Two particles with the same mass were observed

decaying in final states with opposite parities: θ+ → π+π0 and τ+ → π+π−π+. Either

the two were different particles or parity was violated in their decay. At the 6th Rochester

Conference, in 1956, it was suggested that there was no experiment proving that parity

was conserved in weak decays. In a paper by Lee and Yang [3] a certain number of ex-
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periments to test the conservation of P in weak interactions were proposed, and promptly

realized [4, 5] one year later, in 1957. In the same year, Lee, Oehme and Yang [6], showed

that the observed P violation implied also a C violation, but the combined operation CP

was still a symmetry. The fact that the exchange of left and right was not a symmetry

operation for the weak interactions was quite a disturbing and hard to believe truth for

the physics community of that time. This uneasiness was mitigated by the fact that the

symmetry was actually preserved if particles were exchanged with antiparticles, in other

words, exchanging left with right and going into the anti-world, the symmetry holds.

The discovery of P and C violations in weak interactions was a key ingredient for Feyn-

mann and Gell-Mann, independently, to write the V-A theory that is at the basis of the

Standard Model (SM).

In 1964 an experiment designed by Cronin, Fitch, Christenson and Turlay [7] to primarily

study K0 regeneration discovered that around 2% of the KL decays were to π+π−, which

is an indication of CP violation. If P and C were maximally violated, CP was minimally

violated and various theoretical model were proposed in order to accommodate this in the

Standard Model.

The discovery of CPV had consequences also beyond the elementary particle theory, in 1967

Sakharov proposed a model which could explain why the universe consists essentially of

matter with very little antimatter, although equal amounts of both are probably created at

a very early stage (baryogenesis). One of the three Sakharov conditions was CP violation.

After 1964 a certain number of models were proposed in order to accommodate CPV in the

theory. Wolfenstein proposed the superweak model [8] in which CPV was due to very weak

∆S = 2 four-fermion interaction. This model was ruled out in 1988 by the observation of

direct CPV inK0 decays by NA31 [9], confirmed by NA48 [10] and KTeV [11] 11 years later.

In 1973 Kobayashi and Maskawa [12] extended the 2× 2 Cabibbo quark matrix mixing to

a 3×3 matrix, now called Cabibbo-Kobayashi-Maskawa (CKM) matrix, within a six-quark

model. CP violation was naturally included, originating from the irreducible complex

phase needed in the parameterization of the matrix. It is worth noticing that in 1973 the

charm quark was not yet discovered, although it was predicted by Glashow Iliopulos and

Maiani who introduced it to explain the suppression of flavor changing neutral currents

(GIM mechanism). An indication of the charm quark mass was computed [13] from the

K0 − K0 mixing amplitude. The charm quark was actually discovered in 1974 by BNL

and SLAC in the cc̄ state J/ψ.

In 1999 the key ingredients of the current Standard Model were all there. Although the

CKM mechanism was the most probable explanation for CPV in the SM, it had to be

confirmed in other systems. This mission was accomplished by the B-Factories BABAR and

Belle that, in their years of data taking, produced measurements showing the consistency

of the CKM picture. These measurements were conducted on the B0−B0 mixing system,

the two mesons were produced in an entangle state that allowed precision measurements
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of mixing and CPV parameters. Beside the confirmation of the CKM mechanism, studies

of B0 − B0 mixing, first observed in 1987 the ARGUS [14] and UA1 [15] Collaborations,

also provided an indication on the mass of the top quark.

In 2006 the mixing in Bs − Bs system was observed [16], completing the picture of the

mixing systems in the down-quark sector and confirming again SM predictions.

The first evidence of D0 − D0 mixing was reported by the BABAR [17] and Belle [18]

Collaborations in 2007, and confirmed one year later by the CDF Collaboration [19].

Although combining all the measurements together the significance for mixing exceeds the

10 standard deviations, there is not a single measurement that could establish mixing with

a significance of at least 5 standard deviations. This is due to the fact that the mixing in

the D0 −D0 system is very small, O(< 1%).

In November 2011 the first evidence of CPV in the D0 −D0 system was reported by the

LHCb [20] and then CDF [19] Collaborations. Subsequent measurements by Belle, BABAR

and an improved measurement by CDF set the present significance of CPV to almost 5

standard deviations, combining all the measurements together. The SM predictions on

CPV (and mixing) for the charm sector are affected by large theoretical uncertainties and

the interpretation of these results is not straightforward, there is a possibility that this

could be a manifestation of physics beyond the Standard Model, but a SM explanation is

not ruled out.

History showed that mixing systems represent an interesting and fertile environment where

critical phenomena for the SM development have been observed, studied and then under-

stood. The evidence of CPV in charm could be one of these, but in order to solve this

puzzle, an effort on both experimental measurements and theoretical computation should

be pursued.

In this thesis we present the measurement of D0 − D0 mixing parameter yCP using the

full BABAR data sample. We also searched for CP violation in the D0 → K+K−, π+π−

channels, finding the parameter ∆Y compatible with zero. In Chapter 1, we briefly review

the SM and introduce the theoretical framework of neutral meson mixing and CP violation.

The BABAR detector and the performance of each sub-detector are described in Chapter 2.

In Chapter 3, we present an overview of the analysis including a brief description of the

previous similar BABAR analyses and the expected improvements in the present analysis.

The candidate reconstruction and selection are described in Chapter 4, together with the

optimization of the signal region. The signal and background event classes are described

in Chapter 5, where we also provide the probability density functions used to extract the

mixing and CP violating parameter. In Chapter 6 we describe the various crosschecks

performed to validate the analysis and the evaluation of the systematic error. Finally in

Chapter 7 we present the final results and their interpretation.





Chapter 1

Mixing and CP Violation in the

Standard Model

We begin this chapter reviewing the SM sectors most relevant to this work. We introduce

the mixing and CP violation formalism, and present the time evolution of the flavor

eigenstates. We briefly discuss the phenomenology of mixing for the different SM systems,

commenting on the difficulties of computing the SM predictions for the D0 system. We

also present and discuss the observables, yCP and ∆Y . Finally we show the experimental

status of the mixing and CPV observables in the charm sector.

1.1 The Standard Model Today

The Standard Model is a field theory describing the strong, weak and electromagnetic

interactions in terms of elementary fermions (leptons and quark) interacting through the

exchange of vector bosons, the forces mediators.

At present the known elementary particles are:

� six leptons (and their antiparticles) organized in three families:

(

νe

e

)

,

(

νµ

µ

)

,

(

ντ

τ

)

� six quark flavors (and their antiparticles) organized in three families:

(

u

d

)

,

(

c

s

)

,

(

t

b

)

� the photon γ: the boson mediator of the electromagnetic interaction;

� W+, W−, Z0: the three boson mediators of the weak interaction;



6 Mixing and CP Violation in the Standard Model

� gluons: eight boson mediators of the strong interaction;

� the Higgs boson, H, responsible for the mass generation of the bosons and fermions.

The first experimental observation of this boson has been recently reported by the

ATLAS [21] and CMS [22] Collaborations.

The SM is based on the gauge symmetry group SU(3)C ⊗SU(2)I ⊗U(1)Y , where SU(3)C

describes the color symmetry of the strong interactions, SU(2)I the weak isospin and

U(1)Y the hypercharge symmetry. Quarks and leptons (massless) are the irreducible

transformations of the symmetry groups mentioned above and are organized in multiplets

of defined chirality. For the first family we have:

� quarks:

Qint
L =

(

uintL

dintL

)

→ (3,2)1/3

uintR → (3,1)4/3 , dintR → (3,1)−2/3

� leptons:

Lint
L =

(

νintL

ℓintL

)

→ (1,2)1/3

νintR → (1,1)0 , ℓintR → (1,1)−2

where:

� int stands for interaction eigenstates;

� R (right) and L (left) represent the chirality of the field: ψR/L = 1
2(1± γ5)ψ;

� e.g. (3,2)1/3 means that a state is triplet under SU(3) color group, a doublet in

weak isospin, and the hypercharge is 1/3;

We have included also the right handed neutrinos, of which only indirect evidence exists

from neutrino mixing. The second and third families have the same representation.

We are not going to discuss the strong interaction sector, but we will focus on the

SU(2)I ⊗ U(1)Y electroweak sector of the SM because it is the most relevant for this

work.

Let’s first fix the notation to describe elementary fermions and bosons: up-type quarks

are the elements of the vector U int
L,R, while down-type quarks of the vector Dint

L,R:

U int
L,R = (uintL,R , cintL,R , tintL,R)

Dint
L,R = (dintL,R , sintL,R , bintL,R)
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likewise for the leptons:

νintL,R = (νinteL,R
, νintµL,R

, νintτL,R
)

ℓintL,R = (eintL,R , µintL,R , τ intL,R)

The SU(2)I gauge fields are ~Wµ = (W1µ,W2µ,W3µ) while the only field of the U(1)Y

group is Bµ.

The electroweak Lagrangian can be obtained by imposing the gauge symmetry SU(2)I ⊗ U(1)Y :

LEW = −1
4WµνWµν − 1

4BµνBµν+

i
∑3

k=1

{

U int
Lk
γµDµU int

Lk
+ U int

Rk
γµDµU int

Rk
+Dint

Lk
γµDµDint

Lk
+Dint

Rk
γµDµDint

Rk

}

i
∑3

k=1

{

ℓintLk
γµDµℓintLk

+ ℓintRk
γµDµℓintRk

+ νintLk
γµDµνintLk

+ νintRk
γµDµνintRk

}

(1.1)

where k runs over the three families and the greek indices µ, ν run as customary on the

space-time coordinates. The first two terms contain the gauge field tensors, similar to the

electromagnetic tensor Fµν :

Bµν = ∂µBν − ∂νBµ (1.2)

Wµν = ∂µWν − ∂νWµ − ig(WµWν −WνWµ) (1.3)

where Wµ = ~Wµ ·

~T ; ~T represents the weak isospin rotation matrices. The terms in curly

brackets in (1.1) describe both the free motion and the interaction through the weak and

electromagnetic currents. The covariant derivative Dµ is:

Dµ = ∂µ − igTjWµ
j − ig′

Y

2
Bµ (1.4)

where g and g′ are the coupling constants associated to the gauge fields Wj (weak isospin

SU(2) symmetry group) and B (hypercharge U(1) symmetry group). When igTjWµ
j acts

on the weak isospin doublets Tj = τj/2 where ~τ are the Pauli matrices, otherwise Tj = 0.

The Lagrangian in (1.1) contains massless fermions and bosons. Of course these particles

have mass, but the gauge symmetry forbids adding mass terms ∝ BµBµ to the Lagrangian,

since they would not be gauge invariant. Concerning fermion masses, it is not possible to

write a mass term that couples a SU(2)I doublet with a singlet with no external fields.

The mechanism that allows one to introduce the mass terms for fermions and bosons is

the well-known Higgs mechanism. It consists in adding to the Lagrangian (1.1) a new field

with a specially crafted potential: the Higgs field, an isospin doublet of complex scalar

fields with hypercharge Y = 1:

Φ =

(

φ+

φ0

)

. (1.5)
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The Higgs field Lagrangian is invariant under the SU(2)I ⊗ U(1)Y group:

LH = (DµΦ)
�(DµΦ)− µ2(Φ�Φ)− λ(Φ�Φ)2 (1.6)

where the derivative is given by Eq. (1.4). Analyzing the potential V (Φ) = µ2(Φ�Φ) +

λ(Φ�Φ)2 we find that for µ2 < 0 and λ > 0, V (Φ) it has a minimum at |Φ| = −µ2

2λ .

Therefore the expectation value on vacuum is not zero for at least one component of Φ, and

the fundamental state is not symmetric under the Lagrangian symmetry transformations.

This phenomenon is called a spontaneously symmetry breaking and has many applications

also outside the realm of particle physics. The application of the covariant derivatives on

the fundamental Higgs field (the kinetic part of Eq. (1.6)) produces a gauge boson mass

matrix that is not diagonal, implying that the gauge bosons mix into each other. The

physical states responsible for the weak and electromagnetic interactions (W+,W−, Z0, γ)

are the eigenstates obtained diagonalizing the mass matrix. The Z0 boson and the photon

are related to the W3 and B components of the gauge fields by a rotation of the Weinberg

angle:

(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

Wµ
3

Bµ

)

(1.7)

where Zµ is the field associated with the Z0 boson, Aµ is the field associated with the

photon, and θW is Weinberg angle, sin2 θW = 0.23122± 0.00015 [23]. The charged bosons

W+ and W− are the two orthogonal combinations of W1 and W2:

W µ
+ =

Wµ
1 − iWµ

2

2
(1.8)

W µ
− =

W µ
1 + iW µ

2

2
(1.9)

The coupling constants satisfy the following relations with the elementary electric charge

e1:

e = g sin θW = g′ cos θW . (1.10)

Thanks to the spontaneously broken symmetry, the group SU(2)I ⊗U(1)Y reduces to the

group U(1)Q and the bosons of the weak interactions acquire a mass, while the photon

does not.

The Lagrangian (1.1) can be rewritten separating the free motion term (L0) from the

interaction part (LI):

LEW = L0 + LI

1In the following we use natural units: h̄ = 1, e = 1, c = 1.
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In particular, the interaction part can be written in terms of the coupling between the

physical bosons and the fermion currents, divided in charged (LCC) and neutral (LNC)

currents. The charged current acts inside the doublets and involves only the left hand

components:

J+
µ = i

3
∑

k=1

{

U int
Lk
γµD

int
Lk

+ νintLk
γµℓ

int
Lk

}

(1.11)

where k runs over the three families.

The charged current Lagrangian becomes:

LCC =
g√
2

(

J+
µ W

µ
− + h.c.

)

. (1.12)

This corresponds to the charged V−A interaction.

The neutral current couples the two particles with the same chirality, both left or both

right handed, therefore the index L or R is omitted in the following. The neutral current

Lagrangian is:

LNC = eJem
µ Aµ +

g

2 cos θW
J0
µZ

µ. (1.13)

The electromagnetic current is:

Jem
µ = i

3
∑

k=1

{

qu

[

U int
k γµU

int
k

]

+ qd

[

Dint
k γµD

int
k

]

+
[

ℓintk γµℓ
int
k

]}

(1.14)

where k runs over the three families, qu = +2
3 and qd = −1

3 are the electric charges of

the quark up and down, respectively, in units of the positron charge. The neutral weak

current is:

J0
µ = i

3
∑

k=1

[

U int
k (ckV − ckAγ

5)γµU
int
k +Dint

k (ckV − ckAγ
5)γµD

int
k + (1.15)

ℓintk (ckV − ckAγ
5)γµℓ

int
k + νintℓk

(1− γ5)γµν
int
ℓk

]

where k runs over the three families. The coefficients cV and cA represent the vector and

pseudoscalar couplings for the fermions:

cfV = If3 − 2Qf sin
2 θW

cfA = If3 ,

where If3 is the weak isospin of the fermion, Qf is its charge in units of the positron charge

and θW is the Weinberg angle.

The fermion masses are generated by a Yukawa coupling between the Higgs field and the
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fermionic fields. For the quarks we have

LY = −
3
∑

i,j=1

(

Y d
ijQ

int
L,i φ dR,j + Y u

ijQ
int
L,i φ

∗ǫ uR,j + h.c.
)

(1.16)

where i and j run over the three families, Y u,d
ij are 3 × 3 complex matrices, and ǫ is the

2× 2 antisymmetric tensor in the weak isospin space. When we substitute the Higgs field

vacuum expectation value and diagonalize Y u,d
ij by 4 unitary matrices V u,d

L,R,

Y u,d → V u,d
L Y u,d(V u,d

R )�, (1.17)

we obtain the mass terms for the quarks. A similar procedure applies also to leptons, but

it is not relevant for this work.

The diagonalization of Y u,d means that the interaction eigenstates U int and Dint are not

eigenstates of the free Lagrangian (U and D). This is obvious if we consider that the weak

interaction changes the flavor of the quarks: the interaction cannot commute with the free

Hamiltonian. We can look at this from a different point of view. Since the quark mass

eigenstates differ from the interaction eigenstates we find four unitary matrices (V u,d
L,R)

that allow us to change base and write the free Lagrangian eigenstates in terms of the

interaction eigenstates:

DLi
= (V d

L )ij D
int
Lj

; DRi
= (V d

R)ij D
int
Rj

ULi
= (V u

L )ij U
int
Lj

; URi
= (V u

R )ij U
int
Rj

(1.18)

where the V u,d
L,R matrices are the same as in (1.17). The change of base has direct conse-

quences on the charged currents (1.11), but not on the neutral ones (1.14), (1.15). Let’s

consider, as an example, the electromagnetic current of the up quark:

Jem,u
µ = i qu uintγµu

int (1.19)

and apply (1.18). We obtain:

Jem,u
µ = i qu uγµ

(

∑

k

V u
1kV

u�
k1

)

u ; (1.20)

where V u is unitary, thus we have
∑

k V
u
1kV

u�
k1 = 1 and therefore the current is unchanged.

The same applies to each term of the neutral current, hence the change of base has no

effect on them. For the charged current part of the Lagrangian, on the other hand, the

above argument does not apply. Let’s consider the charged current involving the W−

boson and the first quark generation:

LCC =
g√
2
ULi

γµ(V
u
Lik
V d�
Lkj

)DLj
W µ

−. (1.21)
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The unitary matrix Vij = V u
Lik
V d�
Lkj

is known as the Cabibbo-Kobayashi-Maskawa (CKM)

matrix and it represents the generalization of the Cabibbo mechanism from two to three

generations.

The Cabibbo-Kobayashi-Maskawa Matrix

The CKM matrix connects the quark weak interaction eigenstates to the mass eigenstates.

A 3×3 matrix is parameterizable, in general, with 18 parameters. The unitarity condition

reduces the parameters to nine: three angles and six phases. Indeed, five of these phases

can be absorbed in the wave function definitions of the quarks, therefore we are left

with three angles and one phase. CP Violation in the SM is due to this irreducible

complex phase in the Lagrangian, since each term of the Lagrangian is transformed into

its hermitian conjugate underCP , and therefore, if the Lagrangian contains complex terms,

it will not be invariant under CP .

The CKM matrix can be written as:

VCKM =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







where Vq1q2 is the term relative to the transition q1 → q2. Many parameterizations are

reported in literature, but two are the most commonly used: the standard parameter-

ization, based on Euler angles, and the Wolfenstein parameterization, underlining the

different orders of magnitude of the parameters.

The standard parameterization [23] is:

VCKM =







c12c13 s12s13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23c13e
iδ −c12s23 − s12c23s13e

iδ c23c13







where cij = cos(θij) and sij = sin(θij), θij are three real angles that can be chosen in the

first quadrant; δ is the CP violating phase.

Since experimentally s13 ≪ s23 ≪ s12 ≪ 1, Wolfenstein [24] has defined a parameterization

useful to underline this hierarchy. The four independent parameters used are A, λ, ρ and

η, defined in the following way:

s12 = λ =
|Vus|

√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

|Vcb|
|Vus|

, s13e
iδ = Aλ3(ρ+ iη) = V ∗

ub.

All four parameters are of order 1 with λ = 0.2253 ± 0.0007 [23] representing the small

parameter (the sine of the Cabibbo angle) in which the CKM matrix can be expanded.
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The CKM matrix becomes:

VCKM =







1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1






+O(λ4).

Instead of ρ and η, one often uses ρ̄ and η̄, defined by the complex relation:

ρ̄+ iη̄ = −VudV
∗
ub

VcdV
∗
cb

,

independent of the CKM phase. The measured values of the other CKM parameters are:

A = 0.808+0.022
−0.015, ρ̄ = 0.132+0.022

−0.011, η̄ = 0.341 ± 0.013. (1.22)

The parameter η is directly related to the CP violating phase δ, η/ρ = tan δ. Using this

parameterization it is apparent that the elements on the diagonal are O(1) while, their

values decrease rapidly away from the diagonal.

The Unitary Triangles

The unitary condition of the CKM matrix,

V �

CKMVCKM = VCKMV
�

CKM = 1, (1.23)

allows to write relations among its elements. Let’s consider the six relations corresponding

to the off-diagonal terms of the identity matrix, the first three are from V �

CKMVCKM , the

second from VCKMV
�

CKM :

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (1.24)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.25)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.26)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (1.27)

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (1.28)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0. (1.29)

These relations can be represented on a complex plane as triangles, called Unitary Triangles

(UT). All triangles have the same area, which represents a phase-convention-independent

measurement of CP violation. In Appendix A we demonstrate that all triangles have the

same area and we compute it as invariant.

Depending on the length of the sides of each triangle, they are more or less degenerate.

The least degenerate triangles are the ones in (1.25) and (1.27), since each side is O(λ3).
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Let’s consider the one in (1.25) and divide the equation by VcdV
∗
cb,

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0. (1.30)

We represent this triangle in the complex plane (ρ̄, η̄) in Fig. 1.1.

Figure 1.1: Unitary Triangle of Eq. (1.25) in the (ρ̄,η̄) plane.

Tests of the CKM paradigm consist of over-constraining the free vertex by measuring the

angles of the triangle,

α = arg

[

V ∗
ubVud
V ∗
tbVtd

]

, β = arg

[

V ∗
tbVtd
V ∗
cbVcd

]

, γ = arg

[

V ∗
cbVcd

V ∗
ubVud

]

.

and the sides. In Fig. 1.2 we report the current experimental situation of the measurements

of the Unitary Triangle and their combination computed by the CKMFitter Group [25].

γ

γ

α
α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Winter 12

CKM
f i t t e r

Figure 1.2: Measurements of the Unitary Triangle in the (ρ̄, η̄) plane and their com-
bination computed by the CKMFitter Group (updated results and plots available at:
http://ckmfitter.in2p3.fr).
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The triangle relative to charm physics is the one in (1.28). It is very degenerate since two

of the sides are O(λ) and the third is O(λ5). Although the area is the same as the other

triangles, performing measurements on this one is more than a challenge.

1.2 Neutral Meson Mixing

In the SM there are four meson-antimeson mixing systems: K0 −K0, B0 − B0, Bs − Bs

and D0 − D0. These mesons are produced in flavor eigenstates that are not eigenstates

of the free Hamiltonian and therefore do not evolve as free particle, but mix one into the

other with their time evolution and decay governed by the weak interaction. They can be

produced as meson-antimeson pairs by transitions involving the strong interaction, or as

single mesons in weak decays of a heavier particle.

In Sec. 1.2.1 we present their time evolution, and in Sec. 1.2.2 we present a model-

independent classification of the CP violation effects in this type of systems. In Sec. 1.2.3

we briefly discuss the differences among the 4 systems, and in particular the peculiarities

of the D0 −D0 system.

1.2.1 Time Evolution of the Flavor Eigenstates

Let us consider a state composed by a neutral meson P 0 and its own antiparticle P 0,

distinguished only by the flavor F , an internal quantum number. The state at t = 0

|Ψ(0)〉 = a(0)|P 0〉+ b(0)|P 0〉,

will evolve following Schrödinger equation,

i
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉

where H is the Hamiltonian governing the system. At a certain time t we can write

|Ψ(t)〉 = a(t)|P 0〉+ b(t)|P 0〉+
∑

k

ck(t)|fk〉 (1.31)

where k runs over all the possible final states |fk〉 in which P 0 or P 0 can decay.

In order to describe mixing, observing Eq. (1.31), we restrict ourselves to the subspace

relative to |P 0〉 and |P 0〉 introducing an effective Hamiltonian Heff , no longer hermitian.

The Schrödinger equation can be re-written as:

i
∂

∂t

(

a(t)

b(t)

)

=

(

H11 H12

H21 H22

)(

a(t)

b(t)

)

.

The effective Hamiltonian is a 2× 2 complex matrix that can be parameterized with two
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hermitian matrices: M, the mass matrix and Γ, the decay matrix:

Heff = M− i

2
Γ,

with Mij = M∗
ji and Γij = Γ∗

ji. The decay rate corresponds to the expectation value of Γ

on the state Ψ(t):

d

dt
〈Ψ(t)|Ψ(t)〉 = −〈Ψ(t)|Γ|Ψ(t)〉.

The matrix M− i
2Γ has 8 free parameters, but, if the effective Hamiltonian benefits from

some symmetries the number of degrees of freedom decreases. In Tab. 1.1 we report the

consequences of the discrete symmetries C,P ,T and their combinations on the elements of

the effective Hamiltonian [26].

CPT invariance ⇒ M11 =M22 ; Γ11 = Γ22

CP invariance ⇒ M11 =M22 ; Γ11 = Γ22 ; ℑ [Γ12/M12] = 0
T invariance ⇒ ℑ [Γ12/M12] = 0

Table 1.1: Relations among the elements of M and Γ as consequences of CPT , CP and T
invariances.

From now on we assume the CPT invariance, in other words M11 =M22 and Γ11 = Γ22.

Let us call the Heff eigenstates |P1〉 and |P2〉:

|P1〉 = p|P 0〉+ q|P 0〉
|P2〉 = p|P 0〉 − q|P 0〉 (1.32)

with |p|2 + |q|2 = 1, with eigenvalues:

Heff |P1,2〉 = λ1,2 |P1,2〉

λ1 ≡ M1 −
i

2
Γ1 = M11 −

i

2
Γ11 +

q

p

(

M12 −
i

2
Γ12

)

λ2 ≡ M2 −
i

2
Γ2 = M11 −

i

2
Γ11 −

q

p

(

M12 −
i

2
Γ12

)

.

The complex number q/p, written in terms of M and Γ elements is:

q

p
= ±

√

M∗
12 − i

2Γ
∗
12

M12 − i
2Γ12

. (1.33)

We choose the plus sign; choosing the minus is just equivalent to exchanging |P1〉 with

|P2〉. We define two important quantities: ∆M , the difference of masses of |P1〉 and |P2〉
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and ∆Γ, the difference of the decay widths:

∆M ≡ M2 −M1 = −2ℜ
[

q

p

(

M12 −
i

2
Γ12

)]

(1.34)

∆Γ ≡ Γ1 − Γ2 = 4ℑ
[

q

p

(

M12 −
i

2
Γ12

)]

, (1.35)

and define the average width:

Γ =
Γ1 + Γ2

2
. (1.36)

The time evolution of the Heff eigenstates is straightforward:

|P1(t)〉 = e−iλ1t |P1〉
|P2(t)〉 = e−iλ2t |P2〉

and it can be easily shown that the probability of changing state is zero while the proba-

bility of remaining in the same state decreases exponentially with lifetime 1/Γ1,2:

Prob(P1 → P2, t) ∝ |〈P2(t)|P1〉|2 = 0

Prob(P1 → P1, t) ∝ |〈P1(t)|P1〉|2 ∝ e−Γ1t.

The description of the time evolution of the states with defined flavor, |P 0〉 and |P 0〉, is
slightly more complicated and requires some more math.

Let us call |P 0(t)〉 the state of a meson that was a |P 0〉 at t = 0 (|P 0〉 = 1
2p

[

|P1〉+ |P2〉
]

)

and let us write it as a superposition of |P1(t)〉 and |P2(t)〉, with explicit time dependence:

|P 0(t)〉 = 1

2p

[

|P1(t)〉+ |P2(t)〉
]

=
1

2p

[

e−iλ1t |P1〉+ e−iλ2t |P2〉
]

. (1.37)

If we rewrite |P1〉 and |P2〉 in terms of |P 0〉 and |P 0〉 using Eq. (1.32), we obtain:

|P 0(t)〉 = g+(t) |P 0〉+ q

p
g−(t) |P 0〉, (1.38)

where we have incorporated the time dependence in two functions g+(t) and g−(t), defined

as:

g±(t) =
e−iλ1t ± e−iλ2t

2
. (1.39)

In the same way we can write the time evolution of the meson that was a |P 0〉 at time

t = 0 (|P 0〉 = 1
2q

[

|P1〉 − |P2〉
]

):

|P 0(t)〉 = g+(t) |P 0〉+ p

q
g−(t) |P 0〉. (1.40)
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We can compute the probability that a meson created with a well-defined flavor content

at time t = 0, has the opposite flavor at a later time t > 0 as a consequence of the ∆F = 2

transitions mediated by weak interaction. The probability that the meson does not change

flavor is the same for |P 0〉 and |P 0〉:

Prob(P 0 → P 0, t) ∝ |〈P 0(t)|P 0〉|2 = |g+(t)|2 (1.41)

Prob(P 0 → P 0, t) ∝ |〈P 0(t)|P 0〉|2 = |g+(t)|2 , (1.42)

while the probability of a flavor change is different for the two mesons if |q/p| 6= 1:

Prob(P 0 → P 0, t) ∝ |〈P 0(t)|P 0〉|2 =
∣

∣

∣

∣

q

p

∣

∣

∣

∣

· |g−(t)|2 (1.43)

Prob(P 0 → P 0, t) ∝ |〈P 0(t)|P 0〉|2 =
∣

∣

∣

∣

p

q

∣

∣

∣

∣

· |g−(t)|2 . (1.44)

Setting |q/p| = 1, Eqs. (1.41) and (1.43) can be rewritten as

Prob(P 0 → P 0, t) ∝ e−Γt [cosh(2∆Γt) + cos(∆Mt] (1.45)

Prob(P 0 → P 0, t) ∝ e−Γt [cosh(2∆Γt)− cos(∆Mt] . (1.46)

In Fig. 1.3 we show the probabilities of changing (Eq. (1.46)) and not changing (Eq. (1.45))

the flavor for different values for ∆M and ∆Γ. These are examples that do not correspond

to any of the four mixing systems in the SM. The presence of mixing alters the exponential

tΓ
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∆M = 5Γ, ∆Γ = 0:
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∆M = 0, ∆Γ = 1.6Γ:
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Figure 1.3: Probability of changing the flavor (red line), non changing it (blue) and the
e−Γt function (black) for three different sets of (∆M,∆Γ): (5Γ, 0) for the left plot, (0, 1.6Γ)
for the center plot and (5Γ, 1.6Γ) for the right plot.

distribution for the P 0 decay into a final state f . The oscillation period is proportional to

the inverse of ∆M .

Let’s now complete the time evolution picture computing the decay probability in a final

state f , different from |P 0〉 or |P 0〉.

Let us suppose that the weak interaction (described by Hw) is responsible for the transi-

tions with ∆F 6= 0 (i.e. in the decays but also in the mixing) and that other interactions

(described by H0) can’t change the flavor. We indicate with Af (Āf ) the P
0 (P 0) decay
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amplitude into the final state f :

Af = 〈f |Hw|P 0〉
Āf = 〈f |Hw|P 0〉

and define the parameter λf as

λf ≡ q

p

Āf

Af
. (1.47)

The partial decay width for the decays P 0 → f is proportional to the square of the

amplitude:

Γ(P 0(t) → f) ∝
∣

∣〈f |Hw|P 0(t)〉
∣

∣

2
=

=

∣

∣

∣

∣

g+(t) 〈f |Hw|P 0〉+ q

p
g−(t) 〈f |Hw|P 0〉

∣

∣

∣

∣

2

=

=

∣

∣

∣

∣

g+(t) Af +
q

p
g−(t) Āf

∣

∣

∣

∣

2

(1.48)

and similarly for P 0:

Γ(P 0(t) → f) ∝
∣

∣〈f |Hw|P 0(t)〉
∣

∣

2
=

∣

∣

∣

∣

g+(t) Āf +
p

q
g−(t) Af

∣

∣

∣

∣

2

. (1.49)

If we isolate the amplitude square and substitute the expressions of g±(t) in terms of λf ,

∆M and ∆Γ, we find:

Γ(P 0(t) → f) ∝ 1
2 |Af |2e−Γt

[

(1 + |λf |2) cosh
∆Γ

2
t+ (1− |λf |2) cos ∆Mt (1.50)

−2ℜ(λf ) sinh
∆Γ

2
t+ 2ℑ(λf ) sin∆Mt

]

,

Γ(P 0(t) → f) ∝ 1
2 |Āf |2e−Γt

[

(1 + |λ−1
f |2) cosh ∆Γ

2
t+ (1− |λ−1

f |2) cos ∆Mt (1.51)

−2ℜ(λ−1
f ) sinh

∆Γ

2
t+ 2ℑ(λ−1

f ) sin∆Mt

]

.

For completeness we also report the results for decays to the CP -conjugate final state f̄ :

Γ(P 0(t) → f̄) ∝ 1
2 |Af̄ |2e−Γt

[

(1 + |λf̄ |2) cosh
∆Γ

2
t+ (1− |λf̄ |2) cos ∆Mt (1.52)

−2ℜ(λf̄ ) sinh
∆Γ

2
t+ 2ℑ(λf̄ ) sin∆Mt

]

,

Γ(P 0(t) → f̄) ∝ 1
2 |Āf̄ |2e−Γt

[

(1 + |λ−1
f̄

|2) cosh ∆Γ

2
t+ (1− |λ−1

f̄
|2) cos ∆Mt (1.53)

−2ℜ(λ−1
f̄

) sinh
∆Γ

2
t+ 2ℑ(λ−1

f̄
) sin∆Mt

]

.
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1.2.2 CP Violation

As introduced in Sec. 1.1, CP violation is parameterized in the SM through the complex

phase of the CKM matrix. In the following we present a model-independent classification

of CP violation mechanisms.

In a neutral meson system, CP violation can occur in three ways: in the decay, in the

mixing, or in the interference between decays with and without mixing. CP violation in

the decay is also possible for charged particles.

CP Violation in the Decay

This type of CPV occurs when the process P → f has a different probability of the CP -

conjugate process P → f̄ . This implies that the ratio of the two amplitudesAf = 〈f |Hw|P 〉
and Āf̄ = 〈f̄ |Hw|P 〉 is different from one in magnitude:

∣

∣

∣

∣

∣

Af

Āf̄

∣

∣

∣

∣

∣

6= 1. (1.54)

The experimental observable is the asymmetry

Af =
Γ(P → f̄)− Γ(P → f)

Γ(P → f̄) + Γ(P → f)
=

∣

∣Āf̄/Af

∣

∣

2 − 1
∣

∣Āf̄/Af

∣

∣

2
+ 1

. (1.55)

It is important to note that, in order to exhibit this type of CPV , it is necessary that the

process P → f proceeds through at least two amplitudes with different phases:

Af = a1e
i(δ1+φ1) + a2e

i(δ2+φ2) (1.56)

Āf̄ = a1e
i(δ1−φ1) + a2e

i(δ2−φ2), (1.57)

where δi are CP -invariant strong phases, and φi are the CP -violating weak phases, which

change sign under CP . The sensitivity to this type of CPV is present only when the two

amplitudes have different strong and weak phases, i.e. δ1 6= δ2, and φ1 6= φ2, since

|Af |2 − |Āf̄ |2 = a21a
2
2 sin(δ1 − δ2) sin(φ1 − φ2). (1.58)

This type of CPV involves the presence of the uneliminable weak phase in the physical

decay amplitudes Af and Āf̄ . In this case we talk of direct CPV .

