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1. Introduction

1.1 An Appraisal

String theory is now in its 35th year of existence. While it would be inappropriate
to refer the subject as middle-aged. it not unreasonable to perform the traditional
introspection customary at this juncture. and look back on what the theory has
accomplished. We can recognize and take pride in many crowning achievements.
However. we should also begin to call it to task on a few questions that a quantum
theory of gravity was thought to answer. but for which there has so far been little
progress.

Our field has come a long way since its early days as a phenomenological theory
of the strong interactions. The universal presence of a massless spin-2 particle
in its spectrum. initially an obstacle to any realistic applications of the theory.
guaranteed that string theory was a quantum theory of gravity. More importantly,
it is a finite theory of gravity: string theory is divergence free order by order in
perturbation theory. At low energies it reduces to point particle quantum field
theory. In addition, it incorporates supersymmetry and naturally leads to grand
unified theories. This was first demonstrated in the mid 1980s via four-dimensional,
N =1 supersymmetric compactifications of the heterotic string.

In recent years. we have learned that string theory is a theory of more than
just strings. It is also a theory of their magnetic cousins, the NS5-branes, and of
topological defects of all dimension, called D-branes, on which the strings can end.
Through a systematic study of nonperturbative objects such as these and an ex-
ploitation of exact consequences of the supersymmetry algebra, we have been able
to count the microstates of black holes, thus providing the first microscopic basis

for black hole thermodynamics. In perhaps the most famous success story, the

1
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study of D-branes has led to the first precise statement of holography involving a
four-dimensional gauge theory. Very general arguments have long implied that on
the one hand, gauge field theories with large gauge group are string theories. and
on the other hand, that every gravitational theory in d dimensions contains redun-
dant degrees of freedom and can be alternatively described by a non-gravitational
theory in (d — 1) dimensions. We can now. at last. explicitly state this holographic
correspondence in a lai‘ge class of situations.

Despite its many successes, our current understanding of string theory has
glaring shortcomings. We have had embarrassingly little to say. even qualitatively.
about a few celebrated problems in which gravity and quantum field theory rub el-
bows. and an answer is specifically sought in a unified treatment of both. Examples
include the cosmological constant problem, the hierarchy problem. and the problem
of spacetime singularities. Related to this is the fact that string theory in a cos-
mological context remains almost completely unexplored. Clearly. to describe our
universe, with the inflationary beginning and de Sitter endpoint currently favored
by astrophysical observation, we will need to address this shortcoming.

Another expectation of string theory which has not yet seen fruition. is that
it would have a predictive power that the standard model plus general relativity
lacked. The standard model of particle physics has a number of arbitrary param-
eters. Its supersymmetric extensions have even more. In contrast, string theory is
unique. There are no free parameters. Nevertheless. this uniqueness has been an
aesthetic rather than practical advance, since the large space of a prior: permissible
free parameters has been replaced by an even larger space of possible vacuum states.

This begs the question of how the one particular vacuum in which we live is
selected. However, there are really at least two problems. First, while some of the
vacua are isolated, others occur in continuous families, parametrized by the vacuuin
expectation values of massless scalar fields, or moduli. These moduli are excluded
both by precision tests of the equivalence principle and on cosmological grounds.
Therefore, we need to understand the mechanisms that can ultimately give these
fields masses, thus rendering them approximate rather than exact moduli. This
leaves us with a number of isolated vacua and perhaps a few continuous spaces of
unphysical vacua parametrized by moduli that cannot be lifted. Our second task
is then to understand which of these vacua are in some sense connected, and to

identify the dynamical mechanism that singles out one of these connected vacua.
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In this dissertation. we will focus on three of the problems mentioned above:
the cosmological constant problem, moduli stabilization. and vacuum connected-
ness. The remainder of the Introduction contains a short overview of each of these
problems. together with a description of a specific string theoretic or string inspired
approach toward a solution. The main ingredients are Dirichlet and Neveu-Schwarz
p-branes. the corresponding (p + 2)-form field strengths. and domain walls. which

! Due to the particular approaches em-

may or may not be composed of branes.
ployed. we will also have occasion to discuss singularities (in Sec. 1.2) and the
hierarchy problem (in Sec. 1.3). but this discussion will be brief and secondary to
the main discussion. The subsequent chapters form the nuts and bolts of the dis-
sertation. There. the reader will find a complete exposition of the ideas outlined in

the next three sections.

1.2 The Cosmological Constant Problem

As a starting point. consider the action
Stotal = Sgrav +S. (121)

where

1
=—— | d*zv/=a(R — 2A 1.2.
Sgrav 1671’04/ T g(R 2 0) ( 2)

is the four-dimensional Einstein-Hilbert action plus cosmological term. One can

show that the gravitational field equations become

1
Rpu - EgpuR + Angu = 87TG4T;ul- (123)

Here A, is the bare cosmological constant, and T}, is the energy momentum tensor

due to all the fields appearing in S. If we define

1
pAO - 87rG4 AO?

(1.2.4)

L In the context of SUSY changing bubbles (Sec. 1.4, Chap. 5) the domain wails are
made of D5 and NS5 branes, but in the self-tuning approach to the cosmological constant

problem (Sec. 1.2, Chaps. 2-3), the domain walls need not be made up of branes.



1 Introduction K|
then Eq. (1.2.3) can be rewritten as
1
R;w - §g,wR = STFG.;(T“,, - pAogpu)' (1.2.5)

The reason for the suggestive notation is that on symmetry grounds one generally
has
(Tuu) = —PvacYuv- (1.2.6)

So. the bare cosmological constant has an effect identical to that of the vacuum
energy density. In fact. it is customary to group these terms together into an

effective cosmological constant.
A = Ao + 817G ypvac. (1.2.7)

with

PA = PAo T Prac- (1.2.8)
In field theory. we rarely talk about the vacuum energy density since it can be
redefined away at will by shifting the definition of zero energy. However. this is no
longer true once gravity is included. In this case. we need to retain all contributions
to the vacuumn energy density. These contributions include. first of all, a quantum

zero-point energy density, which on dimensional grounds should go as
Pzero-pt ™~ M:umﬁ C pvac- (1.2.9)

Here M y.of is the mass scale at which momentum integrals are regularized in the
UV. If Mcyion is the four-dimensional Planck mass M. then psero-pt ~ IVI,,“1 =

(10'8 GeV)4. In addition, if there are scalar fields, then the scalar potential also

contributes to pyac :

pv = V((‘P)) C pac- (1.2.10)
Note that py can change at phase transitions. For example, the Higgs boson has a
potential
Ah? ”
V(h) = - p2h2. (1.2.11)

At temperatures above the scale of the electroweak phase transition, the Higgs field
is in a disordered state with (k) = 0. However, in the present epoch, (h) = v =

V2ii/A, and electroweak symmetry is broken. During the phase transition,

vt 2 N
(Apvac)EW = _4— ~ (10 GeV) . (1212)
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Similarly. one expects (Apvac)qcp ~ (107! GeV)* at the QCD phase transition and
(Apyac)cut ~ (106 GeV)1 if there is a GUT transition.

Gathering all contributions. we have
PA = Pho + Prero-pt + (APvac)Qep + (Apvac)EW + (Apvac)gur +---. (1.2.13)
whereas from astrophysical observation
(PA)observed < (10712 GeV)*, (1.2.14)

Given the Planck scale estimate for psero-pt- the disagreement between theory and
experiment is whopping 120 orders of magnitude.

This celebrated discrepency is known as the cosmological constant problem.
Even if our estimate for pero-pt 18 wrong.2 the observed value of pj is still far
smaller than any of the other expected contrabutions to pa. and there seems to
be no good reason why a miraculous cancellation with pa, should take place. For
a more extensive review of the cosmological constant problem. see [10] and the
references contained therein. (The discussion presented above is very similar to
§1.2 and §2.3 of [10)).

In most attempts to solve the cosmological constant problem, symmetry ar-
guments are employed to justify certain cancellations. For example. in a theory
with unbroken supersymmetry, pyac = 0 due to cancellations between bosons and
fermions. If supersymmetry is broken at low energies at a scale Mjysy, then the pre-
diction is pyac ~ M:usy, which for Mgysy ~ TeV, is still too large. However, gravity
loops are supressed by the expansion parameter M2 /M,?, with My ~ 10'® GeV.
If for some reason the leading order and one-loop contributions vanish (which is not
so hard to arrange), then pac ~ M3, /Mp* is close to the observed value of pa [5].

On the other hand, there is an independent approach that we can pursue. Since
the root of the problem is the dual interpretation of the cosmological constant as
both a vacuum energy in particle physics and a source term in Einstein’s equations,
the problem would be solved if we could somehow sever this link. This is possible

via a mechanism called self-tuning.

2 Mo can be much smaller than Mp if new physics sets in well below the Planck

scale. For example, it is often assumed that My ~ TeV.
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The starting point for the self-tuning mechanism is the brane world scenario
[11,12,13,14.15.16,17]. In this scenario, the standard model lives on a (3 + 1)-
dimensional hyperplane embedded in a higher dimensional bulk in which gravity is
free to propagate. Four dimensional gravity arises from the zero mode of the higher
dimensional graviton [18]. The hyperplane may or may not be composed of the
branes of string theory. For concreteness, consider a four-dimensional domain wall
embedded in five-dimensional space. and coupled to a bulk scalar. Given generic
couplings of the domain wall to the scalar, it is possible to show that a solution
exists in which the scalar responds in just the right way to keep the domain wall
Minkowskian even when the tension of the domain wall (4D vacuum energy) is
nonzero. This is what we will refer to as the self-tuning mechanism.

A complete discussion of the self-tuning mechanism is given in Chaps. 2 and 3.
For now, we simply note that while the mechanism does successfully eliminate the
four-dimensional gravitational effects of the vacuum energy, it also comes with at
least two undesirable properties. (See [19] for further discussion of the cosmological
viability of self-tuning models). First, although the mechanism renders Minkowski
space stable to quantum mechanical corrections to the vacuum energy. there also
exist de Sitter and Anti-de Sitter solutions. There is no reason why a flat solution
should be preferred. Second, all solutions that satisfy the dominant energy condition
at the domain wall (in particular p +p > 0) have naked curvature singularities at a
finite distance from the domain wall.

We will have the opportunity to discuss (Anti-)de Sitter self-tuning solutions
at length in Chapter 2. Since similar attention will not be devoted to to naked
singularities, we will now devote the remainder of this section to saying a few words
about singularities.

The naked singularitites of the self-tuning solutions are excluded by the cosmic
censorship conjecture.® Similar singularities do exist in Hofava-Witten theory and
in the supergravity description of orientifold planes. However, if the singularities

of our self-tuning solutions have a stringy resolution in terms of quantized objects

3 There are two forms of this conjecture. The weak cosmic censorship conjecture states
that, given physically reasonable initial conditions, the singularities produced by gravita-
tional collapse must be hidden behind black hole horizons. The strong cosmic censorship
conjecture forbids all timelike singularities, including those hidden behind horizons. For a

review of the status of cosmic censorship, see {20].
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of string theory. then we might expect a specific boundary condition to be required
at the singularity, which we neglected to impose. Still, the situation is far from
understood. One possibility is that there is a “discretuum” of allowed boundary
conditions in string theory that approaches a continuum in the supergravity limit
[21]. It is also possible that the self-tuning singularities are simply unphysical and
are not resolved in string theory. Soon after [5] and [3] appeared. several proposals
were given for deciding whether a singularity is unphysical. According to the first
proposal. gravity backgrounds with “good™ singularities can always be obtained as
singular limits of thermal solutions in which the singularities are hidden behind
event horizons [22]. It is unclear what this criterion implies for the self-tuning
solutions. The gravity solutions on either side of a self-tuning domain wall can be
deformed to hide the singularities behind horizons. But. the two deformed solutions
cannot be patched together without violating the weak energy condition at the
domain wall {23]. The proposal was soon retracted by its author and replaced by a
weaker one involving the behavior of the bulk potential for the scalar [24]. While
interesting. this new criterion does not apply to our model in the main case of
interest, with bulk supersymmetry and vanishing 5D cosmological constant.
Whatever the status of the self-tuning singularities, a widely held belief is that
every singularity of classical general relativity is either excluded or resolved in string
theory. This includes not only the timelike naked singularities just discussed, but
also cosmological singularities such as those at a big bang or big crunch. Formulating
a string theoretical classification of classical singularities is an interesting but so far

elusive direction of research.

1.3 Moduli Stabilization

Massless scalar fields, or moduli, are ubiquitous in string theory compactifica-
tions. Obviously, any light scalars that are charged under standard model gauge
fields would have been observed in collider experiments and are therefore excluded.
However, the moduli that we encounter in string theory couple to standard model
fields only through Planck suppressed interactions, even when they couple directly
to these fields through the moduli-dependence of Yukawa or gauge couplings. There-

fore, these string moduli are not excluded by collider experiments.
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On the other hand. exact moduli are excluded, and approximate moduli con-
strained, for at least two reasons. First of all. the moduli would mediate long-range
interactions that have been excluded by precision tests of Newtonian gravity (alter-
natively referred to as fifth-force experiments or tests of the equivalence principle)
[25.26]. These experiments also exclude light enough massive approximate mod-
uli [27]. In addition, approximate moduli are constrained by the Polony: or cosmo-
logical moduli problem [28]. If, in the early universe, such fields were initially far
from the minima of their potentials. their oscillations would give rise to an energy
density like that of nonrelativistic matter rather than radiation. This would ulti-
mately cause deviations from the successful predictions of big bang nucleosynthesis.

Therefore. the moduli must be lifted. There are traditionally two ways in
which this lifting can take place. Either nonperturbative string theory corrections
can generate a potential that lifts the moduli, giving them Planck scale masses, or
else the moduli can remain massless down to the supersymmetry breaking scale.
In the context of perturbative N’ = 1 heterotic compactifications. we starts out
with perturbatively massless moduli. and then generate a potential by one of the
possible sources of nonperturbative corrections. The two most well understood
are worldsheet instantons and Euclidean NS5-brane instantons. But even for these
nonperturbative effects, it has proven prohibitively difficult to perform a calculation.
There are no examples in which anyone has computed a worldsheet instanton sum
and found supersymmetric (or nonsupersymmetric) vacua in the resulting potential
[29].

In contrast, a more computationally amenable class of four-dimensional N = 1
string vacua has recently come to be appreciated. This class of vacua involves ori-
entifolds of N’ > 1 compactifications of Type IIB string theory, in which NS and RR
three-form flux is turned on through nontrivial three-cycles in the compactification
manifold. The fluxes generate a perfurbative superpotential that generically lifts all
of the complex structure moduli, plus the dilaton-axion and some Kahler moduli as
well.

These compactifications frequently also have a useful holographic interpreta-
tion. For example, there is a holographic duality between Type IIB string theory
on a warped deformed conifold with flux, and four-dimensional N =1 gauge theory
with chiral symmetry breaking [30]. In this duality, the scale of chiral symmetry

breaking corresponds to the size of a minimal three-sphere in the warped deformed
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conifold. More recently, it was observed that this construction can be embedded
within a Type IIB orientifold. where the internal manifold is a true compact Calabi-
Yau, near a conifold point in its complex structure moduli space [31]. In this case.
the superpotential is computable and the equations of motion soluble. at least near
the conifold point. By solving the equations of motion, one finds that the size of the
minimal three-sphere mentioned above is naturally exponentially small in a ratio of
fluxes. A similar statement can be made for the minimum of the warp factor that
appears in the metric. Therefore, this model provides a stringy realization of the
Randall-Sundrum approach to solving the hierarchy problem [32].1

A shortcoming of the model just described is that it relies on an an approx-
imate analysis near special points in the moduli space of complex structure. To
address this shortcoming, we will study a different model in Chapter 4. Instead
of considering a Calabi-Yau orientifold, we examine the computationally simpler
compactification of Type IIB string theory on the T®/Z, orientifold. This geometry
arises in the T-dual description of Type [ theory on T°. and one normally introduces
16 space-filling D3-branes to cancel the RR tadpoles. Here, we instead cancel the
RR tadpoles either partially or fully by turning on three-form flux in the compact
geometry. The resulting (super)potential for moduli is globally calculable and the
equations of motion soluble. We will see that we can find many explicit examples of
N =1 supersymmetric vacua with greatly reduced numbers of moduli. In addition,
a few examples with A/ > 1 supersymmetry or complete supersymmetry breaking

will also be discussed.

4 Briefly, the gauge hierarchy problem is a fine-tuning problem somewhat similar to
the cosmological constant problem. We believe that muiggs ~ 10° GeV. On the other
hand, from one-loop corrections to the Higgs self-energy. we expect Muiggs = M4e + M7,
where dm? ~ M2, and Mcusos is the ultraviolet cutoff. If Mcuwos is either Planck
scale, or at least much greater than muiggs, an unexpected miraculous cancellation be-
tween m2, . and dm? is required. However, unlike the cosmological constant problem, the
hierarchy problem is solved by the MSSM with TeV scale cutoff. In the Randall-Sundrum
approach to the hierarchy problem [32], the Planck scale is at a TeV, but an exponential
hierarchy of mass scales arises from the warp factor e24) that appears in the metric

ds? = e*'Wq,, dr*dz” + g(y)mndy™dy™.
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1.4 Vacuum Connectedness

In the previous section we discussed the lifting of moduli by perturbative and
nonperturbative superpotentials. However. even after these superpotentials are
taken into account. string theory does not have a unique vacuum state. It is there-
fore natural to ask how the particular vacuum in which we live is chosen. A logical
possibility is that nature has ended up in a particular vacuum state through no more
than a historical accident. But. this would be disappointing. We would like to think
that string theory provides a physical mechanism for vacuum selection. Ideally. this
mechanism would not only single a particular four-dimensional vacuum. but would
also predict that exactly four of the dimensions of spacetime are large. At present.
very little is known about the dynamics of vacuum selection. A number of ideas
have been proposed by T. Banks and collaborators. (See for example [33.34]). We
will not discuss any of these ideas here. Instead, we will focus on the related issue
of vacuum connectedness.

It is likely that any mechanism in string theory for vacuum selection acts sep-
arately on a number of disjoint subsets of vacua. or superselection sectors. Under-
standing the possible notions of vacuum connectedness is therefore a logical first
step toward understanding vacuum selection. The strongest notion of vacuum con-
nectedness is connectedness in moduli space. While we do know a fair amount about
this type of connectedness, this notion is almost certainly too strong. Cosmology
samples more than the minima of potentials. Though we do not understand string
field theory well enough to make precise statements about the potential barriers
that connect different string vacua, we expect by analogy to point-particle field
theory that such barriers exist, and that two vacua are dynamically connected if
the barrier that separates them is much smaller than the four-dimensional Planck
scale. In such a case, there should exist solutions with nonstatic domain walls,?
or bubble walls, that interpolate between the two vacua. Therefore, we will adopt
as a tentative notion of vacuum connectedness the existence of bubble solutions

interpolating between two vacua, with bubble tension small in Planck units.®

> The results of [35] show that there do not exist static BPS domain walls that inter-
polate between two nonsingular supersymmetric vacua.

6 The last part of this definition is explained in more detail in Chap. 5. In short, it is
necessary to have sub-Planckian bubble tension for the bubbles to be macroscopic but at

the same time not be black holes.
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As a specific application of this definition. we ask whether four-dimensional
vacua that preserve different amounts of supersymmetry can be connected. This
question is interesting since. on the one hand, we suspect that the vacuum in which
we live is an A = 1 string background with spontaneously broken supersymmetry.
and on the other hand. we know that four-dimensional vacua with different amounts
of supersymmetry are not connected in moduli space. '

In Chap. 5. we provide a positive answer to this question by showing that all of
the Type IIB flux vacua of Chap. 4, including those that preserve different amounts
of supersymmetry. can be connected to one another by nonstatic spherical domain
walls. The tension of these bubble walls is tunably lower than the four-dimensional
Planck scale. and the stringy description of these walls is known in terms of wrapped
D5 and NS5 branes. This construction allows us to connect vacua with anywhere

from A =1 to N = 1 supersymiuetry in four dimensions.



2. Self-Tuning Flat Domain Walls

Some time ago. it was suggested that the cosmological constant problem could
become soluble in models where our world is a topological defect in a higher di-
mensional spacetime [11]. Recently such models have come under renewed investi-
gation. This has been motivated both by brane world scenarios [12.13.14.15.16.17].
and by the suggestion of Randall and Sundrum [18] that the four-dimensional gravi-
ton might be a bound state of a 5D graviton to a 4D domain wall. At the same
time. new ideas relating 4D renormalization group flows to 5D AdS gravity via the
AdS/CFT correspondence [36.37.38] have inspired related approaches to explain-
ing the near-vanishing of the 4D cosmological term [39.40]. The latter authors have
suggested (following [11]) that quantum corrections to the 4D cosmological constant
could be cancelled by variations of fields in a five-dimensional bulk gravity solution.
The results of this chapter may be regarded as a concrete partial realization of
this scenario. in the context of 5D dilaton gravity and string theory. A different
AdS/CFT motivated approach to this problem was discussed in [41].

In the thin wall approximation, we can represent a domain wall in 5D gravity
by a delta function source with some coefficient f(¢) (where ¢ is a bulk scalar field,
the dilaton), parametrizing the tension of the wall. Quantum fluctuations of the
fields with support on the brane should correct f(#). In this chapter, we present
a concrete example of a 5D dilaton gravity theory where one can find Poincare
invariant domain wall solutions for generic f(¢). The constraint of finding a finite
4D Planck scale then restricts the sign of f and the value of f'/f at the wall to

lie in a range of order one. Thus fine-tuning is not required in order to avoid

This chapter is reprinted, with changes. from Shamit Kachru, Michael Schulz, and Eva
Silverstein, “Self-Tuning Flat Domain Walls in 5D Gravity and String Theory,” Phys. Rev.
D 62. 045021 (2000), by permission of the publisher. © 2000 by the American Physical
Society.
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having the quantum fluctuations which correct f(¢) generate a 4D cosmological
constant. One of the requirements we must impose is that the 5D cosmological
constant A should vanish.” This would be natural in scenarios where the bulk is
supersymmetric (though the brane need not be), or where quantum corrections to
the bulk are small enough to neglect in a controlled expansion.

For suitable choices of f(#), this example exhibits the precise dilaton couplings
which naturally arise in string theory. There are two interesting and distinct con-
texts in which this happens. One is to consider f(¢) corresponding to tree-level
dilaton coupling (Ve~2? in string frame. for some constant V). This form of the
dilaton coupling is not restricted to tree-level perturbative string theory—it occurs
for example on the worldvolumes of Neveu-Schwarz (NS) branes in string theory.
There. the dynamics of the worldvolume degrees of freedom does not depend on the
dilaton-—the relevant coupling constant is dilaton independent. Therefore. quan-
tum corrections to the brane tension due to dynamics of worldvolume fields would
be expected to maintain the “tree-level” form of f(¢). while simply shifting the
coefficient V" of the (string frame) e~2?. The other form of f(¢) natural in string
theory involves a power series in e®. This type of coupling occurs when quantum
corrections are controlled by the dilaton in string theory.

