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Abstract

We discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models
based on the extended GUT symmetry G xG or G xG x G, where G denotes the GUT
group that has the Standard Model symmetry SU(3)c x SU(2) xU(1)y embedded as
a subgroup. As motivated from string theory, these models are constructed without
introducing any Higgs field of rank two or higher. Thus all the Higgs fields are in the
fundamental representations of the extended GUT symmetry or, when G = SO(10).
in the spinorial representation. These Higgs fields, when acquiring their vacuum
expectation values. would break the extended GUT symmetry down to the Standard
Model symmetry.

In this dissertation. we argue that the features required of unified models. such
as the Higgs doublet-triplet splitting, proton stability. and the hierarchy of fermion
masses and mixing angles, could have natural explanations in the framework of the
extended SUSY GUTs. Furthermore, we argue that the frameworks used previously to
construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the
SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy
fermions. This observation thus suggests that the traditional SUSY GUT SO(10)
theories can be viewed as the low energy effective theories generated by breaking the

extended GUT symmetry down to the SO(10) symmetry.



Preface

This thesis consists of five chapters. In the first three chapters, I describe the fermion
mass and mixing problem in Nature and then briefly review the problem under the
framework of supersymmetric (SUSY) grand unified (GUT) gauge models. The last
two chapters are based on two of my papers that discuss the problem under the SUSY

framework with extended GUT symmetry.
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Chapter 1

Introduction

1.1 Fermion masses and mixing problem in the
Standard Model

The Standard Model (SM) [1] has long been thought as a successful theory in de-
scribing the physical world up to the weak interaction mass scale. Over the past two
decades. a myraid of experiments have been carried out to test the SM and these have
found no inconsistency. However, despite its success, the SM can only be viewed as
an effective theorv at low energy, because some 18 parameters are required to fit the
experiment data [2]. Among these 18 parameters, three are the gauge couplings for
the SM gauge group SU(3)c x SU(2)L x U(1)y, 13 are fermion masses and mixing
angles, and the last two are a Higgs vacuum expectation value (VEV) and mass.
These parameters are not equally well understood. The weak mixing angle sin? Gy-.
the QED fine structure constant c, the charged lepton masses m.. m, and m.. and
the Z° boson mass are precisely measured to better than 0.1 percent accuracy. The
quark mixing angle V,; for the first two families, the charm quark mass m., and the
bottom quark mass m, are less accurately determined to be within 5 percent accuracy.
The remaining parameters are either roughly known at the 10 percent accuracy level
[2, 3. 4] or. like the quark mixing between the first and third families, very poorly

known.
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However, the SM parameters are not random numbers. Instead, they are in some
way hierarchical and show interesting patterns. For example, the fermion mass spec-
trum that ranges from MeV to 100 GeV is listed in the following table [2]:

my = 173.8+5.2 GeV, m.=1.1~ 1.4 GeV, m, =15~ 35 MeV
my = 4.1~44GeV, mys=60~170MeV, myg=3~9 MeV
m, = 1.78 GeV, m, = 105.6 MeV, m, = 0.511 MeV (1.1)

The spectrum is easily classified into following groups

m, ~ 0(10%) GeV > my, me,m, ~ O(1) GeV
> m,,m, ~O(10%) MeV
> my.mg.me ~ O(1) Me\', (1.2)

or classified horizontally by fermion flavor

m; :Me:mMmy, ~ l:g,:¢
Mmp:Mg:Mg ~ 1l:e4:¢

me:my:ime ~ 1:gg:¢gq8,. (1.3)

where €4 ~ O(107!) and &, ~ O(1072) are small numbers.
On the other hand, the quark mixing effects are also hierarchical in the SM. This
is shown in the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix that involves

in the weak interaction of the quark sector as:
r— TU-+ 1 P —— 7
Wedw = ﬁwu Um[Ver Mm)dm: (1.4)

where

Vae Vus Vi
Vekr = VidVig=| Va Vs Vo |- (1.3)

Vie Vis Vo
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In Eq. (1.4), u,, and d,, denote the up and down quark mass eigenstates which come
from the mixing of the corresponding weak eigenstates uy and d; as follows:

Um = Viu-ur, dm = V7a- dr. (16)

Here V7, and V;, denote the transformation matrices for the left handed up and down
quarks respectively. Experimental data [2] shows that there is a hierarchical pattern

for quark mixing effects among different families
[Vasl Vool : Van) ~ A A% 2 A3, (1.7)

where A = 0.22 is the Cabibbo angle (13,) for the quark mixing between the first two
flavors of fermions.

From Egs. (1.1) and (1.7). the highly organized numbers including nine fermion
masses and three CKM angles make up twelve out of the 18 input parameters for
Standard Model. That is. most of the unsolved puzzles in the SM are actually due to
our lack of knowledge on fermion flavors. Therefore. it is a key problem for modern
physics to understand the physics of flavor.

In the Standard Model, fermion masses are generated after spontaneous breaking
of the electroweak gauge symmetry SU(2); x L'(1)y- down to electromagnetic gauge
symmetry U(1).n. Generically, we need at least one complex scalar Higgs field o
which transforms as an SU(2); doublet with hypercharge ¥" = 1/2 for breaking the

electroweak symmetry. ,
, A
V(6) = =518 + Z167 (18)

Eq. (1.8) shows a typical potential function for the Higgs field. By minimizing the
potential V(¢), ¢ develops a non-zero vacuum expectation value (VEV) < ¢ > that
preserves the U(1)., subgroup of SU(2); x U(1). From Eq. (1.8), without changing

the minimum value of V(¢), < ¢ > can be rotated to:

e L (O T
<o>—\/§(v), v=\VT (1.9)
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To give the neutral weak boson Z° a weak scale mass in the SM, v must be about
246 GeV. '

The SM can accommodate two or more Higgs doublet fields with non-zero VEV's
[5]. For instance, the mass hierarchy between up quark masses and down quark masses
can be the result of coupling different Higgs doublet fields to up quarks and down
quarks, respectively, in a two-Higgs models, if one Higgs doublet acquires a large
VEV v, while the other acquiring a smaller VEV v;. Therefore, in typical two-Higgs
models, the fermion mass hierarchy problem is turned into the hierarchy problem of
Higgs VEVSs, and additional parameter such as tan 8 = v, /v is introduced.

For the SM with minimal field content. there are only three gauge bosons. one
Higgs doublet ¢ of SU(3)¢c x SU(2). x U(1)y with quantum numbers (1,2, 1/2). three
families of quarks with quantum numbers Q;(3.2,1/6), @$(3,1,—-2/3). d5(3.1.1/3).
and three families of leptons with quantum numbers L;(1,2,-1/2) and &(1.1.1).
Here the fermions are listed as left handed 2-component fields, i stands for the fla-
vor/family index and f€ denote the charged conjugate states of the right handed fields
f®. Right handed neutrinos are assumed to be absent or have superheavy Majorana
masses. Based on the minimal set of fields. the most general Yukawa couplings at the

renormalizable level are given as:
Ly ukawa = A QiT50 + /\fijQid-th" + A Lie5o". (1.10)

where ¢* denotes the complex conjugate of the Higgs doublet field . No neutrino
masses can be generated at the renormalizable level. They can only be generated ei-
ther by introducing higher dimension operators into the model or by addition of heavy
right handed neutrinos. Either case implies very small neutrino masses m, = v /Mg
which evalutes to 10~¢ GeV when Mp is taken to be the other natural scale in the SM.
the Planck scale Mp;. On the other hand, the SM sets no restrictions on the Yukawa
coupling constants A\¥. That is, all Yukawa coupling constants could be of O(1) and
spoil the mass pattern/hierarchy shown in Eq.s (1.2) and (1.3). Furthermore. the
Yukawa matrices A\, are not necessarily proportional to the unity matrix. Thus in

u,d.e

principle the fermion mixing effects could be maximal, and large CKM angles could
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occur. Generally, fermion mass eigenstates need not be the same as weak eigenstates
in the SM.

The quark and charged lepton mass matrices M, 4., which are obtained from the
Yukawa couplings in Eq. (1.10) after the breaking of electroweak symmetry, can
always be diagonalized by a bi-unitary transformation:

MP = Vp, M, V7,
MP = Vg MV,

MP =V M VE. (1.11)

Here AP denote the diagonalized fermion mass matrices, V3, 4. denote the transfor-
mation matrices for the right handed fermions and V7, 4. denote the transformation
matrices for the left handed fermions. Since there are no right handed neutrinos in the
minimal SM, the charged lepton mass matrix M, can always be diagonalized without
giving any phyvsical lepton mixing effects in weak current interactions.

As seen from Eq. (1.3). Vckas is an unitary matrix due to the unitarity of 17,
and 17,4. Since there are only six quarks in the SM, five of their phases in Vg1 thus
can be rotated away leaving only four independent parameters in the CKM matrix.
i.e., three CK)M angles and one CP violating phase. In a convenient parameterization

it has the form:
C12€C13 $12€13 s13€%

7 _ id [ :
Vekm = | —s12C23 — C12523513€"  €12C03 — S12823513¢°  syzc1z | (1.12)

]

S12523 — C12€23513€"°  —C12523 — S1223513€°  Cp3Cia

where § is the CP-violating phase, s;; and c;; denote sinf;; and cos 6;; respectively.
and 6,; stands for the three mixing angles. Experimental data [2] show that there is a

hierarchy among the entries of CKM matrix. This is easily seen from the Wolfenstein
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[6] parameterization of the CKM matrix:

1-2 A AX(p+in)
Verm = - -3 A)? , (1.13)
AN (1 —p+in) —AN? 1

where A =~ 0.22 and unitary to O(\*), which fits the data with A, p and the CP
violation parameter 7 of order O(1). Thus a hierarchical pattern is also present in
the quark mixing efffects. This is not explained by the SM.

Conclusively, the Standard Model can only be considered as an effective theory at
low energy with minimal particle content. To have a better understanding of its input
parameters, one needs to go beyond the Standard Model. Technically. either more
symmetries such as supersymmetry (SUSY). larger gauge symmetries {7. 8] and/or
discrete symmetries. or non-minimal field content would be needed in these models.
In the next section. we will briefly review some ansatze for the Yukawa matrices
that can explain the fermion mass pattern and hierarchy in Nature. These ansatze
may be used for constructing realistic particle models in both supersyvmmetric and

non-supersymmetric gauge theories.

1.2 Ansatze for Yukawa matrices

From the previous section, we conclude that the flavor sector of physics can only be
understood by theories beyond the Standard Model. Before discussing these theories.
we discuss a class of phenomenologically viable ansatze that assume zero teztures
(i-e., zero entries) in the Yukawa matrices without providing their origins. Typically
these ansatze predict relations among the quark and charged lepton masses as well as
CKM angles. These ansatze, if consistent with experiment data, could provide useful
clues to the discovery of a more fundamental model. In the following, we give a brief

introduction to several well-known fermion mass ansatz.
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1.2.1 Fritzsch ansatz

In order to understand the patterns as well as the hierarchies in the flavor sector of
the SM, some “zero textures” for Yukawa matrices have been suggested to reduce
free parameters in the matrices [9, 10, 11]. For example, Fritzsch [9] suggested the

following forms for Yukawa matrices at the weak scale

0 Cf O
/\}’ukawa — Cj 0 Bf , f =1u, d, € (114)
0 B; Af

In this thesis, we define the coupling matrices with the doublet fields to the right of
the matrices. As suggested by the hierarchical CKM angles, we take the coefficients
A, B, and C to have the ordering A > B > C. The two lighter families of fermions
get their masses through the quark mixing effects. As a result, the fermion masses

have the following hierarchical pattern

A/C?

5 . (1.15)

B2
M3 i mypa :myp = |Agl: lA—fI : |

f
The Fritzsch ansatz has in all 6 complex parameters A, 4. B,q4 and C, 4 in the
quark sector. All but two phases in these 6 complex parameters can be rotated away
by redefining the quark fields. Thus there are only 6 real numbers plus two phases
to describe the 6 quark masses and 4 mixing angles in the CKM matrix. Therefore.
two predictions can be made from the Fritzsch ansatz. By fitting 5 quark masses
and three mixing angles, Gilman and Nir [12] found that the top quark mass should
range from 77 GeV to 96 GeV. Recent CDF [4] experiment certainly rules out the
Fritzsch ansatz as an acceptable model because the discovery of the top quarks at a
mass m; ~ 174 GeV, which is much heavier than the predicted mass. In addition to
the unsuccessful prediction for the top quark mass, the Fritzsch ansatz also predicts

the following relations for the quark mixing angles and the quark masses (Yukawa
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couplings)

Ad 5 | A A 0 [A A
‘/;s - 2 i [lu Vil = s ik [Pc ‘/u = |V __li, 1.
[Vis| w)‘s ey /\cla Vs |\/)‘b € \//\tl, Vol = Vs X (1.16)

where § denotes the CP-violating angle and « is some unknown phase. Again, the
quark mixing angle V,; = 0.04 cannot be consistent with a large top quark mass in
the Fritsch model.

However, there are some modified versions [13] of the Fritzsch ansatz that could
be consistent with experiment data. One modification is to relax the condition of
requiring svmmetric mass matrices. For example, if the Yukawa matrices have the

following textures:

0 C. O 0 Cs4 O
Au=| -C, 0 B, |-M=| -C4 0 2By |- (1.17)
0 —Bu -4u 0 Bd ‘4d

then we can have 17; value to be consistent with a heavy top quark by giving the new

[ A i [ A
Vil = |1/ == — e/ =]. i

In general, the modified Fritzsch models differ from the original model by making

relation

the Yukawa matrix asymmetric. Detail analysis on the modified Fritzsch ansatz can

be found in the literature [13], and will be omitted in this report.

1.2.2 Georgi-Jarlskog ansatz

In addition to Fritzsch ansatz, Georgi and Jarlskog (GJ) [11] proposed an interesting
ansatz for the Yukawa matrices at the GUT scale. In contrast to the Fritzsch ansatz.
the GJ ansatz has different ”zero-textures” for the up and down quark mass matrices.
In addition, the charged lepton mass matrix is assumed to be equal to the down quark

mass matrix at the GUT scale except for the 22 entry in the mass matrix. Originally.
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the fermion mass matrices have the following symmetric forms:

0 C 0 0 Fe? 0 0 F 0
M,=|C 0 B |,Myg=| Fe®* E 0 |,M,=| F -3E 0 [.(1.19)
0 B A 0 0 D 0 0 D

Notice that typical SO(10) GUT models predict symmetric Yukawa matrices by the
Yukawa coupling terms 16;10416;, where 16; denote matter multiplets of the th family
in the spinor representation, and 10y denotes the Higgs field in the fundamental
representation of SO(10). The factor 3 in the charged lepton mass matrix can also
be obtained as the Clebsch-Gordan coefficient in the SO(10) models.

After diagonalizing the down quark and charged lepton mass matrices. mass rela-

tions at the GUT scale are obtained:

1
My =My, My =3mM;. M= gmd (1.20)

The factor 3 appearing in the 22 entry of the charged lepton mass matrix give a mass
hierarchy very close to the correct one since m,/m. =~ 10m,/mg.

In a typical supersymmetric model, the flavor sector usually contains 14 parame-
ters including 9 fermion masses, 4 CKM angles and one Higgs VEV ratio tan 3. Since
8 free parameters including tan 3 are used in the supersymmetric version of the GJ
ansatz, it leads to 6 predictions by fitting the measured fermion masses (excluding
top quark mass) and CKM angles. Anderson et al. [14] gave a detail one-loop renor-
malization group (RG) analysis on the GJ ansatz and found the top quark mass to
lie in the range m; = 179 = 4 GeV. This is in remarkable agreement with recent top
quark experiments by CDF [4]. CKM mixing angles at the GUT scale are predicted
in the GJ model as

/\d ib /\u Ac - /\u ,
=32 - e Wal =55 Vsl = /55 Vsl 121
Vil = 52 = Y50k Wal= /35 al =32V (1.21)

Similarly, predictions for the CKM mixing angles at low energy regime can be made

after accounting the RG running effects.
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Although the GJ ansatz seems promising to be a realistic ansatz for the Yukawa
matrices, however, by diagonalizing the mass matrices My and M., we find the fol-
lowing relation
—)? (1.22)

which predicts m,/mq = 25.15 which is disfavored by experiments {2, 15]. Therefore.
the original Georgi-Jarlskog ansatz for Yukawa matrices may not be correct or. at
least, needs to be modified.

Modification for the Georgi-Jariskog ansatz under the GUT SO(10) framework
has been fully discussed and analyzed in the literatures [16, 17, 18]. Generally, the
modification changes the zero 23 and 32 entries of the down quark and charged
lepton mass matrices into non-zero entries. The changes can either be induced by
RG evolution or simply by non-zero Yukawa coupling terms for the 23 and 32 entries.
These changes, however, would mostly affect the predictions for the m,/m, ratio as
well as the CKM angle 17;, but not the fermion masses. For instance. the modified

Georgi-Jarlskog models have the Yukawa matrices under the GUT SO(10) framework

0 Z'fC 0
Ar=| 2;,C yE® /4B |, f=u.de (1.23)
0 IfB A

Notice that 4, B, E, and C are all dimensionless. In order to fit experiment data.
they must be hierarchical so that A > B > E > C. The phase o is the only
phase angle that survives after redefining the fermion fields. The flavor-dependent
coefficients 2y, 2’y, yy, Z5, and 'y actually come from the Clebsch-Gordan cocfficients
for the corresponding fermion states in the GUT SO(10) theory. It is possible that y,
can still be exactly zero at the GUT scale due to a zero Clebsch-Gordan coefficient.

From the Yukawa matrices in Eq. (1.23), with y,, = 0, the following GUT relations
can be obtained:

r o 1 Zd 1722 12 ,
Vil = (2072055 (1.2

$
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A . lIu - zdl -
Vool = x(I5=D'? with x = —=—= (1.25)
M Vv |TuT’ |
y - - Zu Au
Vsl = 52|V with s; = (I;,— )1/2(|'/\—|)1/2- (1.26)
u Lod

Notice that |V,,| and s, are RG invariants, while |V,;| is not. The favored smaller
value of V3, could be due to a smaller x value, x < 1. As analvzed in [16], the
parameter x should range from 0.55 < x < 0.92. In addition, the mass ratio m;/my
is also lowered due to the non-zero 23 and 32 entries in the down quark and charged

lepton Yukawa matrices.

1.3 Tools for fermion masses and mixing: A brief

introduction

In this section, we briefly review the mechanisms for implementing hierarchical Yukawa
matrices and broadly classifv the mechanisms into 3 classes: Radiative. High order

operators, and Extra dimensions.

1.3.1 Radiative mechanism

It was argued in [19] that the masses of the light fermions, although absent in the
tree-level couplings, could arise from the radiative effects from the tree-level masses of
the heavy families. However, rather than provide quanritative predictions on fermion
mass spectrum and mixing, these constructions gave generically qualitative pictures
for the flavor physics and have the naturalness problem in generating fermion mass
hierarchy. Moreover, it is usually not easy to avoid dangerous flavor changing neutral
currents (FCNC) [20] in these models.