CPV in the decay has been observed in neutral K decays and its detection ruled out the

superweak model proposed by Wolfenstein in order to explain the CP violation observed

in 1964.
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CP Violation in the Mixing

As shown in Tab. 1.1, the invariance of the Hamiltonian under the discrete symmetry

operators C, P and T , or their combinations, introduces constraints among the elements

of M and Γ. If CP is a good symmetry, ℑ [Γ12/M12] = 0, and q/p is complex number with

a magnitude of one, in other words, a phase:

q

p
=

√

M∗
12

M12

√

√

√

√

1− i
2

Γ∗

12

M∗

12

1− i
2

Γ12

M12

=

√

M∗
12

M12
⇒

∣

∣

∣

∣

q

p

∣

∣

∣

∣

= 1.

The condition |q/p| 6= 1 constitutes a CP or T violation, and would imply that the

probability of the transition |P 0〉 → |P 0〉 is different from the reversed one |P 0〉 → |P 0〉,
as can be seen in Eqs. (1.43) and (1.44).

In order to directly measure this type of CPV , a possibility is to choose a leptonic or

semileptonic decay channel which determines the flavor of the meson at decay time. Know-

ing the flavor of the meson at production we construct the asymmetry ASL:

ASL =
Γ(P 0(t) → ℓ+X)− Γ(P 0(t) → ℓ−X)

Γ(P 0(t) → ℓ+X) + Γ(P 0(t) → ℓ−X)
=

1− |q/p|4

1 + |q/p|4
. (1.59)

This type of CPV does not involve any ∆F = 1 decay amplitude, consequently any une-

liminable phase in a decay amplitude, it is therefore an example of indirect CPV .

CPV in mixing has also been observed in the K0 −K0 system [27] using the K0
L → πeνe

decays.

CP Violation in the Interference between Decays with and without Mixing

In case the final state is accessible to both P 0 and P 0, there is a third possible type of

CP violation. Since starting from the same flavor at production, the final state can be

reached in two possible ways:

1. through a direct decay: P 0 → f ;

2. through mixing and then decay: P 0 → P 0 → f

This type of CPV occurs in the interference between these two paths and it is possible

even in case CP is conserved separately in the decay and in mixing.

We recall the definition of λf :

λf ≡ q

p

Āf

Af
=

∣

∣

∣

∣

q

p

Āf

Af

∣

∣

∣

∣

ei(δf+φf ), (1.60)
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where φf and δf are the weak and strong phases, respectively, and Af (Āf ) is the decay

amplitude of P 0(P 0) → f . It is worth noticing that the phase of λf is physical, independent

of the choice of the relative phase between P 0 and P 0.

CPV of this type occurs when the weak phase of λf is different from zero, φf 6= 0.

Suppose there is no CPV in the decay nor in mixing, then:

∣

∣

∣

∣

q

p

∣

∣

∣

∣

= 1 and

∣

∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

∣

= 1. (1.61)

In this case, any difference between Γ(P 0(t) → f) and Γ(P 0(t) → f̄) is an evidence of

CPV in the interference between decays with and without mixing. Looking the Eqs. (1.50)

and (1.53), under the hypotheses in (1.61), the terms in which these difference can ap-

pear are the ones depending on the argument of λf and λ−1
f̄

. Suppose there is only one

amplitude contributing to the decay P 0 → f , that we parameterize as:

Af = a ei(∆f+Φf ) (1.62)

where ∆f is the CP conserving strong phase and Φf the CP -violating one. If we consider

the CP -conjugate process P 0 → f̄ we can parameterize its amplitude as:

Āf̄ = a ei(∆f−Φf ). (1.63)

Similarly for the processes P 0 → f̄ and P 0 → f , we can write, respectively:

Af̄ = r a ei(∆f̄+Φf̄ ) and Āf = r a ei(∆f̄−Φf̄ ), (1.64)

where r =
∣

∣Af̄/Af

∣

∣ and ∆f̄ 6= ∆f and Φf̄ 6= Φf and the CP conserving and CP violating

phases, respectively, of the P 0 → f̄ decay.

We can now compute λf and λ−1
f̄

:

λf =
q

p

Āf

Af
= r ei[(∆f̄−∆f )−(Φf̄−Φf )+ΦM ] (1.65)

λ−1
f̄

=
p

q

Af̄

Āf̄

= r ei[(∆f̄−∆f )+(Φf̄−Φf )−ΦM ], (1.66)

with ΦM = arg (q/p). Therefore, λf and λ−1
f̄

have the same magnitudes but different

arguments if their weak phase φf = Φf̄ +Φf +ΦM is different from zero.

The weak phase φf has two independent contributions: ΦM from mixing, independent

of the final state; and Φf̄ + Φf from the amplitudes ratio, that depends on final state.

Therefore this type of CPV may have both direct and indirect CPV contributions.
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In case the final state is a CP eigenstate (|f̄〉 = CP |f〉 = ηf |f〉) then ∆f = ∆f̄ , hence

δf = 0, and the signature for CPV becomes ℑ(λf ) 6= 0. If the weak phase is different for

two different final states f1 and f2, ℑ(λf1) 6= ℑ(λf2), then there is a contribution of direct

CPV .

From an experimental point of view, a possibility to detect this type of CPV is measuring

the integrated asymmetry in CP eigenstates, AfCP :

AfCP =
Γ(P 0(t) → fCP )− Γ(P 0(t) → fCP )

Γ(P 0(t) → fCP ) + Γ(P 0(t) → fCP )
=

=
(1− |λf |2) cos(∆Mt)− 2ℑλf sin(∆Mt)

1 + |λf |2
. (1.67)

This type of CPV is the one observed BABAR and Belle in the B0 → J/ψK0
S channel.

1.2.3 Mixing Phenomenology in the Standard Model

There are two types of contributions to the mixing amplitudes: the short-distance and

the long-distance contributions. The length scale is defined by comparing the space-time

distance traveled by the intermediate states I to the typical scale of the strong interactions.

The SM diagrams for the D0 −D0 mixing are reported in Fig. 1.4.

d,s,bd,s,b

W

Wu

c

c

u
d,s,b

d,s,b

WW

u

u

c

c

c

Figure 1.4: SM diagrams for the D0 −D0 mixing.

In the diagram on the right of Fig. 1.4 the intermediate states are the massive W bosons

that, given the mass of the mixing mesons, will always be off-shell: the intermediate state

is virtual. The interaction can be written as a Fermi four-quark point-like interaction,

the intermediate state doesn’t travel in space-time and therefore these diagrams belong

to the short-distance class, contributing mainly to ∆M . Any contribution of physics

beyond the SM belongs to this class. The diagram on the left of Fig. 1.4 is different since

the intermediate state is made of light quarks that can travel far from the production

point. When this happens, if the distance is comparable to the typical scale of the strong

interactions, they can hadronize and form on-shell intermediate states, some examples for

the D0 − D0 mixing are reported in Fig. 1.5. These contributions belong to the long-

distance class and mainly contribute to ∆Γ. The main difference between the long- and

short-distance contributions is that in the former QCD becomes a key ingredient while in

the latter it does not play a role.
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π

KK

DD

K

DD

Figure 1.5: Some example of long-distance contributions to D0 −D0 mixing.

The short-distance contributions dominate in the B0 − B0 system, while they are highly

suppressed in the D0−D0 one. The B0 system benefits from the presence of a virtual top

quark in the loop while in the D0 case the bottom quark is not only much lighter than

the top, but it is also highly CKM suppressed. Without the contribution of the bottom

quark, the GIM mechanism is more effective, hence the contributions of the two lighter

quarks (u, s) are also suppressed.

The size of the long-distance contributions is determined by the amount of phase space

of the final states in common to the meson and the anti-meson. In the K0 −K0 system

this contribution is almost maximal since there is a small number of possible final states

for K0 and almost all are accessible also to the K0. In the B0 system the situation is

the opposite, there is a large number of possible final states for the B0 but just a small

fraction of them are accessible also to the B0. In D0 − D0 mixing this is the dominant

contribution as a consequence of the large suppression of the short-distance diagrams.

In Tab. 1.2 we report the approximate values for ∆M/Γ and ∆Γ/2Γ for the four mixing

systems and in Fig. 1.6 we show the probability in units of the lifetime to change the flavor

(from Eq. (1.45)) or not (from Eq. (1.46)).

system ∆M/Γ ∆Γ/2Γ

K0 −K0 −0.95 0.99

D0 −D0 5× 10−3 5× 10−3

B0 −B0 0.77 5× 10−3

Bs −Bs 26 0.15

Table 1.2: Approximate values of ∆M/Γ and ∆Γ/2Γ for the four mixing systems.

For all the systems except the D0 − D0 one, the difference between the e−Γt black line

and the flavor-unchanged blue line is visible. In the D0 −D0 plot, on the other hand, the

difference is not appreciable, and, in order to see the flavor-changed red line a logarithmic

scale with eight orders of magnitude range is needed. This striking difference is the reason

why a measurement of mixing in the D0 − D0 system is a high precision measurement,

and only with the latest datasets of BABAR, Belle and CDF, it was possible to be sensitive

to it.

Although the SM long-distance contributions are dominant, and the predictions are com-
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Figure 1.6: Probability of changing the flavor (red line), non changing it (blue) and the
e−Γt function (black) for the four SM mixing systems: a) K0−K0, b) Bs−Bs, c) D

0−D0

(note the logarithmic scale), d) B0 − B0.

plicated to compute, as discussed in the following, the D0 is unique among the mixing

systems, since it is the only one made of up-type quarks, hence the only one for which

the virtual quarks are down-type. Therefore mixing in the D0 −D0 system brings com-

plementary information and could be, in principle, sensitive to a different New Physics

sector. This is true also for what concerns CP violation.

SM Predictions for the D0 −D0 System

D0 mixing is dominated by the long-distance contributions that are not perturbative in

essence. There are two approaches to perform these kind of calculations [28, 29] but none

of them provides accurate predictions on ∆M/Γ and ∆Γ/2Γ.

The first approach is the “inclusive” one, based on the Operator Product Expansion

(OPE). This approach is based on the assumption that the mass of the charm quark mc is

sufficiently large compared to the typical scale of the strong interaction Λ. ∆M and ∆Γ

are expanded in terms of the matrix elements of local operators in powers of Λ/mc. Since

the charm quark is relatively heavy, Λ/mc is not small enough and the truncation of the

series causes a non-negligible error.

A second possible approach is the “exclusive” one, and it consists in summing over all

the possible hadronic states. The problem with this approach is that the D0 is not light
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enough to be dominated by a few number of final states. Moreover, in order to perform

these calculations, the different contributions need to be calculated with high precision

because there can be cancellations within a SU(3) multiplet. The knowledge of the strong

phases is also important.

As a consequence, the SM predictions for mixing (shown in Fig. 1.7) and for CPV are

affected by large theory uncertainties. The interpretation of the current measurements, in

particular the evidence of CPV , is therefore not straightforward.

Figure 1.7: SM predictions for the mixing parameter x = ∆M/Γ and y = ∆Γ/2Γ. For
the index see [30].

1.3 Mixing and CP Violation with the Lifetime Ratio in D0

Decays

The D0 and D0 flavor eigenstates are superpositions of the mass eigenstates D1 and D2,

as in (1.32),

|D1〉 = p|D0〉+ q|D0〉
|D2〉 = p|D0〉 − q|D0〉, (1.68)

Di has a mass Mi and a width Γi. We use the phase convention CP |D0〉 = +|D0〉, and
in the case of no CPV , D1 is the CP -even eigenstate. The mixing parameters xD and yD

that describe the D0 −D0 oscillations are defined as:

xD =
M1 −M2

Γ
, yD =

Γ1 − Γ2

2Γ
. (1.69)
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Let’s consider CP -even final states, in particular f = h+h−, h = K,π. If we neglect

second-order terms in xDΓt and yDΓt, the decay time distributions in (1.50) and (1.51)

can be treated as exponentials with an effective lifetime [31]:

Γ(D0(t) → f) ∝ e−t/τ+
hh with (τ+hh)

−1 = Γ [1 + yD ℜ(λhh)− xD ℑ(λhh)] , (1.70)

Γ(D0(t) → f) ∝ e−t/τ̄+
hh with (τ̄+hh)

−1 = Γ
[

1 + yD ℜ(λ−1
hh )− xD ℑ(λ−1

hh )
]

. (1.71)

The “+” sign associated with the lifetime parameters indicates that the CP eigenstate is

CP -even, while the bar recalls the flavor of the neutral D meson. To better understand the

effects of CP violation we introduce two more parameters, one describing CPV in decay

(Af
D) and a second one in mixing (AM ):

Af
D =

|Af/Āf |2 − |Āf̄/Af̄ |2
|Af/Āf |2 + |Āf̄/Af̄ |2

, (1.72)

AM =
|q/p|2 − |p/q|2
|q/p|2 + |p/q|2 . (1.73)

Since f = h+h− then |f̄〉 = CP |f〉 = +|f〉. Noting that there is no strong phase in λhh

since the final state is a CP eigenstate, we can express λhh in terms of Ahh
D , AM and the

CP -violating phase φhh:

λhh =

[

1−Ahh
D

1 +Ahh
D

1 +AM

1−AM

]1/4

eiφhh . (1.74)

Expanding Eqs. (1.70) and (1.71) and retaining only terms up to the first order in Ahh
D

and AM , we obtain

(τ+hh)
−1 ≃ Γ

[

1 + (yD cosφhh − xD sinφhh) +
1

2
(AM −Ahh

D ) (yD cosφhh − xD sinφhh)

−1

4
AMA

hh
D (yD cosφhh − xD sinφhh)

]

, (1.75)

(τ̄+hh)
−1 ≃ Γ

[

1 + (yD cosφhh + xD sinφhh)−
1

2
(AM −Ahh

D ) (yD cosφhh + xD sinφhh)

−1

4
AMA

hh
D (yD cosφhh + xD sinφhh)

]

. (1.76)

Combining the widths defined above we obtain the two observables yCP and ∆Y that, in

general, depend on the final state because of the CPV parameters Ahh
D and φhh:

yhhCP =
1

2Γ

[

1

τ+hh
+

1

τ̄+hh

]

− 1 ≃ τD0

2

[

1

τ+hh
+

1

τ̄+hh

]

− 1 , (1.77)

∆Y hh =
1

2Γ

[

1

τ+hh
− 1

τ̄+hh

]

≃ τD0

2

[

1

τ+hh
− 1

τ̄+hh

]

, (1.78)
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the average width Γ is proportional to the inverse of the D0 lifetime, τD0 , if ∆Γ ≪ 1 and

neglecting CPV in the mixing.

These quantities are directly related to the fundamental parameters that govern mixing

and CPV in the charm sector:

yhhCP = yD cosφhh −
1

2

[

AM +Ahh
D

]

xD sinφhh −
1

4
AMA

hh
D yD cosφhh , (1.79)

∆Y hh = −xD sinφhh +
1

2

[

AM +Ahh
D

]

yD cosφhh +
1

4
AMA

hh
D xD sinφhh. (1.80)

Both yCP and ∆Y are zero if there is no D0 −D0 mixing. Otherwise, a non-zero value of

yCP determines mixing and a non-zero value of ∆Y determines CPV .

In the charm sector, the CKM elements involved belong to the Cabibbo submatrix,

therefore we can assume that the weak phase φhh does not depend on the final state:

φhh = φ [31]. As stated earlier, if direct CPV has a significant effect, then the values of

yCP and ∆Y depend on the final state. In this analysis we assume that the effect of direct

CPV is negligible in the decays to CP eigenstates; therefore τ+KK = τ+ππ (and τ̄+KK = τ̄+ππ).

In Eqs. (1.75) and (1.76) this means neglecting the linear terms in Ahh
D . Assuming that

Ahh
D and yD are both O(1%) and φhh = 0, the neglected term is O(10−4), beyond any

current experimental sensitivity.

Under the above assumptions, Eqs. (1.75) and (1.76) simplify to:

(τ+)−1 ≃ Γ

[

1 + (yD cosφ− xD sinφ) +
AM

2
(yD cosφ− xD sinφ)

]

, (1.81)

(τ̄+)−1 ≃ Γ

[

1 + (yD cosφ+ xD sinφ)− AM

2
(yD cosφ+ xD sinφ)

]

, (1.82)

while the observables become:

yCP = yD cosφ− AM

2
xD sinφ , (1.83)

∆Y = −xD sinφ+
AM

2
yD cosφ. (1.84)

1.4 Experimental Status of the Observables

The B-Factories and the Tevatron experiments have accumulated sufficient statistics to

observe mixing in the D0 − D0 system. The LHCb experiment has also produced its

first measurement of mixing and CPV in the charm sector. The world averages of the

mixing and CP violating parameters computed by the Heavy Flavor Averaging Group

(HFAG) [32] are reported in Fig. 1.8.

The experimental observations of mixing are consistent with the upper range of predictions
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Figure 1.8: World Averages for the mixing parameters xD and yD (left) and the CPV
parameters |q/p| and its phase, by the HFAG [32].

from the Standard Model,

xHFAG = (0.89+0.26
−0.27)%

yHFAG = (0.75+0.17
−0.18)% (1.85)

For what concerns our observables, yCP and ∆Y , we should point out that HFAG and

experiments different from BABAR (instead of ∆Y ) use the following parameter sensitive

to CPV AΓ

AΓ =
τ̄+hh − τ+hh
τ̄+hh + τ+hh

=
∆Y

1 + yCP
. (1.86)

Moreover HFAG neglects the factor 1/(1 + yCP ) when it relates the observable AΓ to the

fundamental mixing and CPV parameters xD, yD and φ. In Fig. 1.9 we summarize the

measurements of yCP and AΓ from BABAR, BELLE and LHCb and the world averages

computed by HFAG.

The combined values are:

yCP = (1.064 ± 0.209)% (1.87)

AΓ = (0.026 ± 0.231)% (1.88)

No evidence of CPV is found in the parameter AΓ. Mixing is measured at the 1% level

with the parameter yCP .

Each CPV observable has a contribution from direct CPV , i.e. from an irreducible phase

in the ∆F = 1 decay amplitude, and indirect CPV , i.e. from an irreducible phase in the
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Figure 1.9: Combination of the measurements for yCP and AΓ by the HFAG [32].

∆F = 2 mixing transitions. In Fig. 1.10 the direct and indirect CPV contributions have

been disentangled by the HFAG.
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Figure 1.10: Combination of the measurements for direct and indirect CPV in the charm
sector by the HFAG [32].

CPV in the charm sector is excluded at a confidence level of 2×10−5, determined primarily

from the direct CPV contribution, that is at the level of 0.7%.





Chapter 2

The BABAR Experiment at the

B-Factory PEP-II

The BABAR experiment was installed at the Stanford Linear Accelerator Center (SLAC),

California. It was designed and built by a large international team of scientists and

engineers in the 90s, with a comprehensive physics program consisting of the systematic

measurement of CP violation in the B meson system, precision measurements of decays

of bottom and charm mesons, and of the τ lepton, and search for rare processes. The

BABAR experiment consists of a detector [33] built around the interaction region of the

high luminosity e+e− collider PEP-II [34]. BABAR started taking data in May 1999 and

finished in April 2008. In this chapter the main features of the final design and performance

of PEP-II and BABAR are described.

2.1 The PEP-II B Factory

The PEP-II B Factory is an asymmetric-energy e+e− collider designed to operate at a

center-of-mass energy of 10.58 GeV, corresponding to the mass of the Υ (4S) vector meson

resonance (see Fig. 2.1). The luminosity L of the machine depends on the careful tuning

of several parameters. This dependence is expressed as:

L =
nfN1N2

A
, (2.1)

where n is the number of bunches in a ring, f is the bunch crossing frequency, N1 and N2

are the total number of particles in each bunch, and A is their overlap cross sectional area

(A = 4πσxσy). The design peak luminosity was foreseen to be L = 3× 1033 cm−2 s−1 and

was reached in 2001, the record is 1.2 × 1034 cm−2s−1 achieved in 2006.

The effective cross sections of the main physics processes in PEP-II are listed in Tab. 2.1

([35]), and for the production of the Υ (4S) at
√
s = 10.58 GeV it is about 1.1 nb, where
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Process Cross-section (nb)

e+e− → bb 1.099
e+e− → cc 1.30
e+e− → ss 0.35
e+e− → uu 1.39

e+e− → dd 0.35
e+e− → e+e− ∼53
e+e− → µ+µ− 1.16
e+e− → τ+τ− 0.94

Table 2.1: Cross sections of the main physics processes at the Υ (4S). The cross section for
e+e− refers to the volume of BABAR electromagnetic calorimeter, which is used to trigger
these events. The bb cross-section is the ratio of the number of produced B events to
luminosity in the On-peak Run 1-5 data sample. The other qq cross sections are computed
by Jetset7.4 and include radiative corrections.

the Υ (4S) decays almost exclusively into B0B0 and B+B− pairs.

As shown in Fig. 2.1, at the peak of Υ (4S) there is a non-negligible amount of e+e− → qq̄

(q = u, d, s, c) and e+e− → l+l− (l = e, µ, τ) events. In addition, part of the data is

collected at the center-of-mass (CM) energy 40 MeV below the Υ (4S) peak, where BB

production is not allowed. This data sample corresponds to about 1/10 of the sample

taken at the Υ (4S) peak and, in the “conventional” BABAR analysis, is used to study

non-BB background. In this analysis it is included in the signal sample.
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Figure 2.1: (a) The first four S-wave Υ resonances shown with the hadronic cross section
versus center-of-mass energy/c2 in the Υ mass region. (b) a magnified region showing the
Υ (4, 5, 6S) resonances. The Υ (4S) is the third radial excitation of the ground state. Its
larger width is a consequence of the fact that the Υ (4S) is just above threshold for strongly
decaying to B0B0 and B+B− pairs.
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Parameters Units Design Υ (4S) Typical

Energy (E) HER/LER GeV 9.0/3.1 9.0/3.1
Current (I) HER/LER A 0.75/2.15 0.9-1.9/1.3-2.6
number of bunches - 1658 1732
σx µm 110 120
σy µm 3.3 4.1
σz µm 11 11-12
β∗y mm 15-25 9-10

β∗x cm 50 40-105
ξy HER/LER - 0.03/0.03 0.062/0.047
ξx HER/LER - 0.03/0.03 0.113/0.027
Bunch Spacing ns 4.2 4.2
Luminosity 1033cm−2s−1 3 4.4-10.4

Table 2.2: PEP-II beam parameters [36]. HER and LER refer to the high energy e−

and low e+ ring respectively. σx, σy, and σz refer to the R.M.S. horizontal, vertical, and
longitudinal bunch size at the IP. β∗x,y is the horizontal and vertical envelope function at
the collision point and ξx,y the tune shift. The peak luminosity is proportional to EIξy/β

∗
y ,

assuming the product E · I roughly equal for the two beams.

2.1.1 PEP-II Layout

In PEP-II, the electron beam of 9.0 GeV collides almost head-on1 with the positron beam

of 3.1 GeV resulting in a boost for the CM system of βγ ≈ 0.56 in the laboratory refer-

ence frame (LAB). This boost is crucial to study the B-meson system: it allows one to

reconstruct the decay vertex of the two B mesons and to determine their relative decay

times, since the average separation between the two B vertexes is βγcτ ≈ 250µm. One,

can therefore measure the time-dependent decay rates and CP -asymmetries.

The different beam energies require a two-ring configuration, as shown in Fig. 2.2. The

parameters of PEP-II rings are summarized in Tab. 2.2

Electron and positron are accelerated along the 3 km long SLAC linear accelerator (LINAC)

and accumulated into the two 2.2 km long storage rings, called HER (High-Energy Ring)

and LER (Low-Energy Ring), respectively. A fraction of electrons instead of being deliv-

ered to the HER is further accelerated to an energy of 30 GeV and sent to a target where

positrons are produced.

In the proximity of the interaction region, the beams are focused by a series of offset

quadrupoles (indicated with Q in Fig. 2.5 ) and bent by a pair of samarium-cobalt dipole

magnets (B1), which allow the bunches to collide head-on. The B1 dipoles, located at

±21 cm on each side of the interaction point (IP), and the Q1 quadrupoles, are permanent

magnets which operate inside the field of the BABAR superconducting solenoid, while Q2,

Q4, and Q5, are located outside or in the fringe field of the solenoid. This configuration

is the best compromise between physics and engineering requirements.

1The crossing angle is 20 mrad.
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Figure 2.2: The PEP-II asymmetric storage ring and the SLAC linear accelerator. The
SLAC LINAC is the injector for PEP-II. The interaction point of PEP-II is at IR-2, where
BABAR is situated.

The interaction region is enclosed in a water-cooled beam pipe consisting of two thin layers

of beryllium (0.83 mm and 0.53 mm) with a 1.48 mm water channel in between.

To attenuate synchrotron radiation, the inner surface of the beam pipe is gold-plated

(about 4 µm). Beam pipe, permanent magnets, and Silicon Vertex Tracker (SVT) are

assembled, aligned, and then enclosed in a 4.4 m long support tube, which is inserted into

the BABAR detector.

2.1.2 PEP-II Performances

PEP-II has delivered luminosity starting from May 1999 till April 2008, and BABAR has

recorded a total integrated luminosity of 531 fb−1, mostly at the Υ (4S) resonance peak

(also called the on-peak sample) plus small samples around Υ (2S) and Υ (3S) ones, as

shown in Fig. 2.3.

Some off-peak luminosity has been collected 40 MeV below each resonance peak, and

finally an energy scan from Υ (4S) till 11.2 GeV in steps of 5 MeV was performed, totaling

about 54 fb−1 of data. PEP-II has largely surpassed its design performance, with a

record peak-luminosity of 1.2 · 1034 cm−2 s−1, and a monthly integrated luminosity of 20

fb−1, that is, respectively, about a factor four and six with respect to the expectations.

The progress in the instantaneous luminosity is mainly due to the increase of the beam

currents and improved focusing and beam orbits. A significant improvement of the order

of 50% of the integrated luminosity has been achieved at the begin of year 2004 with

the implementation of a novel mode of operation of PEP-II called trickle injection (see

Fig. 2.4). Until the end of 2003, PEP-II typically operated in a series of 40 minute fills

during which the colliding beam coasted: at the end of each fill, it took about three to five

minutes to replenish the beams for the next fill, and during this period the BABAR data

acquisition system had to be turned off because of the high background conditions present
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Figure 2.3: Total luminosity delivered by PEP-II from October 1999 to April 2008. The
luminosities integrated by BABAR at different resonances is also shown.

during a fill, affecting detector safety and introducing data acquisition dead-time. With

trickle injection there is no “fill” concept and beams are replenished with a small amount

of charge to keep the current constant. With the new technique, the BABAR detector could

take data uninterrupted resulting in much higher integrated luminosity.

Trickle injection was introduced first in December 2003 in the low energy ring, and in

March 2004 it was implemented in the high energy ring. The advantages of this novel

mode of operation went beyond just the increase in luminosity. Continuous injection

made the storage of particles more stable, so that PEP-II rings were easier to operate and

beam losses were far less frequent than with the previous operational mode.

2.1.3 PEP-II Background

Beam-generated background causes high single-counting rates, data acquisition dead time,

high currents and radiation damage of the BABAR detector and electronics. This results

in low data quality and can affect the lifetime of the apparatus. For this reason the

background generated by PEP-II was studied in detail and the interaction region was

carefully designed. The primary sources of the machine-generated background are:

� synchrotron radiation in the proximity of the interaction region. A strong source

of background is due to beam deflections in the interaction region. This component

is limited by channeling the radiation out of the BABAR acceptance with a proper
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Figure 2.4: Comparison of the best 8-hour periods of data taking for three different modes
of operation of PEP-II: no trickle injection (top), trickle injection of the low energy ring
(middle), and trickle injection of both beams (bottom).

design of the interaction region and beam orbits, and placing absorbing masks before

the detector components;

� interaction between beam particles and residual gas in either ring, originating

from beam gas bremsstrahlung and Coulomb scattering. Both types of interaction

cause an escape of beam particles from their orbit. This background represents the

primary source of radiation damage for the inner vertex detector and the principal

background source for the other components. The intrinsic rate of these processes

is proportional to the product of the beam current and the residual pressure;

� Electromagnetic shower generated by beam-beam collision. These showers

are due to e+e− pairs produced by radiative Bhabha scattering and hitting the beam

pipe close to the interaction point. This background is proportional to the machine

luminosity and it is always monitored.

2.2 Overview of the BABAR Detector

The design of the BABAR detector has been optimized for CP violation studies, but it is

also well suited for searches of rare decays of B, τ , and charm physics. To achieve the goal

of performing accurate event reconstruction there are many requirements:
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System Polar Angle Channels Layers Segmentation Performance
coverage (θ)

SVT [20.1,150.2]◦ 150K 5
50− 100 µm in r − φ σd0 = 55 µm
100− 200 µm in z σz0 = 65 µm

DCH [17.2,152.6]◦ 7,104 40

σφ = 1 mrad
6− 8 mm σtan λ = 0.001
drift distance σpT /pT = 0.47%

σ(dE/dx) = 7.5%

DIRC [25.5,141.4]◦ 10,752 1
35× 17mm2 σθC = 2.5 mrad
(r∆φ × ∆r) per track
144 bars

EMC (C) [27.1,140.8]◦ 2 × 5760 1 47× 47 mm2 σE/E = 3.0%
5760 crystals σφ = 3.9 mrad

EMC (F) [15.8,27.1]◦ 2× 820 820 crystals σθ = 3.9 mrad

IFR (C) [47,123]◦ 22K+2K 19+2 20− 38 mm 90% µ± eff.
6-8% π± mis-id

IFR (F) [20,47]◦ 14.5K 18 28− 38 mm (loose selection,
1.5− 3.0GeV/c)

IFR (B) [123,154]◦ 14.5K 18 28− 38 mm

Table 2.3: Overview of the coverage, segmentation, and performance of the BABAR detector
system. The notation (C), (F), and (B) refers to the central barrel, forward and backward
components of the system, respectively. The detector coverage in the laboratory frame
is specified in terms of the polar angle θ. Performance numbers are quoted for 1 GeV/c
particles, except where noted.

� a large acceptance and uniform efficiency, in particular down to small polar angles

relative to the boost direction, to avoid particle losses;

� excellent detection efficiency for charged particles down to 60 MeV/c and for photons

down to 25 MeV;

� good momentum resolution to kinematically separate signal from background;

� excellent energy and angular resolution for the detection of photons from π0 and η0

decays, and from radiative decays in the range from 25 MeV to 4 GeV;

� very good vertex resolution, both transverse and parallel to the beam;

� identification of electron and muon over a wide range of momentum, primarily for

the detection of semi-leptonic decays used to tag the B-meson flavor and for the

study of semi-leptonic and rare decays;

� identification of hadrons over a wide range of momentum;

� a highly efficient, selective trigger system with redundancy so as to avoid significant

signal losses and systematic uncertainties.
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The BABAR detector (see Fig. 2.5), designed and fabricated by a collaboration of 600

physicists of 75 institutions from 9 countries, meets all these requirements, as will be

described in the next sections on this chapter. To take into account the boost of PEP-II

and maximize the geometric acceptance, the whole detector is displaced in the forward

direction (the direction of the highest energy beam) with respect to the interaction point by

37 cm. An overview of the polar angle (θ) coverage, the segmentation and the performance

of the BABAR detector system is summarized in Tab. 2.3. All the detectors have full

acceptance in azimuth (φ).

The BABAR superconducting solenoid, which produces a 1.5 T axial magnetic field, contains

a set of nested detectors, from inside to outside:

� a five layer (double sided) of silicon vertex detector (SVT),

� a central drift chamber (DCH) for charged particle detection and momentum mea-

surement,

� a ring-imaging Cherenkov radiation detector (DIRC) for charged particles identifi-

cation,

� a CsI(Tl) crystal electromagnetic calorimeter (EMC) for the detection of photons

and electrons.

Outside the solenoid, the flux return of the is filled with 18 layers of steel, with gaps

instrumented initially with resistive plate chambers (RPC) and successively replaced with

limited streamer tubes (LST). The instrumented flux return (IFR) allows the separation

of muons and charged hadrons, and also detects penetrating neutral hadrons.

As indicated in Fig. 2.5, the right-handed coordinate system is anchored to the main

tracking system, the drift chamber, with the z-axis coinciding with its principal axis. This

axis is offset relative to the beam axis by about 20 mrad in the horizontal plane. The

positive y-axis points upward and the positive x-axis points away from the center of the

PEP-II storage rings.

In the following section there is a brief description of each sub-detector and their perfor-

mance. Further details can be found in [33].
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Figure 2.5: Layout of the BABAR detector projected along the beam axis (top) and pro-
jected on the plane orthogonal to the beam axis (bottom).
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2.3 The Silicon Vertex Tracker (SVT)

The SVT sub-detector provides a precise measurement of the decay vertices and of the

charged particle trajectories near the interaction region. The mean vertex resolution along

the z-axis must be better than 80 µm in order to avoid a significant impact on the time-

dependent CP asymmetry measurements, and a 100 µm resolution in the x - y transverse

plane is necessary in reconstructing decays of bottom and charm mesons, as well as τ

leptons2.

The SVT also provides standalone tracking for particles with transverse momentum too

low to reach the outer tracker, like soft pions from D∗ decays and many charged particles

produced in multi-body B-meson decays. The choice of a vertex tracker made of five

layers of double-sided silicon strip sensors allows a complete track reconstruction even in

the absence of drift chamber information.

Finally, the SVT supplies PID information both for low and high momentum tracks. For

low-momentum tracks the SVT dE/dx is the only PID information available, for high

momentum tracks the SVT provides the best measurement of the track angles, required

to achieve the designed resolution on the Cherenkov angle measured by the DIRC.

2.3.1 Detector Layout

The Silicon Vertex Tracker is composed of five layers of 300 µm thick, double-sided micro-

strip detectors [37]. The total active silicon area is 0.96 m2 and the material traversed by

particles at normal incidence is 4% X0. The geometrical acceptance is about 90% of the

solid angle in the CM system.

The silicon detectors and the associated readout electronics are assembled into mechanical

units called modules. The inner three layers have six detector modules and are a traditional

barrel-style structure. They are placed next to the interaction region, at radii 3.3, 4.0,

and 5.9 cm from the beam axis (see Fig. 2.6 and Fig. 2.7), and provide an accurate

measurement of the track impact parameters along z and in the x - y plane.

The outer two layers, composed of 16 and 18 modules, have a peculiar arch structure

to reduce the incident angles of particles going in the forward and backward directions,

and their barrel parts are placed at radii between 12.7 and 14.6 cm from the beam axis.

They allow an accurate polar angle measurement and, along with the inner three layers,

enable standalone tracking for particles with low transverse momentum. Full azimuthal

coverage is obtained by partially overlapping adjacent modules, which is also advantageous

for alignment. The polar angle coverage in the laboratory frame is 20.1◦ < θLAB < 150.2◦.