In either case, as long as we only consider quantum corrections which modify
f(¢) but maintain the required form of the bulk 5D gravity action, this means that
quantum corrections to the brane tension do not destabilize flat space: they do not
generate a four-dimensional cosmological constant. We will argue that some of our
examples should have a microscopic realization in string theory with this feature, at
leading order in a controllable approximation scheme. It is perhaps appropriate to
call this “self-tuning” of the cosmological constant because the 5D gravity theory
and its matter fields respond in just the right way to shifts in the tension of the
brane to maintain 4D Poincare invariance. Note that here, as in [18], there is a
distinction between the brane tension and the 4D cosmological constant.

There are two aspects of the solutions we find which are not under satisfactory
control. Firstly, the curvature in the brane solutions of interest has singularities at fi-

nite distance from the wall; the proper interpretation of these singularities will likely

7 It is possible that an Einstein frame bulk cosmological term which is independent of

¢ will also allow for similar physics [4].
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be crucial to understanding the mechanism of self-tuning from a four-dimensional
perspective. We cut off the space at these singularities. The wavefunctions for
the four-dimensional gravitons in our solutions vanish there. Secondly. the value of
the dilaton ¢ diverges at some of the singularities: this implies that the theory is
becoming strongly coupled there. However. the curvature and coupling can be kept
arbitrarily weak at the core of the wall. Therefore. some aspects of the solutions are
under control and we think the self-tuning mechanism can be concretely studied.
We present some preliminary ideas about the microscopic nature of the singularities
in Sec. 2.4.

A problem common to the system studied here and that of [18] is the possibility
of instabilities. hidden in the thin wall sources. that are missed by the effective field
theory analysis. Studying thick wall analogues of our solutions would probably shed
light on this issue. We do not resolve this question here. But taking advantage of
the stringy dilaton couplings possible in our set of self-tuned models. we present
a plausibility argument for the existence of stringy realizations. a subject whose
details we leave for future work [4].

Another issue involves solutions where the wall is not Poincare invariant. This
could mean it is curved (for example, de Sitter or anti-de Sitter spacetime). However
it could also mean that there is a nontrivial dilaton profile along the wall (one
example being the linear dilaton solution in string theory. which arises when the
tree-level cosmological constant is nonvanishing). This latter possibility is a prior:
as likely as others. given the presence of the massless dilaton in our solutions.

Our purpose in this chapter is to argue that starting with a Poincare invariant
wall, one can find systems where quantum corrections leave a Poincaré-invariant wall
as a solution. However one could also imagine starting with non Poincaré-invariant
wall solutions of the same 5D equations (and preliminary analysis suggests that
such solutions do exist in the generic case, with finite 4D Planck scale). We are
in the process of systematically analyzing the fine tuning of initial conditions that
considering a classically Poincaré-invariant wall might entail [4].

The chapter is organized as follows. In Sec. 2.1, we write down the 5D gravity
+ dilaton theories that we will be investigating. We solve the equations of motion
to find Poincaré-invariant domain walls, both in the cases where the 5D Lagrangian
has couplings which provide the self-tuning discussed above, and in more general

cases. In Sec. 2.2. we describe several possible embeddings of our results into a
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more microscopic string theory context. We close with a discussion of promising
directions for future thought in Sec. 2.3.

There have been many interesting recent papers which study domain walls in
5D dilaton gravity theories. We particularly found [42] and [43] useful. and further
references may be found there.

This research was inspired by very interesting discussions with O. Aharony and
T. Banks. While our work on Poincaré-invariant domain walls and self-tuning was
in progress, we learned that very similar work was in progress by Arkani-Hamed.
Dimopoulos, Kaloper and Sundrum [5]. In particular. before we had obtained the
solutions in Sec. 2.1.3 and Sec. 2.1.4. R. Sundrum told us that they were finding
singular solutions to the equations and were hoping the singularities would “explain”

a breakdown of 4D effective field theory on the domain wall.

2.1 Poincaré-Invariant 4D Domain Wall Solutions
2.1.1 Basic Setup and Summary of Results

Let us consider the action
S = /dsx —G[R - %(V(ﬁ)z —Ae“"’] + /d*z\/—g[—f(m] (2.1.1)

describing a scalar field ¢ and gravity living in five dimensions coupled to a thin
four-dimensional domain wall. Let us set the position of the domain wall at z5 = 0.
Here we follow the notation of [18] so that the metric g, along the four-dimensional
slice at z5 = 0 is given in terms of the five-dimensional metric Gpn by
M
Guv = 6“ 69{GMN(I5 = 0)

pv=1,.,4 (2.1.2)

For concreteness, in much of our discussion we will make the choice
f($) = Veb® (2.1.3)

However, most of our considerations will not depend on this detailed choice of f(®)
(for reasons that will become clear). With this choice, (2.1.1) describes a family of

theories parameterized by V', A, a, and b. If a = 2b = 4/3, the action (2.1.1) agrees
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with tree-level string theory where ¢ is identified with the dilaton. (That is. the 5D
cosmological constant term and the 4D domain wall tension term both scale like
e~ 2% in string frame.) In Sec. 2.2 we will discuss a very natural context in which
this type of action arises in string theory, either with the specific form (2.1.3) or
with more general f(¢).

In the rest of this section we will derive the field equations arising from this
action and construct some interesting solutions of these equations. In particular. we
will be interested in whether there are Poincaré-invariant solutions for the metric of
the four-dimensional slice at z3 = O for generic values of these parameters (or more
generally. for what subspaces of this parameter space there are Poincaré-invariant
solutions in four dimensions). We will also require that the geometry is such that
the four-dimensional Planck scale is finite. Our main results can be summarized in

three different cases as follows:

(I) For A =0.b # i:% but otherwise arbitrary. and arbitrary magnitude of V" we find
a Poincaré-invariant domain wall solution of the equations of motion. For b = 2/3.
which is the value corresponding to a brane tension of order e~2% in string frame.
the sign of V must be positive in order to correspend to a solution with a finite
four-dimensional Planck scale. but it is otherwise unconstrained. This suggests that
for fixed scalar field coupling to the domain wall, quantum corrections to its tension
V do not spoil Poincaré-invariance of the slice. In §2.2 we will review examples
in string theory of situations where worldvolume degrees of freedom contribute
quantumn corrections to the e=2# term in a brane’s tension. Our result implies that
these quantum corrections do not need to be fine-tuned to zero to obtain a flat
four-dimensional spacetime.

For a generic choice of f(¢) in (2.1.1) (including the type of power series ex-
pansion in e? that would arise in perturbative string theory), the same basic results
hold true: We are able to find Poincaré-invariant solutions without fine-tuning f.
Insisting on a finite 4D Planck scale gives a furthur constraint on f’/f at the wall,
forcing it to lie in a range of order one.

Given a solution with one value of V and A = 0, a self-tuning mechanism is in
fact clear from the Lagrangian (for b # 0). In (2.1.1) we see that if A = 0 (or a = 0),
the only non-derivative coupling of the dilaton is to the brane tension term, where

it appears in the combination (—V)e®?. Clearly given a solution for one value of V/,
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there will be a solution for any value of V" obtained by absorbing shifts in V' with
shifts in ¢. With more general f(¢). similar remarks hold: the dilaton zero mode
appears only in f. and one can absorb shifts in V' by shifting ¢.

However. in the special case b = 0 (where f(¢) is just a constant), we will also
find flat solutions for generic V. This implies that the freedom to vary the dilaton
zero mode is not the only mechanism that ensures the existence of a flat solution
for arbitrary V.

(II) For A = 0. b = £4/3. we find a different Poincaré-invariant solution
(obtained by matching together two 5D bulk solutions in a different combination
than that used in obtaining the solutions described in the preceding paragraph (I)).
A solution is present for any value of V. This suggests that for fixed scalar field
coupling to the domain wall. quantum corrections to its tension V' do not spoil
Poincaré-invariance of the slice. Again the sign of V must be positive in order to
have a finite four-dimensional Planck scale.

(IIT) We do not find a solution (nor do we show that none exists) for general A.
V, a. and b (in concordance with the counting of parameters in [42]). However. for
each A and V there is a choice of a and b for which we do find a Poincaré-invariant
solution using a simple ansatz.

For a = 0. and general b. A, and V' we are currently investigating the existence
of self-tuning solutions. Their existence would be in accord with the fact that in this
case, as in the cases with A = 0, the dilaton zero mode only appears in the tension
of the wall. This means again that shifts in V' can be absorbed by shifting ¢, so if
one finds a Poincaré-invariant solution for any V', one does not need to fine-tune V'

to solve the equations.

2.1.2 Equations of Motion

The equations of motion arising for the theory (2.1.1). with our simple choice

for f(¢) given in Eq. (2.1.3), are as follows. Varying with respect to the dilaton
gives:

Vv —G<§V2¢ - aAe“¢) — bVé(zs5)e? /=g =0 (2.1.4)
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The Einstein equations for this theory are:

1
V-G (RMN - ;GMNR)
4 1 2 .
-3 -G [VAI¢VN¢ - §GMN(V¢)“] (2.1.5)
1 .
+ 5 [Ae“"v -GGuN + V —ng,‘,,of{,&K,J(xs)] =10

We are interested in whether there are solutions with Poincaré-invariant four-
dimensional physics. Therefore we look for solutions of Eqgs. (2.1.4) and (2.1.5)

where the metric takes the form
ds? = 24F3) (—dzi + dr3 + dr3 + dr3) + dz3 (2.1.6)

With this ansatz for the metric. the equations become

2 i
gr,b" + %—A'QS' — ahe®® — bVé(zs)e?® =0 (2.1.7)
N 4’ 2 2 7 ) 1 (l¢
6(A)" — 5(45 )* + §;\e =0 (2.1.8)
Q Al 4 \2 1 b1/ x
34" + §(¢) + 3¢ Vi(rs) =0 (2.1.9)

where  denotes differentiation with respect to rs. The first one (2.1.7) is the dilaton
equation of motion, the second (2.1.8) is the 55 component of Einstein’s equations.
and the last (2.1.9) comes from a linear combination (the difference) of the pv
component of Einstein’s equation and the 55 component.

We will mostly consider the simple ansatz
A =ad. (2.1.10)
However for the case a = 0. A # 0 we will integrate the equations directly.

2.1.3A =0 Case

Let us first consider the system with A = 0. We will first study the bulk
equations of motion (i.e. the equations of motion away from z5 = 0) where the
é-function terms in Egs. (2.1.7) and (2.1.9) do not come in. Note that because the

delta function terms do not enter, the bulk equations are independent of our choice



2 Self-Tuning Flat Domain Walls 19

of f(¢) in Eq. (2.1.1). We will then consider the conditions required to match two
bulk solutions on either side of the domain wall of tension Ve?® at x5 = 0. We will
find two qualitatively different ways to do this. corresponding to results (I) and (II)
quoted above. We will also find that for fairly generic f(¢). the same conclusions

hold.
Bulk Equations: A =0

Plugging the ansatz (2.1.10) into Eq. (2.1.8) (with A = 0) we find that

0,2 _ 2,02
6a~(¢)” = g(rﬁ) (2.1.11)
which is solved if we take
1
= += 2.1.12
a= i3 (2.1.12)

Plugging this ansatz into Eq. (2.1.7) we obtain

8 1 o
3[¢”+4(t§)(¢’)“] =0 (2.1.13)
Plugging it into Eq. (2.1.9) we obtain
1 U 4 "2
3(£3)8" + 3(¢7)° =0 (2.1.14)

With either choice of sign for a. these two equations become identical in bulk. For

a= i%, we must solve
4
¢ + §(¢>’)2 =0 (2.1.15)

in bulk. This is solved by

+d (2.1.16)

4
¢=:tglog §x5+c

. where ¢ and d are arbitrary integration constants.

Note that there is a singularity in this solution at

Is = —gc (2.1.17)

4

Our solutions will involve regions of spacetime to one side of this singularity; we will

assume that it can be taken to effectively cut off the space. At present we do not
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have much quantitative to say about the physical implications of this singularity.
The results we derive here (summarized above) strongly motivate further exploring
the effects of these singularities on the four-dimensional physics of our domain wall
solutions.

At 5 = 0 there is localized energy density leading to the d-function terms in
Eq. (2.1.7) and (2.1.9). We can solve these equations by introducing appropriate
discontinuities in ¢’ at the wall (while insisting that ¢ itself is continuous). We will

now do this for two illustrative cases (the first being the most physically interesting).
Solution (I):

Let us take the bulk solution with a = +§ for 5 < 0. and the one with a = —%

for x5 > 0. So we have

+dy. 15<0 (2.1.18)

X 4
d(xs) = d1(zs) = glog 3%s + ¢y

4
355 +caf+d2. x5>0 (2.1.19)

3
d(zs) = da(xs) = ~1 log

where we have allowed for the possibility that the (so far) arbitrary integration
constants can be different on the two sides of the domain wall.

Imposing continuity of ¢ at zs = 0 leads to the condition
3 3
1 log[c1| +d; = =1 log|02| + ds (2.1.20)

This equation determines the integration constant d; in terms of the others.

To solve (2.1.7) we then require
8
3 (62(0) - 41(0)) = bVe"*® (2.1.21)

while to solve (2.1.9) we need

3(a2¢'2(0) - a1¢’1(0)) = —éve’"f’“” (2.1.22)

(where ) = +% and az; = —%). These two matching conditions become

_§ (_1_ + -1—) = bvebdl ICII%b (2.1.23)
3 (8} Ca
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and

1 1 1 a
- = —§Ve”d‘|c1|?° (2.1.24)

Co C1

Solving for the integration constants c¢; and ¢; we find

Vebdi|c,|3® (2.1.25)

AN

Vebdi|c,|7? (2.1.26)

2
- -

Note that as long as b # +3, we here find a solution for the integration con-
stants ¢; and c2 in terms of the parameters b and V' which appear in the Lagrangian
and the integration constant d;. (As discussed above. the integration constant da
is then also determined).® In particular. for scalar coupling given by b. there is a
Poincaré-invariant four-dimensional domain wall for any value of the brane tension
V. V does not need to be fine-tuned to find a solution. As is clear from the form
of the 4D interaction in (2.1.1). one way to understand this is that the scalar field
¢ can absorb a shift in V since the only place that the ¢ zero mode appears in the
Lagrangian is multiplying V'. However since we can use these equations to solve for
c1.2 without fixing d;. a more general story is at work; in particular. even for b = 0
we find solutions for arbitrary V.

A constraint on the sign of V arises, as we will now discuss, from the require-
ment that there be singularities (2.1.17) in the bulk solutions, effectively cutting off

the z5 direction at finite volume.

More General f(¢)

If instead of Eq. (2.1.3) we include a more general choice of f in the action
(2.1.1), the considerations above go through unaltered. The choice of f only enters
in the matching conditions (2.1.21) and (2.1.22) at the domain wall. The modified

equations become

80 o 0
2 (64(0) - 10)) = 22 (500) (2127

3(aad3(0) ~ c11(0)) = ~ 5 /(#(0)) (2.1.28)

8 We will momentarily find a disjoint set of A = 0 domain wall solutions for which b

will be forced to be £4/3, so altogether there are solutions for any b.
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In terms of the integration constants. these become:

8/1 1 af

2L = d 2.1.
3<c1+c2) 34’( log |c1| + ) (2.1.29)
1 1

___;_—_—f( log]c1|+d) (2.1.30)
Co C1

Clearly for generic f(¢). one can solve these equations.
Obtaining a Finite 4D Planck Scale

Consider the solution (2.1.18) on the 5 < 0 side. If ¢; < 0. then there is never
a singularity. Let us consider the four-dimensional Planck scale. It is proportional

to the integral [18]
/d:z:5 g2A(rs) (2.1.31)

In the z5 < 0 region. this goes like

/d.’L‘s

If ¢, < 0. then there is no singularity. and this integral is evaluated from
I5 = —oc to 5 = 0. It diverges. If ¢; > 0. then there is a singularity at (2.1.17).
Cutting off the volume integral (2.1.32) there gives a finite result. Note that the
ansatz (2.1.10) leaves an undetermined integration constant in A, so one can tune
the actual value of the 4D Planck scale by shifting this constant.

In order to have a finite 4D Planck scale, we therefore impose that ¢, > 0.
This requires V(— - —) > 0. For the value b = 2/3, natural in string theory (as we
will discuss in §2.2), this requires V > 0. With this constraint, there is similarly a
singularity on the z5 > 0 side which cuts off the volume on that side.

These conditions extend easily to conditions on f(¢) in the more general case.

We find

(2.1.32)

o+
—Is5 C
3 1

_398 4(0)) - Lrs0) <0
gg? f (2.1.33)
-3 (600)) + 560 >0

This means that f(¢) must be positive at the wall (corresponding to a positive

tension brane), and that
(2.1.34)

wl.::.
AN

<=
A
ol e
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So although f does not need to be fine-tuned to achieve a solution of the sort we
require. it needs to be such that f’/f is in the range (2.1.34).

Let us discuss some of the physics at the singularity. Following [18.42], we can
compute the zrs-dependence of the four-dimensional graviton wavefunction. Ex-
panding the metric about our solution (taking g, = e2 N, + hyy). we find
4

=I5 +¢C

3 (2.1.35)

hu, x

At a singularity. where |§15 + c| vanishes. this wavefunction also vanishes. Without
understanding the physics of the singularity. we cannot determine yet whether it
significantly affects the interactions of the four-dimensional modes.

It is also of interest to consider the behavior of the scalar ¢ at the singularities.

In string theory this determines the string coupling. In our solution (I). we see that

3
:L‘5—')——61=>¢—-)—3C
1 (2.1.36)

3
:L‘5—>—ICQ=>(,/)-—)’XZ

So in string theory. the curvature singularity on the 5 < 0 side is weakly coupled,
while that on the z5 > 0 side is strongly coupled. It may be possible to realize these
geometries in a context where supersymmetry is broken by the brane, so that the
bulk is supersymmetric. In such a case the stability of the high curvature and/or
strong-coupling regions may be easier to ensure. In any case we believe that the
results of this section motivate further analysis of these singular regions, which we
leave for future work.

Putting everything together, we have found the solution described in case (I)
above. It should be clear that since f(¢) only appears in Eq. (2.1.1) multiplying
the delta function “thin wall” source term, we can always use the choice (2.1.3)
in writing matching conditions at the wall for concreteness. To understand what
would happen with a more general f, one simply replaces Ve with f(¢(0)) and
bV eb4(®) with g‘%(¢(0)) in the matching equations. We will not explicitly say this

in each case, but it makes the generalization to arbitrary f immediate.
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Solution (II):

A second type of solution with A = 0 is obtained by taking a to have the same

sign on both sides of the domain wall. So we have

3 4
P(z5) = p1(xs) = +7 log 3T ta +d. z5<0 (2.1.37)
3 4
¢(zs) = Pa(zs) = :1:1 log 385 T C2 +da. 15>0 (2.1.38)
The matching conditions then require b = ZF% for consistency of Eqs. (2.1.7)

and (2.1.9) (in the case with more generic f(¢). this generalizes to the condition
gé(qﬁ(O)) = 3 £(#(0))). This is not a value of b that appears from a dilaton cou-
pling in perturbative string theory. It is still interesting. however. as a gravitational
low-energy effective field theory where V' does not have to be fine-tuned in order to
preserve four-dimensional Poincaré-invariance. We find a solution to the matching

conditions with
cp=c¢. x5>0

¢y =—-c. I5<0

dy =dy =d (2.1.39)
i1 c

Fid _ 2

©T TV

for some arbitrary constant ¢, and any V. This gives the results summarized in
case (II) above. The value b = F4/3, which is required here. was excluded from the
solutions (I) derived in the last section.

As long as we choose ¢ such that there are singularities on both sides of the
domain wall, we again get finite 4D Planck scale. As we can see from Egs. (2.1.37)
and (2.1.38), having singularities on either side of the origin requires c to be positive.
Then we see from (2.1.39) that we can find a solution for arbitrary positive brane
tension V.

Let us discuss the physics of the singularities in this case. As in solutions (I),
the graviton wavefunction decays to zero at the singularity like (z — zsing)é. For
b= —4/3, = —oc at the singularities on both sides, while for b = %, ¢ — oo at
the singularities on both sides.

Putting solutions (I) and (II) together, we see that in the A = 0 case one

can find a Poincaré-invariant solution with finite 4D Planck scale for any positive



2 Self-Tuning Flat Domain Walls 25

tension V and any choice of b in Eq. (2.1.1). As we have seen, this in fact remains

true with Eq. (2.1.3) replaced by a more general dilaton dependent brane tension

f(9)-

Two-Brane Solutions

One can also obtain solutions describing a pair of domain walls localized in
a compact fifth dimension. In case (I). one can show that such solutions always
involve singularities. In case (II), there are solutions which avoid singularities while
maintaining the finiteness of the four-dimensional Planck scale. They however in-
volve extra moduli (the size of the compactified fifth dimension) which may be
stabilized by for example the mechanism of [44]. The singularity is avoided in these
cases by placing a second domain wall between x5 = 0 and the would-be singularity
at %xs +¢ = 0. This allows us in particular to find solutions for which ¢ is bounded
everywhere, so that the coupling does not get too strong. This is a straightforward

generalization of what we have already done and we will not elaborate on it here.

2.1.4 A #0 (Solution III)

More generally we can consider the entire Lagrangian (2.1.1) with parameters
A.V.a.b. In this case. plugging in the ansatz (2.1.10) to Egs. (2.1.7)-(2.1.9). we
find a bulk solution

2 B
p=-2 10g(M15 +d)
a 2
A
B=——— 2.1.40
%— 1202 ( )
__8
T 9a

We find a domain wall solution by taking one sign in the argument of the logarithm
in Eq. (2.1.40) for z5 < 0 and the opposite sign in the argument of the logarithm
for z5 > 0. Say for instance that a > 0. Then we could take the — sign for z > 0
and the + sign for r < 0, and find a solution which terminates at singularities on
both sides if we choose d > 0.

The matching conditions then require

V =-12aVB (2.1.41)
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and

b= - (2.1.42)

9

So we see that here V' must be fine-tuned to the A-dependent value given in
Eq. (2.1.41). This is similar to the situation in {18]. where one fine-tune is required
to set the four-dimensional cosmological constant to zero. Like in our solutions in
Sec. 2.1.1. there is one undetermined parameter in the Lagrangian. But here it is
a complicated combination of A and V (namely. V/v/A). and we do not have an
immediate interpretation of variations of this parameter as arising from nontrivial
quantum corrections from a sector of the theory.

The fact. apparent from Egs. (2.1.40) and (2.1.42). that b = a/2 in this solution

makes its embedding in string theory natural. as we will explain in the next section.