1.3.2 High order operators

One feasible way for generating hierarchies in the fermion mass matrices is to forbid

the Yukawa couplings of lighter fermions at the renormalizable level. Although in
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supersymmetry in particular, nonrenormalization of the superpotential, allows one to
drop the unwanted superpotential terms by hand at some heavy scale and protect
their absence down to the SUSY breaking scale, usually, the absence of the unwanted
couplings is either achieved by imposing some symmetries, global [21. 22, 23, 24] or
gauged (25, 26], or by the representation content of the fields in the model [27].

For example, we could construct a supersymmetric gauge model with a non-
Abelian flavor group Gy = U(2) [22, 28]. The three generations of matter fields
¥; = ¥,, ¥, with a = 1,2, transform as 2+1 under G;. The Higgs fields H are Gy
singlets. In order to completely break the flavor group G, we introduce a G doublet
field ¢ and an antisymmetric tensor A%® with the following VEVs

0
< ¢ >= ( . < A% >= ye®, (1.27)
where €?® = 02 is the antisvmmetric rank two Pauli matrix.

The most general superpotential that gives masses to fermions. and is linear in H

and bilinear in the matter fields ¥;. is:

r_ )\2 .a ’\3 ab ’\4 ca_b 9
W= /\IH\I"I/ -+ A{H‘I’O v, + MH‘I’QA W, + Hz‘H‘I’a@ 0" V. (1...8)

where higher dimension operators are suppressed by the superheavy scale A according
to dimensional analysis. Given that the superheavy scale M is much larger than the
G breaking scales M > V > v, by inserting the VEVs in Eq. (1.27). the following

Yukawa matrices can be obtained:

0 DI o0
M=| -Df 0 Bf |, f=u.de, (1.29)
0 cCcf A

where the Yukawa couplings are hierarchical with Af ~ O(1), Bf ~ Cf ~ O(V//A).
and D/ ~ O(v/M).
In general, nonrenormalizable operators could be induced by the heavy fermion

exchanges (HFE) mechanism in the models. For example, the nonrenormalizable
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interaction %}H U2V, can arise from integrating out a aingle pair of the superheavy

vector-like fields x? and ¥, in a renormalizable superpotential

Mx®xe + HU X + ¢°YXe — —;—[H@“‘II\IIQ. (1.30)
The induced nonrenormalizable interaction is naturally suppressed by the heavy mass
M. Notice that M may be larger than the breaking scale of some symmetries. e.g..
the U(2) breaking scale in Eq- (1.27), but need not to be the Planck scale Mpr. The
HFE mechanism provides a more predictive framework for the fermion mass model
building than the nonrenormalizable operators scheme designed by hand. Generically-
it induces the higher order operators in a rather selective way such that not all the
allowed nonrenormalizable interactions could appear in the tree-level superpotential.
Therefore. it provides an understanding for the absence of the unwanted higher order

operators.

1.3.3 Extra dimensions mechanism

Traditional mechanisms for generating hierarchical fermion mass spectrum in a low-
energy effective theory usually associate with some symmetries in a more fundamental
high-energy theory. The symmetries allow the existences of some coupling terms and
disallow some others. The key points in constructing the traditional models thus are
to discover the symmetries and understand how they are broken [3, 7, 8, 23, 21, 25. 24].

Recently Arkani-Hamed and Schmaltz [29] suggested that fermion masses may
come from the localization of the Standard Model fields in the "thick” wall in extra
spacetime dimensions. The fermions can freely propagate in 3 + 1 dimensions but are
stuck at different locations in the extra dimensions. The Yukawa couplings could be
exponentially small due to the overlap of the Gaussian wave functions of fermions.

For instance, an overlap of two Gaussian functions in a 5-dimensional theory is
2
/dxsél(xs)ég(xs) = _‘/\/—_7_1_“ /dxse—#zrge—uz(rs—r)z — p—H3r?/2 (1.31)

Here we use ¢;(zs) and ¢2(xs) to denote two wavefunctions for fermions and r stands
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for the distance between the centers of the two fields in the extra fifth dimension.
Therefore, the hierarchy problem in Yukawa couplings turns into the “distance prob-
lem” in the extra dimension physics. The proton stability could also be understood
as the relatively large separation between the associated baryon and lepton fields in
the extra dimensions.

Besides the mechanism of Arkani-Hamed and Schmaltz, Cheng [30] implemented
the SU(6) pseudo-Goldstone mechanism in the scenario with extra dimensions and
branes. By localizing two kinds of Higgs fields £(35) and H(6), H(6) on the two
separate branes, the Higgs doublet-triplet splitting problem is solved by the pseudo-
Goldstone boson mechanism. That is, the light Higgs doublet fields are identified with
the two linear combinations of the doublets in £. H and H after the breakdown of
the gauge symmetry. The top quark, which lives in the 20 representation. is assumed
to reside on the same brane in which ¥ lives, so that the O(1) top Yukawa coupling

can be obtained from a tree level superpotential term
A:20%20. (1.32)

All other matter multiplets are assumed to live in the bulk with the heavy vector-like
fields.
In such a scenario. the couplings of a bulk (external space-time dimensions) field

to the brane fields are suppressed by the volume factor of the extra dimensions
e = (M.R)™?, (1.33)

where R denotes the radius of the compactified spacetime which is assumed to be
larger than the GUT scale Mg, M, is the fundamental Planck scale scale in the 4 +n-
dimensional theory and is smaller than the effective four-dimensional Planck scale
Mpy, n is the dimensionality of the extra dimensions, and the small dimensionless
factor ¢ stands for the suppression of the couplings. The coupling of an operator is
thus suppressed by powers of £, and by the heavy masses for the vector-like fields.
The realistic fermion mass spectrum in this scenario was generated by integrat-

ing out vector-like bulk fields, therefore is similar to the Heavy Fermion Exchanges
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mechanism mentioned in the previous section.



Chapter 2

General aspects of SUSY GUTs

2.1 Introduction

In the previous chapter, we have argued that the Standard Model can only be viewed
as a low-energy effective theorv. This is for not because of the SM has some 18 free
input parameters, but also because of the incompleteness of the model. From the
theoretical point of view, the SM is not a complete theory since it does not provide
an explanation of the following observation:

Hierarchical patterns shown in Yukawa matrices.

The SM is a chiral theory.

There are three families of matter multiplets.

There are three gauge forces of Yang-Mills gauge groups.

IR

The charge quantization of matter fields.
6. The existence of the scalar Higgs fields.

In addition, the SM contains the so-called “hierarchy problem” [31]: the the light
scalar fields may receive a quadratically divergent contribution from the one-loop
corrections shown in Fig.(2.1) [32, 33, 7]. That is, in the SM, the mass of the light
Higgs doublet scalar field is

2
m%, = (m%;)o -+ 51\2, (21)

16



CHAPTER 2. GENERAL ASPECTS OF SUSY GUTS 17

Figure 2.1: The mass of the scalar Higgs field receives one-loop corrections from the
SU(2). gauge sector.

where A denotes some large cutoff scale, and a, is the gauge coupling for the ST(2),
gauge group. Thus if the world we live in has at least two fundamental scales. i.e.. the
weak scale and the Planck scale Mp;. then a very delicate balance (to the order of
0(10716)) between the two dimensionalful quantities of the order of the Planck scale
A and (my)o must occur to get a weak scale Higgs mass my. This is an extreme fine
tuning of the model parameters.

Based on the above observation. models bevond the SM which address this prob-
lem are seriously discussed. Tvpically, more svmmetries such as a larger gauge sym-
metrv and supersymmetry are imposed in these models. Supersymmetry (SUSY))
has long been thought as a possible framework for constructing realistic models be-
vond the Standard Model. Based on the Coleman-Mandula theorem [34]. among all
the graded Lie algebras only the supersymmetry algebra generates symmetries of the
S-matrix consistent with relativistic quantum field theory [35].

Although some of the unexplained mysteries, such as the number of matter fam-
ilies, still remain unexplained in SUSY gauge models. SUSY does, eliminate the
quadratic divergence in scalar masses and naturally solve the gauge hierarchy prob-
lem. It acommodates scalar fields naturally as the scalar components of the chiral
superfields. Furthermore, in the minimal supersymmetric standard model (MSS\I).
the observed gauge couplings can be extrapolated by the RGEs to a common unified
value. The successful unification of gauge couplings in the MSSM thus motivates
further the exploration of the grand unified theories under SUSY framework.

In the following sections in this chapter, we briefly describe how to construct a

SUSY GUT model and discuss some potential problems in the model building.
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Superfield Gauge quantum number
Quarks Q (3,2,1/6)
Antiquarks Z (3,1,—2/3)
Antiquarks d (3,1,1/3)
Leptons L (1,2,-1/2)
Antileptons € (1,1,1)

Higgs H, (1,2,1/2)

Higgs Hy (1,2,-1/2)

Table 2.1: The particle content of the MSSM. Gauge superfields are not included in
the Table.

2.2 Unified matter multiplets

The MSSM is the minimal SUSY extension of the non-supersymmetric Standard
Model. It has the field content that includes all the SM particles and their supersym-
metric partners [36], and an extra Higgs superfield required to make the MSSM an
anomaly free~model. The particle content added to the the gauge superfields of the
MSSM is summarized in Table 2.1.

The successful gauge coupling unification in the MSSM strongly implies the ex-
istence of a grand unified gauge group at the unification scale Mg ~ 2 x 10'6 GeVl'.
The SM gauge group is an embedded subgroup of the GUT gauge group. Among all
possible GUT groups, the SU(5) group is the smallest possible simple Lie group that
contains the SM group as its subgroup.

Upon embedding the SM group into the SU(5) group. it is easy to check that the
fields Q, @ and & can fit into the 10 of SU(5), and the fields L and d fit into the 5 of
SU(5) as follows [37):

(O —ﬁg 112 Uy dl\

c.l. 0 —; Ug d2
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However, the Higgs doublets H, and H, cannot be fit into any representation of the
SU(5) without adding more superfields into the particle content. If we identify H,
and Hy as the SU(2); parts of the 5 and 5 of the SU(5) respectively, then a pair of
the Higgs triplet superfields H3 and Hs must be introduced into the particle content:

H=(H3), E:(g""). (2.3)
H, H,

The introduction of the Higgs triplet fields in the SUSY models can lead to seri-
ous problems such as the doublet-triplet splitting problem and the proton stability
problem. We will come to these in later sections.

The other well-known GUT group is SO(10). SO(10) is the smallest group in
which all the matter fields in one generation can fit into one irreducible representation.
the spinorial representation 16 in SO(10). This representation also includes a right-
handed neutrino (1 of SU(3)). A 16 includes the SU(5) multiplets as:

(1+ 5 +10)sp(sy — 16 (2.4)

It is thus tempting to unifv the matter fields into spinorial representations in the
GUT SO(10) models. The Higgs superfields, can be integrated into the fundamental
representation of the SO(10) group as:

(H+ E)SU(S) — 10g4. (2.3)

It seems that the matter fields as well as the Higgs fields can be unified under the
GUT framework as described in the above discussion. Different unifications, however.
are still possible. For instance, some of the left handed down quarks may live in the 15
representation with other superheavy particles while the left handed up quarks still
living in the 10 representation under the SUSY GUT SU(5) framework [39]. The light
Higgs doublets H, and Hy could live within different fields in the 10 representation
under the SUSY GUTs SO(10). Furthermore, the light Higgs doublets need not even
to be identified as parts of the fundamental representations in the SUSY GUT models.
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Figure 2.2: The one-loop renormalization of the fermion field.

For example, we can identify the light Higgs doublets as the pseudo-Goldstone bosons
in the SUSY SU(6) GUT model [27]. We will briefly describ the pseudo-Goldstone

mechanism in a later section of this chapter.

2.3 One-loop RGEs for Gauge and Yukawa cou-
plings

. In this section, we brieflv describe the renormalization group equations (RGE) for
the gauge and Yukawa couplings [40. 7. 41]. Typically in a quantum field theory the
couplings, dimensionless or not, at high energy scales are not necessary the same as
in the low energy regime. They receive loop corrections and evolve according to the
RGEs. For instance, the one-loop RGEs for the gauge couplings are:
dlng; bi
at 1627

(2.6)

where g; denote the gauge couplings and ¢ = In(u/M) is the logarithmic function of
the energy scale u with cutoff scale M. The  coefficients b; receive contributions from
both the gauge sector and the other parts of the particle content in the model. In the
SUSY gauge theory with gauge group G. and chiral superfields in the representations
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T, the one-loop B coefficients b; are given explicitly as:

b; = —3C2(Ge) + >_ C(rs), G, : adjoint representation. (2.7)
k

where C,(r)1 = (T°T?), is the quadratic Casimir operator and C(r)é* = tr.[T°T°].
It is thus easy to see that the 3 coefficients b; in the MSSM are b; = (33/5, 1, —3) for
gauge groups U(1)y, SU(2), and SU(3)c respectively.

Again. typical Yukawa coupling terms in the superpotential in the MSSM are:

Wy ukawa = /\EQ,’&,‘H =+ /\ngC-{]ﬁ -+ /\ijLie‘jI?. (2.8)

The SUSY nonrenormalization theorem guarantees that no new superpotential terms
will be induced in the superpotential as long as SUSY is not broken. Therefore.
the Yukawa couplings receive one-loop corrections only from the contribution of the
renormalization of superfields. The one-loop RGEs for the Yukawa couplings are

given in the following:

2d1n’\zb ij |2 2 ai|2 ib|2 ai 2
1677 —— = 3 3P+ X {1 + 211 + A4
1,7 =1
13 2 0
- 33 +392 —‘93) (2.9)
dln)\ab 712 ij at|2 2 13
1672 — = Z{3|/\ |2 + | AL |}+Z{I/\ 12 + 2|02 12 + |2%)%}
16
- (15 1‘*'392 393) (2.10)
2d1n Agb 12 4] ai|2 th 2 2
16— = Z{3IA I + | A& I}+Z{2IA 2+ 1221} - (-g1+392)(2.11)

=1

The evolution of the Yukawa couplings depend on both the Yukawa and gauge cou-
plings. Suppose the Yukawa coupling A receives its dominant contribution from the

gauge sector and negligible contribution from the Yukawa sector, i.e.,

. 2dlnA

Z kig?, (2.12)
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where k; denote the associated coefficients in Eq.s (2.9 ~ 2.11), then we derive the
following relation that relates the parameter A at high scale (M) and the parameter

A at the low-energy scale (u)

k.

MM) oy [a0]F _ [a,-(M)] o
AMu) 1:‘[ [ gi(u) ] - ]-:[ ) . (2.13)

At a high level of accuracy, RGEs at the two-loop level and the threshold correc-

tions may also be important in the GUT model building [42, 43]. The discussion of
the topics is beyond the scope of this thesis, and is thus omitted.

2.4 Higgs doublet-triplet splitting

The concept of SUSY grand unification provides a theoretical framework that unifies
not only the gauge forces, but also the matter content and gives a derivation of the
bizzare charge quantization for the matter fermions. It also provides an origin for the
existence of scalar fields in the quantum field theories and. most importantly. solves
the so-called “gauge hierarchy” problem for the scalar masses. On the other hand.
SUSY grand unification creates new problems that must be solved. One of the new
problems is the mechanism for Higgs doublet-triplet splitting {44, 45. 46. 47).

Suppose the SUSY GUT SU(5) (the smallest GUT group) model exists at some
GUT scale Mg. If we identify the light Higgs doublets, which give masses to matter
fermions after electroweak breaking, to reside in the SU(2) blocks of the fundamental
Higgs H and H of SU(5), then we must explain why the Higgs triplets are much
heavier than the doublets. Since these Higgs triplets can mediate proton decay, their
masses must be at least 10!® GeV. We will come to this point again in the next
section.

Several mechanisms have been invented for SUSY GUTs to split the heavy Higgs
triplets from the light doublets. They are the “sliding-singlet mechanism” [46, 48], the
“Dimopoulos-Wilczek mechanism” [47], the “missing partner mechanism” [49] and the
“pseudo-Goldstone mechanism” [50, 27). Among these mechanisms, only the “sliding-

singlet mechanism” and the “missing partner mechanism” work for SUSY GUT SU(5)
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models. In the remainder of this section, we will review these mechanisms.

The missing partner mechanism requires the existence of higher rank tensor Higgs
fields in the representations such as ¥(50), ¥(50) and ®(75) [49]. For example.
the 75 — plet ® breaks the SU(5) symmetry down to SU(3)¢c x SU(2)L x U(1)y by
acquiring its VEV of the following forms:

<@>P = (8- GV
<@ = (88 - BT

ai =1 ariyy -
<¢>b] = —5—(6,,61)‘4;, (2.14)

where a.b.c. and d are the SU(2); indices. and 7, j. k. and p denote the SU(3)c
indices. The triplets in A and H thus get a superheavy mass via mixing to the

triplets in ¥ and ¥ by the following superpotential:
MU + HOU + HOT. (2.15)

On the other hand. since the 50-plets do not contain doublet states. no heavy masses
for the doublet states in H and H would be obtained from Eq. (2.13).

Although the missing partner mechanism does provide an elegant solution to the
doublet-triplet splitting problem in the SUSY SU(5) model. the requirement of the
high rank tensors makes it difficult to produce the SU(5) model from a simple string
construction [63].

The other doublet-triplet mechanism for the SUSY GUT SU(5) framework is
the "sliding-singlet mechanism”. In addition to a pair of the fundamental Higgs
superfields H and H, only one extra adjoint superfield £ is needed to implement the
mechanism. The adjoint ¥ breaks the SU(5) down to SU(3)c x SU(2) xU(1)y- after
acquiring a GUT scale VEV

< T >= %, -diag(2/3,2/3,2/3, -1, ~1). (2.16)

The superpotential that is responsible for the doublet-triplet splitting is given in the
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following:
W(H,H)=SHH + HTH. (2.17)

Then the F-term condition Fig, = 0 leads to
(8> -%)- < H, >=0. (2.18)

Since < H, > gets a weak scale VEV v,, it thus leads to < S >= %, by Eq. (2.18).
From Eq. (2.17), the triplet Higgs bosons obtain large masses 5/3%, and we have a
pair of the light Higgs doublet fields.

The sliding mechanism for the SUSY GUT SU(5) models is not flawless. If the
potential of S is flat excpet for the term associated with Eq. (2.18), this mechanism
breaks down when the SUSY breaking effects turn on [51, 46, 52]. We will grapple
with this problem when discussing the SU(5) x SU(5) x SU(5) model in the chapter
4.

Regarding the SUSY GUT SO(10) models, there is one additional mechanism.
the Dimopoulos-Wilczek (DW) mechanism [47], that implements the doublet-triplet
splitting in the SO(10) models. Basically, the DW mechanism needs one adjoint
45 whose VEV is in the B — L direction and two Higgs fields 10y and 10y in the

fundamental representation. Consider the following superpotential W (10g,10g. Zy45)
W (104,10y,2Z45) = A105X45104 + My 105 10£:. (2.19)

with
<I>=v-( " )®dig(l,1,1,0,0) (2.20)

All the Higgs triplet superfields Ty, T} and T3, T» residing in 10x and 104 receive
heavy masses through the mixing of triplet states. To be explicit, the mass matrix

for the Higgs triplets is

0 Av

[N
SV
—t
~—

(T17T2) ( ) (T17T2)' ( .

