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1 Introduction

Let us give first an overview of the idea for the Asymmetric B Factory and then sum-
marize the goals of this thesis. ]

The main physics motivation for the B Factory is a full and exhaustive study of
CP violation (a small deviation in Nature’s otherwise symmetric order that has been
clearly observed but whose origin remain a mystery), using the rich spectrum of B
meson decays. The rich resonance structure above the § quark threshold is called the
upsilon (T) system. The first three prominent resonances are the lowest-lying S states
of a bound 5b quark system. The narrowness of the resonances reflects their stability
against strong decays; the states have insufficient energy to decompose into a pair of
mesons, each carrying a b quark. The fourth state, T (4S) 3, has just sufficient energy to
decay to a pair of B mesons (B and B); this decay totally dominates the disintegration
of the T(48). The T(4S) is thus an ideal laboratory for the study of B decays. In order
to measure CP Asymmetries, the experiment involves measuring the time difference
between the decay points of the two B mesons produced in the decay of the T(4S). It is
the need to measure this difference that is responsible for the energy asymmetry of the
accelerator. With modern detectors it is possible to measure the distance between the
decay points of two B mesons with a resolution of about 50um. If a B meson facility is
run with equal beam energies, the T(4S) is produced at rest in the laboratory and the
two mesons do not propogate very far before they decay. The typical distance between
the B meson decay points in this equal-beam energy geometry would be about 30ym, a
distance too small to discern with today’s detectors. The solution to this dilemma is to
boost the T(4S) in the laboratory frame by running the storage ring with unequal beam
energies, hence the name Asymmetric B Factory. The asymmetry denotes the difference
in energy between the electron and positron beams. For example, if one chooses 9 and
3.1 GeV for two beam energies (E2, = 4E;,,Ey;,) the center-of- mass energy is thus
that of the Y(4S) with the average distance between the two B meson decays - 180um.
The justification for an asymmetry in the beam energy is now clear: it is required
to give the T(4S) system a sufficient Lorentz boost to provide a measurable ¢, — 1,
distribution. But how large does the asymmetry need to be? A precipitous dependence
on the asymmetry for energy choices below 8 GeV was found. To remain safely above
this region the energy of the high- energy beam is set at 9 GeV. So B Factory is a high-
luminosity electron- positron colliding-beam accelerator that will operate in the 10-GeV
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center-of-mass energy regime (the electron and positron beam energies were chosen to
be 9 and 3.1 GeV, respectively.

High luminosity asymmetric B-Factories with separate beam trajectories require fi-
nal focusing and bending magnets to be located inside the magnetic field of the detector
solenoid. It is not possible to align the solenoid axis with both of this separate beam
trajectories. So one of the trajectories must pass through significant radial fringe field
components of the detector solenoid (recent discussions show that for decreasing signif-
icant radial fringe field it is better to have both beam trajectories misaling the solenoid
axis). The total magnetic field acting on the two separate beams * is a complex su-
perposition of three dimensional fields from solenoid, quadrupole and bending magnet,
which in our case are connected with different axis. Such uncompensated solenoid field
at the intersection point couple the horizontal and vertical betatron oscillations, disper-
sions and emittances, that lowers peak luminosity attainable. In order to account the
influence of solencid fringing fields it is necessary to expand the magnetic field through
high order. The goal of this thesis is to understand the effect of linear coupling for
the B Factory tilted solenoid with the expansion of the magnetic field . The new code
for the computation of the transfer map is given. The theory of this thesis is based
on Hamiltonian formalism. It is useful to describe the idea of integration of Hamilto-
nian equations, to discuss what happens with a phase space portrait in the cases of
symplectic and not symplectic maps. Here is also shown that use of not symplectic
integration gives a good model in special cases. The actual compensation of coupling
is done by means of 4 tilted quadrupoles on each side of the IP. Some applications of
transfer matrix (including blow-up of emmitance) are also discussed.

2 Theory of linear cdupling

Inside of solenoid the longitudinal magnetic field component B, = const. At the solencid
end the field is radial: ) 5B

So near solenoid axis the end field is given by:

B, = ~(3B)s

4For simplicity the next discussion will be done only for single (HE) beam



1
B, = (3B

And for force we have: .
F,= E(‘U,,B, b U,B”)

F,= -Z-(—v,B. +v,B;)

This yields the following equations of motion:

e e 8B,
2" = uBit Cvegsy
e e OB
y" = —=v.B, —v.-2—6—jx
Using %,%‘ + %%’- + %‘- = (, we obtain
e e OB
3!” = 'c-vyB' - _c'v‘ ayvy
y” =—-v. 8, + ev'aBzm
oz

Let us denote the radius of curvature of the equilibrium orbit by p and the y-component
of the ideal magnetic field at the equilibrium orbit by B, so that our equations become:

" 1 8B, 1 ,
g ==Yy _ B,
T = 1B oy Y T 1Bl

yo L 0B 1
|Bp| 8z~ |Bpl

B,z’

We can write the equations of motion in the presence of other external magnetic fo-

cussing fields, represented by k; and ke as

1 3B 1
" = v —
" _ 1 0B, 1
v+ by = e T B



where Bz, By, B, are the three field components and Bp is the magnetic rigidity. One
can rewrite (1) and (2) in another form [1]:

” 1
"+ bz = —(K + EM')y - My (3)

¥+ kay = —(K — -;—M')z + M< )
K(s) and M(s) are introduced like

1 2B. OB
K(s) = (6::: - ”)

Br] 3
1 ., 1 8B,
M(s) = 15,1 = 15| &5

The associated Hamiltonian might be found in the following way:

1 1 1
(' +5My)' =~z —ky = 5My' ; p. = 2"+ My

1 1 1
¥ - EMx)’ =—kyy—k:+ Mz ; p, =y — EMz

2
o
P =—kz— Ky — -M(py + MZ) =5
P, = —kyy — Kz+-M(p,——M y=-2H
Oy
H = 5(ka® + bay® + 2Ky + (p = sMy)? + (5, + EM)) (5)

The general solution of Hill's equation, i.e., linear equations with periodic coefficients
and without first derivative terms, are given by well known Courant-Snyder theory [9]-
Representing by z either z or y we have:

z = au(s)cos(Qéd + 8) = A’ + c.c. (6)

where u(s) = /B, ¢ = [-& 35> @ denotes the number of betatron oscillations per
revolution. The term c.c. denotes the complex conjugate. The arbitrary constants
a,6 or the complex constant A = ;e" are determined from initial conditions. From



dz .. 8H d 8H

the canonical * equations £ = bpc ' L = by, W€ can also get the expressions for p.
and p,. In order to get the expression of H as function of (4;,s) we have to put the
expressions for z, y and p;, p, into the Hamiltonian, Eq.(5). Knowing the expression for
H(A;, A;,s) it is possible to find the explicit form of 4;. That was done by Guignard
[1]. The proportional coefficient in the expressions of A; is given in the general form
(using n = %1 for difference and sum resonances respectively) by Guignard theory [1]:

= o fVER [ G - S - JM - )

emp(i[-— E+nfE+A;])ds | | (1)

‘Where A-distanse from resonance.

In such expression for k the real term represents the skew quadrupole field effects
and the image one represents the longitudinal field effects. f ds » $ 5 42 ore phases y: , pyg,
respectively. Therefore it is possible to compensate the eﬁ’ects of a long:tudmal field with
skew fields by virtue of the phase terms. In other words, a set of skew quadrupoles can
compensate both the random tilts of the main magnets and the solencids contribution.
So, as n = %1, we see from such Hamilton pertubation theory that in order to decouple
our equations it is necessary to use 4 decoupling skew quadrupoles. To show this fact
was the goal of the passage above..

In the case of B Factory tilted solenoid we should write the Hamiltonian with ex-
pansion of the magnetic field. This is done in the next section.

3 Hamiltonian of particle motion to arbitrary order

The Lagrangian for the relativistic motion of a particle with charge e and rest mass m
in a magnetic field described by vector potential A is given by the familiar relation:

2 . =
L= —mcz‘/l ~ %2- + %(FA) (8)

The position vector 7 in Eq. (8) refers to a fixed coordinate system. It is useful to
introduce the natural coordinates z,y,s. We assume that an ideal closed orbit (design

5The definition of canonical transformation is given in Appendix 5



orbit) exists describing the path of a particle of constant energy Ey.° We also assume
that the close orbit comprises piecewise fiat curves which lie either in the horizontal or
vertical plane so that it has no torsion.” The design orbit which will be used as the
reference system will be described by the vector 75(s), where s is the length along the
design orbit. An arbitrary particle orbit 7(s) is then described by the deviation &7 of
the particle orbit #(s) from the design orbit 5(s): 7(s) = 5(s) + é7(s) The vector
67 can usually be described using an ‘orthogonal coordinate system accompanying the
particles:
fi(s) — a unit normal vector
T(s) — a unit tangent vector
b(s) = 7(s) X i — a unit binormal vector
we require that the vector #(s) is directed outwards if the motion takes place in the
horizontal plane and upwards if the motion takes place in the vertical plane. So that
this vectors and their derivatives are connected by Frenet relations;
dF Ly dit L db’
5= —K(s)ii(s) 25 = K(s)T(s) —=0

such a representation has the disadvantage that the direction of the normal vector #(s)
changes discontinuously while the particle trajectory is going over from the vertical
plane to the horizontal plane and vice versa. So is more convenient to introduce new
unit vectors 7, €z, €, which change their directions continuously [4].

é(s) = n(s) if the orbit lies in the horizontal plane
23 = —8(s) if the orbit lies in the vertical plane
o) = B(s) if the orbit lies in the horizontal plane
VT fi(s) if the orbit lies in the vertical plane
the orbit-vector 7(s) can be written as:

(s, 2,y) = o(s) + z(s)€z(s) + y(s)y(s) (9)
in such definitions we have following Frenet relations:
déz S
T = KT

SNeglecting of course energy variations due to radiation loss
7is discussed in Appendix 1



using (9) and (10) we get:

1."'==.§(-—-+:c—-+y—-
s

or

F=7(14 K.z + K,y) + €, + §6,
Thus in our coordinate system z,y,s the Lagrangian becomes:
1.. . .
L = -mP{1- 5l +§"+(1+ Koo+ K,y)*@))
e,. .
+-£[:1:A,-, + Ay + (1 + Kz + K y)3A,}

with the corresponding Hamiltonian:
H=pz+py+p.s—1L

We defined the conjugate momenta as:

0L e m
pz"'b‘g—;Az‘l‘ 1._22.
]
oL e my
p_aL ms
Tl Ty o]
0s 1-%

Putting Eq.(14) and Eq.(12) into (13) one can get for the Hamiltonian:

me?

i-2

H=

(1+ Koz + Ky) + ~(1+ Koz + Kyy)As

(10)

(11)

(12)

(13)

(14)

(15)



And using the relation;

m¥?  m¥(&? + 9 + 321+ Koz + Kyy)?)

o
1-% 1-%
m?¢? 3.2 €.\ a2 Ps e, \
- =\Pz— —A:: - - =il
1—% m-c (p c ) +(Pll cAﬂ) + 1+Kz$+Kyy CA
we have:
| e e P e \?
= -_— 2 -_—— 2 L —_ - 2,2
H = ¢\l (p: cAz) + (py cAv) + (1+Kzz+K,,y cA') + m?c (16)
Let us denote K, = -f; (we assume K, = 0). The coresponding canonical equations are
given by:
s 0H . om
~ Opa Pz = Oz
. OH oH
=% P (17)
6H oH

§=

Op, P Os

In Eq.(17) the time ¢ appeared as independent variable, it is more useful to introduce
the arc length s of the design orbit as independent variable and define a new Hamiltonian
as K = —p,.

x, (H? e e T.e
K=—p,=—(1+;)\/-;:—2——m2c2-(p,-—-c- ,)2—(p,—;A,)'-’—(l+;);A.

Let us denote new variable § = 5;.—:'1 thus

- c T - e . e z. e
R=—pon ==+ D04 67— 0o - £ - G- AP -0+ D E,

as the term -’-"E‘ai)’ << 1 we dropped it here. 8 Since the variable £(s) increases without
limit, it is more useful to introduce the new variable * = s — ¢t(s), which describes the

3The general form of Hamiltonian H, including the term (m?%¢?) is given at the Ap-
pendix 3.



delay in arrival time at position s of a particle travelling at the speed of light ¢. The
further change of variables can be achieved using the generating function [4]:

F(Pa é’s) = F(p:-',pya 3;!’76, t‘.ya) = —Pzi - pyﬁ ~t"6+885+3
corresponding transformation equations:

oF

(ey=-2E  poia
- aF a
6= ~% 6=14
So that %—f gives additional term:
f(=I§’+Q§—=I'{+(1+6)
and the Hamiltonian becomes: ? |

z e e
=—=(14+=) /(1 +632~(p: — =A)? - (P, — =
R R
Since we have |(p, — 5-4,)| = |£mv;| << 1 (the same for z and z) the square root can
be expanded in & series. For B Factory solenoid we should also account contribution to
this Hamiltonian from bending magnet and quadrupoles. Expanding the form of our
Hamiltonian and accounting bending magnet and quadrupoles terms, we have:

Ag)"! + (1 + 5) - (1 + ;)E;A’ (18)

1 e e
H(,’L’,pz, y)?&ﬁt, 6; 3) = 2(1 + 6) {(Pz - ZAz)z + (Pv - ZAv)z] +
2.2 Koo o
oot o= (=) (19)

8B
where K; = 79?.-1 |s=y=0

4 Expansion of Vector Potential

In this section we are going to remind the expansion of solencid fields, which is given

by Ripken [4].

9ater K willbe=Handp=p

10



Figure 1: Radial field.

B =rotA =

E; )
R

B, = /B2 + B?

In the current free region (Fig.1) the radial field B, and the longitudinal field B, can
be written as power series [3]:

B, (z,y,38) = f; baysa(s)r?? ) (20)
Bz, = L bula)r™ @)

11



Putting (20) , (21) into the Maxwell equations:
divB =0 ; roiB =0
10 0 li] ij
rarl B ==

EEB' H '5:-31' = '5;_'3.

one obtains [4]:

3~ baea(s) (v + 2 = = 357 Thal) @

o0 d 0
STt —baga(s) = 3 baga(s) - (2v + 2)r*H! (23)
v=0 ds v=0

By equating coefficients of each power one then obtains:

b2u+1(3) = "(_2;1_"_'_27b'2v(3)

ba42(s) = v 1+2)b'2,,+1(3)

I we now define the longitudinal field on the s—axis B,(0,0, s) = bp(s), the coefficients

by, by, ba.... can be calculated. Though the field components in the field free region are
given by:

Bx(z,y,8) = ;B, =z Y bysa(s) - (2% + )
y=0

By(2,9,8) = LB, =y Y busa(s) - (a? +47)"
: v=0

Bu(z,3,8) = 3o bauls) - (2 + y)*

v=0

So the vector potential:

1
A= L)

1
All = z”: mbgy(s) cpty
A,=0

Now we can write Hamiltonian equations of motion.
There are many different ways of integration such differential equations. This ques-
tion will be discussed in the next part.

12



5 Integration of Hamiltonian equations

As it was mentioned above, many different ways of integration differential equations
numerically are exist. The methods are usually described by the accuracy of single
step in time. We have deal with differential equations, which are derivable from a
Hamiltonian. The exact solution of such a system of differential equation leads to a
symplectic map from the initial conditions to the present state of the system.