A#0.a=0
In this case. the bulk equations of motion become (in terms of h = ¢’ and
g=4')
h' +4hg=0
2 1
. 2 2 _ .
6g° — §h + §A =0 (2.1.43)
4
39’ +-h*=0
973

We can solve the second equation for g in terms of h, and then integrate the first
equation to obtain h(zs). For g # 0 the third equation is then automatically
satisfied. We will not need detailed properties of the solution, so we will not include
it here. The solutions are more complicated than those of Sec. 2.1.3. We are
currently exploring under what conditions one can solve the matching equations to
obtain a wall with singularities cutting off the z5 direction on both sides [4]. If such
walls exist, they will also exhibit the self-tuning phenomenon of Sec. 2.1.3, since
the dilaton zero mode can absorb shifts in V and doesn’t appear elsewhere in the

action.
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2.2 Toward a String Theory Realization
2.2.1 A =0 Cases

Taking A = 0 is natural in string theory. since the tree-level vacuum energy
in generic critical closed string compactifications (supersymmetric or not) vanishes.
One would expect bulk quantum corrections to correct A in a power series in g, = €®.
However. the analysis of Sec. 2.1.3 may still be of interest if the bulk corrections to
A are small enough. This can happen for instance if the supersymmetry breaking
is localized in a small neighborhood of the wall and the rs interval is much larger.

or more generally if the supersymmetry breaking scale in bulk is small enough.

General f(¢)

The examples we have found in Sec. 2.1 which “self-tune” the 4D cosmological
constant to zero have A = 0 with a broad range of choices for f(¢). We interpret this
as meaning that quantum corrections to the brane tension. which would change the
form of f. do not destabilize the flat brane solution. The generality of the dilaton
coupling f(¢) suggests that our results should apply to a wide variety of string
theory backgrounds involving domain walls. We now turn to a discussion of some

of the features of particular cases.
D-branes

In string theory, one would naively expect codimension-1 D-branes (perhaps
wrapping a piece of some compact manifold) to have f(¢) given by a power series

of the form

f(9) =e3* i cne™® (2.2.1)
=0

The cq term represents the tree-level D-brane tension (which goes like 1/g, in string
frame). The higher order terms in Eq. (2.2.1) represent quantum corrections from
the Yang-Mills theory on the brane, which has coupling g%, = €.

If one looks for solutions of the equations which arise with the choice (2.1.3)
for f(¢) with positive V and b = 5/3 (the tree level D-brane theory), then there
are no solutions with finite 4D Planck scale. The constraints of Sec. 2.1.3 cannot
be solved to give a single wall with singularities on both sides cutting off the length

in the zs5 direction. However, including quantum corrections to the D-brane theory
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to get a more generic f as in (2.2.1). there is a constraint on the magnitude of
%((ﬁ(O)) divided by f(¢(0)) which can be obeyed. Therefore, one concludes that
for our mechanism to be at work with D-brane domain walls. the dilaton ¢ must
be stabilized away from weak coupling—the loop corrections to Eq. (2.2.1) must be

important.
The Case f(¢) = Ve3?® and NS Branes

Another simple way to get models which could come out of string theory is to
set b=2/3 in (2.1.3). so
flp) = Ved® (2.2.2)

Then (2.1.1) becomes precisely the Einstein frame action that one would get from
a “3-brane” in string theory with a string frame source term proportional to e =2,
In this case. ¢ can also naturally be identified with the string theory dilaton. This
choice of b is possible in solutions of the sort summarized in result (I) in Sec. 2.1.1.

However. after identifying ¢ with the string theory dilaton, if we really want
to make this specific choice for f(¢) we would also like to find branes where it is
natural to expect that quantum corrections to the brane tension (e.g. from gauge
and matter fields living on the brane) would shift V. but not change the overall ¢
dependence of the source term. This can only happen if the string coupling g, = €®
is not the field-theoretic coupling parameter for the dynamical degrees of freedom
on the brane.

Many examples where this happens are known in string theory. For exam-
ple, the NS five-branes of Type IIB and heterotic string theory have gauge fields
on their worldvolume whose Yang-Mills coupling does not depend on g5 [45,46,47].
This can roughly be understood from the fact that the dilaton grows to infinity
down the throat of the solution, and its value in the asymptotic flat region away
from this throat is irrelevant to the coupling of the modes on the brane. Upon
compactification, this leads to gauge couplings depending on sizes of cycles in the
compactification manifold (in units of ') [46,48,49]. For instance, in {48,49] gauge
groups which arise “non-perturbatively” in singular heterotic compactifications (at
less supersymmetric generalizations of the small instanton singularity [45]) are dis-
cussed. There, the 4D gauge couplings on a heterotic NS five-brane wrapped on a

two-cycle go like
a/

2
#m~ 7 (2.2.3)
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Here R is the scale of this two-cycle in the compactification manifold. In [48,49], this
was used to interpret string sigma model worldsheet instanton effects, which go like
e~R*/a’_in terms of nonperturbative effects in the brane gauge group, which go like
e~87'/9%s. So this is a concrete example in which nontrivial dilaton-independent
quantum corrections to the effective action on the brane arise. One can imagine
analogous examples involving supersymmetry breaking. In such cases. perturbative
shifts in the brane tension due to brane worldvolume gauge dynamics would be a
series in o’ /R? and not g, = €°.

In particular. one can generalize such examples to cases where the branes are
domain walls in 5D spacetime (instead of space-filling in 4D spacetime as in the
examples just discussed). but where again the brane gauge coupling is not the string
coupling. Quantum corrections to the brane tension in the brane gauge theory then

naturally contribute shifts

[XY[X

e3%V = e3%(V +4V) (2.2.4)

to the (Einstein frame) b = 2/3 source term in Eq. (2.1.1). without changing its
dilaton dependence.

Most of our discussion here has focused on the case where ¢ is identified with
the string theory dilaton. However, in general it is possible that some other string
theory modulus could play the role of ¢ in our solutions, perhaps for more general

values of b.
Resemblance to Orientifolds

In our analysis of the equations, we find solutions describing a 4D gravity
theory with zero cosmological constant if we consider singular solutions and cut off
the fifth dimension at these singularities. The simplest versions of compactifications
involving branes in string theory also include defects in the compactification which
absorb the charge of the branes and cancel their contribution to the cosmological
constant in four dimensions. at least at tree level. Examples of these defects include
orientifolds (in the context of D-brane worlds), S-duals of orientifolds (in the context
of NS brane worlds), and Horava-Witten “ends of the world” (in the context of the
strongly coupled heterotic string).

Our most interesting solutions involve two different behaviors on the two sides

of the domain wall. On one side the dilaton goes to strong coupling while on the
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other side it goes to weak coupling at the singularity. This effect has also been seen
in brane-orientifold systems [50].

It would be very interesting to understand whether the singularities we find can
be identified with orientifold-like defects. as these similarities might suggest. Then
their role (if any) in absorbing quantum corrections to the 4D cosmological constant
could be related to the effective negative tension of these defects. However. vari-
ous aspects of our dilaton gravity solutions are not familiar from brane-orientifold
systems. In particular. the existence of solutions with curved 4D geometry on the
same footing as our flat solutions does not occur in typical perturbative string com-
pactifications. In any case. note that (as explained in Sec. 2.2.1) our mechanism

does not occur in the case of weakly coupled D-branes and orientifolds.

2.2.2 A #0 Cases

Some of the A # 0 cases discussed in Sec. 2.1.4 could also arise in string theory.
As discussed in [51.49] one can find closed string backgrounds with nonzero tree
level cosmological constant A < 0 by considering subcritical strings. In this case.
the cosmological term would have dilaton dependence consistent with a = 1/3 in
bulk. Using Egs. (2.1.40) and (2.1.42), this implies b = 2/3, which is the expected
scaling for a tree-level brane tension in the thin-wall approximation as well.

One would naively expect to obtain vacua with such negative bulk cosmological
constants out of tachyon condensation in closed string theory [51,49]. It is then
natural to consider these domain walls (in the @ = 4/3,b = 2/3 case) as the thin
wall approximation to “fat” domain walls which could be formed by tachyon field
configurations which interpolate between different minima of a closed string tachyon
potential. In the context of the Randall-Sundrum scenario, such “fat” walls were
studied for example in [42,52.53).

It would be interesting to find cases where the A # 0, a = 0 solutions arise
from a more microscopic theory. However, it is clear that the dilaton dependence of
Eq. (2.1.1) is then not consistent with interpreting ¢ as the string theory dilaton.
Perhaps one could find a situation where ¢ can be identified with some other string
theoretic modulus, and A can be interpreted as the bulk cosmological constant after

other moduli are fixed.
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2.3 Discussion

The concrete results of Sec. 2.1 motivate many interesting questions. which
we have only begun to explore. Answering these questions will be important for
understanding the four-dimensional physics of our solutions.

The most serious question has to do with the nature of the singularities. There
are many singularities in string theory which have sensible physical resolutions. ei-
ther due to the finite string tension or due to quantum effects. Most that have
been studied (like flops [54.55] and conifolds [56]) involve systems with some su-
persymmetry, though some (like orbifolds [57]) can be understood even without
supersymmetry. We do not yet know the proper interpretation of our singulari-
ties. though as discussed in Sec. 2.2 there are intriguing similarities to orientifold
physics in our system. After finding the solutions. we cut off the volume integral
determining the four-dimensional Planck scale at the singularities. It is important
to determine whether this is a legitimate operation.

It is desirable (and probably necessary in order to address the question in the
preceding paragraph) to embed our solutions microscopically into M theory. As
discussed in Sec. 2.2. some of our solutions appear very natural from the point of
view of string theory, where the scalar ¢ can be identified with the dilaton. It would
be interesting to consider the analogous couplings of string-theoretic moduli scalars
other than the dilaton. Perhaps there are other geometrical moduli which couple
with different values of @ and b in Eq. (2.1.3) than the dilaton does.

It is also important to understand the effects of quantum corrections to quan-
tities other than f(¢) in our Lagrangian. In particular, corrections to A and cor-
rections involving different powers of e® in the bulk (coming from loops of bulk
gravity modes) will change the nature of the equations. It will be interesting to
understand the details of curved 4D domain wall solutions to the corrected equa-
tions [58,42,4]. More specifically, it will be of interest to determine the curvature
scale of the 4D slice, in terms of the various choices of phenomenologically natural
values for the Planck scale. Since the observed value of the cosmological constant
is nonzero according to studies of the mass density, cosmic microwave background
spectral distribution, and supernova events [59], such corrected solutions might be
of physical interest.

Perhaps the most intriguing physical question is what happens from the point

of view of four-dimensional effective field theory (if such a description in fact exists).
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Understanding the singularity in the 5D background is probably required to answer
this question. One possibility (suggested by the presence of the singularity and
by the self-tuning of the 4D cosmological constant discovered here) is that four-
dimensional effective field theory breaks down in this background. at least as far as
contributions to the 4D cosmological constant are concerned. In (18] and analogous
examples. there is a continuum of bulk modes which could plausibly lead to a
breakdown of 4D effective field theory in certain computations. In our theories.
cutting off the 5D theory at the singularities leaves finite proper distance in the zs
direction. This makes it unclear how such a continuum could arise (in the absence
of novel physics at the singularities. which could include “throats™ of the sort that
commonly arise in brane solutions). So in this system. any breakdown of 4D effective

field theory is more mysterious.



3. Bounds on Curved Domain Walls

In this chapter. we extend the results of the previous chapter to curved domain
walls. In Chap. 2. we concentrated for the most part on 5D gravity theories with a

bulk scalar dilaton ¢. and action
4
S= M?/dsx -G [R - 5('v“qs)"’} +/d4r\/———g(—f(¢)) (3.0.1)

(with vanishing bulk cosmological term). In Eq. (3.0.1). G is the 5D bulk metric,
while ¢ is the induced metric on the domain wall. which is located at z5 = 0. We
demonstrated that one can find flat domain wall solutions for fairly generic thin wall
d-function sources f(¢), i.e.. without “fine-tuning” the brane tension f(¢). This is
important because quantum loops of brane matter fields will in the most general
circumstances correct the form of f(¢); it demonstrates some insensitivity of the
existence of a flat 4D world to brane quantum loops. However. we did not address
the issue of curved (de Sitter or anti-de Sitter) solutions to the same 5D equations
of motion.

Here we find curved solutions with maximal symmetry in four dimensions.
More specifically, for both negatively curved and positively curved deformations
we find that the largest scale of curvature possible is given by the scale set by the
inverse proper length of the fifth dimension. In particular, the curvature can at most
reach the mass scale of Kaluza-Klein modes in the fifth dimension. Unfortunately
this upper bound is essentially equivalent to a 4D vacuum energy of the order of
the scale of brane physics.

The organization of this chapter is as follows. In Sec. 3.1 we describe the bulk

gravity solutions with maximally symmetric curved domain walls and the matching

This chapter is reprinted, with changes, from Shamit Kachru, Michael Schulz, and Eva
Silverstein, “Bounds on Curved Domain Walls in 5D Gravity,” Phys. Rev. D 62, 085003
(2000), by permission of the publisher. (© 2000 by the American Physical Society.
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boundary conditions at the domain wall. In Sec. 3.2 we explain the bounds on
the curvature of curved solutions that result from these solutions. In Sec. 3.3. we
discuss some additional issues of interest in analyzing the physics of the solutions

discussed here and in [3.5], including the singularities.

3.1 Curved Solutions and Matching Conditions

We will make the following ansatz for the metric (following [42.58]):

ds® = e*=s) g dr#dz” + dr3. (3.1.1)

where

G = diag(—1.€? ‘—\x‘.eg‘ﬁ{".ezﬁ’“)

for de Sitter space and

Guv = (ﬁag(—ez y —A:t*.ez\/ “1—\14.62\/—"—[\11, 1)

for anti-de Sitter space.

Plugging this ansatz into the dilaton equations and Einstein’s equations gives

8 ” 32 Yy af S/, — .

¢+ SAY - %0(1:5) =0 (3.1.2)

6(A)° - §(¢’)" -6Ae” 2 =0 (3.1.3)
3A" + —;-(qS')2 +3Ae24 + %f(q&)o‘(xs) =0 (3.1.4)

Note here that the zero mode A(0) always appears together with A here; we will
take A(0) = 0 in what follows.
Integrating the first equation in the bulk gives
¢ =yet4 (3.1.5)

for some integration constant . Substituting this into the second equation gives

A =e\/1q%e 84 L Ne24 (3.1.6)
9

where € = +1 determines the branch of the square root that we choose in the

solution. Note here that this solution only makes sense when the argument of the
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square root in Eq. (3.1.6) is positive: for anti-de Sitter slices (negative A) this gives
a constraint on A which we will discuss in §3.

This equation can be integrated to yield

d 3
e dd =I5+ —cC. (3.1.7)

/A
\/é,yze-sA + Ae-24 4

The left-hand side of Eq. (3.1.7) is

1
§e——e“ 2F1<l

5 91_\ 64
=, ——€
4 | 2

3
5. 72 > =I5+ IC. (3.1.8)

(VR ]

where o Fy (L. %, 2.z) = F(z) is a hypergeometric function. It is analytic on C -

{[1.) C R} and increases monotonically from F(—->) = 0 through F(0) = 1 until

it attains its maximum at

INEINE
F(l) = Fma.x = _(3‘——)7(2 = 1.725.
()
Because F > 0. the solution (3.1.8) is valid only on one side of zr;5 = —%c
(determined by the sign €). At z5 = —c there is a curvature singularity. As in (3.5].

we make the assumption that the space can be truncated at this singularity. at least
as far as low-energy physics is concerned.

Let us now introduce a domain wall at rs = 0. We must match the bulk
solutions (given implicitly in Eqgs. (3.1.5) and (3.1.8)) on the two sides of the wall.
consistent with the §-function terms in Egs. (3.1.2) and (3.1.4). Let us denote the
integration constants on the left (z5 < 0) side of the wall by c;,71.d; and those on
the right (z5 > 0) side by cz,72,d,. Here d; refers to the zero mode ¢(0) of the
dilaton field on the ith side of the wall. Imposing continuity of ¢ at the wall fixes
ds.

Defining ¢; = ¢;/F|zy=0. we find the matching conditions

8,af1 1\ _9f

e ((2) vone (L) wo) =@ wao

We here used the fact, which follows from Eq.(3.1.8) evaluated at s = 0 with
A(0) =0, that |[|&] = 1.
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3.2 Bounds on Curved Deformations
3.2.1 Asymmetric Solutions (I) (General f(¢))

We have now gathered the information we need to determine the extent of
curvature of these curved-slice deformations of the flat solutions of [3.5]. We will
first discuss a bound on |A|. which basically constrains it to be less than the inverse
proper length of the fifth dimension. that applies to both signs of A. We will then
discuss a tighter bound that arises in the case of positive A.

Consider Eq. (3.1.8) at z5 = 0:
€|¢|F (-=9A(€)*) = c. (3.2.1)
Defining y = \/m |¢]. this equation implies
lyF(—y®)| = le[y/9IAl (3.2.2)

Now the quantity yF(—y?) is bounded. In fact. its maximum value (attained as
y — x) is 4. We have from Eq. (3.2.2) that

ol <)

¢

(3.2.3)

where we added the index to ¢; since this bound applies on either side of the domain
wall.

Note from the metric (3.1.1) that |c;| is the proper distance to the singularity
on the ith side of the wall. So for either sign of A, we find that the effective 4D
cosmological constant of the curved solutions is bounded to be smaller than the
Kaluza-Klein scale in the bulk.

This reflects the same physical point made in [3,5]: there is no contribution
from physics localized on the brane to the 4D cosmological constant. A brane-scale
cosmological constant would have manifested itself in a contribution to Eq. (3.2.3)
which depends on f(¢(0)), and such terms are absent. These bounds arise from the
matching conditions, but note that it is not the case that the singularities recede
to oo (or come in to the origin) as one saturates the bound.

The largest phenomenologically viable value for the proper distance c is roughly
a millimeter [15,16]. This would give us a bound on A of about 10~¢ eV2. This is

much larger than the observed value A ~ 107%* eV?2 of the cosmological constant.
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Note that we here are using “general relativity” conventions for the cosmological
constant A: the standard “particle physics” cosmological constant is Ay = MZA ~
mm~*. Unfortunately this is within a couple of orders of magnitude of the standard
model scale of TeV4. In a mnodel with supersymmetry spontaneously broken at the
TeV scale, this would be the scale of a brane cosmological constant.

For positive A this 1/c scale is itself bounded by a further constraint. Consider

the matching condition (3.1.10). It implies that

l \

Z < Mf(«ﬂ (3.2.4)

Therefore, since ¢ = ¢/ F|o. we can extend Eq. (3.2.3) to

= 1
VIA < AP35 £ (9) (3.2.5)

In fact we can do better than Eq. (3.2.5). The 4D Planck scale M, is given by

3 _ -1
M? = M3 /dzse“ = M‘( —l—+9A+\/-1—+9A————1—>. (3.2.6)

9A 112 |é2|2 le1] ez

Multiplying Eq. (3.2.6) by A, and dividing by M2, we get an equation for A. For
positive A, we can use the matching condition (3.1.10) to replace the first two terms

in the parentheses in Eq. (3.2.6) with %f(d)(O)). We then obtain the inequality

.1 f(¢(0)

3.2.7
Mz (8:2.7)

(for negative A, we would not obtain such an inequality). So for instance if the
value of f(¢(0)) is TeV scale, which is natural if we take the standard model (cut

off at about a TeV) to live on the brane, then
A <1073 TeV2. (3.2.8)

This is of the same order as the contribution of a brane with supersymietry spon-

taneously broken at a TeV.
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3.2.2 Symmetric Solutions (II) [f(¢) = e*3?]

When we pick f(¢) = e£3®, we find the matching condition (3.1.9) becomes

M3 (Ic%l + Ic_tl) = i%ei%¢ (3.2.9)
which agrees with the second condition (3.1.10) when A =0. When A # 0. the two
conditions (3.2.9) and (3.1.10) contradict cach other. and there are no solutions.
This means that the symmetric solutions of [3.5] (solutions (II) in the classification
of [3]) do not have any deformations with 4D de Sitter or anti-de Sitter symmetry.
This slightly extends the result of Arkani-Hamed et al. [5]. who observed that such

deformations would violate the Z, symmetry of the solution. and thus could not

appear in a Z» orbifold of this solution.

3.3 Discussion and Further Issues

A priori there is a question as to whether the space of integration constants
is parameterized by vacuum expectation values of fluctuating fields in four dimen-
sions. or whether instead different members of this family arise from different four-
dimensional Lagrangians.” The existence of anti-de Sitter and de Sitter deforma-
tions (bounded though they are) suggests that these deformations constitute pa-
rameters in the 4D effective theory. If the effective 4D cosmological constant were
parametrized by a field, then in solving its equations of motion one would end up
with one consistent possibility for the value of the 4D cosmological constant. The
fact that we find a family of solutions suggests that this is not the case here. Indeed,
naive calculation of the coefficient of the kinetic term for the mode which moves
one from flat to curved 4D metrics does suggest that it is not a dynamical mode
(it has infinite kinetic term). However the divergence in the calculation arises at
the singularities, so this conclusion depends sensitively on how the singularities are
resolved by microphysics.

To a 4D effective field theorist. the choice of which member of the family to
start with constitutes a tuning of the 4D cosmological constant. From the point of

view of the microscopic 5D theory, this tuning involves a parameter in the solution

9 We thank S. Dimopoulos and R. Sundrum for discussions on this point.
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and not a parameter in the Lagrangian. If this system can be embedded consistently
into string theory, where there are no input parameters in the “Lagrangian.” the
mere existence of Poincaré-invariant solutions after some quantum corrections have
been taken into account would be significant, even if such solutions lie in a family
of curved solutions that signal the appearance of fine-tuning at low energies. In any
case, our results here indicate that the apparent fine-tuning required to choose a
flat slice is independent of standard model physics. though it can arise at the same
scale.

Having understood better the situation with respect to this issue of fine-tuning.
one is led to consider the main challenge identified in [3.5]: the question of possible
microphysical constraints on the (codimension one) singularities in the solutions.
The type of analysis we did here might help resolve an issue raised in [24]. as we
will mention presently. after first discussing the issue in a little more generality.

One possibility is that boundary conditions are required at the singularities. as
in the case analyzed in [60]. It is then important to check whether the appropriate
boundary conditions, along with the equations of motion and matching conditions.
can be solved within the space of curved solutions we have identified [3.5].

There are some singularities in string theory (like conifolds. orbifolds. and
brane-orientifold systems) which have a well-understood quantum resolution in-
volving new degrees of freedom at the singularity; in these cases the resolution does
not imply any extra boundary conditions in the effective long-wavelength theory.

It has recently been suggested that the singularities that appear in our solutions
do not permit a finite-temperature deformation accessible with a long-wavelength
general relativistic analysis [24]. This is a criterion that does not appear to contra-
dict the microscopic consistency of orbifolds or conifolds, and the case of orientifolds
and their duals must be considered carefully. Because of the large curvatures (and
in some cases large couplings) in the backgrounds we consider here, such an analysis
is necessarily limited. However. the general question of how finite temperature can
be obtained in these backgrounds is an important one.