Each silicon detector consists of a high-resistivity n− bulk implanted with p+ strips on

2For example, in decays of the type B0 → D+D−, the separation of the two D vertices is important.
The distances between the two D’s in the x − y plane for this decay is typically ∼ 275 µm. Hence, the
SVT needs to provide a resolution of about ∼ 100 µm in the plane perpendicular to the beam line.
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Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1
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one side and orthogonally-orientated n+ strips on the other side. The strips are AC-

coupled to the electronics via integrated decoupled capacitors, and the strip pitch varies

from 50 to 210 µm depending on the layer. The detector is operated in reverse mode at

full depletion, with bias voltage (Vbias) typically 10 V higher than the depletion voltage

(Vdepl), which ranges between 25−35 V. The strips are biased through polysilicon resistors

(4− 20 MΩ) and the detector active area is surrounded by an implanted guard ring that

collects the edge currents and shapes the electric field in the active region. Strips are

connected through fanout circuits to the low noise front-end electronics which are located

outside the acceptance of the detectors. Each module is electrically divided in four readout

sections.

The SVT is located inside a ∼ 4.5 m-long carbon-fiber support tube. Since the SVT is the

inner detector, it is very important that the total amount of material is kept at a minimum,

to minimize the multiple scattering. The support tube is made of a carbon-fiber epoxy

composite with a thickness of 0.79% of a radiation length.
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2.3.2 Detector Performance

Hit Efficiency and Resolution

The SVT hit efficiency is determined by comparing the number of hits found by a half-

module and assigned to a reconstructed track to the number of tracks crossing the active

area of the module. Excluding the readout sections which were defective, the combined

hardware and software efficiency is measured to be about 97%.

Fig. 2.8 shows the measured SVT spatial hit resolution in z and r - φ for the five layers, as

a function of the track incident angle with respect to the silicon wafer plane. The spatial

resolution of SVT hits is determined by measuring the distance between the track trajec-

tory and the hit, using high-momentum tracks in two-prong events. The uncertainties due

to the track trajectory subtracted to obtain the hit resolution, which varies between 15

and 50 µm.

Figure 2.8: SVT hit resolutions in the z (a) and φ (b) coordinates in µm, plotted as a
function of track incident angle in degrees. Each plot shows a different layer of the SVT.
The plots in φ coordinate for layers 1-3 are asymmetric around φ = 0 because of the
“pinwheel” design of the inner layers. There are fewer points in the φ resolution plots for
the outer layers as they subtend smaller angles than the inner layers.

dE/dx Resolution

Limited particle identification (PID) for low-momentum particles that do not reach the

drift chamber and the Cherenkov detector is provided by the SVT through the measure-

ment of the specific ionization loss, dE/dx, as derived from the total charge deposited

in each silicon layer. It is computed as a truncated mean from the lowest 60% of the

individual dE/dx measurements for tracks with at least 4 associated SVT hits. The re-

sulting SVT dE/dx distribution as a function of momentum is shown in Fig. 2.9 [38]. The
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superimposed Bethe-Bloch curves for the individual particle species have been determined

using various particle control samples, and a 2σ separation between kaons and pions can

be achieved up to momenta of 500 MeV/c.

Figure 2.9: Energy loss per unit length (dE/dx) as measured in the SVT as a function of
momentum. The enhancement of protons is due to beam-gas interactions. The vertical
scale is arbitrary.

2.4 The Drift CHamber (DCH)

The DCH sub-detector is the main tracking device for charged particles with transverse

momenta pT above 120 MeV/c, providing the measurement of pT from the curvature of

the particle trajectory inside the solenoid. The DCH also allows the reconstruction of

secondary vertices outside the SVT volume, such as those from K0
S → π+π− decays. For

this purpose, the chamber should be able to measure not only the transverse momenta and

position, but also the longitudinal position of the tracks (z), with a resolution of ∼ 1 mm.

Good z resolution also aids in matching DCH and SVT tracks and in projecting tracks to

the DIRC and the calorimeter.

For low-momentum particles, the DCH provides PID by measurement of the dE/dx, thus

allowing the K/π separation up to ∼ 700 MeV/c. This capability is complementary to that

of the DIRC in the barrel region, while in the extreme backward and forward directions,

the DCH is the only device to discriminate between different particle hypotheses.

2.4.1 Detector Layout

The design adopted for the DCH is illustrated in Fig. 2.10. It consists of a 280 cm

long cylinder located within the volume inside the DIRC and outside the PEP-II support

tube [39]. The active volume provides charged particle tracking over the polar angle range

17.2◦ < θLAB < 152.6◦.
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Figure 2.10: Longitudinal section of the drift chamber. Lengths are in mm, angles in
degrees.

The drift system consists of 7104 hexagonal cells, approximately 1.8 cm wide by 1.2 cm

high, arranged in 40 concentric layers. Each hexagonal cell consists of one sense wire

surrounded by six field-shaping wires, as shown in Fig. 2.11. In such a configuration, an

approximately circular symmetry of equipotential contours is reached over a large portion

of the cell. A positive high voltage is applied to the sense wires, while the field wires are

at ground potential.

The 40 concentric layers are grouped by 4 into super layers, as shown in Fig. 2.11 for

the four innermost super-layers. This arrangement enables local segment finding and left-

right ambiguity resolution, even if one out of four signals is missing. For this reason

two different wire types are used: the axial type wires (A), parallel to the z-axis, provide

position measurements in the x-y plane, while longitudinal position information is obtained

with wires placed at small angles with respect to the z-axis (stereo wires, U or V type).

Sense and field wires have the same orientation in each super-layer and are alternating

following the scheme AUVAUVAUVA, as shown in Fig. 2.11.

The 40 layers provide up to 40 spatial and ionization loss measurements for charged

particles with pT greater than 180 MeV/c. In order to reduce the impact of multiple

scattering on pT resolution, material within the chamber volume has been minimized

(0.2% X0) using low-mass aluminum field-wires and a helium-isobutane gas mixture.

The inner cylindrical wall of the DCH is kept thin to facilitate the matching of the SVT and

DCH tracks, to improve the track resolution for high momentum tracks, and minimize the

background from photon conversion and interaction. In addition, the high voltage (HV)

distribution and all the readout electronics are mounted on the backward endplate of the

chamber, in order to minimize the material in the forward direction, so as not to degrade

the DIRC and EMC performance.
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Figure 2.11: BABAR DCH cell configuration. In the left plot, lines have been added between
field wires to aid in visualization of the cells, and the number on its right side give the
stereo angles (mrad) of sense wires in each layer. The 1 mm-thick beryllium inner cylinder
is also shown inside the first layer. In the right plot, the cell structure is shown. The plus
sign, open circles, filled circles, and crosses denote sense wire, field wires, guard wires and
clearing wires, respectively.

2.4.2 Detector Performance

Tracking Efficiency and Resolution

The drift chamber reconstruction efficiency has been measured on data in selected sam-

ples of multi-hadron events by exploiting the fact that the tracks can be reconstructed

independently in the SVT and in the DCH. The absolute DCH tracking efficiency is de-

termined as the fraction of all the tracks detected in the SVT which are also reconstructed

by the DCH when they fall within its acceptance. In Fig. 2.12 [33] the dependency on

the transverse momentum and polar angle is shown. At the design voltage of 1960 V the

DCH efficiency averages to (98±1)% for tracks above 200 MeV/c and polar angle θ > 500
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mrad (29◦). At the typical operating voltage of 1930 V it decreases by about 2%.

c)

Figure 2.12: Track reconstruction efficiency in the DCH at operating voltages of 1900V
and 1960V , as a function of (a) transverse momentum, and (b) polar angle. In plot c) the
pT resolution determined from cosmic ray muons is shown.

The pT resolution, directly related to the curvature resolution, is measured as a function

of pT in cosmic ray studies (see Fig. 2.12c). The data are well represented by a linear

function:
σpT
pT

= (0.13 ± 0.01)% · pT + (0.45 ± 0.03)% (2.2)

where pT is measured in GeV/c. The first contribution (dominating at high transverse mo-

mentum) comes from the curvature error due to the finite spatial measurement resolution.

The second term (dominating at low momenta) is due to multiple Coulomb scattering.

dE/dx Resolution

The specific energy loss, dE/dx, for charged particles traversing the DCH is derived from

measurement of the total charge deposited in each drift cell. It is computed as a truncated

mean from the lowest 80% of the individual dE/dx measurements. Various corrections

are applied to remove sources of bias (such as changes in the gas gain due to temperature

and pressure variations, differences in cell geometry) that would degrade the accuracy of

the primary ionization measurement.
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The left plot (a) of Fig. 2.13 shows the distribution of the reconstructed and corrected

dE/dx from the DCH as a function of the track momenta. The superimposed Bethe-

Bloch prediction for different masses have been determined using various particle control

samples. The achieved resolution is typically 7.5% (as shown in the right plot (b) of

Fig. 2.13 for e± from Bhabha scattering), limited by the number of samples and Landau

fluctuations. A 3σ separation between kaons and pions can be achieved up to momenta

of about 700 MeV/c [40].

(a) (b)

Figure 2.13: (a) dE/dx as a function of track momentum. The data include large samples
of beam background triggers, as evident from the high rate of protons. The unit of the
dE/dx curve is arbitrary due to the corrections for the deposited charge in individual
DCH cells. (b) Difference between the measured and expected dE/dx for e± from Bhabha
scattering. The curve is the result of the fit to the data described in the text.

2.5 The Cherenkov Light Detector

The PID at low momenta exploits primarily the dE/dx measurements in the DCH and

SVT. For momenta above 700 MeV/c, the dE/dx information does not allow one to sep-

arate pions and kaons and, therefore, a dedicated PID sub-detector is needed.

The Detector of Internally Reflecting Cherenkov Radiation (DIRC), has been designed

to provide K/π separation of 3σ, for all tracks with momenta from the pion Cherenkov

threshold up to more than 4 GeV/c.

2.5.1 Detector Layout

The DIRC [41] is a novel type of ring-imaging Cherenkov detector, based on the principle

that the magnitude of angles are maintained upon reflection from a flat surface.

Fig. 2.14 illustrates the principles of light production, transport, and imaging.

The radiator material of the DIRC is synthetic fused silica in the form of long, thin bars

with a rectangular cross section. The bars, which are 17 mm-thick, 35 mm-wide, and 4.9
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Figure 2.14: Schematic of the DIRC fused silica radiator bar and imaging region.

m-long, are placed into 12 hermetically sealed containers, called bar boxes, made of very

thin aluminum-hexcel panels. Each bar box contains 12 bars, for a total of 144 bars.

The solid angle subtended by the radiator bars corresponds to 94% of the azimuth and 83%

of the cosine of the polar angle in the CM system. The DIRC is the only subdetector not

fully covering the forward region, with 25.5◦ < θ < 141.4◦. The total thickness of the DIRC

material (bars and support structure) at normal incidence is only 8 cm, corresponding to

17% X0. Such a thin Cherenkov detector allows a larger inner tracking volume, which is

needed to achieve the desired momentum resolution, and a compact outer electromagnetic

calorimeter with improved angular and energy resolution and limited costs.

The bars serve both as radiators and as light pipes for the portion of the light trapped in

the radiator by total internal reflection, where the internal reflection coefficient of the bar

surfaces is greater than 0.9992 per bounce.

A charged particle with velocity v > c/n, traversing the fused silica bar (refraction index

n = 1.473), generates a cone of Cherenkov photons of half-angle θc with respect to the

particle direction, where θc is the Cherenkov angle and cos θc = 1/βn (β = v/c, v is

the velocity of the particle). For particles with βZ1/n, photons will lie within the total

internal reflection limit, and will be transported to either one or both ends of the bar,

depending on the particle incident angle. To avoid instrumenting both ends of the bars

with photon detectors, a mirror is placed at the forward end, perpendicular to the bar

axis, to reflect incident photons to the backward, instrumented end.

Once photons arrive at the instrumented end, most of them emerge into a water-filled
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expansion region, called standoff box, containing 6000 liters of purified water (n=1.346).

A fused silica wedge at the exit of the bar reflect photons at large angles relative to the bar

axis, reducing the size of the required detection surface. The photons are detected by an

array of densely packed photon-multiplayer tubes (PMTs), each surrounded by reflecting

“light catcher” cones to capture light that would otherwise miss the active area of the

PMT. The PMTs are placed at a distance of about 1.2 m from the bar end. The expected

Cherenkov light pattern at this surface is essentially a conic section, where the opening

angle is the Cherenkov production angle modified by refraction at the exit from the fused

silica window.

2.5.2 Detector Performance

In the absence of correlated systematic errors, the resolution (σC,track) on the track

Cherenkov angle should scale as

σC,track =
σC,γ
√

Nγ

, (2.3)

where σC,γ is the single photon Cherenkov angle resolution, and Nγ is the number of

detected photons.

The single photon Cherenkov resolution has been measured to be 10.2 mrad in di-muon

events (see Fig. 2.15(a) [33]). The main contributions to it come from the geometry of

the detector (the size of the bars, the diameter of the PMTs, and the distance between

the bars and the PMTs give a 7 mrad contribution) and from the spread of the photon

production angle, dominated by a 5.4 mrad chromatic term. The measured time resolution

(Fig. 2.15(b)) is 1.7 ns, close to the intrinsic 1.5 ns transit time spread of the PMTs.

In Fig. 2.16 the number of detected photons is shown as a function of the polar angle.

It increases from a minimum of about 16 at the center of the barrel (θ ≈ 90◦) to well

over 50 at large polar angles (in the forward and backward directions), corresponding

to the fact that the path-length in the radiator is longer for tracks emitted at large dip

angles (greater number of Cherenkov photons produced in the bars) and the fraction of

photons trapped by total internal reflection rises. This feature is very useful in the BABAR

environment, where the particles are emitted preferentially in the forward direction as a

consequence of the boost of the CM. The bump at cos θ = 0 is a result of the fact that

for tracks at small angles internal reflection of the Cherenkov photons occurs in both the

forward and backward directions. The small decrease of the number of photons from the

backward direction to the forward one is a consequence of the photon absorption along

the bar before reaching the stand-off box in the backward end.

The combination of the single photon Cherenkov angle resolution, the distribution of the

number of detected photons versus the polar angle, and the polar angle distribution of the

charged tracks yield a typical track Cherenkov angle resolution which is about 2.5 mrad
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Figure 2.15: The difference between the measured and expected values of the Cherenkov
angle for single photons, ∆θC,γ (a), and the measured and expected photon arrival time,
for single muons in µ+µ− events (b).
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Figure 2.16: Number of detected photons versus track polar angle for reconstructed tracks
in di-muon events compared to the Monte Carlo simulation.

for muons in di-muon events.

The efficiency for correctly identifying a charged kaon that traverses a radiator bar, and the

probability to wrongly identify a pion as a kaon, are determined usingD∗± → D0π±(D0 →
K∓π±) decays reconstructed in data, where K∓/π± tracks are identified through the

charge correlation with the π± from the D∗± decay.

The distribution of the Cherenkov angle for pions and kaons as a function of the momentum

is shown in Fig. 2.17(a), while Fig. 2.17(b) reports the separation between kaons and pions,

which is about 4.3 standard deviations at 3 GeV/c.

The DIRC is intrinsically a three-dimensional imaging device, using position and arrival

time of the PMT signals. In order to associate the photon signals with the track traversing

a bar, the vector pointing from the center of the bar end to the center of each PMT is
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Figure 2.17: (a) The measured Cherenkov angle for pions (upper band) and kaons (lower
band) from D∗± → D0π±, D0 → K∓π± decays reconstructed in data. The curves show
the expected angle θC as a function of LAB momentum, for K and π mass hypotheses.
(b) The average difference between the expected value of θC for pions and kaons divided
by the uncertainties (|θKC − θπC |/σθC ), as a function of momentum.

taken as a measurement of the photon propagation angles (αx, αy, αz). As the track

position and angles are known from the tracking system, these three angles can be used to

determine the two Cherenkov angles (θC , φC). This constraint on θC and φC is particularly

useful in suppressing hits from beam-generated background and from other tracks in the

same event and also in resolving some ambiguities in the association between the PMT

hits and the track (for instances, the forward-backward ambiguity between photons that

have or have not been reflected by the mirror at the forward end of the bars).

The observable used to distinguish between signal and background photons is the difference

between the measured and the expected photon time (∆tγ , shown in Fig. 2.15). The

expected photon arrival time is calculated for each photon using the track time-of-flight

assuming it to be a charged pion, and the photon propagation time within the bar, the

wedge, and the water filled standoff box. The measured photon arrival time is obtained

from the recorded time of the candidate signal in the PMT, after calibration. The effect

of applying the PMT time information in a di-muon event [33] is shown in Fig. 2.18.

The background hits, principally due to the low energy photons from the accelerator, are

reduced by about a factor 40.
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Figure 2.18: Display of an e+e− → µ+µ− event reconstructed with two different time
cuts. On the left, all DIRC PMTs with signal within 300 ns of the trigger time window
are shown. On the right, only DIRC PMTs with signal within 8 ns of the expected
Cherenkov photon arrival time are displayed.

2.6 The ElectroMagnetic Calorimeter (EMC)

The BABAR electromagnetic calorimeter (EMC) is designed to measure electromagnetic

showers with high efficiency, and excellent energy and angular resolution over an energy

range between 20 MeV (low photons from π0 mesons from B-meson decays) and 9 GeV

(electrons from Bhabha scattering). It is also the primary sub-detector providing electron-

hadron separation.

Energy deposit clusters in the EMC with a lateral shape consistent with the expected

pattern from an electromagnetic shower are identified as photons if they are not associ-

ated with any charged tracks extrapolated from the tracking devices (DCH and SVT).

Otherwise, they are identified as electrons if they are matched to a charged track and the

ratio between the energy E measured in the EMC and the momentum p measured by the

tracking system is E/p ≈ 1.

The measurement of extremely rare decays of B mesons containing π0s (e.g., B0 → π0π0)

poses the most stringent requirements on energy resolution, namely of order 1−2%. The π0

mass resolution is dominated by the energy resolution for π0 of energy less than 2 GeV, and

by the angular resolution at higher energies. Therefore, the angular resolution is required

to be a few mrad in order to maintain goodm0
π resolution at all energies (σm0

π
∼ 6.5 MeV).

In addition, excellent photon identification at low energy (∼ 20 MeV) is required for

efficient reconstruction of decays containing multiple π0 and η. Similar precision is required

for efficient separation of electrons and hadrons, with purity required at the 0.1% level for

momentum as low as 500 MeV/c.

The need for high efficiency requires hermetic coverage of the acceptance region, while

excellent resolution is achieved by minimizing the material in front of, and between, the
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active detector elements.

2.6.1 Detector Layout

The BABAR EMC [42] contains a cylindrical barrel and a conical endcap containing a total

of 6580 CsI crystals doped with thallium (Tl) at 1% level. The main proprieties of CsI(Tl)

are summarized in Tab. 2.4. The high light yield and the the small Molière radius give the

excellent energy and angular resolution required, while the short radiation length allows

shower containment at the BABAR energies with a relatively compact design. Furthermore,

the high light yield and the emission spectrum permit efficient use of a silicon photodiodes

readout. The transverse size of the crystals is chosen to be comparable to the Moliére

radius in order to achieve the required angular resolution at low energies. This choice is

the best compromise, since the electromagnetic shower has a natural lateral spread of the

Moliére radius and the energy resolution would degrade if the transverse crystal size were

chosen smaller than this radius, due to the summing of the electronic noise from several

crystals.

Parameter Values

Radiation Length 1.85 cm
Molière Radius 3.8 cm
Density 4.53 g/cm3

Light Yield 50000 γ/MeV
Light Yield Temp. Coeff. 0.28%/◦C
Peak Emission λmax 565 nm
Refractive Index (λmax) 1.80
Signal Decay Time 680 ns (64%)

3.3 µs (36%)

Table 2.4: Proprieties of CsI(Tl).

Each crystal is a truncated trapezoidal pyramid, whose length increases from 29.6 cm (16

X0) in the backward to 32.4 cm (17.5 X0) in the forward direction to limit the effects of

shower leakage from increasingly higher energy particles (see Fig. 2.19a). To minimize the

material in front of the calorimeter, the support structure of the crystals (made in carbon

fiber) and the front-end electronics are located at the outer radius of the EMC. To recover

the small fraction of light that is not internally reflected, each crystal is wrapped with a

white diffuse reflector (TYVEK), 25 µm aluminum foil and 13 µm Mylar foil for insulation.

The scintillation light generated inside each crystal is detected by two independent silicon

PIN diodes.

The barrel contains 5760 crystals arranged in 48 distinct rows containing 120 identical

crystals, with an inner radius of 90 cm, as shown in Fig. 2.19b. The forward end is

closed by a separable endcap holding nine additional rows (1080 crystals). This geometry

provides full azimuthal coverage, while the polar angle coverage is 15.8◦ < θLAB < 140.8◦.
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(a) (b)

Figure 2.19: (a) Schematic view of one EMC crystal module. (b) Longitudinal cross
section of the EMC (only the top half is shown). The detector is axially symmetric
around the z-axis. All dimensions are given in mm.

2.6.2 Detector Performance

The reconstruction of energy deposits in the calorimeter, is based on the concept of EMC

cluster: it is defined as a contiguous array of crystals, all with energy above 0.5 MeV,

whose total energy exceeds the threshold of 20 MeV in order to suppress background

processes.

Energy Resolution

The energy resolution of a homogeneous calorimeter is determined by fluctuations in the

electromagnetic shower propagation and, for the BABAR EMC detector, is empirically

described as a quadratic sum of a stochastic term σ1 and a constant term σ2:

σE
E

=
σ1

4
√

E(GeV)
⊕ σ2 , (2.4)

where E and σE refer to the energy of a photon and to its RMS error.

The stochastic term σ1/
4
√
E, which is dominant at low energies, arises primarily from

the fluctuation in photon statistics, but it also depends on electron noise of the photon

detector and electronics. The constant term σ2 is dominant at higher energies (> 1 GeV).

It arises from non uniformity in light collection, leakage or absorption in the material

between and in front of the crystals, and uncertainties in the calibrations.

In BABAR, the energy resolution of the EMC is measured on data selected control samples,
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including electrons and positrons from Bhabha scattering (energies between 3 and 9 GeV),

photons from π0 and η decays (energies below 2 GeV), and from the decay χc1 → Jφγ

(E ∼ 500 MeV). At low energies the resolution is determined through weekly calibrations

performed with a radioactive source (16O∗) of 6.13 MeV photons.

A fit to the resolution dependence on the energy with the empirical parametrization of

Eq. (2.4), shown in Fig. 2.20(a), yields:

σE
E

=
(2.32 ± 0.30)%
4
√

E(GeV)
⊕ (1.85 ± 0.12)%, (2.5)

which is in reasonable agreement with the Monte Carlo studies of the expected resolution.

Figure 2.20: (a) Energy resolution for the EMC measured for photons and electrons from
various processes. The solid curve is a fit to Eqn. (2.4) and the shaded area denotes the
one sigma error of the fit. (b) EMC angular resolution measured using photon candidates
from π0 decays. The solid curve is a fit to Eqn. (2.6).

Angular Resolution

The angular resolution is determined by the transverse crystal size and the distance from

the interaction point, and improves as the transverse size of the crystal decreases.

The measurement of the angular resolution is based on the analysis of π0 and η decays

to two photons of approximately equal energy. The result is reported in Fig. 2.20. The

resolution varies between about 12 mrad at low energies and 3 mrad at high energies. The

data fits the empirical parameterization:

σθ = σφ =

(

3.87 ± 0.07
√

E(GeV)
+ (0.00 ± 0.04)

)

mrad. (2.6)
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Electron-Hadron Separation

Electrons are separated from charged hadrons primarily on the basis of the shower energy,

lateral shower moments, and track momentum. The most important variable for the

discrimination of hadrons is the ratio of the shower energy to the track momentum (E/p).

Fig. 2.21 shows the efficiency for electron identification and the pion misidentification

probability as a function of the track momentum and polar angle. The electron efficiency

is measured using electrons from radiative Bhabha and e+e− → e+e−e+e− events. The

pion misidentification probability is measured using charged pions from K0
S decays and

three-prong τ decay. For momenta above 1 GeV/c the electron identification is about 91%

with an average pion misidentification of 0.2%.

Figure 2.21: Electron efficiency and pion misidentification probability as a function of a)
the particle momentum and b) the polar angle, measured in the laboratory system.

2.7 The Instrumented Flux Return (IFR)

The Instrumented Flux Return (IFR) is designed to identify muons and detect neutral

hadrons (primarily K0
L) over a wide range of momenta and angles. The principal require-

ments for the IFR are large solid angle coverage, good efficiency, and high background

rejection for muons down to momenta below 1 GeV/c. For neutral hadrons, high effi-

ciency and good angular resolution are crucial.

2.7.1 Detector Layout

The IFR uses the steel flux return of the magnet as a muon filter and hadron absorber.

Single gap Resistive Plate Chambers [43] (RPCs) with two-coordinate readout have been

initially chosen as detector. RPCs detect streamers from ionizing particles via capacitive

readout strips. They offer the advantage of simple, low cost construction and the possibility
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of covering odd shapes with minimal dead space. Further benefits are large signals and fast

response allowing for simple and robust front end electronics and good time resolution,

typically 1-2 ns. The position resolution, of the order of few mm, depends primarily on

the segmentation of the readout strips. A cross section of an RPC is shown schematically

in Fig. 2.22.

Figure 2.22: Cross section of a planar RPC with the schematics of the HV connection.

Figure 2.23: Overview of the IFR. On the left, the barrel sectors are shown and, on the
right, the forward and backward end doors. The shape of the RPC modules and their
dimensions are indicated.

The planar RPC consists of two 2 mm-thick bakelite sheets, separated by a gap of 2 mm.

The bulk resistivity of the bakelite sheets has been especially tuned to 1011 − 1012 Ωcm,

and the external surfaces are coated with graphite to achieve a surface resistivity of ∼100

kΩ/square. The two graphite surfaces are connected to high voltage (∼8 kV) and protected

by an insulating Mylar film. The bakelite surfaces facing the gap are treated with linseed

oil.

Signals are read out capacitively on both sides of the gap, by external electrodes made of

aluminum strips on a Mylar substrate.

The RPCs are installed in the gaps of the finely segmented steel of the barrel and the two

end doors of the iron for the magnetic flux return [44], as illustrated in Fig. 2.23. The steel

is segmented into 18 plates, increasing in thickness from 2 cm of the inner 9 plates to 10

cm of outermost plates, for a total of 65 cm (60 cm in the endcap), which corresponds to
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about 4 interaction lengths. The configuration has been optimized on the basis of Monte

Carlo studies of muon penetration and charged and neutral hadron interaction.

Soon after the installation (Summer 1999), the efficiency of a large number of chambers

(initially greater than 90%) had started to deteriorate at a rate of 0.5-1% per month. In

order to solve this loss of efficiency, an extensive improvement program has been developed

with multiple solutions. The RPCs in the forward end-cap region have been replaced in

Summer 2002 with new ones based on the same base concept but with improved fabrication

technique. The RPCs in the barrel region have been replaced with Limited Streamer

Tube (LST) detectors [45]. The research and design phase started in 2002 with the first

installation phase in Summer 2004 and the second phase in Autumn 2006. In particular,

in the first installation phase, the RPCs from the inner 18 layers of the top and bottom

sextant were removed. In 12 of these layers LSTs were installed. In the remaining 6 layers

of brass absorber were installed to increase the total interaction length and to compensate

the loss in absorption material due to the inaccessibility, for mechanical reasons, of the

last RPC layer. During the second installation phase (2006), the remaining 4 sextants of

RPCs were replaced.

The base detector for a limited streamer tube [46] consist of a 100 µm silver-plated wire,

located at the center of a squared cell filled with gas. For the BABAR LSTs, the cell

configuration is 17 mm wide, 15 mm high, and 3.8 m long. The anode wire is 100 µm

diameter gold-plated tungsten, and six wire holders are equally distributed over the length

of a cell to prevent the wire from sagging and touching the cell walls, and to provide

electrostatic stability. Three sides of the cell are painted with a water-based graphite

paint and kept at ground potential.

A tube is made of a plastic extruded structure (see Fig. 2.24) consisting of 7 or 8 cells

open on the top side and covered with a plastic plane. On the bottom side of this plane

conductive strips are installed perpendicular to the wire direction. The extruded structure

and the plane are inserted in plastic tubes, called sleeves, of matching dimensions for gas

containment. Between the cell and the wire a high voltage is applied (a typical working

point is 5.5 kV) and HV connectors are hosted on one endcap.

Figure 2.24: Schematic view of a standard Limited Streamer Tube configuration.
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If a charged particle passes through the cell, the gas is ionized and a streamer builds up,

which can be readout from the wire. Simultaneously, a signal will be induced on the strip

above. The charge on the wire is used for measuring the azimuthal coordinate (φ), and

the induced charge on the strip for the z coordinate, along the beam direction. Finally,

the r coordinate is taken from the layer position in the segmented steel, allowing a 3D

information of the hit.

More than one year of studies was done before choosing the final LST design. In particular,

several critical issues have been taken into consideration like selection of safe gas mixture,

rate capability, wire surface quality and uniformity. Final results led to the configuration

detailed above and a ternary gas mixture of Ar/C4H10/CO2 (3/8/89)% was chosen.

2.7.2 Detector Performance

Muon Efficiency

The efficiency of RPCs and LSTs is evaluated using di-muon events collected both in

normal condition data (e+e− →µ+µ−) and monthly dedicated cosmic ray runs. The

efficiency is found by counting the number of times a hit is found in a certain chamber

when a charged track is expected to traverse it, based on information from the other

tracking systems. The absolute efficiency at the nominal working voltage (typically 7.6

kV for RPC and 5.5 for LST) is stored in the BABAR condition database (see Sec. 2.9) for

use in the event reconstruction software.

As previously said, soon after the installation, a progressive efficiency deterioration has

been observed in a significant fraction of the RPC chambers, as shown in Fig. 2.25. Several

tests were performed in order to understand the causes of the loss of efficiency, and it was

found that a number of prototype RPCs developed similar efficiency problems after being

operated above a temperature of 36◦C for a period of two weeks3. In some of these

modules evidence was found that the linseed oil had accumulated at various spots under

the influence of the electric field [47].

After the installation of the LST detector, a stable muon efficiency was recovered, as shown

in Fig. 2.26. The overall average efficiency at the end of the BABAR data-taking was about

88%, slightly below the design efficiency. Beside the geometrical effect, the main sources

of inefficiency are broken strips and wires which have been disconnected or kept to a lower

voltage.

3Similar temperatures had been reached inside the iron during the first summer of operation due to the
temperature in the experimental hall and the absence of a water cooling system.
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Figure 2.25: The average RPC efficiency in the barrel (red circles), forward end cap (blue
triangles), and backward end cap (black squares) are shown as a function of time until
summer 2002. The efficiency is evaluated using µ+µ− pairs from collision data.

Figure 2.26: Time evolution of the average sextant detection efficiency of the LST detector.
The inefficiency is localized in particular in the two innermost layers; for this reason it
didn’t affect the muon identification quality.

Muon Identification

While muon identification relies entirely on the IFR, other detector systems provide com-

plementary information. Charged particles are reconstructed in the SVT and DCH and

muon candidates are required to meet the criteria for minimum ionizing particles in the

EMC. Charged tracks that are reconstructed in the tracking system are extrapolated to

the IFR taking into account the non-uniform magnetic field, multiple scattering, and the

average energy loss. The projected intersections of a track with the RPC and LST planes

are computed and, for each readout plane, all clusters (groups of adjacent hits) detected

within a predefined distance from the predicted intersection are associated with the track.

Quantities used for π/µ discrimination, in addition to the penetration depth in the iron

of the track, are the average number and r.m.s. of the distribution of the RPC and LST

hits per layer. The hit multiplicity per layer is expected to be larger for pions, producing

a hadronic interaction, than for muons.
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The performance of muon identification has been tested on samples of muons from µµee

and µµγ final state and pions from three-prong τ decays and KS → π+π− decays. The

typical muon identification efficiency and the pion misidentification probability as a func-

tion of the track momentum and polar angle are shown in Fig. 2.27, while Fig. 2.28 displays

the performance of a muon selector based on a neural network in the forward and barrel

region, for different years of data taking. Due to the problems and replacement described

above, the efficiency of the IFR detector shows large fluctuation through the years.

Figure 2.27: Muon efficiency (left scale) and pion misidentification probability (right scale)
as a function of a) the laboratory track momentum, and b) the polar angle (for 1.5 <<
3.0 GeV/c momentum).

Figure 2.28: Pion misidentification vs. muon efficiency rate of neural network algorithm
for different period of BABAR data taking.

Neutral Hadron Detection

Neutral hadrons interacting in the steel of the IFR are identified as clusters that are not

associated with a charged track. Since a significant fraction of neutral hadrons interact
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before reaching the IFR, information from the EMC and the IFR is combined: neutral

showers in the EMC are associated with the neutral hadrons detected in the IFR if their

production angles, taken from the first interaction point in the detector, are consistent

with each other. The K0
L detection efficiency and angular resolution are measured on

a control sample of K0
L produced in e+e− → φγ → K0

LK
0
Sγ processes, where the K0

L

direction is inferred from the missing momentum calculated from the particles that are

reconstructed in the final state (γ and K0
S). The K0

L reconstruction efficiency increases

roughly linearly with momentum between 20% at 1 GeV/c and 40% at 4 GeV/c (EMC

and IFR combined), and the angular resolution is of the order of 50 mrad.

2.8 The BABAR Trigger

The BABAR trigger is designed to select a large variety of physics processes rejecting back-

ground events and keeping a total event rate around 300 Hz so as not to overload the

downstream processing. The trigger must select the physics events of interest with very

high and/or well understood efficiency, depending on the particular mode.

The trigger system is implemented as a two-level hierarchy, a hardware based Level 1 (L1)

followed by a software based Level 3 (L3)4. The goal of the L1 hardware trigger is to

reduce the rate to a level acceptable for the L3 software trigger, which runs on a farm

of commercial processors. The L1 trigger is optimized for simplicity and speed, and is

designed to provide an output trigger rate of the order of 2 kHz or less. The L1 trigger

selection is based on charged tracks in the DCH, showers in the EMC, and tracks detected

in the IFR. Its fixed response latency for a given collision is 11 µs, with a jitter of about

1 µs.

Based on both the complete event and L1 trigger information, the L3 software algorithms

select events of interest allowing them to be transferred to mass storage for further analysis.

Dedicated L1 trigger processors receive data which are continuously clocked in from the

DCH, EMC, and IFR detector subsystem. The L1 trigger processor produces a 30 MHz

clocked output to the Fast Control and Timing System (FCTS) that can optimally mask

or prescale input triggers. Tab. 2.5 summarizes the cross section, production rates and

L1 trigger rates for the main physical processes at the Υ (4S) resonance for the design

luminosity L =3 · 1033 cm−2s−1.

The L3 trigger is implemented as a software-based trigger that makes use of the complete

event information for taking its decision, including the output of the L1 trigger processors

and of the FCTS. The selection decision is primarily taken by two set of orthogonal filters,

one exclusively based on the DCH information, the other based on the EMC data only.

