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ABSTRACT

Useful techniques for the statistical analysis and presentation of

high energy particle physics data are described and discussed .



DATA ANALYSIS TECHNIQUES FOR

HIGH ENERGY PHYSICS
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1. INTRODUCTION

The purpose of this report is to acquaint high energy physicists with a vari-

ety of techniques for presenting and making statistical inferences from counted

data . The attempt will be to introduce new techniques that are not commonly

used in high energy particle physics as well as to place those methods that are

familiar into the general framework of statistical data analysis . This report

will not deal with the equally important problem of data seduction . That is,

reducing the raw digitizations from particle detectors to more useful quantities

such as particle momenta and angles . Although these calculations are often

quite complex they seldom require statistical inference . (A notable exception is
hypothesis discrimination in kinematic fitting . ) The computer codes that per-

form these computations can usually be thought of as computing engines that

transform the data from the raw experimental variables to those that are more

convenient for further calculations .

This report is concerned with these further calculations ; that is, how to

discover properties of the particle interactions from the data, and deduce as

well as present, statistically meaningful statements about those properties .

The methods discussed are general in the sense that they can be applied to

data from any science that have similar properties to those encountered in

particle physics . In fact, many of the techniques that are discussed, although

new to particle physics, are commonly used in other sciences, especially pat-
tern recognition and artificial intelligence . The emphasis, however, will be on

those methods that can be most profitably applied to the types of data usually

encountered in high energy particle physics experiments .
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In an effort to keep this report as self-contained as possible, the first sec-

tions will deal briefly and very superficially with those concepts from probability
theory and statistics that are necessary for understanding what follows . 1) The

next sections will discuss various ways of analyzing and presenting univariate
or one-dimensional data, that is, when only one measured aspect of the data is

considered at a time . Quite often in particle physics experiments several
aspects of an event are measured, and the problem is to try to understand and
describe the interrelations among these quantities . This requires multivariate

(or multi-dimensional) data analysis techniques where several aspects of the
data can be simultaneously considered . The final sections describe some new
techniques for multi-dimensional data analysis .

The emphasis throughout is on ideas and concepts rather than on specific

details . When possible the procedures will be described and discussed in terms
of their effect on actual or simulated data rather than with detailed analyses of

their statistical properties . When needed, these properties will simply be
stated and references provided where interested readers can find detailed anal-

yses and proofs .

2 . COUNTED DATA AND DENSITY ESTV,IATION
Nearly all analysis on counted data centers on probability density estima-

tion . The several measurements, x, made on the events are regarded as ran-
dom variables drawn from (distributed according to) a probability density func-

tion, p(x) . If the variables can take on only discreet (rather than a continum of)

values then p(x) is referred to simply as a probability distribution . There are

several definitions of probability and probability density but the most intuitive
is the frequency ratio definition

lim

	

Id

	

f p(V)d- .

	

(1)
ni , N -- ~

	

ri

Here ni is the number of counts appearing in a sub-volume, r i , (cell) of the

measurement variables and N is the total number of counts recorded . Con-

structing ri as a little sphere about some point z and letting the volume approach

zero as ni and N approach infinity, one can define the notion of the probability

density, p(x), at x. Obvious properties of the probability density are

f p(x)dx = 1

	

(2)
R
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and

	

p (x) > 0

	

for all Zc R

where R is the total region of measurement space .

It is clear that p(x) contains all of the information of the experiment . The

purpose of experimentation is to infer properties of p(i) from the observed dis-

tributions of the measured counts . Conversely, it is the purpose of theory to

calculate p(x) from mathematical models and infer from it the results of exper-

iments .

Data.analysis is divided into two types, parametric and non-parametric.

In parametric (or model dependent) analysis, p(x) is assumed to be a member

of a parameterized family of distributions

p(i) __ p(a; x) ,

	

(2a)

where ais the set of parameters (either discreet or continuous or both) that

specify the particular distribution from the family of possible distributions . The

problem of determination of the probability density function then becomes the

problem of determining the appropriate values for the parameters T.. The parti-

cular parameterized family can come from the researchers intuition, invariance

principles (such as angular momentum conservation) or specific dynamical

models . For example, the Lorentz invariant amplitude squared for a reaction

is

	

the probability density in the Lorentz invariant phase space .

In non-parametric (model independent) analysis no a priori information is

assumed about the probability density function . In this case one infers the prob-

ability density function directly from the counted data, with very little or no

information about what form it might take . Histogramming is an example of a

non-parametric (one-dimensional) density estimation .

There are relative advantages and disadvantages to both types of analysis .

When it is properly applied parametric analysis is usually statistically much

more powerful than non-parametric analysis . This is due to the tremendous

increase of information in restricting the set of all possible probability densities

to those of a particular parameterized family . The results of the analysis, how-

ever, crucially depend upon the correctness of this assumption . If the prob-

ability density function that gives rise to the data is not a member of the sup-

posed parameterized family, then at best the statistical power is reduced com-

pared to non-parametric techniques, and at worst (usually the case) the results

are meaningless . Non-parametric techniques have the advantage of being appli-

cable to a wide range of problems since they require few assumptions concerning
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the data. It should be kept in mind, however, that even though non-parametric
techniques are usually formulated independently of specific probability densities
their statistical performance usually varies with the actual probability density
of the data .

Statistical theory is far more developed for parametric analysis than non-
parametric . This is especially true for the family of normal or Gaussian dis-
tributions

PPC, E„x) =

	

(2 ,r)d/2 I z11/2
exp[-1/2(x-µ)TE-1(x-µ)l

	

(3)

where the parameters are the location vector µand covariance matrix E. A
great many of the statistical techniques in common use were designed to be opti-
mal for normal distributions and are referred to as normal theory techniques .
These techniques can lose considerable statistical power when applied to data
with non-normal density distributions .

3. A MINI-INTRODUCTION TO ESTIMATION THEORY
This section introduces the few necessary concepts in Statistics that are

required to understand the sections that follow . As noted above, the set of
measurements {xi}N 1 comprising an experiment can be thought of as random
variables drawn from a probability density function p(x) . The purpose of data
analysis is to make inferences concerning p(x) . In parametric analysis one
usually wishes to infer likely possible values for the parameters . In non-
parametric analysis the density itself is to be inferred . This process of statis-
tical inference is called estimation . Particle physicists quite often (incorrectly)
use the terms "measurement" or "determination" for statistical estimation .

Consider a parametric example . Suppose that the set of measurements
{zi}N 1 are known to be distributed according to p(a ; x) for some (unknown)
value of a . The desire is to estimate the parameter, a, from the values of the
measured random variables x1 ,1, . . . XN.

Any function of a set of random variables

Y = 4)(x1,72, . . . IN)

	

(4)

is itself a random variable with a probability density function p N (a ;Y) that can
(at least in principle) be calculated from p(a ;7) . If one is sufficiently clever in
choosing the function, m, then pN(a,Y) might be large only for those values of
Y near Y = a . That is, for any set of possible values for x1 ,72 , . . . xN drawn
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from p(a, x), cp(x1 ,x2 , . . .XN ) always has a value near a . Thus, for the particu-

lar set of values ofx1 ,;, . . . xN we happen to measure, the value of Y =

~(x1,x2, . . . xN ) will be a good approximation to the value of a . The function

p(x1,x2, . . . xN ) is called a statistic and its value for a particular set of

x1 , x2 . . . . xN is called an estimate of a .

Consider the following example of how one might construct a statistic for

performing an estimation. The integral

I(a) = f f(x)p(a ;x)dx

	

(5)
R

is a function of the parameter, a . Here R is the region of all possible values

for the measurements x'. This integral is called the expected value, E [f], (or

sometimes the average or mean value) of the arbitrary function, f(x), with

respect to Z If the integrand is integrable then the explicit functional form of

I(a) can be calculated . From the central limit theorem (law of large numbers),

one has the result that for sufficiently large N,

N

Y = cp(x1 ,x2 , . .i

	

xN) = N

	

f(xi)

	

(6 )
i=1

has a normal probability density function

PN (a ;Y) =

	

1

	

e-1/2t(Y-a) /aN] 2
2'r oN

where
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_\

oN = (N

	

(f(x) - E[f))2

	

1/2
P(a ;x)dx /

	

(8)

The integral is called the variance, V[f], of the function f(x) .

/

Thus,

vN = 4V[f]IN .

	

(9)

As N increases, vN decreases as vN - 1/,FN'. Thus, for sufficiently large

N, pN(a;Y) will be a very narrow distribution centered at Y = a . The quantity
N

(1/N) E f(xi ) is called the sample mean of the function f(-x) . The central
i=1

limit theorem tells us that the sample mean is a good statistic for estimating

I(a) [expected value of f(x)] for sufficiently large N . One can then take as an



estimate, a, for the value of the parameter, a,

N

	

1
a = I1 [P(x1,x2, . . .xN)I =

	

[N
~,f(xi )

J
.

J

	

i=1

Since the function, f(a), was somewhat arbitrary it is clear that this procedure

can be used to construct a variety of statistics for estimating the parameter, a .

However, some will be better than others . For example cNT , which regulates

the precision with which the parameter, a, is estimated, depends on f(r) (for

N < co) through Eq . 8 .

The field of Statistics is concerned to a great degree with finding good

statistics for estimation and determining their properties . Statistics used for

estimation (usually called estimators) are rated in terms of four basic proper-

ties of their probability density distributions pN(a ;Y) ; these are consistency,

efficiency, bias, and robustness .

3.1 Consistency

An estimator, Y = T(xl,z2, . . . ,zN ) is consistent if the following condition

holds

"m
pN (a ;Y) = 6(Y-a) .

	

(11)
N-.oo

That is as the number of samples gets arbitrarily large, p(a ;Y) becomes an arbi-

trarily narrow function of Y about a, and the estimator provides an arbitrarily

precise estimate of the parameter, a . Note that Eqs . 7 and 8 show that the

estimator defined by Eq. 6 is consistent. Consistency is nearly always required

for an estimator to be considered useful .

3 .2 Efficiency

Consistency is concerned with the precision of the estimator for infinite

sample size . (In the field of Statistics, a result that holds in the limit of infinite

sample sizes is called an asymptotic result . ) Efficiency is concerned with the

precision of the estimator for finite sample size N . An estimator is called

efficient if the variance (mean squared error) of its probability density function

V N =
f

(Y-a)2 PN(a;Y)dY

	

(12)
R

is as small as possible3) for a given N. The square root of the variance,

oN = --, is characteristic of the width of P
N(a ;Y) about a, and thus is directly

related to the precision of the estimator . Therefore, an efficient estimator for
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a given N is one that (loosely speaking) has maximal precision . The relative

efficiency between two estimators is the inverse ratio of the variances of their

probability densities for a given sample size, N . The efficiency of an estimator

is its relative efficiency to an efficient estimator (i . e . , efficient estimators are

said to have 100% efficiency) .

This definition of efficiency can be related to the intuitive meaning of the

word in the following manner . For large sample size, N, the variance of most

estimators decreases as, VN - 1/N, for increasing N (i . e . ,
uN

- 1/,fN) .

Then the efficiency of an estimator is the inverse ratio of the number of

samples (events) it requires to the number an efficient estimator requires for

the same precision . Clearly high efficiency is a desirable property for an

estimator. However, an estimator with the highest efficiency is quite often not

the most desirable . Sometimes the computational complexity of the most effi-

cient estimator makes it more expensive for a given precision than a less effi-

cient estimator even though the less efficient estimator requires more events .

3 .3 Bias

Like efficiency, bias refers to a property of estimators for finite sample

A biased estimator is one with an expected value that is different from the true

value of the parameter being estimated . The bias is just the difference between
E N [Y] and the true value of the parameter .

Note that, although it might appear to be contradictory, a biased estimator

can also be consistent and conversely an unbiased estimator can be inconsistent .

If a biased estimator is consistent, then from Eq . 11

lim b = 0 .
N - 00

N

It may at first seem that bias would be a very undesirable property for an esti-

mator to have. This is generally not the case . It is only important that the

bias be relatively small compared to the square root of the variance (Eq . 12)

(standard deviation) of the probability density function . Most of the commonly

used estimators in particle physics are in fact biased . There are various tech-
niques for reducing bias in estimators but they usually do this at the expense

- 7 -

size, N . Specifically the bias of an estimator is defined as

bN = f Y pN(a ;Y) dY - a (13a)

I .e ., R

(13b)bN = EN [Y]-a .



of precision (increasing the variance) . Thus, one is forced to compromise

between degree of bias and precision .

3 .4 Robustness

The concept of robustness is strongly tied to the notions of non-parametric

data analysis . As pointed out above parametric techniques are usually more

efficient than non-parametric techniques so long as the actual probability den-

sity of the data is in fact a member of the supposed parameterized family of

density distributions . If this assumption is not quite correct then the parame-

tric estimator loses efficiency . However, some estimators lose efficiency

more rapidly than others as nature deviates from the experimenter's assump-

tions . Estimators that maintain reasonable efficiency over a wide range of data

probability densities are called robust estimators .

Robustness is an often under-rated quality of estimators . Both physicists

and statisticians usually seek maximum efficiency at the expense of robustness .

This effort can often be misguided since if the data deviate from the a priori

assumptions then the supposed most efficient estimator can, in fact, have poor

efficiency . Even when the theory from which the parameterized density func-

tion is constructed is on solid ground, measurement errors on the data points

can cause the data to deviate from the parameterized family of densities .

Most highly efficient parametric estimators gain most of their information

from the low density regions (tails) of the distribution. Thus, if only a few data

points in these tails deviate from the parameterized probability density function

the estimate will be severely effected . Physicists usually refer to this phenom-

enon as the "tail wagging the dog" . What has actually happened is that their

estimator was very non-robust . The least squares estimator, which is one of

the most popular in particle physics, is a good example of an extremely non-

robust estimator . Generally, order statistics such as medians, and percentiles

are much more robust than arithmetic statistics such as means and standard

deviations .

For example if one wished to estimate the width of a symmetric distribution

he could calculate its standard deviation about the mean or he could take half the

difference between its 32 and 68 percentiles . The former would be more effi-

cient if the data had exactly a normal distribution . However, if just one of the

data points near the edges of the distribution was mismeasured so that it was

somewhat farther from the center than it should be, the standard deviation esti-

mate will be severely effected. This is because the standard deviation estimate
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weights each point by the square of its distance from the center . The percentile

estimate on the other hand will be completely unaffected by the mismeasured

point.
For exploratory data analysis especially, robustness is essential . Robust

estimators generally maintain from 60% to 90% efficiencies over wide ranges of

data distributions while non-robust estimators tend to have near 100% efficiency

when the data distribution exactly follows the predicted probability density func-

tion, and low efficiency when it does not.

4 . ANALYSIS AND REPRESENTATION OF ONE-DIMENSIONAL DATA

With the preliminaries of the preceeding section out of the way, we are
ready to discuss and evaluate various techniques for analyzing and presenting

data. We will start with univariate or one-dimensional data analysis . That is

when only one measured quantity is considered at a time . We will discuss multi-

variate analysis in the following sections . Univariate analysis techniques are

far more developed than corresponding multivariate techniques . This is espe-

cially true for non-parametric methods . There are many large text books

devoted to statistical techniques for univariate analysis . Thus, there will be no

attempt in this brief report for completeness . The purpose will be to introduce

some techniques not commonly known to high energy particle physicists that

could be valuable tools for analyzing particle physics data, and to relate them to

the more commonly used techniques .

4 . 1 Non-Parametric Univariate Density Estimation

Let Ixi} N=1 be a sequence of independent identically distributed random var-

iables with some unknown probability density function p(x) . We wish to construct

estimators p(x) = TN(x1,x2, . . . xN) for p(x) that depend only on the .observations,
i x IN
I ill=1'

4 . 1 . 1 The Histogram Approach

Histogramming is the most commonly used method in particle physics . In

this method the real line is divided into M regions, r i , (bins, channels) and p(x)

is taken to be constant over each region r i :

p(X) =Pi

	

if xEri ,

	

i=1,M .

Let gi(x) be an indicator function for each region, i .e . ,

j 1 if xer i
gi(x )

	

l 0 otherwise .
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Then we have for our estimator of p(x),

M N

PN~) = N S S gi (x)gi(x) .

	

(14)
i,=1 j=1

	

i

From the central limit theorem one has

and

where

	

ai = a0 / -. T N ,

when ni Npi is large . A more careful analysis shows that for any ni , the

ni = Npi are distributed according to a multinomial distribution

M P ni
pN(n1 ,n2 , . . .nNi ) = N! II I

	

(17)
i=1 n i !

if the total number of events, N, is considered fixed .
4) Note from Eq . 17

E[ni ] = ni

	

(18)

so that the estimator is unbiased. The variance of ni is

so that

Equation 19 shows that pi is a consistent estimator of p i . For pi << 1 (large

number of bins for example) Eq . 19a can be approximated by

V[ni ) - Npi

	

nl .

	

(20)

Since ni is usually not known it seems reasonable to make the further approxima-

tion
ni ce ni

	

(21)

E(Pi] = Pi =

	

P(x)dx
r .. .

	

1

__

	

1

	

(pf-pi)2
pN (pi )

2 x ai
e

	

2 2
ai

V [ni ] = 9Pi (1- Pi)

	

(19a)

V1Pi] = Pi(' - Pi )/N .

	

(19b)
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in Eq. 20, in which case

V [nil

	

ni

or

	

Qlni l =-

	

V[ni ) = Jni .

	

(22)

These approximations, then, yield the common "rule of thumb" result that the
statistical uncertainty in the number of counts in a histogram bin is equal to the
square root of the number of counts .

It can easily be shown that Eq . 17 can be approximated by Eq . 16 for large
ni , with ai given by Eq. 19b.