Within the context of the analysis of [24], it is notable that our solutions lie on
the boundary between (conjecturally) allowed and (conjecturally) disallowed singu-
larities. It is important to redo this analysis for solutions which include some bulk
corrections. In particular, a nontrivial bulk dilaton potential of the right sign (as

in our case (III) [3]) may put us in the allowed region according to the conjectured
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criterion of [24]. Instead of fine-tuning to obtain 4D Poincaré-invariant slices as we
did in case (III) of [3]. one can consider curved solutions of the sort given here. In
the context of the type (III) situation where there is a bulk potential for ¢. this is
in fact natural if we do not wish to fine-tune the parameters in the 5D Lagrangian
in order to obtain a 4D Poincaré-invariant solution. It is possible that this bulk
correction will induce a sub-TeV correction to the 4D cosmological constant. while
satisfying the conjectured constraints coming from the long-wavelength analysis of
[24].



4. Moduli Stabilization from Fluxes

The study of Calabi-Yau orientifold compactifications of Type II string theory (or
F-theory compactifications on Calabi-Yau fourfolds). with nontrivial background
RR and NS fluxes through compact cycles of the Calabi-Yau manifold. is of interest
for several reasons.

Conventional compactifications give rise to models which typically have many
moduli. Understanding how these flat directions are lifted is important. both from
the point of view of phenomenology and of cosmology. One expects the moduli to
be lifted once supersymmetry is broken. but studying this in a calculable way in
conventional compactifications has proved challenging so far. In contrast. compact-
ifications with background RR and NS fluxes turned on give rise to a nontrivial
low energy potential which freezes many of the Calabi-Yau moduli. Moreover. the
potential is often calculable and as a result one can hope to study the stabilization
of many moduli in a controlled manner in this setting. Flux-induced potentials
for moduli have been discussed before in e.g. [61,62,63.64,65.31,66,67]. (Several
other methods of constructing models with few moduli, for instance by consider-
ing asymmetric orbifold models [68,69,70] or theories with non-commuting Wilson
lines which yield reduced-rank gauge groups as well [71,72], have also appeared
previously.)

Compactifications with fluxes have also been proposed as a natural setting for
warped solutions to the hierarchy problem [73,74], along the lines of the proposal
of Randall and Sundrum [32]. The combination of fluxes and space filling D-branes
which often need to be introduced for tadpole cancellation in these models leads to
a nontrivial warped metric, with the scale of 4D Minkowski space varying over the
compact dimensions. Examples of such models, with almost all moduli stabilized
and exponentially large warping giving rise to a hierarchy, appeared in [31]. (See

also [75,76]).

41
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Finally, compactifications with fluxes also have interesting (and relatively un-
explored) dual descriptions. via mirror symmetry and heterotic/Type II duality.
Some examples of these dualities have been discussed in [65.77].

In this chapter, we explore in detail the simplest such compactification which
admits supersymmetric vacua with nontrivial NS and RR fluxes: the compactifica-
tion of Type IIB string theory on the T®/Z, orientifold. The most familiar avatar of
this model includes 16 D3-branes which cancel the RR charge of the 64 O3-planes
at the 26 fixed points of the Z, action. However. one is free to replace some (or
all) of the D3-branes with appropriate integral RR and NS 3-form fluxes F3y and
H(3). Given such a choice of integral fluxes. one can compute the low-energy super-
potential governing the light fields. In a generic Calabi-Yau orientifold in IIB string
theory. the periods which are required to determine ¥ would only be computable
as approximate expansions about various extreme points in moduli space. making
any global and tractable expression for W difficult to obtain. A nice feature of the
T®/Z5 case is that W is easily computable.

With the superpotential in control we can ask if there are N = 1 supersymme-
try preserving minima. It turns out that for generic choices of the fluxes supersym-
metry is broken. By suitably choosing the fluxes, however. we find several examples
which give rise to stable, N’ = 1 supersymmetric ground states.'® In these minima,
typically. the dilaton-axion, all complex structure moduli. and some of the Kahler
moduli are stabilized. In addition, since some or all of the O3-plane charge is can-
celled by the flux. fewer D3-branes are present. and the number of moduli coming
from the open string sector is also reduced. The conventional IIB compactification
on this T®/Z, orientifold has 67 (complex) moduli.!' Once fluxes are turned on, it
is easy to find examples with far fewer moduli (~ 3 in the models we discuss here,
and fewer in the class of models described in [31]).

The organization of this chapter is as follows. In Sec. 4.1, we review basic
facts about vacua with flux and about the moduli of the T°/Z, orientifold, and

parametrize the possible choices of flux. In Sec. 4.2, we discuss the constraints that

10 We work under the assumption that the full superpotential is given by the flux-
induced contribution. Therefore, we neglect the possibility that e.g. Euclidean wrapped
branes make an additional (Kihler moduli-dependent) contribution in our examples.

11 The model has 16 D3-branes each of which give rise to 3 moduli. In addition there

are 19 moduli coming from the closed string sector.
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must be imposed to find a supersymmetric vacuum, following [78.79]. and write
down a formula for the superpotential as a function of the T® moduli. In Sec. 4.3.
we exhibit many examples which lead to A = 1 supersymmetric solutions. We also
analyze some cases which turn out to have N’ = 3 supersymmetry and make some
comments about finding the most general supersymmetric solution. In Sec. 1.4 we
discuss the conditions under which two apparently distinct solutions are nevertheless
equivalent (using the reparametrization symmetries of the torus and U-duality).
In Sec. 4.5 we describe how. starting from a supersymmetric solution. additional
physically distinct ones can be found using rescalings and GL(2.2) x GL(6.2)
transformations. In Sec. 4.6. we derive the conditions which must be imposed on
the G(3) flux to find N = 2 supersymmetric solutions. and consider one illustrative
example. Sec. 4.7 contains some examples of nonsupersymmetric solutions. In
Sec. 4.8 we discuss the dynamics on the D3 branes which one should insert into
many of our vacua. to saturate the D3 tadpole. We close with a brief description of
directions for future research in Sec. 4.9. and some important details are relegated
to Appendices 4.A-D.

While this work was in progress. we learned of a related work exploring novel 4D
N = 3 supersymmetric vacua which can be found from special flux configurations
on T%/Z, [80]. We are grateful to the authors of [80] for providing us with an early

version of their paper. and for helpful comments.

4.1 Preliminaries
4.1.1 D3-brane Charge from 3-form Fluz

The Type IIB supergravity action in Einstein frame is [81]

_ 1 10 g™y Gz -G 13‘(5,2>
Sus = 507 /d TV g<R 2(Imp)2 ~ 2-3Umg  4-5! (4.11)
1 C(4) A G(g) A G(;;) -
t ki’ / Hilme * Siocal-
Here,
¢ = C(()) +1/gs, 0(3) = F(3) - ¢H(3), (4.1.2)

and

F(s) = F(5) — %C(g) A H(g) + %F(g) A B(g), with = F(s) = F(\-—,). (4.1.3)



4 Moduli Stabilization from Flures 44

where F(3) = dC(3) and H(3) = dB(2). If one compactifies on a six dimensional
compact manifold. Mg, and includes the possibility of space-filling D3-branes and
O3-planes. then the equation of motion/Bianchi identity for the 5-form field strength
is

dFs) = d + Fis) = Hay A Fgy + 2810 1aps . (4.1.4)
Here p3 is the charge density of a D3-brane and p"’ull is the number density of

local sources of D3-brane charge on the compact manifold. We can integrate this

equation over Mg to give the condition

5 / Hzy A Fgy + Q< = (4.1.5)
Mo 13

In condition (4.1.5), Q< is the sum of contibutions +1 for each D3-brane and
—1/4 for each normal O3-plane. As discussed in (82] and [71]. there are actually
three other types of O3-plane, each characterized by the presence of discrete RR
and/or NS flux at the orientifold plane. These exotic O3-planes cach contribute
+1/4 to Qlocal,

We will be interested in the case that Mg is the T®/Z, orientifold. There are
26 O3-planes in this compactification. with a total contribution of —16 + 3Nog
units of D3-brane charge to Q¢3! where Npz is the number of exotic O3-planes.

Therefore, (4.1.5) takes the form

1 1
ENﬂux + ND3 + iNOSI = 16. (416(1)

Here
1
NﬂuX = (2_,”)4(71)2 AG H(s) /\ F(3)' (4.1.6b)

The factor of % multiplying Ngux compensates for the fact that the integration
is over TS rather than T%/Z,. We have also replaced the prefactor, 1/(2k10”13),
with its explicit value in terms of o’. It is clear from (4.1.6) that appropriately

chosen three-form fluxes can carry D3-brane charge. The fluxes obey a quantization

condition

1 1
/F(;;) =1Mm. € Z, —_— / H(g) =n, € Z. (4.1.7)
v v

(27)2%a’ (2r7)%a’
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where v is an arbitrary class in H3(T®.Z). There is a subtlety in arguing that these
are the correct quantization conditions for T¢/Z, [80].!2 This is because there are
additional three cycles in T®/Z,, which are not present in the covering space TS.
If some of the integers m. (n,) are odd. additional discrete RR (NS) flux needs to
be turned on at appropriately chosen orientifold planes to meet the quantization
condition on these additional cycles. (See Appendix A for more discussion of this
condition). In practice it is quite non-trivial to turn on the required discrete flux in
a consistent manner without violating the charge conservation condition (4.1.6). We
will avoid these complications in this chapter. by restricting ourselves to cases where
.1 are even integers. and by not including any discrete flux at the orientifold
planes.

Finally, G(3) obeys an imaginary self-duality (ISD) condition. *6G(3) = iG(3).
as will be shown in the next section. This condition implies that the 3-form flux
contributes positively to the total D3-brane charge. To see this note that the ISD

condition implies that
+¢H(3)/gs = —(Fa) — Clo)H(z))- (4.1.8)

Since H(3) A F(g) = H(3) A (F(s) - C(O)H(3))- we learn thatw

1
/ H(B)AF(3)=——/ Hs) A xeH 3
Mg 9s J Mg

11

(4.1.9)
fm 2
gs 3! /Md It H(3) >0

Therefore, in the presence of nontrivial RR and NS fluxes which carry nonzero
Niux, the number of D3 branes required to saturate (4.1.6) will always be fewer

than 16.14. In fact, in some models, one can entirely cancel the tadpole with fluxes.

12 We are indebted to A. Frey and J. Polchinski for pointing out this subtlety.

13 1 the conventions of (31], Hs) A +6 H(z) = — 3 HmnpH™"? Vol, where m,n, p are real
coordinates on Mg and Vol is the volume form.

14 We do not allow the presence of anti D3-branes, since our main interest is SUSY

solutions. Some aspects of non-supersymunetric vacua with anti D3-branes and fluxes

have recently been described in (83]
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4.1.2 The Scalar Potential from 3-form Flux

Turning on three-form fluxes gives rise to a potential for some of the moduli.

The four dimensional effective theory has a term of the form [31]

1 G 3) A\ *60(3) )
Lo = dty—8 270 4.1,
G = Taa? /M6 y Tmé (4.1.10)

which arises from the G - G_(g) term in the ten dimensional action (4.1.1). To

understand why this term gives rise to a potential for some moduli it is useful to

write
Gy = GBP + G'A3P, (4.1.11)
I
where *GG[SD = 4+4GISD,
xGIASD — _;GIASD, (4.1.12)
Then,
l : i )
~Lg=——Fb GIASD A GIASD / G AC
2N102Im¢) M 6 4'\71021111¢ M (3) (3) (4'1‘13)

- chalar + tOpOIogical.

The second term in (4.1.13) is topological. It is proportional to Ngux (4.1.6) and
independent of moduli. One expects on general grounds that three-form flux config-
urations, which give rise to D3-brane charge. should also lead to D3-brane tension.
This contribution to D3-brane tension is accounted for by the second term.

The first term in (4.1.13) gives rise to the scalar potential and is central to this
chapter. It is positive semidefinite and vanishes when the flux meets the imaginary
self-duality condition. The moduli dependence enters in two ways. First, G(3
depends on the axion-dilaton (4.1.2). Second. the decomposition of G(3) into ISD
and [ASD parts, depends on some metric moduli. Requiring that G 3y is imaginary

self dual fixes many of these moduli.

4.1.3 IIB on the Orientifold T®/Z,

Let us now focus on IIB string theory compactified on a T°/Z orientifold.
The six transverse directions will be denoted as z*,4*, i = 1....,3. The orientifold

action can be denoted as QR(—1)Ft, where R stands for a reflection of all of the
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compactified dimensions (z'.y*) — —(z*,y').i = 1.---.3. In fact the model is
related to the Type I theory compactified on T® by six T-dualities along all the
compactified directions. It preserves N = 4 supersymmetry, i.e., 16 supercharges.
The massless fields after compactification arise from the massless fields in the
IIB ten dimensional supergravity theory. The bosonic fields in the ten dimensional
theory are the metric garn. the NS 2-form By, the dilaton D. and the RR fields

C(0): C(2). and C(y4y. Their transformation properties under Q(—1)ft are as follows:

Q (-1)f:
guMN  + +
B(g) - +
Ciy + - (4.1.14)
Cuy - -
Coy - -
D + +

The resulting massless bosonic fields are then:

Guv 1 graviton
gab 21 scalars
(Bi2))ap 6 gauge bosons
(Ci2))an 6 gauge bosons (4.1.15)
(C(4))abea 15  scalars
Coy 1 scalar
D 1 scalar

We see that the massless fields which survive the orientifold projection are the
graviton, 12 gauge bosons and 38 scalars, plus their fermionic partners. These are
organized into representations of N' = 4 supergravity as follows. The graviton,
six gauge bosons and the axion-dilaton along with their fermionic partners, lie
in a supergravity multiplet [81]. In addition there are six vector multiplets each
containing a gauge boson, six scalars and their fermionic partners. Thus, in the
absence of 3-form flux, the moduli space of T®/Z, compactifications is parametrized
by 38 scalars. When 3-form flux is turned on, some of the scalars from C4) become
charged, which means that they obtain Stuckelberg type kinetic terms ~ (9, A +
mA,)?, where m is determined by the flux. For generic N = 1 solutions, one
can show that twelve of these scalars are eaten by gauge fields though the Higgs
mechanism. (See, for example, [84] or [80] for related discussions in somewhat

different contexts). Six of these twelve scalars are partners of metric Kahler moduli
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which also get heavy. The remaining three scalars from C(y, pair up with three
metric Kahler moduli to form three A" = 1 chiral multiplets which survive in the
low-energy theory.

In the T-dual of Type I theory on T€, one would also include 16 D3-branes. each
with a worldvolume A = 4 vector multiplet. We will ignore any brane worldvolume
fields for now. and briefly discuss the physics on the branes we must introduce in
Sec. 4.8.

We discussed above that turning on fluxes leads to a potential on moduli space.
It is important to note that although some of the moduli will gain a mass from this
potential. the effective ficld theory keeping only the fields (4.1.15) from the closed
string sector (plus any massless open string fields. if branes are introduced) is valid.
This is because the masses generated by the flux-induced potential will scale like
m ~ o'/ R3, where we have assumed an isotropic torus of size ~ R. The KK modes
on the Calabi-Yau geometry have masses that scale like mg g ~ 1/R. so if we work
at sufficiently large radius (where our supergravity considerations are most valid in
any case). m << mgg. and we are justified in truncating to the field theory of the
modes (4.1.13).

It is helpful to regard the torus as a complex manifold and organize the var-
ious moduli accordingly. Nine of the twenty-one scalars that arise from the ten-
dimensional metric correspond to Kihler deformations. while the remaining twelve
scalars correspond to complex structure deformations.

An essential difference between the six-torus and a Calabi-Yau three-fold is the
following. For a generic CY3. Yau's theorem implies that any complex structure or
Kihler deformation corresponds to a nontrivial deformation of the Ricci-flat metric.
This is not true for the six-torus or the T6/Z, case at hand. In this case. as we will
see below, the complex structure is specified by nine complex parameters. Three
of these parameters correspond to deformations of the complex structure at fixed

metric.

4.1.4 The Complexr Structure of a Torus

Nine complex coordinates are needed to describe the complex structure of TS.
We will use the explicit parametrization discussed in [85], which is summarized
below. Let z*,3*, i = 1,....3 be six real coordinates on T® which are periodic.

' =2+ 1, y* = y* + 1, and take the holomorphic 1-forms to be dz* = dz* + 7/ dy’.
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The complex structure is completely specified by the period matrix 7. We choose

the orientation!®

/d:rl/\d:rz Adz® Ady' Ady? Ady® = 1. (4.1.16)
and use the following basis of H3(T®. Z):

ao = dr' Adz® A drB.

1 .
a;j = 36,-,,,,(11:‘ Adz™ Ady. 1<i.j<3.

- 1 | (1.1.17)
g = —é-ej,mdyl Ady™ Adz'. 1<i.j<3.
Bo = dy' Ady* A dy>.
This basis satisfies the properties
/ ar Ap? =07, / ar Aay =0. sianp! =o0. (4.1.18)
4\46 Mﬁ 4\46

Finally. we choose a normalization so that the holomorphic three-form 2 is

Q =dz! Ad2® Ad23. (4.1.19)
One can show that
Q = ag + ;77 — 3 (cofr)j + #%(det 7). (4.1.20)
where
(cofr); = (det 7)™ 1T = %eikme ipgT P (4.1.21)

4.1.5 The RR and NS fluz

The flux that we turn on must be even under the Z, orientifold symmetry. The
intrinsic parity, under Q(—1)Ft, of the various fields is given in (4.1.14). One sees
that the 3-form field strengths F3y. H(3) that are excited must be proportional to
3-forms of odd intrinsic parity. However. the quantity that must be even is the total

parity. which for a p-form on the internal space is the product of this intrinsic parity

15 This choice of orientation is different that in [85] and is chosen to be consistent with

the conventions of {31].
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and an explicit (—1)P from the reflection action on the indices [31]. Therefore. the 3-
form field strengths must transform as (F3))asc = (F(3))abe- (H(3))abe = (H(3))abe
under the Z, action. Similarly, the field strength F(5) must be proportional to a
5-form of even intrinsic parity. We will ensure below that the three-forms which are
excited have the correct symmetry properties. The resulting 5-form field strength
is then determined by the equations of motion (4.1.4). and automatically satisfies
the correct symmetry properties.

Note that the Bianchi identities for F{3, and H(3) require that they be closed.
They should thus be expressible as a linear combination of the basis vectors of
H3(TS.Z). All the basis elements. (4.1.17). are three forms of odd parity under the
Z» action which takes z*.y* — —z*. —y'. So the symmetry constraint mentioned
above is automatically taken care of by expressing the three-forms in this manner.
Finally. taking into account the quantization conditions (4.1.7). F(3) and H(z) can

be expressed as

1 y y
(2m)2% Fa) = a®a + a“a; + bi;i3* + bofs”.
(4.1.22)
1 g g
(27)2/ Hgy = Cag + oy + dijBY + dof”.

Here a% ;. 87.3° and c°.¢¥.dij.dy are all integers. We will search for vacua

maintaining the ansatz of constant fluxes (4.1.22) on the T* throughout the chapter.

4.2 Supersymmetry
4.2.1 Spinor Conditions

In the discussion below our conventions arc as follows: The v;,¢ = 0,---,9
matrices are all real and satisfy the algebra {y*.4’} = n*/. The matrix, 7°, is

anti-hermitian and the others are hermitian. Also,
[ = 44014243 (4.2.1)

and

I® = ivyv576777870- (4.2.2)
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Both I'®) T'6) are hermitian with eigenvalues £1. For the rest we follow the con-

ventions of [79]. Denote the spinor € as
€ = €L + i€R. (1.2.3)
Here. ¢, is a Majorana spinor in ten dimensions. We can write
e =u®@x+u" ®x . (4.2.4)

where * denotes complex conjugation, and [Py = u. ['®y = —y. The complex
conjugate spinors have opposite 4 and 6 dimensional helicity.

Since we are working on a T%/Z, orientifold. the spinor must be invariant with
respect to the Z, symmetry. The Z, action corresponds to QR456789(—1)F'-. where

Rys6789 stands for a reflection in the six directions. This means that

€ER = —Y4Y5Y6Y7TY8YoEL- (4.2.9)
That is
ieg=-I'%¢ =u®@x-u" X" (4.2.6)
which gives from (4.2.3)
€e=2u® - (4.2.7)

So. the spinor consistent with the Z, orientifolding symmetry is of type B(ecker).

Now following [79] we are lead to the conditions
Gayx =0, Gax" =0, and G3v'x" =0, (4.2.8)
where we have introduced complex coordinates such that
~Ty = 0. (4.2.9)
The first condition in (4.2.8) gives
(G3y)ijt = 0, (G(3)){]’ =0. (4.2 10)

The second that:
(G@))se = 0, (Ga))j; =0, (4.2.11)
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note the second condition in (4.2.11) kills off the (1,2) terms of the kind .J A dz°.
Finally the third condition in (4.2.8) gives:

(G@y)in =0 (4.2.12)

Putting all this together only primitive (2.1) terms in G(3) survive. Primitivity

means that
JA G(g) = 0. (4213)

where J = ig;;dz* Adz? is the Kahler form. For G(3) of type (2.1). this is equivalent

to requiring that
99(G3))uz = 0. (4.2.14)

We turn next to analyzing the requirement that G 3 is of (2.1) type and then

discuss the requirements imposed by primitivity in Sec. 4.2.4.

422 G(3) Of Type (21)

Another way to phrase the condition that G 3y be of type (2.1) is that the (0.3).
(3.0). and (1.2) terms in G(3) must vanish. We saw above that the moduli space of
complex structures for T¢ can be parametrized by the period matrix 7%7. One can

show that
('),..,Q = kg‘)Q + Xij. (4.2.15)

where x;;.1 < i,j < 3 are a complete set of (2, 1) forms. The condition that G 3

is of (2, 1) type is then equivalent to requiring that
/G(g) AQ=0
/6(3) AQ=0 (4.2.16)
/G(g)/\x,-jzo, 1<14,5<3.

A convenient way to impose the requirements (4.2.16). is by constructing the

superpotential

W= / Gy A (4.2.17)
From (4.2.15) we find that

duW = k,‘jwr + /G A Xij (4.2.18)
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Similarly.

1 -
dsW = —/H/\Q = W/(G(;}) —G(3)) AQ (4.2.19)

Thus (4.2.16) is equivalent to demanding that

W =0 (4.2.20a)
W =0 (4.2.20)
a,.., ‘V = 0 (42.20(:)

4.2.3 The Superpotential and Equations for SUSY Vacua

Using (4.1.22) it follows that the superpotential (4.2.17). is:

1

——(271’)261' W = (ao — ¢c0)det7‘ - (aij _ (bcij)(COfT),'j _ (bij _ ¢dij),rij — (bo — bdo).