The DCH filters select events containing at least one high pT track (pT > 600 MeV/c) or

4An intermediate Level 2 (L2) software trigger was originally foreseen in the very early stages of BABAR
design, but it was soon merged in the L3 trigger.
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Event type Cross section Production Rate L1 Trigger Rate
nb Hz Hz

bb 1.1 3.2 3.2
other qq 3.4 10.2 10.1
e+e− ∼53 159 156
µ+µ− 1.2 3.5 3.1
τ+τ− 0.9 2.8 2.4

Table 2.5: Effective cross section, production rates, and trigger rates for the principal
physics processes at the Υ (4S) for a luminosity of L =3 · 1033 cm−2s−1.

two low pT tracks, originating from the interaction point. The all-neutral trigger for L3

is based on information from the EMC. The EMC filter identifies energy clusters with a

sensitivity sufficient for finding minimum ionizing particles. To filter out noise, individual

crystal signals below an energy threshold 20 MeV or which lie outside a 1.3 µs time window

around the event are rejected. Clusters with a total energy above 100 MeV are retained,

and the energy weighted centroid and average time, the number of crystals, and a lateral

moment describing the shower shape for the particle identification are calculated. The L3

trigger efficiency for Monte Carlo simulated events are shown in Tab. 2.6 for events that

passed L1.

L3 trigger ǫbb̄ ǫB→π0π0 ǫB→τν ǫcc̄ ǫuds ǫττ
1 track filter 89.9 69.9 85.5 89.2 88.2 94.1
2 track filter 98.9 84.1 94.5 96.1 93.2 87.6
Combined DCH filters 99.4 89.1 96.6 97.1 95.4 95.5
2 cluster filter 25.8 91.2 14.2 39.2 48.7 34.3
4 cluster filter 93.5 95.2 62.3 87.4 85.5 37.8
Combined EMC filters 93.5 95.7 62.3 87.4 85.6 46.3
Combined DCH+EMC filters >99.9 99.3 98.1 99.0 97.6 97.3
Combined L1+L3 >99.9 99.1 97.8 98.9 95.8 92.0

Table 2.6: L3 trigger efficiency (%) for various physics processes, derived from Monte
Carlo simulation.

2.9 Monte Carlo Production and Data Flow

A modern high-energy experiment can not prescind from a generator of simulated events

that are as similar as possible as real data. The samples of simulated events, called Monte

Carlo (MC) samples, can be used in physics analysis, for example, to test the procedures,

estimate systematic errors, extract background shapes or expected number of events.

The production of the MC samples is divided in three main steps. The first one is the

generation of the simulated e+e− final states in terms of a set of four-vectors, one for each
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particle. There are different types of generators, depending on the physical process that

should be simulated, e.g. for B − B events the Jetset7.4 [48] generator is used. The

simulation of typical background events, as Bhabha scattering, bremsstralung, and also

machine backgrounds and cosmic rays, is also included. The second step of MC production

is the propagation of the generated particles through the detector, including the possible

decays and all the processes of interactions with the material as energy loss and multiple

scattering. The information relative to all the generated particles are referred to as “MC

truth” and are available to the analysts. During the analysis this information can be

used to study the selection, or a particular decay chain, matching the reconstructed tracks

with the MC truth (truth matching). The third step consists of simulating the detector

responses. The last two steps of the simulation are performed with the GEANT 4 [49]

package, that allows a very detailed description of the detector. At this point the signals

of the simulated events follow exactly the same path as real data, briefly described in the

following.

When data events are collected (or simulated in case of MC) the first thing to do is the re-

construction of the event. This operation is performed in two steps and completed within

twelve hours after data collection. The raw data obtained from the detector Data Acquisi-

tion System (DAQ) that passed Data Quality Manager (DQM) control, are stored in XTC

(extended tagged container) files, one for each run. The first step of reconstruction is the

Prompt Calibration that reconstructs only a subset of data and extracts the calibration

constants that are stored in Condition Database (CDB), that also contains the detector

systems conditions recorded during data taking. The second step is the full Event Recon-

struction (ER) of all the XTC files, performed using the information in CDB. The output

of the ER is written to data collections. During the years of operation of the detector, the

detector calibrations and the algorithms for data reconstruction are constantly improved.

At BABAR all the raw data were reprocessed with the improved algorithms about once a

year.

The huge amount of collected data and simulated events makes it inefficient for all analysts

to read the full sample. At BABAR there is a third production step, the skimming, where

events passing different sets of physics-motivated criteria are written to separate streams,

the skims.



Chapter 3

Lifetime Ratio Analysis Overview

In this chapter we give an overview of the analysis: we present the reconstructed channels,

the backgrounds, the fit strategy and the method to extract yCP and ∆Y . We also provide

a brief description of the previous published BABAR lifetime ratio analyses, and introduce

the improvements ad optimizations to increase the precision of the measurement. Some

of the details, not fundamental for the understanding of this overview, will become clear

in the next chapters.

3.1 General Outlook

In order to measure yCP and ∆Y we need to determine the effective lifetimes of the D0

and the D0 reconstructed in CP -even and CP -mixed final states. We reconstruct the D0

and the D0 in the CP -even K+K− and π+π−, and in the CP -mixed K±π∓ final states.

The mixing parameter yCP is sensitive to the difference between the lifetime of the fla-

vor eigenstates (D0 or D0) and the effective lifetime of the D when it decays in a CP

eigenstates. In order to understand how this can be an evidence of mixing, let’s suppose

that CP is conserved. In this case the free Hamiltonian eigenstates D1 and D2 are also

CP eigenstates. When, for instance, we reconstruct the D in a CP -even final state, we

select the D1 component of the flavor eigenstate and therefore we measure the D1 lifetime.

When we reconstruct the D in the CP -mixed final state we select a flavor eigenstate, and

measure the D0 (and D0) lifetime. In the case of mixing, the D0 lifetime differs from the

D1 lifetime: the flavor eigenstate is a superposition of D1 and D2 and therefore its lifetime

will be different from both the D1 and D2 lifetimes. In the case of no mixing, D1 and D2

are the same state, and therefore the D0 lifetime will be the same as the D1. In the more

general case of CPV , D1 and D2 will differ from the CP eigenstates but the D0 lifetime

will still be different from its effective lifetime when it is reconstructed in a CP eigenstate.

In principle we could use CP -odd final states as well (e.g. K0
S
π0, K0

S
ω, K0

S
η) and still

be sensitive to mixing, but the CP -even modes are preferable from an experimental point
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of view since the reconstruction efficiency is higher. Another possible complication is the

presence of K0
S
in the final states: CPV in the K0−K0 system should then be disentangle

from the CPV in charm.

In this analysis we make no distinction between the Cabibbo-Favored (CF) D0 → K−π+

and the doubly-Cabibbo-suppressed (DCS) D0 → K+π− decays since they are both CP -

mixed states. We also assume that we are not sensitive to CPV in the K±π∓ decays.

The SM predictions for CPV in the CF D0 → K−π+ decay are greatly suppressed, since

at first order it proceeds through a tree diagram. The ratio between the DCS and the

CF decays is ∼ 4 10−3, and therefore the possible effects of CPV in the DCS channel are

also highly suppressed. We use the K±π∓ final states to measure the D0 lifetime that is

equal to the D0 lifetime in case of no CPV , therefore we do not distinguish D0 from D0

decays to K±π∓. Hence we include the following decays in a single sample: D0 → K−π+,

D0 → K+π−, D0 → K+π−, D0 → K−π+.

The measurement of CPV consists in detecting different lifetimes of the D0 decaying to

CP -even eigenstates and the D0 decaying to the same final states. A different behavior of

matter and antimatter in this context is an evidence of CP violation. The reported evi-

dence of CPV by LHCb and CDF has been observed in the D0 → K+K− and D0 → π+π−

decays. They measure a difference of time-integrated asymmetries ∆ACP , mostly sensi-

tive to direct CPV . Under our experimental assumptions the parameter ∆Y , on the other

hand, is sensitive to indirect CPV , therefore this measurement is mostly complementary

to ∆ACP .

From data we extract the following three effective lifetimes:

� τ+ for the D0 → h+h− decays,

� τ̄+ for the D0 → h+h− decays,

� τKπ for the D0 and D0 → K±π∓ decays,

and use them to compute yCP and ∆Y :

yCP =
τKπ

2

[

1

τ+
+

1

τ̄+

]

− 1 , (3.1)

∆Y =
τKπ

2

[

1

τ+
− 1

τ̄+

]

. (3.2)

As indicated in Sec. 1.3, we assume that K+K− and π+π− candidates can share the ef-

fective lifetimes, τ+KK = τ+ππ ≡ τ+ and τ̄+KK = τ̄+ππ ≡ τ̄+. Another important experimental

assumption is that the signal proper time distribution for all channels, deconvolved from

the resolution function, is exponential. In other words, since the mixing rate is small

(≤ 1%), we neglect the effect of mixing on the decay rate (see Fig. 1.6 c)). At BABAR,

the oscillations due to mixing have been measured in the DCS D0 → K+π− decays [17].
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These events represent a very small fraction of the K±π∓ sample, and in addition the

fraction of mixed decays is at most 1% of the DCS candidates.

3.1.1 Reconstructed Signal Channels

We analyze a data sample of e+e− collisions at the center of mass energy corresponding to

the mass of the Υ (4S), and select e+e− → cc events. We use tagged candidates in which

the D0 comes from a D∗+ → D0π+s decay, where the charge of the soft pion (π+s ) indicates

the flavor of the D0 at production. In these decays the backgrounds are highly suppressed

applying a cut on the variable ∆m, defined as the difference between the reconstructed

D∗+ and D0 masses, ∆m = mD∗ −mD0 . The mD0 and ∆m distributions for the tagged

K±π∓ channel are reported in Fig. 3.1. The resolution in ∆m is small, around 250 keV/c2,

and therefore is very effective in reducing the background.
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Figure 3.1: Distribution of mass (left) and ∆m (right) for the tagged K±π∓ channel. The
red lines represent the signal region, the blue lines the sideband regions. Note the vertical
logarithmic scale in the ∆m plot.

We use also untagged candidates in which the D0 comes directly from the hadronization

of the charm quark. These channels have ∼ 4 times higher branching ratio than the corre-

sponding tagged ones but do no benefit from the ∆m cut, therefore there is significantly

more background. In Fig. 3.2 we report the reconstructed invariant mass distribution for

the tagged and untagged K+K− final states: in the untagged channel there is clearly more

background than in the tagged one. For this reason we do not use untagged D0 → π+π−

decays. In summary, we reconstruct three tagged (D∗+ → D0π+s , with D0 → K±π∓,

K+K−, π+π−) and two untagged (D0 → K+K−, K±π∓) decays.

In the untagged channels it is impossible to distinguish D0 from D0 decays. As mentioned

before, this is not a problem for the K±π∓ final state. For the untagged K+K− channel,

on the other hand, we have to make an assumption on the number of D0 and D0 decays

present in the sample. We assume that half the candidates are D0. Strictly speaking, for

a mixing measurement, it is not crucial to distinguish D0 from D0 since yCP is basically

sensitive to the difference between the D0 and the D1 lifetimes. However in this analysis

we are also measuring a CPV parameter, ∆Y , and therefore we need to distinguish the
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Figure 3.2: Distribution of reconstructed mass for the tagged (left) and untagged (right)
K+K− channels. The red lines represent the signal region, the blue lines the low and high
sidebands.

D0 decays to CP -even eigenstates from the D0 decays to the same final states.

The determination of the D0 final state depends on the identification of the tracks. At

BABAR the particle identification is performed using the dE/dx measurements in the SVT

and the DCH for tracks below 700MeV/c. The high momentum tracks are identified with a

dedicated detector, the DIRC, that measures the Cherenkov angle associated to the track.

The SVT and DCH also provide the measurement of the track trajectory that allow one

to associate the track with its Cherenkov angle.

3.1.2 Proper Time Measurement

The three effective lifetimes are simultaneously extracted from an extended unbinned

maximum likelihood (ML) fit to the measured proper time t and its uncertainty σt of the

D0 candidates reconstructed in the five channels.

Once the D0 candidate decay tree is reconstructed, the proper time and its error are

determined using the measured decay length, ℓ, and boost, βγ, since:

ℓ = βγt. (3.3)

In particular, the decay length is determined with the tracking system that allows one

to reconstruct the D0 production and decay vertices, while the βγ is computed from the

resulting momentum of the D0 daughter tracks, measured in the 1.5 T magnetic field

mainly with the DCH.

3.1.3 Mass and Proper Time Correlation of the Signal Candidates

There is a correlation between the reconstructed proper time and the reconstructed mass

for the D0 signal candidates. This is illustrated in Fig. 3.3 which shows the average of the

proper time as a function of the mass for the tagged K±π∓ events.
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Figure 3.3: Average of the reconstructed proper time in bins of reconstructed mass for the
tagged K±π∓ channel.

The almost linear correlation between mD0 = 1.85GeV/c2 and mD0 = 1.88GeV/c2 can

be easily understood. Decays reconstructed with too high proper time will have a vertex

further away from the interaction point than the true vertex, this results in a too large

reconstructed opening angle, θ, and thus mass, since:

m2
D0 = m2

1 +m2
2 + 2(E1E2 − p1p2 cos θ), (3.4)

where mi, Ei and pi are the mass, energy and momentum of the the D0 daughter tracks.

Similar events with too low proper time have smaller opening angles and therefore too low

mass. The correlation breaks down further away from the true D0 mass because those

decays typically are poorly reconstructed for other reasons.

In the range 1.85 < mD0 < 1.88GeV/c2 the correlation is almost linear. MC studies

show that, for a given final state, the correlation in the tagged channel is compatible with

the correlation in the untagged channel. We study these correlation in data, in the low-

background tagged channels, and find that they are well described by an odd function,

a third order polynomial centered in the middle of the mD0 range. We fit data and

find that the coefficient of the first order polynomial is (8.6 ± 0.6) fs/(MeV/c2) for π+π−,

(10.8± 0.1) fs/(MeV/c2) for K±π∓ and (14.4± 0.4) fs/(MeV/c2) for K+K−. In Fig. 3.4 we

report the average of the reconstructed proper time in bins of reconstructed D0 mass for

the three tagged and the two untagged channels evaluated on signal truth-matched MC

events, in different colors for the different final states.

To suppress the background we apply a cut on the reconstructed mass, and define a signal

region. This correlation is potentially dangerous because the cut on the reconstructed mass

affects also the proper time. Since the correlations are different for different final states,

this can have an impact also on our observables, in particular on yCP . In order to minimize

the effects of this correlation on yCP and ∆Y we perform a data-driven optimization of

the signal region in mass, described in Sec. 4.3.
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Figure 3.4: Average of the reconstructed proper time in bins of reconstructed D0 mass
for truth-matched signal MC events. In the left plot we report the tagged channels and in
the right plot the untagged channels: K±π∓ in red, K+K− in black and π+π− in blue.

3.1.4 Backgrounds

The background candidates that pass the selection are classified into two major categories:

� misreconstructed-charm background:

this category includes D0 candidates whose daughter tracks share as a common

ancestor a long-living charm meson. This background is very small (≤ 1%) compared

to the combinatorial background, but pernicious since it is a signal-like component.

� combinatorial background:

this category includes all the background candidates that do not belong to the mis-

reconstructed-charm category, mainly random combination of tracks.

The wrongly tagged signal candidates, the ones in which the soft pion has been misre-

constructed, are considered as signal events, and the signal probability density function

(PDF) takes them into account.

The misreconstructed-charm events are not distinguishable from signal events in a fit to

the proper time or the mass, and therefore we describe them using the simulated events.

We extract the shape and the expected number of events from MC datasets. A systematic

error is associated to this assumption. On the other hand, the shape and the expected

number of events for the combinatorial background are estimated from data. A more

detailed description of the compositions of these backgrounds and the functional forms

used to fit their reconstructed proper time distributions is discussed in Chapter 5.

3.1.5 Simultaneous Fit

Since the proper time resolution is in principle different for the five channels, and since we

need to distinguish between the D0 and D0 candidates for the tagged CP -even modes, the

five channels are divided into seven modes: the two untagged channels, the tagged K±π∓

channel, the tagged D0 → K+K−, D0 → K+K−, D0 → π+π−, D0 → π+π− channels.
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We then perform an extended unbinned ML simultaneous fit to the (t, σt) distributions of

the seven modes in order to extract the three lifetimes needed to compute yCP and ∆Y .

Fit Regions

As mentioned before, we fit the D0 candidates in a selected region of the reconstructed

mass mD0 , or (mD0 , ∆m) for the tagged channels. These regions are shown in Fig. 3.1

and Fig. 3.2 with vertical red lines. The signal region has been optimized in order to

minimize the effects of the proper time - mass correlation, but also the statistical error on

the lifetimes, as explained in Sec. 4.3.

In the analysis we also make use of sidebands in order to obtain the shape for the combi-

natorial events. The sidebands are shown in Fig. 3.1 and Fig. 3.2 with vertical blue lines.

In Fig. 3.5 we report the two-dimensional (mD0 , ∆m) distribution with the indication of

the signal and sideband region for the tagged K±π∓ data.
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Figure 3.5: Two-dimensional plot of the (mD0 , ∆m) distribution of the tagged K±π∓

events. The red box represents the signal region, the blue ones the sidebands.

Mass Fits

A preliminary step before the final fit to (t, σt) is fitting the mass distributions. These

fits allow one to extract the expected number of background events, this is information

that is needed in the final fit. The untagged K+K− channel represents an exception: the

mass fit prediction was not accurate enough and we decided to extract the number of

combinatorial events directly from the final fit to (t, σt), instead of fixing it as in all the

other channels.

Final Fit

In the final fit the shape and the expected number of events for the two background cate-

gories of each channel are fixed, except the expected combinatorial yields in the untagged

K+K− channel. The signal PDF is a simultaneous PDF with seven components, one
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for each mode. Most of the resolution function parameters are shared among the seven

modes. Differences in reconstruction among the modes are described by few additional

parameters.

The three lifetimes, along with the signal resolution function parameters and the expected

number of signal events in each mode and for the untagged K+K− combinatorial events

are extracted from an extended unbinned ML fit. The fit is performed in a signal region

in D0 mass for the untagged and (mD0 , ∆m) for the tagged samples.

The values of the extracted lifetimes are used to compute yCP and ∆Y , and their statistical

errors are computed using the covariance matrix returned from the fit.

To avoid potential bias, we finalize the selection criteria, the fitting procedures and the

determination of the systematic uncertainties prior to examining the extracted lifetimes.

During the analysis we therefore blind the values of the three lifetimes by the addition of

an unknown quantity, different for each lifetime parameter and associated with a blinding

string. This way we blind both yCP and ∆Y .

3.2 Previous BABAR Analyses

The BABAR experiment has carried out an important and comprehensive physics program,

with the main goal of studying CP violation in the B meson system. A considerable part

of the program was also devoted to charm physics, and the search for D0 − D0 mixing

and CPV in the charm sector had become an important item for the experiment since the

accumulated statistics became relevant. In the past years BABAR published three analyses

reporting evidence of D0 mixing and a search for CPV in the D0 decays.

The first evidence of mixing [17] in the DCS channel D0 → K+π− was published in 2007.

In this analysis the modifications to the decay rate due to mixing were analyzed and

measured. One year later the first sensitive yCP analysis [50] was published, confirming

the evidence of mixing and reporting no evidence of CPV . This analysis was performed

using tagged channels only and the total error was dominated by the statistical one.

In 2009 a new yCP analysis was published [51], this time only untagged channels were

used, and no CPV measurement was possible. The value from the untagged measurement

was combined with the one from the tagged analysis yielding the most significant mixing

measurement at that time.

The previous tagged and untagged analyses are very similar in terms of the event selection,

the general procedure and the fit. In the following we give a brief review of the two

measurements, performed on 384 fb−1 which corresponds to around 480M of e+e− → cc

events.
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Event Selection

A standard selection was applied, besides selection criteria improving the quality of the

tracks and removing D0 decays from B mesons, a cut on the helicity angle of the D0 was

applied. The helicity angle is the angle between the D0 direction in the laboratory frame

and the positive daughter in the D0 rest frame. Its distributions peaks at −1 and +1 for

the combinatorial events. This cut was effective in reducing the combinatorial background

but it also removed a non-negligible fraction of signal events.

Another important point of the selection was the choice of the mass window. As explained

in Sec. 3.1.3 there is a correlation between the reconstructed invariant mass and the

reconstructed proper time. The choice of the mass window can therefore have an impact

on the extracted lifetimes. Since the values of the correlations depend on the a final state,

this can also have an impact on the measured yCP . In the previous analyses the mass

window was chosen on the simulated events and no dedicated studies were performed to

minimize the effects of this correlation on data.

Characterization of the D0 Candidates and Fit

The lifetime values were extracted with an extended unbinned ML fit to the proper time

and proper time error two-dimensional distribution. The misreconstructed-charm back-

ground PDF was extracted from simulated events, while the combinatorial PDF was ex-

tracted from data sidebands. In the tagged analysis only one sideband was used, while in

the untagged one, a low and high mass sidebands were used. The combinatorial PDF did

not contain a proper time error dependent part, hence the correlations between proper

time and proper time error were neglected. In the final fit the backgrounds PDF shapes

and expected yields were fixed, while the signal resolution functions and lifetimes were all

floating.

Results and Main Systematic Errors

In Tab. 3.1 we report the results of both analyses and the combined value of yCP , that

excluded the no-mixing hypothesis with a significance of 4.1 standard deviation. No

evidence of CP violation was found while a value of yCP at the level of 1% was measured

in both analysis.

The precision of both measurements was limited by the statistics of the data sample. The

untagged analysis could exploit a larger number of D0 candidates, hence the statistical

error is smaller, but the presence of more backgrounds increased the systematic error.

In Tab. 3.2 we report the summary of the systematic errors for the tagged and untagged

analysis. An important source of systematic error in both analysis was related to the

choice of the mass window, the main contribution in the “Signal” row. Another important
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Sample yCP (%) ∆Y (%)

Tagged 1.24 ± 0.39 ± 0.13 −0.26 ± 0.36 ± 0.08
Untagged 1.12 ± 0.26 ± 0.22 -

Combined 1.16 ± 0.22 ± 0.18 -

Table 3.1: Summary of the previous 2007 and 2009 BABAR yCP and ∆Y results. The
first error is statistical, the second systematic. The average is obtained by combining
the tagged result with the untagged result using the BLUE method [52], assuming all
the systematic errors from the tagged analysis are 100% correlated with those from the
untagged analysis.

Systematic
tagged untagged
analysis analysis

∆[yCP ](%) ∆(∆Y ) ∆[yCP ](%)

Signal 0.085 0.062 0.111
Charm 0.043 0.001 0.086

Combinatorial 0.045 0.002 0.115
Selection 0.046 0.011 0.071
Detector 0.064 0.054 0.093

Total 0.132 0.083 0.216

Table 3.2: Summary of systematic errors on yCP and ∆Y in the tagged (left) and untagged
(right) analyses. The individual systematic errors were added in quadrature to evaluate
the total systematic error.

contribution in the untagged analysis was the one related to the combinatorial background.

Although the misreconstructed-charm background was a very small fraction of the selected

candidates, the systematic error associated with it was not negligible. No systematic error

associated with the helicity cut was included.

3.3 Analysis Improvements and Optimizations

The analysis described in this thesis represents the final measurements of yCP and ∆Y

with the BABAR dataset. The precision of the previous measurements were limited by the

finite statistics of the data sample. We have performed an optimization of the selection

aimed at increasing signal efficiency, but keeping the background levels under control,

especially for the untagged channels.

We have loosened the selection criteria, described in detail in Sec. 4.2. In particular we

have removed the cut on the helicity angle and chosen a looser track selector. The analysis

also benefits from an integrated luminosity increase of ∼ 20% with respect to the data

sample exploited in the previous analyses, and an improved official BABAR reconstruction

code. These changes result in an increase of signal candidates of almost 90%, projecting
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the statistical error down to around 0.18% for yCP and 0.29% for ∆Y .

We have also performed a data-driven optimization of the signal region, described in

Sec. 4.3, that allowed a reduction of the associated systematic error.

We have implemented a more detailed parameterization of the backgrounds. For what

concerns the misreconstructed-charm background, we could exploit a much larger sample

of simulated events, corresponding to ten times the data sample. We have included the

proper time error in the combinatorial description and used two mass sidebands both for

the tagged and the untagged channels.

Finally, we have performed a simultaneous fit to the seven modes instead of an a posteri-

ori combination of the results coming from two independent fits. The statistical precision

of the measurement actually benefits from the simultaneous fit only if we use the same

resolution function parameters to describe all the seven modes, in that case the number of

parameters extracted from the fit is reduced and the statistical error is reduced. Tagged

candidates are therefore reconstructed using the same information of the untagged candi-

dates, i.e. not considering the soft pion information; this allows one to share the signal

resolution function among the five channels.





Chapter 4

Event Selection

In this chapter we present the data and simulated events samples used to perform and

validate the analysis. We describe the reconstruction and the selection of the signal candi-

dates, in particular the optimization of the reconstructed-mass window. Finally we present

the expected number of signal and background events in the signal region obtained from

fits to the invariant-mass distributions.

4.1 Data and Monte Carlo Samples

The data sample used in this analysis corresponds to an integrated luminosity of 468.2 fb−1

collected by the BABAR experiment at, and slightly below, the Υ (4S) resonance. The on-

and off-resonance luminosities for each running period (Run1-6) are shown in Tab. 4.1.

We have not used data sample collected at either the Υ (2S) or Υ (3S) because preliminary

studies on those samples have shown different background levels and signal efficiencies

with respect to the Υ (4S) sample, and the gain in total luminosity was judged not worth

the systematic difference among the samples.

Period Off-peak L [ fb−1] On-peak L [ fb−1] Total L [ fb−1]

Run 1 2.56 20.37 22.93
Run 2 6.87 61.32 68.19
Run 3 2.44 32.28 34.72
Run 4 10.02 99.61 109.63
Run 5 14.28 132.36 146.64
Run 6 7.75 78.31 86.06

Total 43.92 424.25 468.17

Table 4.1: Luminosities of Run1 to Run6 data samples.

In order to extract the values of yCP and ∆Y from data we need information from the

BABAR simulated events. The MC samples are used to determine the shape of some
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background probability density functions (PDF), as well as to validate the fit and the

analysis procedure. The sizes of the generic Monte Carlo samples used in this analysis are

listed in Tab. 4.2.

Channel Generated L [ fb−1]

e+e− → cc̄ 6 060 721 000 4654.4
e+e− → uū,dd̄,ss̄ 3 958 668 000 1894.1
e+e− → B+B− 2 331 948 000 4243.8

e+e− → B0B0 2 366 003 000 4305.7
e+e− → τ+τ− 831 508 000 884.6

Table 4.2: Summary of the generic Monte Carlo samples used in this analysis. The
luminosities are calculated using the cross sections given in Tab. 2.1. The equivalent
luminosities for the e+e− → B+B− and B0B0 samples are computed assuming that the
branching ratios for the two processes are equal.

As a preliminary operation we randomly split each sample corresponding to a particular

process (e+e− → cc, B+B−, . . . ) in 476 fb−1units1. The units are then merged together to

form the datasets used through all the analysis for the various kinds of fits, as described

in the following.

MC Datasets for the Data Fits

In the final fit to data we use some information from simulated events to determine the

background PDFs. We build one MC dataset for each of the three categories (signal,

misreconstructed charm and combinatorial), containing all the relevant units at our dis-

posal. Signal and misreconstructed-charm candidates only come from e+e− → cc simu-

lated events while combinatorial candidates have contribution from all types of simulated

events, we therefore built the following MC datasets:

� bigSignal (4.65 ab−1): contains truth-matched (see Sec. 2.9) signal candidates

(from all e+e− → cc simulated events);

� bigCharm (4.65 ab−1): contains truth-matched misreconstructed-charm candidates

(from all e+e− → cc simulated events);

� bigCombin (1.89 ab−1): contains truth-matched combinatorial candidates (limited

by the smallest class of simulated events2, e+e− → uū,dd̄,ss̄);

1the luminosity used is slightly higher than data luminosity (+1.7%) because this operation was done
at an early stage of the analysis, when the luminosity of the data sample was not correctly computed.

2the e+e− → τ+τ− contribution after selection is negligible.
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MC Datasets for the MC Fits

The available amount of MC allows us to build 4 independent mixed datasets (cocktails)

to test the fit, each equivalent to the data luminosity. In order to repeat the exact pro-

cedure that will be performed on data, we also need three MC datasets (one for each

category) that are independent of the corresponding cocktail. For each MC cocktail used

for the fit, cocktailX (476 fb−1), we build the correspondent and independent bigSignalX

(4.18 ab−1), bigCharmX (4.18 ab−1) and bigCombinX (1.42 ab−1), with X = 1, 2, 3, 4.

MC Datasets for the Signal-Only Fits

In order to test the signal description and the feasibility of the simultaneous fit, we also

have signal-only MC datasets. Since we have a large amount of e+e− → cc simulated events

we have the possibility to build 9 independent datasets, oneSignalX (with X = 1, ..., 9),

476 fb−1 each.

In Fig. 4.1 we report the comparison of data and MC mass distributions for the tagged

K±π∓ and the untagged K+K− channels, the other plots can be found in Appendix B.

There is a good agreement between data and the simulated events.
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Figure 4.1: Mass distribution for data (red) and MC (black) for the taggedK±π∓ (left) and
the untagged K+K− channels (right). The MC distribution is scaled to data luminosity.

4.2 Reconstruction and Selection Criteria

To perform an optimal measurement of yCP and ∆Y , we reconstruct the D0 two-body

decays in the following seven modes, five tagged (4.1 to 4.5) and two untagged (4.6 and
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4.7):

D∗+ → π+s D
0 , D0 → K+K− (4.1)

D∗− → π−s D
0 , D0 → K+K− (4.2)

D∗+ → π+s D
0 , D0 → π+π− (4.3)

D∗− → π−s D
0 , D0 → π+π− (4.4)

D∗+ → π+s D
0 and D∗− → π−s D

0 , D0 and D0 → K−π+ and K+π− (4.5)

no tag , D0 and D0 → K+K− (4.6)

no tag , D0 and D0 → K−π+ and K+π− (4.7)

The decays (4.1) to (4.4) and (4.6), are to CP -even final states. We use theseD0 candidates

to obtain the effective lifetimes τ+ and τ̄+.

The decays (4.5) and (4.7) are to CP -mixed final states and involve CF (D0 → K− π+)

and DCS (D0 → K+ π−) decays. For the purpose of the analysis, we do not need to

distinguish between the two. We collect both the DCS and the CF candidates in same

dataset and describe them with a single PDF. We use these modes to obtain the D0

lifetime τKπ.

There may be more than one candidate decay in a given event. All candidates not sharing

daughter tracks between them are retained. If an event contains a tagged decay, all

candidates from that event are eliminated from the untagged sample. The adjudication

procedure is described in detail in Section 4.2.2.

Since the majority of the events in the skim do not contain a tagging D∗, we reskim the

data, writing the tagged events into one collection and the untagged events into another.

If an event has both a tagged and an untagged candidate, it is written to both collections.

Removal of tagged candidates from the untagged sample is done after the final selection.

The skimming and reskimming selection criteria are described in Section 4.2.1.

We next read the reskimmed collections containing a D∗ tag or a untagged D0 and write a

“primary” ntuple containing information about the decays of each. One of the important

operations performed at this stage is truth matching the Monte Carlo simulated events.

No additional selection criteria are imposed at this stage.

In the final stage of event selection we apply a final set of selection criteria, including

the adjudication of multiple candidates with shared daughter tracks. These criteria are

useful to suppress the background and improve the quality of the signal candidates, and

are described in Section 4.2.2.

4.2.1 Skim and Reskim Selections

The skim is a collection of reconstructed events obtained applying physics-motivated loose

selection criteria to the sample of all the reconstructed events. The selection criteria of
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the skim used for this analysis are summarized in the following.

We select oppositely charged pion and kaon candidates satisfying very loose requirements

on particle identification (PID) and fit them to a common vertex with a χ2 probability

from the D0 vertex fit, P (χ2
D0), satisfying 0.005 < P (χ2

D0) < 1.0. In order to remove

the D0 coming from B decays, we retain D0 candidates with a center-of-mass momentum

2.4 GeV/c ≤ p∗D0 < 10 GeV/c. In case of the tagged channels, we combine theD0 candidate

with a slow pion candidate, imposing a constraint on the position of the vertex, that should

lie within the e+e− interaction region (beam constraint). This requirement improves the

measurement of the slow pion track parameters. We retain the resulting D∗ candidates

that satisfy 0.13 GeV/c2 < ∆m < 0.16 GeV/c2.

Next we reskim the events to further reduce the backgrounds and improve the efficiency

of the D∗-tagged signal candidates. We require the invariant mass of the D0 daughter

tracks combination calculated prior to the vertex fit, m
pre
Kπ , to satisfy 1.7745 GeV/c2 <

m
pre
Kπ < 1.9545 GeV/c2. We fit each of the candidates in the pair to a common vertex,

with 0.0005 < P (χ2
D0) < 1.0. We require the reconstructed D0 mass satisfy 1.7745 <

mD0 < 1.9545GeV/c2, and the D0 center-of-mass momentum p∗D0 ≥ 2.4 GeV/c. In case of

the tagged channels, we select a slow pion candidate which does not overlap with the D0

daughter tracks and with a center-of-mass momentum p∗πs
< 0.45GeV/c. We invalidate

the previous D0 vertex fit and refit each D0 (and D0 with a slow pion in the case of

D∗ candidates) to a common vertex, imposing a beam constraint. This requirement also

improves the measurement of the slow pion track parameters. Finally we require that

P (χ2) from the vertex fit satisfy 0.0005 < P (χ2) < 1.0 and retain all D0 candidates and

the resulting D∗ candidates with 0.13 GeV/c2 < ∆m < 0.16 GeV/c2.

4.2.2 Final Selection

When making the final ntuple we apply further selection criteria on theD0 candidates. The

reconstructed D0 invariant mass is required to satisfy 1.80GeV/c2 ≤ mD0 < 1.93GeV/c2,

and the D0 center-of-mass momentum p∗D0 ≥ 2.5GeV/c. We retain D0 candidates with

χ2 D0-vertex probability satisfy 0.001 ≤ P (χ2) ≤ 1. In order to improve the quality of

the D0 daughter tracks, we require the number of their DCH hits NDCH
K,π ≥ 12, and that

they satisfy loose PID selector requirements. Additional requirements are imposed for

D∗ candidates. We reject poorly measured slow pion tracks requiring the momentum in

the laboratory reference frame pπs
> 0.1GeV/c, and the number of SVT and DCH hits

of the slow pion track, NSVT
πs

and NDCH
πs

, satisfy NSVT
πs

≥ 6 and NDCH
πs

> 0, respectively.

We also require slow pion to be inconsistent with electron. Only candidates satisfying

0.14GeV/c2 ≤ ∆m < 0.16GeV/c2 are retained.
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Creating Independent Tagged and Untagged Datasets

We construct an untagged sample which is totally disjoint from the tagged sample. This

is done by recording the timestamps of all events containing one or more tagged D0

candidate decays passing the selection criteria. An event’s timestamp is recorded only if

0.1447 < ∆m < 0.1463GeV/c2 (corresponding to the signal region cut, Eq. (4.8)). If the

timestamp of the event containing the current untagged D0 candidate appears in the list

of tagged candidate event timestamps, then that D0 is rejected. We don’t simply remove

the D0 coming from one of the tagged decays, we remove all the D0 candidates in an event

containing a tagged candidate.