Although pi is a consistent estimator of p i , pN(x) from Eq . 14 is not a con-
sistent estimator of p(x) (unless by some chance p(x) is exactly piece-wise con-
stant over the chosen bins) . As the total number of counts tends to infinity, the
average variance (mean squared error) of the density estimation

VN = E I JR [P(x) - PN(x)] 2 dxI

	

(23)

does not approach zero .
There are other shortcomings of the histogram approach . The choice of the

binned intervals, ri , and their number, M, is arbitrary . There are no general
guidelines for optimum binning except looking at the result and rebinning . Also,
if constant bin sizes are used many bins may have too few counts while only a
few of the others may contain nearly all of the counts rendering useful density
estimation impossible . Histogramming also fails to use to advantage any con-

tinuity properties of p(x). Since the estimates in neighboring bins are independ-
ent of each other there will be sharp discontinuities in p N(x), Eq. 14, at the bin

boundaries .
These discontinuities (usually termed "statistical fluxations" by physicists)

are normally the result of the variance of the estimation in each separate bin and
do not represent actual structure in p(x). Most probability densities p(x), are
reasonably continuous, and using this information can considerably reduce the
variance, VN , (Eq . 23) of the density estimation .

4. 1.2 The Orthogonal Function Approach
After histogramming, the most common density estimators used by high

energy physicists are orthogonal functions . Let { 4' 1 (x)} M 1 be a set of



orthogonal functions defined on the real line

f O(x)

0
.(x)dx

= SitR

and we wish to estimate p(x) from the data points {x .}N with an estimator of
j=1

the form

[M~

PN(x) = L~ ci(N) 0 i (x) .

	

(24)
i=1

If the actual probability density function, p(x), were known then it is easy to

show that the variance of the density estimation, V N, (Eq. 23) is minimal for

ci = f i (x) P(x)dx = E[Oi l .

	

(25)
R

For non-parametric estimation p(x) is not known so we estimate the integral

from the data sample
N

C1

	

= N

	

O i (x .)

	

(26)
j=1

From the central limit theorem one has (for large N)

[c (N)J =	1		-1/2

((or

- ci )2
PN i

	

2n vN )
e

	

(a i))2

	

(27 )

where

aN = V( O)/N = E [('V - E [x'1)2] /N .

Thus, E[ c i~)) =ci so that the estimate is unbiased and lim aN = 0 so that

it is consistent .

	

N_ M

Combining Eqs. 24 and 26 we have for our density estimate

M N

PN (X)

	

N 2: 1:
~Ni (x.) ~Vi(x)

	

(26)
i=1 j=1

The average variance of the estimate, V N , Eq. 23, is

If (P -pN)2 dx } = Elf (p-P)2dxI +
E I f (P-PN)2dxl

(29)



where

or

VN = f p2 (x)dx -
R
p2 (x)dx +

R

M

P(x) = L~ c i * (x)

	

(30)i=1

The first term on the right hand side of Eq . 29 is a constant independent of the

data so that

VN = f P2(x)dx
- f P^2(x)dx+E[f [P (X) -PN(x)

J
' 2 dh]

R

	

R

	

LR
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M

E (a (i ) )2 -
i=1

	

N

Equation 31 shows that the variance of the estimate is composed of a constant

systematic part and a statistical part that approaches zero as N becomes infinite .

Thus, like the histogramming approach,the orthogonal function density estimator

is inconsistent (unless by some chance p(x) =p(x) for all x - i. e . , either

M = ~, or for finite M, p(x) can exactly be expressed by Eq . 30).

It is no accident that the histogramming and orthogonal function estimators

share this property of inconsistency . Inspecting Eq . 14, one sees that it is just

a special case of Eq . 28 where the orthogonal functions are the indicator func-

tions gi (x) . Note that

f gi(x) gj(x) dx
= 6 ij

and
N n.

C
(N) = N E gi (x .) = N

j=1

	

I

The general orthogonal function approach suffers from generalized analogs

of most of the problems discussed for histogramming . The problem of specific

bin choice and number of bins becomes the problem of number and specific

choice of the orthogonal functions, { O i (x)}M 1 . Also, it may happen that PN(.Y)

is negative for some value of x rendering it inadmissible as a probability den-

sity function (although it still may be quite useful) .

4 .1 .3 The Rosenblatt Estimator
We will now begin to consider some consistent estimators of univariate pro-

ability density . The first is the Rosenblatt or "naive pdf' (probability density



function) estimator . 5 ) This estimator is defined as

PN(x)

	

2h [3N x ~h_(
)

	

PN(x-h)] .

Here PN (x) is the empirical cumulative distribution of the data points defined

as

(32)

0

	

x < x1

PN(x) =

	

i/N

	

xi < x < xi+1

	

(32a)

1

	

x > xN

where the data points are labeled in increasing order of x . From the central

limit theorem one has

fx
lim P (x) = P(x) =

	

p(x) dx .

	

(33)
N ~ N

	

-W

The quantity P(x), defined in Eq. 33, is called the cumulative distribution of

p(x) . From its definition (Eq . 32), one sees that this estimate, pN(x), is just

the fraction of counts that lie in a window of width 2h, centered at x, divided by

- 14 -

This result shows that the estimate is biased with the bias approaching zero,

quadratically, as the window size h approaches zero .
Rosenblatt also calculates the variance of the estimate as

4
E [(PN(x) - P(x))2] = 2

P (x)
hN + 36 Ip"(x) I 2 + 0 (Fn-

+

	

(38)

the window width . If we define an indicator function

4 (x ;x')

	

_
1, if x-h < x' < x + h

(34)

then the probability density estimate can

N

L

0, otherwise

be written as

(c;xi) .
(35)PN(x)

	

2hN i=1

Rosenblatt shows that for all N (not just

E[pN (x)] =
2h [P(x

for N -- cc )

+h) - P(x - h)] . (36)

Expanding this in a Taylor series

2
E [PNx)] = P(x) + hs p" (W) + 0(h4 ) . (37)



This estimator can be made consistent so long as h tends to zero, while the pro-

duct (hN) approaches infinity . Parameterizing the window size as

h = CNa

	

(39)

and choosing a so as to minimize the dominant terms in Eq . 38, one obtains

a=-1/5 as the value that causes the variance to decrease most rapidly with in-

creasing N. A careful analysis shows that the constant should be

C = [9p(x)/2Ip"(x)1 211/5 .

	

(40)

The bias of this estimator (Eq. 37) is easy to understand . For finite window

size the estimator pN(x) (Eq. 32) is an unbiased estimator of the average of the

probability density within the window

_

	

x+h
p(x) = 2h

	

x-h p(x')dx'

If p(x') is nonlinear within the window region, then this average will be different

than the value of the probability density at the center of the window, p(x) . As the

window size approaches zero, or as the probability density approaches linearity,

this effect will disappear, as reflected by Eq . 37.

The expression for the variance (Eq . 38) shows that like histogramming, the

variance of this estimate is proportional to the value of the probability density

(standard deviation proportional to the square root of the probability density) .

Unlike histogramming, however, this probability density estimate is not piece-

wise constant over fixed intervals (bins) and does not suffer from the sharp dis-

continuities that histogramming produces at the boundaries of these intervals

('statistical fluxuations") . This estimator does, of course, suffer from statis-

tical uncertainty as reflected by its variance (Eq . 38) . However, the Rosenblatt

estimator produces a relatively smooth probability density estimate which (at

least in the limit of large sample size) can be shown to be more accurate than

histogramming (see below for finite sample comparisons) .

4 .1 .4 Parzen Estimators

The Rosenblatt estimator is a special case of a general class of density esti-

mators known as Parzen estimators or Parzen windows . 6) Let K(y) be a bounded

absolutely integrable function such that

JR K(y)dy = 1

	

and

	

lim

	

IyK(y)I =0 . (42)
lyl -



Then the Parzen window estimators are defined as

N

pN(x) = h(N) E KCh(N))

The function K(y) is called the kernel or window function . The notation h(N) is

used to explicitly indicate that the scale parameter for the kernel function de-

pends upon the sample size, N. For the Rosenblatt estimator one has

x-xi

	

O(x;x i )
K [h(N)

	

2N

	

(44)

where f(x;xi ) is defined in Eq. 34 . Other possible kernels are : a) the double

exponential function a - ' ; b) the standard normal (Gaussian) function ; c) the

Cauchy function 1/(1+y2 ); and d) sin 2y/y2 . Using procedures analogous to

those for the Rosenblatt estimator, one can show that these estimators are

biased, with the bias tending to zero quadratically as the scale parameter h(N)

approaches zero . Also, the variance of the estimate tends to zero as 1/Nh(N)

for increasing sample size, N. Thus, these estimators are consistent provided

that h(N) -- 0 while Nh(N) - w .

4. 1 .5 k-th Nearest Neighbor Density Estimation

A disadvantage of the density estimators so far discussed is that there are

few general guidelines for choosing the scale parameter (bin width for histo-

gramming, window size, h(N), for Rosenblatt and Parzen estimators) . For

small variance (high statistical precision) the scale parameter should be as

large as possible . For maximum sensitivity to p(x), rapid convergence as well

as minimal bias (high systematic precision), the scale parameter should be as

small as possible . The choice for a scale parameter is usually then a com-

promise between these two competing effects . Ideally, the scale parameter

should depend upon the data . That is, on the basis of a .density estimate the

scale parameter can be changed and the density re-estimated . Although quite

reasonable, this procedure invalidates the analyses that give rise to the statisti-

cal results stated above concerning the bias, consistency and variance of these

estimators, since the analyses all assume that h(N) is a deterministic function

independent of the data. Thus, the statistical properties of such a procedure are

largely unknown. Even further, the scale parameter should probably change for

different values of the variable, x . In denser regions, one can take advantage

of the large number of counts to increase systematic precision by using smaller

- 16 -
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values for the scale parameter . In the sparser regions the statistical precision

is relatively low so that larger values of scale parameter are in order .

The k-th nearest neighbor estimator 7) allows the scale parameter h(N) to

adapt to the data . Density is measured as counts per distance interval (univar-

iate volume) . For the estimators discussed so far, the interval was predeter-

mined (by the scale parameter) and the probability content was estimated by the

fraction of counts that fall in the interval . With the k-th nearest neighbor esti-

mator, the probability content is predetermined and the interval size required to

contain the probability is estimated . The estimation statistic is distance instead

of number of counts . Specifically, let k(N) be a predetermined integer (< N)

and let h(N) be the distance from x to the k-th closest data point to x . Thus,

h(N) is a random variable depending on the data . The number of counts within

an interval of width, 2h(N) centered at x, is k(N) by definition so that the prob-

ability density function estimate at x is

PN ) = k(N)/2Nh(N) .

	

(45)

It Is clear that this estimator overcomes many of the disadvantages of the fixed

interval estimators discussed above . The interval width, h(N), becomes narrow

in regions of high counting density and wider in sparser regions, tending to

stabilize the variance of the estimates .

The k-th nearest neighbor estimator is biased by the same mechanism as the

Rosenblatt estimator . To second order

2
E[PN(x)] = P(x)+ 24 [N, p2

(x)

	

(46)
p (x)

so that (like the Rosenblatt estimator) the bias is proportional to the nonlinearity

of the probability density function and approaches zero quadratically as k(N)/N

approaches zero . Fukunaga and Hostetler 8) show that the variance for this

estimator is

p2 x 	PP (X)
\x /2]

2
VN(x) = k(N) + 24P2(x)

	

N
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(again to second order). From these equations we see that this estimator is con-

sistent provided k(N) is chosen such that

lim k(N) _
N--w

	

(48)
lim k(N) = 0 .
N --w N



These conditions were shown by Loftsgaarden and Quesenberry 9) to be required

for consistency very early and, in fact, the k-th nearest neighbor estimator is

sometimes referred to as the method of Loftsgaarden and Quesenberry .

Minimizing Eq . 47 with respect to k(N), one obtains

k (N) = I 144p6(x) 1/5 N4/5

	

(49a)0
(P"(x)P N

so that

k0 (N) _144p6(x) 1/5

N

	

[n" (X ) N

We see that the optimum number of nearest neighbors depends upon the under-

lying distribution. The smaller Ip" (x) I , the smoother the density function, and

the number of nearest neighbors can be increased for greater statistical pre-

cision. For very nonlinear functions, where Ip"(x)I is large, the bias domi-

nates the precision of the estimate and a smaller number of neighbors should be

chosen to reduce it.

The first term in Eq. 47 is the variance of the estimate about its mean, i. e . ,

2
E(PNZ (x)) - EZ (PN(x)) = k(n

	)

or

	

(49)

v (PN(x ))

	

PN(x)/ k(N)

where p(x) is approximated by pN (x) . Thus, the statistical uncertainty of this

density estimator is proportional to the density rather than the square root of

the density, as is the case for the fixed interval estimators discussed above .

The coefficient of variation of the statistical uncertainty

o ( PN(x))

	

1
C

PN(x)

	

~K(N)

(49b)

is constant for the k-th nearest neighbor estimator . Thus, the fractional statis-

tical precision in the estimate of p(x) is uniform for all x, which overcomes one

of the difficulties mentioned above for the fixed interval estimators .
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4. 1. 6 Discussion

Several techniques for nonparametric one-dimensional density estimation

have been presented in the previous sections and their properties discussed . It

was shown that in the limit of very large data samples the Rosenblatt, Parzen,

and near neighbor estimators are more accurate than the histogramming and

orthogonal function approach . The near neighbor technique was shown to have

the additional advantage of adaptability to the data .

In order to gain insight into the relative performance of these estimators for

sample sizes and distributions commonly encountered with particle physics data,

several Monte Carlo experiments were performed . A random sample of 710

data points was drawn from the probability density function

= r0.5l 1 	2	 +	20	
P(x)

	

\710/ x [1+2(x-0.5)2

	

1+20(x-0.2)2

	

(51)

in the interval 0 < x < 1 . From these data points, an estimate of the prob-

ability density function, p710(x), was obtained using the histogramming approach,

the Rosenblatt estimator, the Parzen estimator with the standard normal den-

sity function as a kernel, and the near neighbor technique . These estimates

were then compared to the true probability density, p(x), of Eq. 51 by

V710 I 1 (p(x) - P710(" dx0

This process was repeated nine times with different random sample points

drawn fromp(x) (Eq. 51), and the expected value E(V710)
was estimated as the

average
V710

from these nine trials . Figure 1 (a-d) shows the results . Here

the p710(x),
as estimated by each method, is plotted for the most "typical" data

sample of the nine trials . This most "typical" trial was taken to be the one

with the four values of V710
(from the four methods) that were closest to the

averages over the nine trials . These averages were :

Table 1
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Method Parameter
Average
V 710

V710 for
"typical" Trial

Histogram h = .012 .064 .064

Rosenblatt h = . 045 .038 .037

Parzen (K=Normal) h = .030 .045 .045

Nearest Neighbor k = 120 .023 .023



For comparison, the true density, p(x), Eq. 51, is superimposed in each figure

as a continuous line over the density estimate, p710(x) .
The parameter values used in each method were those that gave the best

results (minimum V710) for the particular method . The histogramming method

was most sensitive to particular parameter value while the k-th nearest neigh-

bor technique was least sensitive.

The results shown in Table 1 indicate that, for this example, the consis-

tent estimators do provide more accurate density estimation than histogram-

ming. The variance of the most accurate estimator, the k-th nearest neighbor,

is nearly three times less than that for the histogram .

Although only a single example, Figure 1 illustrates the various different

properties of these estimators . The bias of the Rosenblatt and Parzen estima-

tors is especially apparent in the center and at the right shoulder of the peak .

It is in these two regions where p(x) is most nonlinear. As predicted by Eq . 37,
those regions where the second derivative is large and negative (center of peak),

p710 underestimates p(x), whereas when it is large and positive (right shoulder),

P710 overestimates p(x) . The k-th nearest neighbor estimator is also biased

from this same mechanism . However, .. as predicted by Eq . 46, the bias will be

small in the peaked region since the bias term is proportional to p"(x)/p2(x) and

p(x) is very large in this region . The bias is larger in the right shoulder region

where p(x) is not large enough to overcome the affect of p"(x).

The k-th nearest neighbor estimate is seen from Figure id to become poor

near the boundaries . This is a general property of this estimator . When

straightforwardly applied, the near neighbor estimator will always under-

estimate the density whenever the interval containing the k neighbors is adjacent

to a boundary edge. In this case, the actual interval size is h(N) + B where B is

the distance from the evaluation point to the boundary . Since this is less than

2h(N), which appears in Eq. 45, pN (x) will have a strong negative bias. One

could try to remedy this by using the actual interval size, h(N) + B, in place of

2h(N) whenever the interval contains a boundary edge . This, however, also

causes the estimate to be biased with the bias being proportional to, and having

the opposite sign of, p'(x) in the interval .

A good boundary strategy (and the one used in Figure Id) is to revert to a

variable interval Rosenblatt estimate . That is, whenever the k-th nearest

neighborhood contains a boundary a distance B < h(N) from the evaluation point,

x, then the number of points, nB' in the smaller interval of width 2B centered
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at x, is determined, and the density is estimated as

nB

PB

	

2NB

As seen in Figure id, this strategy removes most of the bias . The variance of

the estimate, however, becomes relatively large for those points very close to

the boundary edge .
The Parzen estimate (Figure' lc) is seen to be the smoothest, while the

histogram (Figure la) is least smooth . The relative accuracy of the estimates,

as reflected from visual inspection of Figure 1, appears to correspond to the

relative values of E[V710 j given in Table 1 . That is, the k-th nearest neighbor

method gives the best density estimation, followed by (in order) the Rosenblatt,

Parzen and Histogram methods .

Although the consistent estimators (especially the nearest neighbor) are

generally more accurate than the histogramming approach, they are also com-

putationally considerably more expensive . A histogram can be made with a

single pass over the data sample so that the number of computations is simply

proportional to the sample size N . Also, the whole sample need not reside in

memory at one time. The most computationally efficient method for computing

the Rosenblatt, Parzen and nearest neighbor estimates is to first sort the data

points . This requires computation proportional to Nlog2 N. After sorting, these

estimates can be calculated with computation simply proportional to N . Thus,

these estimators require computation proportional to N log2 N. Also, all of

the data points must be simultaneously in memory for the sorting .