5.1 Symplectic conditions

Using the definition of canonical transformation !® for our transformation from the
initial conditions to the values at time ¢ we have:

lg,9:1=0 [pi,ps] =0 g, 0] =&;

or
(3‘1_i Oqx _ dq aqk) -0
7% \ 9o anO 8pi0 0gj0
Op; Opx  Opi 3p;,)
- =0 24
g; (3q,-o dpio  Opjo Bgjo (24)

(311.' 8p _ Ba 3p,,) —o
% \9gj00pic  Opjo Fgio

If we consider the six dimensional vector z = (q, »P1,4s,P2,4s,ps) and define the Jaco-
bian of our trasformation: '

B2 . 9q
8910 8p3o
M= - .
823 ., Bps
910 9p30

Then the condition (24) can be expressed in terms of matrix M as following:

MT.S-M=§ (25)

19Appendix 5

13



where

"0 1.0 0 0 0]
~10 0 0 0 0
g0 00100
0 0-10 0 O

© 0 0 0 0 1

| 0 0 0 0 -1 0|

Eq.(25)-symplectic condition. All solutions to Hamiltonian equations must satisfy this
condition.

5.2 Symplectic integrator -

Most of the high-order (k >> 2) integration methods are not exactly symplectic. The
determinant of the Jacobian of the transformation for one time step differs slightly from
unity and thus the system will be damped or excited artificially.

In addition there is another way of viewing this approach [2]: If we iterate any
explicit integration step whether canonical or not, eventually the absolute error in the
coordinates and the momenta gets large. For not symplectic integration step, where
spurious damping or antidamping occurs, g and p either settle onto some fixed point or
diverge roughly exponentially. In the case of the symplectic map it does not happen.
The symplectic integration step with a sufficiently small step size generates a phase
space portrait which is close to that of the original system. So in the symplectic case it
is possible and sometimes attractive to replace the differential equation by a symplectic
map. The development of such symplectic map was done by E.Forest and R.D.Ruth
[2].

Unfortunately, their technique of successive canonical transformations works for the
Hamiltonian, which is written in form H = A(p) + V(z). In our case we have H =
[l:-‘i%)ﬁ or the troublesome term: p- A. This leads to matrix inversion even in the first
order case. It is possible to write down a second order map, but in assumption for first
order in A. We are interested in high-order expansion of fields and even a third order
map is not enough. It is seemed possible to use for this purpose the one-map integrator,
based on Lie groups [2] (Use of higher map integrator needs to split H into two pieces
which can be solved exactly. For our Hamiltonian the achievement of such condition is
difficult) such symplectic integrator will be used later if it be necessary to make & modal
for our symplectic problem. But now we use another way: In many applications the
salient features of the solution appear only after long time or large number of iterations.

14



We are not interested in "tracking” so for our purposes and for simplicity we can use
not symplectic integrator. Here is used Runge Kutta fourth order method (that means
that in a small time step h the integration is accurate through order h4).

5.3 Fourth order Runge Kutta formula

kl = hf'(xn’ yn)

h k;

A ’ — —
kr=hf(z.+ 2,yﬂ+ 5
k,

= hf'(z. + ayn‘*‘ 2

= hf,(xn + h’ Yn + k3)

In each step the derivative is evaluated four times: once at the initial point, twice at
trial midpoints and once at a trial endpomt From this derivatives the final function
value is calculated: E

3

ki | ko s
=kt gttt g = of1?)

In our case such procedure is made for five parameters 2, p., y, p,, p: (no direct depen-
dence from time t).

Using such technique the tra.nsfer matrix of solenoid with field expansion was achieved.
The next step was to write the coordinate transformation due to tilted solenoid. This
is shown in the next section.

6 Coordinate transformation due to tilted solenoid

A number of features suggested to write a new code rather than using present acceler-
ators codes. As it was mentioned before, the solenoid axis does not lie on top of the
reference orbit, since the beam have to be separated to minimize parasitic crossings.
But quadrupoles and horizotal bending magnets, which are located inside the detec-
tor, must lie on the reference orbit. The code which is presented here overcomes this
troubles.

We use a Hamiltonian, which is written in the form of Eq.(19), where the canonical
variables and the independent variable refer to a charged particle in the frame of the

15



reference orbit, that coincides neither with reference frame at the collision point nor
with frame of the solenoid axis. ;

We use the trajectory of the beam center with solenoid off as a reference orbit. This
reference orbit is defined solely by the horizontal and vertical bending fields and the
quadrupoles. Note that a solenoid tilted horizontal by an angle ¢ will produce a vertical
bending field of the strength k,sin(4) that acts on top of the horizontal bending fields.

Thus we have to introduce two coordinate transformations T, relates the frame of
the reference orbit to the frame of the collision axis and T, relates the coordinates of
the collision axis to the coordinate inside the solenoid frame. We introduce three sets
of unit vectors corresponding to each of the three frames: e}, €}, e} for the reference
orbit, i, ev, e; for the collision point and e}, €}, €] for the ﬁ'a.me of the solenoid.

collisien axis

Figure 2: The azis of the reference orbil, the solenoid azis and the longitu-
dinal azis of the beam at the collision point.