(4.2.21)
We see from (4.2.21). that it depends on ten complex variables—¢ and the nine
components of 7. But, equations (4.2.20) give rise to eleven equations in these
variables. Thus, generically all the equations (-4.2.20a-c) cannot be met and super-

symmetry is broken.
The explicit equations of motion that follow from (4.2.20) and (4.2.21) are

aldetr - aij(cofr)ij - b,-,-Tij — by = 0. (4.2.22a)

®det 7 — ¢V (cofr)ij — d,-jr‘j ~-d° =0, (1.2.22b)

(a® = ¢ °)(cofT) iy — (a7 — P )eikmejinT™" — (bij — ¢dij)5i5{ =0. (4.2.22¢)

Here, the first equation comes from (4.2.20a) minus (4.2.20b), the second, from
(4.2.20b). and the third from (4.2.20c).!® The equations (4.2.22) are coupled non-
linear equations in several variables and are difficult to solve in full generality.

It might seem odd at first glance that all nine scalars parametrizing the complex
structure can be fixed, even though, as was argued in Sec. 4.1.3., only six of them
correspond to components of the metric and enter in the supergravity equations
of motion. This happens because the requirements for ' = 1 supersymimnetric
solutions are stronger than the requirements which would follow from searching for

generic solutions to the equations of motion.

16 [ deriving the third equation, it is useful to note the relations det 7 = §5ikm€j[n’rlj7—kl1’

and (cofTt),; = %eik,nej,nr"’r"‘"



4 Moduli Stabilization from Fluzes 54
4.2.4 Primitivity

Once the complex structure is chosen such that G(3 is of (2. 1) type. (4.2.14).
imposes the requirement of primitivity. Note that in (4.2.14) the index [ can take
values {1.2,3}. so primitivity gives rise to three complex equations or equivalently
six real equations. The space of Kéhler forms is 9 dimensional to begin with so
generically this will leave a three dimensional moduli space of Kahler deforma-
tions!?.

Equation (4.2.14) can be thought of as 6 linear equations in the 9 metric com-
ponents g*7. Solving these is relatively straightforward. In contrast we saw above
that requiring G to be of type (2.1) results in coupled non-linear equations which
are considerably harder to work with. In practice. in the examples below. it will
sometimes be easier to ensure primitivity by directly imposing the condition (4.2.13)
on the Kahler two-form.

It is worth making one more comment at this stage. We mentioned in Sec. 4.1.1
that the equations of motion can be solved if G(3y is an imaginary self-dual three
form. This allows G(3) to be of three types: primitive (2.1), (0,3). or (1.2) of
the kind J A dz®. We also saw in Sec. 4.1.2 that in all these cases. the scalar
potential for the moduli was minimized and equal to zero. Supersymmetry on the
other hand is preserved if G s is purely a primitive (2,1) form. Thus for choices
of complex structure and Kéhler class where G 3y has (0.3) or (1,2) terms. some
auxilary F or D term must get a vev. However. since the potential continues
to vanish in these cases. these F- and D-terms cannot be present in the scalar
potential. Part of this discussion is already familiar from the study of a generic
Calabi Yau manifold [31]. If G(3y has a (0, 3) term the F-component of the volume
modulus gets a vacuum expectation value, however this F-component does not enter
the potential because of the no-scale structure of the four-dimensional supergravity
theory. Similarly when (1,2) terms are present auxiliary D-terms must acquire
expectation values in general. The absence of these terms in the potential can

probably best be understood in the context of the underlying N’ = 4 supersymmetry

17 The surviving Kihler moduli have axionic partners which come from the C; field,
together these give rise to three chiral superfields at low energies. The six Kéahler moduli
which get heavy also have partners, these obtain a mass due to Chern-Simons couplings

(4.1.1), (4.1.3).
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present in the T%/Z, case. We leave a more systematic analysis of the low-energy
supergravity theory along the lines of [86.7.84] for future work: such analyses for the

case of generic Calabi-Yau threefolds with fluxes have appeared in e.g. [62.87.88].

4.3 Some Supersym:metric Solutions

The equations which determine the value of the moduli are dificult to solve in
general. The main challenge are the coupled non-linear equations (+4.2.22) which
determine the complex structure of the torus.

We do not solve these equations in their full generality below. Instead in
Sec. 4.3.1 we discuss some examples. where the fluxes take simple values that allow
for analytic solutions. Already these simpler cases are quite interesting. As we will
see, in many cases. stable minima exist where all the complex structure moduli and
some of the Kahler moduli are stabilized. Sec. 1.3.2 deals with the inverse problem:
we start with some values for the moduli and ask for fluxes which stabilize the
moduli at these values consistent with supersymmetry. The inverse problem is
sometimes easier to solve. The solutions in Sec. 1.3.1 have N’ = 1 supersymmetry.
With a few possible exceptions this should be true of the vacua in Sec. 4.3.2 as
well. Sec. 4.3.3 analyses some additional cases where the fluxes lead to tractable
solutions. These examples turn out to have N’ = 3 supersymmetry. Finally. some
comments related to obtaining a general supersymmetric solution are in Sec. 1.3.4.

Not all of the solutions studied in this section are physically distinct. Sec. 4.4
discusses how solutions related by SL(2,Z) x SL(6.2) transformations should be
identified. Starting with some of solutions found in this section, other physically
distinct solutions can be obtained by rescaling the fluxes, or carrying out GL(2, Z) x
GL(6,Z) transformations. This is illustrated in some examples here and discussed
more fully in Sec. 4.5.

One final comment before turning to examples. One would like to know if the
analysis of N = 1 supersymmetric vacua in this section, receives significant o' and
gs corrections. We have not discussed an explicit N = 1 superspace description of
the the low-energy effective theory in the presence of fluxes in this chapter. But
it is clear that such a description would involve both a superpotential (4.2.17),

and D-terms.!® The superpotential must be exact in the o expansion since the

18 These play a role in ensuring primitivity of G(s) for example.
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partner of volume modulus is an axion which cannot occur in the o’ (or string loop)
corrections to the superpotential. Quite plausibly. in this case. this is true of the
D terms as well, since they are related by the underlying N’ = 4 supersymmetry to
the F-terms. The dilaton in the examples below is typically stabilized at a value of
order one. Therefore. it is also important to understand the effect of g, corrections.
In a general example in the ' = | supersymmetric case. the superpotential is
not corrected pertubatively in g,. but it could receive nonperturbative corrections
from Euclidean D-branes (D-instantons) wrapped on even dimensional cycles in the
Calabi-Yau. These corrections will depend on the Kahler moduli and the dilaton.
and are complementary to the potential for complex structure moduli which we
compute below. In models with an F-theory lift (like the one we consider). these
corrections should only exist if the F-theory fourfold admits divisors of arithmetic
genus one [71]. We would expect them to break the no-scale structure mentioned
in Sec. 4.2.4 . For N > I. these instanton corrections to the superpotential do not
appear (as the relevant Euclidean branes would have too many fermion zero modes

to correct a superpotential).

4.3.1 Example 1: Fluzes Proportional to the Identity
We begin by studying the case where.
(aij.bij.ctj.dij) = (a.b. C. d) (5,'1'. (431)

that is all the flux matrices are diagonal and proportional to the identity.

The equations determining the complex structure, (4.2.22) will be considered
first, followed by the conditions for primitivity.

With the flux matrices of the form (4.3.1), it is easy to see from (4.2.22), that

the period matrix must be diagonal.
7 = 76Y. (4.3.2)

(In fact this is more generally true if the flux matrices are all diagonal).

The equations of motion (4.2.22) then take the form
Pi(7) = a7 = 3ar? — 3b7 — bo = 0, (4.3.3)

Py(1) = 13 = 3¢r? — 3dT — dp = 0. (4.3.4)



4 Moduli Stabilization from Fluzes 57
(a® - )12 = 2(a — pc)r — (b—¢d) = 0. (4.3.9)

We are only interested in solutions in which 7 is complex (since solutions with

Im(r) = 0 lie at boundaries of the moduli space). It is straightforward to show that

in this casel!?.

Pi(t) = (fr+g)P(r). Pa(r) = (hr+k)P(7). (4.3.6a)

for some
P(r)=Ilr’+mr+n. f.g.hklmneZ. (4.3.6b)

Thus. T is a root of P(7) and ¢ is determined from equation (4.3.5). Note that not

every septuple (f.g.h.k.l.m.n) corresponds to integral flux. From the relations

fm+gl=-3a. hm+kl=-3c

(4.3.7)
fn+gm=-3b. hn+km=-3d.
we have consistency conditions modulo 3.
The D3-brane charge of the flux in this solution is given by
1 _ 0_ 0
Nﬂux = W / H(3) A F(s) = (bOC —-a do) + 3(bC - ad) (4 ; 8)

= —%(fk — gh)(m? = din),

which has the property that it is always 0 (mod 3).29 One can also show that the

result (4.3.8) is explicitly positive in our conventions.?!

19 p, and P; are cubic polynomials with real coefficients, that share a common complex
root, 7. Therefore, T is also a root, and the two equations share a common quadratic
factor. This common factor is proportional to P = ®P, — a° P>, which has integer coeffi-
cients. Since P, and P» also have integer coefficients, it follows that P/P and P,/P are
each binomials with rational coefficients. But, a polynomial with integer coefficients that

factorizes over the rationals also factorizes over the integers.

20 Ty see this, note that (4.3.7) can be written as ({ INTry=-3(¢ Z). Since () =
(% ',i“) (mod 3), this means that (,{ INT ~2%) = 0 (mod 3). Taking the determinant

of both sides then gives (fk — gh)(m? — 4in) =0 (mod9).
21 Our conventions are Im7.Im¢ > 0. One can show that the factor (fk — gh) in
(4.3.8) satisfies sign(fk — gh) = sign(Im¢/Im). Therefore it is positive. The other factor,

(m® — 4ln), is the discriminant of P(7). It is negative since the roots are complex.
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In summary, starting with fluxes of the form (4.3.1). the neccessary and suffi-
cient condition for a non-singular solution, is the existence of integers (f. g. h.k,l.m.n)
which satisfy the conditions. (4.3.7). and which give rise to nonzero three brane
charge. (4.3.8).

In practice. determining polynomials of the form (4.3.6). by direct scrutiny is
often easier than finding appropriate septuples (f.g.h.k.l.m.n).

As a concrete example. consider the case
P(r)=m3-1=0 (4.3.9)

Pr) =7 +3r2+3r+2=0 (4.3.10)

Both polynomials share a common factor P(r) = 7>+7+1 and can be expressed

as:
P =(r-1)P(r)=0 (4.3.11)

P, =(r+2)P(r)=0. (4.3.12)
Solving P(r) = 0 with the condition Im(r) > 0, gives

T=e 3 . (4.3.13)

d) —=—T=€ 3 . (4314)

We see that the moduli are fixed at a very symmetric point. Since the period
matrix is diagonal, the torus factorizes as T® = T? x T? x T? with respect to
complex structure. In fact, when viewed in F-theory, this factorization becomes
T8 = T2 x T? x T? x T2. Since the eigenvalues of the period matrix are all equal
to one another, and to value of the dilaton-axion, all the four 2-tori have the same

modular parameter.
From (4.3.11), (4.3.12), we see that the septuple

(f,g. bk L.omn)=(1,-1,1,2,1,1,1). (1.3.15)
Also from (4.3.9), (4.3.10), and (4.3.3), (4.3.4), we see that the integers

(a®.a,b,bg) = (1,0,0,1) (’,c.d dp) =(1,-1,-1,-2) (4.3.16)
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Either way. we find that the three-brane charge carried by the flux is given by
1
Naux = W/H(g) A F(;;) = 3. (4.3.17)

Notice that most of the non-zero fluxes in (4.3.16) are odd integer. We discussed
in Sec. 4.1.1 why consistency on the T®/Z, orientifold requires additional discrete
flux to be turned on when odd integer flux is present.

To avoid this complication we can simply choose the fluxes to be twice the

values indicated in (4.3.16). That is

(@®.a.b.by) = (2.0.0.2) (c.c.d.dp) = (2.-2.-2. —4). (4.3.18)

and.
(f.g.h.k.l.m.n)=(2.-2.2.4.1. 1. 1). (4.3.19)

No discrete flux in needed now. Since doubling all fluxes simply rescales the super-
potential by an overall factor. the equations determining the moduli (4.2.22). re-
main the same and therefore the solutions for the moduli are still given by (4.3.13).
(4.3.14).

From (4.3.8), we sce that after doubling the fluxes

Naux = 12. (4.3.20)

Eq. (4.1.6). now implies that for a consistent solution we need to add ten wandering
branes in addition. i.e., Np3 = 10.

This completes our discussion of how the complex structure moduli are deter-
mined, in this case. To complete our analysis we must next impose the requirement
that the three flux G5y is primitive. Before doing so though, let us pause to make
two comments.

First, other closely related examples can be obtained by starting with the fluxes
(4.3.16), and doing other rescalings. For example, one can double the H(z) flux while

increasing the F{3) flux by a factor of four so that the resulting values for the fluxes

are:
(@, a.b,bo) = (4,0,0.4) (c.c.d.dp) = (2. -2, -2, —4). (4.3.21)

Now, it is straightforward to see from (.3.3), (4.3.4), that the resulting value for

T, ¢, are:

r=e3, $=2%". (4.3.22)
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The resulting contribution to three brane charge is given by:
Naux = 24. (4.3.23)

so that the Np3 = 4. The rescalings discussed in (4.3.21). illustrate a more general
feature which will be dealt with in more generality in Sec. 4.5: given a solution.
additional ones can be obtained by carrying out GL(6.2Z)xGL(2. Z) transformations
on the fluxes and the moduli. provided the resulting contribution to D3-brane charge
is within bounds.

Second. one would like to know whether there are other solutions with fluxes
of the form. (4.3.1). which are not related to those discussed above by GL(6.Z) x
GL(2.Z) transformations or rescalings. While we do not give all the details here.
it is straightforward to tabulate all choices of fluxes (or equivalently choices of the
septuple (f.g. h.k.l.m.n)) which meet the requirements for the existence of N' = 1
supersymmetric solutions. In all these cases one finds that the resulting values for
the moduli are related to (4.3.13), (4.3.14). by a rescaling or GL(6.2) x GL(2.2Z)
transformations. We have not studied the corresponding fluxes exhaustively. but in
several cases they too are related to (4.3.16). by the same rescaling or GL(6.Z) x

GL(2.2) transformation.
Primitivity

We must also verify that (at least on some subspace of the Kihler moduli
space), the G(3) flux found from the superpotential above is primitive. We will go
through this for the flux in Example 1. A similar analysis (without substantially

more complexity) would apply to our other examples.
In the case at hand, the flux takes the form (4.3.1). More explicitly.

F = a%z"' Adz?® Adz® + a(dz' Adz® A dy® + cyc. perms of 123).

— b(dz' A dy® A dy® + cyc. perms of 123) + body' A dy® A dyP. (1324)
4.3.24
H = dz! Adz® Adz® + c(dz' A dz* A dy® + cyc. perms of 123).

— d(dz' A dy® Ady® + cyc. perms of 123) + dody® A dy® A dy.

In the present example, it is convenient to impose the requirement of primitivity

in the form of (4.2.13),
JAG@3 =0. (4.3.25)
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We are interested in the subspace of Kahler forms for which this requirement is met.

Take J to be of the form

3 3
J = Z r2 dz® AdzZ® ~ Z ir2 dz, Adya (4.3.26)
a=1 a=1

where the second expression uses the fact that the complex structure 7 of all the
three T'%s, as given in (4.3.13). are equal. Now. notice that each term in F' and H as
given in (4.3.24) contains no repeat superscripts: one either chooses dx® or dy® for
each of a = 1.2.3. and then wedges the three one-forms together. But the Kahler
form in (4.3.26) contains a sum of two-forms. each of which looks like dz® A dy°.
The wedge product of each such term with G 3y will clearly vanish. because it hits
either another dz® or another dy® in each term in F and H. Therefore. JAG3) =0
for the most general J of the formn (4.3.26).

[s there a larger subspace of Kahler moduli space that preserves the primitivity?
Since G is of type (2.1) and J is a (1.1) form. JA G is a (3.2) form. There are
three nontrivial (3.2) forms on the T5. so we expect that requiring JAG = 0
will yield three nontrivial complex equations. The space of Kahler forms has real
dimension 9. so generically we expect only a three-dimensional subspace of the
Kihler moduli space (suitably complexified by the addition of axions in the relevant
chiral multiplets) to parametrize flat directions of this A” = 1 theory. However. in
the case at hand. the G flux is particularly simple and non-generic, and the
number of flat directions parametrized by Kéhler moduli is 6 instead of 3. One
can see the three “extra” flat directions by inspection. For instance. consider the

two-form
w ~ i(dr A dy® + dz? A dyt) (4.3.27)

One can easily check from (4.3.24) that w A G = 0. Further. since the complex

structure of all three T?'s is the same, it is easy to check that
w ~ dz! Adz? + d2* A dzE, (4.3.28)

so that w is of type (1,1). Analogous perturbations with {1,2} replaced by {1.3}
and {2,3} similarly maintain the primitivity of G(3). So the N =1 vacua persist
along a six-dimensional slice of the Kahler moduli space.

One final comment is in order. Our analysis has ensured that the solutions

discussed above have at least A’ = | supersymmetry, but it does not preclude the
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possibility of enhanced supersymmetry. A simple check is the following: enhanced
supersymmetry requires that additional choices of complex structure are possible,
in which G 3, is still of the kind (2.1) (and primitive). N'= 2 and N = 3 require
one and two additional choices of complex structure respectively. In the solutions
above. with 76 = T? x T? x T?2. there is a complete permutation symmetry among
the three two-tori. This ensures that. upto an overall constant. G(3) must have the

form.
Gy ~ (dz! Adz? AdZ® +d2® Adz® AdE' +d2® Adzh A dZP). (4.3.29)

Other choices of complex structure can be made, by taking z' — z* for some or all
of the three T2%'s. but none of them preserve the (2. 1) nature of G(3). So we see
that these examples have only N = 1 supersymmetry. A detailed examination of
the conditions for A/ = 2 supersymmetry is presented in Sec. 4.6. and some more

cominents on this matter can be found there.

4.3.2 The Inverse Problem: Fluxes from Moduli

In the previous section we started with some fluxes and asked what are the
resulting values for moduli in an /' = 1 susy vacuum. In this section we address
the inverse problem, namely: start with some values for the moduli and ask if there
are fluxes which can be turned on such that the resulting potential stabilizes the
moduli at the values we begin with, while preserving N’ = 1 susy. The inverse
problem is sometimes easier to solve and helpful in understanding the full set of
consistent vacuua.

Our discussion will not be exhaustive. Instead we will consider one illustrative
case. In Sec. 4.3.1 we started with flux matrices which were all proportional to
the identity (4.3.1), then argued that the period matrix must be a multiple of the
identity. Here, we start by fixing the period matrix to be a multiple of the identity
as in Equation (4.3.2), then ask what values of the fluxes can yield such a solution
while preserving N’ = 1 supersymmetry. Our notation in this section will be chosen
to be consistent with Sec. 4.3.1.

We begin by writing

a =ad* +a", tra=0, (4.3.30)
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with similar relations for b.c.d. Equations (4.2.22a) and (4.2.22b) then become
a®r3 —3ar® — 3br — by = 0. (4.3.31)

P73 = 3¢cr? - 3dr —dy = 0. (4.3.32)
and d,.,,W = 0 becomes
(@® = pc)r? = 2(a - pc)tr — (b— $d) = 0.
g _ . - (4.3.33)
((-l.ﬁ - (bé")r - (b,J - ¢dij) =0.

Eq. (4.3.33) arises by taking the trace and traceless parts of the third equation in

(4.2.22). It can be be summarized as

, L N
a%r® —2ar - b  altt — by

012 =21 —d  @ir—d;’

(4.3.34)

In the notation of (4.3.3). (4.3.4). and (4.3.6). the first expression for ¢ in (4.3.34)

is
P(r) _ ((fr+g)P(r) o
P(1)  ((hr +k)P(r))" (4.3.35)

where a prime denotes differentiation with respect to 7. At P(7r) = 0. this reduces
to (fr + g)/(ht + k) and (4.3.34) becomes

. f‘r+g _(-ljiT—i)ij

T ht+k dir—dy; (4.3.36)

¢

So, given a solution with a*J. b;;. 7, d;; proportional to the identity, we can generate

a new solution with the same 7 by, for example, turning on

&t = fng, B'=—gny, & =hny, dV = —kn,j, (4.3.37)
with n;; an arbitrary traceless integer-valued matrix. This is still not the most
general solution. For each i. j, equation (4.3.36) is two real equations in the four in-
tegers a’%, 5;’;‘, &%, dy;, for which we have found a Z’s worth of solutions parametrized
by n,; € Z. More complicated solutions will fill out a Z*'s worth for each ¢,j. In
addition, the requirement that, for example, a and a* each be integer valued is too
strict. We really only require ad* +a = a¥ to be integer valued, and similarly for

b.c,d.
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Finally, the D3-brane charge from flux in this solution can be shown to gener-

alize from (4.3.8) to

1 1, 1 N )
Naux = W/H(s)/\F(s) = —5(14—5%:11,,- )(fk—gh)(m —4in). (4.3.38)

As a concrete example consider starting with the values:
(a®,a.b.bg) = (2.0,0.2). (. c.d.dp) = (2.-2.-2.4). (4.3.39)

which were considered in (4.3.18). of Sec. 4.3.1. In this case.
(f.g.h.k.l.om.n)=(2.-2.2.4.1. 1. 1). (4.3.40)

Since (4.3.31) and (4.3.32). are the same as (4.3.3)and (4.3.4). T is given by (4.3.13).
Also. since the first equation in (4.3.33). is the same as (4.3.5). ¢ is given by (4.3.14).
The D3-brane charge is given by. (4.3.38).

Naux = 12+ 4 _ni;. (4.3.41)
ij

Now it is easy to find many non-diagonal matrices where 3_.. nfj = 1.2.3.4.5.
Each of them gives a consistent solution, with Ngux taking values. Ngux =
12.16. 20, 24, 28, 32 respectively. Also. we should point out that since. (f.g.h, k)
are even (4.3.40), the resulting values of a*, I-)ij, ¢, J,-j are all even as well, (4.3.37),

and thus all the fluxes are even.
One last comment. We argued towards the end of the previous Sec. 4.3.1 that
the examples discussed in it had N/ = 1 supersymmetry, and no more. The examples

in this section are closely related to those in Sec. 4.3.1, and we expect that they too

will generically have only N = 1 supersymmetry.

4.3.3 More General Fluzes

Sec. 4.3.1, discussed the case where the flux matrices (a', b;;.c"7,d;;) are pro-
portional to the identity matrix. Here we would like to consider flux matrices which
are diagonal but with unequal eigenvalues. In these cases one can still argue that

the period matrix is diagonal, 77 = diag(7, 72, 73). As viewed from F-theory then,
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the resulting compactification is a product of four two-tori. but the modular pa-
rameters are in general unequal. Unfortunately. solving the equations for the most
general set of diagonal flux matrices is a difficult task.