The histogram's computational advantage is probably largely responsible . for

its popularity. Another reason is historical familiarity. Physicists usually

learn by experience how to intuitively interpret histogram results accurately,

although they seldom study the statistical foundations and approximations

that lead to their techniques . Similar techniques and intuition can be learned

just as well for the other density estimators . The most common objection to the

consistent estimators, discussed above, is that the resulting estimation is rela-

tively smooth and does not exhibit the sharp discontinuities ("statistical fluxua-

tions") that are present in histograms . Statistically, this smoothness property

is an asset, not a liability . It is this relative smoothness that makes these esti-

mators more accurate than the histogram and renders them consistent
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estimators . (The nearest neighbor estimator gains additional accuracy, of

course, from its adaptability . )

Since histogramming is the least expensive and most popular density esti-

mator, the following sections discuss some techniques for making the histogram

a more effective tool for density estimation and data presentation .

4 .2 Smoothing Counted Data

For all of the density estimators discussed in the previous sections, the

variance of the estimate (statistical uncertainty) came from two sources . The

first source was a systematic one . This systematic uncertainty gives rise to

the inconsistency of the histogramming and orthogonal function approaches and

the biases of the Rosenblatt, Parzen and k-th nearest neighbor estimators . The

second source is purely statistical in nature and arises from the sampling flux-

nations inherent in the random nature of the data. Associated with each of these

estimators is a scale parameter (number of histogram bins, number and type of

orthogonal functions, window size, h, for Rosenblatt and Parzen, and number of

nearest neighbors, k). As the value of this scale parameter is varied, the

amount of variance contributed from the two sources has opposite behavior .

Those values that give small systematic variance usually give large statistical

variance and vice versa. Thus, the choice of parameter value is a compromise

between these two effects and there is usually an optimum parameter value for

each specific problem where the sum from two sources is minimal . The scale

can also be influenced by considerations outside the data . For example, if each

data point has associated with it a measurement uncertainty, then it will make

little sense to make the scale parameter much smaller than this uncertainty .

If it is possible to reduce the statistical variance by some external means,

then the scale parameter can be adjusted to further reduce the systematic uncer-

tainty, resulting in a much more accurate density estimation. This is the pur-

pose of smoothing. Smoothing makes the assumption that the true probability

density, p(x), is reasonably continuous and does not change value dramatically

for small changes in x. Thus, any such rapid changes in the estimate, p N(x),

must be caused by the statistical fluxuations in the estimation procedure . By

taking overlapping averages of successive estimates, one hopes to dampen these

fluxuations while preserving the true shape of p(x). In the language of Fourier

transforms, the assumption is that the Fourier transform of pN(x), is composed

of high frequency components resulting from the statistical fluxuations, and

lower frequency components resulting from the true probability density p(x) .
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The problem of smoothing is to filter out the high frequency components leaving

the lower frequencies which are representative of the true probability density .

[In fact, one smoothing algorithm simply Fourier transforms p N(x), attenuates

the high frequencies, and then transforms back to the original coordinate repre-

sentation . ]
Smoothing techniques have been extensively studied and applied in many

fields to all kinds of data (not just counted data), and there are many smoothers

described in the literature. Each of these smoothers has special properties and

applications for which it is most effective . Only one type of smoother will be

discussed here ; the nonlinear, robust smoothers suggested by Tukey
. 10)

Although these smoothers were not specifically designed for smoothing counted

data (they are probably more robust than is necessary), our experience indicates

they seem to work quite well for that purpose .' They are also especially easy to

understand and implement .

These smoothing algorithms have three components ; running medians, run-

ning means, and quadratic interpolation . Consider a sequence of observed

values {y1} n 1 , and it is desired to produce from them another sequence of

values {zi}i=1 which will be the smoothed representation of the original set .

Running medians of three yield the following results :

1) monotonic sequences are unchanged .

2) points that are larger or smaller than both their adjacent points will

be moved inward (i . e . , set equal to the closest adjacent point).

Next, running medians of five are applied to the results of the running

medians of three. That is,

zi = median (zi-2' 'i-1, zi , zf+l' zi+2 ) .

	

(5s)
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The first ingredient of the smoothing process is running medians of three . That

is
(54)zi = median (yi-1 , yi, yi+l )

For the end points, we take

zl = median (3z2 - 2z 3 , y1 , z2 )

(55)

za = median (zn-1' yn , $zn-1 -2zn-2 )



For this situation, there are two special cases, the end points and next to end

Running medians of five yield the following results :

1) monotonically rising or falling sequences are unchanged .

2) flat tops or bottoms of length three or greater are unchanged .

3) tops and bottoms (compared to two adjacent values) of length less than

three are moved inward.

The final step in running medians is to apply another running medians of

three to the results of the running medians of - five step. In this case, however,

the end points are simply copied . This part of the smoothing procedure (running

medians) is called "353" for running medians of three, followed by running

medians of five, followed by running medians of three . The 353 running medians

procedure goes a long way toward smoothing the data . It, however, still has

two shortcomings . First, rising and falling monotonic sequences are unaffected .

This is not always good . A sequence can be monotonic and still not be considered

smooth. As an example, consider the sequence

1 3 4 7 66 72 74 .

A second shortcoming of the 353 procedure is that it clips or flattens peaks and

valleys to leave flats three values long . This gives the smoothed result an un-

natural appearance of having a discontinuous derivative .

This latter deficiency can be remedied by quadratic interpolation . One

looks for three adjacent equal values surrounded by values on each side that are

either both lower or higher than the flat value . For each such occurrence, a

quadratic fit is made through the two points adjacent to the flat, and the point in

the flat next to the adjacent point with the value farthest from the three flat
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points . The next to end points are evaluated as medians of three :

Z2 = median (z1 , z2 , z3 )

(57)
zn-1 = median (z

n-2'
za-1 , zn)

The end points are treated as medians of one ; that is, simply copied :

z1 = zl

(58)
zn = zn

.



value. The other two points in the flat are then given values corresponding to

this quadratic .

The monotonic discontinuity problem can be dealt with by Hanning or running

means (averages)

with simple copy

1

	

1

	

1
z1 = 4 zi-1 + 2 z1 + 4 zi+1 ' (59)

zi = zi

	

zn = zn

	

(60)

for the end points .

This smoother is referred to as

353QH

where 353 represents the running median block, "Q" stands for the quadratic

interpolation step for the three-flats, and "H" refers to the Hanning or running

averages step. ibis smoother (like most) follows straight lines rather well but

tends to over-smooth (cut off) real peaks and valleys or any region with large

second derivatives . This defect can be greatly reduced by "twicing" . Consider

the residuals after the smooth, defined as

ri

	

Yi - z1

	

(61)

where {yi}i=1
is the original data sequence and the set {zi}i 1 is the resulting

sequence from the 353QH smoothing procedure . The sequence {zi}i
1

is

referred to as the "smooth", whereas the sequence {r i}i1 is referred to as the

"rough". Twicing consists of smoothing the rough (using 353QH procedure) and

adding the result to the previous smooth . That is,

z = smooth (y) + smooth (r)

or

	

(62)

z = smooth (y) + smooth [y - smooth(y)]

The complete procedure, including twicing, is labeled

353QH, twice .

One can imagine many variations on this basic smoothing procedure . Beaton and

Takey
11) suggest

3G53QH, (more than twice)
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as a useful alternative . Here, "G" is a conditional Hanning ; if the signs of

three adjacent values alternate, the middle value is replaced by the Hann of all

three; otherwise, the value is unchanged . Other (simpler) algorithms that have

been successfully employed are 53H, twice and 95H, twice .

As indicated above, one might consider "thricing" or even more repeated

applications of twicing. In fact, one could invision a variable number of re-

peated applications of residual smoothing and adding until the remaining resi-

duals meet some terminating condition .

As mentioned above, this particular type of smoother is not specifically

designed for counted data . It was designed for more general situations where

the fluxuations can be much more severe than those arising from purely statis-

tical mechanisms, and where there is no information on the expected sizes of

the fluxuations . In particular, it treats all similar sized fluxuations on an equal

footing. For counted data, this is not desirable . For example, in histograms

one knows that the statistical fluxuations are proportional to the square root of

the number of counts, so that the smoother should allow larger residuals in high

count regions and smaller residuals for smaller number of counts .

For histograms, this problem can be overcome by transforming the density

estimate to its stable variance representation. That is

Yi = f(PN(xi))

	

(63)

where the function f(u) is chosen such that the expected statistical variance of y i

is constant. From Eq. 22, we see that

f(u) = .Ju .

	

(64)

Thus, if we input to the smoother

Yi = PJ N(xi )

statistical theory tells us that the statistical fluxuations are expected to be the

same for all the y, 's and they should be so treated by the smoother . To obtain

the smoothed density estimate, we square the smoothed output from the

smoother

smooth (PN(xi)) = zi
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For the other density estimators the solution is not straightforward . Since

for these estimators the estimates overlap, the relative fluxuations have a more

complicated dependence .

The stable variance representations for the Rosenblatt and Parzen estima-

The statistical fluxuations for these estimators are probably more constant in

their stable variance representations than in their original representations .

However, these estimators already provide a reasonably smooth probability den-

sity estimate so that less would be gained in applying smoothers to their results .

Figure 2a shows a histogram of the data of Figure 1, using 170 instead of

40 bins . Comparing Figures la and 2a, one sees that the 170 bin representation

is clearly less accurate . The increase in statistical variance for the 170 bins

overwhelms the decrease in systematic variance . Figure 2b superimposes over

the 170 bin histogram, the result of applying the smoothing algorithm discussed

above . The smoothed representation is clearly much more continuous than the

unsmoothed histogram . Figure 2c plots the square root residuals between the

smooth and the original data. These residuals are the differences between the

square root of the original histogram and the square root of the smooth . As

discussed above, these residuals are expected to have constant size . A value of

+0.5 for a root residual corresponds to one standard deviation (values of 11

correspond to two standard deviations, etc . ). Inspection of Figure 2c indicates

that the smooth is indeed a reasonable representation of the original data .

Figure 2d compares this smooth to the true probability density function, Eq. 51,

from which the data were generated . The correspondence is seen to be quite

good, especially in the region of the peak . To obtain a quantitative comparison,

the average variance, E[V710)' (Eq. 52) was computed for this density estimate

(smooth of 170 bin histogram) using the same nine trials as for the four other
density estimators . The result was

E[V710] =
.035 .

Comparing this result to those presented in Table 1, we see that this estimation

procedure is more accurate than all but the k-th nearest neighbor technique .
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tors are (from Eq. 38)

f(u) = fu (66)

and for the k-th nearest neighbor estimator (from Eq . 47)

f(u) = log(u) . (67)



Comparison of Figure 2d to Figures lb-d shows why . Although the smooth has

a little more statistical variance than the others, it has very little of the bias in

the regions of high second derivative, p"(x) . This is mainly due to the twicing

component of the smoother . These results also indicate that the main ingredient

of the Rosenblatt and Parzen estimators that makes them more accurate than

histogramming is their relative smoothness . This is also true for the k-th

nearest neighbor estimate but it has the additional ingredient of adaptability to

the data, yielding a further reduction in the variance .

The main advantage of the smoothed histogram estimate is its computational

economy. Since it operates directly on the histogram and requires no additional

information from the data, its computational requirements are very nearly the

same as for the histogram . The increase in computation required for the

smoothing operation is very small and is independent of the data sample size .

Thus, smoothing gives the best of both worlds : the computational economy of

histogramming and accuracy comparable to the consistent estimators .

There is one disadvantage to this approach . Namely, there are no formulas

for the variance of the estimate analogous to Eqs . 22, 38 and 47 for the other

estimators . Thus, one has to essentially gudss at the statistical uncertainty of

this estimate . A very crude upper limit is, of course, provided by the variance

of the histogram estimate before the smoothing . Comparing Figures 2a and 2d,

we see that typically the statistical uncertainty in the smooth is a small fraction

of that for the unsmoothed histogram .

An important aspect of smoothing is inspection of the residuals, as in

Figure 2c. If these residuals tend to be large or have a systematic trend, then

one has less confidence in the smoothed result . If this is the case, one could

again smooth the residuals and add it to the data smooth (i.e . , thricing). This

process can be repeated until there is no change in the resulting smooth (i . e . ,

the smooth of the remaining residuals has a constant value of zero) .

4. 3 Parametric Estimation

As described earlier, in parametric (model dependent) analysis the data

probability density function, p(x), is assumed to be a member of a parameter-

ized family of distributions

p(x) = p(a ;x)

where a is the set of parameters that specify the particular member of the

parameterized family . The problem of density estimation becomes that of
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estimating the parameter values from the data distribution, i . e . ,

PN(x) = P(aN. x)

	

(68)

where aN are the estimated values of the parameters a. As described in an

earlier section, one constructs a set of statistics

Y = p (xl ,x2 , . . . xN)

which are random variables with joint probability density function p N(a, YN)

that (for a good estimator) is sharply peaked near Y N =a.
The particular set of values :F= a, resulting from a given set of x's (exper-

iment), is called an estimate ofa. Statistics used for estimation are called

estimators .

There are a wide variety of estimators useful for one-dimensional data .

The technique described in Eqs . 5-10 is called the method of moments . The

most highly promoted estimator is called maximum likelihood . For this esti-

mator one forms thelikelihood function

N _
LN(a, x1. . .xN) = 11 P(a . xl)

	

(69)
i=1

and chooses as an estimate for!, the set of values a, that maximize

LN(a, x1 . . .xN) with respect to a. This can be expressed as

a = max1 [LN (a , x 1 . . .xN)) .

	

(70)
a

or as the solution to the set of simultaneous equations

8LN
(a', x1 . . .xN ) = 0 .

	

(71)-y
8a

Usually, in practice, one uses as the estimator

wN(a, x1 . . .xN) = log LN(a, x 1 . . .xN)

N

log p(-a, xi)
i=1

= N Ex [log p(a,x)J

	

(72)
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Since the logarithm is a monotonic function of its argument, the estimates will

be the same . There are numerous plausible arguments for why the maximum

likelihood estimator should be good but the essential results are :

1) the likelihood estimator is consistent .

2) the likelihood estimator is asymptotically efficient . That is, as N - oo

the likelihood estimate has minimum possible variance . 3)

3) Asymptotically (again as N - 00), one has

P N(a, a) = L(a :a) =

	

~2

	

e
-1/2 (a-

a)
~-1( a- a) (73)

(27r)
m IEI

i. e. , a has a normal density distribution centered at a, where

limit (trace(E -1)) = 0 .

N -- co

It must be emphasized that the maximal efficiency of the likelihood estimator

is purely an asymptotic property, and for finite N, there may well be other

estimators that are more efficient for particular problems . It should also be

kept in mind that the likelihood estimator is biased for most problems . (Since
the estimator is consistent, the bias must approach zero as the sample size

increases toward infinity . )

For large sample size, N, the empirical likelihood function can be used to

estimate the variance of the estimate as well as the mean. Assuming the

sample size is large enough so that Eq . 73 is a good approximation to pN(a; a),
and that a is a good approximation to a, one can estimate E as

[82w _
E-1 =

	

(a, Z )

	

(74)
8Y

	

Y= a
This equation is commonly used in particle physics to determine the variance of

likelihood estimations . It should be noted that this procedure is an approxima-

tion on two counts . First, and most important that the empirical likelihood

function obtained for a particular experiment, L N(a; x1. . .xN), is a good

approximation to the true likelihood function L N(a;
x 1 , • • xN) (i. e . , the one that

would be obtained by averaging over all possible experimental results), and

second, that the likelihood function has the multivariate normal shape given by

Eq. 73 .
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Besides the method of moments and the maximum likelihood method, one

can construct estimators by first performing a nonparametric density estima-

tion, pN(x), (as discussedd in the previous sections) and then forming a dis-

similarity measure between the nonparametric estimate and the parametric

representation

d(a) =
J

D[PN (x), P(a, x))

	

(75 )fR
Some examples of dissimilarity functions are :

or

D[PN(x) > P(a,x)) = IPN(x) - P(as x)I
R

	

(76a)

~ PN(x)-P(a ;x)I f
D[PN(x), P(a,x)] =		w		(76b)

JVN [PN(x)1

where f is greater than zero . The quantity VN[pN (x)] is the variance of the

density estimate at the point x . The estimate for the parameters, a , is taken
a

to be those values, a , that minimize the dissimilarity measure between the

nonparametric density estimate and the parameterization, i . e . ,

a = min 1 [d(0)] ,

	

(77a)a
or is the solution to the set of equations

ad a = 0 .

	

(77b)
as

As an example, if one chooses histogramming for the nonparametric den-

sity estimator, p N (x), and Eq . 76b with 1 =2 as the dissimilarity measure, then

from Eqs . 75, 14, 15 and 20 one hasM

	

[n . - n. (a)]2

d(a) = S 	1 1		(78)
i=1

	

ni (a )



where M is the number of bins or channels, ri , and

and

ni = N

ni (a) = N

f PN(x) dxri

x

f p(a' x) dx '
ri
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This, of course, is the familiar least squares estimator used extensively

in particle physics data analysis . Another dissimilarity measure often used

with the histogramming density estimator is

M

d(a) _ - log(N!) E N pi log pi -)- log [ (NP1 )!] .

	

(80)
i=1

This dissimilarity measure is often referred to as the log binned likelihood

method . However, it is important to distinguish it from the actual maximum

likelihood method of Eqs . 69-72, which does not require a preliminary non-

parametric density estimate .

Other nonparametric density estimators, as well as other dissimilarity

measures, may be used . Since the consistent estimators (Rosenblatt, Parzen,

k-th nearest neighbor) tend to be more accurate than histogramming, para-

metric estimation using them will also tend to be more accurate (have smaller

variance). The best value for the power f (or more generally the choice for a

dissimilarity measure) depends on the particular problem at hand . It can be

shown that if PN(x) has a normal distribution centered at p( -a, x) with variance

VN [p(x)], then Eq. 76b with R=2 (i. e . , least squares) is optimum . For other

distributions of pN(x) other dissimilarity measures are best . For example, if

pN(x) has a square window function distribution centered at p(a,x) with width

w (x), then 1= >o would be optimum, i . e . ,

IPN(x)	- P(a, x)j
d(a) = max	w(x)		(81)

Generally, the smaller the tails of the probability distribution of p N(x) about

p(a,x), the larger the optimum value of f becomes . On the other hand, the

higher the value for R the less robust the estimate becomes . As mentioned



earlier, least squares (f=2) is already a very non-robust estimator so that high

values off (including f=2) should be used with great care .