11The vertical difference between the trajectory with and without solenoid is only about
1 mm for both rings.
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T COS(¢) + 2 szn(ﬁb)
z. - sin{$) + Ze cos(¢)

n={f

The origin of the reference orbit frame: O, is moving along the reference orbit which
is determined by the horisontal bending angle of the dipoles @. Let us denote the
entrance of the magnet by si. The origin of the reference orbit frame in the collision
frame may now be expressed by:

Oy = eglz.(s})+24(s})pecr—ps(cos(@) 1)} + e5lze{s}) + 24(s})pecr— pa(c—sin(a))] (26)

where we have used: _ ' .
O(s3) = e - ze(3h) + €5 - ze(st)
and d0y(s1)
b3} c i e i
—d_SbL =65 z::(sb) +e,- z::(sb)
We assume that a positive bending angle bends the particle towards the positive hori-
zontal axis. For small bending angle we may approximate Eq.(26) by:

Os = €Zfzc(s}) + zelsh)pee + pea®/2] + €5[ze(8}) + 2(s3)p=0c — Pz’ /6]

And the coordinate transform valid on the reference orbit lying in the field region at
the bending magnet is:

{ z. = z(s})+ z;(s;;)p,a + p,,gz-’- + zpco8(a) + zpsin(a)
T1 =

2, = z(8)) + z8(s})pe — p,%a — zysin(a) + zpcos(a)

Using this code the transfer matrix for tilted solenoid (without effect of torsion'?)
was calculated. To prove our use of not symplectic integrator the transfer matrix was
checked with symplectic condition (25). The deviation from a symplectic transfer matrix
is smaller than 10~%, that allow us to make the statement that use of not symplectic
integrator in our case is possible through very good accuracy.

12this effect is discussed in Appendix 1
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7 Transfer matrix for B Factory solenoid

In the particular case of B Factory tilted solenoid with the extension of the magnetic
field up to the fifth order we got the following numerical matrices.

[ 1.589 3.623 0.000 0.000 0.000 0.03229 ]
0.462 1.683 0.000 0.000 0.000 0.01646
T _ | 0.000 0.000 0.482 2.063 0.000 0.00000
uncouple = [ 0.000 0.000 —0.390 0.404 0.000 0.00000
—0.011 -0.005 0.000 0.000 1.000 0.00000
| 0.000 0.000 0.000 0.000 0.000 1.00000

T 1.588 3.620 0.0400 0.1028 0.0000  0.03235
0.462  1.682 0.0074 0.0445 0.0000  0.01648
7 .| =002 —0.078 04807 20609 —0.0002 0.00103

courle = | 0.006  0.020 —0.3907 0.4031 0.0001 —0.00042
—0.011 —0.005 0.0000 0.0007 1.0000  0.00000
| 0.000  0.000 0.0000 0.0003 0.0000 1.00000 |

where:
To

Pz0

Xo - Yo
Pyo
to

Do
.X = T . .Xo
Length from I.P. to the end of solencid - 2m. Uncoupled and coupled matrices are given

for the exit of the quadrupole (2.1m). The following list contains the location and the
strength of the magnets inside the experimental solencid.

8 Decoupling

Our purpose is to use this transfer matrix to decouple the normal modes at the inter-
action point.

18



Type exit [m] | BofkG] | B1[kG/m]
DRIFT 0.2 0.000 0.000
HBEND 0.25 | 3.100 0.000
HBEND { 0.30 | 5.400 0.000
HBEND | 0.35 6.500 0.000
HBEND | 0.70 7.500 0.000
DRIFT | 090 | 0.000 0.000
QUAD 1.20 0.000 -0.355
QUAD | 150 | 0.000 | -0.355
QUAD 1.80 0.000 -0.355
QUAD 210 ' | 0.000 -0.355

Table 1: List of elements.

A variaty of compensation schemes exist which have been used in order to decouple
the equations of motion. For example, 1. A half strength anti-solenoid on either side of
the experemental solenoid. 2. With two or three pairs of skew quadrupoles.

When we discussed Hamilton pertubation theory we saw that for this purpose we
need four skew quadrupoles. The necessety of four decouplers can be also shown, using
matrix formalism. 1* Our transfer matrix has been put into program MAD. We located
four skew quadrupoles according to independent phases u, + u1,, which is used at formula
(7). The results for the integrated strength of the tilted quadrupoles are shown at table
2.

Name Type integrated strength [1/m] | arc length m]
QT1 | tilted QUAD 8.99E-04 745
QT2 | tilted QUAD -5.75E-03 35.976
QT3 | tilted QUAD 1.02E-02 45.040
QT4 | tilted QUAD 8.08E-03 58.954

Table 2: Strength of skew quad. necessary for decoupling.

These values were obtained by matching the off diagonal elements of the transfer
matrix Rys, Ry, Rss, Rs;. Note that the same skew quadrupoles must be also placed
on the other side to compensate the second part of solenoid. But as we used four

13Guch way is discussed at the Appendix 4.
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additional elements, the Twiss parameters at the IP shifted slightly: 8. from 0.7[m]
to 0.74[m] and B, from 0.03[m] to 0.0297[m). In order to return back the values of
B-functions IP, we used 6 regular quadrupoles (QD4 to QDS4). So we matched the
transfer matrix elements R;;, Rs, Ris, Ry, Res, Res, Rey, Rsg, Rey, Ry; to their values
in the condition solenoid off. For complete compensation we should also compensate
the dispersive elements. In the case of tilted solenoid we have horizontal dispersion
which produces the vertical dispersion. But the main influence on dispersion gives the
vertical corrector, which is placed immediately after the solenoid. So the compensation
of the dispersion lies out off this paper as we discuss here only the effect of solenoid.