— AU MHI
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On the other hand, the B — L form for the VEV of 45 forces the pair of doublet
states in 10y to be light.

Notice that only one adjoint X5 acquiring a VEV along the B — L direction is not
enough to completely breaking the SO(10) down to the Standard Model. One needs
at least one pair of spinorial (16) Higgs fields whose VEVs preserve the SU(5)-singlet
direction [53]. For instance, if a pair of spinorial Higgs fields ¥ and ¥ are introduced
to the model with the associated superpotential

Wi = X (TT)2/M? + f(X). (2.22)

where X is the singlet superfield and f(X) contains a linear term in X, then ¥ and
¥ could get VEVs along the SU(5)-preserving direction.

In general, complicated superpotential terms must be introduced to implement
the necessary GUT group breaking and prevent light pseudo-Goldstone fields from
being generated by the breaking. The pseudo-Goldstone fields, if they exist, would
contribute to the RGEs and affect the unification for gauge couplings. Detailed infor-
mation of how to remove pseudo-Goldstone modes in the GUT models can be found
in the literature [53, 54]. We will provide a very brief discussion on the Goldstone-
mode problem when describing the "One Adjoint Higgs Model” under the SUSY GUT
SO(10) framework in the next chapter.

The last doublet-triplet splitting mechanism we want to discuss is the GIFT (Gold-
stones Instead of Fine Tuning) mechanism [50, 27]. Barbieri et al. [27] suggested in
an elegant paper that the light Higgs doublet fields may be identified as pseudo-
Goldstone bosons after spontaneously breaking the global SU(6) x SU(6) symmetry
in their SUSY GUT SU(6) model. In the model, the Higgs sector consists of one
adjoint Higgs field (X) in the 35 representation, and a pair of Higgs fields H and A
in the fundamental representations. The superpotential of the Higgs sector respects
the global SU(6) x SU(6) symmetry and has the following form:

Wiriggs = W(Z) + W(H, H). (2.23)

By minimizing the superpotential in Eq. (2.23), the superfields £, H and H acquire
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their VEVs as below:

<T> = Vi-diag(l,1,1,1,~2,—2) (2.24)
<H> = <H>=Vy-(1,0,0,0,0,0). (2.25)

The two VEVs then break the SU(6) gauge group down to SU(4) x SU(2) x U(1)
and SU(5) respectively. The relative largeness of the two breaking scales Vx and 1
will determine the consequent SU(6) breaking pattern as well as the prediction of the
sin? @y~ value. For a successful sin® fy- prediction, it must be true that V3 > T,

By counting the numbers of Goldstone modes and the broken gauge generators. it
is found that two linear combinations of the doublets in £, H, and H do not combine
with gauge bosons and become massive but rather remain light after the breaking.
The light Higgs doublet fields are:

Jig+o12 TR+ o2

where hs. hy and hy. hy denote the doublet fields residing in ¥ and H, H respectively.

h1=

The "pseudo-Goldstone boson™ mechanism solves the doublet-triplet problems in
an elegant way without any fine tuning. However. in order to construct experimentally
acceptable fermion mass matrices, the totally antisymmetric rank 3 tensor field. i.e..
the 20 representation (rank 3) must be introduced into the model [27]. Again. there
is nothing wrong with introducing high rank tensors to the model, but it makes the

model more difficult to arise from a simple string theory construction.

2.5 Proton stability

The GUT construction, which puts both quarks and leptons in the same multiplets
[37], leads to the prediction of proton decay. GUT models, either supersymmetric
or non-supersymmetric, all predict or suffer from, the decay of the proton in some
way. Since the experimental data [2] show no sign of proton decay for lifetimes up to

1032 vears, any successful GUT model must not predict proton decay faster than this



CHAPTER 2. GENERAL ASPECTS OF SUSY GUTS

(SV]
~1

experimental bound. In the following discussion we simply assume that the matter
parity (f — —f), where f denote the matter multiplets, is a symmetry in the GUT
models, otherwise the nucleons would decay via dimension 4 operators, giving a very
short lifetime.

For a typical SUSY GUT model, there are three classes of mechanisms that lead
to proton decay: proton decay through the exchanges of heavy gauge bosons, proton
decay through the exchanges of the heavy Higgs triplet bosons, and proton decay
through the exchanges of Higgsino triplet states. Tvpically, the third mechanism is
dominant. .

Qualitatively, it is easy to understand why the Higgsino-exchanging mechanism
would dominate the proton decay processes. The proton decay processes that come
from the exchanges of bosons are strongly suppressed by the GUT mass square /3.
On the other hand. the Higgsino-exchanging processes are less suppressed by the mass
factor Alg.

Fig.(2.3a) shows a typical supergraph generating the effective dimension five op-
erators that mediate proton decay. Notice that the effective dimension five operators
must involve quark superfields of different generations. This is the consequence of
gauge invariance and the Bose symmetry among the quark superfields. The pro-
ton then decayvs dominantly through the effect of this operator combined with an

additional gaugino exchange. as shown in Fig.(2.3), with decay amplitude [38] M:

~ A 7'Tl§g2

~ — 27
Mr 1672m2’ (2.27)

where A comes from the product of the Yukawa couplings of up and down quarks.
M7y is the mass of the Higgsino triplets in Fig. 2.3(a), m; is the gaugino mass. g
denotes the color coupling constant, and m; stands for the squark mass. The current
experimental limit requires the coupling strength A/Mr to be smaller than 1072* Ge\'.
For instance if A = hyhq ~ 1078, then the Higgsino triplets must have masses larger
than the typical GUT scale 10'® GeV. This is the origin of the constraint introduced

in section 2.4.
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Figure 2.3: The dangerous dimension five operators that mediate Proton decay in the
SUSY gauge theory. Proton then decays by exchanging the superpartners of gauge
bosons as shown in the figure (b).



Chapter 3

Fermion masses and mixing in
SUSY GUT models

Until now, we have not discussed the fermion mass and mixing problem under the
SUSY grand unification framework. Generically, the concept of the matter unification
at the GUT scale implies some GUT scale relations for the Yukawa couplings and the
fermion masses [37]. At first glance, the idea of supersvmmetry seems to have little to
do with the fermion masses problem. However, as mentioned in the previous chapter.
the introduction of supersymmetry to the GUT models alters the RG evolution of
the Yukawa coupling constants from the GUT scale to the low-energy SUSY breaking
scale. That is, starting with the same set of GUT fermion mass relations at the GUT
scale, the SUSY GUT model and its non-SUSY version may draw drastically different
conclusions on the size of the fermion masses in the low energy regime.

In the following sections, we briefly describe how the fermion masses and mixing
problem is handled within the SUSY GUT models.

29
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3.1 SUSY SU(5) models

In the typical GUT SU(5) models, the right handed down quarks and the left handed
leptons of the same family are integrated into one multiplet as shown in Eq. (2.2)%.
In this type of unification, there is only one possible superpotential term leading a

dimension-4 Yukawa coupling:
AW = A\ 1095;H; (3.1)
with 7,7 = 1, ..., 5. This predicts the equality of Yukawa matrices at the GUT scale:
Ad = Ae. (3.2)

RG evolution to the weak scale changes the overall scale of quark vs. lepton masses

but preserves the prediction
mq Me

ms = my

: (3.3)

which is incorrect by about a factor of 10.

How can we escape this prediction? The potential relation Eq. (3.2) can be
avoided by replacing Eq. (3.1) with a superpotential that includes non-renormalizable
operators for the first two families of down quarks and leptons. In other words. the
coupling strengths Agj may not be fundamental and could be come from the VEV's of
some superfields.

In the following, we describe two SUSY GUT SU(5) models which lead to viable
fermion mass matrices. These examples, illustrate that we need to introduce higher
rank tensor Higgs fields or impose some flavor symmetry that, when broken, would

generate the desired patterns as well as the hierarchy in the fermion mass matrices.

1Some unconventional GUT SU(5) models have the left handed up and down quarks of the same
family belong to different multiplets [39].
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3.1.1 SUSY GUT SU(5) with an extra 45 Higgs field

The minimal GUT SU(5) model has the matter fermions transforming as (5 + 10);
and the Higgs superfields transforming as 5 + 5 under the SU(5). In addition, in
order to break the SU(5) group down to the SM group, it is common to introduce
the adjoint superfield £ that has the VEV as described in Eq. (2.16).

On the other hand, it is not easy to construct a realistic fermion mass matrices
from the minimal particle content of the SU(5) model without giving the problematic
GUT mass relation m,/my = m,/m.. One way to solve the puzzle is to invoke more
Higgs superfields in representations of higher dimensionality such as the 10. 45. and
~ 50 [37]. However since the 10 and 50 have no neutral color singlet component. they
cannot be applied directly to the fermion sector and give masses to fermions.

The other possibility is to introduce a 45 Higgs field S. From Young tableaux. it
is easy to form the 45 from the direct product of the 10 and 5

5 x 10 =5+ 45. (3.4)
If S develops a V'EV along the SU(3) x U(1)em direction as
< 88 >=1"- (82 — 46552, a,b=1---4. (3.3)

then the useful GUT mass relation m, = 3m, can be obtained from the following
Yukawa coupling term
I/V}"u.lcm.ua ) /\32510252- (36)

Actually, fermion mass matrices that are similar to the Georgi-Jarlskog mass ma-

trices in Eq. (1.19) may arise from the following renormalizable superpotential

Wyvkewa = A103103H + B10,103H + C10,10,H + D10353FI
+ ES10,5; + F10,5,H + F'10,5,H, (3.7)

where 4, B,C, D, E,F and F' are the coupling strengths. The symmetry decreases
from SO(10) to SU(5) allows F # F' but preserves the other relations in Eq. (1.19).
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In general, the form of the superpotential in Eq. (3.7) could be enforced by imposing
some unspecified symmetries at the GUT scale. The famous factor 3 in the Georgi-
Jarlskog mass ansatz also gets a simple explanation from the VEV of the 45 Higgs
field: it merely reflects the fact that there are three down quarks for every charged
lepton in the model.

Although the useful GUT relation m, = 3m, is obtained in the SU(5) model
with the 45 Higgs field, the fermion mass hierarchy is still left unexplained. One way
to generate the fermion mass hierarchy under the SU(5) framework is to interpret
the smallness of the coupling strengths B,C, E, F and F' as coming from the non-
renormalizable operators that exist above the GUT scale.

Suppose we have the 75 — plet Higgs field ® instead of the 24 — plet Higgs field
¥ in the SUSY GUT SU(5). The following superpotential terms [49. 8] Wy-yxaua
for the fermion masses can arise at the GUT scale with its form enforced by some

inter-family symmetry.

1 -
H’v}'ukawa = 103103H —+ lez(@H)lO‘g + %lol(QH)logH
1 -

+ 10353H + 7 10,(®H)5, + ;‘?(101521‘? + 1025, H). (3.8)
Here the singlet X is introduced to generate the hierarchy between the masses of
the first and the second family fermions. Since the tensor products (®H) and (®H)
will induce the fermion masses only via the 45 and 45 channels, the Clebsch-Gordan
factor —3 appears in the 22 entrv of the charged lepton mass matrix. From Egq.
(3.8), it is easy to check that the Georgi-Jarlskog type of fermion mass matrices are
generated with the mass hierarchy parameterized by the scale ratios < X > /A and
<®>/M.

In the following section, we describe a class of SUSY grand unified SU(5) models
[25, 26, 21, 22, 23, 24, 55| with flavor symmetries. The fermion mass hierarchy is

generated simply by the hierarchical breaking of the flavor symmetry in the models.
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3.1.2 SUSY GUT SU(5) with flavor symmetry: an SU(3)x

case

It has long been suggested that the Standard Model can be viewed to have a ST'(3)
flavor symmetry when all the fermion masses are set to be zero. This idea provides a
qualitative picture that explains the smallness of the fermion masses in the Standard
model, and also motivates the suggestion for the existence of a flavor symmetry in
the high energy regime. In general, the assumed flavor symmetry would prevent the
presence of some unwanted couplings in the model. Some of the renormalizable tree
level Yukawa couplings that give masses to fermions may also be forbidden by the
flavor symmetry. Therefore, the fermion mass hierarchy may be due to the suppres-
sion of the mass operators for the first and second family of fermions. The Yukawa
couplings that give small masses to light fermions thus arise from the higher order
operators (non-renormalizable operators) allowed by the flavor symmetry.

There are plenty of SUSY GUTs with flavor symmetries in their models [25. 26.
21. 22. 23. 24, 55]. For instance. the U(2) flavor symmetry model presented in the
chapter one generates the fermion mass hierarchy through the two-step breakdown of
the U'(2) flavor group. In this section, we describe a SUSY GUT SU(5) model with
the non-Abelian horizontal SU(3)y svmmetry constructed by Berezhiani [56. 57].

Consider the SUSY GUT SU(5) model with the flavor symmetry SU(3)y. The
chiral SU(3)y symmetry unifies all the fermions in the horizontal triplets F(10.3)
and f(5,3), where F; and f; denote the 10 and the 5 representations for the ith
family of fermions respectively. Since the terms such as FfH and FFH transform
non-trivially under the horizontal SU(3)y, all renormalizable Yukawa couplings are
forbidden and we need some higher order operators for the Yukawa matrices.

It was suggested in Ref. [56] that a set of the horizontal Higgs fields (gauge
singlets), the sextets x{7} and the triplet x[Ul ~ 7%y, with SU(3)y indices ¢ and j.

are sufficient to form the effective Yukawa couplings via higher order operators:

(ax 7Y + 0x1)
M

Anxd) + At

)
10;10;H,
M ’

10,5,H (3.9)
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Eq. (3.9) suggests that the fermion mass hierarchy may arise from the hierarchical
breakdown of the flavor group SU(3)y. If we assume only one of the sextet x and
two of the triplets 7 and £ would get non-vanishing VEVs of the form:

<x7> = A8
<mn; > = Bé}, < & >= BS3. (3.10)

From Eqs (3.9) and (3.10), it is clear that the model would have the Fritzsch-tvpe of

fermion mass matrices after the flavor group breaking
UB)y 2 U@Q) L UQ1) = I, with A> B. (3.11)

In this section, we have given an example of how to obtain the realistic fermion
mass pattern from breaking the non-Abelian horizontal symmetry SU(3)y. Notice
that other flavor symmetries, either Abelian [25, 26] or non-Abelian [22, 23, 24].
can also be used in building realistic fermion mass matrices under the SUSY GUT
framework. Instead of describing those models in the paper. we refer the interested
readers to the literatures [25, 26, 22. 23. 24].

3.2 SUSY GUT SO(10) models

In this chapter, we will describe how the fermion mass and mixing problem is treated
under the SUSY GUT SO(10) framework.

3.2.1 Top-bottom-tau unification

As mentioned in chapter 2, SO(10) is the smallest group in which all the fermions
(including right handed neutrinos) in the same family can be integrated into one
representation, the 16 of the SO(10) group. Based on this observation, if we also
assume that only the third family of fermions could get order O(1) masses through
the renormalizable operator 16316310y, then the following unified Yukawa couplings
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Figure 3.1: The leading one-loop MSSM corrections to the bottom quark mass.
are predicted at the GUT scale:
A6 = A = XC. (3.12)

This relation. the unification of the third family Yukawa coupling constants. sets
stringent constraints on the ratio of the VVEV's of the two lightest Higgs doublets. the
parameter tan 3. Several studies [58. 16. 14] of the tan 3 value in the SUSY S0O(10)
model found that the acceptable tan 3 should range from 50 ~ 60. This large tan 3
value is needed to explain the observed small ratio of the bottom quark mass to the

top quark mass m;/m, ~ 1/40, through the mass relations:

me = —=AUs, my = —=Apt
t \/5 tU2 b \/5 sl
tang = 2, (3.13)
vy

with A; ~ Ay ~ 1 the top and bottom quark Yukawa couplings at the low scale.

On the other hand, also due to the large tan 3 value, the bottom quark mass m,
could receive large corrections when we include SUSY breaking effects. Let u denote
the SUSY coupling of the two Higgs doublets, A; denote the trilinear soft SUSY
breaking coupling of the scalar top quark (stop) to the up-type Higgs, m; be the
gaugino mass, and m, stand for the universal sfermion mass. From Fig.(3.1). Banks

[59] derived the following formulae:
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L0
V2

This is a finite one-loop threshold correction to m;. It is easily seen that the radiative

tanf Bgamat | ety (3.14)

1+
vl + 155 (3055, A om2

my =

correction in Eq. (3.14) may be comparable to the tree level mass. When the radiative
correction is large, by fitting Eq. (3.14) to the observed bottom quark mass m;, we
extract the A, value to be smaller than expected and predict a smaller top quark
mass. On the other hand, the sfermion mass mq may be heavy enough to suppress the
radiative corrections so that a heavier top quark is consistent with the top-bottom-tau

unification. .
Notice that the threshold corrections may also be induced at the GUT scale by
the presence of some superheavy particles at the scale. For example. the top Yukawa

coupling A;c at M receives one-loop threshold corrections as [58]
1 M,

)‘2
Mg = Agll + — ST(S€Ke + 2 L°+Z *K’ ) (3
[ 18

—~— 4... 4 )]’ (3‘15)
7 a i

where the coefficients K come from the one-loop corrections mediated by the matter
superfields in the associated superfields (i.e., 10y and 163) renormalizations, L$ come
from the one-loop corrections mediated by gauge superfields, and K’y come from the
non-MSSM couplings A4 associated with some superheavy superfields.

The gauge coupling a;¢ at the GUT scale also receives threshold corrections from
the SUSY scale physics in the MSSM. In general, the threshold corrections are de-
termined by the spectrum of the SM superpartners in the MSSM. For example, the
gauge coupling ag; is corrected by the SUSY threshold effects as:

ia

))] (3.16)

where the coefficients C;, come from the contributions by the scalar quarks a = 4.

the scalar leptons a = Z, the gauginos a = §, and the Higgsinos a = h.

In conclusion, a successful prediction of the top quark mass can be obtained
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under the SUSY GUT SO(10) framework [58, 14, 16]. The necessary mass splitting
between the observed bottom quark and the tau lepton masses is also predicted under
the SUSY SO(10) framework after taking into account the RG effects. On the other
hand, the mass hierarchy among different fermion families also needs to be explained
in the SUSY GUTs SO(10), and we will come to this in the following section.

3.2.2 Mass hierarchy among different fermion families

As a first step, one might expect the Yukawa matrices in SUSY SO(10) to come from

the following renormalizable operators:
A716,16;104. (3.17)

These operators, if all present in superpotential. would give three totally symmetric
and identical Yukawa matrices A, = Ay = A.. However, as discussed in the chapter 1.
we do need to see some asymmetries between the three Yukawa matrices to predict
acceptable fermion masses. Furthermore, the fermion mass hierarchy is not explained
by Eq. (3.17). Therefore, a better mechanism for generating the fermion mass pattern
and hierarchy is required to solve the puzzles naturally.