To proceed we need to place additional restrictions on the flux matrices. Let

us begin by considering fluxes of the form:

0 c.c).

a¥ = diag(a;.as.a2). ¢ = diag(a
b,‘j = dlag(bl bg. bg), d,‘j = —diilg(dl. as, ag). (4342)
do = —b,
Setting 7% = diag(r. T2. 73). the superpotential (4.2.21). is now given by
W =- CO¢T1T2T3 + (lO(Tl + ¢)T2T3 + C(Tg + T3)¢Tl
— a 7am3 — 1971 — a2(7 + @) (72 + 73) (4.3.43)
= bi(¢+ 1) — b2(T2 + 73) — by

One can see that the superpotential is symmetric between ¢ < 7 and 72 & 73.
Thus. for the restricted choice. (4.3.42). one can consistently seek solutions where
the four modular parameters take at most two distinct values.

We now turn to describing two examples where additional restrictions lead to

tractable solutions.
Example 2

In the first example, we set all trilinear and linear terms in the superpotential,

(4.3.43), to be zero, i.e.,
a®=c=0b=by=0. (4.3.44)

In this case the superpotential takes the form
W = —¢ri1om3 — a1Ta73 — diydm1 — aa(my + ¢)(12 + 73) — bo. (4.3.45)
Setting dyW = 0,0, W = 0 shows that
T =¢, To»=Ts (4.3.46)
(as expected) and in addtion leads to two equations:

~®ry 73 — diT — 2a3m, =0, (4.3.47)
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—cO‘rlzrg —aym — 2as,m = 0. (4.3.48)

where in both equations we have substituted for ¢, 73, using (4.3.46).

These lead to the relation.
', d
3= =712, (4.3.49)

1
=t/ =7 (4.3.50)
ay
Substituting in (4.3.47) gives

7 i/2
mo=iy o dy £ 200/ 2 | (4.3.51)
dlco a

Setting W = 0 then leads to a condition determining bg in terms of the other flux

7 2
bo = — [ dy £2a2, /= | . (4.3.52)
dlCO ay

Finally, the contribution to the three brane charge is then given by

i.e.,

integers.

Naux = 2a1d; + 663 £ dazv/ad;. (4.3.53)

To find a consistent non-singular solution we need to choose integers c®.a;.d,
and a, such that 7.7, are complex. by is an integer. and the total flux Ngux is

within bounds.

One solution to these conditions is obtained by taking
(alvdlva‘Z?co):(1917—1'_1)' (4354)

and choosing the positive sign in (4.3.50), so that

ry= 4y B = 7. (4.3.55)
a

n=i (4.3.56)

Then from (4.3.51), we find

and from (4.3.53),
Nauy = 4. (4.3.57)
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Also, from (4.3.52), bp = —1 and is indeed an integer.
Notice that the integers (4.3.54) are odd. As in Example 1, Sec. 4.3.1. to avoid
complications related to adding discrete flux we can obtain a consistent solution by

doubling all the fluxes so that
(ay.dy.as.c®.6%) = (2.2.-2. 2. -2). (4.3.58)

The modular parameters are unchanged and given by (4.3.56), (4.3.55). (4.3.46).
The total flux is

Ngux = 16. (4.3.59)

which means 8 dynamical D3-branes need to be added for a consistent solution.

[t turns out that the solution above has N’ = 3 supersymmetry. Vacua with
N = 3 are analysed in generality in the recent paper [80]. The possibility of V' = 3
supersymmetry was also mentioned in [65]. The solution above is in fact a special
case of the examples found in [80]. To see that it has A = 3 supersymmetry. we

note that with the flux (4.3.58) and the moduli. ¢ = Tt =1, G (3) takes the form

(2—7%2—0,&3, = 2idz' Adz? A d2E. (4.3.60)

It then follows that two additional complex structures in which G 3 is still of type
(2,1) can be defined by taking the complex coordinates on the three T?'s to be
(w' w2 wd) = (2'.22.2%) or (w',w? w®) = (2'.2%,2%). Thus, as per the general
discussion in [80](see also Sec. 4.3.1 above), the solution has A = 3 supersymmetry.
Let us also add that additional solutions can be obtained by starting with

the (4.3.54), (4.3.55), (4.3.56), and doing GL(6,Z) x GL(2.2) transformations. In

particular one can obtain a solution in which Ngux = 32, as will be discussed in

more detail in the examples of Sec. 4.5.
Ezxample 3

In the next example we again start with flux matrices and superpotential of the
form (4.3.42), (4.3.43), respectively, but now set the following additional restrictions

on the fluxes:
C0 = O,C = —ao,az = O,d1 = —ap, bg = —bl. (4361)
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The superpotential (4.3.43) then takes the form

W=+ ao(rl + @)TaT3 — G.O(Tg + 13)0T
—Q1TeT3 + al¢T1 (4362)

- bi(¢ + 71) + by(T2 + 73) — bo.

Solving the equations dyW = 0.9, W =0, it is easy to see that
TI=@0 =Ty =T3=T. (4.3.63)

with 7 given by

+ /a? — 4a%

S (4.3.64)

2a

is a solution. Setting W = 0 yields the condition that

bp = 0. (1.3.65)

Finally the D3-brane charge contribution is
Noux = 4b1a° — a3 (4.3.66)

Consistent solutions can be found by taking

a®=2.b, =2,a; =2. (4.3.67)

This yields

= 3. 68
r=— (4.3.63)
and
Naux = 12. (4.3.69)
Alternatively, one can take
a®=2,b =4,a, =2. (4.3.70)
In this case,
L
P o LEWVT (4.3.71)
2
and

Naux = 28. (4.3.72)
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Note that unlike Example 2 above, the two-tori in (4.3.68) and (4.3.71) are not
square.

Once again, doing general rescalings and GL(6,Z) x GL(2, Z) transformations
leads to additional solutions in each of these cases.

As in the previous example. the solutions discussed here have N = 3 super-
symmetry as well. This follows by the same argument as in the previous example.

after noting that in both the cases (4.3.67) and (4.3.70), G(3) can be expressed as

1
mcw) = ao(d:‘:l FAN d22 A d:s). (4.37,5)

4.3.4 Toward a General Supersymmetric Solution

Solving the supersymmetric equations of motion (4.2.22) without any simpli-
fying assumptions is a difficult task. However, a couple of observations can make

the task easier. First, note that it is possible to re-write equation (4.2.22) as

1 1 1
(COf(T - FA)) = A02 (COfA),‘j + A—OB;']' . (4374)

¥

This determines 7% in terms of the flux matrices and the dilaton ¢. since if cof z = y.
then z = cofy/\/dety.

Next, we note that one can actually eliminate the 7%/ from the W = 0 and
d,, W = 0 equations to obtain a quartic equation for ¢. The quartic is derived in

Appendix B, and takes the form
(det A)Bg — (det B)A® + (cof A);j(cof B) + 1(A°Bg + A¥B;;)* = 0.  (4.3.75)

where A® = a®% — ¢c®, AY = a¥/ — ¢c*7, and By, B;; are defined similarly. A quartic
equation is soluble, so one can solve (4.3.75) for the allowed values of ¢.

This leaves only the equation d,W = 0, which upon substitution for ¢ and
7% gives one nonlinear equation in integers. The integer equation is a consistency
condition that determines whether the choice of flux can lead to a supersymmetric
solution. The hard part is solving this equation. An additional complication is
that for each solution to the integer equation, one must determine all consistent
configurations of exotic orientifold planes (as described in [80]), if one is to find all

supersymmetric solutions.
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4.4 Distinctness of Solutions

Not all solutions with different values of ¢ or %7 are physically distinct. There
is an SL(2.Z) symmetry that relates equivalent values of the dilaton-axion. and an

SL(6.Z) symmetry that relates equivalent values of the period matrix 7%.

4.4.1 SL(2.Z) Equivalence

The Type IIB supergravity action (4.1.1) is invariant under the SL(2. R) sym-

¢ (b . m l 6 SL <E) Il- .

Under this symmetry. the complex 3-form flux transforms as
G(3) — G,(S) = (,3) - (b,H(,:}). (44.2)

which one can check is equivalent to

G

_ 4.4.3
ch+d ( )

G(g) e d G,(S) =

At the quantum level, only an SL(2.Z) C SL(2,R) survives. Solutions that differ
only by SL(2,Z) transformations are equivalent. It is therefore customary to take

é to be in the fundamental domain F, of the upper half plane modulo PSL(2.Z):
F={peC|Imp>0.-3 <Rep < 3, [4| > 1}. (4.4.4)

The examples were not chosen in such a way that the solutions would necessarily
give ¢ € F. However it is a simple matter to transform them to the fundamental

domain using (4.4.1), where now

a b =
(c d) € SL(2,2). (4.4.5)
4.4.2 SL(6,2Z) Equivalence

Following [89], let
Bcs = (8(1), €(2), 8(3)) (4.4.6)
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denote a basis of C3, and consider a T® in which the lattice basis is

Brs = (e(l)~ €(2). €(3)- e(i)Ti1~ e(i)Ti2~ e(i)T's) (4.4.7a)

=BcsA. A= (1.7). (4.4.7b)
Under a change of lattice basis.
Brs — Bps = Bre M. M € SL(6.2). (4.4.8)

SO

A—=A'=AM. MeSL(6.Z). (4.4.9)

The change of lattice basis does not produce A” in the standard form (1. *). How-

ever. under a change of C3 basis,
A" AN =NAN'"=NAM. NeGL(3.C). (1.4.10)
We can choose N = N(M. 7). so that A’ is in standard form.
N = NAM = (1.7). (4.4.11)

Two period matrices T and 7’ related by (4.4.7b) and (4..4.11). are equivalent. Also.
under an SL(6.2Z) coordinate transformation M. the fluxes F3). H(s). (when re-
garded as three-forms) must stay the same ?2. This means that two solutions with
period matrices 7 and 7’ related by (4.4.7b) and (4.4.11), and which are otherwise
identical, are equivalent.

We should make one more comment before turning to an example. In Sec. 4.6
we discuss solutions which break supersymmetry. The analysis above, identifying
solutions related by SL(2,2Z) x SL(6,Z) transformations. applies to these cases as

well.

22 Under the SL(6,2Z) transformation, (4.4.8), the two coordinate systems are related

M (I) = (‘“) : (2.4.12)
Y. Yi

The transformation of (F(3))ijk,(H3))ijx then follow by requiring that the three forms,

F(3y, H(a) stay invariant.
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4.4.3 Erample

To illustrate the equivalences. consider Example 1 from Sec 1.3. Suppose
instead of choosing the two polynomials (4.3.9). (4.3.10). we made the following

choices:
P(r)=-(r*+1) =0, (4.4.13)

P(r)=2r3 -3 +3r-1=0. (4.4.14)

These two polynomials have a common factor P(r) = 72 — 7 + 1. and the corre-

sponding values of integers are
((a®).a’.b'.by) = (-1,0,0.1) ((°).c.d'.dy) = (2.1.-1.1). (4.4.15)

where the prime superscripts are being used to distinguish the present case from
Example 1. in Sec. 4.3. Solving P(7) = 0 and choosing the solution with Im(7") > 0

gives
r=e%. (4.4.16)

Also. solving (4.3.5) with (4.4.15) gives ¢' = e3. Finally the total three brane
charge in this case is Ngux = 3. as follows from (4.3.8). (4.4.15).

This solution is in fact related to the one corresponding to flux. (4.3.16). by an
SL(6.2) transformation.

The SL(6. Z) transformation has the form. S@ S®S where. each § € SL(2.2).
acts on the one of the three T?'s as:

S:1 o —%. (4.4.17)

To see this we note first that under (4.4.17), the modular parameter 7" = es —

e, which agrees with (4.3.13). Second, one can show that the corresponding

matrix M, in (4.4.12), acting on the coordinates of each T? has the form M =
(_01 (1)) From this it follows that in order to be related by the same SL(6,Z)
transforullation, the flux integers. (4.3.16), (4.4.15). must satisfy the conditions:

((a®).a’. b, bg) = (~bo, —b,a,a%), (4.4.18)
0
((CO),vc,vdlvdE)) = (—dOv —d, c, CO)- (4419)

Comparing, (4.3.16), and (4.4.15), we see that these conditions are in fact true.
Finally, the two solutions have the same value for the dilaton and agree in the value

for Ngux. Thus, as per our general discussion above, they are identical.
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4.5 New Solutions Using GL(2.Z) x GL(6.Z) Transformations

In various examples of Sec. 4.3 we have seen that starting with a given solution.
additional ones can be generated by appropriately rescaling the fluxes. Here we
discuss this in more generality and show how additional solutions can be obtained
by using GL(2, Z) x GL(6. Z) transformations. The resulting solutions are physically
distinct in general. with a different flux contribution to three brane charge. Solving
the tadpole condition (4.1.6) without anti-branes requires that the value of Ngy for
the new solutions is < 32. and that the required number of wandering D3-branes
are added in each case.

The general discussion in this section is applied to some examples at the end.
These illustrate that starting with a diagonal period matrix physically distinct so-
lutions can be obtained with a non-diagonal period matrix using the GL(Z) trans-
formations. The examples also yield solutions where all the three brane charge
is cancelled by fluxes alone. leaving in one instance. four flat directions in Kahler
moduli space. These solutions are of the kind mentioned in the introduction and
are good illustrations of the reduced number of moduli that survive once fluxes are

turned on.

4.5.1 GL(2.Z) Transformations

Counsider a solution to the N' = 1 susy equations which has flux. F3y.H 3. and

moduli fixed at values ¢,7%. Now transform the fluxes as follows:

F(3)> (F(S)) (Fm))

S5 0@® ) =m : (1.5.1)
<H<3) H H

where the matrix m € GL(2.2)%.

One can show that a solution to the the supersymmetry conditions for the new

fluxes is obtained by taking the moduli to be at the values

b g .
¢ = Zf T (Y = (45.2)

e By this we mean that m = (a Z) where a,b.c,d € Z. In particular det(m) need
¢

not be 1.
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To see this note that under the transformation (4.5.1).

G
' _ (3) =
G(g) - G(3) = det(m)c——¢ d (403)
The resulting superpotential. (4.2.17), transforms to
> e o/ - / ‘/V[qb' T]
W -Ww [¢ . T] = /Q A G(S) = det("n)m. (4.54)

where the dependence of the superpotential on the moduli has been explicitly indi-
cated above.

It now follows that if W satisfied the supersymmetry equations. (4.2.20). when
the moduli take values ¢.7'7. then W' will also meet the susy eqautions for the

transformed values. (4.5.2).
Finally. note that under the transformation of the fluxes. (4.5.1). the flux con-

tribution to three brane charge becames
Naux = Ny = det(m) Ngux- (4.5.5)

Starting with a solution. where Ngux > 0 we are therefore restricted to GL(2.2)
transformations with det(m) > 0. Also as mentioned above. we need to ensure that

N - <32, (4.1.6).

flux

4.5.2 GL(6.2Z) Transformations

Our starting point is once again a N' = 1 susy preserving solution with flux,
F(3), H(3) and moduli fixed at values ¢, 7*7. But this time we consider transform-
ing the flux by a GL(6,2) transformation. The transformation can be described
explicitly as follows. We fix a basis of one forms (dz*.dy*) as in Sec. 4.1.4. The

components of F3) in this basis then transform as
(Fiay)ase = (F{3))abe = (F(3))aes Mo MEM, (4.5.6)

and similarly for H(z). As a result the components of G(3) in this basis also then

transform under GL(6.Z) as :
(G(3))abe = (G(3))abe = (G(S))defN[:AI:N[!. (4.5.7)

In (4.5.6), (4.5.7), M@ are the elements of a matrix, M € GL(6,Z).
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We will see that the new fluxes lead to the moduli being stabilized at values
¢'. 7" where ¢’ = ¢ and
(1.7') = N(1.7)M. (4.5.8)

In (4.5.8), M is the same matrix that appears in (4.5.7). and N € GL(3.C) is a
matrix that is chosen so that the left hand side has the form (1.x). In Appendix C.
we show that the superpotential for the transformed flux. (4.5.7). is related to the

original superpotential by
W'[r'. ¢] = det(N)det(M)W[r. ¢ (4.5.9)

where 7/. T are related as in (4.5.8). It then follows that if 7.¢ solve the super-
symmetry equations (4.2.20) for the original fluxes. 7/. ¢ are the solutions for the
transformed fluxes.

Let us also note that under the transformation (4.5.7). the contribution to the

three brane charge for the new flux is given by
Naux = Ngux = det(M) Ngyy. (4.5.10)

Once again we must ensure that the resulting value of three brane charge meets the
consistency checks.

Two more comments are worth making at this stage. First, suppose the solution
one began with had a diagonal period matrix 7. Then it is possible by an appropriate
choice of the matrix M to obtain other solutions where the resulting period matrix
7', (4.5.8), is non-diagonal. A specific example will be given in the next section.
Second, in the discussion above we took M € GL(6,Z). In fact, this is not necessary.
All that is required is that the transformed fluxes (4.5.7), have integer components
in the cohomology basis (4.1.17).2* For example choosing M = A6¢, where A% = 2
is perfectly acceptable. In this case, we learn from (4.5.8), that N = A13.3, and
7 = 7. We have already encountered this case in Sec. 4.3.1: doubling the flux

rescales the superpotential and leaves the moduli fixed.

24 1n fact, the coefficients should be even integers if discrete flux is not being turned on.
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4.5.3 An Ezample

For an example we start with the a solution discussed in Example 2 of Sec. 4.3.
The fluxes are given by (4.3.58). and the resulting moduli are stabilized at ¢ = ¢

and
™V = i6", (4.5.11)

(4.3.56), (4.3.55). and (4.3.46). The solution has Ngux = 16.
Now take the matrix M. (4.5.7). to be

M = ((1) g) (45.12)

Here M € GL(6,Z). 1 is the 3 x 3 identity matrix and D € GL(3.Z). The resulting
values for the fluxes can be worked out using (4.5.7). but we will not do so explcitly
here.

The general discussion of the previous section then tells us that the moduli are
stabilized at ¢’ = ¢ = i and 7’. where 7’ is given in terms of the original period
matrix (4.5.11) as discussed in (4.5.8). Given M in (4.5.12). and 7 in (4.5.11). it is
casy to show that the matrix N in (4.5.8) is

N =1343. (4.5.13)

Therefore,
' =iD. (4.5.14)

The flux contribution to the three brane charge in this case is given by (4.5.10).
Nijux = det(D)Nayx = 16 det(D). (4.5.15)

Since Nj,, < 32, we learn that det(D) = 2 is the only possibility (cases with
det(D) = 1 give rise to solutions related to the original one by SL(6,Z) transfor-
mations, which by the discussion in Sec. 4.4.2 are not physically distinct).

As examples for D, two possibilities are

D= (4.5.16)

[ R e i N
o~ O
-0 o
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in which case the resulting period matrix is still diagonal (4.5.14). but the eigenval-

ues are unequal. Or,

1 -3 0
D=1 -1 0]. (1.5.17)
0 0 1

in which case the resulting period matrix is not diagonal. In the latter case we see
that starting with a diagonal period matrix we have found an example where 7 is
fixed at a non-diagonal value.

It is also useful to briefly revisit the primitivity constraint in the example
(4.5.16). Since the complex structure is diagonal. it is straightforward to verify
that three Kihler deformations of the type (4.3.26). survive as flat directions. In
addition to these deformations. the deformation with w ~ dx® A dy® + dz3 A dy? is
also now of type (1.1). Thus. altogether there are four Kéhler flat directions. This
is an example of the kind mentioned in the introduction. The fluxes contribute
Naux = 32. so no extra D3 branes are needed to soak up the orientifold three plane
charge. The dilaton-axion and all complex structure moduli are lifted, leaving four

surviving moduli which are Kahler deformations.

4.6 Solutions with A/ = 2 Supersymmetry.

In this section we discuss the conditions which the G5y flux must satisfy to
preserve N = 2 supersymmetry. We will illustrate the discussion with one example
at the end of this section. A more extensive study of N = 2 preserving vacua is left
for the future.

An N = 2 theory has an SU(2)g R-symmetry. SU(2)g is embedded in SO(6),
the group of rotations along the six dimensional compactified directions, as follows
25 .

SU(2)r C SU(2)L x SU(2)r C SO(4) x U(1) C SO(6). (4.6.1)

We choose conventions so that the spinor representation, 4, of SO(6) transforms
as a (2,1)4, + (1,2)_; under SU(2)g x SU(2)L x U(1), and the 6 of SO(6) as

(2,2)0+(1,1) 42+ (1,1)—2. In the discussion below we will use indices a, b to denote

25 This embedding follows by noting that the spinor €, under which the dilatino and

gravitino variations vanish, must be a doublet of SU(2)r.
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an element of the 6 which transforms as (2,2)o and indices [.m to denote elements
transforming as (1.1)2,(1.1)_o.

Since SU(2)g is a symmetry of the N = 2 theory. it must be left unbroken
by the compactification. This means in particular that G 3y must leave an SU(2)
subgroup of SO(6) unbroken. G 3, transforms as [6 x 6 x 6]4 under SO(6). With
respect to SU(2)p x SU(2)L x U(1) this decomposes as

[6 X 6 % 6],1 =(2.2)p + (2.2)0 + (3. 1)2 + (3.1) 2+ (1.3)2 + (1.3) _a. (1.6.2)

For G 3y to preserve SU(2)g it can only have components along the (1.3)4, repre-
sentations. A little thought shows that this means G 3y has index structure (G3))aqbi-
in the notation introduced above.

A detailed analysis of the spinor conditions will be presented in Appendix D.
The conclusion is the following: in order to preserve N = 2 supersymmetry G,
must only take values in the (1.3), representation of SU(2)g x SU(2), x U(1). In
other words. the (1.3)_5 representation, which would have also preserved SU(2)r.
must be absent.

Let us check that this condition on G(3y leads to a solution of the equations of

motion. The ISD condition (4.1.12). can be written in the present case as
fabmcdlcfgg = i(G(S))abrn- (4.6.3)
which can also be expressed as
Eabcdfmlafgg = i(G(S))abm- (464)

The two € symbols above refer to the four directions on which the SO(4) acts and
the two directions on which the U(1) acts respectively. Since G 3y is a tensor trans-
forming as a (1, 3) representation of SU(2) g x SU(2) it corresponds to the self dual
representation of SO(4) and therefore satisfies the condition €qpca(G(3))°* = Gby.
Further, one can show, in our choice of conventions, that a charge 2 representation
of the U(1) satisfies Em[(G;;))Cdl = i(G(;;))f,‘f. From this, we sce that if G(3) is of the
(1,3), kind, it satisfies the ISD requirement.