Overlapping D∗ and D0 Candidates

Two D0 candidates (or D∗ candidates in the case of the tagged channels) are overlapping

if one or more of the daughter tracks of the first candidate are also daughters of the second

candidate. The number of events with one or more D0 (D∗) candidate pairs is around

0.5% in all channels except in the untagged K+K− case, for which it is 0.04%. The

adjudication criterion is to retain the candidate with the highest overall χ2 probability of

the vertex fit and reject all the other overlapping candidates.

4.3 Signal and Sidebands Regions Definition

The main systematic error in the previous analyses was related to the choice of the mass

window, as mentioned in Sec. 3.2. The two effects mainly responsible for it are:

� the proper time - mass correlation (explained in Sec. 3.1.3);

� the different amount of background events when selecting different signal region

widths.

The choice of the signal region width has also an impact on the statistical error.

In this analysis we perform a dedicated study in order to minimize the total error on the

lifetimes, in particular the effect of the correlation between the mass and the proper time.

The procedure and main results of the study are reported in the next sections.

For what concerns the tagged events, the cut on ∆m for the signal region and the sidebands

is taken from the previous tagged analysis and not investigated since it has no direct impact

in the systematic error:

signal region: 0.1447GeV/c2 < ∆m < 0.1463GeV/c2 (4.8)

sideband region: 0.151GeV/c2 < ∆m < 0.159GeV/c2 (4.9)

full region: 0.14GeV/c2 < ∆m < 0.16GeV/c2. (4.10)
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Also the sidebands definition had a negligible impact on the systematic error in both the

previous analyses. We therefore keep the same definition as in the previous analyses,

20 MeV/c2 wide regions, 44.5 (35.5) MeV/c2 away from the signal region center for the

untagged (tagged) channels. The sideband definitions for the five channels are reported

at the end of this section.

The first step of the optimization is a study of the reconstructed-mass distribution of the

five channels. Since data distributions differ from the MC ones, as shown in Appendix B,

we carry on the optimization separately for data and MC events. For the MC optimization

study we have used another cocktail, none of the ones listed in Sec. 4.1 and not independent

from them. This choice was made in order to optimize the signal region definition for MC

independently of the cocktails that we will use to test the simultaneous fit. In this way

we have optimized for all the 4 cocktails instead of only one.

4.3.1 Mass Fits

The fits are performed in order to determine the D0 mass peak positions and shapes

for the five channels. We also use the extracted PDF to estimate the number of back-

ground candidates in the signal region. In these fits it is not possible distinguish the

misreconstructed-charm events from the combinatorial ones, therefore we divide the events

in only two categories: signal and background. The fit range is mode dependent in order

to eliminate the reflection backgrounds and they are given in the caption of the Figures

showing the fit results. We performed fits to data and to simulated events. Since in some

cases the line shapes are different in data and MC (see Appendix B) different PDF forms

and fit ranges are used in the MC fit. In the following we only report the results of the

data fits.
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The basic functions used to perform the fits are:

� Gaussian Function

G(x;µ, σ) =
1√
2πσ

exp

[

−(x− µ)2

2σ2

]

(4.11)

� Crystal Ball Function

CB(x;x, σ, α, n) =

CCB































exp

(

−(x− x)2

2σ2

)

if
x− x

σ
> −α

(

n

|α|

)n exp(−1

2
α2)

(

n

|α| − |α| ± x− x

σ

)n otherwise,

(4.12)

and where the + sign is chosen for α ≥ 0, the − sign otherwise.

� Chebyshev Polynomials

The Chebyshev Polynomials are centered in the middle, and normalized over the

fit range. We use the first order (T1(x)) and the second order (T2(x)) polynomials,

defined as:

T1(x; c1) = C [1 + c1x] (4.13)

T2(x; c1, c2) = C
[

1 + c1x+ c2(2x
2 − 1)

]

, (4.14)

where C is determined by the normalization requirement.

In case the events in the bin are Poisson distributed, the χ2 of the fit is given by [53]:

χ2 =
∑

i

∣

∣δiHF

∣

∣

2
=
∑

i

[

2(Npdf
i −Nobs

i ) + 2Nobs
i log

Nobs
i

Npdf
i

]

(4.15)

where the sum runs over the bins, Nobs
i is the number of events in the i−th bin and Npdf

i

is the value of the PDF in that bin. In order to test the agreement between the PDF and

the distribution we report below each plot the value of the δiHF, positive if Nobs
i ≥ Npdf

i ,

negative otherwise.

Tagged Channels Mass Fits

For both the tagged CP -even modes we perform a simultaneous fits to the D0 and D0

samples sharing the PDF parameters but allowing for different signal and background

yields. The background is parameterized as a first order Chebyshev polynomial for both
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channels. The signal PDF for the π+π− channel consists of the sum of two gaussians (G)

while for the K+K− channel we add also a Crystal Ball function (CB). For the tagged

K±π∓ channel we parameterize the signal PDF with the sum of three Gaussian functions

(G) and the background PDF is a second order Chebyshev polynomial. Unlike the other

two tagged channels, D0 and D0 candidates are together in a unique sample. The results

of the three fits are reported in Fig. 4.2 and the values of the extracted parameters in

Appendix C.

Untagged Channels Mass Fits

For both the untagged channels the signal PDF consists of a sum of three Gaussian

functions (G) and the background PDF as a second order Chebyshev polynomial. In

Figure 4.3 we report the result of the fits to data for both channels. The value of the

extracted parameters can be found in Appendix C.

4.3.2 Signal Region Optimization

The most general parameterization of the signal region for a given channel is

[

mC − w

2
(1− α), mC +

w

2
(1 + α)

]

, (4.16)

where mC is the signal-region center, w is the total width, and α describes the asymmetry

of the interval with respect to mC . The signal region should be centered at the peak of

the mass distribution, corresponding to the most probable value of the PDF. The other

two free parameters allow one to define a signal region such that:

1. the number of events contained on the right side of the interval is the same as the

number of events contained on the left side;

2. the error on the lifetime that depends on the number of signal and background

candidates is minimized.

Under the hypothesis of a symmetric mass PDF and a linear correlation between the

reconstructed mass and the proper time, the first constraint allows one to cancel the effect

of the t − mD0 correlation since we integrate all the events over the mass range. This

requirement sets the value of α. The second constraint sets the width of the signal region,

w.

From the extracted mass PDF we have computed the most probable value (MPV) and

the right and left half-width-half-maximum (HWHM) values for the five channels. These

properties are reported Tab. 4.3 for data and in Tab. 4.4 for MC.

In the MC sample the distance between the two more distant MPV is quite small, 65 keV/c2

while in data it is much larger, 340 keV/c2. The MC distributions are also less asymmetric
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Figure 4.2: Fits to the tagged π+π− (top), K+K− (middle) and K±π∓ (bottom) mass
distributions for data. The left (right) plots of the first two rows are the projection on
D0 (D0) events. The shaded regions are the background contributions. The vertical lines
show the signal regions, defined in Sec. 4.3. The fit ranges are 1.82 < mD0(GeV/c2) < 1.93
for the π+π− channel, 1.82 < mD0(GeV/c2) < 1.91 for the K+K− channel, and 1.80 <
mD0(GeV/c2) < 1.93 for the K±π∓ one. A cut of 0.1447 < ∆m (GeV/c2) < 0.1463 is
applied.
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Figure 4.3: Fits to the untagged K+K− (left) and K±π∓ (right) mass distribution for
data. The shaded regions are the background contributions. The vertical lines show the
signal regions, defined in Sec. 4.3. The fit ranges are 1.82 < mD0(GeV/c2) < 1.91 for
the untagged K+K− channel and 1.8 < mD0(GeV/c2) < 1.93 for the untagged K±π∓

channel.

and have a slightly better resolution than data. Focusing on data, we observe that the

untagged channels have slightly better resolutions than the corresponding tagged ones.

The difference in resolutions is dominated by the types of particles in the final states: the

presence of pions degrades the resolution and also increase the asymmetry.

In the following we present the studies that allow one to define the signal region, namely

the values of mC , α and w for the five channels.

Determination of Signal Region Centers mC

The distance between the two more distant MPVs in data is considerable, 340 keV/c2, and

we decided to subdivide the five channels in groups with similar MPVs. Observing Tab. 4.3

we note that the tagged and untagged K+K− channels have very similar MPV, as well

as the tagged and untagged K±π∓ channels, while the π+π− is shifted to a slight lower

value. Since the π+π− sample is the least important in terms of statistics, we decided to

have two distinct centers, one for the K+K− channels (tagged and untagged) and another

for the other three channels (π+π− and tagged and untagged K±π∓). The values of the

two centers are computed as weighted averages of the MPV of Tab. 4.3 using as weights

the number of fitted signal events. We obtain:

� tagged and untagged K+K− channels: mKK
C = 1864.215MeV/c2

� tagged π+π− and tagged and untagged K±π∓ channels: mnonKK
C = 1864.042MeV/c2

The choice of two rather than a common center is enforced by the fact that when choos-

ing a center that is quite distant from the channel peak (greater than ∼ 150 keV/c2) the
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property (MeV/c2)
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

MPV 1863.931 1864.272 1864.073 1864.200 1864.035
left HWHM 9.548 7.328 8.536 7.238 8.494
right HWHM 9.262 7.277 8.401 7.238 8.345

Table 4.3: Mass PDF properties extracted from the fit to data reported in Fig. 4.2 and
Fig. 4.3.

property (MeV/c2)
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

MPV 1864.542 1864.502 1864.507 1864.477 1864.518
left HWHM 9.493 7.092 8.330 7.132 8.343
right HWHM 9.229 7.097 8.258 7.104 8.232

Table 4.4: Mass PDF properties extracted from the fit to MC events.

asymmetry changes significantly. On the other hand having many different centers compli-

cates significantly the evaluation of the systematic error. Two centers seems a reasonable

compromise.

For what concerns the MC events, the distance between the two more distant MPV is

much smaller than data, 65 keV/c2, therefore we decided to have a single value for mC for

all the five channels for MC. The weighted average yields:

� all channels (in MC): mKK
C = 1864.514MeV/c2

The value obtained here agrees with the generated mass in MC and it is the same used in

the previous analyses.

Determination of Signal Region Asymmetry α

Requiring that the signal region contains an equal number of signal events on the right

and on the left side of the center mC we found that the value of the asymmetry parameter

α is smaller than 7% for all the channels for widths from 0 MeV/c2 to 35 MeV/c2 (see

Appendix D.1). We therefore decide to fix α = 0 for all the channels, for data and MC.

Determination of Signal Region Width w

In the previous analyses the statistical error was the dominant one. For this reason

we have decided to optimize the signal region width minimizing the statistical error on

the lifetimes for the five channels, but taking into account the systematic impact of the

background. Therefore, as first step we minimize the statistical error, but then we evaluate
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the systematic error related to the background in the untagged K+K− channel, the one

with more background.

In order to choose the width of the signal region minimizing the statistical error on the

lifetime, we have performed Toy MC studies: we have generated events from the signal-

channel proper time PDF (presented later in Sec. 5.1.1), varying the number of signal

and background events according to the integral of the PDFs and evaluating the error

on the lifetime. We have repeated this procedure for the five channels separately. The

results are reported in Appendix D.2. This study shows that, from the point of view of

the statistical error, the signal region width can be the same for all the channels because

the relative difference between the statistical errors at different signal region widths is

smaller than 10%. The study suggests to use large signal regions, 34MeV/c2 wide for the

tagged but also for the untagged events. The only concern about having such large signal

regions for the untagged samples is that the background levels becomes higher than the

ones registered in the previous analyses where the width was 20MeV/c2. The systematic

impact of the background in the previous untagged analysis was basically dominated by

the untagged K+K− channel, as expected. We therefore decided to evaluate the impact

of the background for this channel and minimize the total, statistical plus systematic,

error. The evaluation of the systematic error was done applying the systematic variations

used in the previous analyses to data in a blind fit and reporting the variations of the

lifetimes as a function of the signal region width. The results of the study are reported

in Appendix D.2 and indicate that the signal region width that yields the smallest total

error for the untagged K+K− lifetime is 24MeV/c2.

The signal regions are therefore 24MeV/c2 wide for the untagged K+K− channel and

34MeV/c2 wide for the other channels. The wider signal region applies also to the untagged

K±π∓ channel since in the previous untagged analysis the systematic errors associated

with the background in this channel were one order of magnitude smaller than the same

errors evaluated on the K+K−.

Repeating the same studies on the MC sample we found that the optimal widths are

20MeV/c2 wide for the untagged K+K− channel and 30MeV/c2 wide for the other chan-

nels.

Final Results

The definition of the signal regions is reported in Tab. 4.5 (Tab. 4.6) for data (MC).

The low and high sidebands are defined in terms of their distance from the center of the
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parameters
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

mC (MeV/c2) 1864.042 1864.215 1864.042 1864.215 1864.042
w (MeV/c2) 34 34 34 24 34

α 0 0 0 0 0

mmin (MeV/c2) 1847.042 1847.215 1847.042 1852.215 1847.042
mmax (MeV/c2) 1881.042 1881.215 1881.042 1876.215 1881.042

Table 4.5: Signal region parameters and definition for data.

parameters
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

mC (MeV/c2) 1864.514 1864.514 1864.514 1864.514 1864.514
w (MeV/c2) 30 30 30 20 30

α 0 0 0 0 0

mmin (MeV/c2) 1849.514 1849.514 1849.514 1849.514 1849.514
mmax (MeV/c2) 1879.514 1879.514 1879.514 1874.514 1879.514

Table 4.6: Signal region parameters and definition for MC.

signal region, d, and the their width, wSB:

low sideband: mmin = mC − d− wSB/2

mmax = mC − d+ wSB/2

high sideband: mmin = mC + d− wSB/2

mmax = mC + d+ wSB/2.

The values of d and wSB are reported in Tab. 4.7 and are the same for data and MC.

parameters
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

wSB (MeV/c2) 20 20 20 20 20
d (MeV/c2) 35.5 35.5 35.5 44.5 44.5

Table 4.7: Sidebands parameters d and wSB for data and MC.

4.4 Expected Number of Signal and Background Candi-

dates

In the final fit we fix the expected misreconstructed-charm and combinatorial events in

the signal region. We need therefore to have a prediction for the yields of the background

categories in the signal region.
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For what concerns the misreconstructed-charm category, we estimate the number of events

belonging to this category using the MC dataset, namely bigCharm. The definition of the

signal region is different in data and MC, we assume that the mass distribution in MC is

shifted with respect to data, therefore we use the central value (mC) estimated on MC

but the width (w) estimated on data (see Tab. 4.5 and 4.6). This treatment of the signal

region is also applied in the extraction of the combinatorial yields.

In order to reduce our dependence on MC, we extract the expected number of combinato-

rial events in the signal region from the mass fits. Looking at the comparison between the

fitted and the true yields in the MC fits to the mass distribution (see Tab. 4.8), we extract

a correction factor (sm) defined as “truth background yields/fitted background yields” and

apply it to the background yields extracted from the data mass fits. Then we subtract the

misreconstructed-charm yields obtained from MC and we obtain the combinatorial yields

in the signal region. The systematic error associated with the choice of the value of the

scale factor is discussed in Chapter 6.

MC
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

Truth Yields

Signal 64583 149035 1488310 481907 5428393
Background 2954 581 2312 140721 814080

Fit Yields

Signal 62618 151203 1505833 489554 5543697
Background 3821 967 5061 137497 825378

Background Scale Factor

sm 0.773 0.601 0.457 - 0.986

Table 4.8: MC Truth and fitted yields of signal and background in the signal region for the
five channels in the MC cocktail (the one used in the optimization of the signal region).
The scale factor used to scale the background yields in the signal region estimated with
MC is also reported. The scale factor for the untagged K+K− channel has not been used,
as explained in the text.

In Tab. 4.9 we report the result of this procedure that has been demonstrated to work for

all channels except the untagged K+K− one.

While performing fits to the (t, σt) distribution in data, we realized that the prediction

of the expected number of background events for the untagged K+K− channel obtained

with the mass fits was not sufficiently well determined and caused the offset of the signal

resolution function for this channel to not be compatible with the offsets of the other

channels. We therefore adopted a different strategy for this channel: we extract the

number of combinatorial events directly in the simultaneous fit and not make use of the

background events extracted from the mass fits.

The estimated purity, defined as the ratio of the number of signal events divided by the
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data
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

Fit Yields

Signal 63279 138882 1430695 485633 5602261
Background 4860 1435 7638 177018 1064094

Rescaled Yields

Background 3760 862 3491 - 1049528

Background Composition

misrec.-charm 97 310 642 5478 4645
combinatorial 3663 553 2849 164970 1044552

Table 4.9: Fitted yields of signal and background in the signal region for the five channels
in data, corresponding to the fits shown in Fig. 4.2 and Fig. 4.3. The rescaled background
yields are obtained using the scale factors reported in Tab. 4.8. The scale factor for the
untagged K+K− channel has not been used, as explained in the text, here we anticipate
the extracted value from the final mixing fit.

total number of events, of each of the five channels for the events used in the fit are

reported in Tab. 4.10 for data and MC. The estimated purities in data are slightly lower

purity
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

MC 95.6% 99.6% 99.8% 77% 87%
data 92.9% 99.0% 99.5% 73% 84%

Table 4.10: Purities of the five channels for the events used in the fit, estimated in MC and
in data. Note that the definition of the signal region in MC differ from the data definition
(see Sec. 4.3.2).

than in MC; this is a consequence of the wider signal region in data. However, the number

of signal events in data estimated from the mass fits, although in a wider signal region, is

not higher than the MC estimation.



Chapter 5

Measurement of yCP and ∆Y

In this chapter we provide a description of the events in the signal region, classified in the

three categories: signal, misreconstructed-charm and combinatorial. We show the studies

on the proper time resolution of the signal candidates, and the studies of the background

events, in particular the composition of the misreconstructed-charm background, and the

relevant distributions of the events in the mass sidebands. We present the signal and

background PDFs for the five channels. Finally we report the validations of the fit on

simulated events and the results of the nominal fit to data.

5.1 Characterization of the Signal Events

Signal candidates are defined as correctly reconstructed D0 decays. This category includes

events with radiative photons or decays in flight of kaons or pions. Concerning the tagged

channels, the D0 candidates combined with an incorrectly reconstructed slow pion are also

included, with a dedicated component of the PDF.

In Fig. 5.1 we report the mass, ∆m and proper time error distributions for the truth-

matched signal events for the tagged K+K− channel. The events in this category are
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Figure 5.1: Signal truth-matched distributions for the tagged K+K− events in the signal
region: reconstructed mass (left), ∆m (center), and proper time error (right). The red
lines indicate the signal region, the blue lines indicate the sideband regions. The proper
time error distribution include only events in the signal region.
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peaking in mass and, for the tagged channels, also in ∆m. The mean proper time er-

ror estimated from simulated events is ∼ 0.24 ps, around 60% of the D0 lifetime. In

Appendix E.1 we report the relevant distributions for the five channels.

Before performing any fit to the reconstructed proper time, we check that the signal

efficiency is independent of the proper time calculated using MC truth information, the

“true proper time”, ttrue. We fit the true proper time distribution for each of the 9

independent signal MC datasets, splitting the D0 from the D0 events for the tagged

channels. In the fits we remove the cut on the reconstructed proper time. The fits to

oneSignal1 are reported in Fig. 5.2 and Fig. 5.3, a summary of the fitted lifetimes is in

Tab. 5.1 and Tab. 5.2.

Tagged
π+π− K+K− K±π∓

D0 average lifetime (fs) 411.41 ± 0.74 411.18 ± 0.49 411.72 ± 0.16

D0 average lifetime (fs) 413.00 ± 0.75 411.92 ± 0.48 411.75 ± 0.16

average (fs) 412.20 ± 0.53 411.56 ± 0.34 411.73 ± 0.11

Table 5.1: Averages of the D0 and D0 lifetimes extracted from the 9 independent signal
MC datasets for the tagged channels. The lifetime input to the MC is 411.67 fs.

Untagged
K+K− K±π∓

average lifetime (fs) 412.03 ± 0.19 411.96 ± 0.06

Table 5.2: Averages of the D lifetime extracted from the 9 independent signal MC datasets
for the untagged channels. The lifetime input to the MC is 411.67 fs.

The tagged D0 and D0 extracted lifetimes are compatible with the generated one within

one standard deviation. The lifetimes extracted from the untagged channels are slightly

higher than the generated one. However, the simultaneous fit to reconstructed proper

time distribution, considering signal-only events, demonstrates that there is no bias on

the observables yCP and ∆Y , as shown later in Sec. 5.1.2.

Proper Time Resolution

The resolution is defined as (t− ttrue), where ttrue is the generated proper time. In Fig. 5.4

we report the resolution distributions for the five channels, and in Tab. 5.3 the mean and

the RMS of the distributions, which are quite different for the different channels.

Since we want to perform a simultaneous fit of the five channels, sharing as much as possible

of the resolution function, we consider the proper time error and study the resolution pull,

defined as (t− ttrue)/σt. In Fig. 5.5 we report the resolution-pull distributions for the five
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D∗−, π+π− D∗+, π+π−

D∗−, K+K− D∗+, K+K−

D∗−, K±π∓ D∗+, K±π∓

Figure 5.2: Binned fit to the true proper time ttrue for D0 (right) and D0 (left) tagged
candidates. These results are an example from the signal-only MC dataset oneSignal1.
In this study the D0 and D0 decays in the K±π∓ channels have been separated.

unt. K+K− unt. K±π∓

Figure 5.3: Binned fit to the true proper time ttrue for untagged channels. These results
are an example from the signal-only MC dataset oneSignal1.

channels estimated on the simulated events, and in Tab. 5.4 the mean and the RMS of

the distributions.

The RMS of the untagged K+K− channel is ∼ 10% lower than the other channels because

the signal region is 30% narrower for that channel. There are also slight differences among



96 Measurement of yCP and ∆Y

h_resol
Entries  655349
Mean   0.0002886
RMS    0.2577

 proper time resolution0D
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

10000

20000

30000

40000

50000

h_resol
Entries  655349
Mean   0.0002886
RMS    0.2577

D∗±

π+π−

h_resol
Entries  1482628
Mean   -0.0004758
RMS    0.2709

 proper time resolution0D
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

20

40

60

80

100

310×
h_resol

Entries  1482628
Mean   -0.0004758
RMS    0.2709

D∗±

K+K−

h_resol
Entries  1530555
Mean   -8.597e-05
RMS    0.2634

 proper time resolution0D
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

20

40

60

80

100

120

310×
h_resol

Entries  1530555
Mean   -8.597e-05
RMS    0.2634

D∗±

K±π∓

h_resol
Entries  5022692
Mean   -6.945e-05
RMS    0.2708

 proper time resolution0D
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

50

100

150

200

250

300

350

400
310×

h_resol
Entries  5022692
Mean   -6.945e-05
RMS    0.2708

unt.
K+K−

h_resol
Entries  5583799
Mean   5.364e-05
RMS    0.2706

 proper time resolution0D
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

50

100

150

200

250

300

350

400

450

310×
h_resol

Entries  5583799
Mean   5.364e-05
RMS    0.2706

unt.
K±π∓

Figure 5.4: Distribution of the resolution t − ttrue (in ps) for signal events in the signal
region for the five channels, estimated on the bigSignalMC dataset except for the K±π∓

channels, for which we use one cocktail.
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Figure 5.5: Distribution of the resolution pull (t− ttrue)/σt for signal events in the signal
region for the five channels, estimated on the bigSignalMC dataset except for the K±π∓

channels, for which we use one cocktail.
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Tagged Untagged
π+π− K+K− K±π∓ K+K− K±π∓

mean (fs) 0.29 −0.48 −0.09 −0.07 0.05
RMS (fs) 258 271 263 271 271

Table 5.3: Mean and RMS of the resolution distributions reported in Fig. 5.4, estimated
on the simulated signal events.

Tagged Untagged
π+π− K+K− K±π∓ K+K− K±π∓

mean/10−3 1.54 −0.57 0.83 0.69 1.02
RMS 1.021 1.029 1.025 1.013 1.025

Table 5.4: Mean and RMS of the resolution-pull distributions reported in Fig. 5.5, esti-
mated on the simulated signal events.

the other channels, up to around 2%. This difference among the channels is taken into

account in the signal PDF introducing scale factors for the proper time error. The mean

of the distributions are compatible with zero within 0.15%. In the nominal fit we assume

that the offset of the signal resolution function is the same for the five channels. This

study demonstrates that the offset is expected to be near zero for the simulated events,

while in data there are effects, much as the vertex detector misalignment, that can result

in a non-zero offset.

Since we make use of the per-event error σt in the signal PDF, in order to avoid biases [54]

on the extracted lifetimes, we multiply each signal PDF P(t, σt) by H(σt), the proper

time error PDF of that mode, i.e. the probability for having a given error σt. The

product P(t, σt) ·H(σt) is a properly normalized two-dimensional PDF. The σt PDFs are

one dimensional histograms, and they are discussed later in Sec. 5.4. This is done not only

for the signal PDFs but also for the background PDFs that include the per-event error σt.

5.1.1 Parameterization

The signal PDF is a simultaneous PDF with seven components, one for each of the decays

reported in Eqs. (4.1) to (4.7). The basic PDF for each of the seven modes is described

in the following.

In previous BABAR mixing analyses [17, 50, 51] it was shown that the proper time resolution

function can be described as a sum of three Gaussians. Each Gaussian uses per-event

proper time errors, σt, obtained from the vertex fit of the D0 decay tree1. Each Gaussian

is assigned its own scaling factor si for the proper time error. To describe the proper time

1this is also true for the tagged channels: we do not use the additional information from the slow pion
in order to get similar resolutions as the untagged candidates.
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distribution the resolution function is convolved with an exponential. The PDF for an

exponential convolved with a single Gaussian is:

D(t, σt; s, t0, τ) = Cσt

∫

exp(−ttrue/τ) exp
(

−(t− ttrue + t0)
2

2(s ·σt)2

)

dttrue , (5.1)

where the normalization coefficient Cσt is chosen such that

∫

D(t, σt; s, t0, τ) dt = 1 for all σt. (5.2)

This is known as a conditional PDF2. With this definition, the productD(t, σt; s, t0, τ) ·H(σt)

is a properly normalized two-dimensional PDF, where H(σt) is the the proper time error

PDF, discussed later in Sec. 5.4.

The proper time signal PDF used for each of the seven modes is the sum of three such

functions with a common offset t0, but different scaling factors, s1, s2, s3:

R(t, σt; si, t0, τ) = ft1D(t, σt; s1, t0, τ)

+ (1− ft1)
[

ft2D(t, σt; s2, t0, τ) (5.3)

+ (1− ft2)D(t, σt; s3, t0, τ)
]

where si = (s1, s2, s3) represents the three scaling factors. The scaling factors, the offset,

the fractions ft1, ft2, along with the lifetime parameter are variable parameters in the fit.

In the different signal channels τ will be identified with τ+, τ̄+, or τKπ.

Mistagged D0 Candidates

In the tagged channels we include the D0 candidates combined with a misidentified slow

pion in the signal category. Roughly half of the misidentified slow pions will have the

wrong charge, and the D0 candidates will be assigned the opposite flavor. Therefore, in

the PDF of the tagged CP -even modes the mistagged signal events need to be described

separately from the correctly tagged events. The difference between the correctly tagged

and the mistagged D0 candidates is either that the reconstructed slow pion track does not

correspond to the true slow pion, or that the charge of the track is wrongly measured.

The proper time resolution and lifetime for these events is therefore expected be the same

as for correctly tagged D0 candidates. This assumption has been tested in the previous

tagged analysis [50].

Hence, for the tagged K+K− and π+π− modes we use a signal PDF that takes into

account the fact that the mistagged signal events are described by the effective lifetime

2See Chapter 6 of Ref. [55] for additional discussion.
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associated with the opposite flavor:

PD∗+

hh (t, σt; τ
+, τ̄+) = (1− f+tag)R(t, σt; si, t0, τ

+) + f+tagR(t, σt; si, t0, τ̄
+) , (5.4)

PD∗−

hh (t, σt; τ̄
+, τ+) = (1− f−tag)R(t, σt; si, t0, τ̄

+) + f−tagR(t, σt; si, t0, τ
+) , (5.5)

with h = K,π, and f±tag representing the fraction of mistagged signal events. The fraction

of mistagged events has been evaluated using bigSignalMC dataset, as half of the fraction

of events with a misidentified slow pion. It is fixed to f±tag = 0.2% in the nominal fit and

varied as part of the systematics.

D0 Content of the Untagged K+K− Channel

The signal candidates of the untaggedK+K− channel have unknown flavor, each candidate

could be aD0 or aD0. To be able to describe the proper time distribution of the candidates

in this channel with the effective lifetimes τ+ and τ̄+, we need to assume a certain fraction

of D0 over the total number of candidates. We assume that the sample is composed half

of D0 and half of D0, defining the fraction of D0, fD0 = 0.5. We associate a systematic

error to this assumption. The PDF for this mode is therefore:

Punt
KK(t, σt; τ̄

+, τ+) = (1− fD0)R(t, σt; si, t0, τ̄
+) + fD0R(t, σt; si, t0, τ

+) (5.6)

Sharing the Proper Time Resolution Model Parameters

In order to reduce the uncertainty on the measured lifetimes we use a common resolution

function for all the tagged and untagged modes, which is allowed if the proper time

resolution pulls for the five channels are basically the same. In case they differ, additional

parameters can be used in order to describe the differences. To obtain resolutions as similar

as possible for the tagged and untagged channels, we compute the tagged D0 candidates

proper time and uncertainty using the same information available for the untagged D0

candidates. In particular, in the vertex fit, we use the same constraints as for the untagged

case: a D0 vertex constraint and a beam constraint on the D0 momentum. The additional

information from the slow pion is not employed.

Although t and σt are computed using the same information for all decays, there may be

residual differences in the resolution among the channels, for instance due to differences in

reconstruction between kaons and pions. We therefore do not set the resolution function

for K+K− and π+π− to be exactly the same as in the K±π∓ final state. Instead we

introduce the final-state-dependent scale factors SX = {SKK, Sππ, SKπ = 1}, used to

re-scale the shared Gaussian scaling factors si. We also have observed differences in the

spectra of the D0 momentum in the center of mass between the tagged and the untagged

channels for a given final state. This difference may result in slightly different resolutions.
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Therefore we introduce an additional scale factor, S′
Y = {S′

tag, S
′
unt = 1} to take into

account this effect.

The single-mode proper time signal PDF of Eq. (5.3) therefore becomes3:

RY
X(t, σt;SXS

′
Y si, t0, τ) = ft1D(t, σt;S

′
Y SXs1, t0, τ)

+ (1− ft1)
[

ft2D(t, σt;S
′
Y SXs2, t0, τ) (5.7)

+ (1− ft2)D(t, σt;S
′
Y SXs3, t0, τ)

]

where si, fti and t0 are the same for all modes.

Simultaneous Signal PDF

The explicit form of the signal lifetime PDFs based on the prototype PDF presented above

are given below:

PD∗+

ππ (t, σt; τ
+, τ̄+) = (1− f+tag)R(t, σt;SππS

′
tagsi, t0, τ

+) + f+tagR(t, σt;SππS
′
tagsi, t0, τ̄

+) ,

PD∗−

ππ (t, σt; τ
+, τ̄+) = (1− f−tag)R(t, σt;SππS

′
tagsi, t0, τ̄

+) + f−tagR(t, σt;SππS
′
tagsi, t0, τ

+) ,

PD∗+

KK (t, σt; τ
+, τ̄+) = (1− f+tag)R(t, σt;SKKS

′
tagsi, t0, τ

+) + f+tagR(t, σt;SKKS
′
tagsi, t0, τ̄

+) ,

PD∗−

KK (t, σt; τ
+, τ̄+) = (1− f−tag)R(t, σt;SKKS

′
tagsi, t0, τ̄

+) + f−tagR(t, σt;SKKS
′
tagsi, t0, τ

+) ,

PD∗±
Kπ (t, σt; τKπ) = R(t, σt;SKπS

′
tagsi, t0, τKπ) ,

Punt
KK(t, σt; τ

+, τ̄+) = (1− fD0)R(t, σt;SKKS
′
untsi, t0, τ̄

+) + fD0R(t, σt;SKKS
′
untsi, t0, τ

+) ,

Punt
Kπ(t, σt; τKπ) = R(t, σt;SKπS

′
untsi, t0, τKπ) ,

where f±tag = 0.2%, fD0 = 0.5 and SKπ = S′
unt = 1 are fixed in the nominal fit. The offset

t0, the fractions ft1, ft2, the scaling factors s1, s2, s3, Sπ+π− , SK+K−, S′
tag, along with

the lifetime parameters τ+, τ̄+, τKπ are floating in the fit.

5.1.2 Simultaneous Fit to the Signal-Only MC Datasets

In order to test the signal PDF described above, we perform the seven-modes simultaneous

fit to the 9 independent signal-only MC datasets (see Sec. 4.1). The proper time projections

3X indicates the final state and Y the D∗ tag: X = {Kπ,KK, ππ}, Y = {tag, unt}.
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for the fit to one of these MC datasets, oneSignal1, are reported in Fig. 5.6. The signal

PDF correctly describes the simulated events, as demonstrated by the Poisson pulls [53]

reported below each projection.
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Figure 5.6: Proper time projections of the simultaneous fit to signal-only MC dataset
oneSignal1.

The summary of the extracted values of yCP and ∆Y from the 9 independent MC datasets

are reported in Fig. 5.7. In Tab. 5.5 we report the yCP and ∆Y weighted averages and

their χ2 probability to be compatible with zero. The extracted values of yCP and ∆Y are

compatible with no mixing and no CP violation, as expected for simulated events.
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Figure 5.7: Summary of the extracted values of yCP (left) and ∆Y (right) in the simulta-
neous fit to the seven modes, signal-only events.

observable weighted average P (χ2)

yCP 0.005 ± 0.048 12%
∆Y 0.004 ± 0.082 33%

Table 5.5: Weighted average and χ2 probability for being compatible with zero of the
average values of yCP and ∆Y extracted from the simultaneous signal-only fit to the 9
independent MC datasets.

5.2 Characterization of the Misreconstructed-Charm Events

If the common ancestor of the D0 decay products is a long-living charm meson, e.g. D0,

D+, ΛC , then the D0 candidate belongs to the misreconstructed-charm background cat-

egory. In the tagged channels, also the slow pion can be misidentified, but most of the

misreconstructed-charm background is from real D∗+ → D0π+ decays with a misrecon-

structed D0 decay.