9 Some application of transfer matrix

9.1 Beam shape, change in beam-size

Let us introduce the beam ellipse, using the definition of sigma matrices used at TRANS-
PORT [10] (Fig.3)

ya

vy

Figure 3: Beam ellipse in definitions of sigma matrices.

/T 22 =Zmqs:=the maximum (half)-width of the beam envelope in the x (bend)-plane.
Oyy=Ymax
In such definitions one can write the equation of ellipse in the couple case:

Oy Z® — 20243y + Ozey’ = € (27)
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If now define new axis through main axis of the tilted ellipse and write the relations
between new and old coordinates:

. ' -
z'=z-cos(¢) +y-sin(d) y =y-cos(¢)—z-sin(¢)
One. can easily get the relation for angle, putting this relations into equation (27)5

202y

tan(2¢) = (28)

O',y-Uzy

The transverse beam area (for luminosity calculation) is given by:

The maximum angle for the coupled beam shape was 1.4 degree. The dependence of
angle ¢ from longitudinal coordinates during the interection region is shown on Fig.4

The numbers for ¢ and s are given at table 3.

It is interesting to note that the low energy beam feels an about three times stronger
solenoid field compared with the high energy beam. Fig.(5) shows that the tilt of the
pormal modes is about three times larger compared to the high energy beam. The
numbers for ¢ and s for LE beam are given at table 4.

element | exit | ¢[deg]
[DRIFT | 0.2 [ 0.190
HBEND | 0.25 | 0.238
HBEND | 0.30 | 0.286
HBEND | 0.35 | 0.333
HBEND | 0.70 | 0.665
DRIFT |0.90 | 0.851
QUAD |210] 1.424
DRIFT | 2.80 | 1.275

Table 3: Dependence of angle ¢, which corresponds to the tilted beam ellipse
in coupling case, from longitudinal coordinate

9.2 Equilibrium transverse emittance

It is interesting now to get information about emittance change due to the coupling.
Let us first remind some general ideas from theory.
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Figure 4: Dependence of the tilt of horizontal mode w.r.t. the vertical azis
from longitudinal coordinate.

The equilibrium transverse emittance of the beam in a storage ring is the result of two

. competing processes: 1) the quantum fluctuations due to the emission of synchrotron

radiation blow up the beam 2) the process of radiation damping tends to reduce the

transverse beam size. The balance stuck between these two processes determines the
value for the equilibrium emittance.

9.2.1 General introduction
The Courant-Snyder invariant of the betatron motion or the square of the invariant
amplitude is given by:
a® = vz + 2az3) +
this formula describes an ellipse in the (23, z3) phase space and the square of the invariant

amplitude is just the area of the ellipse divided by 7 or the emittance. The presence of
dispersion in the ring causes a particle, with an energy different from the design energy
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Figure 5: Dependence of the till of horizontal mode w.r.t. the vertical azis

Jrom longitudinal coordinate for LE beam. Length from I.P. to the end of
solenoid - 2m.

to execute betatron oscillations around a new closed orbit, different from the design
orbit. So that we can separate the radial motion into two parts:

z(s) = zg(s) + z.

If we use the standard form of the equations of motion, we can write for the displacement
Ze

z, = k(s)z. + K(s)§

where K(s)- curvature function, k(s)- periodic function with a period of at most the
circumference of the ring, §-fractional energy deviation. The displacement z, is propor-
tional to the energy deviation: z(s) = n(s)é If we put such relation in the equation
above, we see that the dispersion function 5 satisfies the following equation: %" =
k(s)n + K(s)
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element | exit | @ldeg]
DRIFT | 0.2 | 0.00
HBEND [ 0.25 ] 0.55
HBEND | 0.30| 0.69
HBEND | 0.35| 0.82
HBEND | 0.70 { 0.96
DRIFT {090 1.93
QUAD |[1.20| 3.0
QUAD |1.50] 3.25
QUAD |[1.80] 3.20
QUAD |210| 2.74
DRIFT | 280} 1.60
QUAD [330} 1.54

Table 4: Dependence of angle ¢, which corresponds to the tilted beam ellipse
in coupling case, from longitudinal coordinate for LE beam.

9.2.2 Quantum fluctuation

If account the radiation, the invariant amplitude of the electron betatron oscillations
will no longer remain constant. Due to the emission of photon the particle’s energy is
reduced, but its displacement and the slope of the trajectory do not change, so we can
write: U U
Aa:=0=Azp—n-E- ; Az':O:Aa:},-—q'-E—

If our particle was following the design trajectory before radiating , it now starts per-
forming betatron oscillations with its square of invariant amplitude given by:

a® =7Az} +20AzpAz; + fAZ] = (%)zﬂ

where H = n* + 2ann’ + Bn' this function describes the growth of the invariant
betatron amplitudes due to the radiation-induced quantum fluctuations.