It is useful to relate the discussion above to that in Sec. 4.2.1 where we saw
that G(3) must be primitive and (2,1) to preserve N = 1 susy. Requiring N’ = 2

supersymmetry must impose extra conditions on the G(3) flux. The requirements
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for N = 1 supersymmetry mean that under an SU(3) C SO(6). G(3) transforms as
a 6. The SU(2)r discussed above is a subgroup of this SU(3) (since € is a singlet
under it), so the 6 representation of SU(3) transforms under SU(2)p as 3+2+1. As
a result , we learn that N = 1 susy alone allows G 3y to take values in the 3+ 2+ 1
representations of SU(2),. N = 2 susy imposes the additional requirement that the
doublet and singlet components are missing and G 3y transforms purely as a triplet
under SU(2).. For completeness let us also mention that for unbroken N = 3 one
must impose yet a further restriction: G 3y must have only one non-zero component
proportional to a highest weight state of the triplet representation.

These conditions can be visualised as follows. The weight diagram of the 6
representation is a triangle. (See. e.g.. (IX.iii) of [90]). Each state in the 6 represen-
tation is denoted by a point in this diagram. A = 3 supersymmetry requires G 3,
to be proportional to any one of the three vertices of the triangle. /' = 2 requires
that the components of G(3) all lie along an edge of the triangle. and finally. N=1
supersymmetry allows components along all six points in the diagram.

In the example below it will be useful to first impose the conditions for N' =1
supersymmetry. then check if the extra restrictions for N = 2 supersymmetry are

met.

{.6.1 An N =2 Ezample

As an example choose the fluxes to be:

Hi3s = Hays =Fi36 = Fass = (2m)%aa®

, (4.6.5)
Fiss = Fays = — Haye = —Hize = (2m)%d/a®,

where we are working in the coordinates z*,y* introduced in Sec. 4.1.4. Each index
above takes six possible values; i = 1, 3, 5, denote components along z!, 2%, z* direc-
tions, i = 2, 4, 6, along y!.y? y>. Also in (4.6.5), a® is an integer. In the cohomology

basis, (4.1.17), the fluxes can be expressed as

|
WF(S) = aoao + (10/30 - a°ﬂ33 + 00033 (466)

and

H) = a®ag — a®8° - a"8% - a%aqs. (4.6.7)
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The superpotential is then given by
W =a’(1 — ¢)det 7 — a®(1 + ¢)(cofT)az + a®(1 — &)™ —a®(1 + 4).  (4.6.8)

One can show that the equations for N' = 1 supersymmetry (4.2.22), have the

solution
=6 =i (4.6.9)

The contribution to three brane flux is
Naux = 4(a®)%. (4.6.10)
Choosing a® = 2 we have Ng,x = 16 which is within the acceptable bound. (1.1.6).

With the choice of complex structure in (4.6.9). G(3y can now be expressed as

1 (lo(l—i) 1 2 3 1 9
WG(;;) = 2 —(dz Adz° ANdz® +dz /\dZ'/\dZs). (4()11)

It is clear that the primitivity condition is satisfied if one chooses the Kahler

form to be of the form

J = iz ridz* Adzt. (4.6.12)
A
In addition the perturbation
6J = i(dr' A dy® + d2® Ady') ~ dz' AdE* + d2® A dE (4.6.13)

satisfies 6J A G = 0. The remaining 5 Kihler moduli are lifted.

So far we have ensured that there is A/ = 1 supersymmetry. We will now argue
thai the solution above in fact preserves N' = 2 supersymmetry.

Start by first taking the Kihler metric to be g;; = d;;. The coordinates z*,y*
then define a flat coordinate system. Consider an SO(4) x U(1) subgroup of SO(6)
where the SO(4) acts on the z',z2,y', y?, indices and the U(1) refers to rotations
in the 3,33, plane. It is easy to see that for the values (4.6.5), G (3) satisfies the
relation, eabchfgf = (G(g))flb, and therefore transforms as a self dual representation
of SO(4) (here we are following the notation of the previous section and the indices
a. b take values z1,z2, y!, 3>, while [, m range over z3,3°%). Since we have already

verified that G(3) satsifies the A’ = 1 conditions, it is ISD, and it follows that it
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must have charge 2 under the U(1). Putting all this together. in the example above
we find that G3) transforms as a (1.3), representation under SU(2)g x SU(2)L x
U(1). As per our discussion above. it therefore meets the requirements for N =2
supersymmetry.

Alternatively, working in the complex coordinates z* = r* +iy*. 2* = ' — iy'.
let us define Az = (G(s))ij,;.e;j . We see that Aj; and Asz; have nonzero values
in the above example. Under the SU(3) symmetry. (z!. z2.2%). transforms as a 3

2, coordinates

representation. Consider an SU(2) C SU(3) which acts on the z'.z
and leaves 23 invariant. Ajg; or equivalently G sy transforms as a triplet of this
SU(2).

An additional check. also mentioned in Sec. 4.3.1. is the following: inan N =2
supersymmetric theory one should be able to define another inequivalent complex
structure which keeps G(3) of kind (2,1). In the example above it is easy to see that
this corresponds to choosing holomorphic coordinates (w!.w?. w3) = (z!. 2. 2%).
Finally. some thought shows that under Kahler deformations of the form

(4.6.12). (4.6.13), the conditions for N" = 2 supersymmetry continue to hold.

4.7 Non-Supersymmetric Solutions

For generic (non-supersymmetric) solutions. we require only that the scalar
potential vanish, or equivalently by (4.1.13), that G 3y be ISD. However. it is com-
putationally simpler to consider the subclass of solutions in which G3) is also prim-
itive. In this case G(3) can only have pieces of type (2.1) and (0.3). The equations

that one needs to solve are then

Dru)W = 3.,..,W + (BT.JIC)PV = 0,

(4.7.1)
D,W = 0,W + (94K)W = 0.
along with the primitivity condition,

Here K is the Kahler potential for closed string fields, inherited from the N = 4
supersymmetric T6/Z, compactification, and will be defined momentarily. The

first set of equations in (4.7.1) imposes the third set of equations appearing in
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(4.2.16), and forbids type (1.2) pieces of G(3). The second equation in (4.7.1) is
the second equation in (4.2.16). i.e. forbids a (3.0) piece in G (3). Then. equation
(4.7.2) kills the possibility of (2.1) IASD pieces in the three-form flux (7. unlike
a generic Calabi-Yau. has a three-dimensional space of IASD non-primitive (2.1)
forms). More generic non-supersymmetric solutions could be found by relaxing the
requirement that the (1.2) ISD forms be absent from G(3y. but we will not pursue
them here.

Fluxes which obey the equations (4.7.1) and (4.7.2) will break supersymmetry
iff G(3) contains a nontrivial component of type (0.3). This is easily interpreted
in the low-energy supergravity: Since we are looking for solutions which are not
necessarily supersymmetric. we no longer need to impose Djy,e W x W = 0 for the
Kihler moduli. p*. Precisely when G(3) has a non-vanishing (0.3) piece. W # 0 and
supersymmetry is broken. but still with vanishing potential (at leading order in o’
and g,). Examples of such vacua were discussed in [31.91]. Such vacua will suffer
a variety of instabilities in perturbation theory (as the “no-scale™ structure of the
potential will be violated by o’ and g, corrections). which is why we only discuss
them briefly here.

The Kihler potential for the 7%/ is

K= K:dilamn + chx- (473)

Here.

Kdilaton = — ln(_l(¢ - &))1 (4.7.4)

and

Kepx = —ln(—i/ QAQ)
TG

= —In det (—i(T — 7)) (4.7.5)

= - ln(iei]-k(r - 1‘-)“(7- — f)j2(,,. — 7-.)k3)_

Since both 9 and 7% enter into (4.7.1), it is in general difficult to solve the

resulting non-holomorphic equations. However, in an ansatz with enough symmetry,

the problem becomes tractable.
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4.7.1 A Non-Supersymmetric Example

Let us make a simple flux ansatz which is a subcase of the ansatz made in
Example 1 of Sec. 4.3. We take a'/ = ad*. d;j = —ad;j. and by. co to be nonzero.
with all other fluxes vanishing. Then we find that the superpotential takes the form

1

—W == ~a¥ 4+ di b — by. re
(271’)20' c¢pdetT —a (COfT),J + d1)¢T bo (4.7.6)

It is easy to compute the D3-charge carried by the fluxes with this ansatz,

1 0 _ _ij 0 2 - -
Naux = W / H(g) A F(3) = boc” — a']d,-j = boc” + 3a”. (4.7.7)
From the symmetry of the problem, one can show that r*J = 74*. Let us

further assume that

T =—-T. ¢ =T. (4'78)
Then.
3 1 .
0K =~ 04K =-5. (1.7.9)
so that 3
D,W = 9. W + (0, K)W = —2—(c°r4 — bo) = 0.
1T (4.7.10)
DyW = QW + (BpK)W = — (1" = bo) = 0.

The equations are both satisfied if

%
T(=¢) = z(;:%) : (4.7.11)

therefore our assumption was consistent. Finally, since the flux ansatz is a special
case of Sec. 4.3 Example 1, we can solve (4.7.2) by taking J to be in the same
space that led to G(3) primitive in Sec. 4.3.1. We can also check that the conditions
for supersymmetry here are the same as those found earlier. The solution will be

supersymmetric if W = 0. In the present example,

9 2
W = —6(17’2 — 2b0 = 2b0( boaco - 1) . (4712)

So, the solutions are non-supersymmetric as long as 9a% # boc®. In fact, it turns
out there are no solutions which have even fluxes, 9a® = boc® and Naux < 32 in any

case.
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4.8 Brane Dynamics

In many of the examples of N = 1 vacua with flux. one finds that the number
of space-filling D3 branes needed to satisfy the tadpole cancellation requirement
(4.1.6) is

1 1
Np3=16— =Noyy — —————= | HayAF3 > 0 4.8.
p3 = 16 — 5 Nog 2(%)4(0,)2/ 3 N Fiz) (4.8.1)

(Np3 > 0 is needed for supersymmetry). Therefore. in addition to the background
3-form flux. one must introduce space-filling D3 branes.

Following the work of Myers [92]. it has been recognized that background p-
form fields can have interesting effects on brane dynamics. It follows from [92] that
the worldvolume potential (working at vanishing RR axion Cp) is given by

Hijk Tr(X XTI X¥%) — (+6F3))ija Tr(X X XF) + - (4.8.2)

A —
8

Vopen

where - - - includes the usual A" = 4 field theory potential. When G 3, is ISD.
1
9s

and the first two terms in (4.8.2) exactly cancel.

This is in keeping with the fact that the ISD fluxes mock up D3 brane charge
and tension, and satisfy a "no force™ condition with the D3 branes {31]. Therefore.
at least at large radius (where supergravity intuition applies), the D3 point sources
are free to live at arbitrary positions on the T6. When k£ < Np3 branes meet at a
generic point. the low-energy physics is that of SU(k) N = 4 SYM theory. while
k branes meeting at an O3 plane will give rise to an SO(2k) theory. as usual.? It
would be interesting to determine the leading nontrivial effects of the fluxes on the
D-branes, and to find more elaborate types of models where phenomena reminiscent
of those observed in [93] can occur. Inclusion of anti-branes in the flux background
might also lead to interesting phenomena, as in [83].

It follows from this discussion that inclusion of Np3 branes in one of our models
adds 3Np3 complex moduli to the low energy theory. From this perspective, the

models with Ng,, ~ 32 and Np3 =~ 0 are the most satisfying.

26 Here we have assumed that the O3-plane is of the usual type, with no discrete NS or
RR flux, as is the case for the all of the examples considered here. In the case that the
O3-plane contains discrete NS or RR flux, enhancement to Sp(2k) or SO(2k + 1) is also

possible.
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4.9 Discussion

[IB compactifications on Calabi-Yau spaces with both RR and NS 3-form fluxes
turned on provide a rich class of vacua which are amenable to detailed study. It
should be clear that the techniques used here to compute W and study vacua of
the T'6/Z, orientifold would generalize to many other examples. The main novelty
of these examples is that they provide a setting where the stabilization of Calabi-
Yau moduli becomes a concrete and tractable problem. These models are also of
interest because they give rise to warped compactifications of string theory. and in
some cases the low-energy physics has a holographic interpretation via variants of
the AdS/CFT duality [73.74.31].

Several natural questions about the T°/Z, models studied here would be suit-
able for further study. A complete classification of supersymmetric vacua may be
possible (although. especially in cases where the additional complications of discrete
RR and NS flux arise [80]. it could be very difficult to achieve). It is also interesting
to ask whether there are any cases where. with a fixed topological class for the
fluxes, one finds multiple vacua. Finally. various dual descriptions of these models
should exist. and fleshing out these dualities (and in particular. understanding any

analogues of mirror symmetry for vacua with nonzero H -flux) seems worthwhile.

4.A Flux Quantization

We follow the conventions of [31] and [81]. A Dp-brane couples to the (p + 2)-
form RR field strength via the action

1 1 0
T 2w2,2(p +2)! /M d'°zv/=g Fipi2)® + l‘p/CpH- (4.A.1)
: 6

The usual quantization condition that follows from this action is

1 -
/ Fpi2 = (2810°16-p) 1ty Ny €2, pip = (—2—)50' . (4.A.2)
. ™

.,[1

for an arbitrary 3-cycle v € H3(Me., Z). Here p, is the electric charge of a Dp-brane
and pe_p is the charge of the dual magnetic D(6 — p)-brane. The product of these
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two charges is related to the factor 1/2x10% = (27)7a’* that multiplies the action,

via the Dirac quantization condition

27
Kplt6—p = gl (4.A.3)
From (4.A.2) and (4.A.3).
[lp/Fp+2 =2nn. né€Z. (1.A.4)
which. in the case p = 1. becomes
1
= 27n. . A
27ra’/F3 . ne€z (4-A.5)

Similarly., we know that the electric NS charge of a fundamental string is upy =

1/2nc’. So. using ppipinss = 2m /2K 10> together with the analog of the first equation

in (4.A.2).
1

2ra’

/H3 =2mn. ne€Z. (4.A.6)

This equation can also be obtained from (4.A.5) by S-duality.
For compactification on T®/Z,, it can be shown that the quantization condition
is exactly (4.A.2). with Mg = T5[80]". The 3-cycles on T®/Z, include both the

3-cycles on T® and also new cycles. such as

1 _
v%:0<zh 22 <1, 0<2*< 5 y' =0, (4.A.7)
which are “half-cycles™ on T®. Naively. this would seem to lead to a problem with

the quantization condition (4.A.2). Define v; by
y:0<zt. 2l 2 <1, =0 (4.A.8)

Then, one has n.,, = %n.,l, so that n.,, € Z when n,, is odd. However. as discussed
in [80]. the quantization conditiou is still satisfied in this case, if a half unit of
discrete RR flux is turned on at an odd number of the O3-planes that intersect
~Yo.1- Similarly, when m,, is odd. a half unit of NS flux must be turned on at an
odd number of the O3-plane that intersects vo,;. When n,, (m.,) is even, it is
also permissible to turn on RR (NS) flux at some of the O3-planes that intersect
o0.1. but we require that the total number of such O3-planes be even. Because the
construction of vacua with these exotic O3 planes is somewhat involved except in
the simplest examples, we have focused in this chapter on cases where all of the

fluxes in the covering space are even integers, and the naive problem does not arise.

27 We are indebted to A. Frey and J. Polchinski for providing us with a preliminary
draft of their preprint[80]. The remainder of this section sumimarizes an analogous section

in their preprint.
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4.B Derivation of Equation (4.3.75)

Write 7 = T% + AY/A° = T + A where a tilde denotes division by A°.
Here. AY = a¥ — ¢¢'7. and B;;. A% and By are defined similarly. Then. equation

(4.2.22¢) becomes
W = det  — A¥(cofr);; — By — B, (1.B.1)
which. after some algebra can be shown to have the T*/ expansion
W =detT — ((cof:’{),-,- + éij)Tij - (.»Iij éi]' + By + 2 det :1-)

The analog of equation (4.2.22c) has already been obtained in equation (4.3.74).

(COfT),'j = (COf:I),'j + Bij. (4.B.2)
By virtue of this equation, the previous result becomes
["‘7 = -2detT + (;{ijéij + éo + 2det :{)

When W =0,
1~ ~ - -
detT = —§(AUB,‘j + By + 2det A). (4.B.3)

Since we have independent expressions (4.B.2) and (4.B.3) for cofT and detT.

respectively. the equality
det cof T = (det T')? (4.B.4)

gives a quartic equation for ¢. Explicitly, we have

det cof T = det cof A + (COfCOffI)ijéij + (cofﬁ),-j(cofé)ij +det B

- e - - - (4.B.5)
= (det A)? + (det A)(AY B;;) + (cof A);,(cof B)Y + det B,

and
(det T)? = (det A)? + (det A)(AYB;; + Bo) + 1(A°Bo + AV B;;)?,  (4.B.6)
so, equating the two and multiplying by (A°)4,
(det A)Bgy — (det B)A® + (cofA);;(cof B)*? + 1(A°Bg + A¥B;;)* =0, (4.B.7)

which is equation (4.3.75).
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4.C Derivation of Equation (4.5.9)

To establish that (4.5.9). is correct. notice first that the transformed superpo-

tential for the new fluxes is given by
W'[r] = / Glyy A Q7). (4.C.1)

where we have explicitly indicated that the dependence on the complex structure
moduli arises from Q on the right hand side. Using, (4.5.7). (4.C.1). can also be

expressed as

W [r] = (G(3))rst QT Jae s ML My MEebedel. (4.C.2)
Now.
Q7] = dz' Adz? Ad2P. (4.C.3)
where,
dz’ dz
dz? | =(1 ( i) : 1.CA
a2 | =1 1) (G, (4.C.4)
Under a change of complex structure, 7 — 7/ (where 7’ is given by (4.5.8))
dz! (dzt) i
dz2 ] = | (dz?)' | = N(1 T)M( ,) (4.C.5)
dz? (d=3 dy
As a result one finds that?8
Q"] (def) = det(N)Qr]yvw Mg My M . (4.C.6)

Substituting in (4.C.2), then leads to

W'[7'] = det(N) det(M)W([r]. (4.C.7)

4.D The Spinor Conditions for N = 2 Supersymmetry

Throughout this appendix the components for all tensors will be evaluated in

a vielbein frame. We will also use the notation introduced in Sec. 4.6. The SO(6)

28 This follows, for example, by noting from (4.C.5) that, up to an overall normalization

of det(N), Q[7'] in the basis ((da: ) ) =M (dz ) has the same components as (7] in

l 3
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group of rotations in the 6 compactified directions has an SO(4) xU(1) subgroup. In
our notation. indices a. b which take four values refer to directions which transform
under the SO(4) and indices . m which take two values refer to directions which are
acted on by the U(1) subgroup. The metric in the vielbein frame has components

Jab = Oab. Gim = Otm-gat = 0. Also the v matrices satisfy the relation
{('.7*} =0. (4.D.1)

Using the fact that an SU(2)g symmetry group must be left unbroken we
argued in Sec. 4.6 that the flux must have the index structure. (G(3))(asn)- and
further that G(3y must transform as (1.3)+2 under the SU(2) g X SU(2)L xU(l) C
SO(6) group. Here we will show that the spinor conditions imply that the (1.3)_»
terms must be absent and G 3y must only transform as a (1.3)2 representation under
this group.

The spinor conditions are given in [79] and (4.2.8).
G(;;)E = G(3)6‘ = G(g)"/lé‘ = G(g)’)‘(‘f‘ =0. (~1D2)

In our choice of conventions, the spinor 4 representation of SO(6) transforms
as (2.1); + (1.2) - under SU(2)g x SU(2)r x U(1). In the N = 2 supersymmetry
case. € is a doublet of SU(2)g and therefore transforms as a (2. 1), representation
of SU(2)p x SU(2)L x U(1). We are now ready to ask what conditions (1.D.2)

imposes on the flux G 3.
We noted above that the flux has index structure Gap. Using (4.D.1). the first

condition in (4.D.2) can be explicitly written as
(Gia))iap?' 7. 7*)e = 0. (4.D.3)

If G(3 transforms as (1.3)+2 under SU(2)g x SU(2)L x U(1) it is easy to see that
(G(g))lab[’)‘a’,’)’b] is a generator of SU(2) and therefore must annihilate €, which is
a singlet of SU(2)r. So (4.D.3) is met.

Similarly, since €* is also a singlet under SU(2), it is also true that G)e* =0.

The third condition in (4.D.2), can be written as

1 x
5(0(3))mm'"7'[7°,7"]e = 0. (4.D.4)
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Once again the same argument leading to the first two conditions being met ensures
that (4.D.4) is also satisfied.

Finally we come to the last condition in (4.D.2). This can be expressed as
(G3))oct ¥ ¥ y'e” = 0. (4.D.5)

One can show that (4.D.5) is not met if Gy has a (1.3)-2 component. If this
component is absent though. and G (3 is entirely of the (1.3)2 kind. one can show
that

(G3))ba¥'e” = 0. (4.D.6)

Condition (4.D.5) then follows.

To show that (4.D.6) is satisfied when G(3) transforms as a (1. 3), state we first
note. as was pointed out above. that € has charge +1 with respect to the U(1). So
" has charge —1. As a result. if G(3) is of (1.3)2 kind, (G(g))abn’e‘. has charge
-3 under the U(1). Also note that the state (G(;,))abn’e‘ transforms as a - spinor
under the SO(6) symmetry. But the 4 representation does not have any state with
—3 charge under the U(1) symmetry. Thus the left hand side of (4.D.6) must vanish.

In summary, the spinor conditions show that G(3) must transform under
SU(2)r x SU(2)L x U(1) as a (1.3)2 representation. in order to preserve N' = 2

supersymmetry.



5. Supersymmetry Changing Bubbles

String theory is known to have many different vacua. An important direction of
research aims at understanding whether these different vacua are connected. For
compactifications to 4 dimensional Minkowski space the situation is as follows. With
N = 4 supersymmetry (susy). it is known that there are several disconnected com-
ponents of the space of vacua (see e.g. [72]). With ' = 2 susy. naively disconnected
components are known to be connected up in a large web [94.95.96]. although it is
premature to say that all such models are connected. For N = 1. less is known.2?
although some classical obstructions to connecting vacua are circumvented by string
theory via chirality changing phase transitions {97.98].

In the discussion above. the notion of connectedness relates to moving along
a moduli space of degencrate solutions. It is known that Minkowski vacua with
different amounts of susy can never be connected. in this sense. A theorem to
this effect was proved for the perturbative heterotic theory in [99]. However. it is
clear that weaker notions of connectedness exist and could be physically relevant.
For instance, two vacua can be connected by a finite potential barrier, Vya,. For
Viar much less than the four dimensional (4D) Planck scale My, low-energy field
theory would correctly describe the dynamics in rolling betwen these vacua. Such
a notion of connectedness might be relevant in cosmology. A related weaker notion
of connectedness requires the existence of vacuum bubbles of one vacuum inside the
other, with the domain wall separating the two having a tension o < (My)3.