There are several sources contributing to this background, and they are highly non-uniform

across themD0 distribution and the in the (mD0 , ∆m) plane, as can be seen for the tagged

K+K− truth-matched events in the left plot of Fig. 5.8.
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Figure 5.8: Misreconstructed-charm truth-matched distributions for the tagged K+K−

events: (mD0 , ∆m) (left), proper time (center), and proper time error (right). The red
lines indicate the signal region, the black lines indicate the sideband regions. The proper
time and the proper time error distributions include only events in the signal region.
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In Appendix E.2 we report the relevant distributions for all the channels. In Tab. 5.6 we

list the main components of this background in the signal region as estimated from the

generic ccMC sample, bigCharm. The misreconstructed-charm is a long-lived background:

the mean of all the proper time distributions (shown in Appendix E.2) is higher than the

generated D0 lifetime in MC, 411.67 fs.

channel
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

D0 → νℓX 15.4% 10.3% 29.9% 7.2% ≤ 2%
D0 → K±π∓ 80.8% 14.9% 57.1% 8.8% 35.8%
D0 → π0π+K− 1.1% 70.3% 1.7% 63.3% 6.9%
D+ → π+π+K− ≤ 1% 2.9% ≤ 1% 11.8% ≤ 2%
D0 → K+K− ≤ 1% ≤ 1% 1.3% ≤ 1% 3.5%
D0 → π+π− 1.8% ≤ 1% 2.2% ≤ 1% 3.1%
D0 → π+π−π0 ≤ 1% ≤ 1% 7.0% ≤ 1% 17.3%
Λ decays ≤ 1% ≤ 1% ≤ 1% 4.9% 2.6%

total 840 2720 5537 45280 40365

Table 5.6: Breakdown of the most important misreconstructed-charm background decay
channels rates evaluated from the bigCharm MC dataset, and therefore not scaled to data
luminosity. The D0 → K±π∓ background channel in the tagged and untagged K±π∓

modes is due to doubly misidentified Kπ decays.

In the tagged channels we do not observe any difference between the D0 and the D0

misreconstructed-charm backgrounds. Therefore we do use the same shape to describe the

events of this background category for the D0 → h+h− and D0 → h+h−, with h = K,π.

In Tab. 5.7 we report the expected number of misreconstructed-charm events in the signal

region and in the sidebands as estimated on the bigCharm MC dataset, rescaled to the

data integrated luminosity.

region
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

low sideband 39 515 144 12347 10280
signal region 97 309 642 5477 4645
high sideband 5 97 19 4195 2206

Table 5.7: Expected number of misreconstructed-charm events in the signal region and
the sidebands estimated from the bigCharm MC dataset and scaled to data integrated
luminosity.

The events belonging to this category represent only the ∼ 0.1% of the events in the signal

region (0.8% in the untagged K+K− channel) but because of their signal-like long lifetime

we describe them separately from the rest of the background.
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5.2.1 Parameterization

The charm background is a signal-like long-lived background. We therefore describe it in a

similar way as signal, using convolutions of an exponential with a Gaussian with per-event

errors, D(t, σt; s, t0, τ). The resolution is not expected to be the same as for signal events,

since the D0 is incorrectly reconstructed. In principle we should use a different lifetime

and resolution for each of the different decay channels. However, given the low statistics of

this background we have decided to use a sum of two convolutions, with different lifetimes,

offsets and per-event error scaling factors. The misreconstructed-charm background PDF

is therefore given by:

Pcrm
X (t, σt) = fcrmD(t, σt; s1crm, t

1crm
0 , τ1crm) + (1− fcrm)D(t, σt; s2crm, t

2crm
0 , τ2crm).

(5.8)

The proper time projections of the unbinned maximum likelihood fits to the misreconstructed-

charm events in the signal region of the bigCharm MC dataset are reported in Fig. 5.9.

In Tab. 5.8 we report the values of the extracted lifetimes and fractions of the misreconstructed-

charm PDF evaluated from the fit, for each of the five channels.

parameter
Tagged Untagged

π+π− K+K− K±π∓ K+K− K±π∓

fcrm (%) 1 fixed 1 fixed 2.9 ± 1.6 7.9± 1.1 8.2± 1.1
τ1crm (ps) 0.46 ± 0.03 0.44 ± 0.01 0.82 ± 0.35 1.4± 0.1 0.99 ± 0.07
τ2crm (ps) – – 0.42 ± 0.01 0.476 ± 0.008 0.428 ± 0.006

Table 5.8: Extracted lifetimes of the misreconstructed-charm backgrounds in the signal
region.

The PDFs extracted in these fits are used to characterize the misreconstructed-charm

events in the signal region in the final fit.
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Figure 5.9: Proper time projections of the fits to the misreconstructed-charm events in
the signal region of bigCharmMC dataset. For the tagged π+π− and K+K− channels one
convolution was sufficient to describe the distribution.
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5.3 Characterization of the Combinatorial Events

The combinatorial-background category contains the events that are not classified as sig-

nal nor as misreconstructed-charm. Most of the combinatorial background are random

combinations of tracks, with no effective lifetime.

In Fig. 5.10 we report the two dimensional distribution (mD0 , ∆m) for the tagged K+K−

events, along with the proper time and proper time error distributions of the events in the

signal region for the same channel.
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Figure 5.10: Combinatorial truth-matched distributions for the tagged K+K− events:
(mD0 , ∆m) (left), proper time (center), and proper time error (right). The red lines
indicate the signal region, the black lines indicate the sideband regions. The proper time
and the proper time error distributions include only events in the signal region.

In Appendix E.3 we report the relevant distributions from the simulated events for all the

channels, as for the other two categories.

As for the misreconstructed-charm category, in the tagged channels, there is no significant

difference between the D0 and the D0 combinatorial backgrounds. Therefore we do use

the same shape to describe the events of this background category for the D0 → h+h−

and D0 → h+h−, with h = K,π.

The two-dimensional (t, σt) combinatorial PDF is obtained from the data mass sidebands.

In Fig. 5.11 and 5.12 we report the comparison between the combinatorial events in the

sidebands and the ones in the signal region for the proper time and the proper time

error distributions. There are small discrepancies between the sideband distributions and

the signal region ones. We build the combinatorial PDF as a weighted average of the

combinatorial PDFs extracted in the two sidebands, as described in the following section.

5.3.1 Parameterization

In all five decay channels, the main background is composed of combinatorial candidates.

Hence we want to obtain a PDF that appropriately describes the combinatorial background

in the signal region that, possibly, does not rely on simulated events.

We obtain the combinatorial PDF for each of the five channels from the sidebands by

forming a weighted average of the PDFs extracted from the low (PlSB

X ) and the high
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Figure 5.11: Comparison of the proper time distribution in the signal region (black), low
(red) and high (blue) sidebands for the combinatorial events of the bigCombinMC dataset.
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Figure 5.12: Comparison of the proper time error distribution in the signal region (black),
low (red) and high (blue) sidebands for the combinatorial events of the bigCombin MC
dataset.
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(PhSB

X ) sideband:

Pcomb
X = h PlSB

X + (1− h) PhSB

X . (5.9)

The form of the sideband PDFs PlSB

X and PhSB

X depends on the decay channel and is given

in Tab. 5.9. Their extraction in each of the five channels is discussed below.

channels form of the combinatorial PDFs PlSB

X and PhSB

X

tagged 2d histogram with fixed bin-width, 100 bins in t and 100 in σt
untagged K+K− sum of 3 convolutions of an exponential with a Gaussian (see Eq. 5.13)
untagged K±π∓ 2d histogram with adaptive binning (see Fig. 5.14)

Table 5.9: Forms of the combinatorial PDFs describing the events in the sidebands for the
different channels. The PDFs are described in more detail in the following. “2d” stands
for two-dimensional.

The weighting parameter h is extracted from the bigCombin MC dataset and assumed to

correctly describe data. A systematic error on this assumption is discussed in Sec. 6.2.4.

The values of the extracted weighting parameters that are used in the fit to data are all

near 0.5 and are reported in Tab. 5.10.

Tagged Untagged
π+π− K+K− K±π∓ K+K− K±π∓

h 0.496 ± 0.023 0.518 ± 0.030 0.542 ± 0.024 0.497 ± 0.017 0.520 ± 0.004

Table 5.10: Values of the weighting parameters used to build the combinatorial PDF
for the signal region events from the ones obtained in the sidebands, extracted from the
bigCombin MC dataset.

In the following we describe the details of the construction of the combinatorial PDF

Pcomb
X , for each of the five channels X: the form and the extraction of the sideband

PDFs PlSB

X and PhSB

X , and the evaluation of the weighting parameter. The low (high)

sideband region also contains some signal and misreconstructed-charm events, as shown

in Tab. 5.11 (5.12). Therefore we first present the PDFs for these two categories for the

sideband events.

Signal and Misreconstructed-Charm PDFs in the Sidebands

The signal and misreconstructed-charm events in the sidebands are estimated directly

from simulated events. A systematic error will be assigned for this assumption.

In the untagged K±π∓ and the three tagged channels the combinatorial PDF in the

sidebands is a 2d histogram (see Tab 5.9), we therefore use a 2d histogram with the same

binning for the signal and misreconstructed-charm PDF in the sidebands. We use the

bigSignal and bigCharm MC datasets to build these histogram, and rescale them to data

luminosity.
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low Tagged Untagged
sideband π+π− K+K− K±π∓ K+K− K±π∓

signal 40 23 555 2107 45697
misrec. charm 39 515 144 12347 10280
combinatorial 12626 1380 7328 147548 587985

Table 5.11: Estimation of the number of signal and misreconstructed-charm events in the
low mass sideband. These numbers are estimated using the bigSignal and bigCharm MC
datasets and rescaled to match data integrated luminosity. We also report the number of
combinatorial events, estimated and rescaled from the bigCombin MC dataset.

high Tagged Untagged
sideband π+π− K+K− K±π∓ K+K− K±π∓

signal 11 7 156 509 8362
misrec. charm 5 97 19 4195 2206
combinatorial 11726 1201 6729 123153 511580

Table 5.12: Estimation of the number of signal and misreconstructed-charm events in the
high mass sideband. These numbers are estimated using the bigSignal and bigCharm

MC datasets and rescaled to match data integrated luminosity. We also report the number
of combinatorial events, estimated and rescaled from the bigCombin MC dataset.

In the untagged K+K− channel we proceed in a different way: since we use an analytic

function to describe the combinatorial component, as described in the next section, we also

use an analytic function for the signal and misreconstructed-charm events. The analytic

functions are fitted to MC datasets and fixed in the fit to the sidebands. We use the same

analytic function for the signal and misreconstructed-charm components, the sum of two

convolutions of an exponential with a Gaussian:

Pside
hh (t, σt) = fsideD(t, σt; s1side, t

side
0 , τside) + (1− fside)D(t, σt; s2side, t

side
0 , τside). (5.10)

As usual we multiply the above PDF by the proper time error PDF, H(σt), so that

Pside(t, σt) ·H(σt) is a properly normalized two-dimensional PDF. The σt PDF is taken to

be the one-dimensional histogram, built with simulated events.

For what concerns the signal component, we apply a correction to the extracted lifetimes

due to the fact that the generated D0 lifetime in MC is 411.67 fs while in data we have

measured shorter lifetimes. To estimate the correction we computed the weighted average

of the D → Kπ and the D0, D0 → h+h− lifetimes extracted in the previous analyses [50,

51], obtaining:

〈τKπ〉 = (410.16 ± 0.33) fs (5.11)

〈τhh〉 = (404.95 ± 0.97) fs. (5.12)

We apply a shift of 411.67−410.16 = 1.51 fs to the extracted signal lifetimes of the tagged
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and untagged K±π∓ channels in the sidebands, and a shift of 411.67− 404.95 = 6.72 fs to

the other channels. We will assign a systematic error varying the shift by the statistical

error reported in the equations above. The correction is applied only to the signal lifetime

in the sidebands.

Combinatorial PDF for the Tagged Channels

In both sidebands the combinatorial PDF consists of a two-dimensional histogram in (t,

σt), with 100 bins for each variable. The sideband PDFs PlSB

X and PhSB

X are extracted from

the sideband histograms after subtracting the signal and the misreconstructed-charm com-

ponents. The signal and misreconstructed-charm histograms are built using the bigSignal

and bigCharm MC datasets. The subtraction operation can be tricky, especially in the

low-statistics bins: it can happen that in one or more bins the result of the subtraction is

negative, in this case we assign 0 to the content of the bin. If this happens in too many

bins, then the subtracted histogram is not a good description of the combinatorial events

in the sidebands: every time we assign 0 we are neglecting a signal (or misreconstructed-

charm) contribution. Studies on the simulated events have demonstrated that this is not

a problem for the tagged channels.

The weighting parameter h is extracted from the simulated events. First we obtain the low

and high sideband PDFs from the truth-matched combinatorial events of the bigCombin

MC dataset. Then we fit their weighted average to the combinatorial events in the signal

region and extract the value of h. In Fig. 5.13 we report the results of these fits that yields

the values of the weighting parameters h reported in Tab. 5.10.

Once we have obtained PlSB

X and PhSB

X from the sidebands and h from the simulated events,

we build the weighted average of the PDFs as in Eq. (5.9) and obtain the PDF for the

combinatorial events in the signal region for the tagged channel X, Pcomb
X .

Combinatorial PDF for the Untagged K±π∓ Channel

In the untagged K±π∓ channel MC studies have shown that the subtraction procedure

suffers from the problem we have mentioned above in the low-statistics bins. In order

to overcome this problem we have changed the binning of the 2d histogram: we use an

adaptive binning maintaining the same bin width in the regions where the distribution

changes rapidly and merging two or more bins together when the distribution is less steep.

This procedure solves the subtraction issue for this untagged channel. In Fig. 5.14 we

report a picture illustrating the adaptive binning.

The weighting parameter h is extracted with the same procedure used for the tagged

channels. In Fig. 5.15 we report the results of the fit that yield the value of the weighting

parameters h reported in Tab. 5.10.



5.3 Characterization of the Combinatorial Events 111

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

100

200

300

400

500
P

ul
l

-4
-2

0
2
4

D∗+, π+π−

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

100

200

300

400

500

600

P
ul

l

-4
-2

0
2
4

D∗−, π+π−

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

10

20

30

40

50

60

70

P
ul

l

-4
-2

0
2
4

D∗+, K+K−

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

10

20

30

40

50

60

70

80

P
ul

l

-4
-2

0
2
4

D∗−, K+K−

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

100

200

300

400

500

600

700

P
ul

l

-4
-2

0
2
4

D∗±, K±π∓

Figure 5.13: Results of the fits to the signal region events of bigCombin MC dataset of
the weighted average of the low and high sideband PDF for tagged channels that allowed
the determination of the weighting parameter h.
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Figure 5.15: Result of the fit to the signal region events of bigCombin MC dataset of the
weighted average of the low and high sideband PDF for the untagged K±π∓ channel. The
binning of the Poisson pulls reported below the plot is chosen to match the binning of the
histogram PDF.

Combinatorial PDF for the Untagged K+K− Channel

The untagged K+K− channel is the one with the highest fraction of combinatorial events

in the signal region. MC studies have demonstrated that the subtraction issue was not

completely solved using adaptive binning, even after trying several binnings. Moreover,

choosing the binning that gave the best answer on the subtraction side and fitting the single

channel, we observed that the offset of the signal resolution function was not compatible

with zero, even if the lifetime was extracted correctly. Fitting the untagged channels

together, since the offset is driven by the untagged K±π∓ channel, the untagged K+K−

lifetime was extracted 2 fs below the input value. This study was performed on simulated

events.

We therefore chose to use an analytic function in order to describe the combinatorial

events in the untagged K+K− sidebands (and signal region). The function is basically

the same as the signal PDF with the only difference that we allow for 3 different lifetimes

and offsets, one for each component of the conditional PDF. The proper time PDF for

untagged K+K− combinatorial background candidates is therefore given by:

Pcomb
untKK(t, σt) = f1combD(t, σt; s1comb, t

1comb
0 , τ1comb) + (5.13)

(1− f1comb)
[

f21combD(t, σt; s2comb, t
2comb
0 , τ2comb)+

(1− f21comb)D(t, σt; s3comb, t
3comb
0 , τ3comb)

]

,

where D(t, σt; s, t0, τ) is defined in Eq. (5.1).

In Fig. 5.16 we report the fits to data sidebands that allow one to extract PlSB

X and PhSB

X .

In these fits the signal and the misreconstructed-charm PDFs and their expected number

of events are fixed.

The weighting parameter h is extracted with the same procedure used for the other chan-

nels. In Fig. 5.17 we report the results of the fit that yields the value of the weighting
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Figure 5.16: Results of the fits to the low (left) and high (right) data sidebands for the
untagged K+K− channel. In black the signal and in red the misreconstructed-charm
PDFs, both fixed in the fit; the dashed blue line represents the extracted combinatorial
PDF.

parameters h reported in Tab. 5.10.
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Figure 5.17: Results of the fits to the signal region events of bigCombin MC dataset of
the weighted average of the low and high sideband PDF for the untagged K+K− channel.

5.4 Proper Time Error PDF

The σt PDF multiplies the proper time PDF since the latter also depends on the proper

time error. In this analysis they are described by one-dimensional histograms, H(σt).

The proper time error distributions are different for signal and background candidates

across the different fitting regions. It is important to obtain a good description of these

distributions for the different background and signal components in each of the fitting

regions in order to avoid fitting biases.

The proper time error distribution for the signal component in the signal region is ob-

tained by subtracting the combinatorial and the misreconstructed-charm background σt

distribution to the σt distribution of all the D0 candidates in the signal region. Therefore

in the following we describe how we build the H(σt) for each of the three categories in

each of the five channels.
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Backgrounds Proper Time Error Distributions

The proper time error PDF for misreconstructed-charm events is obtained directly from

the simulated events, exploiting the full statistics of the bigCharm MC dataset. We build

the one-dimensional σt distribution and normalize it to unity and obtain H(σt) for the five

channels.

The σt PDF for the combinatorial background is obtained from the mass sidebands with

the same procedure exploited for the two-dimensional (t, σt) PDF. First we obtain the

combinatorial proper time error distribution in the sidebands subtracting the signal and

misreconstructed-charm contributions (both evaluated on the simulated events) to the

total σt distribution. Then we combine the proper time error distributions obtained in

the sidebands with the weighting parameter used to weight the two-dimensional PDF.

Signal Proper Time Error Distributions

As mentioned above, the signal σt PDF is build by subtraction once the background σt

PDFs and expected number of events in the signal region are know. As can be seen from

Fig. 5.18 the agreement of the signal truth-matched distribution and the subtracted one

is very good for simulated events, proving the fact that the combinatorial σt distributions

of the events in the mass sidebands describe well the combinatorial events in the signal

region.
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Figure 5.18: Comparison of the proper time error distribution of the truth matched signal
events in the signal region (black) VS the proper time error distribution obtained from
the subtraction of the misreconstructed-charm and combinatorial σt distributions from
the distribution of the events in the signal region of cocktail1 (red). The Kolmogorov-
Smirnov tests for these distributions are all above 99.9%.

This operation requires the knowledge of the expected number of background events in the

signal region. As described in Sec. 4.4, the expected number of misreconstructed-charm
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events is evaluated from the simulated events, while the combinatorial yields are evaluated

from the mass fits, except for the untagged K+K− channel. In this channel, the expected

number of combinatorial events is a floated parameter in the fit, and it is therefore unknown

prior to the fit. To overcome this problem we proceed in the following way: we perform

the simultaneous fit a first time using the expected number of combinatorial untagged

K+K− events as estimated from the mass fit. We then re-do the fit a second time using

the number of combinatorial untagged K+K− events just extracted. We consider this one

as the nominal fit. In principle we should iterate this operation until we converge on a

stable solution. Since this would require a certain unknown number of iterations we have

decided to perform it only once and assign a systematic error. In the validation fits to

simulated events we have used the information of the MC truth.

5.5 Simultaneous Fit

The effective lifetimes τ+ and τ̄+ and theD0 lifetime τKπ are determined with an unbinned

extended maximum likelihood fit to the reconstructed proper time and proper time error of

the candidates in the signal region. As in the previous yCP analyses, we only fit candidates

with proper times t and proper time errors σt satisfying −2 ps < t < 4 ps and σt < 0.5 ps.

Before attempting to fit the simulated events, and then data, we check that generating

a sample from the total PDF and fitting it, we obtain values of the parameters that are

statistically compatible with the generated ones. We build the total PDF with reasonable

values of the parameters as estimated from the studies presented up to now. We set the

three lifetimes to the same value, therefore we expect no mixing and no CPV . We generate

100 samples using the total PDF and fit them. In 8 fits the covariance matrix was not

positive-definite and those fits are excluded from the studies. In Fig. 5.19 we report the

histograms of the pulls, defined as “(fitted value − generated value) / error”, of the three

lifetimes τ+, τ̄+ and τKπ. Using the covariance matrix returned from the fit we have

also computed the values of yCP and ∆Y , and we report the corresponding pulls for the

observables. We fit the pulls distribution with a Gaussian, the fit results are reported on

the plots.

The mean values of all the parameters are compatible with zero, this suggests that, given

certain values of the PDF parameters, we are able to obtain them back from the fit. The

width of the Gaussians are compatible with one, therefore the error from the fit is a good

estimator of the statistical error.

In the following we briefly review the fit strategy and then we present the results of the

fit to MC cocktails (in Sec. 5.5.2) and to data (in Sec. 5.5.3).
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Figure 5.19: Histograms of the pulls of the three lifetimes and of yCP and ∆Y , extracted
from the 100 Toys MC. Results of the fit with a single Gaussian are reported on each plot.

5.5.1 Fit Strategy

The fit to the proper time and proper time error is performed in two steps. First we

extract the shapes and the expected number of events of the background categories. The

background shapes and yields are fixed for all the channels, except for the untagged K+K−

combinatorial yields, and a first fit to data is performed. As mentioned in Sec. 5.4 the

estimation of the expected number of combinatorial events in the untagged K+K− channel

from the mass fit is not accurate enough, therefore we extract a better estimation from

the first fit and we repeat the fit to data a second time. The second fit is considered the

nominal fit.

In the following we summarize the procedure to obtain the shape and yields of the events

in the background categories.

Misreconstructed-Charm Shape and Yields

To evaluate the misreconstructed-charm shape and yields we use the bigCharmMC dataset.

For each of the 5 channels we fit the truth-matched misreconstructed-charm events in the

signal region using the PDF described in Sec. 5.2.1. The expected number of misreconstructed-

charm events in the signal region is evaluated re-scaling the number of the truth-matched

events of the MC dataset to data integrated luminosity.
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Combinatorial Shape and Yields

The combinatorial PDF is built as a weighted average of the PDFs of the combinatorial

events in the sidebands. This is a 2 steps process:

� step 1: evaluation the weighting parameter using the MC dataset bigCombin.

We perform this step using the truth-matched combinatorial candidates from the

MC dataset: we extract the PDFs in sidebands (see 5.3.1) then we fit the weighted

average of the two PDFs to the combinatorial events in the signal region. The

extracted values of the weighting parameters for data are reported in Tab. 5.10.

� step 2: extraction the combinatorial PDFs in the two data sidebands.

In each sideband we first evaluate and fix the signal and misreconstructed-charm

PDF using the bigCharm and bigSignal MC datasets, as explained in Sec. 5.3.1,

then we extract the combinatorial PDFs.

The combinatorial yields are evaluated using the corrected mass fits results, after sub-

traction of the misreconstructed-charm component, as explained in Sec. 4.4. The number

of combinatorial yields for each decay channel are reported in Tab. 4.9. The untagged

K+K− channel is treated differently: the combinatorial yields are extracted directly from

the simultaneous fit.

The fit procedure for the MC validation fits is very similar to the one for data. Since

in MC we know the number of combinatorial events in the untagged K+K− channel, we

perform the fit only one time. A second difference is that for each of the cocktails that

we fit, cocktailX, we use the corresponding and independent bigSignalX, bigCharmX

and bigCombinX MC datasets. A third, and last difference with the data fit, is that the

fits in the cocktail sidebands for the untagged K+K− channel were unstable and did

not converge in some cases, therefore we used the PDF extracted in step 1 to build the

weighted average describing the events in the signal region.

5.5.2 Validation of the Fit on the Simulated Events

In this section we report the results of the procedure described above on one of our

independent cocktails, cocktail1. We show the result of the simultaneous fit run in the

nominal configuration, floating the untagged K+K− combinatorial yields.

The proper time projections for the fit to cocktail1 are reported in Fig. 5.20.
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Figure 5.20: Proper time projections of the simultaneous fit to cocktail1 in the nominal
configuration, with the untagged K+K− combinatorial yields floated. The red dashed line
represents the misreconstructed-charm PDF, the blue dashed line the combinatorial one
and the black dashed one the signal PDF.
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The extracted value of the resolution function offset is t0 = (−0.34 ± 0.19) fs, while the

extracted lifetimes4 are:

τ+ = (411.28 ± 1.23) fs

τ̄+ = (412.49 ± 1.23) fs (5.14)

τKπ = (411.71 ± 0.25) fs, (5.15)

yielding the following values of yCP and ∆Y :

yCP = (−0.04 ± 0.18)%

∆Y = (+0.15 ± 0.25)%. (5.16)

All the extracted parameters are compatible with the expectation values within one stan-

dard deviation and the total PDF describes well the events in the signal region.

Summary of the Results on the 4 Cocktails

We repeat the fit to the 4 independent cocktails (see Sec. 4.1), the summary plots on yCP ,

∆Y , the offset and the lifetimes are reported in Fig. 5.21. We compare two configurations

of the fit regarding the untagged K+K− combinatorial yields: in one case we fix the

untagged K+K− combinatorial yields to the true value, in the other we leave it floating.

The two configurations yield compatible results, proving that it is possible to extract

the number of combinatorial untagged K+K− events from the simultaneous fit. The

statistical error of yCP increases by 15% in the configuration where the untagged K+K−

combinatorial yields are floating: 0.176% versus 0.154%. The statistical error on ∆Y , on

the other hand, does not change.

5.5.3 Data Results

All studies on simulated events do not show any evidence of bias on the observables and

we proceed in fitting data. We apply the procedure described in Sec. 5.5.1 and extract

the three lifetimes, τ+, τ̄+ and τKπ. The proper time projections of the fit to data are

reported in Fig. 5.22.

The extracted value of the resolution function offset is t0 = (−2.51 ± 0.19) fs, while the

extracted lifetimes are:

τ+ = (405.69 ± 1.25) fs

τ̄+ = (406.40 ± 1.25) fs (5.17)

τKπ = (408.97 ± 0.24) fs,

4the lifetime input to the MC is 411.67 fs.
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Figure 5.21: Summary of the extracted values of the lifetimes, the resolution function
offset and yCP and ∆Y in the simultaneous fit to the five channels, of the 4 independent
MC cocktails. In red we report the values extracted from the fit where the untagged
K+K− combinatorial yields are fixed, while in black the fit results where it is floated (the
nominal configuration).

yielding the following final values of yCP and ∆Y :

yCP = (0.720 ± 0.180)%

∆Y = (0.088 ± 0.255)%, (5.18)

where the error is statistical only and it has been computed using the covariance matrix

from the fit. We find no evidence of CPV , while the significance of mixing is 4 standard

deviation considering the statistical error only.

Unlike the MC fits, the offset extracted from data is significantly different from zero. This

is probably a consequence of the misalignment of the SVT, that is perfectly aligned in

MC.

The complete list of floated and fixed parameters can be found in Appendix F. In Tab. 5.13

we report the correlations among the lifetimes and the offset. The correlations of the

lifetimes with other resolution function parameters are much smaller.

t0 τ+ τ̄+ τKπ

t0 −
τ+ 7.7% −
τ̄+ 7.7% −35.7% −
τKπ 65.4% 5.2% 5.2% −

Table 5.13: Correlation coefficients for the fitted lifetimes and the resolution function
offset.
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Figure 5.22: Proper time projections of the simultaneous fit to data in the nominal con-
figuration. The combinatorial distribution (indicated as ‘Comb.’ in light gray) is stacked
on top of the misreconstructed-charm distribution (indicated as ‘Charm’ in dark gray).
The normalized Poisson pulls for each fit are shown under each plot; “unt” refers to the
untagged datasets. The finer binning in the untagged K±π∓ projection was chosen to
match the binning of the combinatorial PDF (see Sec. 5.3.1).
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We also check the assumption of symmetric errors, we run MINOS and obtained asym-

metric errors, reported in Tab. 5.14, that are very similar the symmetric ones.

parabolic lower higher
error error error

τ+ ( fs) ±1.245 −1.244 +1.247
τ̄+ ( fs) ±1.248 −1.245 +1.251
τKπ ( fs) ±0.241 −0.240 +0.242

Table 5.14: Comparison between parabolic and asymmetric errors on the lifetimes.



Chapter 6

Crosschecks and Evaluation of the

Systematic Uncertainty

In this chapter we first present the results of the crosscheck fits performed on data that

prove the soundness of the analysis. Then we present the evaluation of the systematic

impact of the choice of the signal region, the parameterization of the signal and background

events, and the selection criteria. Finally we compare our result with previous BABAR

measurements and analyze their compatibility.

6.1 Data Crosschecks

As mentioned in Sec. 3.1.5, we access the values of the three lifetimes only after the

validation of the analysis and the determination of the systematic errors, since during

the analysis the lifetimes are blinded. Before unblinding we have performed data fits in

different configurations to confirm the validity of the analysis. We report in Tab. 6.1 the

blinded values of the lifetimes, and also the unblinded resolution function offset, extracted

from the nominal blind fit. The three lifetimes have different blinding strings, referred

to as BS1, BS2, BS3, that correspond to different blinding values. It is therefore only

possible to compare lifetimes with the same blinding string.

blinded value (fs) blinding string

t0 −2.51± 0.19 −
τ+ 396.69 ± 1.25 BS1
τ̄+ 379.07 ± 1.25 BS2
τKπ 432.23 ± 0.24 BS3

Table 6.1: Blinded lifetime and unblinded offsets extracted from the nominal blind fit to
data.

We also present some tests performed after unblinding, and therefore the extracted life-
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times are the real ones.

6.1.1 Tagged-Only and Untagged-Only Fits

The first test was to fit separately the tagged and the untagged channels to check whether

the lifetimes extracted from the tagged channels are compatible with the ones extracted

from the untagged channels.

We fit the three tagged channels alone, as reported in Tab. 6.2, and the two untagged

channels alone, as shown in Tab. 6.3. In the untagged-only fit we describe the untagged

K+K− channel with a single lifetime, as was done in the previous untagged analysis. We

associate to that parameter the same blinding string as τ+ in the tagged-only fit.

blinded value (fs) blinding string

t0 −3.61± 0.38 −
tagged τ+ 395.73 ± 1.51 BS1
tagged τ̄+ 378.12 ± 1.51 BS2
tagged τKπ 432.23 ± 0.51 BS3

Table 6.2: Blinded lifetimes and unblinded offset extracted from the tagged-only blind fit
to data.

blinded value (fs) blinding string

t0 −2.19± 0.22 -
untagged τKK 397.95 ± 0.97 BS1
untagged τKπ 432.19 ± 0.28 BS3

Table 6.3: Blinded lifetimes and unblinded offset extracted from the untagged-only blind
fit to data.

The offset extracted in the tagged-only fit is 1.4 fs larger in magnitude than the one ex-

tracted in the untagged-only fit. The value of the offset, as all the other resolution function

parameters, is driven by the most populated mode, in both fits the K±π∓ channels. Al-

though the tagged K±π∓ channel favors a slightly different offset with respect to the

untagged K±π∓ channel, the lifetimes are absolutely compatible, and they are compatible

also with the extracted lifetime in the nominal blind fit. The untagged K+K− lifetime is

statistically compatible with τ+, extracted from the tagged-only fit. The extracted value

of τ̄+ can not be compared to anything since, if we had used the same blinding string as

τ+ (BS1) we would have had access to the difference of τ+ and τ̄+, and therefore to ∆Y .

6.1.2 Signal PDF Configurations

In this set of fits to the seven modes we check that the tagged and untagged lifetimes for a

given channel, extracted in simultaneous fits with different configurations, are compatible
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within statistical errors.

Channel-Dependent Lifetimes in the Simultaneous Fit

In the first fit we associate a lifetime parameter to each channel. We fit the K±π∓ tagged

and untagged samples with separate lifetimes applying the same blinding string. The same

is done for the K+K− final state: we fit the tagged D0 and D0 decays with a common

lifetime (assuming CP conservation), and use the same blinding string for the parameter

that describes the untagged K+K− decays. The tagged π+π− D0 and D0 decays are

fitted with a common lifetime with different blinding strings. In Tab. 6.4 we report the

results of this fit.

blinded value (fs) blinding string

t0 (fs) −2.48± 0.19 −
tagged τππ 359.81 ± 1.86 other
tagged τKK 396.55 ± 1.27 BS1
untagged τKK 396.62 ± 0.92 BS1
tagged τKπ 433.13 ± 0.42 BS3
untagged τKπ 431.99 ± 0.26 BS3

Table 6.4: Blinded lifetimes and unblinded offset extracted from the blind fit to data where
each channel is associated with a lifetime parameter.

The tagged and untagged K+K− lifetimes are compatible within statistical uncertainties.

TheK±π∓ tagged lifetime is∼ 1 fs higher than the untagged one. We explain this behavior

with the fact that the tagged K±π∓ channel tends to have an offset larger in magnitude

than the untagged one, as shown in Tab. 6.2 (tagged-only fit). This effect has no impact

on the measurement since the K±π∓ lifetimes extracted in the tagged-only fit and in the

nominal fit are almost identical.

Tagged and Untagged Lifetimes in the Simultaneous Fit

Another test configuration is similar to the previous one, except that we describe the

tagged CP -even channels with the usual τ+ and τ̄+. This configuration of the signal

PDF was also used to check that the fixed untagged K±π∓ combinatorial yields provide

an accurate description. We therefore try two sub-configurations for what concerns the

untagged K±π∓ combinatorial yields: in fit1 it is fixed, as in the nominal fit, in fit2 it is

floated, as for the untagged K+K− channel. The results of the two fits are reported in

Tab. 6.5.

In fit1 we see that the untagged K+K− lifetime is compatible with τ+, and that the

tagged K±π∓ lifetime is ∼ 1 fs higher than the untagged one. Therefore fit1 confirms the

results of the previous test. Comparing fit1 with fit2, we observe that the difference of the
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blinded value (fs) blinding string
fit1 fit2

t0 −2.48± 0.19 −2.40± 0.20 −
tagged τ+ 397.19 ± 1.47 397.27 ± 1.48 BS1
tagged τ̄+ 379.59 ± 1.48 379.67 ± 1.48 BS2
untagged τKK 396.65 ± 0.92 396.65 ± 0.92 BS1
tagged τKπ 433.13 ± 0.42 433.21 ± 0.43 BS3
untagged τKπ 431.99 ± 0.26 431.93 ± 0.27 BS3

Table 6.5: Blind lifetimes and unblinded offset extracted from the blind fit to data de-
scribed in the text. In fit1 we fix the untagged K±π∓ combinatorial yields to the nominal
value, while in fit2 we leave it floating.

extracted lifetimes in the two fits is very small. The extracted number of untagged K±π∓

combinatorial events in fit2 is compatible within one standard deviation with the number

that we obtain from the mass fit, after the scaling factor correction and the subtraction

of the misreconstructed-charm component. This number has been used to evaluate the

systematic uncertainty related to the combinatorial yields for the untagged K±π∓ channel,

as explained later in Sec. 6.2.4.