One can write the full expression for the growth of the square of the invariant
betatron amplitude due to the quantum excitation as

d(12 2CqE Uo

-y v f |K3|Hds (29)
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where

5550 _8
Ay = 146810 Gev,

E — design energy

C, (quantum constant) =

4
Us (radiation loss per turn) = 3%:;§)3 f K%ds

9.2.3 Radiation damping

The betatron oscillations decay exponentially with the damping time. For example,
the damping time for horizontal betatron oscillation is given by 7, = L2222 | where

J; Ug
damping partition number J, is introduced by 1, = Z, To= LI, f

9.2.4 Variety of technique for emittance calculation

The total rate of change of the square of the invariant betatron amplitudes can be

summarized then as:
d<a?> 2<a?>

% % (30)

A stationary distribution of the horizontal betatron oscillations of many particles is then
characterized by the mean square horizontal spread at the beam:

zﬁ = % < a? > ﬂz(s) = -:-;-T,Qzﬂ,_.(s) (31)

o2.(s

The ratio ¢; = -§5; =3 Lr. Q. is exactly the equilibrium beam emittance. Note that it
is independent of the asimuth s.

_ C,E? §|K*?|Hds

“= . §Kids (32)

For emittance calculation we used computer optics program MAD, which uses two
different way to find the emittance:

1) Chao’s technique [6] of the transport matrices. At that technique coupling is
included in the evaluation of the distribution parameters, assuming that the coupling
effects can be approximately described by a set of coupling coefficients which specify the
coupling strength averaged over one revolution of the storage ring. In this method, each
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linear element in the storage ring lattice is represented by 6 x 6 TRANSPORT matrix,
which transforms the state vector X as an electron passes through the element. Knowing
the TRANSPORT matrix transformations around the storage ring, the distribution
parameters can be obtained from the eigenvalues and eigenvectors of some matrices,
which are described in his paper. '

2) Another technique uses the definition of emittance with synchrotron radiation
integrals.

I =quds A =fK=ds : 13=f|K°|ds

L= §nK(2k+K%)ds ; L= f |K?|Hds

Sof‘.ha('.J,,=1——§‘L
P

C,E* I

@=—2—.l2=C, B (33)

Note also that one of the present day technique for coupled emittance is based on the
projections of # functions on old axis, so that you have deal with four new 8 functions
and new emittances ¢; and €s [7]. This technique gives:

< z%(s) >= €18:1(8) + €3f:s

< y*(s) >= ef(s) + €afys

<zYy>= Elv ﬂxlﬂylc°3(¢a:l - ¢y1) + 53‘\/ ﬂz3ﬂy3cos(¢z3 - ¢y3)

In the case of small coupling ¢; and ¢ are very close to ordinary ¢, and ¢,. We
compared €, using both techniques 1) and 2), that gave us in the uncoupled case the
same result €;[r micro m] = 0.047

For coupled case the first technique was used and we got the following blow up of
emittance:

Emittance ratiofvert./hor.] = 0.123

10 Conclusion

In this thesis we have presented the transfer matrix for B Factory tilted solencid with
the expansion of magnetic field up to the fifth order. Starting with the general theory
of linear coupling, we got the Hamiltonian for solenoid with the bending magnet and
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quadrupole inside. The solenoid axis is tilted by 20 mrad horizontally w.r.t. the collision
axis and at the entrance and the exit of the solenoid the beam will sense transverse and
longitudinal non-linear fields. To account both this effects the expansion of the magnetic
field was done. The code of coordinate transformation, which relates the frame of the
reference orbit to the frame of the collision axis and to the solenoid frame, has been
introduced. We tried to show that not symplectic fourth-order Runge Kutta integration
method, which had been used for integration of our Hamiltonian equations, might be
used as a model for "not tracking” problems. The deviation from a symplectic transfer
matrix is smaller than 1075. Using the transfer matrix, the change in beam shape
and blow up of emittance, due to the solenoid coupling, was discussed. In order to
compensate this effect we used 4 tilted quadrupoles on each side of the IP. Our method
based on the Hamiltonian in Eq.19 integrates along a reference orbit which is defined
only by the horizontal and vertical bending fields and not by the tilted solenoid. In order
to get the Hamiltonian, which is associated with a non-planar curvature of the reference
orbit, it is necessary to account the effect of torsion. ** In that case the transformation
between the three different coordinate systems will become more complicated.

11 Appendix 1

If torsion = 0, we have reference orbit (the trajectory of the beam center with solenoid
off) in horizontal plane. When we switch on solenoid the trajectory of central particle
goes in vertical plane, but the reference orbit lies at the same horizontal plane. The
effect of torsion gives us the change of the reference orbit, it no longer lies in horizontal
plane. In other words we must account torsion when we go from plane problem to the
motion of particle in space. Now curves are placed in space. Let us consider the natural
coordinate system (Fig. 6):

n(s) — normal vector ; b(s)— binormal vector

1{8) — tangent vector ; K(s)— curvature ; ) —torsion
For our curvilinear system of coordinates the reference curve is given by r = ry(s),

tangent vector to the curve at s is given by 7(s) = d’fb' . 7(s),b(s), n(s) and its

14This effect is discussed in Appendix 1
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Figure 6: Moving tripod of the orbit.