In this letter we show that one can unify some vacua with different amounts
of supersymmetry in this weaker sense. Our starting point is IIB string theory

compactified on the T°/Z> orientifold. This vacuum has A" = 4 susy and is a

29 In this case, we generically expect the moduli to be lifted by quantum corrections.
For this reason our discussion will mostly focus on N/ > 2 vacua, but our idea would also

apply to any A = 1 models where the flux-generated no-scale potential is the full potential.

91
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dual description of the heterotic theory on T€. Appropriately turning on RR and
NS fluxes yvields vacua with A~ = 3.2.1 susy [100,6.80]. We show that the vacua
with reduced susy can be connected to the N' = 4 vacuum, and to each other. by
spherical domain walls. In the ten dimensional string theory, these domain walls are
made up of NS and Dirichlet five branes. each of which wrap an internal three cycle.
besides spanning the spherical boundary. It is important to note that the tension
of the resulting domain walls can be made parametrically lighter than (My)* (by
tuning the compactification volume V. as we will demonstrate). This ensures that
the vacuum inside the bubble is not shielded from the one outside by a black hole
horizon. and is available for inspection from the outside.

The bubble configuration we construct is not BPS and evolves in time. with
a trajectory determined primarily by the tension of the domain wall. By tuning
the radius of the internal space. one can make the lifetime of the bubble arbitrarily
large.

We should emphasise that the vacua under consideration here are quantum
mechanically stable, and all of them have zero ground state energy. As a result. the
spherical bubbles referred to above are not produced by quantum tunneling. as in
the decay of a false vacuum.

In Sec. 5.1. we briefly review the construction of the various vacua in IIB on
T%/Z, with fluxes. Sec. 5.2 describes the domain wall brane configurations which
interpolate between the different vacua. We discuss the construction of the domain
walls from wrapped five branes. their resulting dynamics, and the stability of the
walls. As a concrete example we consider a bubble of the standard N = 4 vacuum

inside a theory with A" = 2 susy. We close with a discussion in Sec. 5.3.

5.1 Vacua with Various A in IIB on T%/Z,

Our starting point is IIB theory compactified on a T®/Z, orientifold. This
model is T-dual to Type I theory and preserves N = 4 supersymmetry. Sixteen
D3 branes are needed to cancel the RR tadpoles arising from the O3 planes. The
resulting low energy theory is SO(32) N' = 4 supersymmetric Yang-Mills theory
coupled to N = 4 supergravity.

However, this is not the most general possibility. The IIB compactification

also admits other superselection sectors in which we turn on quantized fluxes of the
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three-form field strengths H and F originating from the NS-NS and RR sectors.
That is, H and F satisfy the conditions

1 1
)2()‘,[7F'=m7 €Z, ——/;H =n, €Z. (5.1.1)

(27 (2m)2’

where v labels the classes in H3(T®.Z). For the case of a six-torus with coordinates
z* and y*. each of period 1, we can be very explicit about this choice. Let d§* =
dr*.dy’.1 < i.j < 3, denote six one-forms. Then. a basis for H3(T®.Z) is given
by the twenty three forms, d€® A d€® A d€°.1 < a.b.c < 6. For the most general
choice of flux. (:z_n;??F and. m_x;’f?H can be expanded in this basis with integer
coefficients.

In the presence of such fluxes. the full tadpole cancellation condition for the

D3 brane charge reads:3°

W TGH/\F + Np3 = 16. (5.1.2)
Here we consider only the susy preserving case with no anti-branes. Susy breaking
by adding anti-branes and vacuum bubbles in similar backgrounds was studied in
(83].

In sectors with non-vanishing flux, one finds an effective (super)potential for
the Calabi-Yau complex structure and Kéhler moduli [63] (for a detailed derivation.
see Appendix A of [31]). Supersymmetric vacua are located at points in complex
structure moduli space where G = F — ¢H is of type (2,1) (here ¢ is the IIB
axio-dilaton), while the Kahler structure J should be chosen to make G primitive
(i.e. satisfy J A G = 0). These conditions were studied in detail for the case of
T®/Z, in [6], and it was found that for generic choices of the fluxes there are no
supersymmetric critical points. However, for suitable non-generic choices of flux,
one can find vacua with A’ = 1,2, 3 supersymmetry. In these vacua, typically all the
complex structure moduli and some of the Kéhler moduli are fixed. The dilaton-
axion is also typically fixed with g5 ~ O(1). One Kahler modulus, governing the
overall volume of compactification V, is never lifted in these models; this will be

important in the discussion below.

30 Here we ignore the possibility of exotic O3 planes and choose the integer coefficients

which characterise the flux to be even, as explained in (80].
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In Sec. 5.2.3. a specific N' = 2 vacuum will be considered. It corresponds to

the choice of flux

1 2
—— F = 2dz! Adz? Ady® + 2dy' Ady® A dy?
(27)2a’ v
1 1 2 3 1 2 3 (5.1.3)
H = 2dz" Adz* Adz® + 2dy" Ady” Adz”.
(27)2a’

Following [100.6] one easily finds that there is a moduli space of N = 2 super-
symmetric vacua with these fluxes. A particular locus in this moduli space has ¢ =i
and a T® which is of the form (T2)3, where each two-torus has complex structure
r = i. The Kahler form can be chosen to be J ~ iR> Zf;l dz; AN dz;. This is just a
product of square two-tori with overall volume R.

A quick way to see that the vacuum preserves N' = 2 supersymmetry is by

noticing that along this locus. G takes the form

1
(27)2

G = —%(d.zl AdzZs Adzz + dz, Adzy A dzg). (5.1.4)

N = 2 susy requires that there be another inequivalent choice of complex structure

which keeps G of type (2. 1); this corresponds to taking z; 2 — 212,23 = 23.

5.2 Vacuum bubbles from D5 and NS5 Branes
5.2.1 Overview

The key idea in our construction of bubbles is the following: by wrapping
D5/NS5 branes on three-cycles of the compact manifold it is possible to construct
domain walls in R3! across which the quantised fluxes in the compact manifold
jump. E.g., wrapping a D5 brane on a three-cycle causes the flux of F through the
dual three-cycle to jump by one unit. Since the vacua reviewed above differ essen-
tially in the RR and NS fluxes along the compact directions, this allows different
vacua to be connected.

In fact this idea was used in [63] to construct BPS domain walls between N = 1
vacua in the setting of non-compact Calabi-Yau constructions. Our interest is in
compact internal manifolds, resulting in flat 4D spacetime. In this case, we do not
expect BPS domain walls to interpolate between vacua with different amounts of

supersymmetry for two reasons. First, the central extensions of the supersymmetry
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algebra do not admit BPS domain walls of nonzero tension between supersymmetric
Minkowski vacua in supergravity (see e.g. [43.35]).3! Second. planar domain walls
have codimension one and are often singular in supergravity. see e.g. [101].

With this in mind. we construct non-BPS spherical domain walls in R3!. sep-
arating a bubble of one vacuum inside the wall from another vacuum outside. Two
requirements must be met by the domain wall to consistently interpolate between
the vacua. First, the flux of F. H must jump appropriately across the wall. Second.
the moduli must vary smoothly across it. It is clear that any jump in F. H fluxes can
be engineered by choosing D5.NS5 branes wrapping three cycles in the appropriate
homology classes. We will choose the minimum area three-cycle in each homology
class which is consistent with our boundary conditions. The domain wall is then
the composite configuration made out of the resulting D5.NS5 branes.

To meet the condition on the moduli, we restrict ourselves here to considering
pairs of vacua such that moduli lifted in both vacua are fixed to the same values.
The remaining moduli. unfixed in one or both vacua. can then simply be tuned fo
take the same values on both sides of the wall (we will-show that the backreaction
of the walls is small enough to make this a good approximation).

In fact. this condition is not very restrictive. and allows our construction to
connect several vacua, including many with different susy's. For example. since
none of the moduli in the standard ' = 4 vacuum are fixed. it can be connected
to all the other vacua in the above manner. This is enough to establish that all the
vacua of Sec. 5.1 are connected by the above construction.

The two vacua connected by the wall will in general have different numbers of
D3 branes (5.1.2). One can verify that the extra D3 branes in one vacuum terminate
on the 5 branes making up the domain wall consistently [102]. Also, we note that
being composed of 5 branes, the resulting domain walls have a thickness of order
the string scale. As a result, in analysing their dynamics below we can work in the
thin wall approximation.

Some features of the resulting domain wall dynamics were discussed in the
introduction. Let us verify that the tension of the domain wall, compared to (My)3,

can be lowered by tuning the volume modulus V ~ RS. In the estimate below, we

31 This is not true in global supersymmetry. The additional constraint in supergravity

arises roughly because one needs the superpotential W to vanish for a Minkowski vacuum.
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set g, ~ O(1). A 5-brane wrapping a three-cycle of size R® gives rise to a domain

wall tension
o~ R%/(a')3. (5.2.1)

On the other hand. My ~ (a’)~2R3, s0 that a/(M,)® ~ (’)3/R®. This ratio can
be made small by taking R to be large.3?

The rest of this section is organised as follows. The time dependent dynamics
of the domain wall is analysed in Sec. 5.2.2. under the assumption that the the
wall moves as a single cohesive unit, driven primarily by its net tension. A spe-
cific example of two vacua and the interpolating domain wall is discussed next. in
Sec. 5.2.3. Finally in Sec. 5.2.4. the relative forces between branes which make up
the wail are analysed. These forces are found to be small, thereby justifying the

analysis of Sec. 5.2.2.

5.2.2 Bubble Dynamics

We begin by neglecting the backreaction of the domain wall on the metric and
other closed string modes. and analyse its trajectory in flat space. Next, we estimate
the backreaction effects and show that they are small most of the time. All along
we work with walls of tension o <« (My)3.

A spherical domain wall in flat space is described by the action.

ty
S = —/ dt dmop®\/1 - p2. (5.2.2)

N

or equivalently an energy

M=_—12F (5.2.3)

The dynamics is easy to work out in detail. For fixed M and initial outward

radial velocity, the bubble expands to a maximum size

dnopl.. = M, (5.2.4)

32 The tension of the domain wall depends on both the volume and the moduli that
control the sizes of the relevant three-cycles. We will show that the backreaction of the

wall on all moduli, including these, is small.
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then recollapses.33

Birkhoff's theorem tells us that the spherically symmetric geometry outside
the wall is described by the Schwarzschild metric, while that inside the wall is
described by flat space. The Schwarzschild radius Ry ~ Gy M (with Gy ~ M 2
the 4D Newton's constant). The gravitational backreaction is therefore small as

long as
p>GNM. (5.2.5)

When o/(M;)? < 1. (5.2.5) can be met by suitably choosing the initial radius p;
and the total energy of the wall. E.g.. for a slowly moving wall, p < 1. (5.2.5) is

met by taking.
(My)?2 RS

—~ = (5.2.6)

(1S

where we have used (5.2.3) and (5.2.1). Ultimately. as the bubble recollapses. (5.2.5)
will no longer hold and the gravitational backreaction will get significant. potentially
leading to the formation of a black hole.3

The important thing to emphasize is that even if a black hole eventually forms.
by tuning the volume and other moduli. the time for which the wall lies outside
the black hole horizon can be made as large as one wishes. E.g.. the time it takes
starting from an initial radius p; < R3/c’ to recollapse back to pg = p; is of order
At~ R3/a.

The domain wall also acts as a source for the various moduli that determine its
tension. We now show that the back reaction on these moduli is also small as long as
the domain wall is well outside its Schwarzschild radius. We denote the canonically
normalised modulus under consideration as . and by an additive shift ensure that
asymptotically far away, r — oc, ¢ = 0 (e.g. for the radius ¢ ~ (log(R) —log(Rx))-

One can show that ¢ satsifies the equation:

Vo = g V1 8- e0) (5.2.7

The right hand term arises because the tension, o. depends on . f is determined

by this dependence, and p(t) is the radius of the wall.

33 We do not consider trajectories where the wall moves in the internal directions. This

is a consistent approximation to make.

34 Gee however the discussion of stability in Sec. 5.2.4
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Since our main concern is the part of the trajectory where the bubble is well
outside its Schwarzschild radius. we consider a simplified model for the domain
wall's history below. We assume the wall is constructed at time ¢ = ¢; and then
evolves till ¢ = t; with the radius. p(t). meeting the condition (5.2.5) all along. At
time ¢y we assume the bubble is destroyed.

In this example. ¥ satisfies the following boundary conditions:® it vanishes as
r — 2 for all £, and also as t — £~ for all r. Also. we choose boundary conditions
such that i = 0 inside the bubble.

The resulting solution for ¥ is.

t _(t —
(/j — f+( + T') _:_f ( 7') ) (5.2.8)
f+ meet two junction conditions across the wall: fi(t+p(t))+ f-(t—p(t)) = 0. and.

filt+p(t)) + fL(E = p(t)) = *—’—%‘:’}Q with prime indicating derivative with respect

to argument. oo is the tension at ¢ = 0. Using these. we can solve for f_ in terms

of the trajectory p(t) :
0 L <t

Fo(t—p(t) = { Z5 i dtp(t)(1-p(8)?) t<t<ty. (5.2.9)

,‘,’T‘;f; Sl dtp(t)(1-p(t)?)  tp<t
f+. and finally ¢ can then be determined from (5.2.8) and the junction condi-
tions above. A small backreaction means ¢ < 1. It is easy to see from (5.2.9).
(5.2.8) that this requirement is met when the bubble radius is much larger than the

Schwarzschild radius. (5.2.5).
5.2.3 An Ezample

As a concrete example. consider a spherical bubble of the standard N' = 4
vacuum inside the A" = 2 vacuum determined by (5.1.3).

The domain wall in this case consists of two kinds of D5 branes and two kinds
of NS5 branes. The D5 branes wrap the three-cycles z; = z2 = y3 = 0 and
y1 = y2 = y3 = 0, respectively. with appropriate orientations. Each of these branes
carries two units of D5 brane charge. The NS5 branes. each carrying two units
of NS 5-charge, wrap the three-cycles £; =z = r3 = 0 and y, = y2 = I3 = 0
respectively.

The compactification also has 64 O3 planes. Finally, the N' = 1 vacuum has
16 D3 branes, while the A" = 2 vacuum has 12 D3 branes (5.1.2). The extra D3

branes in the N/ = 4 vacuum terminate on the 5 branes.

35, t are the usual radial and time coordinates in flat 4D space.
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5.2.4 Stability

Our discussion of the wall dynamics assumed that the different branes making
up the wall do not come apart due to relative forces between them. This assumption
is worth examining. since the configuration breaks supersymmetry and g, ~ O(1)
in these vacua.

To begin. it is useful to understand the two sources of susy breaking in this
configuration. First. there is the curvature of the two sphere in spacetime. which
via the bubble tension gives rise to collective motion of the branes. Second. there
is the presence of both the branes. and the three-form flux.

To understand the second source. it is helpful to study the example of Sec. 5.2.3.
Here. we take the decompactification limit. R — >c. and consider planar parallel
branes in R3! in this limit (while keeping the orientation of the branes in the internal
directions unchanged). The spinor conditions can be analysed as in [103.79]. One
finds that the configuration of branes and O3 planes of Sec. 5.2.3 preserves N = 1
susy. i.e. four supercharges. Also, it turns out that any two components. e.g.. two
kinds of branes or one brane and the O3 planes, preserve N' = 2 susy. Breaking to
N = 1 requires three kinds of branes/planes.3°

As R — oc. the effect of the flux G vanishes and can be neglected. But for finite
R. the G flux (5.1.3) contributes additional terms in the spinor equations {79.78].
Now it turns out that the spinor conditions imposed by the brane configuration
are in conflict with those imposed by the fluxes. As a result, supersymmetry is
completely broken at finite I.

With this example in mind. let us return to the general discussion about relative
forces between branes. These are of two kinds. First, the different branes couple to
different ambient fluxes (the effect of the flux sourced by a brane should be neglected
in this interaction). The electric potential energy of a brane in the flux background
is

Vaux(p) ~ u/C(G) ~ (') 2%, (5.2.10)

36  Essentially the same analysis of susy breaking and stability applies to the domain
wall obtained by replacing the A’ = 2 vacuum (5.1.3) with the example in Sec.4.6.1. This

latter N’ = 2 vacuum lifts all complex structure moduli.
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where Cg is the appropriate gauge potential and we have set g, ~ O(1). pn is
order one in string units. The energy in the tension. (5.2.1). is Viension ~ 0p* ~

R3p%/(a’)3. Comparing, we see that

Vaux(9)/Viension(p) ~ a,p/Rs- (5.2.11)

This ratio is small as long as the bubble radius is bigger than the Schwarzschild
radius. (5.2.5).

Second. interbrane forces could arise if in the absence of flux. the brane/plane
configuration breaks susy completely. or, as in the example above. the brane/plane
configuration preserves only N = 1 susy. which allows for a superpotential to be
generated. One expects the resulting (super)potential to scale like the common
world volume of the branes required to reduce the susy to N’ < 1. To be comparable
with Viension the potential must scale like R3. so all the required branes must be
parallel in the internal direction.3” A/ < 1 susy then leaves only one possibility: a
pair of NS and D5 branes. Such a pair of 5 branes breaks all susy’s. However. in
this case the pair can be replaced by a 5 brane susy preserving bound state carrying
both NS and D5 brane charge. which results in the same jump in F. H flux. Thus.
by appropriately choosing the components of the domain wall. such forces can be

made small.

5.3 Discussion

The general idea of unifying vacua through vacuum bubbles of some fixed ten-
sion, . was discussed by Banks in [104]. There, the focus was on how gravitational
back-reaction makes it difficult to imagine using such bubbles as a diagnostic in
gravity theories (as opposed to field theories). In our construction, however, the
moduli spaces we are unifying allow us to make o very small in 4D Planck units,
and hence to manufacture bubbles which are large but are not yet black holes. In
such a circumstance, we find the notion of “unification through vacuum bubbles”

meaningful, even in the presence of gravity.

37 In Sec. 5.2.3 three branes/planes are neccessary to break susy to A" = 1, and the
common world volume lies entirely in the R*! spacetime. Thus the resulting potential

energy dV scales like 6V ~ p?/ (a')3 and is small compared to Viension-
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Our construction connects vacua with large enough volume. Starting with a
vacuum where the volume modulus is small. one can imagine first creating a large
region of spacetime where the volume modulus is large. This can be done by a
slowly varying, large amplitude wave of the volume modulus. In this region the
bubble construction could then proceed as before. While we have not explored
such time dependent solutions with moduli waves and spherical bubbles in detail.
it seems quite reasonable that they exist.38

Moving beyond. as a next step in making our construction useful in the overall
scheme of string duality. it would be important to find transitions connecting e.g.
N =2 models on T®/Z5 to N' = 2 compactifications on some more generic Calabi-
Yau space. In such a case. up to standard dualities. one would have successfully
unified the heterotic string on T with the best-understood web of vacua with less
supersymimetry.

It would also be interesting to study connectedness by asking if one can find
time dependent solutions which roll between vacua separated by a finite potential
barrier. The fact that ¢ < M3 in our construction is suggestive. However. the
existence of such solutions cannot be explored in low energy field theory. since the
fields which create the five-branes would also have to be excited. Exploring such

solutions in string field theory seems difficult, at the moment.

5.A Brane SUSY Spinor Conditions

We follow the conventions of Hanany-Witten [82]. Type IIB string theory
preserves 32 supersymmetries corresponding to the 32 degrees of freedom of a 10d
positive chirality Weyl spinor e,

A D5 brane stretched along the 012abc directions breaks half of these super-

symmtries through the spinor conditions

€L = FoFngFan[‘ceR. (5.A.1)

38 A similar construction should also apply to directly connect two vacua in which some
of the moduli are fixed to different values. The fluxes give rise to a potential on moduli
space, Vipot/(My)* ~ (a')®/R'?, which is small for large R. Hence, the resulting bubble

should still be accessible from the outside vacuum.
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An NS5 brane stretched along the 012abc directions breaks a different half of

the supersymmetries through the spinor conditions

€ = FoFIFQFanFCGL, (5.A.2L)
€ER = —rorlrgranFcER. (5.A.2R)

Finally. an O3 plane stretched along the 0123 directions breaks the same su-

persymmetries as a D3 brane. The D3 brane spinor conditions are
€ = F0F1F2F3€R. (5..‘\.3)

For the brane configuration discussed in Sec. 5.2.2. the D5 brane conditions

become
€ = —F0F1F2F7F3FGER. (SA-l)

€, = —FQF1F2F4F5FGER, (5A5)

where the apparent sign change from (5.A.1) is due to the orientation of the three-
cycles. For example. F D dr' A dz® A dy®. so one D5 brane wraps the cycle whose
volume form is w = —dy' A dy®> A dr®. The minus sign ensures that F A w is
proportional to the volume form of the torus. with positive proportionality constant.
(We take the volume form to be dz' A dz? A dr3 A dy' A dy® A dy®). If one keeps
track of the orientations of the other relevant three-cycles as well. then the result is
that the second D5 brane wraps —dz! A dr? A dz3. but the two NS5 branes wrap
dy' Ady? Ady® and dr' Adz® Ady®. with no additional sign change from orientation.

Therefore, the NS5 brane conditions are
€L = +lo T2 slge L (3.A.6)
€L = :tFOFIFZI\Fg,Fge’L{. (5.A.7)
By combining (5.A.4) through (5.A.6). and also using the chirality condition
[ =Tl a3l [slel7 sy = 1. (5.A.8)

it is possible to show that (5.A.3) and (5.A.7) follow automatically. Therefore, there
are three independent conditions and supersymmetry is reduced by a factor of 23 to
four supercharges by the brane configuration. The fluxes will complete break this

residual supersymmetry.
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5.B Flux SUSY Spinor Conditions

As in Appendix B, we use a notation in which the indices 0123 denote spacetime
directions. and the indices 345679 denote the T directions z!z?r3yly?y®. It is
useful to discuss the additional conditions imposed by the fluxes in the notation of

Appendix D of [6]. (Note the indices a.b take values in 4578 and the indices [.m in
69).
The conditions imposed by the flux are summarized in Equation (D.2) of [6].

The equations
Ge=G"e=0 (5.B.1)

are equivalent to
(F(3))ani DT e = (H(3))au[°T°T'e = 0. (5.B.2)
(Here. [? = —T. and I'* =T for i # 0). These conditions yield
T8 g = €L.p- (5.B.3)

The third condition, (D.4), is then automatically met.

The last condition imposed by the flux is (D.6). For the fluxes under consider-

ation here.

F3) = do* Ade® Ady® + dy' Ady? Ady®. (5.B.4)
H3) = dz® Adz® Adr® + dy' Ady® A dz®. (5.B.5)
this gives
((F(s))abg[‘9 - i(H(s))abGFG)E' =0, (5.B.6)
which reduces to
FGFQ({L = €R. (5.B.7)

It is possible to show that the flux condition (5.B.3) is in direct contradiction
with the brane conditions (5.A.4) and (5.A.5). Similarly, (5.B.7) is in direct con-
tradiction with Equations (5.A.4) and (5.A.6). Therefore. the fluxes and branes do

not preserve compatible supersymmetries.
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