Modified Signal Resolution Function

In order to check the dependence of the observables on the resolution model we have

performed the fit with a modified version of Eq. 5.3. We have allowed two of the three

Gaussians to have a common offset (tadd0 ) and the third one (the narrowest one) to have

an independent offset (t0):

R(t, σt; si, t0, τ) = ft1D(t, σt; s1, t0, τ)

+ (1− ft1)
[

ft2D(t, σt; s2, t
add
0 , τ) (6.1)

+ (1− ft2)D(t, σt; s3, t
add
0 , τ)

]

.

The additional offset can be justified by looking at the average value of the reconstructed

proper time in bins of σt, reported in Fig. 6.1 for the two purest channels: the tagged

K±π∓ and K+K−. Assuming that there is no effect from the background events, the

average value of the proper time for σt ≥ 0.15 ps is flat, while for values smaller than

0.15 ps the average value of the proper time decreases when σt increases. This suggests

that events with σt < 0.15 ps should have a different offset than the ones with σt > 0.15 ps.

This test was performed after unblinding and therefore the extracted lifetimes, reported

in Tab. 6.6 with the offset, are unblinded.
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Figure 6.1: Average value of the reconstructed proper time in bins of the proper time error
for data events in the signal region.

value (fs)

t0 −4.17± 0.43
tadd0 +8.5± 2.5
τ+ 406.51 ± 1.25
τ̄+ 407.21 ± 1.26
τKπ 409.77 ± 0.29

Table 6.6: Results of the unblind fit to data in the nominal configuration with a modified
signal resolution function with two offsets. The fraction of the events fit by the narrowest
Gaussian is 81%.

We can also compute yCP and ∆Y :

yCP = (0.716 ± 0.179)%

∆Y = (0.086 ± 0.254)%. (6.2)

Although the extracted lifetimes are all higher than the ones extracted in the nominal fit,

reported in Eq. 5.18, the impact on yCP and ∆Y is negligible and we decide not to assign

a systematic error.

6.1.3 Effect of the Direct CP Violation

In our fit we assume no direct CPV and we fit the tagged π+π− and the tagged K+K−

events with the same lifetimes, τ+ and τ̄+. As explained in Sec. 1.3 this is the equivalent

of neglecting the linear terms in Ahh
D in Eqs. (1.75) and (1.76).

We repeat the fit releasing this assumption and fitting the two final states with separate

lifetimes: τ+KK, τ̄+KK , τ+ππ and τ̄+ππ. The untagged K+K− channel is fitted with a sum of

exponentials, one characterized by τ+KK and the other one by τ̄+KK. This fit was re-run

after unblinding, we report the unblinded results in Tab. 6.7.

The results fromK+K− and π+π− are statistically compatible. Considering the statistical
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π+π− KK

t0 (fs) −2.49 ± 0.19
τ+ (fs) 407.82 ± 2.60 405.50 ± 1.46
τ̄+ (fs) 409.58 ± 2.61 405.72 ± 1.46
τKπ (fs) 408.98 ± 0.24

yCP (%) 0.069 ± 0.456 0.832 ± 0.194
∆Y (%) 0.216 ± 0.446 0.027 ± 0.310

Table 6.7: Lifetimes and offset extracted from a fit where we have released the assumption
of no direct CPV . The values of yCP and ∆Y are also reported.

errors on yCP (and ∆Y ) from K+K− and π+π− uncorrelated, we obtain:

yCP (KK)− yCP (ππ) = (+0.76 ± 0.50)% (6.3)

∆Y (KK)−∆Y (ππ) = (−0.19 ± 0.54)% (6.4)

both compatible with zero.

6.1.4 Detector Misalignment

We know that the detector is not perfectly aligned, in particular the SVT sub-detector.

In MC this effect is not included. Since we perform a lifetime ratio analysis, at first order

we do not expect an effect due to misalignment, because it should cancel in the ratio. In

order to check this hypothesis, we have performed the studies described in the following.

Run Dependence

The alignment of the detector changes over time. We therefore split the dataset in the six

running periods, Run1 to Run6, and fit separately the data from each period.

In these fits we have assumed that the shapes of the background categories do not depend

on the running period and used the same background PDFs as for the nominal fit. We have

rescaled the background yields according to the luminosity of each Run. We could not re-

evaluate the combinatorial shape from the sidebands in each Run since we use histograms

that are affected by large Poisson fluctuations if the bin content is not large enough. We

could have changed the binning of the histograms but that would have required a second

validation on MC.

Figure 6.2 shows the fitted lifetimes and the values of yCP and ∆Y from the simultaneous

fit to the data sample split into the six Run periods.

No significant variation between Run periods is observed on yCP and ∆Y and we therefore

do not assign a systematic error due to this effect. The lifetimes, especially the K±π∓

one, show a variation as a function Run period but this doesn’t seem to have an effect our
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Figure 6.2: Extracted lifetimes values of yCP and ∆Y in each Run period. The solid line
represent the value extracted in the nominal fit and the dotted lines represent the ±1σ
region.

observables.

Dependence on the D0 Azimuthal Angle

The SVT alignment also depends on the geometry. The first three layers of the SVT,

the most important for tracking, consist in six modules parallel to the beam direction.

Therefore the effect of the SVT misalignment can be checked by studying the azimuthal

dependence of the lifetimes.

In order to qualitatively study the dependence on the D0 azimuthal angle φ in the labo-

ratory frame we have produced profile plots of the quantity (t+ t0)/τ , where t0 and τ are

the fitted offset and lifetime from the nominal fit. The plots, reported in Fig. 6.3, have

been produced for data (and signal MC) only for the purest tagged K±π∓ and K+K−

channels, where the background is almost negligible.
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Figure 6.3: Value of the quantity (t + t0)/τ in bins of the D0 azimuthal angle in the
laboratory frame.
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In the tagged K+K− plots we do no appreciate any systematic dependence, indeed, fitting

the plots with a constant we find that the extracted value was compatible with 1 with

probabilities above 30%. On the other hand, in the tagged K±π∓ channel we do observe

an oscillation that was also noted in the previous analyses. Performing the fit in bins of φ,

it was shown that the effect was absorbed in the offset and that there was not a residual

effect on the lifetimes nor on yCP and ∆Y .

Repeating the whole simultaneous fit in bins of φ would present the problems highlighted

in the Run-split fits, related to the low statistics bins of the combinatorial PDFs. However,

unlike that case, the dependence of the background shapes with the angles is more evident

and assuming that we can use the nominal background PDFs to describe the background

in bins of the angle is not allowed.

Although in the previous analysis no systematic effect was shown when performing the

fit in bins of the angles, we study the tagged K±π∓ lifetime φ-dependence. We perform

extended unbinned ML fits to the proper time and proper time error distributions of the

tagged K±π∓ decays in six bins of φ. In this channel the background shapes in the different

bins are compatible with the integrated shape, so we have used the same PDFs as in the

nominal fit to describe the backgrounds. The background yields have been estimated from

MC. The distribution of the proper time error for signal events has been re-evaluated in

each bin. The fitted lifetime and offset are reported in Fig. 6.4 for the fits in bins of φ.
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Figure 6.4: Fitted offset (left) and lifetime (right) in bins of φ for the tagged K±π∓

channel. The gray band represents the value from the nominal fit ±1σ while the red band
shows the weighted average ±1σ.

The offset is greatly dependent on the angle while the lifetime is much more stable, sug-

gesting that the offset absorbs the φ-dependent variations, that do not affect the lifetime.

The weighted average of the 6 independent measurements in φ is τ = (408.93 ± 0.52) fs

and the χ2 is 4 for 5 degrees of freedom, yielding a probability of 55% for the 6 values to

be compatible with the average. We therefore do not observe a systematic effect, the os-

cillations are compatible within the statistical error and the average is in good agreement

with the value of the lifetime extracted in the nominal fit (see Eq. 5.18).
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Dependence on the D0 Polar Angle in the CM

At first order we do not expect any impact of misalignment depending on the D0 polar

angle. At the CHARM2012 Conference [56] Belle presented its preliminary result for the

measurement of yCP using the tagged channels only. They performed the measurement in

bins of cosine of the polar angle in the CM, cos θ∗. One reason was that Belle replaced its

inner vertex detector after a few years of operation, with another one with more layers. A

second reason is that their data-MC agreement of the profile plots of (t+ t0)/τ was very

poor. The reason why they use the angle in the CM and not in the laboratory resides

in the fact that they do not distinguish between data taken at the Υ (1S), Υ (2S), Υ (3S),

Υ (4S) or Υ (5S) resonances. To homogenize the procedure they perform the analysis in

the CM so that the differences that would be evident in the laboratory disappear.
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Figure 6.5: Profile plots of the quantity (t+ t0)/τ in bins of the cosine of the polar angle
of the D0 in the CM.

After Belle presented their results we studied the cos θ∗ dependence as we have done for the

φ-dependence. Looking at Fig. 6.5, as for the azimuthal angle, there seems to be a more

evident systematic oscillation in the K±π∓ mode. This behavior was also observed and

checked in the previous analysis, and no systematic impact on yCP and ∆Y was assigned.

Nonetheless we repeated the fits to the Kπ tagged channel only, shown in Fig. 6.6.
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Figure 6.6: Fitted offset (left) and lifetime (right) in bins of cos θ∗ for the tagged K±π∓

channel. The gray band represents the value from the nominal fit ±1σ while the red band
shows the weighted average ±1σ.
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Again, as for φ, the extracted offset varies significantly for different values of the angle while

the lifetime is much more stable. The weighted average of the 6 independent measurements

in cos θ∗ is τ = (409.25 ± 0.52) fs and the χ2 in this case is 6.5 for 5 degrees of freedom,

yielding a probability of 26% for the 6 values to be compatible with the average. In this

case the average is slightly higher that the value extracted in the nominal fit.

These tests are not completely exhaustive because we only measured the effect on the

D0 lifetime, and not on the effective lifetimes τ+ and τ̄+. Moreover, as we have seen in

the modified resolution function test, in Tab. 6.6, systematic shifts in the lifetimes do not

imply a systematic error on the observable. Finally, this test has been performed after

unblinding and it was not possible to change the analysis anymore. In the previous BABAR

analysis the fit was performed in bins of cos θ (polar angle in the laboratory) and φ and

no systematic impact on yCP and ∆Y was observed. We therefore decided not to assign a

systematic error.

6.1.5 Additional Crosschecks

The extracted value of yCP is lower than the previous BABAR measurement, reported in

Tab. 3.1. At the end of this chapter we present a more quantitative comparison. In

the following we present the fits performed in order to understand the effect of the main

differences between the two analysis.

Simultaneous Fit with Definition of the Signal Regions of the Previous Anal-

yses

In order to understand the effect of the signal region optimization performed in this anal-

ysis, we have repeated the fit implementing the signal region definition of the previous

analyses:

1.8495GeV/c2 < mD0 < 1.8795GeV/c2 for the tagged channels (6.5)

and

1.8545GeV/c2 < mD0 < 1.8745GeV/c2 for the untagged channels, (6.6)

the ∆m region definitions is the same.

The results are reported in Tab. 6.8.

The effect is very small on ∆Y , while it is of the order of 0.13% for yCP . The effect on

yCP is due to a change in the Kπ lifetimes (and also in the offset), while the CP -even

lifetimes do not change significantly. The offset is ∼ 0.6 fs larger in magnitude in the

previous analysis, suggesting that we are better centering the signal region around the

mass peaks and the effect of the correlation between mass and proper time is at least

reduced. Since we have performed an optimization of the signal region, we do not believe
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old definition new definition

t0 (fs) −3.11 ± 0.19 −2.51 ± 0.19
τ+ (fs) 405.64 ± 1.26 405.69 ± 1.25
τ̄+ (fs) 406.21 ± 1.26 406.40 ± 1.25
τKπ (fs) 409.36 ± 0.24 408.97 ± 0.24

yCP (%) 0.85± 0.18 0.72 ± 0.18
∆Y (%) 0.07± 0.26 0.09 ± 0.26

Table 6.8: Comparison between the nominal fit values (new definition) and the ones ob-
tained when using the definition of the signal region implemented in the previous analyses
(old definition).

that the difference in yCP and ∆Y between fits performed with the new and old signal

region definition is a good estimation of the systematic error associated with the choice of

the signal region. Its evaluation is described later in Sec. 6.2.1.

Simultaneous Fit to the Previous Dataset

Another important difference between this and the previous analyses is the fitting proce-

dure: the fit strategy and the PDFs definition. In order to estimate the impact of this

difference, we apply our fit procedure to exactly the same datasets (data and MC) used

in the previous analyses and repeat the tagged-only and untagged-only measurements.

We have also performed the simultaneous fit to both the tagged and untagged channels.

We have adopted the signal and sideband regions defined of the previous analysis. The

combinatorial and misreconstructed-charm background yields have been taken from the

previous analysis, we have not performed mass fits.

The new results compared to the old results are reported in Tab. 6.9 for the tagged-only

fit, in Tab. 6.10 for the untagged-only fit, and in Tab. 6.11 for the simultaneous fit.

old procedure new procedure

t0 (fs) −4.75± 0.51 −4.76± 0.51
tagged τ+ (fs) 403.28 ± 2.07 403.21 ± 2.07
tagged τ̄+ (fs) 405.34 ± 2.11 405.29 ± 2.11
tagged τKπ (fs) 409.33 ± 0.70 409.39 ± 0.70

yCP (%) 1.24 ± 0.39 1.27 ± 0.39
∆Y (%) 0.26 ± 0.36 0.26 ± 0.36

Table 6.9: Comparison between the tagged-only fits to the dataset used in the previous
tagged analysis with the new and old procedure.

The tagged-only fits with the new and old procedure yields very similar results on the

lifetimes, and consequently on yCP and ∆Y . The untagged-only fit with the new procedure

yields a ∼ 20% lower value of yCP compared to the value obtained with the old procedure.
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old new

t0 (fs) −5.67± 0.28 −5.06± 0.29
untagged τK+K− (fs) 405.84 ± 1.00 406.60 ± 1.31
untagged τKπ (fs) 410.39 ± 0.38 410.27 ± 0.38

yCP (%) 1.12 ± 0.26 0.90 ± 0.34

Table 6.10: Comparison between the untagged-only fits to the dataset used in the previous
untagged analysis with the new and old procedure.

old new

t0 (fs) − −4.95± 0.25
τ+ (fs) − 404.31 ± 1.73
τ̄+ (fs) − 406.43 ± 1.74
τKπ (fs) − 410.10 ± 0.33

yCP (%) 1.16 ± 0.22 1.17 ± 0.24
∆Y (%) − 0.26 ± 0.36

Table 6.11: Comparison between the combined (tagged+untagged) old result and the
simultaneous fit to the dataset used in the previous analyses with the new procedure.

The K±π∓ lifetime is very similar in the old and new fits, while the K+K− lifetime

differs by ∼ 0.8 fs. We also notice that the statistical error on yCP extracted with the

new procedure is ∼ 30% larger than the one obtained in the previous analysis. This

effect is due to the fact that the expected number of combinatorial events in the untagged

K+K− mode is left floating in the new procedure. The simultaneous fit to the tagged and

untagged channel yields a value of yCP , reported in Tab. 6.11, that is almost identical to

the combined value of the previous tagged and untagged analyses, obtained with the BLUE

method [52]. Therefore we conclude that, in the simultaneous fit to the five channels, the

difference in the procedures does not produce a significant difference in the central values

of the observables yCP and ∆Y .

6.2 Evaluation of the Systematic Uncertainty

In this analysis we make a certain number of experimental assumptions. The evaluation

of their systematic impact on yCP and ∆Y is reported in the next sections.

6.2.1 Fit Region

The choice of the fit region was the result of a data-driven optimization, as described in

Sec. 4.3. Nonetheless we decide to study the possible systematic effects related to the

position and width of the signal regions. We expect a reduction of the error with respect

to the previous analyses, since no optimization was done before.
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Signal Region Position

The position of the signal region is determined by the parameter mC , its center. In the

nominal fit we subdivide the five channels in two groups, within each group the center

of the signal region is shared. The K+K− tagged and untagged channels are centered at

1864.215MeV/c2, the other three channel are centered ∼ 170 keV/c2 below.

In order to estimate the systematic error associated with the position of the signal region,

we redo the fit centering the signal region of each channel at the estimated peak center

(see Tab. 4.3). The background shape and yields are not re-evaluated since the shift is

small. The systematic errors is taken as the variation of the two observables, that is very

small, as reported in Tab. 6.12. The offset of the resolution function does not change

significantly.

position of ∆[yCP ] ∆[∆Y ] ∆[t0]
signal region (%) (%) (fs)

independent centers −0.005 +0.001 +0.00

Table 6.12: Variation of yCP and ∆Y obtained by centering the signal region of each
channel in the estimated peak center (see Tab. 4.3) and redoing the fit. The change in the
offset is also reported.

Signal Region Width

To estimate the systematic uncertainty on yCP and ∆Y due to the choice of the width of

the D0 mass signal region, we alter the size of the signal region by ±4 and ±2 MeV/c2 and

re-fit the data, in each case keeping the signal region center obtained from the optimization.

In all cases, we re-fit the MC to determine the proper time distribution and the yield of

misreconstructed-charm backgrounds in the new signal region and the weighting parameter

for the combinatorial PDF. We also re-evaluate the scaling factors sm for the correction of

the background yields in the signal region. The changes are very small. We also re-build

the σt histogram for signal events. For each variation, we compute the change in yCP and

∆Y from the nominal fit, the results are reported in Tab. 6.13.

This test is meant to account for the effect of the correlation between mass and proper

time. However, different signal regions widths present different background levels and it

is not possible to disentangle this effect from the one coming from the correlation. The

value of the resolution function offset is very stable, with variations of the order of 10−2

of fs. This suggests that the correlation between mass and proper time is under control

thanks to the optimization of the signal region and that the systematic impact on yCP

and ∆Y comes from the different background levels. The systematic error associated with

the expected number of background events in the signal region is evaluated in a different

way. Nevertheless, we conservatively keep this systematic error, evaluating it as the RMS
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change ∆[yCP ] ∆[∆Y ] ∆[t0]
in width (%) (%) (fs)

+4MeV/c2 −0.012 +0.033 −0.02
+2MeV/c2 +0.023 +0.012 +0.00
−2MeV/c2 +0.070 +0.021 +0.03
−4MeV/c2 +0.086 −0.018 +0.04

RMS/2 0.057 0.022 -

Table 6.13: The change in yCP and ∆Y from the nominal fit to data, as a function of
the change in the width of the signal region. The change in the resolution offsets is also
reported, its statistical error is 0.19 fs.

of the 4 values and dividing it by
√
4.

6.2.2 Signal PDF

The observed proper time distribution for signal events is constructed by convolving a

resolution function with an exponential and it is reported in Sec. 5.1.1 for the seven

modes. In the nominal fit we have estimated the number of correctly reconstructed D0

(and D0), combined with a misidentified slow pion (the mistagged signal events) using

MC events. We have also assumed that the untagged K+K− channel was composed half

of D0 and half of D0. In the construction of the σt PDF in the untagged K+K− channel:

we assume that the number of combinatorial events extracted from a first fit to data is

correctly describing the events in the signal region.

In the following we evaluate the systematic impact of these assumptions on yCP and ∆Y .

Signal Proper Time Error PDF of the Untagged K+K− channel

The signal proper time error PDF consists of a histogram and it is built by subtracting

the misreconstructed-charm and combinatorial contributions from the σt distribution of

the events in the signal region. This operation requires the knowledge of the number of

expected events of the two background categories. In all the channels except the untagged

K+K− the number of combinatorial events is known, since it is extracted from the mass

fits. In the untagged K+K− channel, on the other hand, we extract it during the fit and

therefore we need an estimate to build the proper time error histogram. In the nominal fit

we have performed the fit a first time and then used the extracted number of combinatorial

events to re-build the proper time error. We have then redone the fit a second time and

consider this one as the nominal fit.

In order to evaluate the systematic error we have repeated the fit a third time and taken as

a systematic error the difference between the nominal result and the one that come from

this third fit. The result is reported in Tab. 6.14. The extracted number of combinatorial



6.2 Evaluation of the Systematic Uncertainty 137

events is 164740 compared to 164972 of the nominal fit, the statistical error on both

numbers is 1000. The difference between the starting extracted values is reduced by

almost a factor 6 with respect to the second iteration of the fit.

signal PDF ∆[yCP ] ∆[∆Y ] ∆[t0]
variation (%) (%) (fs)

untagged K+K− σt PDF +0.022 +0.000 +0.01

Table 6.14: The change in yCP and ∆Y obtained with the third iteration of the fit after
rebuilding the proper time error histogram of the untagged K+K− signal events.

Fraction of Mistagged Signal Events in the Tagged CP -even Channels

In the tagged K+K− and π+π− channels we estimate, using simulated events, that the

fraction correctly reconstructed D0 (and D0) associated with a misidentified pion with

the wrong charge is 0.2%. This fraction f±tag is fixed in the signal PDF. To estimate the

systematic error associated with this assumption we apply a relative variation on f±tag of

±20% but observe no significant variation on ∆Y and yCP .

Fraction of D0 Events in the Untagged K+K− Channel

In the nominal fit we assume that the untagged K+K− channel is composed half of D0

and half of D0 decays. We evaluate the systematic error associated with this assumption

by varying the relative amount of D0 → K+K− and D0 → K+K− decays. The average

value over the 9 independent signal-only MC datasets is 50.12%, with an RMS of 0.07%.

The MC does not take into account CPV , the most precise measurement to date is the

CDF one [57], that reports an integrated asymmetry for the D0 → K+K− channel of:

ACP = (−0.24 ± 0.22 ± 0.09)%, (6.7)

in terms of D0 fraction this corresponded to fD0 = 1
2(ACP + 1) = 49.88%.

In order to take into account both the sources of systematics we vary the fraction of

D0 candidates in the untagged K+K− channel by ±0.12%. The results are reported in

Tab. 6.15.

fraction of D0 in ∆[yCP ] ∆[∆Y ]
untagged K+K− (%) (%)

50.12% +0.000 +0.00
49.88% +0.001 +0.00

Table 6.15: The change in yCP and ∆Y obtained by changing the fraction D0 candidates
in the untagged K+K− channel by ±0.12%. The nominal value of this faction is 50%.
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6.2.3 Misreconstructed-Charm PDF and Yields

The expected number of events and the PDF of the misreconstructed-charm background

in the signal region is evaluated by fitting the truth-matched events of the bigCharm MC

dataset. The MC dataset is equivalent to 10 times the integrated luminosity of data, hence

the statistical error of the parameters is reduced with respect to the previous analyses.

There is still a systematic component that we have to evaluate, related to the assumption

that the MC misreconstructed-charm events correctly reproduce data.

Misreconstructed-Charm Yields

To evaluate the systematic uncertainty associated to the number of misreconstructed-

charm events fixed in the final fit, we conservatively vary the expected charm yield by

±10% in the tagged channels and ±5% in the untagged ones. These correspond to more

than 2 statistical standard deviations in all channels. We apply the variation to all the

channels simultaneously, in other words, we increase (and then decrease) the number of

misreconstructed-charm events in each of the 5 decay channels and we repeat the fit. The

results of these variations are shown in Table 6.16.

Misreconstructed-Charm Lifetime

For the shape of the misreconstructed-charm background, we conservatively vary the life-

time1 in the PDF by ±5% for all the samples except tagged π+π−, where the variation is

±15% since the statistical error is higher. Also in this case the variations correspond to

more than 2 standard deviations. As for the yields we apply the variation simultaneously

to all the channels. The results of these variations are shown in Table 6.16.

change charm ∆[yCP ] ∆[∆Y ] ∆[t0]
lifetime and yields (%) (%) (fs)

scale up Ncrm +0.016 +0.000 +0.00
scale down Ncrm −0.016 +0.000 +0.00

scale up τcrm +0.042 −0.001 +0.00
scale down τcrm −0.040 +0.000 +0.01

Table 6.16: The change in yCP and ∆Y as a function of the variation in the yields (Ncrm)
and lifetimes (τcrm) of the misreconstructed-charm background.

6.2.4 Combinatorial PDF and Yields

The combinatorial PDF for the events in the signal region is determined by fitting the data

in the sideband regions and then building the weighted average of the PDFs extracted in

1when there are two lifetimes, we vary both of them.
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the sidebands. The expected number of combinatorial events are estimated with mass fits

and then fixed (except for the untagged K+K− channel). We consider variation in the

yields and in the weighting parameters. We also consider the systematic error associated

with the extrapolation of the combinatorial PDFs in the two sidebands since the signal

and the misreconstructed-charm component there are estimated from MC.

Combinatorial Yields

We fix the expected number of combinatorial events to the ones obtained with the mass fit,

after a applying a correction rescaling factor and after subtracting the misreconstructed-

charm component. Both the rescaling factor sm and the misreconstructed-charm yields

are taken from MC. The untagged K+K− channel is an exception, we do not fix the

combinatorial yields but we extract it from the fit, therefore we do not consider this

channel in this systematic.

In order to evaluate the systematics assigned to tagged combinatorial yields we have

repeated the fits varying the scale factor sm estimated on MC. The amount of variation

is 15% of the quantity 1 − sm, that correspond to the disagreement between the fit and

the truth yields. This variation corresponds to a variation of 4.5% of the combinatorial

yields for the tagged π+π−, 15% for the K+K− and 20% for the K±π∓. We repeat the fit

applying the variation to the 3 tagged channels simultaneously and take as a systematic

error the difference with the nominal fit values, reported in Tab. 6.17.

For the untagged K±π∓ channel we have adopted another procedure. We use the number

of combinatorial events extracted from fit2 of the crosscheck reported in Sec. 6.1.2, Tab. 6.5.

We repeat the fit fixing the combinatorial yields to the number extracted in fit2. The

results are reported in Tab. 6.17.

change combin. ∆[yCP ] ∆[∆Y ] ∆[t0]
yields (%) (%) (fs)

scale up tagged yields −0.028 −0.002 −0.02
scale down tagged yields +0.030 −0.001 +0.03

untagged K±π∓ yields −0.031 +0.000 +0.08

Total 0.043 0.002 −

Table 6.17: The change in yCP and ∆Y as a function of the change in the combinatorial
yields. The total is obtained adding in quadrature the largest contributions from the
variation of the tagged yields to the contribution of the variation of the untagged K±π∓

yields.

Combinatorial Weighting Parameter

The weighting parameter is evaluated with an unbinned ML fit to the MC combinatorial

events in the signal region. In order to evaluate the systematic error associated to this
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assumption we vary h for each channel according to its statistical error. If the RMS of the

values of h extracted from the four cocktail MC samples is larger than the statistical error,

then we use the former as amount of variation. The results are reported in Tab. 6.18.

change combin. ∆[yCP ] ∆[∆Y ] ∆[t0]
weight. param. (%) (%) (fs)

scale up h +0.003 −0.001 +0.10
scale down h −0.004 +0.000 −0.10

Table 6.18: The change in yCP and ∆Y as a function of the change in the weighting
parameter of the combinatorial PDFs.

Extraction of the Combinatorial PDF from the Sidebands

The combinatorial PDF is extracted from the sidebands, after fixing the signal and

misreconstructed-charm contributions, evaluated on MC. We check for possible systematic

effects of the assumptions on the signal and misreconstructed-charm components.

We vary the misreconstructed-charm yields and lifetime in the sidebands as we have done

in the signal region (Sec. 6.2.3) and extract each time the combinatorial PDFs in the

sidebands following the nominal procedure. Each time we redo the simultaneous fit and

evaluate the change in yCP and ∆Y , the results are reported in Tab. 6.19. We also vary the

signal yields by the same fraction used for the misreconstructed-charm ones. In addition

we vary the signal lifetimes in the sidebands shifting their value by the statistical error of

the lifetime used to correct the value extracted from MC (see Eq. 5.12).

change combin. ∆[yCP ] ∆[∆Y ] ∆[t0]
PDFs in sidebands (%) (%) (fs)

scale up τcrm −0.059 +0.000 +0.01
scale down τcrm +0.062 +0.000 +0.00

scale up Ncrm −0.022 +0.000 +0.00
scale down Ncrm +0.023 +0.000 +0.00

shift up τsig +0.000 +0.000 +0.00
shift down τsig +0.001 +0.000 +0.00

scale up Nsig −0.001 +0.000 +0.00
scale down Nsig +0.002 +0.000 +0.00

Total 0.066 0.000 −

Table 6.19: The change in yCP and ∆Y a function of the change in the yields and lifetimes
of the misreconstructed-charm and signal PDFs in the sidebands. The total is obtained
adding in quadrature the largest contributions for each group of variations.
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6.2.5 Event Selection

Selection criteria systematics are evaluated by applying our fit procedure to the data

samples obtained by varying different selection cuts. Since there are changes to the data

sample, there is a statistical component associated with this systematic, but it not possible

to disentangle it.

Proper Time Error Selection

We change the proper time error range to σ < 0.4 ps and σ < 0.6 ps instead of the nominal

cut σ < 0.5 ps. In these fits we have repeated the mass fits only for data, therefore we

have used the nominal value for the scaling factor sm for the total background yields. The

results of these variations are shown in Table 6.20. As done for the variations of the signal

region width, the systematic error associated is computed as the RMS of the 2 values and

dividing it by
√
2.

change in ∆[yCP ] ∆[∆Y ] ∆[t0]
selection (%) (%) (fs)

σt < 0.4 ps −0.060 −0.069 −0.20
σt < 0.6 ps +0.043 −0.028 −0.08

RMS/
√
2 +0.052 +0.053 -

Table 6.20: The change in yCP and ∆Y a function of the change in the σt selection criteria.

Adjudication Selection

Essentially, if a D0/D∗ candidate shares one or more tracks with another D0/D∗ in the

same sample, the one with the highest vertex χ2 probability is retained. We intended to

repeat the fits and consider two variations: keep all overlapping candidates or rejecting all

overlapping candidates. Unfortunately time constrains didn’t allow us to perform these

fits. We have evaluated the systematic error associated the adjudication procedure using

the results of the previous analyses. We apply the same systematic variation evaluated in

the previous tagged analysis, reported in Tab. 6.21. The systematic error on yCP in the

untagged analysis was smaller.

change in ∆[yCP ] ∆[∆Y ] ∆[t0]
selection (%) (%) (fs)

keep all candidates +0.024 −0.003 −
reject all candidates −0.028 +0.011 −

Table 6.21: The change in yCP and ∆Y a function of the change in the adjudication of
multiple candidates. The errors are taken from the previous tagged analysis.
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6.2.6 Systematic Summary

The effects of systematic variations on yCP are shown in Table 6.22. In this Table each

entry is the largest relative to the variation corresponding to the row. The total systematic

error is obtained summing in quadrature each contribution.

Category Fit Variation |∆[yCP ]| (%) |∆[∆Y ]| (%)

Fit Region
position of signal region 0.005 0.001
width of signal region 0.057 0.022

Signal
untagged K+K− σt signal PDF 0.022 0.000
mistag fraction 0.000 0.000
D0 fraction in untagged K+K− 0.001 0.000

Charm
yields 0.016 0.000
lifetimes 0.042 0.001

Combinatorial
yields 0.043 0.002
weighting parameter 0.004 0.001
PDF from sidebands 0.066 0.000

Selection
σt cut 0.052 0.053
adjudication 0.028 0.011

Total Systematic Error 0.124 0.058

Table 6.22: Effects of systematic variations on yCP and ∆Y . The total systematic error
reported in the last row is obtained summing in quadrature each contribution listed in
this table.

6.3 Compatibility with the Previous BABAR Results

The current and the previous BABAR measurements of yCP and ∆Y are reported in

Tab. 6.23.

previous current

yCP (1.16 ± 0.22 ± 0.18)% (0.72 ± 0.18 ± 0.12)%
∆Y (0.26 ± 0.36 ± 0.08)% (0.09 ± 0.26 ± 0.06)%

Table 6.23: Summary of the previous and the current measured values of yCP and ∆Y at
BABAR. The first error is statistical and the second systematic. The sign of ∆Y of the
previous measurement has been changed in order to have compatible definitions.

In order to judge whether the previous and current measurements of the observables are

statistically compatible or not, we evaluate the probability of the minimized χ2(λ). The

value of λ that minimizes χ2, λ̂, is the most probable value of the observable given the
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two measurements. For each observable, yCP and ∆Y , the χ2(λ) is given by:

χ2(λ) =

2
∑

i,j=1

(xi − λ)(V −1)ij(xj − λ) (6.8)

where i, j run over the measurements, xi is the measured value of the observable and

V is the covariance matrix. The covariance matrix has a statistical and a systematic

contribution V = Vstat + Vsyst, each contribution is of the form:

Vij = ρijσiσj (6.9)

where ρij is the correlation between the two errors σi and σj , therefore ρ11 = ρ22 = 1 and

ρ21 = ρ12 = ρ.

The statistical correlation ρstat is defined to be:

ρstat =
Noverlap√
NnewNold

(6.10)

where Noverlap is the number of events in common of the two data samples and Nnew (Nold)

is the number of events in the current (previous) data sample. Looking at the timestamp

of each event we have evaluated Nnew, Nold and Noverlap for the five channels separately

and also for all three tagged channels together and the two untagged channels together.

These numbers are reported in Tabs. 6.24 and 6.25. This procedure does not take into

account the fact that an event may contain multiple candidates.

channel Nold Nnew Noverlap ρstat
tagged π+π− 31283 69112 28611 61.5%
tagged K+K− 69949 137818 63142 64.3%
tagged K±π∓ 735192 1489328 669396 64.0%

all tagged 836296 1695644 761058 63.9%

Table 6.24: Number of events in the previous (Nold) and current (Nnew) data sample,
along with number of common events (Noverlap) and the statistical correlation (ρstat) for
the tagged channels. In the last row the evaluation has been made not distinguishing the
different channels.

The last rows of Tabs 6.24 and 6.25 report the statistical correlation for the tagged-only

and the untagged-only channels. The statistical correlation when all the five channels are

involved is computed summing the correspondent numbers of events in the last rows of the

tables and then using Eq. (6.10). The statistical correlation of the previous and current

data samples is ρstat = 62.0%.
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channel Nold Nnew Noverlap ρstat
untagged K+K− 325974 666653 297085 63.7%
untagged K±π∓ 2873611 6856826 2664812 60.0%

all untagged 3198076 7515468 2960707 60.4%

Table 6.25: Number of events in the previous (Nold) and current (Nnew) data sample,
along with number of common events (Noverlap) and the statistical correlation (ρstat) for
the untagged channels. In the last row the evaluation has been made not distinguishing
the different channels.

The correlation among the systematic errors is very hard to estimate, therefore we study

two cases:

� systematic errors fully correlated: ρsyst = 100%;

� systematic errors correlated as much as the statistical errors: ρsyst = ρstat = 62%.