Estimators formed by constructing dissimilarity measures between non-

parametric density estimates and the parameterized density, are usually much

less efficient than the more direct methods of moments and maximum likeli-

hood. This is because of the two-step nature of the estimation . First, the non-

parametric density estimate must be made, and then this nonparametric estima-

tion is used as input for a parametric estimation . Both stages involve statisti-

cal uncertainty . Since nonparametric procedures generally tend to have low

efficiency, the first stage tends to contribute most heavily to the statistical

uncertainty of the total estimate . Also, for nonparametric density estimation

one must choose the value of the scale parameter and there are generally no

good guidelines for this . Finally, there is the additional statistical uncertainty

introduced by the second (parametric) stage of the estimation procedure, as

well as further arbitrary parameters associated with the choice for a particular

dissimilarity measure .

The advantage of this two-stage procedure is that it provides more infor-

mation. Namely, the actual value of d(a) at the solution can be used as a

measure of the goodness-of-fit of p(a x) to the data . Goodness-of-fit testing

is discussed below under hypothesis testing . The direct parametric estimators

that do not involve a preliminary nonparametric density estimate cannot be used

for goodness-of-fit testing. However, this is no real disadvantage since one can

use them for the estimation procedure and then do a subsequent goodness-of-fit

test.
Another advantage of the two-stage procedure is computational economy .

Usually these statistics (especially when histogramming is used) involve con-

siderably less computation than the direct parametric estimators .

5 . A MINI-INTRODUCTION TO HYPOTHESIS TESTING

The purpose of hypothesis testing is less ambitious than density estimation .

For the latter, the attempt is to infer from the random data sample the actual

probability density function from which it was drawn . For hypothesis testing,

one wishes to use the random sample to simply confirm or reject a precon-

ceived notion (theory) concerning a property of p(ic), or to distinguish between

two or several possible properties .
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Like estimation, hypothesis testing divides into the two subclasses, para-

metric and nonparametric . In parametric, p(x) is assumed to be a member of

a parameterized family of density distributions p(' a ; x). However, instead of

trying to estimate the most likely values for a as in estimation, the purpose is

to accept or reject the proposition that a has a preconceived value, or to dis-

tinguish between several alternate preconceived values . In nonparametric hypo-

thesis testing, no parameterized family is assumed for p(x) and the hypotheses

concern general properties of p(x) that are formulated independently of its

specific functional form .

One of the most common hypotheses to be tested is that p(x) is a particular

function of

	

p(x) =f(x) . This preconceived notion is to be tested against the

notion that p(x-) # f(x) . That is, the hypothesis p(x) =f(x) is to be tested against

all possible alternate hypotheses . This type of hypothesis testing is called

goodness-of-fit testing and is discussed in the next section .

This section deals with using the data points ~xi IN 1 to test a specific

hypothesis, H0, (referred to as the null hypothesis) against a specific alternate

hypothesis Hl . As in estimation, one constructs a statistic

Y = 4' Or1,z2	
XN)

	

(82)

from the data points . This statistic is a random variable with probability den-

sity pN0)(Y) if the null hypothesis, H0, is true and p(l)(Y) if the alternate hypo-

thesis, Hl, is true . The design goal is to choose a statistic such that p(0) (Y)

is as different as possible from PN ) (Y) for the given two hypotheses . Specifi-

cally, the overlap

R f p(0) (Y) p(1) (Y) dY

should be as small as possible . Here R is the range of all possible values of Y .

Statistics used for hypothesis testing are called test statistics . Clearly a value

of Y, for which p(0) (Y) is large while p(l) (Y) is small, is evidence for the

truth of H0 and vice versa . In hypothesis testing, one divides the test statistic

space, R, into two regions : a region of rejection, r, and a region of acceptance,

R-r, such that HD will be regarded as false (Hl true) if the value of Y is in r,

and H0 will be regarded as true (Hl false) if the value of Y falls in the region

R-r. The quantity

aN = f pN0)(Y)dY
r
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is called the level of significance or size of the test. It is the probability that

the null hypothesis, H 0 , will be declared false when it is, in fact, true .

Rejection of H 0 when it is true is called loss or error of the first kind. The

quantity

PN = J

	

p (1) (Y) dY

	

(85)
R-r

is the probability that H 0 will be declared true when it is, in fact, false (H 1 is

true). This is called contamination or error of the second kind . • The quantity

1 - PN = J pN) (Y) dY

	

(86)
r

is the probability that H 1 will be declared true when it is, in fact, true, and is

called the power of the test . Clearly the rejection region, r, should be chosen

so that for a given size, a N , the contamination, PN, is as small as possible

(power 1-RN as large as possible). The experimenter usually decides what loss,

aN , he can tolerate and then chooses a test statistic and rejection region so as

to maximize the power, 1-(iN' of the test. Clearly, to be able to do hypothesis

testing, the probability density functions pN0) (Y) and pN) (Y) must be known or

calculatable for the chosen test statistic .

Consider the following very simple example

H0 : p(x) is a normal distribution with mean µ=0

Hi : p(x) is a normal distribution with mean µ=p1 (where µl > 0) .

A good test statistic for this problem is
N

N L.i xit =		i-i		(87)
N

	

N

	

1/2

[N

	

xi N
1

	

x)
2 _ ~1

which is known as a t-statistic . The probability density function pN0) (t) if the

null hypothesis, H0 , is true can be shown to be a Students-t distribution with

(N-1) degrees of freedom

(0)		P(N/2)	1	
PN (t) -

	

(

N	i

	

2

	

N/2
Nor r ,2	)

	

1 + N (N-i)
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while for the alternate hypothesis, p (i)(t) is a similar Student's-t distribution

centered at µ l . For large N (> 100), the Student's-t distribution tends toward
the standard normal distribution so that

pN )(t) =	1 	e-t2/2N

	

(N > 100)
27rN

(1) 	1 	-(t-A l)2/2N
pN (t) =

	

e
2rrN

If the experimenter is willing to tolerate a loss of a, then the best rejection

region is defined as

rN(a) < t < W

where rN(a) is the solution to

a

	

~	1 	et2/2N dt
frN (a)

	

2irN

or

rN(a) = 4 -1 (1 - a)/JN

	

(88b)

where dD-I (x) is the inverse of the standard normal error function . The power

of the test is

or

(t-µ 1 )2
1 -

PN
=

J
a0

	

1

	

e- 2N

rN(a)

	

27rN

I -RN = 'D [ v/-N-(µ,- r N(a))1
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dt

	

(89a)

(89b)

where 4'(x) is the standard normal error function .

Like estimators, test statistics are rated by several qualities : consis-

tency, efficiency, bias and robustness .



1 . Consistency

A test is said to be consistent if the power, 1 - (3N, approaches unity as N

approaches infinity,

lim (1 - RN) = 1 .

	

(90)
N- M

That is, the ability to distinguish between the two hypotheses becomes better

with additional data for very large samples . Note that from Eq . 89 we see that

the t-statistic (Eq. 87) is consistent .

2 . Bias

A test is said to be biased if the probability of accepting the null hypothesis

is greater when it is false than when it is true . Conversely, a test is said to be

unbiased if the probability of accepting the null hypothesis, H 0 , is greatest when

it is true . From Eq . 89 we see that the t-statistic (Eq. 87) is unbiased . As

for estimators, a test can be both biased and consistent since bias is a property

of test statistics for finite N, while consistency refers to their properties for

infinite sample size .

3 . Efficiency

The efficiency of a test refers to its power for given hypotheses and level of

significance . A test is said to be efficient or most powerful if it has the largest

power possible for a given size, a, and given hypotheses, H 0 and H1 . A test

that is most powerful for all alternate hypotheses under consideration is called

a uniformly most powerful test. The efficiency of a test is the ratio of its power

to the most powerful test in the given situation .

4 . Robustness

Robustness for test statistics has similar meaning as for estimators .

Namely, the effect on the power of the test when the underlying density distri-

bution of the data deviates from a priori assumptions . Tests that suffer great

loss of power when the density distribution p(X), is different than that hypothe-

sized are non-robust, while those that maintain reasonable power over a wide

range of density distributions are robust . Clearly, robust estimators are re-

quired for nonparametric applications where p(x) is not known .

The t-statistic (Eq. 87) is uniformly most powerful for all alternate hypo-

theses µ =p 1 (i . e . , for all t 1 ) provided that the distribution of the data points,

p(x), is normal. However, if the data points are not normally distributed then

this test can become very inefficient . For example, if p(x) is a Cauchy
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distribution

p(x) =

	

1 2

	

(91)
1+x

then this test has zero power . Thus, the t-statistic of Eq . 87 is not robust . It
is possible, however, to formulate robust analogs of this t-statistic that have

reasonable efficiency for all p(x) .

5 .1 Goodness-of-fit Testing

Goodness-of-fit testing is probably the most common type of hypothesis

testing in high energy particle physics . Here the null hypothesis, H 0 , is that

the probability density function of the data is a specified one. That is,

H0 :Pg)=r )

where f(x-) is explicitly given. Here a specific alternate hypothesis is not given .

Or alternatively, one can consider the alternate hypothesis to be

H 1 P(x) = Jg(X),

where Jg(x)l is the set of all possible alternatives to f(x) . Either way the alter-

nate hypothesis is not explicitly specified so that it is impossible to calculate a

contamination or power of the test .
As in regular hypothesis testing, goodness-of-fit testing starts with choosing

a test statistic,

Y =

	

x2 , . . . xN ) .

The test statistic space, however, is not divided into an acceptance and rejection

region since there is no specific alternate hypothesis to accept in favor of the

null hypothesis . It should be noted that since the alternate hypothesis is the set

of all possible alternatives to H 0 , there is surely one out of the infinity of alter-

natives that will always fit better than H0 . A trivial example is

N

fpC) =

	

E 6(X-Xi)N 1=1

where
1Xi(

i= 1 are the actual data points .
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In goodness-of-fit testing one calculates the probability under H p , that the

test statistic would have a value less probable than the value actually observed

from the data . This is known as the level of significance for the test . For

example, if the test statistic distribution under H 0 , p (0) (Y), decreases for large

increasing Y, then

aN(T) = fWpN6) (Y) dY
T

would be this level of significance for a given value of T . This quantity is

usually referred to as the "confidence level" in particle physics . In most other

scientific fields it is known as the "P-value" .

Clearly, the probability density of the test statistic, p (O)(Y), under the null

hypothesis must be known or be calculatable from the hypothesized data prob-

ability density p(z) =f F) . For some tests the probability distribution, p (O) (Y),
of the test statistic is independent of the data distribution and depends only on

the number of data points, N, and the truth of the null hypothesis . These are

called distribution free tests . Most of these distribution free tests are distri-

bution free only in the limit of infinite sample size . For this case, the distribu-

tion of various types of averages will be normal from the central limit theorem

independent of the underlying distribution of the data . However, the actual

sample size, N, required for the asymptotic approximation to be valid does

depend upon the underlying probability density distribution of the data .

Univariate goodness-of-fit tests are constructed by formulating a dissimilarity

measure between a nonparametric density estimation, p N(x), of the data and the

hypothesized functional form p(x) = f(x) ,

d(x1x2 . . .xN ) = f D (PN(X ; x1x2 . . .xN), f(x)) dx .

	

(93)
R

Two of the most common dissimilarity measures are given by Eqs . 76a and 76b .

This procedure is identical to the procedure described earlier for formulating

parametric estimators from nonparametric density estimates . Here, however,

the objective is to determine the goodness-of-fit from the value of the dissimi-

larity, d, rather than trying to find the values of parameters that minimize it .

It is clear that any goodness-of-fit statistic can also be used as an estimator by

simply adjusting parameters of f(x) to achieve the best fit (i . e . , minimum dis-

similarity, d). However, as discussed in the earlier sections, these are seldom
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the best estimators for a given problem . On the other hand, there are no

goodness-of-fit analogs to the method of moments and maximum likelihood esti-

mators . That is, the value of the likelihood function at its maximum gives no

information as to goodness-of-fit .

Goodness-of-fit statistics of the form given by Eq . 93 tend to be distribution

free for large sample size because the distribution of pN(x) about p(x) is deter-

mined mainly by the central limit theorem (law of large numbers) since the
pN(x) are local averages .

The most common goodness-of-fit test statistic used in particle physics is

the Pearson's X 2 test, whose test statistic is given by Eq . 78,. with

ni = N
J

f(x) dx .
ri

(94 )

As discussed earlier, this statistic uses histogramming as the nonparametric

estimator and a scaled Eucledian distance type measure (Eq . 76b with F=2) for

a dissimilarity measure . For large ni = Npi , the central limit theorem requires

that ni be normally distributed about its center ni (under H O) with variance ni .

Thus, each term in the sum is a random variable with a standard normal distri-

bution. It can be shown that a random variable which is the sum of squares of

M normally distributed random variables has the probability density distribution

M/2-1

	

2

pM)(X2)

	

2r(M 2) (2

2

)

	

a-X /N '

	

(95)

This probability density distribution is known as a chi-square distribution with

M degrees-of-freedom . For a given value of X 2 , determined from an experi-

ment, the significance level or p-value is simply given by

a hi(X 2 ) = J 2, pM) (X 2 ) d(X 2 )

	

(96)
X

It is important to emphasize that the X 2 test is very non-robust. It is clear

from Eq. 78 that those terms in the sum, for which ni is very small, will domi-

nate. Thus, for these terms a very small departure from the assumptions that

lead to Eq. 95 will give rise to large departure in the results . Specifically, if

the expected number of counts ni = Nfi is small, then the central limit theorem
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cannot be applied and the residuals

ni -ni
ri =

- 4 1 -

(97)

will not have the standard normal distribution . For this case, the probability

distribution for the test statistic, pM )(X 2 ), deviates considerably from the X 2

distribution (Eq. 95) .

The precise distribution for ni = Npi is given by Eq. 17. This distribution

is reasonably well approximated by a normal for ni 2 5 . Therefore, if all of

the bins have at least five expected counts, Eq . 95 can be accepted as a good

approximation. If this is not the case, several remedies are possible . Tuke 13)

suggests replacing the observed number of counts, ni , by

s i = 2 + 4 (ni )

	

(98a)

and the expected number of counts, ni , by

s i = 1 +4 (ni ) .

	

(98b)

These quantities are called "started counts" . The motivation for using these

started counts, is that if the "raw counts", nil have the distribution given by

Eq. 17 then the s i will be much more nearly normally distributed than the raw

counts . The reason for using a smaller start for the expected number of counts,

is due to the asymmetry of the distribution of n i (Eq. 17) about nI. This dis-

tribution is skewed towards lower number of counts . For example, if one count

is expected (ni = 1) then zero counts (ni = 0) will be observed twice as often as

two counts (n i =2). (In fact, zero counts will be observed as often as

one count!) Giving the expected number of counts a smaller start helps compen-

sate for this skewness so that s i is more nearly symmetrically distributed about

si as required by a normal distribution . Using started counts (s i and

	

instead

of raw counts (ni and nt) allows Eq . 95 to remain a good approximation for

smaller sample sizes .

Another method for dealing with small sample size is to use the log binned

likelihood dissimilarity measure given by Eq. 80. It can be shown that -2d has

(like the X 2 test statistic) a X 2 distribution with M-1 degrees of freedom for

infinite sample size. However, it is generally felt that this property remains a

good approximation for smaller sample size than with the X 2 test statistic .



Other goodness-of-fit tests can be constructed that use analogs of the other

density estimators . The two most common are the Smirnov-Cramer-Von Mises

test14) and the Kolmogorov test . 15) These both use the Rosenblatt type estima-

tor for the nonparametric density estimation . However, instead of estimating

the probability density, pN(x), one estimates the cumulative density function

PN(x) = I x pN(x) dx

	

(100)

using Eq. 32a . This has the advantage that no scale parameter, h(N), need be

specified .

The Smirnov-Cramer-Von Mises test uses a Eucledian type dissimilarity

measure (Eq. 76a, f=2) . That is

Y = d(x1x2. . .xN ) =

	

f [PN(x ;xlx2 . . .xN ) - F(x)] 2 dF(x) (101)
-CD

where F(x) is the cumulative distribution function of f(x)
x

F(x) =
f

f(x) dx .

	

(102)

For the Kolmogorov test, a dissimilarity measure analogous to Eq. 81 is

used (i. e . , Eq . 76a, P= 00 ) . That is

Y = d(x 1x2 . . .xN) = maximum
- ao< x < ao

[ I PN (x ;x 1x2. . .xN) - F(x)1 ] .

	

(103)

The probability density function of the test statistic, pN0) (Y), has been cal-

culated for these tests and their level of significance, a(Y), as a function of test

statistic value, Y, are tabulated in standard statistical tables .

These estimators can also be used for nonparametric goodness-of-fit tests .

That is, instead of comparing the experimental point set to a specific functional

form, it is compared to another experimental point set . Consider two different

point sets Sxi~ N 1 and ly.} M1 drawn from unknown probability density functions

p(x) and q(y) , respectively . The null hypothesis is

H0 : p(x) =q(y)

	

for all x and y .

The test is nonparametric because no information is assumed to be known about

either p(x) or q(y) . The hypothesis is only that they are the same . Here one
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constructs a test statistic by forming a dissimilarity measure between the prob-

ability density estimates for the two point sets . For example,

d(x1x2 . . .xN;Yl Y2 . . .yN) = f [PN(z ;xlx2 . . .xN) - PM(z ;Y 1Y2 . . .y M)J 2dP(z)

(104)

where

P(z) = [NPN(z) + MPM(z)j/(N+M)

for the analog of the Smirnov-Cramer-Von Mises test, and

d(x1x2 . . . xN ;y1Y2 . . . Y M) = maximum I PN(z ;xlx2 . . . xN) - PNl(z ;y ly2 . . . Y M) I
-no<z<Co

(105)
for the Kolmogorov .