Several mechanisms have been suggested [16, 53, 18, 60] to implement realistic
fermion mass matrices under the SUSY SO(10) framework. Some of them [53. 60]
use only one adjoint 45 in their model building to fit in the requirement by the
simple string construction [61, 62]. However, in addition to the adjoint and the
fundamental Higgs fields, these usually require a complex Higgs sector including pairs
of the 16 + 16, additional Higgs fields in the 10 representation and several singlet
Higgs superfields, to generate viable fermion mass pattern.

Anderson et.al. [16] suggested that the Georgi-Jarlskog ansatz may be realized in
the SUSY SO(10) framework by the Heavy Fermion Exchanges (HFE) mechanism.
In the remainder of the section, we will describe how the GJ ansatz was constructed
as an outcome of their model.

Their model [16] requires the Higgs superfields to be in the 45 representation of
S0O(10). Typically several superheavy vector-like Higgs fields in the 16 + 16 are also
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introduced to couple to the VEV-acquiring adjoint Higgs fields. The adjoint Higgs
fields, may develop VEVs along the following directions:

<Tx> = wvo-( ,)®dig(2,2,2,2,2) = vy 45x
<Ty> = (] ) ®ae(2/3,2/3,2/3,-1,-1) = vs - 45¢
<Tgr> = avs-( _01 ; ) ® diag(2/3, 2/3,2/3,0,0) = avs - 45_L

<S> = bus-(° | )®aiag(0,0,0.1/2,1/2) = bvs - 451y, (3.18)
Notice that the VEV < £, > breaks SO(10) down to its subgroup
50(10) 2% sy (5) x U(1)x- (3.19)

To break the SU(5) x U(1)x down to the SM grdup, we need the VEV of a 16 + 16
in the 7 direction to break the U(1)x group and any one of the < £y >, < Xp_; >
and < Sr,, > to break the SU(5) down to the SM group. In this section, we assume
that v;p > vs. We will use all of the nonzero VEVs in Eq. (3.18) with a.b ~ O(1).
To obtain nonzero entries in the Gerogi-Jarlskog pattern. we need at least four

operators Oz3. Oa3, Oz and Oh2 to generate non-zero entries in the matrices

0 ZI,'C 0
M= | zC yE® =B |. (3.20)
0 .’II,'B A

where i = u,d,e. Notice that the 22 entry of the matrix A, must have y, = 0
as required by the GJ ansatz. Detailed analysis [14] of RG evolution to the weak
scale suggested that we must have the following relations for building viable Yukawa

matrices consistent with experimental data.

!
2wy~ 1073 (3.21)

Zg2'a

5,

[a:uac'u|(§)2 (3.22)



CHAPTER 3. FERMION MASSES AND MIXING IN SUSY GUT MODELS 39

Ixu - I’ul
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Here we briefly explain how the relations (3.21 ~ 3.23) are obtained. First, we

] A 12
Vae = X |X_ , X (3.23)
tlg

observe that the mass ratio m,/my would be naively estimated from Eq. (3.20) as

2
my EAtang T 200. (3.24)
My B2 myme

Since the true valus is about 1/2, the suppression (3.21) must be supplied. Egs
(3.22) and (3.23) are easily obtained after diagonalizing the up quark and the down
quark mass matrices. To fit the experimental data. the GUT scale values (Ac/A¢)g =
0.003 ~ 0.0012 and 1, = 0.040 ~ 0.024 are needed. The observed values for m,. m,
and 1, thus suggest the parameter x ranges from 0.55 < x < 0.92.

As suggested by Georgi and Jarlskog [11]. the 22 entries of the Yukawa matrices
should have the following relation |y.| : |ya|l : |yel = 0 : 1 : 3. Along this general
analysis of experimental constraints presented in Eq.s(3.21 ~ 3.23), Anderson et al.
constructed nine explicit models of the Yukawa matrices. Each of the nine models
has different set of the Yukawa coupling operators O;; to generate consistent GJ mass
matrices for fermions. To illustrate the principles, we choose one model and describe
how the model is constructed by exchanging heavy fermions in the model.

A set of the operators O;, that give the GJ fermion matrices at the GUT scale
M are listed below:

033 = 16316310;{ (3.25)
2

Ox3 = 16210;;(2;;[‘)163 (3.26)
X

Oz = 16210,:,(5"'-%92)162 (3.27)
2X

Tx Sx
On = 16(37)°10#(57)"162, (3.28)

where A and M denote some superheavy scales which need not be the GUT scale

M¢. According to Table (3.1), different fermion states in the 16 representation may
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X B—-L Tar Y
u 1 1 0 1/3
7] 1 -1 -1/2 -4/3
d 1 1 0 1/3
d -3 -1 -1/2 2/3
€ -3 -3 0 -1
é 1 3 1/2 2
v -3 -3 0 -1
17 5 3 -1/2 0

Table 3.1: Quantum numbers of the adjoint 45 VEV's on fermion states.

acquire different quantum numbers when coupling to the 45 Higgs fields. It is thus
easy to check that the operators O;; in Eqs (3.25~ 3.28) give the Clebsch-Gordan
factors to the Yukawa matrices. For example. the operator £3./M? give Clebsch-
Gordan coefficients 1% and (—3)3 to the fermion states i, and d, respectively. This
thus leads to the relation z, = 2, = —z4/27. Similarly, the following relations
z2g=23=z2.=2¢, Yu:Ya:Ye =0:1:3 and x = 8/9 are also obtained by the given
set of the operators O;;.

However, it is also important to understand the origins of these higher order mass
operators O;;. As discussed in Chapter 1, higher order operators can be generated by
the Heavy Fermion Exchange (HFE) mechanism. The terms are naturally suppressed
by the heavy masses of the heavy states. For simplicity. we only describe how one

illustrative operator is formed by the HFE mechanism. Let O'y; be given by
, z =
0’23 = 165(55) 105 (5-)163, (3.29)
2, )N

We consider the SUSY GUT SO(10) model which has two matter multiplets 163 and
16, and one fundamental Higgs field 105. There are also 2 pairs of the vector-like
16+16 suprefields ¥; and ¥; which acquire their superheavy masses through coupling
to the VEV-acquiring ¥ Higgs superfields. In the high energy regime. we assume the
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superpotential to have the following form:
W'op = 163163105 + 16324‘1-/2 + 16221‘1}1 + @122\111 + 1049, + ‘1’223@2. (330)

When the ¥ superfields develop VEVs, the spinorial fields ¥; and ¥; acquire masses
and the ¥; fields mix with the fields 16, and 16;. More explicitly, the 2 x 4 mass

matrix for the spinorial states is given by

v,
<Xz 0 <> 1
(¥, 02) 2> ! 0 2 (3.31)
0 < X3 > 0 <Xy > 165
163

From Eq. (3.31), we easily find the mass eigenstates with nonzero heavy masses as

<Ly >U,+< X > 16,
V<E>2+ <X >
<E3> WU+ < ¥y > 163

v = . 3.32
™2 V< Ts >+ <5, 2 (3:32)

\pml

The massless states are also found to be

—-<Zl>‘1’1+<22>162
V<E, >2+ <Y >2
-—<E4>‘I’2+<Z3>163

Vs = ) 3.33
4 V< 3 >2 + < 54 2 (3.33)

‘pm3 =

Therefore, we can write down the spinorial states ¥,, ¥, 162 and 163 in terms of the

mass eigenstates as

<22 >‘I/m1"’ <21 > ‘I’mS

¥ V<>l + <3, >?

¥, = <Z3> VUhpo— <Xy > Y,
V<E3 >+ <Xy >?

16, = <E >V i+ <> V¥p,;

V< >+ <X >2
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Figure 3.2: Feynman diagram for the operator O'y3. The operator is formed by
exchanging heavy states ¥; and ¥,.

<24>‘I’m2+<23>‘1’m4
V< 3 >2+< x4 >2

163 (3.34)

By identifying the massless states ¥,,3 = 16, and ¥,y = 165 as the matter multiplets
for the second and the third family in the effective theory, from the tree level term
U,105¥,, we have the effective operator O's3:

> 1 <¥Xs> 1

) 108 (S5 ) (s )16 (3.39)
Vi85 <5> 1+ 55

16’2(2 T, >

The above diagonaliation process can be better described by the Feynman diagram
in Fig.3.2. The other higher order operators listed in Egs (3.25 ~ 3.28) can also be
generated by exchanging heavy states as in Fig.3.2. However, the diagonalization
processes may be laborious in the models with more matter multiplets and superheavy
states.

We now turn to the discussion of the CKM angles following Ref. [16]. As seen
from the Yukawa matrices as in Eq. (3.20), there is only one phase angle , the angle
¢, after redefining the phases of the matter multiplets. The dimensionless coefficients
A, B, F and C must be hierarchical to generate acceptable fermion mass pattern.
We require the relations A> B and £ > C.

The diagonal forms for the Yukawa matrices can be obtained by rotating both
the left-handed and the right-handed fermions. On the other hand, the CKM matrix

is only concerned with the transforming matrices of those left hand fermions. Thus.
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without giving the transforming matrices for the right-handed fermions, we give the
approximate transforming matrices for the left-handed quarks as:

co s2 0 e’ 0 0 1 0 O
V;:. =] —82 C2 0 0 10 0 C3 S3 |, (336)
0 0 1 0 01 0 —s3 c3
Cy 81 0 ewd 00 1 0 0
Va=]| -s; a1 0 0 10 0 cs S84 |- (3.37)
0 01 0 01 0 —s; ¢4
where s3 = —z,B/4 and s; = —z4B/A denote the rotation angles in the heavy

sectors, and sy = z,CA4/(z,x',B?), s1 = z24C/(ysE) denote the rotation angles in the
light sectors, of the up-quark and down-quark Yukawa matrices. The parameters c,
are the corresponding cosine functions for the rotation angles s,. From Egs (3.36)
and (3.37). the CK)M matrix is:

( Ci1Cy — 5152e7° 5, 4+ ;5.7 S28
Verru =V 17 =1 —cis, — 5167 cieoce™™ — 5,52 a5 |- (3.38)
k 518 -8 ce'®

where the angle ¢ = &, — ®&,. s = sin(f3 — 6;) and ¢ = cos(f; — 6,).
We now discuss the mg/mq value predicted by the model with the Yukawa matrices

in Eq. (3.20). By diagonalizing the Yukawa matrices, several GUT scale relations
can be obtained by:

)‘s Eei5 - .’L'd.’L"de/A FE It 2
|§;| = | 1 —Z\/1_264C050+6d
M, _ (3E€® -z .B*/A 3E ——
_A_:l = | y) |_—A \/1 20, cos @ + &2
sin? fc — s? — s3c2
= .39
cos ¢ 551520, (3.39)

where sinfc = |s; + ¢;52¢7*®| denotes the Cabibbo angle. and 6. and §, are defined



CHAPTER 3. FERMION MASSES AND MIXING IN SUSY GUT MODELS 44

as 0y = z4z'¢B%/(AE) and 63 = z.2'.B*/(3AFE).
On the other hand, the model also implies the following relations

Oy K P, ¢ = P, (3.40)

thus we obtain the m;/my ratio from diagonalizing the Yukawa matrices

_lT_u(l_ me)21—25dcos¢+5§

= . 3.41
my mg 9m, m,  1—26,cos¢ + 62 ( )

Eq. (3.41) shows that the predicted m;/my value depends on the signs as well as
the relative magnitudes of the difference of the parameters §; — d. in the small dg,
limit. For instance. if §; — 8. = 0.3 and cos @ = 0.2, the experimentally favored ratio

ms/mg = 22.45 is obtained.

3.3 S0O(10) with a single adjoint Higgs field

As discussed in the previous sections in this chapter. SUSY GUT SO(10) models
possess several merits such as the complete quark-lepton unification for each family.
promising mechanisms for explaining the fermion mass pattern and the existence of
right-handed neutrinos. In order to explain the GUT group breaking as well as the
pattern for quark and lepton masses, tyvpically some higher rank tensor fields are thus
introduced to the models for the purposes. However, it has been argued that string
theory has difficulty in producing a single scalar field in the adjoint representation
[63, 62, 64]. This makes the successful GUT SO(10) model that we described in
the previous section a complex framework to be constructed from a simple string
construction.

Based on the string consideration, the GUT SO(10) models with a single adjoint
Higgs field have been suggested and studied [53]. In such a model, there are two
Higgs fields in the fundamental representation. The Higgs doublet-triplet splitting
mechanism is realized and stabilized by introducing two pairs of the Higgs fields in

the spinor (16 + I6) representation. We call these spinors C, C and C’, C' in this
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paper.
The adjoint Higgs field ¥ could develop a VEV along the B-L direction from the
superpotential Wg

1
Wy = Mytrs2 + —Jw—ztrZ“. (3.42)

Quite generally, we could split the Higgs doublets from their triplet partners by the
following superpotential

Wpr = 105 E10% + M10},10};. (3.43)

where M stands for the mass.

Since < ¥ > breaks the SO(10) group down to SU(3) x L'(1) x SO(4) but not
the SM group. to completely break the GUT group, we thus need the C and C to
acquire their VEV's along the SU(5)-singlet direction. The superpotential that could

give VEVs to C + C is: _
Y(CC)?
M2

where 117(}") denotes the superpotential which include at least a linear term in the

+ (YY), (3.44)

singlet superfield Y.

Again, more superpotential terms are needed to remove the would-be Goldstone
modes in the fields £, C and C after breaking the GUT group. Barr and Raby [54]
suggested that the following superpotential terms Wey can be added to the model

Wes = C'(PS/Ms + 2,)C + C(PL/M; + Z2)C'. (3.43)

Here P, Z; and Z, are singlet superfields. C’ and C’ have vanishing VEVs, thus
ensure the stability of the DW form which presents in the VEV of the adjoint Higgs

z.
Finally, the superpotential Wy is added to give C' a weak scale VEV.

Wye = ACC10g (3.46)
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The value of < C’ > is obtained from the F-flatness condition F = 0, which gives
2A0105C + (P /M3 + Z,)C' =0 (3.47)

Since 104 is assumed to acquire a weak scale VEV in the SU(2), direction, therefore
C' must also develop a weak scale VEV in the SU(2), direction.
The fermion mass matrices were constructed by Albright and Barr [53] to have

the following forms:

[0 0 O 0 0 G
M, =~ |0 o F My=|0 0 F+G
\0 -F E 0 -F E
[0 0 0
M, ~ |0 0 =-3F (3.48)

\G' 3F+G E

Again, we see the Clebsch factor 3 appearing in the charged lepton mass matrix in
the 23 and 32 entries. This factor actually reflects the fact that for each charged
lepton there are three down quarks in the same family.

The matrices in Eq. (3.48) can be generated by the HFE mechanism. Suppose
we have a tree level superpotential that is responsible for generating the Yukawa

couplings after integrating out some heavy states as

Wyukewa = 163163104 + 1616P + 163-1—6.2 + v;16;16%
+ 104105CC/Mp + ¢;16;105C + 163105 C". (3.49)

When P, £ C and C all get their superheavy VEVs, some of the spinor states in Eq.
(3.49) become superheavy and mix with each others. After diagonalizing the mass
matrix for spinors, we thus find the massless eigenstates and identify them as the
matter spinors in the low energy effective theory. Since the discussion here is quite
similar to the discussion in the previous section, we skip the details of the fermion

mass operators and focus on the following generated effective mass operators O;;.
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1=1,2.

O = 2216, < 105 >< £ > 165 (3.50)
Mc

As seen from Eq. (3.50) and Table (3.1), < ¥ > (in the B-L direction) would give
different quantum numbers on the fermion states within the matter multiplet 16;.
For instance, the quantum numbers of the fermion states us, 43, ds, d3, e3 and &; have
the following ratios:

Ne:Ng:Ng:Nj: Ne:Neg=1:-1:1:-1:-3:3 (3.51)

Therefore, we have the Clebsch factor 3 in the lepton Yukawa matrix.

Clearly. when imposing the requirement of a single adjoint Higgs on the particle
content of the SUSY GUTs, more spinors and the fundamental Higgs fields must
be introduced. and the predictive power of the conventional GUT S0O(10) is lost.
There are two ways to avoid this kind of difficulty: First is to put the string theory
considerations aside and not to take them seriously. But there is another way out: One
can extend the GUT symmetry and introduce Higgs fields in product representation
of the extended gauge group. These can fill the role of the adjoint Higgs fields. In

the next chapter. we will adopt the second approach and construct our models.



Chapter 4

SUSY GUTs based on the gauge
group SU(5)3

4.1 Introduction

As discussed in the previous chapters. it is generally true that one needs to introduce
some higher rank tensor Higgs fields into SUSY GUT models so that the GUT gauge
group can be broken down to the Standard Model group. In addition. these higher
rank tensor Higgs fields also help to realize viable fermion mass matrices in the models.
For example, some SO(10) GUTs have the Higgs fields in the 45 representation to
generate the Georgi-Jarlskog fermion mass matrices. Similarly, some SU(5) GUTs
also need the Higgs fields in the 45 and 75 representations.

On the other hand, it has been known for some time that the string construction
at the affine Lie algebra level 1 does not allow for scalars fields in the adjoint repre-
sentation [65, 64], necessary for the breaking of GUT symmetry. Technically, higher &
level construction in the string theory may help to produce higher rank tensor fields.
however, the construction is complicated.

Barbieri et al. [66] suggested that a class of supersymmetric models based on
the gauge group G x G, with G 2 SU(5), may be obtainable from simple string
theory constructions with only Higgs fields in the fundamental representation. The

fundamental Higgs fields then break the GUT symmetry after acquiring their VEV's

48
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in the diagonal subgroup directions of the GUT symmetry. For an illustration. we
describe their SU(5); x SU(5), model in the following.

Suppose the GUT symmetry is the product group SU(5), x SU(5), above the
some high scale M. The full breaking of the GUT symmetry can be implemented by
a set of the Higgs fields Z; and Z; in the representations (5,5) and (5, 5) respectively
which acquire their VEVs along the following directions:

< Zy >= 17 -diag(1,1,1,1,1), <Zy>=<2,> (4.1)
< Z, >= 15 -diag(0.0.0.1.1). < Zy >=< 2, >, (4.2)
< Z3 >= 13 -diag(1.1.1.0.0), < Z3>=< 23> (4.3)
< Zy >= 13 -diag(1.1,1.a.a), < Zy>=<2Z,> (4.4)

The conditions < Z; >=< Z; > are required to preserve a supersymmetric vacuum
in the model and are thus energetically favored. In principle, these VVEV\'s can come

from stabilizing a tree level superpotential ¥ (Z) of the following form

1

ez = MIZ(Z,ZI) i }“_(ZZ (ZZ)+M Z(.Zi.é'i)2
& 1¢J
L =SZ2.2;2;) + Z(ZZZZ) (4.5)
M4 i#j

As usual. this form of the superpotential could be enforced by some symmetry. For
example, a set of the discrete symmeties that have the Z fields transforming as Z; —
—Z; and Z; — —Z; would do the job. Typically, by solving the F-flatness conditions:

o oW

5% =37 =0 (4.6)

many SUSY vacua may be obtained. The SUSY vacuum given in Eq. (4.1 ~ 4.4) is

just one of them.
Therefore, each of the < Z > VEVs leads to the breaking of the GUT symmetry
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with one of the following patterns:

SU(5) (4.7)

SU(3); x SU(3)2 x SU(2) x U(1) (4.8)
SU(3) x U(1) x SU(2); x SU(2)2 (4.9)
SU(3) x SU(2) x U(1) . (4.10)

Here the diagonal subgroups of the SU(3); x SU(5), are represented by the factors
without subscripts. Notice that the SU(5) GUT group can be fully broken either by
asingle < Z; > or by the < Z; > and < Z3 > together.