Finally, we minimize the χ2(λ) of Eq. (6.8) for the two observables and report the values

of λ̂, the χ2 and the probability in Tab. 6.26.

ρsyst
yCP ∆Y

λ̂ χ2 P (χ2) λ̂ χ2 P (χ2)

100% 0.728 5.5 1.9% 0.098 0.40 52.8%
62% 0.795 3.7 5.3% 0.102 0.38 53.7%

Table 6.26: Values of λ̂, minimized χ2 and associated probability P (χ2), computed con-
sidering one degree of freedom, that the previous and the current measurements are sta-
tistically compatible. Two values for correlation of the systematic errors (ρsyst) have been
investigated: complete correlation and same correlation as the statistical errors.

As expected, the ∆Y measurements are perfectly compatible. The most conservative

approach gives a compatibility of around 2% between the previous yCP result and the

current.

The dataset used in the previous analysis is not completely included in the new dataset: 9%

(7.4%) of the tagged (untagged) events are excluded. Since we have a looser selection, we

can explain this fact as a consequence of the reprocessing (see Sec 2.9) of the BABAR data.

Improved particle reconstruction and identification algorithms have been implemented for

the new dataset and as a consequence a fraction of events that passed the selection in

the previous analyses is excluded from the new dataset. In principle we could combine

the previous and current measurements. However, the number of excluded events is quite

small, and, in addition, the events are excluded as a consequence of an improvement in

reconstruction. Therefore we do not combine the measurements, the results of this analysis

supersede the previous BABAR results.
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As shown in Sec. 6.1.5 the fit using the new procedure on the old dataset yields a very

similar result, therefore the source of the discrepancy between the previous and current

yCP measurement should not be the result of different procedures and fitting machinery,

but most probably in the datasets themselves. We list the possible sources of differences

between the previous and the current datasets:

� change of the signal region definition: data-driven optimization of the position and

width;

� integrated luminosity increased by 20%: addition of Run6;

� change in the selection criteria: removal of the helicity cut and change of PID selector

of the tracks to improve the statistics;

� BABAR data reprocessing with improved particle reconstruction and improved parti-

cle identification; MC has been reproduced;

From the studies presented in this chapter we can estimate the impact of the first two

differences. As shown in Sec. 6.1.5 the optimization of the signal region has an effect

of −0.13% on yCP , the compatibility with the previous result rises up to 9.9% (17.3%)

considering the systematic errors 100% (62%) correlated. The value of yCP extracted from

Run6 only is lower with respect to the weighted average excluding it, as shown in Fig. 6.2.

The statistical error affecting the Run6-only measurement prevents us from drawing a

precise quantitative conclusion as in the previous case. We can estimate the effect of the

addition of Run6 as the difference between the nominal yCP value and the Run1 to Run5

weighted average. We conclude that the effect is around half of the one estimated for the

signal region and it is in the same direction.

The other two differences have not been investigated, due to time constrains, but we have a

partial explanation for the low compatibility of the previous and the current measurements

of yCP .





Chapter 7

Conclusions

In this final chapter we summarize the results and we discuss the impact of the measure-

ment on the current experimental situation.

The analysis and the final result presented in this thesis have been reported in a journal

paper accepted for publication on Physical Review D [58].

7.1 Final Result

We use the full Υ (4S) BABAR dataset, corresponding to 468 fb−1, and measure the effective

lifetimes of the D0 (τ+) and the D0 (τ̄+) decaying to the CP -even eigenstates K+K− and

π+π−, and the lifetime of the flavor eigenstates in the CP -mixed final state K±π∓ (τKπ):

τ+ = (405.69 ± 1.25) fs

τ̄+ = (406.40 ± 1.25) fs (7.1)

τKπ = (408.97 ± 0.24) fs,

where the error is only statistical. A representative plot that visually shows the differences

of the lifetimes is reported in Fig. 7.1.

We combine these lifetimes following

yCP =
τKπ

2

[

1

τ+
+

1

τ̄+

]

− 1

∆Y =
τKπ

2

[

1

τ+
− 1

τ̄+

]

,

and obtain the mixing parameter yCP and the CP -violating parameter ∆Y :

yCP = (0.72 ± 0.18 ± 0.12)%

∆Y = (0.09 ± 0.26 ± 0.06)%, (7.2)
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Figure 7.1: The lifetimes extracted from the simultaneous fit (with statistical uncertainties
only). The gray band indicates the PDG D0 lifetime ±1σ [23].

where the first error is statistical and the second is systematic. We exclude the no-mixing

hypothesis with a 3.3σ significance and find no evidence of CP violation.

This represents the most precise single measurement of yCP and favors a lower value of

the parameter with respect to the previous measurements. The central value of the world

weighted average of the published yCP measurements decreases by ∼ 25% if we include

this measurement and exclude the previous BABAR one. This measurement contributes to

improve the overall precision on yCP and ∆Y : the world average errors decrease by ∼ 15%

if we include this measurement and exclude the previous BABAR one. In Fig. 7.2 we report

two plots that compare how the central value and error on yCP and AΓ change with the

new measurement.

We plot AΓ instead of ∆Y because the other experiments have chosen this parameter to

describe CPV , the two parameters are related by: ∆Y = AΓ(1 + yCP ).

The measured value of yCP is compatible with the value of the mixing parameter yD

obtained with a direct measurement in a time-dependent Dalitz Plot analysis on the full

BABAR Υ (4S) statistics [59]:

xD = (0.16 ± 0.23 ± 0.12 ± 0.08)%,

yD = (0.57 ± 0.20 ± 0.13 ± 0.07)%

where the first error is statistical, the second is the experimental systematic and the third

is a systematic error related to the Dalitz Plot model. We also show the measured value

of xD for completeness. The two parameters yD and yCP are expected to have the same

value in absence of CPV .
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Figure 7.2: World weighted average of the yCP (left) and AΓ (right) measurements. The
red band indicates the average ±1σ excluding this measurement, the gray band has been
computed replacing the previous BABAR measurement with this one.

Belle Preliminary Results

In May 2012, at the Charm2012 Conference [56], Belle presented the preliminary result of

the measurement of yCP using the tagged channels only, with 976 fb−1 of data collected

primarily at the Υ (4S), but also at Υ (1S), Υ (2S), Υ (3S), and Υ (5S) resonances.

They obtain:

yCP = (+1.11± 0.22 ± 0.11)%,

AΓ = (−0.03± 0.20 ± 0.08)%. (7.3)

They exclude the no-mixing hypothesis at 4.5σ significance and find no evidence of CPV .

The measurement of AΓ is the most precise single measurement of the parameter. The

value of yCP is higher than our result but still statistically compatible.

If these results are going to be confirmed, the updated world averages, computed by the

Heavy Flavor Averaging Group [32] are shown in Fig. 7.3.

The precision on both of these observables is improved relative to previous measurements.

The precision obtained is 0.16%.
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Figure 7.3: World average of the yCP (left) and AΓ (right) measurements including the
new Belle preliminary results, computed by HFAG [32].

7.2 Future Perspectives

The yCP and ∆Y measurements are important measurements in the charm sector since

they constrain the mixing parameters xD and yD and the CPV parameter φ. Although

there are difficulties in the interpretation of the results due to significant theoretical un-

certainties, improving the precision of the measurements of these observables can lead to

insight in physics beyond the SM.

All measurements of yCP and ∆Y are statistically limited, as well as most of the mixing and

CPV measurements. The lifetime ratio analysis benefits from the fact that, at first order,

the systematics affecting the lifetime measurements cancel in the ratio. The cancellation

of the systematic effects is even more evident for ∆Y since there is also a difference at the

numerator. To improve the precision of these measurement it is necessary to increase the

statistics of the samples.

For what concerns BABAR, the measurement presented in this thesis is the final measure-

ment of yCP and ∆Y . The measurement of yCP is the most precise single measurement.

The other B-Factory experiment, Belle, can count on an integrated luminosity that is

around a factor two of the BABAR one. The Belle Collaboration has shown preliminary

measurements of yCP and ∆Y using the tagged-channels only, therefore, if the results are

confirmed, we do no expect an improvement on ∆Y from their data. Their measurement

of ∆Y is the most precise single measurement and the one of yCP shows the highest

significance for mixing, 4.5σ. The measurement of yCP , on the other hand, can be improved

adding the untagged channels and increasing significantly the statistical precision.

The LHCb Collaboration has presented a measurement in 2012 using 2010 data, corre-

sponding to only 29 pb−1 at CM energy of 7TeV, the errors are roughly a factor 3 worst

than the Belle and BABAR ones. From the point of view of the statistics, this experiment
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is increasing the data sample and should have now a sample of D0 and D0 decays com-

parable to the one of the B-factories. The measurement should be updated to the full

available data sample and it would be very interesting to see their central value of yCP ,

that can discriminate between the higher Belle and the lower BABAR value. Of course,

the measurement of ∆Y (or AΓ) is also very interesting, although it seems that with the

current statistics there is no sensitivity to CPV . The delay in this update and the fact

that the systematic errors for the LHCb measurement are not significantly lower the the

statistical, as for the B-Factories, may indicate that these high precision measurements

are still hard to do at proton-proton machine.

The future SuperB-Factories are ideal places for these time-dependent high precision mea-

surements. The existing SuperB and Belle II projects of the machine and the detector

promise to reach luminosities of 8 × 1035 cm−2s−1 (Belle II) and 1036 cm−2s−1 (SuperB)

and maintain the vertex resolutions as in Belle/BABAR. With a factor 100 of integrated

luminosities the yCP and ∆Y measurement will reach the limit of the systematic error but

should be enough precise to determine whether yD and yCP are compatible and could be

sensitive also to the direct CPV .





Appendix A

The Area of the Unitary Triangles

Let’s consider a Unitary Triangle (UT), for example:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A.1)

Considering the complex plane as a vector space, a triangle is identified by two vectors,

we can choose ~p1 = VudV
∗
ub and ~p2 = VcdV

∗
cb, and the area of the triangle is given by their

vector product:

A =
1

2
|~p2 × ~p1| . (A.2)

We can compute the vector product expliciting the real and imaginary parts of the vectors:

A =
1

2

∣

∣

∣

∣

p2 + p∗2
2

p1 − p∗1
2

− p2 − p∗2
2

p1 + p∗1
2

∣

∣

∣

∣

=
1

4
|p∗2p1 − p2p

∗
1|

=
1

2
|ℑ(p∗2p1)|, (A.3)

therefore:

A =
1

2
|ℑ(VudV ∗

ubV
∗
cdVcb)| =

1

2
J. (A.4)

where the quantity J = |ℑ(VudV ∗
ubV

∗
cdVcb)| is independent of the quark phases since each

quark enters in two CKM elements, one of which is a complex conjugate.

The choice of ~p1 and ~p2 has been completely arbitrary, indeed any couple of vectors from

Eq. (A.1) identifies the same triangle, with the same area, therefore:

|ℑ(VudV ∗
ubV

∗
cdVcb)| = |ℑ(VudV ∗

ubV
∗
tdVtb)| = |ℑ(V ∗

cdVcbV
∗
tdVtb)|. (A.5)

To show that J is an invariant, and therefore that all UTs have the same area, it is enough
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to repeat the same procedure for all the other UTs. Let’s consider, for example, the UT

triangle:

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0. (A.6)

Repeating the procedure we find:

|ℑ(VudV ∗
cdV

∗
usVcs)| = |ℑ(VudV ∗

cdV
∗
ubVcb)| = |ℑ(V ∗

usVcsV
∗
ubVcb)|. (A.7)

Comparing Eq. (A.5) with Eq. (A.7) we notice that first term of the former is the same

as the second term of the latter. Proceeding like this for the other unitary relations, we

demonstrate that all UT have the same area.

The invariant J is more generally defined as:

J =
∣

∣ℑ(VijV ∗
ilVklV

∗
lj)
∣

∣ , (A.8)

no sum on repeated indices, and its experimental value is J = (2.91+0.19
−0.11) 10

−5 [23].



Appendix B

Comparison Data − MC

In the following we report the reconstructed D0 mass distributions for data and MC for

the seven modes. In the tagged channels a cut 0.1447GeV/c2 < ∆m < 0.1463GeV/c2 has

been applied.
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Figure B.1: Mass distribution for data (red) and MC (black) in linear (left) and logarith-
mic scale (right). Top the tagged D0 → π+π− events, bottom the tagged D0 → π+π−

events. The MC distribution is scaled to data luminosity. The cut 0.1447GeV/c2 < ∆m <
0.1463GeV/c2 has been applied.
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Figure B.2: Mass distribution for data (red) and MC (black) in linear (left) and logarithmic
scale (right). Top the tagged D0 → K+K− events, bottom the tagged D0 → K+K−

events. The MC distribution is scaled to data luminosity. The cut 0.1447GeV/c2 < ∆m <
0.1463GeV/c2 has been applied.
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Figure B.3: Mass distribution for data (red) and MC (black) in linear (left) and logarithmic
scale (right), of the tagged K±π∓ events. The MC distribution is scaled to data luminosity.
The cut 0.1447GeV/c2 < ∆m < 0.1463GeV/c2 has been applied.
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Figure B.4: Mass distribution for data (red) and MC (black) in linear (left) and logarithmic
scale (right), of the untagged K+K− events. The MC distribution is scaled to data
luminosity.
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Figure B.5: Mass distribution for data (red) and MC (black) in linear (left) and logarith-
mic scale (right), of the untagged K±π∓ events. The MC distribution is scaled to data
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Appendix C

Mass Fits Parameters

In the following we report the explicit forms of the PDFs and the extracted value of the

parameters from the data mass fits of each of the five channels, described in section 4.3.1.

Tagged π+π− Channel

We fit the D0 and D0 decays simultaneously, all the parameters are shared except the

expected number of events in each category that are depending on the flavor: Nsig =

{ND0

sig , N
D0

sig }, and ND0

bkg, N
D0

bkg. The signal PDF S and the background PDF B are:

S(m) = Nsig {f1 G(m;µ1, σ1) + (1− f1) [f21 G(m;µ2, σ2)]}
B(m) = Nbkg {C [1 + c1m]},

where the parameter C is the normalization over the fit range. The extracted values of

the parameters are reported in Tab. C.1.

signal

ND0

sig = 34101 ± 234

ND0

sig = 34152 ± 234

f1 = 0.33 ± 0.08
µ1 = (1861.8 ± 0.5)MeV/c2

σ1 = (11.4 ± 0.7)MeV/c2

µ2 = (1.8642 ± 0.1)MeV/c2

σ2 = (7.3 ± 0.2)MeV/c2

background

ND0

bkg = 7471 ± 168

ND0

bkg = 7486 ± 168

c1 = (−0.291 ± 0.02)/(GeV/c2)

Table C.1: Parameter values and errors from the simultaneous fit to the reconstructed
D0 and D0 mass distributions of the tagged π+π− events. The correspondent plots are in
Fig. 4.2.
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Tagged K+K− Channel

We fit the D0 and D0 decays simultaneously, all the parameters are shared except the

expected number of events in each category that are depending on the flavor: Nsig =

{ND0

sig , N
D0

sig }, and ND0

bkg, N
D0

bkg. The signal PDF S and the background PDF B are:

S(m) = Nsig {fCB CB(m;m0, σCB , α, n)

(1− fCB)
[

f1 G(m;µ1, σ1) +

(1− f1) G(m;µ2, σ2)
]

},
B(m) = Nbkg {C [1 + c1m]},

where the parameter C is the normalization over the fit range. The extracted values of

the parameters are reported in Tab. C.2.

signal

ND0

sig = 70271 ± 289

ND0

sig = 69532 ± 287

f1 = 0.05 ± 0.04
µ1 = (1864.3 ± 0.3)MeV/c2

σ2 = (6.2± 0.2)MeV/c2

µ2 = (1864.28 ± 0.04)MeV/c2

σ1 = (3.4± 0.9)MeV/c2

fCB = (0.17 ± 0.04)
m0 = (1863.4 ± 0.2)MeV/c2

σCB = (10.7 ± 0.6)MeV/c2

α = (2.3± 0.2)
n = 3 fixed

background

ND0

bkg = 1874 ± 124

ND0

bkg = 1910 ± 123

c1 = (−0.378 ± 0.05)/(GeV/c2)

Table C.2: Parameter values and errors from the simultaneous fit to the reconstructed D0

and D0 mass distributions of the tagged K+K− events. The correspondent plots are in
Fig. 4.2.

Tagged K±π∓ Channel

We fit the D0 and D0 decays together, not distinguishing the D flavor. The signal PDF

S and the background PDF B are:

S(m) = Nsig {f1 G(m; µ1, σ1) + (1− f1)
[

f21 G(m; µ2, σ2) +

(1− f21) G(m; µ3, σ3)
]

},

B(m) = Nbkg {C
[

1 + c1m+ c2(2m
2 − 1)

]

},
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where the parameter C is the normalization over the fit range. The extracted values of

the parameters are reported in Tab. C.3.

signal

Nsig = 1567062 ± 2040
f1 = 0.43 ± 0.03
µ1 = (1863.71 ± 0.05)MeV/c2

σ1 = (9.2 ± 0.2)MeV/c2

f21 = 0.901 ± 0.010
µ2 = (1864.15 ± 0.02)MeV/c2

σ2 = (6.26 ± 0.07)MeV/c2

µ3 = (1856.1 ± 0.4)MeV/c2

σ3 = (19.1 ± 0.4)MeV/c2

background

Nbkg = 30307 ± 1620
c1 = (−0.534 ± 0.02)/(GeV/c2)
c2 = (0.07 ± 0.04)/(GeV/c2)2

Table C.3: Parameter values and errors from the fit to the reconstructed D mass distri-
bution of the tagged K±π∓ events. The correspondent plot is in Fig. 4.2.

Untagged K+K− Channel

The signal PDF S and the background PDF B are:

S(m) = Nsig {f1 G(m; µ1, σ1) + (1− f1)
[

f21 G(m; µ2, σ2) +

(1− f21) G(m; µ3, σ3)
]

},

B(m) = Nbkg {C
[

1 + c1m+ c2(2m
2 − 1)

]

},

where the parameter C is the normalization over the fit range. The extracted values of

the parameters are reported in Tab. C.4.

signal

Nsig = 530209 ± 2514
f1 = 0.36 ± 0.10
µ1 = (1864.21 ± 0.05)MeV/c2

σ1 = (5.0 ± 0.3)MeV/c2

f21 = 0.997 ± 0.001
µ2 = (1864.22 ± 0.05)MeV/c2

σ2 = (7.5 ± 0.3)MeV/c2

µ3 = (1844 ± 1)MeV/c2

σ3 = (3± 1)MeV/c2

background

Nbkg = 663236 ± 2535
c1 = (−0.0478 ± 0.002)/(GeV/c2)
c2 = (−0.0010 ± 0.005)/(GeV/c2)2

Table C.4: Parameter values and errors from the fit to the reconstructed mass distribution
of the untagged K+K− events. The correspondent plot is in Fig. 4.3.
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Untagged K±π∓ Channel

The signal PDF S and the background PDF B are:

S(m) = Nsig {f1 G(m; µ1, σ1) + (1− f1)
[

f21 G(m; µ2, σ2) +

(1− f21) G(m; µ3, σ3)
]

},

B(m) = Nbkg {C
[

1 + c1m+ c2(2m
2 − 1)

]

},

where the parameter C is the normalization over the fit range. The extracted values of

the parameters are reported in Tab. C.4.

signal

Nsig = 6157417 ± 14084
f1 = 0.36 ± 0.01
µ1 = (1864.22 ± 0.02)MeV/c2

σ1 = (5.88 ± 0.03)MeV/c2

f21 = 0.856 ± 0.004
µ2 = (1863.79 ± 0.03)MeV/c2

σ2 = (8.36 ± 0.05)MeV/c2

µ3 = (1859.7 ± 0.2)MeV/c2

σ3 = (17.4 ± 0.4)MeV/c2

background

Nbkg = 3469852 ± 13910
c1 = (−0.0743 ± 0.002)/(GeV/c2)
c2 = (0.021 ± 0.003)/(GeV/c2)2

Table C.5: Parameter values and errors from the fit to the reconstructed mass distribution
of the untagged K±π∓ events. The correspondent plot is in Fig. 4.3.



Appendix D

Signal Region Optimization

Studies

D.1 Asymmetry as a Function of the Signal Region Width

Given the mass PDFs extracted from the fits described in Sec. 4.3.1, we study the asym-

metry α as a function of the signal region width w, imposing the constrain that the number

of events contained in the right side of the interval is the same as the number of events

contained in the left side.

In Fig. D.1 we report the value of the asymmetry as a function of the width. The asym-
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Figure D.1: Asymmetry as a function of the width of the signal region for data.

metry is smaller than ∼ 7% for all the channels, except the tagged π+π−, in which it is

slightly above 10%. The tagged π+π− channel is the lowest statistics one. In addition it is

the one with the lowest value for the peak position, therefore the asymmetry is enhanced

by the fact that the center of the signal region is more shifted from mC than the other
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channels. The value of α is set to zero for all the channels.

The same study on MC yields the same conclusion.

D.2 Width Optimization

Lifetimes Statistical Error

We perform Toy MC studies generating events from the proper time PDFs. For each signal

region width we fix the number of signal and background events according to the integral

of the mass PDFs, and we evaluate the statistical error on the lifetimes. We repeat this

procedure for the five channels separately, the results are in Fig. D.2. This study suffers
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Figure D.2: Statistical error on the lifetime as a function of the half width of the signal
region.

by the low statistics of the Toy samples, but suggests, as expected, to use larger signal

regions for all channels (not distinguishing the tagged from the untagged).

Untagged K+K− lifetime Systematic Error

In order to evaluate the systematic impact on the untagged K+K− lifetime, we perform

blind fit to (t, σt) data distributions of the untagged K+K− channel, blinding the lifetime.

The signal and background PDFs are described in Chapter 5, for this study we use a single

exponential to describe the proper time distribution of the untagged K+K− events.

We apply the systematic variations used in the previous untagged analysis:

� vary by ±5% the lifetime of the misreconstructed-charm component (τcrm);

� vary by ±5% the number of events the misreconstructed-charm component (Ncrm);
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� vary by ±1σ the weighting parameter of the combinatorial PDF (hcomb);

� vary by ±1% the number of events the combinatorial component (Ncomb);

The systematic error associated to each of these variations is the deviation in the central

value of the extracted lifetime, and it is reported in Tab. D.1. Note that this study was

performed before finalizing the background PDFs, therefore the systematic impact on the

lifetimes reported here can not be interpreted quantitatively as a systematic error but it

just gives the trend of the total error as a function of the signal region width.

Signal region Width
20 MeV/c2 24 MeV/c2 30 MeV/c2

scale τcrm by ±5% 0.33 fs 0.37 fs 0.41 fs
scale Ncrm by ±5% 0.09 fs 0.10 fs 0.10 fs
scale hcomb by ±1% 0.01 fs 0.01 fs 0.08 fs
scale Ncomb by ±1% 0.10 fs 0.09 fs 0.10 fs

stat. error 1.02 fs 1.00 fs 0.99 fs

total error 1.08 fs 1.07 fs 1.08 fs

Table D.1: Statistical error and systematic impact of the background on the untagged
K+K− lifetime for different signal region widths obtained by blind fits to data.

For the untagged K+K− channel we have chosen the signal region width that minimizes

the total error: 24 MeV/c2.

The same study on MC yields a 20MeV/c2 wide signal region.
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Appendix E

Distributions of the Events in the

Three Categories

E.1 Signal Events Distributions

We report the reconstructed-mass and the ∆m distributions, and the 2d scatter plot of

(mD0 ,∆m) (only for the tagged samples) for each channel, from the signal-only bigSignal

MC dataset. For the untagged K±π∓ channel the bigSignal sample was too big, and we

have used cocktail1 to produce the plots. We also show the proper time and the proper

time error distributions, and the 2d scatter plot (t,σt) of these two variables.
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Figure E.1: Distributions of the tagged π+π− signal truth-matched events. Top row: (left)
mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The signal region
is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t, (center) σt
distributions and (right) 2d scatter plot (t, σt) for events in the signal region.



168 Distributions of the Events in the Three Categories

h_m
Mean    1.864
RMS    0.007744

)2 mass (GeV/c0D
1.82 1.84 1.86 1.88 1.9 1.92

 )2
E

ve
nt

s 
/ (

 0
.0

01
3 

G
eV

/c

0

20

40

60

80

100

120

140
310×

h_m
Mean    1.864
RMS    0.007744

mD0

h_dm
Mean   0.1458
RMS    0.001877

)2m (GeV/c∆
0.14 0.142 0.144 0.146 0.148 0.15 0.152 0.154 0.156 0.158 0.16

 )2
E

ve
nt

s 
/ (

 0
.0

00
2 

G
eV

/c

1

10

210

310

410

510

h_dm
Mean   0.1458
RMS    0.001877

∆m

)2 mass (GeV/c0D
1.8 1.82 1.84 1.86 1.88 1.9 1.92

) 2
m

 (
G

eV
/c

∆

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0

10000

20000

30000

40000

50000

h_t
Mean   0.4111
RMS    0.4929

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

20

40

60

80

100
310×

h_t
Mean   0.4111
RMS    0.4929

t

h_dt
Mean   0.2447
RMS    0.0935

 proper time error (ps)0D
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
05

 p
s 

)

0

5000

10000

15000

20000

25000

30000

35000

h_dt
Mean   0.2447
RMS    0.0935

σt

 proper time (ps)0D
-2 -1 0 1 2 3 4

 p
ro

pe
r 

tim
e 

er
ro

r 
(p

s)
0

D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

500

1000

1500

2000

2500

Figure E.2: Distributions of the tagged K+K− signal truth-matched events. Top row:
(left) mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The signal
region is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t,
(center) σt distributions and (right) 2d scatter plot (t, σt) for events in the signal region.
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Figure E.3: Distributions of the tagged K±π∓ signal truth-matched events. Top row:
(left) mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The signal
region is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t,
(center) σt distributions and (right) 2d scatter plot (t, σt) for events in the signal region.
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Figure E.4: Distributions of the untagged K+K− signal truth-matched events. Top row:
(left) t and (right) σt distributions for events in the signal region. Bottom row: (left) 2d
scatter plot (t, σt) for the events in the signal region; (right) mD0 distribution, the signal
region is indicated by a red line, the sidebands by a blue line.

h_t
Mean   0.4118
RMS    0.4928

 proper time (ps)0D
-2 -1 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.0
6 

ps
 )

0

50

100

150

200

250

300

350

310×
h_t

Mean   0.4118
RMS    0.4928

t

h_dt
Mean   0.2427
RMS    0.09875

 proper time error (ps)0D
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
05

 p
s 

)

0

20

40

60

80

100

120

310×
h_dt

Mean   0.2427
RMS    0.09875

σt

 proper time (ps)0D
-2 -1 0 1 2 3 4

 p
ro

pe
r 

tim
e 

er
ro

r 
(p

s)
0

D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

2000

4000

6000

8000

10000

h_m
Mean    1.864
RMS    0.009548

)2 mass (GeV/c0D
1.82 1.84 1.86 1.88 1.9 1.92

 )2
E

ve
nt

s 
/ (

 0
.0

01
3 

G
eV

/c

0

50

100

150

200

250

300

350

400

310×
h_m

Mean    1.864
RMS    0.009548

mD0

Figure E.5: Distributions of the untagged K±π∓ signal truth-matched events. Top row:
(left) t and (right) σt distributions for events in the signal region. Bottom row: (left) 2d
scatter plot (t, σt) for the events in the signal region; (right) mD0 distribution, the signal
region is indicated by a red line, the sidebands by a blue line.
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E.2 Misreconstructed-Charm Events Distributions

We report the reconstructed-mass and the ∆m distributions, and the 2d scatter plot of

(mD0 ,∆m) (only for the tagged samples) for each channel, from bigCharm MC dataset.

We also show the proper time and the proper time error distributions, and the 2d scatter

plot (t,σt) of these two variables for events in the signal region. Note that the mean of all

the proper time distributions is higher than the generated D0 lifetime, τgen = 411.67 fs.
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Figure E.6: Distributions of the tagged π+π− misreconstructed-charm truth-matched
events. Top row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot
(mD0 , ∆m). The signal region is indicated by a red line, the sidebands by a blue line.
Bottom row: (left) t, (center) σt distributions and (right) 2d scatter plot (t, σt) for events
in the signal region.
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Figure E.7: Distributions of the tagged K+K− misreconstructed-charm truth-matched
events. Top row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot
(mD0 , ∆m). The signal region is indicated by a red line, the sidebands by a blue line.
Bottom row: (left) t, (center) σt distributions and (right) 2d scatter plot (t, σt) for events
in the signal region.
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Figure E.8: Distributions of the tagged K±π∓ misreconstructed-charm truth-matched
events. Top row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot
(mD0 , ∆m). The signal region is indicated by a red line, the sidebands by a blue line.
Bottom row: (left) t, (center) σt distributions and (right) 2d scatter plot (t, σt) for events
in the signal region.
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Figure E.9: Distributions of the untagged K+K− misreconstructed-charm truth-matched
events. Top row: (left) t and (right) σt distributions for events in the signal region.
Bottom row: (left) 2d scatter plot (t, σt) for the events in the signal region; (right) mD0

distribution, the signal region is indicated by a red line, the sidebands by a blue line.
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Figure E.10: Distributions of the untagged K±π∓ misreconstructed-charm truth-matched
events. Top row: (left) t and (right) σt distributions for events in the signal region.
Bottom row: (left) 2d scatter plot (t, σt) for the events in the signal region; (right) mD0

distribution, the signal region is indicated by a red line, the sidebands by a blue line.
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E.3 Combinatorial Events Distributions

We report the reconstructed-mass and the ∆m distributions, and the 2d scatter plot

of (mD0 ,∆m) (only for the tagged samples) for each channel, from the bigCombin MC

dataset. For the untagged K±π∓ channel, the bigCombin sample was too big, and we

have used cocktail1 to produce the plots. We also show the proper time and the proper

time error distributions, and the 2d scatter plot (t,σt) of these two variables for events in

the signal region.
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Figure E.11: Distributions of the tagged π+π− combinatorial truth-matched events. Top
row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The
signal region is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t,
(center) σt distributions and (right) 2d scatter plot (t, σt) for events in the signal region.
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Figure E.12: Distributions of the tagged K+K− combinatorial truth-matched events. Top
row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The
signal region is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t,
(center) σt distributions and (right) 2d scatter plot (t, σt) for events in the signal region.
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Figure E.13: Distributions of the tagged K±π∓ combinatorial truth-matched events. Top
row: (left) mD0 , (center) ∆m distribution and (right) 2d scatted plot (mD0 , ∆m). The
signal region is indicated by a red line, the sidebands by a blue line. Bottom row: (left) t,
(center) σt distributions and (right) 2d scatter plot (t, σt) for events in the signal region.
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Figure E.14: Distributions of the untagged K+K− combinatorial truth-matched events.
Top row: (left) t and (right) σt distributions for events in the signal region. Bottom row:
(left) 2d scatter plot (t, σt) for the events in the signal region; (right) mD0 distribution,
the signal region is indicated by a red line, the sidebands by a blue line.
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Figure E.15: Distributions of the untagged K±π∓ combinatorial truth-matched events.
Top row: (left) t and (right) σt distributions for events in the signal region. Bottom row:
(left) 2d scatter plot (t, σt) for the events in the signal region; (right) mD0 distribution,
the signal region is indicated by a red line, the sidebands by a blue line.
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Appendix F

Complete Fit Results

In the following we report the values of the parameters extracted from the simultaneous

fit to data.

The extracted resolution offset is t0 = (−2.51± 0.19) fs, while extracted lifetimes are:

τ+ = (405.69 ± 1.25) fs

τ̄+ = (406.40 ± 1.25) fs

τKπ = (408.97 ± 0.24) fs.

The three Gaussians are weighted with the following fractions in the resolution function:

f1 = 0.192 ± 0.018

f21 = 0.00682 ± 0.00086

The scale factors of each Gaussian in the resolution model are:

s1 = 1.436 ± 0.028

s2 = 3.437 ± 0.097

s3 = 0.9411 ± 0.0056,

while the additional scale factors that take into account differences in resolution due to

the final state or the D0 momentum are:

Sππ = 0.9969 ± 0.0068

SKK = 0.9959 ± 0.0027

S′
tag = 0.9982 ± 0.0014.
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The number of combinatorial events in the untagged K+K− mode is:

Ncomb(untK
+K−) = 164970 ± 1000.

In Tab. F.1 we report the number of signal events for each mode and the number of

combinatorial events in the untagged K+K− channel.

Nsig
tagged untagged

π+π− K+K− K±π∓ K+K− K±π∓

D0 32690 ± 190 68820 ± 260 1487000 496200 5825300

D0 32740 ± 190 68050 ± 260 ±1200 ±1200 ±2600

Table F.1: Extracted numbers of signal events in the seven modes.

The values that are fixed in the fit are reported in the following.

The fraction of D0 decays in the untagged K+K− channel is fixed to fD0 = 0.5, and the

scale factors SKπ = S′
unt = 1 are also fixed in the nominal fit.

The fixed values regarding the PDFs of the three tagged channels and the untagged K±π∓

channel are reported in Tab. F.2.

The fixed values regarding the untagged K+K− PDFs are reported in Tab. F.3. For

this channel, the number of misreconstructed-charm events in the signal regioni is fixed to

Nchr = 5478 and the weighting parameter of the combinatorial PDF is fixed to hcomb = 0.497.
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parameter tagged π+π− tagged K+K− tagged K±π∓ untagged K±π∓

signal

f±tag 0.2% 0.2% − −

misreconstructed-charm background

fcrm 1 1 1% 8.2%
s1crm 1.35 1.24 1.07 2.19
s2crm − − 0.984 0.981

t1crm0 (ps) −1.96× 10−2 −2.2× 10−2 1.1 0.25
t2crm0 (ps) − − 0.0 −2.5× 10−3

τ1crm (ps) 0.457 0.437 1.50 0.992
τ2crm (ps) − − 0.431 0.428
D∗+ Nchr 50 154

642 4645
D∗− Nchr 47 156

combinatorial background

hcomb 0.496 0.518 0.542 0.520
D∗+ Ncomb 1830 274

2849 1044600
D∗− Ncomb 1830 279

Table F.2: Fixed parameters in the final fit to data for the PDFs of the three categories
of the tagged π+π−, K+K− and K±π∓ channels and for the untagged K±π∓ channel.

parameter
combinatorial PDF misreconstucted
low SB high SB charm

f1 0.81% 0.95% 7.9%
f21 81.1% 82.4% −
s1 3.09 3.16 2.90
s2 0.96 0.97 0.95
s3 1.50 1.49 −

t10 (ps) 0.812 0.590 −0.108
t20 (ps) 0.024 0.024 0.008
t30 (ps) 0.123 0.122 −
τ1 (ps) 0.814 0.758 1.36
τ2 (ps) 0.031 0.028 0.476
τ3 (ps) 0.146 0.131 −

Table F.3: Fixed parameters in the final fit to data for the PDFs of the background
categories of the untagged K+K− channel.
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