As is the case for their parametric counterparts, these tests are distribu-

tion free (independent, under H 0 , to whatever p(x) = q(y) might be), and are

tabulated in statistical tables .

5.2 Visual Representation of Goodness-of-Fit

Quite often a single number representing the significance level for a

goodness-of-fit test is not enough, especially if the significance is marginal or

small. The experimenter usually would like to know those values of the mea-

sured variable where the correspondence between the theory and data is rela-

tively good and, similarly, those regions that most contribute to making the fit

bad . The goodness-of-fit test statistics themselves can often be used for this

purpose. For example, if a X 2 test statistic is used, one can look for those

terms in the sum that are relatively large (or small) . For the Smirnov-Cramer-

Von Mises and Kolmogorov tests (Eqs . 101 and 103), one can look for values of

the integration variable, x, that result in large or small values of

dx [PN(x ;x ix2 . . .xN) -F(x)j .

	

(106)

Since one-dimensional density is easily represented in graphical form

(plotted as density vs . coordinate value), a common procedure is to simultane-

ously plot on the same graph the nonparametric density estimate p N(x) and the

hypothesized functional form, f(x) . The experimenter can then visually evaluate

the goodness-of-fit. This technique suffers from some drawbacks . First, the

variance of the nonparametric estimate, V[PN(x)] (statistical uncertainty), is
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usually a nonconstant function of the coordinate, x . In order to successfully

evaluate local goodness-of-fit for some value of x, one must known the value of

V[PN (x)] . Also, if this variance varies widely over the range of x, then a

quick recognition of those regions that represent significant departures is diffi-

cult. One way to alleviate this is to plot, in addition to p N(x) and f(x), two more

quantities

a +(x) = PN(x) + JV [PN (x)J
and

		

(107a)

o_ (x) = PN(x) - JV[pN(x)J

or alternatively,

o+(x) = f(x) + JV[PN(x)J

and

		

(107b)

u_(x) = f(x) - v V[PN(x)J

In the case of Eq . 107a, these are usually represented as "error bars" centered

on the corresponding density estimates . . This, procedure overcomes the handi-

cap at the expense of making the graph considerably more cluttered and unread-

able .

When the explicit functional form of V [pN(x)J is known, a better solution is

to transform the ordinate of the graph, p N(x), to the stable variance represen-

tation. That is, both pN(x) and f(x) are transformed

P*N(x) = T[PN (x) ]
(108)

f*(x) = T[f(x)J

where the transformation function, T[u], is chosen such that the statistical

variance is a constant . For the histogram, Rosenblatt and Parzen estimators

T[u] = V u

	

(109a)

whereas for the kth nearest neighbor estimator

T[u] = log u .

	

(109b)

In particular, a histogram in which the square root of the number of counts

(rather than the number of counts) is plotted is called a rootogram . Rootograms

have the advantage that the variance of the estimate (expected size of statistical

fluxuations) is a constant independent of x . Thus, a difference between
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pN(x) _

	

pN(x) and f*(x) = VfI) is a direct indication of the lack of corre-

spondence between them, and these regions can be . identified quickly at a glance .

Another problem with this general technique is that humans are much more

attuned to recognizing and evaluating departures from straight lines (especially

horizontal ones) than highly curved lines . Humans easily and quickly identify

and properly evaluate the significance of deviations from horizontal lines but

have considerably more difficulty when the line has a steep slope or is highly

curved .

This difficulty is also easily overcome by using a stable variance repre-

sentation. This is because the expected departures of the residuals, r(x) =

=p* (x) - f*(x), from zero are constant independent of p(x), f(x) or x. Thus, a

plot of r(x) vs . x can be evaluated independently of any other information . These

residuals can be investigated for systematic departures from a horizontal line at

r = 0. In the case of histograms of counts (or better "started" counts) where the

fluxuations are reasonably well approximated by a normal distribution, one

standard deviation corresponds to a square root residual of r i = ± 0 .5, two

standard deviations correspond to r i = ± 1 . 0 and so on, independent of the actual

number of counts in the bin. Figure 2c is an example of such a plot of residuals .

Using this approach of independently plotting the residuals allows one to see at

a glance whether the fit is good, or to spot those regions where it is bad .

Tukey16) recommends plotting the densities and residuals on a single plot .

This procedure is illustrated in stages in Figure 3 . Figure 3a shows an example

of the traditional representation with a histogram plotted along with the hypo-

thesized density function superimposed . Figure 3b shows the same plot, but

where the histogram bars, instead of being aligned with the horizontal axis, are

aligned with the function. The histogram residuals then appear as departures

from the horizontal axis . Figure 3c shows a traditional rootogram of the same

data, while Figure 3d shows the rootogram aligned with the curve . The expected

constant size residuals then appear as departures from the horizontal axis .

Also, the rootogram in Figure 3d is inverted so that the residuals play a more

prominent role . This is called a hanging rootogram . With the hanging rooto-

gram, the positive residuals appear as positive departures above the horizontal

axis while the negative residuals appear below the axis . Finally, in Figure 3e

the residuals are emphasized further by being shaded - differently for positive

and negative - and the rootogram part is further suppressed . Also, horizontal

lines representing ± 2 and f 3 standard deviations are included .
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The hanging rootogram allows the researcher to see at a glance both the

general shape of the hypothesized function and the residuals from that function .

The constant expected size residuals are contrasted against a horizontal line so

that those regions of maximum departure, as well as the importance of the de-

parture, can be recognized easily .



6 . MULTIVARIATE DATA ANALYSIS

Many experiments in high energy particle physics are multivariate (some-

times referred to as multidimensional) in nature . That is, for each event sev-

eral attributes or quantities are simultaneously measured, A particle reaction,

resulting in n-particles in the final state, has 3n-4 independent measurables

(not including spin information) associated with it . Most experiments measure

several of these quantities and some can measure the complete set . Analyzing

and interpreting data for these experiments is a problem in multivariate data

analysis .

The concept of probability density is easily generalized for the multivariate

case . Letxi = (xil) , xi2) , . . . , xid), be a set of attributes or quantities measured

for each event. If the value of each quantity is plotted along a Cartesian axis,

then the set of simultaneous values can be represented as a point in a Cartesian

space of dimensionality, d . The entire experiment can then be regarded as a

collection or swarm of such points in this d-dimensional space . Since each

point contains all the information for the corresponding event, this point swarm

contains all of thee information of the experiment. As in the univariate case, the

purpose of data analysis is to use this point swarm to make inferences concern-

ing the joint probability density p(z), defined in Eq. 1. For the multivariate

case, ri , is a small volume in the d-dimensional space . Letting this volume

approach zero while n i and N approach infinity, one defines the notion of the

value of p(x-) at a point -Z. Loosely speaking, p(z0) is the probability that

x(l), x(2)' . . . , x (d) all simultaneously have the values x (l) = x4l) , x(2) = x02) ,

x(d) = x(d) . As an example, in exclusive experiments where d = 3n-4, the spin

averaged Lorentz invariant amplitude squared

v IM(x(l), x(2)' . . . , x
(3n-4)) 12 =

P(X)

	

(110)

is the joint probability density function in the Lorentz invariant phase space .

Here, v is the total cross section for the reaction . This joint probability den-

sity function contains all the information attainable concerning the momentum

(nonspin) aspects of the experiment .

Statistical techniques for multivariate data analysis are much less well

developed than univariate techniques . When they exist, multivariate techniques

are usually straightforward extensions of the corresponding univariate tech-

niques. For parametric density estimation, the method of moments and maxi-

mum likelihood are easily extended . One simply replaces the parametrized
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univariate probability density, p(a;x), by the parametrized joint probability den-

sity, p(a ;x) . The general asymptotic (N-co) statistical properties of these esti-

mators is the same for the multivariate case as for the univariate case . How-

ever, the value of the sample size, where the asymptotic properties become

good approximations, is usually much larger in the multivariate case .

Although easy to generalize conceptually, the computational complexity of

both the moments and likelihood methods increases dramatically for high dimen-

sionality . This is because of the general problems associated with the numeri-

cal evaluation of definite integrals in high dimensionality . Most_ joint probability

density functions p(a;a) that appear in high energy physics applications cannot be

analytically integrated over the allowed range of the variables, R . Even for the

simplest case of

p(a;x) =constant ,

the integral

4 da

cannot be explicitly evaluated when R is the region of phase space defined by

momentum and energy conservation . From Eq . 5 we see that the moments

method explicitly requires, in general, the evaluation of a multidimensional

integral .

Although the likelihood method (Eqs . 70 or 71) does not explicitly require

multidimensional integrals, it implicitly requires them through the normaliza-

tion condition (Eq . 2) . The likelihood function (Eq . 69) requires that p(a;a) be a

proper probability density function, i . e . ,

fR p(a'a)da=1

where R is the region of the allowed values for the variables, a. Usually the

Lorentz invariant amplitudes that arise in high energy physics are not so nor-

malized, requiring the evaluation

I M(a;x) 1
2
	2p(a;x) =	~

	

(111)
fRIM(a;a)I dx

before the likelihood method can be applied . The value of the integral generally

depends upon the values of the parameters . Thus, if an iterative scheme is used

to solve Eq. 70, then the integral must be re-evaluated for each step in the

iteration procedure . This can be extremely costly, computationally, especially

if Monte Carlo techniques are required for the integrations .
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Nonparametric multivariate density estimation is very difficult . This is due

to the extreme sparseness of the multidimensional data space . Even for the

very largest experiments being contemplated, the average counting density in the

d-dimensional space of the measurement point swarm is very small . To make

the situation even worse, even though the average density is very small there

are usually one or several very small regions or surfaces of complex shape

where the density becomes quite large .

For these reasons, straightforward extensions of the univariate density

estimators do not usually work . For example, consider the multivariate analog

of histogramming. Even if only ten bins or channels per dimension are chosen

(a very course binning), there would be (10)d cells in the d-dimensional space .

For d=10 and a large experiment (N ~ 10 6) the average counting rate would be

0001 per cell, with a very tiny number of the cells containing all of the events .

Although avoiding cells, the Rosenblatt and Parzen estimators do not fare

much better . This is because of the huge density variation in the measurement

space. Thus, choosing a scale parameter, h(N), that is adequate for the sparse

regions is much too big in the dense regions and vice versa . For example, con-

sider a p(x) that contains two components of equal probability content (number of

events)

P(x) = pl(x) + P2 (x)

where the scale (extent) of the first is 10% of the other in each of the dimensions .

Then for d=10 the extent of the first component (1/2 of the events) is 10 -10 times

the extent of the other in the 10-dimensional measurement space . A scale

parameter value that was useful where P2 (1) dominates is 10 10 times too large

for those regions where pl(X-) dominates and, conversely, if the scale param-

eter value was chosen to be accurate in the p l(x) region, it would not work at all

in the other regions of the space (there would never be any counts within the

window) .

The only density estimator that has a chance of being useful for multivariate

applications is the kth nearest neighbor . Because of its property of adapting to

the data, it does not suffer from the aforementioned difficulties. However, there

are additional problems that severely limit its usefulness as a density estimator .

These problems can be understood by inspecting Eq . 46 . The multivariate analog
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of this equation8) for the bias is (to second order)

r2/d/d+2\

	

2/d tr['.'. x)]
bN (x)=- EL

N(x)3
- P(x) = 21r(d+2) \N/ p2/d(

	

(112)

where tr[pi~(x)] is the trace of the Hessian (second derivative 2 2p(x)/8xiax .)
matrix evaluated at x . As discussed above, typical joint probability density

functions in high dimensions are characterized by very small average density

(p (x) very small) and large variability (tr [j (x)] big) . Thus, the bias of the

estimate can be expected to be very large .

This large bias can be understood intuitively as follows . Consider a point

located in a sparse region of the measurement space. As one expands a spheri-

cal volume centered at the point, data points will be encountered very slowly .

Large increases in volume result in small accumulation of data points until the

sphere borders a dense region where vast numbers of data points will be

included for small changes in volume . Thus, the kth nearest neighbors of the

sparse points will tend to include considerable contamination from dense regions,

resulting in a large overestimate of the density at the point . As the sample size

becomes infinite (N--co) while k(N)/N-0, the kth nearest neighbors to a point

will all be very close, eliminating this effect and sending the bias to zero,

rendering the estimate consistent (as seen from Eq . 112) . However, the sample

sizes required for these asymptotic results to be useful are truly astronomical .

Because of its large bias, the kth nearest neighbor technique is not useful

for direct density estimation . However, it can be successfully used for multi-

variate techniques where absolute density estimation is not required . Some of

these techniques are discussed below .

Unlike univariate data, multivariate data is difficult to present (except for

the special case of d=2) . This is due to the inability of humans to perceive in

more than three dimensions. Methods using interactive computer graphics to

aid humans to perceive and manipulate multidimensional data is described in

Refs . 17 and 18 .
Because of the great difficulties in directly dealing with multivariate data,

nonparametric techniques have, in the past, sought to reduce d-dimensional data

to one, two or three dimensions where human perception can be employed and

where nonparametric density estimation is practical . The most common tool for

this dimensionality reduction is projection . With projection, one integrates

over all but one or a few of the variables leaving a density function of lower
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dimensionality . For example, with one dimensional projection

P(xl) = fR P(xlx2 . . . xd) dx2dx3 . . . dxd

or more generally

		

(113)

P(Y) = dy [fR P(x) dx]

where y = T(). Here T(x) is some arbitrary function of the measurement vari-

ables . For two dimensions

2
P(vl.Y2) = dyddy2 [fit p (x) (91

	

(114)

where yl = T 1(a) and Y2 = T 2(x) .

Operationally, p(y) (one-dimensional projection) can be estimated by evalu-

ating yi for each event, yi = T(xi), and performing a univariate density estima-

tion on the resulting set of values, {yi}N
1 .

That is,

or equivalently

PN(Y;Yl > Y2 , . . .,YN) = PN [Y;T(xl), T(x2), . . . , T(xN)]

By judicious choices for various transformation functions, T(x), one hopes to

infer some of the salient features of the multivariate density, p(x) . Similarly,

for two-dimensional projections, one estimates

PN(Y1,Y2) = PN [Yl>YZ ;T l(zl ) . . . Tl(xN),T2(xl) . . . T2 (xN)I,
(116)

or simply maps the points {(y3,y2)i}N1 onto the two-dimensional plane (scatter

plot) . All of the one-dimensional density estimators discussed earlier can

usually be extended to two dimensions without encountering the difficulties of

high dimensionality (d>3) .

As an aid to this process, masking (making cuts) is sometimes used in con-

junction with projection . With masking, only a preselected subregion of the total

measurement space is chosen for projection

Pr(V) = y [~CRP(x) dxl

Pr(Y) = * [(P
(x) B(x) ]
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where

B (X)
_ I if x E r

{0 otherwise (117)

Operationally, B(xi ) is evaluated for each data point, x1 , and those points for

which B( )=0 are excluded from the density estimate, p N (y) . By clever choices

for both transformation functions, T(x), and masking functions, B(R), one can

often learn a great deal about the underlying multivariate joint probability den-

sity function, p(), describing the data .

There are several fundamental drawbacks to the projection approach . Most

important is the tremendous loss of information inherent in the projection pro-

cess . By integrating over all of the measurement variables but one (or two), a

great deal of the information contained in the data is lost . This makes com-

plex interrelationships between the variables very difficult to discover using

projection and masking only .

Another problem is reflections due to the non-rectangular shape of the

boundaries of the measurement space . Momentum and energy conser-

vation impose complicated boundaries on the measurement variables .

These boundaries cause two problems . First, their shape appears in

the projection along with any structure coming from the actual density

function (dynamics) of the data . Even for constant multivariate data

density, projected densities have nonconstant distributions due to the

shape of these boundaries . From the projections alone, it is not pos-

sible to tell whether an effect comes from the data density (dynamics)

or from the boundaries (kinematics) .

Another more serious problem caused by the non-rectangular nature of the

boundaries is the reflection of actual dynamical effects in the multivariate den-

sity . This is illustrated in Fig . 4 with the classical example of projecting a

two-dimensional Dalitz plot onto two one-dimensional projections . Here the

density is made up of a constant background plus an enhancement in the vertical

coordinate. Projecting the data onto the vertical coordinate, the enhancement

appears and one makes the correct inference concerning its nature . Projecting

the data onto the horizontal axis also reveals an enhancement in this coordinate .

Inspecting the data in its full dimensionality (d= 2 in this case) reveals that

these two enhancements result from the same cause and are not independent .

However, with only the projected data this inference could not be made and the
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experimenter could incorrectly interpret the horizontal coordinate enhancement

as an additional independent effect in the data .

More generally, the non-rectangular nature of the boundaries causes

spurious interrelationships to appear between measurement variables when they

are projected onto lower dimensional manifolds that are not contained in the data .

The preceding example shows that the problem can be serious when two-

dimensional data are projected onto one dimension . The problem is even more

serious when 7- or 13-dimensional data are projected onto one- or two-

dimensional manifolds .

Another limitation of projections that is unique to high energy physics has to

do with the symmetry properties of the probability density function required by

identical particles . Probability density functions that describe particle physics

interactions must be invariant to interchange of identical particles . The nature

of this problem can be illustrated by again referring to an example of two-

dimensional data projected onto one-dimensional manifolds . Consider a two-

dimensional density, p(x,y), that is required to be invariant to the interchange of

x and y. If during the measurement process x and y do not happen to be treated

equally (which is usually the case), then the measured density will not have the

proper symmetry . There are two ways to remedy this situation . One is to

symmetrize the data by using each data point twice . That is, the data point is

entered as measured, and then entered again with its values of x and y permuted .

Another technique is to completely asymmetrize the data . That is, the measured

coordinates are always entered in order, say x always larger than y . This is

equivalent to folding the density about the line x=y into the lower diagonal part of

the plane .

The information content of the two procedures is equivalent (even though the

symmetrization procedure introduces twice as many points) . That is, the data

density p(x, y) is the same for both cases ; only the boundaries have been changed .