The Higgs doublet-triplet splitting problem could receive a natural solution in the
SU(5), x SU(5)2 models. Consider that two pairs of the Higgs fields H(3,1)+ H(5. 1)
and H'(1,5) + H'(1,5) exist in the model. The Z VEVs in Egs. (4.1 ~ 4.4) suggest
that all the Higgs states in the H, H. H' and H'. except for one pair of the doublets
, could be made heavy by the following superpotential Wpr

H"DT=HZ3IT.{1+HZ3H’+HZ1H’. (4.11)

From Eq. (4.11), the light Higgs doublets reside in H and H'. Needless to say. some
discrete symmetries must typically be introduced to restrict the couplings between
the Z fields and the H fields to enforce the form of the superpotential Wpr. For
example, when we include possible nonrenormalizable terms in the superpotential.
the identified light Higgs doublets would no longer be light enough if the following
high order operators

(HZ"H\Tr(Z™"), n,m are odd integer. (4.12)

are not sufficiently suppressed.

Generally, the fermion mass spectrum is quite model dependent under the GUT
SU(5) x SU(5) framework since we are free to assign the matter multiplets to trans-
form under either the gauge group SU(5), or the SU(5);. This feature can be used to
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our advantage. For instance, if all the matter multiplets transform as singlets under
the gauge group SU(5),, then the down quark masses are suppressed by the heavy

mass M and a hierarchy between the up and down quark masses is generated
ij 7 < 5 £
A 10{10]'H+ -HSilonQH . (4.13)

Notice that Eq. (4.13) is not sufficient to explain the mass hierarchy among different
matter families and the asymmetries among the Yukawa matrices. These may be
explained by introducing higher rank Higgs fields into the model, but that violates
the motivation for this construction. It is possible to generate the required hierarchies
in an SU(3) x SU(5) model by using a more complicated set of fundamental Higgs
fields. We will come to this discussion in the later of this section.

For the G = SO(10) case, in addition to the GUT-breaking Higgs fields in the
fundamental (10, 10) representation, we also need at least one pair of vector-like Higgs
fields in the spinor representation to fully break the GUT symmetry down to the SM
group. Barbieri et al. constructed an SO(10) x SO(10) model in a manner similar to
their SU(53) x SU(5) model. We thus omit the discussion of their SO(10) x SO(10)
model in this section.!

Following their previous work on the G x G GUT model, Barbieri and his collab-
orators then generalized the GUT symmetry to the product gauge group G x G x G.
Similar to their SU(5) x SU(5) model, the SU(5) x SU(5) x SU(5) model also pos-
sesses a set of the VEV-acquiring Higgs fields i.e., the Z fields, to break down the
GUT symmetry. In their paper, the Z fields carry the gauge quantum numbers in a
permutative way. That is, there are three kinds of the Z fields, the Z;, transforms
as (5,5,1), the Zp; transform as (1,5,5) and the Z;3 transforms as (5,1,5) under
the GUT symmetry. The fields Z;; are assumed to be the conjugate fields of the
corresponding Z;; fields. These Z;; and Z;; Higgs fields then develop their VEVs and
break the GUT symmetry.

On the other hand, each of the matter multiplets is assigned to transform under

1We argue in the last chapter that the SO(10) x SO(10) case can be quite different from the
SU(5)? model. This is due to the fact that the (10, 10) Higgs fields can acquire their VEVs with the
symmetric or the antisymmetric gauge indices.
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different gauge group SU(5);. For example, the first family of matter f,(10 & 5h
transforms under the gauge SU(5);, fo transforms under the SU(5)2, and so on. To
explore possible fermion mass patterns in the model, the knowledge of how the Higgs
fields couple to the matter multiplets is very important. In general, we can have any
numbers of the Higgs fields that couple to matter multiplets as long as the gauge
anomaly is canceled. However, in their SU(5)® model, 3 pairs of the Higgs fields
H; + H; are given and each pair also transform under different gauge group SU(5)..
Among these H and H fields, only the doublets in Hs and H; would remain light by
giving the following coupling terms in the superpotential

0 212 213 Hl
W(H.Z)=(H,H,.H3)| Zi, 0 Zy3 H, |. (4.14)
Zyiz 23 O Hj

As easily seen from Eq. (4.14). the pair of the doublets in H3 and H; would remain
light only if the Z;, and Zi, fields have non-vanishing VEVs in the two lower entries.

The above field content of their model immediately leads to several problems. First
is the lack of sufficient asymmetry between the up and down quark mass matrices.
The off-diagonal entries of the Yukawa coupling matrices are always more suppressed
than the corresponding diagonal entries. For instance, the 22 and the 23 entries for

the up and down quark Yukawa matrices are of the following forms:

’\géd = l02102223II3, 10252223[?[3, (4.13)
PYra 10,10:Z%Hs, 10,5322 Hs. (4.16)

This is embarrassing since it predicts that the up and down quark masses would have
the same mass hierarchy among different fermion families. That is, it predicts the
following unacceptable mass relations m,/m;, = m./m; = my/my.

Second, the proton would decay too quickly since the heavy Higgs triplet has a
large coupling to the first generation of matter.

In order to rescue their SU(5) x SU(5) x SU(5) GUT model, Barbieri et al.

suggested the following solution: They observed that realistic fermion mass patterns
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and proton stability can be obtained if one introduces two replicas of the Z fields and
four replicas of the H fields into the model. They call them Z,Z',Y,Y’ and H,H' in
the model. Among those Z, Z', Y and Y’ fields, only Y and Y’ will couple to the
up and down quarks respectively. As usual, some discrete symmetries are required
to prevent the Y fields from coupling to the matter fields 10;, and to prevent the }
from coupling to the 5;. The Z and Z’ fields only couple to the H and H’, and are
responsible for splitting the Higgs doublets from the triplets. As a result, the necessary
asymmetry between the up and down quark mass matrices can be obtained.

Clearly, this viable SU(5) x SU(5) x SU(5) model has a very complicated Higgs
sector and provides no better understanding on the fermion mass problem than the
conventional SU(5) models. When G = SO(10), their SO(10) x SO(10) x SO(10)
model suffers the same weakness. Even worse, the special SO(10) relations such as
top-bottom-tau Yukawa unification are lost and the SO(10) x SO(10) x SO(10) model
looks more like an effective SU(53) x SU(3) x SU(5) model.

In the remainder of this thesis. we present our constructions of the SUSY GUTs
based on the G x G and G x G x G GUT symmetries. We show that viable fermion
mass patterns can be obtained with a simple Higgs sector. In the G = SU(3) case [67].
the needed asvmmetry between the up and down quark Yukawa couplings is due to
the asymmetric structure of the Higgs sector in the field content. In the G = SO(10)
cases [68], we show that the effective adjoint fields can arise from combining two of the
GUT svmmetry-breaking Higgs superfields. This is interesting since traditional GUT
S0(10) theories of high predictive power in the Yukawa matrices can now be viewed
as the effective theories of our SO(10) x SO(10) and SO(10) x SO(10) x SO(10)
models. We also give examples showing how to obtain Georgi-Jarlskog mass matrices

through the Heavy Fermion Exchange mechanism in the model construction.

4.2 An explicit SU(5) x SU(5) x SU(5) GUT model

The Standard Model (SM) is now considered to be completely successful in describing
the physical world up to the weak scale. However, it requires some 18 parameters

which are input by hand to fit the experiment data. Most of these undetermined
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parameters reflect our lack of understanding of flavor physics. The SM provides
no explanation of why there is a mass hierarchy among the fermion masses and no
explanation of the CKM angles. It seems that Nature includes some classification
which goes beyond the structure of the SM [69]. Thus, in order to solve these puzzles.
we have to go beyond the SM. The Minimal Supersymmetric Standard Model (MSSM)
[70] has considered as one of the possible extended theories beyond the SM. Despite
of its success in providing true gauge coupling unification [71], it also has flavor
problems [72] at least as severe as those in the SM. The fermion mass hierarchy is
still left unexplained in the MSSM framework. Even worse, new problems such as
Flavor Changing Neutral Currents [20] occur.

Many solutions have been proposed for the flavor problem, either within a su-
persvmmetric framework [73, 74] or in non-supersymmetric theories. Most of these
attempts assume that some flavor symmetries, gauged or global, exist above the grand
unification scale Af,. The flavor symmetries typically restrict the possible Yukawa
coupling terms in the superpotential and provide textures and hierarchy patterns of
the fermion mass matrices {73, 76, 74]. This idea is often combined with that of grand
unification. For example. one can introduce higher rank tensors such as the 126 in the
50(10) grand unified theories (GUT’s) [77] and the 45 in the SU(5) GUT's [78] in
order to create specific textures in the quark and lepton mass matrices. Theoretically.
there is nothing wrong with introducing high rank tensors. However, the affine level 1
constructions in string theory do not allow string-derived GUT's having tensor fields
with rank higher than 2 [63]. This result makes the ordinary SUSY SU(5) [79] and
SO(10) {80] GUT theories difficult to obtain from the affine level 1 constructions in
string theory. In response to this situation, Barbieri et. al. [66] pointed out that ex-
tending the GUT gauge group to be G x G, where G could be some GUT groups such
as the SU(5) or the SO(10) group, makes it possible to construct GUT models which
break the product gauge groups down to the SM gauge group without introducing
high rank tensor fields. The GUT gauge group in these theories could be broken by
fields which carry fundamental and antifundamental representations under two differ-
ent gauge groups. For examples, the (5,5) and the (5,5) can break the SU(5) x SU(3)
GUT theories down to the SM gauge group. The same logic applies to theories with
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gauge group G x G x G. Furthermore, as pointed out by Barbieri et. al [81], if we
choose to have each family of matter fields transforming under different gauge group
G, then a flavour theory could be constructed without the need for an explicit flavour
symmetry group.

In this paper, we follow the idea of using SU(5) x SU(5) x SU(5) as the SUSY
GUT gauge group. However, instead of symmetrically assigning each family of matter
fields (10+5) to its own gauge group SU(5), we assign the matter fields transforming
under these gauge SU(5)’s in an asymmetrical way. In Section 4.2.1, we describe
our model and suggest a suitable vacuum for those fields which break the GUT gauge
group. A Z, x Z3 discrete symmetry at the superheavy scale is introduced to suppress
the dangerous operators as well as to obtain a weak-scale 2 value in the model. This
gives the full set of assumptions of our construction. In the remainder of the paper.
we show that these assumptions lead to many interesting consequences. In Section
4.2.2. we derive the fermion mass matrices and demonstrate a mass hierarchy which
follows from the gauge structure of our model. We show that our model can account
for the observed fermion mass matrices and CKM angles. In Section 4.2.3. we discuss
proton decay in this model. The proton lifetime predicted in this model is consistent
with the limit set by the SuperKamiokande experiment. In Section 4.2.4, we present

some conclusions.

4.2.1 The model

Our model is based on the SUSY GUT gauge group SU(5); x SU(5)2 x SU(5);. We
identify the SM gauge group SU(3)¢c x SU(2)r x U(1)y as lying in a diagonal SU(5)
subgroup of above product group. To break the GUT gauge group down to the S\
SU3)c x SU(2)L x U(1l)y, we require the exotic Higgs fields 7,, T2 and T3 in the
representations (1,3,5), (5,1,3) and (5,5,1). We will find it useful to add two more
multiplets, T in the (1,5,5) and I in the (1,5,5). We assign the three 10’s of SU(3)
to the three different SU(5) groups and we associate the 5 and 5 Higgs fields with
different groups. However, we assign two 5 matter multiplets to the same SU(3).

The complete set of assignment is shown in Table 4.1. According to the assignment
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SU(5) SU(5)2 SU(5)3

T 5 5
= 5 5
T, 5 5
T, 5 5
T 5 5

105 10
10, 10

10; 10

53 5
50 5

5 5
H 5
H 5

Table 4.1: The field content of the SU(3); x SU(5), x SU(5)3 model.

in Table 4.1, there is already some interesting physics at the level of lower dimension

operators. The ordinary u term

uHH (4.17)

is forbidden from appearing in the fundamental Lagrangian by gauge invariance. The
leading contribution to the u term potentially comes from high dimension operators
in the superpotential and will be analyzed further in the later of this section.

As one can see from the table, this model contains no fields in the adjoint rep-
resentation, and no fields with rank higher than 2. All of these fields can appear
in a string construction with the gauge group realized at the affine level k£ = 1 [63).
The breaking of the GUT gauge group can be accomplished by the vacuum expec-
tation values (VEV’s) of the fields Ty, T3, T3, £ and £. The symmetry-breaking
ground state could be either by a stabilized tree-level superpotential or by effects of
a strongly coupled SUSY gauge theory. Here, before discussing an explicit poten-
tial, we would like to propose a possible vacuum which can break the gauge group
SU(5); x SU(5)2 x SU(5)3 down to the SM gauge group SU(3)c x SU(2). x U(1)y.
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We assume that the symmetry is broken in two steps. First, SU(5); x SU(3)s3 is
broken to the diagonal subgroups by an expectation value of 1.

(Ty) = A, - diag(1,1,1,1,1) (4.18)

Then the remaining svmmetry SU(3)p3; x SU(5), is broken to the SU(3)cx SU(2) x
U(1)y by the expectation values of T; and X.

<T1> =.'\1 d1ag(0001,1) (419)
() = Q - diag(1.1,1.0.0) (4.20)

Finally. the remaining fields get their expectation values along the SU(3)¢c x SU(2) x
U(1)y direction. Only relatively small hierarchies between these scales are needed to
produce large hierarchies in the quark mass matrices. We will show this in Section
4.2.2. The complete pattern of V'VE\''s consistent with the symmetry breaking pattern

just described is:

(Ty = Q-diag(1.1,1.0.0) (£) = Q-diag(l.1,1,a.a)
(T;) = A,;-diag(0.0,0,1,1) (T3) = Az - diag(1,1.1.5.5)
(T,) = Ap-diag(1,1,1,1.1)+ Aj; - diag(0,0.0,5,b) (4.21)

Due to the SU(5); D-term condition, the VEV (T3) will receive a correction of order
O(As). The constants a, b and s are assumed to be nonzero and would be determined
by minimizing the potential. We will show below that the zeros in ¥ and 7; can
be exact, up to the point where SUSY is spontaneously broken. As in conventional
GUT models, we also require a discrete symmetry to forbid dangerous operators such
as H5,, H5;. 103535; and T, T3H5, in the tree-level superpotential. Specifically. we

assume a ZJ®HeT x Z;3 symmetry
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—1(10,, 105, 103, 51, 55. 53)
(H.H,%,%,103)
e 3(Ty, T3, 102, 52)

ei4”/3(T27 1011 511 53) (4-22)

ZJater . (10,,10,, 103, 51, 52, 53)
Zy: (H,H,%,%,105)

(T, T3,102, 52)

(12,104, 51, 53)

Ll

The dangerous dimension five operators that could make the proton decay too rapidly
are also suppressed by the Z3 symmetry. We will discuss this in Section 4.2.3. We now
discuss the spectra of Higgs masses and the u parameter. Applying the ZJ"%"¢™ x Z;
svmmetry, we can easily write all possible leading terms up to dimension 10 level that

are bilinear in H and H.

. _ S£ YLT,  (E£)? T54TT3 (S5 (ShLl)
1., = T +
Wen THH{(1+ ym+ 5+ 53 Y~ ap E
TP (TSP + (STT)? & 1 - _
( ) ( 1 )6 ( 2 3) + Z — }:k(Tsz)S k}

i 237

_ (TE)? SR+ TP+ TP+ (TS ToTs)
+ T\HH{ I + A5

2
+ ———(T{;ZS) } (1.23)

From the vacuum state described in Eq. (4.21). not all terms in Eq. (4.23) would have
non-zero contributions to the Higgs triplet mass and the p value. The Higgs triplets
get a superheavy mass ) which is shown to be of O(10'%) GeV in the next section.

The leading terms that give p a nonzero value are

- (Tli)2 23T12 +T§’ -+ (Tli)(TszT;g) (T1T2T3)2

(4.24)

Eq. (4.24) is highly suppressed by 1/M*. When we estimate the various parameters
in the next section, we will see that x obtains a weak-scale u value.

It is important to ask whether the pattern of VEV’s that we have considered in
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the Eq. (4.21) can follow from a tree-level superpotential. There is an example of a
superpotential that can lead to this structure which incorporates the constraints of

ZetteT x 73 symmetry.

1

VI"(E,E—:,TDTQ, Ts) = F}1(23T3—0§)+ .M3}2(T5 és) + RI3}3S4TI
1
Sy (2r3 v _ A3 el 3 3
+ M3}4(_ T3) + My (63 — A%) + M}G(o - A))

+ Z X372+ 128+ -%Tygzrz:rs + MX-Y: + MXgd;

=1

A B B,
+ Ml( )2 + sz £E)(ELT) + 15 (STTs)?
£) (MTLT) (T3)* 2
* Z>0C‘J A[12-3-2; : (1.25)
LIV

Here A,. B, and C,; are understood as the unspecified coefficients and M is the super-
high scale. The gauge singlets ¢;. }; and X, are needed to produce the following

constraints

(T3T2) = AS. (T3) = A3 (1.26)
(7)) = 0. (T3 = 0. (4.27)

These lead to the zero texture patterns in the VEV’s of ¥ and 7;. The F-term
conditions from the superpotential (4.25) as well as the D-term conditions of the
GUT gauge groups would determine the possible vacua of this model. The SU(3);
D-term as well as the SU(3), D-term conditions could force the scales A; and Q
to have approximately equal value A; =~ Q if A, is much larger than A3 and Q.
Typically, solving for the minima of a potential would give rise to many discretely
degenerate vacua. This is generic to most SUSY GUT theories [81, 66. 82] if a tree-
level superpotential is responsible for breaking the GUT gauge group.

The above Higgs triplet-doublet splitting mechanism is similar to the sliding-
singlet mechanism [46]. The Higgs triplets and doublets split when the field T get
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superheavy VE\V’s in its SU(3) block, while keeping vanishing VEV's in its SU(2)
block. This description applies to the theory before supersymmetry breaking. It is
a well-known difficulty of the sliding-singlet mechanism that SUSY breaking effects
could bring corrections to the VEV of £ and may destroy the gauge hierarchy [51].
We will now argue that this is not a problem in our model.