For those techniques that deal directly with the density, the asymmetrization

procedure is preferred since it requires half the computation . However, the

procedures are not equivalent if projection is used . This is due to the change

in the boundaries . This is illustrated in Fig . 5 with a uniform density . In

Fig . 5a, where symmetrization is used, the projections have uniform densities

and the correct inference is made about the bivariate density . If asymmetriza-

tion is used, however, the projected distributions are no longer uniform but

have a linear shape . Without knowing the true nature of the data in the full
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dimensionality, one might incorrectly infer that this nonuniformity was a prop-

erty of the data density .

In high multiplicity final states, where there tend to be several identical

particles, this effect can be especially severe . Projection techniques require
that symmetrization be used causing the computation to increase by 2m where m
is the multiplicity of identical particles . Fully multidimensional techniques that

deal directly with the data density can use asymmetrization, avoiding this
increased cost .

6 .1 Mapping

With projection, the choice of transformation functions, y=T(x), is usually

dictated by the intuition of the researcher or suggested by some theoretical

model. In addition, some techniques have been developed that use the data points

themselves to suggest useful transformations . These techniques use the data

point swarm in the full dimensionality to suggest those transformations or

mappings to lower dimensionality that best reveal the salient features of the full

dimensional data .

These mapping techniques are divided into linear and nonlinear dimension

reducers. The linear methods consider only linear mapping functions

y = a . x

	

(118)

where the vector a'= a (zlx2 , . . icN) is determined from the full dimensional data
set by some criteria .

The nonlinear methods do not define a specific transformation at all. Instead,

they directly associate with each point in the full dimensional space, a point in

the lower dimensional space . The points in the lower dimensional space are

moved around with respect to each other until their relative positions have some

relationship to the relative positions of the actual data points in the full dimen-

sional space . This relationship is usually based on some criterian involving the

mutual interpoint distances from each point to all of the others .

There are a wide variety of both linear and nonlinear mapping algorithms

discussed in the literature . This section will discuss two linear methods and

one nonlinear method . Most of the other methods are modifications and gener-

alizations of those discussed here .

6 .1 . 1 Principal components (linear factor analysis)

The most widely used mapping algorithm is principal components . The

assumption with this method is that those coordinate projections that exhibit the
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largest data spread are most likely to reveal interesting structure . One con-

siders the class of transformations

y =

where Ia I = 1, and varies the direction, a, seeking to maximize
2

V._[Y]
= N E (a . axi)2 -

i
E a • xi

	

(120)
i=1

	

i=1

with respect to a,

a* = max l [Va(y)]

	

(121)

a

One can then map the data onto the solution projection via

yi =a* • xi .

	

(122)

If the mapping subspace is to be two-dimensional, then one can consider a* as the

transformation for the first dimension, i . e . ,

yil)

	

(123)

and consider another similar transformation for the second coordinate ; that is,

yi2) = b * - xi

where b* is the solution

	

(124)

b* = max 1 [Vb(y)]
b

subject to constraint

a* • b*=0 .

That is, b* is the direction in which the data has the largest spread orthogonal

to a* . In a similar manner, one could consider a third direction, c*, such that

a* • c*=b* •c*=0
and

	

(125)

c* = max 1 IV ~(Y)]
C

for a three-dimensional map .
Since both the criteria and transformations are linear, the directions

a*, b*, c*, etc . , can be explicitly solved by linear methods . First, one forms
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the sample covariance matrix

Vll N

	

xlc ) xk~ ) - CN

	

xk [N

	

xk

	

(126)
l__l

	

k=1

	

k=1

from the data . This matrix is real, symmetric, and non-negative . Thus, its

eigenvectors are mutually orthogonal and its eigenvalues are all non-negative .

The eigenvector associated with the largest eigenvalue corresponds to the

direction a* ; the eigenvector associated with the second largest eigenvalue

corresponds to b* and the third largest to c*, and so on . The eigenvalues

themselves are the sample variances of the data as projected onto the eigen-

vectors .

If the data sample is drawn from a normal distribution (Eq. 3), then the

sample covariance matrix is an estimate of the true covariance matrix and ro-

tation to the principal components as axes will cause the probability density

function to completely factor

d
P6 = 17 P.(.Yi ) .

	

(127)
i=1

That is, each of the yi are totally independent of all the others .

The principal components method is not particularly useful as a mapping

technique for exploratory data analysis in particle physics since densities are

seldom normal and those directions with the largest spread are seldom those

with the most structure . However, it is computationally very inexpensive and

usually worth trying .

6 .1 .2 Projection pursuit

Projection pursuit19) is also a linear mapping algorithm (Eq . 118) but the

criteria for choosing the optimum projection, a*, is nonlinear . Here, one

directly seeks those projection axes upon which the data exhibit maximum

structure . Projection pursuit maximizes a projection index of the form

I(a) = s(a) d(a) .

	

(128)

The first term, s(a), measures the spread of the data, as projected onto the

direction a, as with principal components . For s(a) one takes the trimmed

standard deviation from the mean

J

1/2

N
(1-p)N

s(a) _ S (i' a-xa)2/(1-2P)

	

(129a)
i=pN
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where

(1-p)N
x
a
=

	

p xi •a/(1-2p)

	

(129b)
i=N

Here xi are the data points ordered on their projected values (xi • a) and p is

some small fraction regarded as outliers in the projection, and thus deleted .

This makes the estimate robust against extreme outliers .

The term d(a) is an average nearness function of the form

N N
d(a) = S S f(rij ) 1(R-rij )

i=1 j=1

where

	

(130)

rij = I (zi -xj) • a l

and 1(q) is a step function

100) _ J1 if 77 > 0
0 otherwise

Thus, only those projected distances for which r ij <R contribute to the sum . The

function f(r) should be monotonically decreasing for increasing r in the region

r<R, reducing to zero at r=R .
Projections onto two dimensions are characterized by two orthogonal direc-

tions a and b (a • b= 0) . For' this case, Eq. 129 generalizes to

s(a,b) = s(a) s(b)

and rij becomes

	

(131)
,

	

1/2
rij = ~LXi-Xj) ]2 +

LXi- j)
, b]21

in Eq. 130 .

The algorithm is insensitive to the explicit function form of f(r) and shows

dependence only on

R

	

Rr = f rf(r)dr/f f(r) dr

	

(one dimension)
0

	

0

or

	

(132)
R

	

Rr = f rf(r) rdr/f f(r) rdr

	

(two dimensions) .
0

	

0

The value of r establishes the scale of density variation to which the algorithm

is sensitive and thus defines the size of the structure being sought.
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The projection index, I(a) (or I(a,b) in two dimensions) measures the degree

of structure present in the data in the particular projection . The strategy of

projection pursuit is to find those projections that maximize 1(a), i. e . ,

Since the mapping criteria are not linear, as with principal components, numeri-

cal hill climbing methods are required to seek the maxima . The projection

index is reasonably well behaved, however, so that only a few iterations of the

maximizes are usually necessary to find a solution . Also, quite often several

solutions exist providing several possible highly structured projections for

inspection by the researcher .

Since projection pursuit directly seeks projections with high structure, it is

potentially more useful than principal components . Figure 6a shows a projection

of some particle physics data on the largest principal axis . Figure 6b shows the

same data projected onto the projection pursuit solution obtained at the first

local maximum of the projection index, uphill from the principal components

solution . Figure 6c shows the same data projected onto the plane of the two

largest principal components, while Figure 6d shows the corresponding projec-

tion pursuit solution .

Although the principal axis projections indicate possible structure within the

data set, the projection pursuit solutions are clearly more revealing . This is

indicated by the substantial increase in the projection index (p-index), and veri-

fied by visual inspection .

Because projection pursuit is a linear mapping algorithm, it suffers from

well known limitations of linear mapping . The algorithm will have difficulty in

detecting clustering about highly curved surfaces in the full dimensionality . In

particular, it cannot detect nested spherical clustering . It can, however, detect

nested cylindrical clustering where the cylinders have parallel generators .

6 .1 .3 Nonlinear mapping algorithms

With nonlinear mapping, there is no specific transformation function,

y=T(T), defined. Each projected point yi (usually two-dimensional) is associ-

ated with a particular data point, zi , in the full dimensionality . The positions

of the yi in the two-dimensional space are altered until they match as closely as

possible some property of the xi in the full dimensional space .
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Consider the nonlinear mapping algorithm of Sammon, 20) as an example .

Here, the property to be matched is the mutual interpoint distances .

the distance between two points in the projection

Dij = Ivi - I

and dij be the interpoint distance in the full dimensional data space

dij '= Ixi -xj I

A mapping error function of the form

y

	

_

	

N N Di . _ d . .1 2

E(yl>Y2> . . .>YN)=N E Z, I

	

~

	

(135)
i=1 j=i+1

	

ij

is then minimized with respect to the positions of the projected points {yi}iI1 ,
Thus, the number of variables in the minimization is twice the number of data

points . The solution positions {yl }N 1 give the best two-dimensional represen-

tation of the full dimensional data with respect to the interpoint distances . The

value of the mapping error at the solution gives an indication of how well the two-

dimensional mapping represents the full dimensional data . A very small map-

ping error indicates that the data lies on a two-dimensional manifold imbedded

in the full dimensional space .

There is clearly no limitation on the dimensionality of the projection sub-

space. A one or three-dimensional projection subspace would work just as well .

Also, the values of the interpoint distances are not the only possible mapping

function. Shepard and Carrol, 21) for example, suggest the monotonicity of the

interpoint distances as a criterian . That is, finding the mapping that best pre-

serves the order relationship between the interpoint distances of the data points .

The principal limitation of these nonlinear mapping techniques is the com-

putational resources they require . Memory proportional to N2 is needed . Each

evaluation of the mapping function requires a number of operations proportional

to N2 . The number of variables in the search for the minimum is D • N, where
D is the dimensionality of the projection subspace . For these reasons, the non-

linear mapping techniques cannot be applied conveniently to sample sizes larger

than a few hundred . Other limitations of the nonlinear mapping algorithms are

that the mapping cannot be summarized by a few parameters . This makes inter-

pretation of the resulting map difficult . Also, the mapping only exists for

the data set used in the analysis so that additional data cannot be identically

mapped. These nonlinear mappings, however, are the most effective tool for
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picturing the interrelationships between the data points . Data points that are

found to have a particular relationship can be identified and isolated . Tradi-

tional analysis can then be used to determine the physical causes of the

interrelationship .

6 .2 A semi-parametric technique for model
fitting (prism plot analysis)

In one very special case, multivariate data analysis reduces to univariate

analysis . This is when the joint probability density function is completely

factorable, that is

_ d
P(x) = 17 Pi(xi) .

	

(136)
i=1

In this case, each of the measurement variables is completely independent of the

others and the d-dimensional problem reduces to d one-dimensional problems .

One can then analyze each of these one-dimensional problems using standard

univariate techniques .

An extension of this concept, to the case where the joint probability density

function can be represented as a sum of terms, each of which is completely

factorable (but not necessarily by the same variables) was originally proposed by

Brau, Dao, Hondous, Pless and Singer22) (although not in this formalism) and

later modified by Condon and Cowell2 3) and Van Hove . 24) With this technique,

- 6 0 -

is not large .

The purpose is to estimate the explicit parameters am and perhaps other

parameters that may be associated with the functions f mi(y) . The procedure

the joint probability density function is assumed to have the form

PCX)

	

_

P(x) _ E amfm(x) (137a)
m=1

where

L
(137b)fm(x) = 17 fmf(ymp)

1=1

ymf = Tmi(x) . (137c)

It is further assumed that the overlap between the functions

fR fmn fn(x) dx

	

(m5 n) (138)



begins by making a first guess as to the values of the parameters . A weight for

each data point corresponding to each term in Eq . 137a is constructed

am fM Z)
wm(Xi)

	

M

	

_

	

(139)

L an fn(xi)
n=1

M
Note that ~ l wm (xi) = 1 for each event .

For the case where the values of the parameters are the correct ones,

this weight is the probability that the event is associated with the corresponding

term in the sum . That is, if each term, fm(x), in the sum is regarded as an

independent density function, then w m (xi) is the probability that Vi was drawn

from this density rather than any of the others . In addition, if a projection is

made of any kinematic quantity, y = TO), and the univariate density, pN (y) is

estimated with each event weighted by wm(x'i), then result will be the same as if

fm(x)
pm

	

(140)IR In(X-)

were the true joint probability density rather than p(x) (Eq. 137) . Also, the sum

N _
Nm =

	

wm(xi)

	

(141)
f=1

will be the number of events drawn from pm(x) . This procedure allows the iso-

lation of the contribution from each term in p(x) (Eq. 137a) to the plot of any

kinematic variable .

If the first guess for the values of the various parameters is not quite cor-

rect, then the events weighted with wm will contain contributions from all of the

terms . Thus, if the experimenter has a good idea of the nature of the contribu-

tion to various kinematic variables from each of the fm(x), he can adjust the

parameters, recalculate the weights, and again plot the weighted distributions .

This iterative procedure can continue until all of the distributions show

consistency .

This iterative procedure is not confined to simply adjusting parameters . At

any pdint in the iterative procedure, one can introduce new terms to the sum

(Eq. 137a) or completely change the form of the parameterization of a term .

Thus, as well as adjusting parameters, one can build the model iteratively .

This procedure is, therefore, semi-parametric in the sense that the model need
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not be completely specified in advance, and can, to some degree, be developed

along the way . But at all times it must conform to the functional form of

Eq. 137 (as must the true joint probability density of the data) .

This technique is usually applied to resonance production in three and four

particle final states where the joint probability density functions (transition

matrix elements squared) tend to satisfy the restrictions of Eqs . 137 and 138 .
Also, the contributions to various kinematical variables from each term

(resonance) is usually well known . The product of functions (Eq . 137b) usually

contains a Breit-Wigner term in the appropriate invariant mass, as well as

production and decay angular distributions . That is

fm(x) = BW(µm) P(Op) D(S2d)

where µ is the invariant mass, Bp the production angle, and St d the decay angle

of the resonant particles .

As a first guess for the a m , one takes the relative heights of each reso-

nant peak in their corresponding mass plots . The first guess for the angular

distributions is usually flat . Projections of each mass plot, as well as each

angular distribution, are made weighting the events with the corresponding

wm (xi ) . Those weighted distributions are then inspected for consistency . For

example, if an a m is too small, there will be peaks in the corresponding µm
plots when the events are weighted by w n(xi), nom . Conversely, if am is too
large, there will be holes at the mass of the resonance when using these other

weights . If the weighted angular distributions are not flat, then specific distri-

butions can be incorporated into the model for the next iteration . After the

model has been adjusted, the weights are again calculated and the weighted dis-

tributions again plotted . These distributions are inspected for further refine-

ments of the model, and so on until the experimenter is satisfied with all of the

weighted distributions . At that point, the model and fitting procedure are

complete .

The various distributions weighted with each w m (xi) are the same as if one

had a pure sample of resonance events from each channel . The Nm (Eq. 141)

are estimates for the number of events produced by each resonance channel .

The resulting values of the parameters are estimates for their true values .

When this procedure can be applied, it has several strong advantages . First,

nowhere in the procedure are normalization integrals required . As noted

earlier, a severe computational disadvantage with the maximum likelihood
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technique was the requirement to evaluate complex multidimensional integrals

for normalization . These integrals are usually evaluated with time consuming

Monte Carlo methods . This technique completely avoids these Monte Carlo

calculations .

Another advantage is the strong interactive coupling of the experimenter to

the fitting procedure . At every stage in the analysis, the researcher is directly

involved in adjusting the model and evaluating the results . Thus, his intuition

can be utilized to help solve the problem .

There are also disadvantages to the procedure . First, is its limited range

of applicability. It can only be used when the model and the data conform to the

restrictions imposed by Eqs . 137-138 . Like any parametric technique, its

validity depends upon the truth of the a priori assumptions concerning the true

joint probability density of the data . If the true data distribution does not con-

form to these assumptions, there is no way to discover this with the procedure .

It is the factorization assumption (Eq . 137b) that allows one to use one-

dimensional projections to build a multidimensional joint probability density .

There is no way to tell if the factorization hypothesis is true by looking at the

projections .

There are other less important statistical limitations to the procedure .

First, since it is not deterministic (involves human interaction) there are no

results concerning its statistical properties as an estimator . 25) Most important,

the procedure may not be consistent . Since the weight, wm(zi) (Eq. 139), in-

volves all of the fn(x) terms, not just fm(x), a deficiency in one (or several) of

the other terms can cause the projections weighted with w m(xi) to be incorrect,

even if fm(x) is correct. Thus, in principle, if a weighted projection is incor-

rect, there is no way to tell whether this is caused by a deficiency in the

weighting channel or one of the others. It is conceivable that the experimenter

might make the wrong decision and modify f m(x) to improve the projection when

the problem was with fn(x), nom. In fact, one might be able to iterate to a

consistent picture (all projections look correct) that is completely incorrect .

The ability to arrive at a unique (and correct) solution depends strongly on the

experimenter's skill and intuition . Thus, this procedure, like most parametric

procedures, must be used with great care . Keeping in mind its restrictions,

this technique is, however, very useful and powerful when it can be applied .
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6 .3 Generalized Nonparametric multivariate techniques

This section discusses some general nonparametric methods for dealing

with multidimensional data . All of these methods use some variation on the kth

nearest neighbor technique, but never for direct density estimation . As pointed

out earlier, direct density estimation is very difficult in high dimensional

spaces . Another problem with nonparametric multivariate techniques is that the

test statistics are seldom distribution free . That is, the probability density

function of the test statistic p N(Y) is seldom independent of the underlying joint

probability density distribution, p(x), of the data . For the techniques discussed

below, the test statistic distributions are nearly distribution free in that the

probability density functions, pN(Y), change very little for large differences in

the underlying density distributions, p(), of the data . In addition, procedures

are described for estimating p N(Y) directly from the data so that for any given

application the significance level of the test can be determined . In this way the

tests are distribution free .

6 .3.1 A nonparametric procedure for comparing multivariate point sets

Consider two samples of N1 and N2 observations taken on vector random

variablesx and 'T with unknown joint probability density functions p(x) and q().