To be explicit, the problem resides in [51] is that the low energy effective singlet
field T, that comes from the field £ couples to the superheavy heavy triplets in H
and H. If we turn on SUSY breaking effects. this would give rise to one-loop tadpole
graphs which induce the following two terms in the low energy effective theory.

amiMeE; + h.c. (4.28)
Cgmgﬁ'[c;Fg, + h.c. (4.29)

Here m, represents the gaugino mass and Mg represents the GUT mass scale. These
terms shift the VE\"'s of £ and T;. Adding Eq. (4.28) to the effective theory. the
piece of the potential that could shift the VE\"'s of ¥ in its SU(2) block is given by

2

Vo= (DR + KPS + oIl + (e (77 =A%)

2T3 2 2 ,
l( )I -+ I(Zv -+ A{Y )l -+ l(_\_TZTIS MXg)I —+ clmg.MGSS

- . (4.30)

I(M3

Inserting ¥ — L+ AY into Eq. (4.30), we find the possible shift of the SU(2) VEV"'s
put

204,
AT, £ 6 0(10%) GeV (4.31)
ERI

For the same reason, the VEV’s in the SU(3) block of the field T; could also receive
an order 102 GeV correction. As one can see from Eq. (4.31). the shift of the VEV" (X)
in its SU(2) block is bounded and would not destroy the gauge hierarchy. The same
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strategy can be applied to the term in Eq. (4.29). After eliminating the auxiliary field

Fg_, this term gives a potential of the form

YT, T3 + 4Y;T3Ty + 3y, 2272 + 2Y,TT?

Y5
72+ —7 e IZE YE

+ HH + comoMg + --- 2. (4.32)
This modification can shift the VEV’s of the singlets Y7, ¥3 by an amount of order
10° Gev or shift the VEV's of the singlets Y7 and Y3 by an amount of order of 10*
and 10° Ge\; this gives a small correction to the potential which is consistent with
the hierarchy-.

In this section. by extending the GUT group from the commonly used ST°(3)
group to SU(3); x SU(5), x SU(5)3. we are allowed to solve the Higgs triplet-doublet
splitting problem and give u a weak-scale value. It seems that having the H and H
transform under different SU(5) gauge groups gives a natural mechanism for solving
these problems. Thus it is well-motivated to introduce product groups like ST (5) x
SU(3) or the SU(3) x SU(3) x SU(3) group as potential SUSY GUT gauge groups.

4.2.2 Fermion mass matrices

Now we examine the structure of the Yukuwa couplings in our model. Just as we
constructed the terms bilinear in Higgs fields. it is straightforward to write the terms
bilinear in quark and lepton fields. For the up quark masses, there are terms that

apply H10,10; to various combinations of the GUT-level Higgs fields.

: T T3 T, T:
Wep = H{10310;+ 310,10, + 7210510, + =72 101100+
T2% T?TZS
+ 103104( Ms)+1oz1ol( )+ (4.33)

In the above superpotential ;. we list only the leading terms to various combina-
tions bilinear in fields 10;. The omitted terms in Eq. (4.33) represent possible next
to leading order combinations. For the down quark and lepton masses, we find terms
that include H10;5; contracted with various combinations of the GUT-level Higgs
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fields.

. T;(TE T, (15T
‘down-—lepton = H{_103 53 + ( 1](‘43 )+ 1(1\{[42 3))10301

(T,£)(Z2T3) + T:T, + =

13
10203 + —'10202

+ 1035 2[ _M5 )] M2 1Y
T3T2 = T1T2 Tng T,T2
[ M2 AI]102 1+ YE 101 o3 + e 101 o2 + — IYE 101 21
+ ---} (4.34)

We have defined the two matter fields 5, and 33. which have the same gauge and
Zpatter x Z; quantum numbers, so that the first term of Eq. (4.34) contains only 3s.
and 3, is the orthogonal linear combination. We have ignored all the coefficients that
could appear in front of each coupling term in Eq.s (4.33) and (4.34). Terms such
as T#10;10; H/M* and £41035;H/M?* in the superpotentials WY, and Waoun-tepton
are not listed because they are the higher-order contributions to the entries of the
fermion mass matrices. We will see this point much clearly in the later discussion
of this section. However. as we will see in Section 4.2.3, the term (T;}/1/*)10,10, H
cannot be ignored in the discussion of the proton decay in the model. As is typical in
GUT theories based on SU(5) unification [79], the up-type fermion masses are seen
to be unrelated to the down- and lepton-type fermion masses.

According to Eq.s (4.33) and (4.34), only the top quark will receive a weak-scale
mass. All other fermion masses arise from nonrenormalizable couplings and thus are
suppressed by powers of 1/Af. These powers, together with the various VE\"'s in Eq.
(4.21), lead to a hierarchy of Yukawa couplings. To exhibit this hierarchy. define the
small parameters p = Q/M, p = Q/M, & = A/M, & = Ay/M and & = A3/M.
Then the leading contributions to each element of the Yukawa matrix is

s€&& 0 &
Up)aww, = E€p & &l (4.35)
& 0 1
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(66 &&+p Epp

(Down)ga, = | && & 0 (4.36)
\ §162 &&+p &

(662 (s)66s+(@)p Epp

(Lepton)e,r; = | && (s)&3 0 (4.37)
\ && (s)6&+(a)f &

From the above mass matrices. a approximate texture zero structure [10] would be
seen in the up quark mass matrix after determining the scale ratios. The down quark
mass matrix and the lepton mass matrix are identical, except that the (1.2). (2.2) and
(3.2) entries of the lepton mass matrix have different coefficients. These differences
are due to the VEV patterns of () and (T3).

Before making further comments on the mass matrices. we would like to point
out that if the introduced Z3 symmetry is disabled in the model. then the forbidden
terms such as (S2/M2% + T2T2/A*)10;10,H, (I T3 /M* + T3T2/M®)10,10; H and
(T2T;/A13)1035,H will give additional contributions to W, and Waswn—tepton- VWe list
these terms in the Appendix. Eq. (4.63) and (4.64). These new terms show the same
hierarchy in powers of the small parameters p, g and &;. In other words. the mass
hierarchy is merely determined by the gauge structure but not by the global discrete
svmmetry in the model.

Since this model cannot predict the coefficients for the coupling terms in super-
potential, we assume these to be of order O(1) and ignore all coefficients in the above
mass matrices. The zero entries in the up quark mass matrices are only approximate
and could be replaced by those ignored subleading terms in Eq. (4.33). In fact. by
the estimation made in later in this section, these “zeros™ are such small numbers
that they should be smaller than 10~!!. Therefore, we can just ignore them in the
later discussion.

Although we do not know the coupling term coefficients, however, we can still
extract some interesting points from Eq. (4.35 - 4.37). First. this model requires a
low value of tan 3 because the top Yukawa coupling is much larger than the bottom

Yukawa coupling.
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We also observe that because of the VEV structures of (£) and (T3), the terms
(ToT5/M? + £/M)1025,H and (T3/M)10,5,H have different contributions to the
down-quark mass matrix and the lepton mass matrix. It has long been a problem for
SU(5) grand unification that the mass relation m; = my at the GUT scale cannot
be obeyed for all three generations. Georgi and Jarlskog [11, 83], proposed a solu-
tion which has been used in models of SUSY SO(10) grand unification [84]. Despite
the successful experimental data fitting in their model, the low energy mass relation
ms/mg = 25.15 predicted in their model is two standard deviations away from the
average value obtained by sum rule and chiral perturbation methods [15. 16]. Our
scheme does not give a definite prediction for the mass relations, but it does give
some required extra freedom. For example, if the coefficient s is taken to be 3, then

we obtain the GUT scale mass relations

m, = T, (4.38)
3mg, (4.39)

Q

my

These GUT mass relations could lead to acceptable m;,/m, and m,/m, mass relations
[16, 10] at the weak scale.
A specific choice of the parameters that gives an acceptable representation of all

of the experimental data on fermion masses is the following:

M g 0007 (4.40)
m g ouo (a1
™ & ouo) (4.42)
me 6& L6+ 66) ~ O(1071) (4.44)

ms 53 Eg
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The above relations allow us to choose the scale ratios as

1

§i ~ p~3gx 1072 (4.45)

£ ~ 3x1072 (4.46)
1

& ~ 3X 1073 (1.47)
1

po~ X 1074 (4.48)

From the y value equation in (4.24). it can be easily checked that these values would
give rise to a weak-scale p value. Based on the given scale ratios, we can also estimate

the CK)M mixing angles sj2. so3 and s33 by

S1p: Sm i sis ~ 22 P88 2 5(1071) . 0(107%): 0(1073).  (4.49)
€3 3
which is consistent in order of magnitude with the experimental data. The GUT-
group breaking scales are now determined to have the relation Ay > \; > Aj;. This
confirms the breaking pattern described in Section 4.2.1.
According to the scale ratio estimations, there are approximate texture zero struc-

tures in the fermion mass matrices.

[ s€i&s 0 &

(Up)aw, = 0 & &p (4.50)
\ & 0 1
(6163 &&+p &pp
(Doun)ga, = &6 &3 0 (4.51)

\ 616 &&+p &

(€62 ()66 + (a)F E1pp

(Lepton)er, = | & ()& 0 (4.52)
\ 68 ()&&+@p &
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The zero entries are only approximate and represent values smaller than 1079, Unlike
the case in conventional SUSY flavor models [72, 10, 16, 79], these texture zeros are
the natural outcome of the gauge structure as well as the scale ratios given in the
model. In other words, they could arise without flavour symmetry.

In this section, we have estimated the possible scale ratio values needed to obtain
acceptable fermion mass structures. The GUT gauge group SU(5); x SU(5)2 xSU(3)3
would undergo a two-step breaking down to the SM group SU(3)¢c x SU(2). xU(1)y-
The SM gauge couplings unify at the scale of 10!® Gev if we take the superheavy scale
M to be the reduced Planck scale. The Higgs triplets H. and H, would obtain GUT
scale masses of order of 10'® Gev due to the superpotential term SHH. Although we
did not discuss the possible threshold effects [43] caused by those exotic Higgs fields
as well as the heavy Higgs triplets. it is quite interesting that we find naturally a

hierarchical pattern for the fermion mass matrices.

4.2.3 Proton decay

We have already introduced a Z7**'¢" svmmetry to disable all dangerous dimension
three and four operators in Section 4.2.1. However, since we find Higgs triplet masses
of order 10'® Ge\’, there is a danger that dimension five operators which violate baryon
and lepton number could cause fast proton decay [85]. A dimension five operator in

the superpotential could lead to proton decay if it has the form

2 Q@iQuL. (433)

Here Q; and L, represent the i® generation of the quark and lepton multiplets respec-
tively, M* represents some high scale, and A is the coupling constant. This operator
leads to proton decay through the mode p — K*U. The current experiment data
have already set the limit A/M= < 102 GeV~! with the naturalness assumption that
all squark/slepton masses are no larger than 1 TeV’ (85, 86). In principle, operators
of the form of Eq. (4.53) could arise from integrating out particles with GUT-scale

masses or directly from the higher-dimension operators in the original Lagrangian.
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In the Appendix, we analyze these higher-dimension operators and show that theyv
are highly suppressed by powers of 1/M due to the gauge structure as well as the Z3
symmetry of the model. Therefore, the main contributions to proton decay in the
model will come from heavy Higgsino exchange processes.

Since the VEV (T,T;) has vanishing contribution to color triplets, the poten-
tially leading term (7,73/M?)10,10,H cannot participate in the heavy Higgsino ex-
change processes. The same logic also applies to the terms such as (7;/M)10,10.H.
(T;T»/M?)10,5,H and (T7T2/M?)10,5,H. Therefore. by taking the quark mixing
into account. the leading terms in the superpotential that contribute to the dimen-

sion five operators in Eq. (4.53) are the following:

10310 H (4.24)

T2
{ﬁ}mllOsH (4.33)

T4
E%}lollolH (4.56)
b 1,7, I —
{—‘7 + —"‘2123 }10201H (4.57)

T = = -

{ﬁ}mzi’)zH (1.58)

From Eq.s (4.54 - 4.58), the leading dimension five operators that come from inte-
grating out heavy Higgs triplets are shown in Fig. (4.1). We find that the figure (a)
in Fig. (4.1) should dominate the proton decay in the model with the decay mode

p — K*0,. There are two contributions to Fig. 4.1(a), with coupling strengths

A 1 (T3)  (T3) < . _2s -1 45
- ~ — x Yz X i 10 Gev (4.39)
A sinfhs _ (T3 _ (T3) < .25 —1 ,
i Mo X e X i 107*° Gev™' . (4.60)

In Eq. (4.59). the factor (T3 /M?*) comes from the next leading term 710,10, H/\[*
and the factor (T3)/M comes from (T3/M)10,5,H in superpotential. In Eq. (4.60).
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Figure 4.1: Dimension five operators produced by integrating out heavy Higgs triplets.
These two operators would dominate the proton decay due to their relatively large
coupling strengths.

the factor (T7/M?) comes from the term (77/M?)10,10sH and sin 6,3 represents the
mixing angle between the first and the third generation up-type quarks. The above
coupling strength estimations show that the proton lifetime in the model should
be no less than 10% vears. This result is about 100 times longer than the current
experiment limit [2]. It is observed to the future experiment limit that could be set
by SuperKamiokande.

Although there are uncertainties in determining the coefficients of the Yukawa
coupling terms in the superpotential. however. the branching ratio between the p —
K*p, channel and the p — K™, could be definitely given by

BR(p = K™7.) _ (ﬁ'*' 263

BR(p —» K*i,) &

This branching ratio prediction is generic to some SUSY models [87] that have the

)2 ~ 1072, (4.61)

down quark mass generated by the seesaw mechanism. It is not clear to us how this

prediction could be tested.

4.2.4 Conclusion

In this paper we have presented a supersymmetric GUT model based on the gauge
group SU(5); x SU(5), x SU(5)3. The Higgs fields and the matter fields are assigned

to transform under the different SU(3) groups in asymmetrical pattern. Exotic Higgs
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fields £, £, Ty, T» and T are needed to break the GUT gauge group down to the
SM gauge group SU(3)c x SU(2)L x U(1)y, and also to relate matter fields which
transform under different gauge SU(5)’s. The discrete global symmetry Zretter x 73
is imposed at the reduced Planck scale in such a way that some dangerous terms in
superpotential are disabled and a weak-scale p value for light Higgs doublets can be
obtained. However, this discrete symmetry is the only flavour symmetry required in
our scheme. The fermion mass hierarchy is a natural outcome of the gauge structure
presented in this model. That is, it is the breaking of GUT gauge group but not
the breaking of flavour symmetry that generates the fermion mass hierarchy in our
model. In Section 4.2.1. we have shown that realistic fermion mass matrices can be
the result of this mechanism. The fermion mass relations and the CKM angles are
estimated to be consistent with measured experiment data at low energy. The exotic
Higgs fields also play important roles in predicting realistic down-quark and lepton
mass relations. The fields & and T; allow us to obtain the Georgi-Jarlskog relation
between the leptons and down quark masses. and also more general relations that
may be required by experiment.

This model does not forbid the dimension five operators that could result in nu-
cleon decays. In fact. there are allowed tree-level dimension five operators in the
superpotential. However, these tree-level terms are suppressed by powers of the su-
perheavy scale M and thus are not important in discussing the proton decay. The
proton decay in the model is mainly due to Higgsino-exchange processes. The domi-
nant mode of proton decay in the model is the process p — K*D,, the same dominant
mode as in minimal SUSY SU(5) model. Due to the VEV pattern of the field ;.
the leading term (1 T3/M 210,10, H terms in the superpotential does not participate
in the heavy Higgs triplet exchange process and thus gives zero contribution to the
proton decay. The next leading order contributions of proton decay come from the
term (T4/M*)10,10;H and quark mixing effects, which are more suppressed than
the leading order term (T1T3/M 2)10,10,H. Therefore, proton decay in this model
is highly sensitive to the changes of the scale ratio (T2)/M. The proton lifetime is
estimated to be larger than 103* years, depending on the exact (T,) /M value and the

unknown coefficients of coupling terms in superpotential.
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Models with product SU(5) groups were originally introduced with motivations
from string theorv. Our model shows that this structure may be interesting in its

own right as a possible explanation of the fermion mass spectra.

4.2.5 Appendix

If the Z3 symmetry is not introduced to the model, then all possible operators bilinear

in H and H that are up to the dimension 10 level are given as follows:

I $£ TE TLL  SLG (S5 (LEF
Weg = THH{I+ 35+ 35+ 35 5 v 3 © i

(EENTE) | 1

+ 7\[4 + 7\15[( S)ELT + TLG) + (LX) (SR + TTiLh)
5
+ Z 115 — SHTLTy)% Z T+ T3 + T3
3
A [(T1T2T3)2 + (ML) ELT) + (E1T3) + > (L) (X))}
k=0
£ TI' TWT,T; ILT; (S£)2 (TL,E)?
+ THH{l+ 35+ 35+t 5p T ap T
(""—‘)(TIE) Lul NATAS
, el (L4 14243 12 ){&4243 14243
+ Ve M5[ WETTs + TV TT3) + (T E)(EToTs + T ToTs)
5 1 _ _ 5 _ _
+ Z S S GRS T+ B+ T + 1 16 (T\T>T:)?
k=0
+ (T1T2T3)(ZT2T3)+(ET2T3)2+Z(T1 )4} (4.62)

k=0

The leading Yukawa coupling terms that give masses to fermions are also listed below:

i T, T2 T\ T:
W, = H{10310;+ ﬁllozm2 + 3510310, + 1»11 —1°310,10, +
$2 $3- ka (T2T3)2

+ 103102[Mz+z Ve + M4]
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T, T} | T2 & TFTEss—*

1 -1-2=
+ 10107 + = +k§=jo A )
+ .. } (4.63)
. T2T, + 2T = T+ % 13
|4 down—lepton — H{_10333 ‘HT—slo:;Dz —3—-131———102 3+ 1—1,102 I2
. HhE+SX TLT:+EThT;
~+ 10301( [ :\{2 - + - IYE
+ (TIS)2 +(hY)(EX) + EE)Q]
Art
T T3T2 ) T,T?
MRS veuay Al vt
1,1, T, T2
-+ ;‘[2 101 o2 + }\[3 10101 =+ - } (-16-1)

From (4.63) and (4.64). a hierarchical and texture of fermion masses is still present
in the model even without introducing the Z3 symmetry. This can be seen by the

following fermion mass matrices.

(s)€1€3 (s)6.163 + &% + £:£2p7 £
(CPlaw, = | (s*)6&} + €130 3 (a)p® + &0 + E2p |(4.63)
&2 PP+ 60+ Ep 1

(668 &&+p Eh+Eipp

(Down)g,, = £1&2 &3 p*&; (4.66)
\ 6163 &&+p 3

[ 618 (5)6Es+(a)p Ep+E1pp

(Lepton)s,r, = &1&2 (5)&s £2&; (4.67)
K £1€% (s)&Es+ (a)p &1

From the above matrices, the approximate texture zero structures will be present as a
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result of the gauge structure of the model. The up quark mass matrix (4.65) becomes
slightly asymmetrical due to the VEV structures given in Eq. (4.21) and the gauge
structure of this model. The coefficients (s), (s?) and (a) in the above matrices indi-
cate the additional factors that come from the constants s and a in the VEV (73) and
(). All together, these make the down quark and the lepton mass matrices different
from each other even though they arise from the same superpotential Wyown—tepton-
Without imposing Z3 svmmetry onto this model, if we forbid possible dangerous
dimension three and four operators by introducing ZJ**"*¢” symmetry. there could still

exist some leading tree level operators that would mediate proton decay.