We wish to test the null hypothesis, H 6 , that p(i) =q (-Y) for allx and
V. 26)

This is the multivariate analog of the nonparametric goodness-of-fit test dis-

cussed earlier .

It is often useful in high energy physics to compare two experimental point

sets to determine to what extent they are similar or different . At the most

straightforward level two experiments can be compared for their compatibility .

Since the test makes the comparison in the full dimensionality of the data meas-

urement space, all of the information contained in the experiments is used .

Usually one wishes to determine if changing a property of the data has any

effect or consequences on the resulting joint probability density function of the

experimental measurables . This property may be external or it may be one of

the measurement variables themselves . For example, an experimenter may

wish to test for the presence of experimental biases in his apparatus by com-

paring his data to similar data taken with some of the magnet currents reversed .

The null hypothesis is that there are no biases, that is, the two data sets should

be the same in every way . In another application, the external property could

be the spin of the beam or target . Here one would like to know if there is any

property of the data that is different for different signs of the spin . Data taken
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with spin up is compared to data taken with spin down . A frequent application

is energy dependence of multiparticle production . Here the data from similar

experiments, taken at several beam energies, are compared to see if there is

any energy dependence in the Lorentz invariant amplitude for the reaction .

Sometimes the varying property of the data is one of the measurement variables .

For example, in electroproduction one could test the data for a dependence on

the mass, q2 , of the exchanged photon .

The test described below not only gives a measure (confidence level or p-

value) for the compatibility of the two point distributions, but also gives infor-

mation as to those regions of the multidimensional space where the corre-

spondence between the point sets is good and where it is bad . This information

can give considerable insight as to the dynamical mechanism causing the point

sets to disagree .

A common application of this algorithm is in multivariate goodness-of-fit .

As discussed above, there are no general multivariate goodness-of-fit statistics .

If a Monte Carlo procedure can be used to generate data points distributed from

a density, p(x), corresponding to some model, then this algorithm can be used

to compare the Monte Carlo data to the actual data . In this way, one can obtain

a confidence level for the model describing the data (in the full dimensionality of

the data space) as well as determining those regions of the data space where the

model gives a good description and those regions where it is poor .

This technique can also be used to design experiments . Monte Carlo data

from two different models can be compared . If the comparison results in a good

correspondence, then there is no way the proposed experiment can distinguish

between the two models . If the correspondence is not good, then the region of

the multidimensional measurement space where the two models most disagree

can be identified. The values of the measurables corresponding to that region

can then be used to determine how to best set up the experiment to have maxi-

mum discrimination ability between the two models .

The algorithm for testing the null hypothesis, H p, that two multivariate

point samples (classes) were drawn from the same unknown joint probability

density function, proceeds in the following manner . The two samples of size

N1 and N2 respectively, are combined into a single sample of size N=N 1+N2

with each point tagged as to the class from which it originates . The closest k

points to each point are examined and the number, k 1, originating from class

one (or the corresponding number, k2 =k-k 1 , originating from class two), is
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determined. Thus, associated with each point in this combined sample is a

measure of the composition of the points closest to it . The observed frequency

distribution of k1 , n(k l), for all the sample points, is recorded . This fre-

quency distribution is then compared to that expected under the null hypothesis .

There are a variety of ways of testing whether the observed distribution

for k1 conforms to that expected under H 0 . One technique involves comparing

the frequency distribution of k i, nl (kl), evaluated in the neighborhoods centered

at class one points to the frequency distribution of k i, n2(k l), evaluated in the

neighborhoods centered at class two points . Under H0 , these two distributions
are expected to be the same . A useful general procedure is to compare the

detailed distributions of n l(kl ) and n2(kl) to their expected distribution, n0 (k1),
under H0 . The problem of comparing two multivariate point distributions is,

in this way, reduced to a univariate goodness-of-fit test .

If each of the N k-neighborhoods were mutually exclusive, then the relative

frequency of the possible values of k 1 would (under the null hypothesis) conform

to a binomial distribution over k1=0, 1, 2, . . . , k with probability p=N1/N; that

is, no (kl ) would be a binomial distribution with k-degrees of freedom . These

neighborhoods cannot be mutually exclusive, however, since there are N

neighborhoods-each containing k points-with only N total sample points . Thus,

there is no reason to expect the distribution of k 1 values to be compatible with

such a binomial distribution . The precise distribution in the general case is

difficult to derive, but Monte Carlo calculations for a wide variety of cases

indicate very little discrepancy between the true distribution and a binomial .

Thus, a difference between the two multivariate samples can be measured by

comparing the distribution observed for the k I values with the corresponding

binomial distribution. Any of the univariate goodness-of-fit tests described

earlier may be used for this purpose . The test statistic, Y, for comparing the

two multivariate point distributions is just this univariate goodness-of-fit

statistic for comparing n i(ki) and n2(k l ) to the binomial distribution BN

	

(k1) .

Although this procedure reduces the multivariate problem to a univariate

goodness-of-fit test, its test statistic distribution is not the same as when the

univariate test is applied to a standard univariate problem. This is due to the

lack of independence of the values of k 1 in the univariate distribution. Because

the neighborhoods are not mutually exclusive but overlap considerably, the

values of kl
for neighboring events are highly correlated. These correlations

cause the probability density distribution of the test statistic, p(N(Y), to deviate
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substantially from that when the univariate sample points are all independent .

This deviation usually takes the form of increased variance of p (0)(Y) . That is,
the expected value of the test statistic, Y, is the same as that for independent

data, but the variance about that mean tends to be much larger .

As discussed in the section on univariate goodness-of-fit testing, the dis-

tribution of the test statistic under the null hypothesis, p(0)(Y), must be known

or calculatable in order for the test to be useful . Specifically, one must be able

to calculate the significance level, a(Y), for the experimentally obtained value

of the test statistic

a(Y) = foo p(O)(Yt) dYt .

	

(142)
Y

For this test, it is possible to use a permutation procedure to estimate the

significance level of the test, directly from the experimental data . This per-

mutation test proceeds as follows : the two samples are combined and the points

randomly re-assigned to the two sample classes in the original proportion,

N1IN2; the comparison algorithm is applied to the two newly defined samples

and the value of the test statistic is obtained. Repeated application of this ran-

dom permutation procedure yields a series of test statistic values . The fraction

of these values that are larger than the value, Y, obtained for the unpermuted

case is an estimate of the significance level, a(Y), for the test .

The statistical properties of this test are discussed in detail elsewhere 26)

and only the results are presented here . The test is consistent . This follows

from the fact that the kth nearest neighbor technique is a consistent density

estimator. The test is unbiased. Even though the kth nearest neighbor density

estimator is extremely biased in high dimensionality, the bias is identical under

the null hypothesis for the two samples being compared, so that the comparison

is unaffected and the test is unbiased. The test is extremely robust . This is

because the multivariate aspect of the test uses only order statistics and no

arithmetic statistics . The test has very high efficiency. This is a somewhat

surprising result . For example, this nonparametric test was found to be almost

as efficient as the parametric normal theory (likelihood ratio) test on normal

data for differences in location (mean), and four times more efficient for

differences in scale (standard deviation), with small to moderate sample sizes .

Although the permutation procedure can always be used to estimate the

significance level for the test in any application, it is seldom necessary . This
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is because the test statistic distribution, pN )(Y), is remarkably independent of

the underlying data density p(x) . Only, when the experimenter has reason to

believe that this data is especially pathological, need he apply the full permuta-

tion procedure. The performance of the test is also reasonably independent of

the chosen number of near neighbors, k, so long as it is not too small (k a 10) .

The test statistic distribution shows its strongest dependence on the dimension-

ality, d, of the data space for very low dimensionality. This is because the

overlapping of the neighborhoods is greater for lower dimensionality. However,

for higher dimensionality, this effect diminishes so that p (0)(Y) is roughly

independent of the dimensionality of the data space for d > 4 .

As mentioned above, it is often useful to be able to identify those regions

of the multidimensional measurement space where the two point samples most

disagree (or agree) in their relative densities . This algorithm assigns such an

estimate to each data point in the combined sample . Those events for which

n(kl) is near zero or k are located in regions where the two distributions most

disagree, while those points for which n(k l) is near (N 1/N)k (its expected value

under HO) are located in regions where the agreement is best . Thus, those

points for which the discrepancy is very large (or small) can be identified and

isolated, and their properties can be studied independently of the rest of the

sample .

Figure 7 illustrates an application of this algorithm in the study of the

energy dependence of the Lorentz invariant amplitude for multiple pion produc-

tion in pp collisions . 27) Here, 203 events of the reaction pp - ppa aa 1 at

12 GeV/c are compared to 196 events at 28 GeV/c . For this application, the

test statistic was formed in the following manner ; the two k1-distributions,

nl(kl) and n2(kl), were summed to a single distribution n(k l)=nl(kl)+n2(kl),

and the resulting sum compared to that predicted by the null hypothesis, n0(k1) .
This comparison was done using a X 2 test statistic

Y

	

E [n(kl) -noel)] /no(k l)

	

(143)
ki 0

Figure 7 shows frequency histograms of the number of 12 GeV/c events (class 1)

in a 20 event neighborhood (k=20) about every event in the combined sample for

various coordinate combinations . Figure 7a compares the two samples in the

six-dimensional subspace of scaled momentum components parallel to the

incident beam. The frequency histogram, for this case, deviates considerably

-68-



from the binomial distribution (open circles) expected for the null hypothesis,

indicating that these two samples differ considerably in their multidimensional

shapes . Figure 7b shows the results of comparing these two samples in the

12-dimensional momentum subspace transverse to the incident beam direction .

Figures 7c and 7d show the comparison in the two six-dimensional cylindrical

coordinate subspaces of transverse momentum . In contrast to the scaled

longitudinal momenta, the frequency histograms for these cases do not deviate

significantly from the expected binomial distribution. The comparison is

slightly better in the azimuthal angle subspace than the subspace of the trans-

verse momenta squared, however, neither deviates strongly from the expected

binomial distribution .

These results show that the 12-dimensional shape of the differential cross-

section transverse to the beam direction, d12v/d F )12, either independent of,

or at most, varies slowly with energy for this reaction in this energy range .
By contrast, the shape of the six-dimensional differential cross section parallel

to the incident beam, d6a/dx6 , is changing considerably; thus, the energy

dependence of the dynamics manifests itself mostly, if not completely, in the

longitudinal variables .

Inspection of Fig . 7a shows that the main source of disagreement in the

longitudinal variables is an excess of events for high values of k l (15 < kl < 20) .

This means that there is a region of the six-dimensional scaled longitudinal

phase space with a strong excess of 12 GeV/c events . This can be interpreted

as a dynamical production mechanism that has a substantial cross section at

12 GeV/c which becomes very small at 28 GeV/c . These events, for which

15 < kl < 20, can be isolated and studied separately using traditional techniques

to identify the nature of this production mechanism .

Figure 8 illustrates the use of this algorithm for multidimensional goodness-

of-fit testing. Here the same data is compared, in the six-dimensional subspace

of azimuthal angles,to models that predict no azimuthal angle dependence in the

Lorentz invariant amplitude . For this purpose, 970 Monte Carlo events of the

reaction pp - pp (47r) at 23 GeV/c were generated according to peripheral phase

space . These Monte Carlo events were compared to the data, at 23 GeV/c, in

the six-dimensional azimuthal angle subspace : Figure 8 shows the results of

the comparison . The frequency of data events within a 20-event neighborhood

of each point in the combined sample is clearly compatible with the correspond-

ing binomial distribution . Thus, to the statistical accuracy of this test, the
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shape of d6o/d(p6 is compatible with that predicted solely by momentum conser-

vation. In particular, jets in the transverse plane would require the data to

approximately lie on a lower dimensional manifold in this six-dimensional space

and would be easily detectable .

6 .3 .2 Multivariate tests for independence

An important property of multivariate data is the degree to which its joint

probability density function, p(x), factors into a product of density functions,

p.(x,), each defined over exclusive orthogonal subspaces of the full dimensional

space . That is,
_ q _

P(x) = 77 p .(xj )

	

(144)

where z = { xj}q 1 and 2 < q < d. That is, dim (xj ) < d and d = E1 dim (xj ) . If

the joint probability density does factor in this manner, then the vectors defined

over each of the q-different subspaces are said to be stochastically independent .

That is, the distribution of points in each subspace is totally independent of the

distributions in the other subspaces .

A special case of this factorization was discussed earlier, namely where

q=d and thus,

can also speak of the pairwise independence of pairs of coordinates . A pair of

coordinates (xi, xj) is said to be pairwise independent if their marginal two-

dimensional joint probability density

d
p(xi,x .) = f p(x) 77 dxk

	

(146a)
R

	

kki, j

factors

P(xi, xj) = Pi(xi) P j (xj )

	

(146b)

It is important to keep in mind the distinction between these three types of

independence . It is clear that total independence (Eq. 145) implies both pair-

wise independence (Eq. 146) for all pairs, and stochastic independence (Eq. 144),

but pairwise independence implies neither total nor stochastic independence .

Even if all of the coordinates (x i, x
j

i#j) are pairwise independent, this does not

imply that the joint probability density function, p(x), is either totally or

stochastically independent . Stochastic independence implies pairwise independence

d
p(x) = 17 p.(x .) . (145)

j= 1

	

3

In this case, the vector components x
j
are said to be totally independent . One



for those pairs where each coordinate comes from a different stochastically

independent subspace . However, the converse is not true . Even if all pairs of

coordinates between two subspaces are pairwise independent, this does not

imply that the two subspaces are stochastically independent .

It is also important to keep in mind the distinction between a pairwise

dependence or relationship between two coordinates and a correlation between

them . In Statistics, a correlation is defined to be a linear dependence or

relationship as measured by the linear correlation coefficient

C .ILI. = Vii/ ViiV .i

	

(147)

where

vn = N

	

) J) _ [1

	

xki]
CN

	

J)J
k=1

	

k=1

	

k=1

is the sample covariance matrix . The correlation coefficient can have values

between ±1 . A value of zero implies no correlation or linear relationship .

Positive values imply a positive slope to the linear relationship while negative

values imply the opposite slope .

A pair of coordinates (x ix.) can have a pairwise dependence and be uncor-

related (C. .=0) . Consider a pair of coordinates such that the data points all lie

on the circumference of a circle, i .e ., x2+x2 =a2 where a is a constant . This

pair of coordinates is clearly related and show a pairwise dependence ; however,

since this relationship is purely quadratic, they are uncorrelated as can be

easily verified by calculating their correlation coefficient (Eq . 147) . Therefore,

lack of correlation is necessary but not sufficient to insure pairwise

independence .

For the special case where p(x) is a multivariate normal distribution (Eq .

3), noncorrelation implies pairwise independence and pairwise independence

implies total independence . Thus, a necessary and sufficient condition for total

independence is that all of the pairwise correlation coefficients (Eq . 147) be

consistent with zero ; or, put another way, that the sample covariance matrix be

diagoilal. For two subspaces to be stochastically independent, it is necessary

and sufficient that the correlation coefficients for all pairs, where one coordi-

nate comes from one subspace and the other coordinate from the other subspace,

be consistent with zero. These results are due to the fact that only linear

relationships are possible with multivariate normal distributions .
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The correlation coefficient (Eq . 147) is the most widely used statistic

for measuring pairwise dependence . In fact, the term correlation is often

used interchangeably with dependence . It should be kept in mind, however,

that the correlation coefficient only measures linear dependence which is

seldom the total dependence . In high energy physics especially, very few

multivariate distributions are normal so that a small correlation does not

necessarily mean a small dependence . A general test for independence

must be able to detect nonlinear relationships between coordinate pairs, and

since pairwise independence does not imply stochastic independence, it must

be able to detect stochastic dependence directly . In the next section, we

discuss generalized tests for pairwise independence and in the following

section an even more generalized test for stochastic dependence .

6 .3 .2 . 1 The mutual information measure for pairwise dependence

The mutual information measure28) uses the entropy of a probability density

function . The entropy, H, of a probability density function is defined as

H = -f P(x) log [P(~] Ca
R

	

(148)

= -Ex [log P(X)] .

The entropy measures the spread of the distribution . For example, for a uni-

variate normal distribution

P(x) =

	

1 e2 (x2/d2) ,

	

(149)

the entropy is

H(Q) = 2 [1 + log ( 27rv)] .

	

(150)

This definition is related to the intuitive notion of entropy . A distribution that is

very narrow tends to constrain the random variable to local regions where p(x)

is large, tending to restrain the range of values taken by x . A very broad dis-

tribution allows the random variable to take on many more different values,

causing a "more random" distribution .

The mutual information between two coordinates (xi , x~) is defined as

Mid = Hi + H . -Hid .
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Here

Hi =- f p(xi ) logCp(x.)Jdxi

	

(151)
A

and

Hij = - r P(xi, xj) log
L
P(xi, xj]dxid j

where p(xi , x .) is the margin

"

all bivariate joint probability density defined in

Eq. 146a and p(xi) is the marginal univariate probability density

_ d
P(xi) = f p(x) 17 dxi ,

	

(152a)
R Wi

or alternatively

P(xi) = f P(xi, x.) dxj .

	

(152b)

In all cases, R symbolizes the allowed range of values for the random variables .

The mutual information can take on values in the range

0 < Mij < minimum [Hi, Hj
]

.

	

(153)

A normalized mutual information can be defined as

Inij = M . ./minimum [Hi, H.] (154)

so that 0 < m ij < 1 . A small value of mi5 indicates small pairwise dependence

between xi and x j , while a value near its maximum indicates a large pairwise

dependence . Unlike the correlation coefficient, however, the mutual informa-

tion measure is sensitive to all types of relationships and not just linear ones .

A value of mij consistent with zero 29) indicates pairwise independence between

the coordinates x . and x . .
1

	

1
For nonparametric applications, the marginal probability densities p(x i),

p(xj), and p(xi, x j) must be estimated from the data sample . Any of the tech-

niques described earlier may be used for that purpose . Since these are one and

two-dimensional densities, these estimates do not encounter the difficulties

present with higher dimensional density estimates .

6 .3 .2 .2 An algorithm for the direct measure of stochastic independence

In this section we discuss methods for directly testing for stochastic inde-

pendence . 30) For simplicity of discussion, we will consider the special case of

q=2 in Eq. 144 . Generalizations for arbitrary values of q are straightforward .

-73-



We wish to test the null hypothesis, H 0 , that the unknown joint probability den-

sity distribution of the data can be factored into two independent probability

density functions, each defined over orthogonal subspaces of the full dimen-

sional space . That is,

H0 : p(x)==P(xlx2 . . . Xd) =PA(x1 x2 . . . xM)
pB(xM+lxM+2 . . . xd)

	

(1< M < d) .

(155)

If a set of measurables (xl,x2'' . . , xd) can be found for which such a factor-

ization occurs, there are two important consequences . First, the nature of the

particular set of measurables can give considerable insight into the dynamics of

the production process . Many theories of multiparticle production either make

predictions concerning the factorability of the Lorentz invariant amplitude, or

need to make assumptions concerning such factorability properties in order to

calculate predicted experimental results . This algorithm allows one to test

directly for such factorization properties .

A second important consequence is that if the subspaces are stochastically

independent then the d-dimensional problem can be separated into an M-

dimensional problem and an independent (d-M)-dimensional problem . Thus, the

dimensionality has been reduced with no loss of information . Since the problems

in data analysis increase dramatically with increasing dimensionality, this is

always a great advantage .

The algorithm compares the interrelationships between the points in one

subspace to the interrelationships in the other subspace . Specifically, the

identities of the k closest neighbors to each data point are found and listed

separately in each of the two subspaces . For each point, these two lists are

compared for coincidences . Namely, the number of data points, kc , that the

two lists have in common are counted . The number of such coincidences be-

tween the two subspaces is evaluated for each event. This number, kc, can have

values from zero to k .

If the two subspaces are stochastically independent (null hypothesis), then

those Foincidences that do occur will be totally accidental in nature . The

probability distribution of the number of such accidentals can be shown to be a

binomial distribution, namely,

FN(kc) = Bk/NPcc) ,

	

(156)
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with expected value

E[kc] = k2/N .

	

(157)

A test statistic can then be formed by performing a univariate goodness-of-fit

test between the experimental distribution of the k c values, n(kc), obtained from

all of the data points, and this binomial distribution . A departure of the experi-

mental distribution, n(kc), from the binomial distribution indicates stochastic

dependence between the two subspaces .

The binomial distribution result for the accidental rate is invariant to how

the list of points associated with each sample point in the two subspaces was

prepared . For example, one could form a list in each subspace of the k points

farthest away from the sample point. Alternatively, we could compare the list

of the farthest away in one subspace to the closest in the other subspace . Under

the null hypothesis, the distribution of coincidences should conform to the bi-

nomial distribution (Eq. 156) for all of these cases . The power of the test to

discriminate against various classes of alternate hypotheses can be improved by

forming a test statistic from a combination of our goodness-of-fit tests, shown in

Table 2 .
Table 2

It is easy to see that for purely linear relationships (correlations) the experi-

mental value of ke will be larger, smaller, smaller, and larger, respectively,

than E[kc ] (Eq. 157) for these four cases .

Any of the goodness-of-fit tests described earlier can be used for comparing

each of the four n(k e) distributions to the corresponding binomial distribution

(Eq. 156) . Another test statistic that has proven useful is

4 (k(1) - E[kc~J2

Y = TN-F C		 (158a)
i-1 .f-~i(kc ) + V (kd
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Case Subspace A

	

vs. Subspace B

1) k-closest k-closest

2) k-closest k-farthest

3) k-farthest k-closest

4) k-farthest k-farthest



where

Vi(kc) = N

	

k~~ -k~l))
2
PN) (kc) )

	

(158b)

is the experimental sample variance, and V(kc) is the variance of the predicted

binomial distribution under If.,

V (k c) N (1 N)

The sum in Eq. 158a is over the four distributions corresponding to the cases

listed in Table 2 .

As was the case for comparing two multivariate points sets, there exists

for this test a permutation procedure for estimating the probability density

function of the test statistic, pX (Y), under the null hypothesis, directly from

the data . For this permutation, the identities of the data points in one of the

subspaces are randomly re-assigned . The identities of the data points in the

other subspace may, but need not, be given a different random re-assignment .

The test for stochastic independence is applied to the re-assigned samples and

a value for the test statistic obtained . Repeated application of this permutation

procedure yields a series of test statistic values that closely approximate the

null probability density function for the test statistic pN~) (Y) . In particular, the

number of permuted test statistic values greater than the value obtained from

the experimental (unpermuted) test is an estimate of the significance level for

the test .
The statistical properties of this test are quite similar to those for the test

that compares multivariate point sets . This is not surprising since basic to both

is the kth nearest neighbor technique . Specifically, the test is consistent,

unbiased, and very robust . The test is somewhat less efficient than tests using

correlation coefficients when there are only linear dependencies (correlations)

involved. It is also slightly less efficient than the mutual information tests when

there are only pairwise dependencies in the data . It is, of course, much more

efficient than either when the dependence between subspaces is not linear and is

more complicated than simply pairwise dependencies. Most important, unlike

the simpler tests, this test provides a necessary and sufficient test for stochastic

independence .
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6 .4 A multivariate goodness-of-fit test

This section describes an algorithm for general multivariate goodness-of-

fit testing . 31) That is, given a mathematical model, f(x), defined over the

multidimensional data space, this algorithm tests the hypothesis that the true

underlying data probability density distribution, p(x), is compatible with f(),

H 0: p(x) = f(x)

In addition, this test does not require that f(x) be normalized so that the cal-

culation of

fR f(x) dx

is not necessary, avoiding the computational problems of multidimensional inte-

gration. Since any goodness-of-fit test can also be used for estimation, this

procedure can be used to estimate the parameters of multidimensional models .
Unlike the maximum likelihood and moments methods, where the computational

expense is often dominated by multidimensional integrations, this procedure is

computationally very fast. However, like most goodness-of-fit tests that are

used for estimation, this test has generally lower efficiency than the direct

parametric estimators .

Most maximum likelihood estimates involve iterating from some starting

values for the parameters to a set of solution values that maximize the likeli-

hood function. All of these iterative schemes converge much faster to a solu-

tion, the closer the parameter starting values are to the solution values . Be-

cause it is computationally very fast, the solution values from this algorithm

can be used as the starting point for a likelihood maximizer . Since this starting

point will generally be very close to the maximum likelihood solution, consider-

able computation will be saved. Also, if at its solution this algorithm indicates

a very poor goodness-of-fit, the experimenter may wish to avoid the likelihood

estimate altogether since this lack-of-fit indicates that the parametric assump-

tions upon which the maximum likelihood technique is based are not valid

(i . e . , the model doesn't fit) .

tls discussed earlier, univariate goodness-of-fit tests are constructed by

forming a dissimilarity measure between the density as predicted by the model,

f(x),and a nonparametric estimate of the density, pN(x), from the data . Such

a procedure is not possible in the general multivariate case because of the

difficulty (discussed earlier) in nonparametric multidimensional density
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estimation. This algorithm, like the multivariate algorithms discussed above,

achieves its success by avoiding direct density estimation .

The procedure begins by finding the k nearest neighbors to each point in the

data sample. Let Sk(x) be the region in the d-dimensional space containing the

k nearest neighbors to a point at x', and let V k(x') be the volume of this region .

Consider the quantity

vk(x) = f _ 1 p(x1) dx'

	

(159)
Sk (X) f(X')

where f(x) is the model and p(x) is the true probability density function of the

data . Under the null hypothesis, H 0 , p(x)/f(x-) is a constant, C, so that

V (
k
0) (x) = f

	

C E' = CVk(x') .

	

(160)
Sk(x)

The integral in Eq. 159 can be estimated by

k
vk kk+l

	

f(xl)

	

(161)

where the summation is over the data point located atx (i=0) and the k-nearest

neighbors to x (i=1, k) . Under H 0, the quantity v k should be proportional to Vk

and the univariate probability density of vk, pN(vk) ' should be compatible with

the univariate probability density of Vk' PN(Vk) '
For a model independent estimate of Vk(3, Vk, one can take the smallest

spherical volume centered at x containing the k nearest points to x. The two

univariate probability densities pN(vk) and pN (Vk) can then be compared using

a standard univariate goodness-of-fit test . Thus, a multivariate goodness-of-

fit test has again been reduced to a univariate goodness-of-fit test .

When the null hypothesis is not true f(x) / p(x) , then vk(x) (Eq. 159) will

not be proportional to the volume V k (x) and its variation will take on a different

shape, giving rise to a different univariate probability density for v k, PN(vk) .

This will result in a bad correspondence between pN(vk) and pN(VK) in the

univariate goodness-of-fit test .

The test therefore consists of finding the k nearest neighbors to each data

point in the full dimensionality . The volume, Vk , of a d-dimensional sphere

whose radius is the distance from the point to its kth closest neighbor is cal-

culated. The quantity vk (Eq. 161) is also calculated for the data point and its
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k closest neighbors . The test statistic for this multivariate goodness-of-fit

test is then taken to be a univariate goodness-of-fit test statistic between the

distribution of Vk and vk over all of the data points .

The fact that the shape of the volume for V k is taken to be spherical is

mainly for calculational convenience and is not essential . Any volume may be

used that contains the k closest points and no others . The spherical volume

works well except when the data space has boundaries that are important . That

is, the data density is high near a boundary . In this case, the spherical shape

will severely bias the volume estimate towards values that are much too large

since a considerable fraction of the sphere will lie outside the allowed region

for the data . A solution would be to use only that volume of the sphere that lay

inside the allowed data space . This, however, requires a detailed knowledge

of the shape of the boundaries and, except in the simplest cases, considerable

computation .
Quite often, one would like to do a goodness-of-fit test or estimate param-

eters without being required to supply information concerning the details of the

boundaries of the data space . Note that both the maximum likelihood and

moments estimators require such information since these boundaries form the

region of integration for the multidimensional normalization integrals .

If the density of data points tends to be small near the boundaries, then the

algorithm described above, using spherical volumes, is adequate since the

effect of the bias near the boundaries will not be severe . However, if this is not

the case, a different shape for the volume of the k nearest neighbors is required .

A volume shape that always just contains the k nearest neighbors and never

exceeds the data boundaries, no matter what their shape (so long as its convex),

can be conveniently calculated for the special case where k=d . In this case, the

d+1 points (data point plus its d closest neighbors) can be considered to be the

vertices of a d-dimensional simplex . A simplex is the simplest geometrical

solid for a given dimensionality (i . e . , a triangle for d=2, a tetrahedron for

d=3, etc. ) . This simplex is, in fact, the smallest nonconcave volume that



of nearest neighbors is constrained to be equal to the dimensionality . This is a

disadvantage for very low dimensionality . However, in low dimensionality the

boundary effects are considerably less severe than for high dimensionality,

reducing the bias from spherical volumes . Second, the variance of the volume

estimates is larger with the simplex than with the spherical volume . Also, the

distribution of the test statistic, p(N) (Y) , becomes more dependent on the under

lying data density, p(x), and in some cases becomes badly biased when using

the simplex volume . For these reasons, spherical volumes should always be

used unless boundary effects are important .

When used as a goodness-of-fit test, this algorithm is somewhat less effi-

cient than comparing Monte Carlo events generated from the model to the data

events, using the procedure for comparing multivariate point sets . Also, this

algorithm does not provide as much information concerning those regions of the

multidimensional space where the fit is good and where it is bad. These limi-

tations are due to the fact that this algorithm does not require f(x) to be nor-

malized.. The loss of this information, as well as information concerning the

boundaries of the data space, causes the reduction in efficiency . It also results

in a great increase in computational economy . In order to generate Monte Carlo

events from a model, the data space boundaries and the normalization must be

either explicitly or implicitly determined . Also, such Monte Carlo's are usually

computationally very expensive . This algorithm trades a loss in statistical

efficiency for a great gain in computational efficiency .

As for estimation, this algorithm can form the first step in a two-step pro-

cedure for multivariate goodness-of-fit . First, this computationally fast
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^x(1)x (2)

	

1x(d)1 1

	

1

x(1)x (2)

	

x(d)

	

12 2

	

2

Vk= determinant (162)

where x(j) is the jib coordinate

x(1) x(2)

	

x(d)

	

1d+l d+l .. ' d+l

of the ith vertex point .

The simplex volume shape has several disadvantages . First, the number



procedure is applied . If the result is a poor goodness-of-fit, then no further

processing is necessary . If this test shows a marginal or good goodness-of-fit,

then the more expensive procedure of generating Monte Carlo events from the

model and comparing point sets can be applied .

Another limitation with this test associated with the lack of normalization

information is that, in general, the test is not consistent . The procedure tests

for goodness-of-fit of the model to the data only in regions where there are data

points . It is possible that the model fits the data well in regions where there are

data, but predicts large data densities in regions where there is no actual data .

The test is completely insensitive to this case . The converse is not true . The

test is very sensitive to the case where there is data in regions where the model

predicts small or zero densities . Although it is unlikely that the model will fit

the data well where the data points exist, and still not be correct, it should be

kept in mind that this situation is possible . This situation is easily detected

when the Monte Carlo points are compared to the data points .

Another disadvantage with this test, as compared to the Monte Carlo gener-

ation method, is that there is no analog of the permutation procedure for esti-

mating the null distribution of the test statistic, pN0)n, directly from the data .

This null distribution is reasonably (but not completely) distribution free . It is

usually sufficient to determine the test statistic distribution with a Monte Carlo

procedure once and for all using a model that allows quick and easy Monte Carlo

generation, and is at least a crude approximation to those models being tested .

Since the test statistic is nearly distribution free, the null distribution obtained

in this manner will serve as a good approximation for most applications .

Both this algorithm and the one that compares point distributions leave to

the researcher's discretion the choice of the coordinate variables and metric,

and the number of nearest neighbors, k . These algorithms are reasonably

insensitive to the choice of k, provided that it is not too small . In order for the

tests to be consistent, k should be a function of the total sample size such that

lim k(N)

	

and

	

lim kN = 0
N-cc

	

N cc

Experimentation has shown that the choice of k is not important so long as

k> 10-20 . Clearly, k should be small compared to the total sample size, N .

These algorithms are somewhat more sensitive to choice of measurement

variables and metric . Unfortunately, there are no good guidelines for their

choice . For infinite sample size these algorithms are clearly invariant to
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changes in coordinate variables and metric since these changes simply alter the

shape of the volume element containing the evaluation point . Since these

volumes are infinitesimally small, their shape doesn't matter .

For finite sample sizes, however, the shape does matter . Changes in the

volume shapes that result in changes of the identities of the nearest neighbors

will have an effect on the performance of the algorithms . Fukunaga and

Hostetler8) show that for those data distributions that can be made spherically

symmetric by a linear transformation, the optimum metric is the inverse

covariance matrix of the underlying distribution, p(-x) . If this covariance matrix

is estimated by the data sample covariance matrix, then this is equivalent to

scaling each of the coordinates so that they have equal variance along the

principal axes of the data .

If one has no a jtori information concerning the data, then this is probably

the best procedure . Another reasonable procedure is to simply scale the data

to have equal variance along the original measurement coordinates . On the

other hand, different experimental measurement accuracy or different char-

acteristic length of density variation can dictate unequal scales among the various

coordinates . Changing the scale of a coordinate changes its relative importance

in determining the goodness-of-fit . Thus, if the researcher has information as

to which coordinates are most important, they should be given larger scales .

The number and specific choices of coordinate variables also affect the

performance of these algorithms . Increasing the number of coordinates only

improves the performance when those variables contain information concerning

the hypothesis under test . In fact, coordinates that do not contain such infor-

mation (noise coordinates) dilute the power of the tests . This is because these

dimensions add statistical variance to the volume estimates without providing

information helpful to the estimation . Even a coordinate that does contain some

additional information may not help because the increase in statistical variance

that it introduces hurts more than the information increase helps . The preci-

sion of these tests can be increased greatly if the researcher's knowledge and

intuition lead him to a judicious choice of coordinate variables .

For goodness-of-fit testing, the model itself can be used to help choose

optimum coordinate variables . Clearly those -coordinates that enter directly into

the model are the ones that will tend to have the most bearing on the problem .

However, there may be strong dependencies in the data, not predicted by the

model . In this case, choosing only coordinate variables that appear directly
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in the model will dilute the power of the goodness-of-fit to discriminate against

the model .

There are other considerations that affect the best choice for coordinate

variables . For the algorithm discussed in this section only, the nature of the

data space boundaries is very important . For some variables, the data densi-

ties approach zero at the boundaries or there are no boundaries at all . For

example, since angular variables are simply periodic, they have no boundaries

or unallowed regions . Also, in multiparticle production, the limited transverse

momenta plus energy conservation usually prevent large data population near

kinematic boundaries . On the other hand, t-channel variables such as four-

momentum transfers squared usually have the highest densities near some of

their boundaries .
Choosing good coordinate variables and a good metric usually requires a

compromise among all of these considerations . Intelligent choices based on,

experience and intuition can substantially improve the performance of the

algorithms, provided that these are correct . The researcher always has the

option, of course, of applying the algorithms with many different choices and,

therefore, empirically determining which are the best .
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FIG. Id k-th nearest neighbor density estimate .
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FIG. 2a Histogram density estimate .
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FIG. 2 b Histogram density estimate (smooth superimposed) .



I
x
0 -

r-to

I I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

I

It

I	l	l	1	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I

0

0

0 .2

0.2

0 .4

0.4

x
0 .6 0 .8

-

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

1 .0
256DAB

FIG. 2c Residuals between rootogram and smooth of rootogram.
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FIG. 2d

	

Comparison of histogram smooth to the data density .
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FIG. 3a

	

Traditional histogram representation .

A
IF

I.
M

FIG. 3b Histogram aligned with comparison curve .

v .o.r



FIG. 3c

	

Standard rootogram representation .

FIG. 3d Hanging rootogram.
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FIG. 3e

	

Hanging rootogram with residuals emphasized .
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FIG. 4 Example of reflections caused by non-rectangular boundaries .
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