(1 +—Sf: + i‘;‘ +o) =% 3310110 10,5, (1.68)
1+ % + :;1—4; +-- )(252) 10;10;1055,. (4.69)
(1+ ?;‘ + % + - )7;3[; 10;10,10,5;. (4.70)
(1+ % + % +-- -)7:;210110110251. (4.71)
(1+ %E + % + - )1;2 10,1021053,. (4.72)
(1+ :422 + i‘p + .- )TEQ 10,10,10,5,. (4.73)
1+ i:; :';42 + - )-1%10110110301, (4.74)
1+ ]Zu‘; + 7;‘; + - -)fl—ilo 10,1033, (4.75)
1+ %i; + i};‘ +- )Hgmzmaloaol, (4.76)
1+ fﬁ + % + - )7;"’5102103103;)2, (4.77)
(1+ ;‘422 + F‘?ﬁ 4. )%10210210301 (4.78)
(1+ 2;: + i}f +-0) ZE;I‘ 10,10,1035, (4.79)
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The above non-renormalizable operators, if they exist in our model, would give effec-
tive dimension five operators that violate baryvon and lepton numbers. By the scale
ratios given in Section 4.2.2, we find the largest two coupling strengths in the list to
come from Eq.s (4.72) and (4.78)

sin @53 sin € @ ~ sin @
CAIQ [o4

(T,) 1075

-23 1
Ve Y 0O(107%°) Gev

> 0(107%%) GeV L. (4.80)

where the superheavy scale A is taken to be the reduced Planck scale. This result
would predict a proton lifetime which is about 10? times shorter than the current
experiment limit. Fortunately, if the Z; syvmmetry is introduced. some of the tree-
level terms in Eq.s (4.68 ~ 4.79) are forbidden. We are thus left with the leading
tree-level terms of Eq.s (4.68). (4.70) and (4.77).

(TLS) T z A (LE)T3) 1077 |
M2 AL 10110:1025. M- M5 i (4.81)
(1:%) Is> 5 A (LE(TE)  107H N
M2 OAL3 10110:1025:. M= AL M (4.82)
T3 . A L (TS 1071
]l343 10210310352, i sin 62, (]\3{3> ~ =7 (4.83)

These terms are much less important than the Higgsino-exchange processes in Eq.
(4.59) and (4.60). Therefore, they could just be ignored in discussing the proton

decay in this model.



Chapter 5

SUSY GUTs based on SO(10)? and
SO(10)3

5.1 Introduction

The Standard Model (SM) provides a successful description of physics up to the weak
scale. However, it provides some 18 parameters which are input by hand to fit ex-
periment data. Most of these input parameters are associated with flavor physics
and are included to parameterize the fermion mass hierarchy, Cabibbo-Kobayashi-
Maskawa (CKM) angles, and neutrino oscillations. Many theories. either supersym-
metric (SUSY') or non-supersymmetric, are constructed to address the flavor problem
and, hopefully, make predictions on new physics. Among these theories beyond the
Standard Model (SM), supersymmetric grand unification provides an elegant frame-
work that explains not only the gauge quantum numbers of fermions transforming
under the SM gauge group SU(3)c x SU(2)r x U(1l)y. but also the prediction of
as(Mz). This remarkable success of the prediction of a;(Mz) motivates further ex-
ploration of SUSY grand unification [36].

Among the ideas of grand unification, gauge groups such as SU(3), Es, and SO(10)
are frequently used in GUT model construction {7, 37]. However, there are reasons
that make SO(10) theories more attractive than others. First, SO(10) is the smallest

74
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group in which all matter fields in one family can fit into one irreducible representa-
tion. Second, the two light Higgs doublets needed in any SUSY theory fit into one
10 of SO(10). This allows the Yukawa couplings of up-type and down-type quarks
to be determined by Clebsch-Gordan coefficients, thus making SO(10) theories more
predictive.

There is a problem with this approach, however. Typical SUSY SO(10) models
need to use Higgs fields in higher representations, the 126 or 45, to achieve successful
GUT relations for Yukawa matrices. These representations are complex in their own
right, and theories which contain tensor fields of rank higher than two cannot be
constructed from the simplest string-derived GUT theories [63. 64]. This motivates
the use of extended GUT gauge groups such as G x G or G x G x G. where G denotes
the usual GUT group. in SUSY GUT model construction [66, 81].

Supersymmetric GUT models based on the gauge groups SO(10) x SO(10) and
SO(10) x SO(10) x SO(10) have been discussed in the literature [66. 81]. In these
models. the breaking of the GUT gauge group was done when fundamental Higgs
fields in the (10.10) representation, acquire their vacuum expectation values (VEV's)
along the embedded diagonal subgroup directions of SO(10)? and SO(10)3. while
the spinorial Higgs fields ¥,. ¥, acquire VEV's along SU(5)-preserving directions.
Four sets of the (10, 10) fields carrying charges of different discrete symmetries were
introduced: the large number of fields is needed not only to achieve the desirable Higgs
doublet-triplet splitting, but also give the desirable asymmetry between the up and
down quark mass matrices. As a result, typical predictions of SUSY GUT SO(10)
models, such as the top-bottom Yukawa unification A\, = X, and Clebsch-Gordan
relations in Yukawa matrices are not valid in their models.

In this paper, we follow the idea of using SO(10) x SO(10) and SO(10) x SO(10) x
SO(10) as the SUSY GUT gauge groups. However, we show that the traditional mer-
its of the SUSY GUT SO(10) models can be preserved in our SO(10)? and SO(10)*
model construction. Although it is motivated from the string constructions, our model
construction is self-contained and does not make explicit reference to string theories.
In our models, all Higgs fields are in the fundamental representations of the gauge

groups and no rank two tensors of any SO(10) gauge group are required.
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In section 5.2, we show that the extended GUT gauge group breaking can be
implemented when Higgs fields acquire VEVs along diagonal SO(10)p directions, di-
agonal SU(5)p x U(1)p directions, or other diagonal directions. Most importantly.
we argue that the effective adjoint fields for each SO(10); group can be formed by
combining two VEV-acquiring Higgs fields. In section 5.3, we construct an explicit
model based on SO(10)2. We show that the Higgs doublet-triplet problem is natu-
rally solved through the Dimopoulos-Wilczek mechanism [47] without destabilizing
the gauge hierarchy. The doublet-triplet splitting mechanism also guarantees strong
suppression of proton decay, since the contributions from heavy Higgsino triplet ex-
change diagrams are absent or highly suppressed. We also show that this model gives
Yukawa matrices of the type similar to Georgi-Jarlskog ansatz. An explicit model
which was analvzed by Anderson et al. [16] is constructed by using effective adjoint
operators. In section 5.4, we present an SO(10) x SO(10) x SO(10) model with each
family of matter multiplets transforming under different SO(10) groups. In section

5.5. we make our conclusion.

5.2 Effective adjoint operators for SO(10)

As pointed out in the literature {66, 81], the breaking of extended GUT gauge groups
G x G and G x G x G can be achieved by a set of Higgs fields in the fundamental
representation. For example. an SO(10); x SO(10), model breaks down to its diagonal
subgroups when fields in the fundamental representation (10, 10) develop VEVs. We
will denote (10, 10) fields in this paper as S or Z depending on the VEV patterns. We
denote fields with the following three canonical patterns of VEVs < Sy >. < 5p_1 >,

< Sr,, >, corresponding to

_Up 10 . -
< Sxy >= Wit (o ) ® diag(1,1.1,1,1) (5.1)
< Sp_1 >= % -( (1) (1) ) ® diag(a,a.a,0.0) (5.2)
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< Sp, >= % (1 %) ®diag(0,0,0,b,). (5.3)
The VEVs of Sy, Sp_r, and Sr,, break SO(10); x SO(10); down to its embedded
diagonal subgroups SO(10)p, SO(6)p x SO(4), x SO(4)2, and SO(6); x SO(6)2 x
SO(4)p respectively. Usually, a tree level superpotential has many SUSY vacua which
include the VEVs in Eq. (5.3); a typical form includes
Wo /\—Q‘KTI(SST) + ‘—QT{[—(’l'r(SST))2 + %Tr(SSTSST). (5.4)
However. there are other SUSY vacua which lie along the direction of the embed-
ded diagonal SU(5)p x U(1) p, or other directions such as SU(3)p xU(1)p x SO(4); x
SO(4), and SO(6); x SO(6); x SU(2)p x U(1)p. We denote the associated (10.10)
fields as Z and again refer to the VEV patterns using subscripts:

<Zy> = %—o'( ° 1) g diag(2.2.2.2.2)
Us -
<Zp.L> = Vet (% 1)@ diag(2a/3.22/3.2a/3.0.0)
< Zr, > \’/‘—i_o (°}) ® diag(0,0.0.5/2.b/2). (5.5)

As an alternative to generating scales or VEVs by minimizing a tree level su-
perpotential. it has been shown that the scale < Sx > could also be dynamically
generated through a strongly coupled supersymmetric dynamics [88]. Following the
same line of thinking, we can introduce two supersyminetric gauge groups SU(N,) and
Sp(n.) with fields in their fundamental representations q(/Ve. 1, 10. 1), g(NV..1.1.10).
and Q(1, 2n., 1, 10), where the numbers in brackets denote the dimensionality of each
field under the two strong groups and the GUT gauge group SO(10); x SO(10).
With the imposition of some discrete symmetry, say Zy x Zg, that keeps the field
Sy from coupling directly to Zx, the lowest order of tree level superpotential is given
by
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A B

Wiee = oNav =% * 2R3

Z2K + M Sxqd + 22 (SxZx)®Q%Q°  (5.6)

where A and 8 are coefficients, M is the superheavy scale or Planck scale. To this

should be added the dvnamical superpotential resulting from the strong dynamics.

(3.7)

. C  [A-10]¥-m D A2 | remi=s
|4} dyn = +

N, — 10| detgqg +1-5 | Pf(QQ)

By stabilizing the superpotential in Egs (5.6) and (5.7) along the < Sx > and < Zx >

directions. we obtain the following equations for the VEV's:

A 2v-1 5C lAzsz]%T 3 10D [Als]\_o \3
-4 s

- A=0 3.
Arz2a =39 N (ne+1)s | M\, Ay 2 (5:8)
B o)K_l 5C /\282 ncsq.l 3 -
— " -+ Ay =0. .
Af2K=3 (ne + 1)z [M-\l 1 =0 (59)

where s = 1‘3/\/I6 and z = 21!10/\/1—0. It is easily seen that solving Eq.s (5.8) and
(5.9) would lead to nonzero vp and vjo. and thus the desirable VEVs < Sx > and
< Zx >.

Given VEVs of the S and Z fields. we can form effective rank two tensors which
carrv quantum numbers of the gauge group SO(10), by combining any two of the S
and Z fields. In this way, we can form effective adjoint operators of SO(10),. which

we call ¥ and ¥’, given by

T = Tn(Z%Sx) = Z3SY¥.
st , = Tr(Z5_1Sx)=ZF L S¥. v =T (S% 1 Zx) =S¥, 2%
sk = Tri(ZL,5x) = Z8,S¥. % =Tr (SR Zx) = S§,Z5 (5.10)

We can also form effective identity operators of SO(10),, such as I = Tr;(S%Sx) or
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I' = Tr;(Z% Zx). Reciprocally, we can form effective adjoint and identity operators of
SO(10);. All of these effective tensors can arise physically from integrating out heavy
states which transform under one of the SO(10)’s. For example, we can generate the
structure Tr, (Z7 Z’) by integrating out the heavy states 10, and 10} from the following
superpotential:

My10,10) + 10,210, + 10, 2'10) —» %I-mzm(zTZ')m; (5.11)

Once we are equipped with these effective rank two tensors. it is possible to construct
supersvmmetric GUT models with realistic fermion masses and CKM angles. A
svstematic analyvsis of the construction of SO(10) GUT models has been done by
Anderson et al. {16]. Our treatment. with the £. £'. I and I" effective fields. now

maps directly onto that analysis.

5.3 A SUSY SO(10) x SO(10) GUT model

In this section, we present an example based on the Sx and Z VEVs which demon-
strates that typical SUSY SO(10) GUT predictions can actually be preserved in
50(10); x SO(10), gauge theories with experimentally acceptable Yukawa matrices.
We assume four fundamental Higgs fields Sx, Zx, Zg—-r. and Zr,,; of representation
dimensionality (10, 10) in our SO(10)? GUT model. We construct the superpotential
so that each of the (10, 10) Higgs fields acquires a VEV along the indicated direction

as described in Section 5.2.

5.3.1 Higgs doublet-triplet splitting

The Higgs structure is constructed by the requirement of Higgs doublet-triplet split-
ting. Higgs triplets, if they are not heavy enough, could contribute to the evolution
of the gauge couplings, and thus spoil the unification of the gauge couplings. In ad-
dition, Higgsino triplets may also mediate fast proton decay. So we might begin by

analyvzing the constraints imposed by the splitting mechanism.
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In conventional SO(10) models, Higgs triplet fields may acquire heavy masses by
coupling to the adjoint fields which have their VEVs along the B — L direction

"V(Hl,Hg) = H,AH,, with
<A> = V-(° [)-diag(1,1.1,0,0), (5.12)

where H; and H, are the fundamental Higgs fields, and A denotes the adjoint Higgs
field which acquires its VEV" of the Dimopolous-Wilczek forms. As seen from Eq.
(5.12), the triplet fields in H; and H, get heavy masses 1° and splitted from their
doublet partners.

In our SO(10) x SO(10) model, among the four fundamental Higgs. Zg-. and
Zr,, acquire their VEVs of the Dimopoulos-Wilczek (DW) forms through the sta-
bilization of a tree level superpotential as in Eq. (5.4). However, the DW forms
of VEV's may be seriously destabilized when some cross coupling terms. such as
Tr(ZL 1 Zrg) = 28 1 28 Tr(Z% Zs-1). Tt(Z% Z1,y)- and Tr(Z5 Zp- 1) are present
in the superpotential. For instance. the presence of the term Tr(Z% Z1,,) would desta-
bilizes the gauge hierarchy in Zr,, since the F-flatness condition Fz; = 0 would give
a term proportional to Zx. As a result. these cross coupling terms must be excluded
to implement the DW mechanism for the Higgs doublet-triplet splitting problem. Al-
though SUSY allows unwanted superpotential terms to be dropped by hand. it is less
arbitrary to forbid them by a discrete symmetry.

Barr [82] has suggested that a discrete symmetry may do the job of forbidding
the above cross coupling terms. In our model, there is a possible choice K = Z{ 3R %

T - : .
Zy3% x ZB~L x Z} x Z2, and under which the various Z fields transform as

ZPR . Zpp — —Z,
ZZT:’R : ZTsR — —ZT:;R
Zzs_L Z ZB—L—)_ZB—L

51 : SX — 667“/55);

252 : (SA',Zx) __)6271'1‘/5(5}(.2)(). (513)
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The Z2-L and ZI*® symmetries in Eq. (5.13) are designed to forbid the dangerous
cross coupling superpotential terms noted above but still allow the coupling terms at

the quartic level

Tr(Zp-1Z5_[)Tr(Z1x2%,,) . [Tr(Ze-121,,)°
Te(Zp-125_1 25,25 ,) .  To(Zp-1Zf,Zs_LZ1,)- (5.14)

The terms in Eq. (5.14) might change the values of the scales appearing in < Zp_; >
and < Zr,, >. but they do not destabilize the DW forms of VVEV's. The last two terms
of Eq. (5.14) would have zero contribution to the F-flatness conditions. However. they
remove the would-be Goldstone modes that are not eaten by the gauge bosons in the
fields Zg_1 and Zr,,. The Zg“;’" discrete symmetry prevents the effective identity
operator Tr;(Z%Zr,,) from coupling to the spinorial superheavy states ¥, and 0
in our model. However. this Zg 3R svmmetry is basically construction-dependent and
may not be necessarily introduced into our SO(10)? model. We will come to this
point again when discussing fermion spectrum in the next subsection. In general. the
symmetry K would keep fields Sy and Zy from coupling to Zg_; and Z7;; up to a
verv high order, e.g. Tr(ZxZp_1)Tr(ZxZp-1S%) as implied by Table 5.1. Thus the
DW forms of VEV's are protected up to corrections of the order of the weak scale when
the GUT gauge group breaking parameters vp/M, vio/M and vs/M are sufficiently
small.

An explicit superpotential giving Higgs doublet-triplet splitting by the above

mechanism is:

[@]]

Wpr =10y Zp-1 10y + IOHISXZT3RIOHII + X10g~10g (5.13)

where 10, 104 and 10g~ denote Higgs fields in (1,10), (10,1), (10,1) representations
respectively. X is a gauge singlet! that acquires a GUT scale VEV and this makes
10y~ superheavy. The introduction of the singlet X is required by the fact that if

IThe singlet X may or may not be the effective rank two tensor fields I or I' depending on how
the K symmetry is chosen in our model.



CHAPTER 5. SUSY GUTS BASED ON S0O(10)? AND SO(10)? 82

104+10y~ is a singlet and present in superpotential, so is the non-renormalizable term
SxSx10g4/10g . This term SxSx 10z 104, if exists, will give superheavy mass to the
triplet states living in 105 and generates heavy Higgsino triplets exchange diagrams
that mediate proton decay and spoil the strong suppression of proton decay. As in
generating the effective rank two tensors, the non-normalizable term in Eq. (5.15)
may rise from integrating out heavy states in the (1, 10) representation. The insertion
of the field Sx in this term is designed to protect 10y from coupling 10g~ to a high
order level. In order to achieve DW mechanism, these Higgs fields must transform
non-triviallv under the discrete symmetry K. In general. there are many possible
ways of assigning A charges to all fields in our model. One assignment for the A’
charges is given and can be found in Table 5.1

Here it is clear that the discrete symmetry Z} x Z2 would play the role of for-
biding unwanted terms in superpotential. According to Table 5.1, the Higgs mass
terms Myy10410g5 and My g 105105 are forbidden by this discrete symmetry up
to (< X8 > /AMB8+ < X35%23% /A® >)105104 and < S3X* > /M 104 10p re-
spectively. and My y»10510y+ are verv highly suppressed by the discrete symmetry
K. Therefore. up to the order of weak scale, the mass matrix My, and Mg, for

Higgs triplets and doublets are given as

0 < Zp-L > 0 0 0 0
AIHT’: < Zg_L > <_5%\7’§_4_Z 0 'AIHD: 0 i.s%};iz <§‘-_f_[’rjﬂ>
0 0 <X > 0 < 5"—,%—,?3& > <X>
(5.16)

Therefore, as from Eq. (5.16), only one pair of the doublets in 10y would remain light
after the breaking of the GUT gauge group. However, as seen from Eq. (5.16). one
pair of the heavy Higgs triplets may receive a GUT scale Mg ~ vs mass. while the
corresponding Higgs doublets fields receive a mass v5v2/ < X > which is less than
the scale vs. This may affect the gauge unification in our model depending upon the
scale hierarchy between the two masses. Actually, this mass discrepancy results from
forbidding dangerous high order nonrenormalizable operators which also contribute

to the mass matrices My, and My, . If we assume that only renormalizable terms
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in superpotential are allowed at the superheavy scale M and all high order terms are
generated from the Heavy Fermion Exchange mechanism (HFE) [89], than the scale
ratio < Sx > /M can be of order O(1) thus all heavy Higgs states, doublets and
triplets, would have GUT scale masses m ~ vs and we have the gauge unification as
that of the minimal supersymmetric model (MSSM). In this paper. we simply assume
negligible effects on gauge unification caused by the mass discrepancy among the
heavy Higgs multiplets.

Finally, we discuss the implications for proton decay. Eq. (5.16) also implies a
strong suppression of proton decay. Since the high order operator S5 X %1010 /M®
is present, then the dimension 5 operators (dimension 4 in superpotential) that me-

diate proton decay are formed by exchanging heavy Higgsino triplets
2 QQ0L (5.17)
M- h 2
with the effective mass A"
A AP < ZB——L >2
< S3 X4 >

Here we use @ and L to represent the associated quarks and leptons in proton de-

~ 103! GeV' >> My, (5.18)

cay processes. The estimated value for Af" in Eq. (5.17) is obtained by assuming
M~ My. < Zg_p >/ < Sx >~ 1072, and < X > /M ~ 107% The coupling
strength parameter A ~ 1077 comes from multiplying the associating Yukawa cou-
pling constants in the color-Higgs exchange Feynman diagrams. To saturate current
experiment limits on proton decay [2], , the coupling strength A\/M* for the dimension
5 operators should be no large than about 1072* GeV™'. Obviously, the estimated
strength in Eq. (5.17) is far more less than the limit, therefore proton decay is highly

suppressed in our model.
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‘1’1 ‘112 ‘1’3 ‘1/4 ‘1’5 \Ile
(+.+,2-2) | (--.2-1) | (-+,2,-2) | (+,+.-1,-2) | (-,+.1,-2) | (-,+,-2.2)
v, ¥, Wy W, ¥s U
C+.0.0) | (+-0-1) | +.2,0) | (+.+.00) | (-.+.-2.0) | (-+.1,1)

U, Wg Sx Zx Zp-L Z1yp
(+,+.1.2) | (-+-1.2) | (+,+,3,1) | (-,+.0,1) (+.-,0,0) | (-,+.0.0)
U T s 16, 16, 165
(+,+.-2.1) | (-,+,0,1) | (+.--2,-1) | (+,4+,-2,0) | (+.+.2.2) | (+.+.2.0)

X 10y 10y 10y~
(+.+.-1.2) | (+.+.1.0) | (+-.-1.0) | (---2.-1)

Table 5.1: Fields transforming under the discrete symmetry Zhr x 7B-L x 7} x Z2.
All fields are Z;‘r 3R singlets except for the fields Zr;, and 104~

5.3.2 Fermion masses

Anderson et al. [16] showed that. with adjoint operators T in a SUSY GUT SO(10)
gauge theory, experimentally acceptable fermion mass spectrum as well as CK\ an-
gles can be obtained when these fields acquire their VVEV's and break the GUT SO(10)
gauge group down to Standard Model gauge group [16]. We can generate the same
Yukawa matrices by using effective higher dimension operators. These can be ob-
tained by integrating out heavy fields. Then. following the choices made by Anderson
et al., we show that viable fermion mass matrices, such as those incorporating Georgi-
Jarlskog ansatz [16, 11], can be constructed in the SO(10); x SO(10), model.

We need to introduce additional heavy fields in the 16 and 16 of SO(10),. We as-
sume that all other matter multiplets also transform under the gauge group SO(10),.
From Table 5.1 , it is easv to see that non-renormalizable terms at the quartic level.
for instance the ¥, Tr,(Z%Sx) ¥, are allowed to occur in our SO(10); x SO(10),
model. This term may come from integrating out a pair of superheavy spinorial fields

¥1(16,1) and ¥ (16, 1) from the renormalizable superpotential

W O MUV, +¥,5, U] + ¥ ZxT,. (5.19)
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where M! denotes the super-heavy mass of ¥} and ¥{. At the renormalizable level
with the generated quartic terms, the most general tree level superpotential consistent
with the discrete symmetry K in Table 5.1 and responsible for giving masses to quarks
and leptons has the form

Winass O 163163105 + 163551 ¥s + 1600110y + 16,55 ¥ + 16, Zx T3
+ U, SO, + Uy + U Tp 0y + UTx ¥y + U, T U5 + U5 ¥6104
+ UeTxT; + U5 U + X160 + 28: v,-1-7,. (5.20)
i=3
where the gauge singlet field X's is introduced to give mass to 16, and U, when
acquiring a superheavy VVEV.

From Eq. (5.20). only the third family matter multiplet 163 could get a mass of
weak scale due to the discrete symmetry A. When the effective adjoint operators Ty
and Tp_; acquire their VVEV's, the spinorial fields ¥, U, become heavy and can be
integrated out in the low energy effective theory. The higher dimension operators O,
that give masses to matter quarks and leptons are thus generated after diagonalizing

the mass matrices of these superheavy spinorial fields [16].

}:2
Oy = 16,105=27163

=X

XsZp-
On = 162103—52—:25—5162

X
Tx Tx _

012 = 161(—7&)310}1(—]&)3162 (021)

The generation for the O;; operators is much easier to be seen from the diagrams in
Fig.(5.1). As seen from Eq. (5.21), fermion mass hierarchy is explained due to the
hierarchy of the GUT breaking scales M > vp > vyp > vs. The effective adjoint
operators Ty and £p_; act on fermion states and give different quantum numbers

to the states as described in Table 3.1. As a result, Eq. (5.21) leads to the following
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163 163 162 /T\ T /T T /T 163
10, 10,4 Zx ZB-L 2y g,
(a) (b)
10, 2y Zgy 2y X
(c)
BES RS RSIEELE Y
16, T 16,
= 1 5 1 I I £, I £, 1 X
e X )2 10, X X P
(d)

Figure 5.1: Operators O;; that give Yukawa matrices are formed by exchanging heavy

fermion states.
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typical Georgi-Jarlskog ansatz for the Yukawa matrices at GUT scale

0 =C 0 0 -C 0
M, = <H>|LC 0 B My=<H>|-C E B
0 B A 0 iB A4
0 —C 0
M, = <H>|-C 3E B (5.22)
| 0 9B A

with 4 = O(1), B = v2/13,. C = 27(2%,/¢$). and E = vsM < X5 > /(vpriy). As

seen from Eq. (5.22). we have the following successful GUT relations

A= = A (5.23)
My it = 0:1:3 (5.24)
m.=my. .m, = 3m,. Mg = 3Mm.. (3.23)

where \'s denote the effective Yukawa coupling constants for corresponding mass

operators.
Conclusively. it is suggested that the breaking of our GUT model is arranged as

SO(10); x SO(10); =2 SO(10)p =% SUBG)p xU(1)p
25 SUB)e x SU(2)L xU(1)y. (5.26)

with approximate ratios vp/M ~ 1/30, vio/up ~ O(1071), vs/v10 ~ O(107%). and
< Xs >=< X >= vpvs/M. Detailed analysis for the mass operators O;; can be
found in [16], and will not be discussed in this paper.

As in more familiar GUT SO(10) models, we can also analyze the neutrino masses
in our SO(10); x SO(10); model. First we observe that the matrix M,., for Dirac
masses of neutrinos has a nonzero 22 entity also coming from O,;. and is far from

identical to the up-quark mass matrix.
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0 -125C 0
My,=<H>-| -125C -£E B (5.27)
' 0 2B A

Since 125C is almost the same order of magnitude as A. the Dirac mass matrix for
neutrino is no longer as hierarchical as quark and charged lepton mass matrices. To
form Majorana mass for the right handed neutrinos. we introduce a set of spino-
rial Higgs fields Wy:(1.16), ¥y:(1,16) which VEVs preserve the SU(5), subgroup of
S50(10),. In general. the following neutrino mass operators can also be formed from

heavy fermion exchanges

7 Z(‘p‘ Ta™ ¥y, )(16,T12916;). (5.28)

where i.j are flavor indices. For simplicity. we would assume the Majorana mass
matrix Mp for right handed neutrinos to be a diagonal matrix. Thus. from Eqs
(5.27) and (5.28). the effective left handed Majorana mass matrix is

My, =~ M AMZ AL, (3.29)

ver-

Taking C/E = =~ 6/25 as implied by the Cabibbo angle. it thus lead to the

following three .\Iajorana eigenmasses for left handed neutrinos

m?2 (125mgqtan3)? (125mgtan3)? }
m,. = N O .omy,, = . (5.30)
TRy MR, MR,

Although all the VEVs of ¥y, need not to be the same, we might take all < ¥, >

to be equal to vyg for illustration. This gives mg, = mg = 2 x 10! GeV\ and leads
to m, ~ 1/20 e\, m,, = m, ~ O(1073 eV) for tan3 = 45. Visible v, — v, and
v; — v, oscillations with very small neutrino oscillation angles sin?2625¢ and sin?2625°
are favored when taking such assumption. However, other mass spectra for left handed
neutrinos as well as large neutrino mixing angles may be obtained [90. 23]. This is

because the right handed neutrino mass matrix A/ may itself be nontrivial and have



CHAPTER 5. SUSY GUTS BASED ON SO(10)2 AND SO(10) 89

SO(10); SO(10); SO(10);

Sx 10 10

Zx 10 10
Zp_1 10 10
Zr.n 10 10
Z's_1 10 10
Z' o 10 10

105 10
10/, 10

107, 10

16, 16

16, 16

165 16

Table 5.2: The field content of the SO(10); x SO(10), x SO(10); model.

a hierarchical structure in our SO(10)3 model.

5.4 An SO(10) x SO(10) x SO(10) model

It is straightforward to extend the GUT gauge group to SO(10); x SO(10)2 x SO(10)3
and have all matter multiplets transform under one of the SO(10) gauge groups.
However, this extension is basically a replication of the SUSY GUT SO(10); x
SO(10), model described in the previous sections. Different from the above di-
rect generalization. in this section, we assign each matter multiplet 16; to trans-
form under different gauge group SO(10);. We also assume the existence of the
three Higgs fields 105(1.1,10), 104-(1,10,1), and 105+(1,10,1), and a set of fun-
damental Higgs fields Sx(1,10.10). Zx(1,10,10), Zp-r(1,10,10), Z1,,(1.10.10).
Zy_;(10,10,1), and Z7, (10, 10, 1) for implementing the DW mechanism. The com-
plete set of assignment is shown in Table 5.2.

The fundamental Higgs fields acquire their VEVs along some GUT breaking di-
rections as described in the previous sections. To protect the DW forms of the VVEVS.

some discrete svmmetries above the GUT scales must typically be expected to restrict
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possible tree level superpotential terms. Without giving the discrete symmetries ex-
plicitly, we note that the superpotential responsible for giving heavy masses to Higgs

triplet fields must be restricted to the following form:

1

104251105 + e

].OHISXZTmlOH'l + X 10y~ 10g, (3.31)

where M denotes the superheavy scale and X is again a gauge singlet with a GUT
scale VEV. By the HFE mechanism mentioned in Section 5.3. the second term in
Eq. (5.31) may also come from integrating out some superheavy states. In the worst
case. if all allowed nonrenormalizable operators are present in superpotential. the
gauge hierarchy as well as the DW forms of VVEV's could still be protected up to a
very high order by some discrete svmmetries. As a result, only the pair of the Higgs
doublets states in 10y remain light down to the weak scale and proton decay could
be suppressed strongly.

In the following. we will briefly discuss the construction of realistic fermion mass
matrices without going into details of how the fields transform under the needed
discrete symmetries.

As usual. only the third family of matter multiplet 16; gets a weak scale mass
through the tree level dimension four operator O33 = 163163104. Other O,; operators
are generically nonrenormalizable because 16, and 16, both carry no SO(10); gauge
quantum numbers. However, it is impossible to form O;; operators for the off-diagonal
entries of fermion mass matrices by simply using matter multiplets and the Higgs
fields in fundamental representations. A set of additional heavy fields in the 16 + 186.
¥y and ¥y, which transform under the GUT gauge group as (16.1.1), (16.1.1).
(1,16,1), (1,16,1), (1,1,16) and (1,1,16), must be introduced into the model and
acquire VEVs along the SU(5); singlet directions. The VEV’s can be stabilized by

the superpotential of the following form
Y (002 /A2 + F(Y). (5.32)

where Y is a singlet field and f(Y}") is a polynomial function that contains a linear
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term. Notice that the would-be Goldstone modes in the spinors ¥y; and ¥y can be
removed by adding superpotential terms similar to Eq. (3.45).

Although there are many possible nonrenormalizable operators which may or may
not survive from imposing the discrete symmetries, the following high dimensional
operators could also arise from the HFE mechanism, and are interesting because thev

may help to realize the Gerogi-Jarlskog type of Yukawa matrices in the model.

1 - -
O = (P13~ Sx-Sx-162) - (¥3- 10y - =5-163) (5.33)
~X
Te-L }
Oy = (162 Sy = 165) - 10y (3.34)
—X
O = (Wy, - Z%_, -161) - (Ty; - Sx - 163) - 10y (5.35)
02 = (¥, -Zy, -16,) - (T, - Sx - 165) - 104 (5.36)
\'*3
On = (Wi Zpy Zp ;- 161) - (W1, Sx - 5162) - 10p (5.37)
\"3
O = (Wi Zn, - Zr,, - 161) - (Wi - Sx - 53162) - 104 (5.38)
. T3
OF = (Wi, Zpr - Zr, - 161) - (¥, - Sx - 53162) - 104 (5.39)

Again, the effective adjoint operator ¥ of the gauge group SO(10), gives different
quantum numbers to the fermion states in the matter multiplets 16,. Since the Higgs
fields Zp_; and Z7,, must at least carry different charges of some global Z; symmetry
to avoid the breaking of gauge hierarchy, we thus need two additional VVEV-acquiring
spinors ¥'y; and ¥’y , where i = 1,2, to make the operators O;, respect the Z,
svmmetry.

Let us parametrize the contributions of the operators 16316310 and the O, as
A B.E,... In the case that only 16316310y and the O,; operators give dominant

contributions to fermion masses, the fermion mass matrices become
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0 C® o 0 c o
M, = <H>|C® 0 B/, My=<H>|27C® E 0
| 0 B A 0 B A
0 27C® 0
M, = <H>|c® 3E 1lB],
L0 o0 4
0 27(C® +CW +C®) ¢
My, = <H>-|C® —LE 1B |. (5.40)
0 0 A

where A, B, E, and C¥ come from the contribution of the operators Og;. Oos.
O, and 0§’2’ respectively. Again, the numbers shown in Eq. (5.40) are Clebsch-
Gordan coefficients. From the mass ratio m,/my, we may estimate that the ratio
C® /CM) =~ 1/27. Therefore, to realize an experimentally acceptable fermion mass
matrix, as implied from Eq. (5.40), the breakdown of the GUT gauge group SO(10); x
50(10)2 x SO(10); may take the following steps

SO(10)} —s SU(5); x SU(5)2 x SU(5);  at < Uy, >~ M

— SU@B)e x SUQ)L x Ul)y  at vs =~ -31—0.7\1, (5.41)

where M =~ 6 x 107 GeV, vp = v1p = vs, and < X5 > Jvs ~< X§ > [vs ~ 107!
are assumed. In this GUT group breaking scenario, the SO(10)® GUT gauge group
would first be broken down to SU(5)3 by the spinorial Higgs fields ¥y; and ¥y:, and
then breaks into the embedded diagonal subgroup SU(3)¢c x SU(2)r x U(1)y at the
GUT scale Mg = vs.

Neutrinos may acquire masses by the same mechanism described in the previous
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section. A set of spinorial Higgs fields with non-vanishing VEVs along the SU(5)-
preserving directions are necessary for giving Majorana masses to right handed neu-
trinos. However, none of the spinorial Higgs fields used in constructing the op-
erators O;; can be used in giving a Majorana mass to right handed 7 neutrino
v, since, otherwise, we would get the Majorana mass for left handed 7 neutrino
m,, = m2/M =~ 1/6 x 10~%eV > m,,,m,, which is disfavored by recent Su-

perKamiokande data [91]. Thus a new pair of spinorial Higgs fields ¥}, and ¥,

would be needed to give an acceptable mass to vivf

(B4, T B,) (16,T029)165). (5.42)

with < ¥}, >=< ¥}, >x vs.

As before. a non-trivial Majorana mass matrix MF for right handed neutrinos
mayv be present in the model, and heavily influence the Majorana mass spectrum
as well as neutrino mixing angles of left handed neutrinos. We will not discuss this

problem in detail in this paper.

5.5 Conclusion

Typical SUSY SO(10) GUT models require a variety of rank two tensor fields, such as
the fields in 45 and 54 representations, to be phenomenologically successful. These
rank two tensors, when they acquire their VEVs and break the gauge SO(10) group.
also play important roles in implementing the Dimopoulos-Wilczek mechanism and in
deriving experimentally acceptable Yukawa matrices. However, these representations
are complicated, and it is usually difficult for all the needed rank two tensor fields to
be generated by a simple string construction.

In this paper, we have shown that it is possible not only to implement the DW
mechanism but also to provide experimentally acceptable Yukawa matrices. In our
S0(10)? and SO(10)® GUT models, without introducing any rank two tensor fields.
the Higgs doublet-triplet splitting problem is naturally solved with strong suppression
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of proton decay when some Higgs fields of fundamental representations-acquiring their
VEVs in Dimopoulos-Wilczek forms. Also, unlike other SO(10)? and SO(10)3 models
in the literatures [66, 81}, effective adjoint operators of at least one of the SO(10)
gauge group can be formed when combining the S and one of the Z fields in our
model. This allows us to construct realistic fermion mass matrices with successful
GUT relations such as top-bottom-tau unification A, = Ay = A, m, = 3m,, and
mq = 3m,.

On the neutrino mass problem, as in conventional SO(10) theories, some spinorial
Higgs fields in the 16 representation of the corresponding SO(10); gauge group are
necessary for making effective v°v° mass operators. When acquiring VEV's that pre-
serve subgroups SU(5); for each corresponding SO(10);. these spinorial Higgs fields
give superheavy Majorana masses to right handed neutrinos. Small Majorana masses
for left handed neutrinos are thus generated from see-saw mechanism. However.
further understandings on the neutrino sector will be needed in our models for con-
structing the mass matrix for right handed neutrinos. and also for understanding the

mass hierarchy/splitting as well as the mixing angles among left handed neutrinos.
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