derivatives are connected by Frenet- Serret formulas:

i 7o
F=e ; A== ; b=Fxi (34)
LI &
&7 . di_ . o= db .
E._Kn ; dt—K'r+Qb, E——Qn

Let us explain the definition of torsion: The plane containing the point r(s) and par-
allel to 7 and % is usually called the osculating plane. Unless the curve be plane, the
osculating plane varies as the point moves along the curve. The change in the direction
depends evidently upon the form of the curve. The ratio of the angle Ad, between the
binormals at two points of the curve and their curvilinear distance As expresses our
idea of the mean change in the direction of the osculating plane. If we take the limit of
this ratio, as one point approaches the other as the measure of the rate of this change
at the latter point. This limit is called the second curvature or torsion and its inverse
the radius of torsion. ;

In curvilinear system of coordinates one can write magnetic field like B = B,7 +
B.n + B,b, where s,z,y— curvilinear coordinates of point P, which is represented by
radius-vector r = ro(s) + zn(s) + yb(s). For solving Maxwell equations we must know
the relations between our field components and contravariant and covariant components
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of B field [8)].

1
14+ Kz

B, =B; B;=(14Kz)B, B;=B,~ covariant components

B'=B, B*=

B, B?= B, — contravariant components (35)

here we use K = £ and denote torsion by 2. Putting (35) into Maxwell equations one
can get equations of motion [8]:

[j—j(:c’+ Qy)]l={(1+K )(SCB +K‘j;) (ec§ +9dt)(y —ﬂm)} (36)

-] (8] om0 P

where £ = ’Eé[(l + Kz)2+(z' + Qy)? + (v - Qz)’]z or in linearized form:

" e 0B,
2"+ gzz = [E-g; Py - ly' (37)
Y+ gy = [-— p a £
where
g = K¥1—n)— 2 4 B0
pc
=K*n-Q%— B
pc

In that case it is easy to get Hamiltonian: Let us rewrite Eq.(37) in form similar to (3)
and (4):

2"+ Kz = ~[K + My - ¥y — My - 20y/ (38)
¥+ ky=-[K- -;—M']a: + Q'z + Mz’ + 202’ (39)
P = z’+%My+Qy z' = p, - -;—My—ﬂy
py_y'—%Mz-—Qz y’—-p,,+%M:r+Qx



! - 1 1 — aH
p,——klz—Ky—(2M+Q) (pg+§Mx+Qm)_—-5;
N 1 1 _ 9H

and we have Hamiltonian:
1 1 1

H = gli"+Ey’ +2Kzy(p. — sMy) + (py + 5M3) + (p- — )’ + (py + Q=)+
SMAy? + M) ‘ (40)

k} =k -2+ M2 K} =ks— 2% — M2 If compare Eq.(40) with Eq.(5), we see
that effect of torsion gives us additional terms for our Hamiltonian:

1 MO MQ
'2‘[(172 - 99)2 +(py + ﬂ.’:)2 + “2—3/2 + _2-32]

For not linear case one can get [9]:
H = m?l+

1
0T K27 Kz)z(n — Ay + Qy(p: — eA;) — Qz(p, — eA,))* +

(P= — eAz)? + (py — eA,)]E (41)

12 Appendix 2

This section will be devote to the definition of torsion and curvature in real variables.
For partical motion in constant magnetic field we have:

& dy d% dz ‘
T It U (42)
&z &t " eB
=0 ga=0 A, w= (43)

From Eq.(43) = ct = B | By = oy/pd + m?@ , E = mc% = E and from Eq.(42) we
hare z = Reos(wot+a)+ Zgt + 7o
r{t)={ y = —Rsin{wit+a)+ 2 +ypo
zZ = vt
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where R = .S po;=\/p0=+poy wg—°—3—‘? sma——mi- cosaq = —E&

Using Frenet-Serret relations (34) we have o

1 —Rwsin(wt + a)
F= —=———| —Rwecos(wt + a)
V”czlz + R2w2 Vo2
1 —RuPcos(wt + a)
fi= Ruisin(wt + o)
V/¥3. + R2w?(Ruw?) 0
1 —cos{wt + a)
fls —————— sin(wt + o)
\/UOz + R2w2 0
. 1 ~Ruwsin{wt + a) —cos{wt + a)
b TXn= m —RLUCOS(wt + Q) X Sln(()wt + a)
Vo
& _ —cos (wt + @)
—_—= e | sin(wi+ta) | = -0
dt  (vd, + R*w?) ( ((J )
this relation gives us torsion:
Q = VoW
\/v3; + RAuw?
and from 4f “ = K we have:
K = RJ?

2
-+
here v, = 2% R= Yo oo e

13 Appendix 3

At that section we introduce the Hamiltonian with small term ; e?.

z, |H? e e
= —p, = — =Y — —m2c? — - 2 _— 32
H=-p=-(1+ p)\/ = — M2 = (p= = —A) — (py — —4))
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(EO+AE)=_m,c,____E_g+2EOAE AE?

= c2 @ tTa ~me=
2E'0AE AE?
(1 - ) +=
or using py = 9-0—9- and defining p, = -ff‘%, we have:
(o + AEY

2
—mie = g1~ 22t 4 g7)

c? Bo

so our Hamiltonian becomes:
- _ z 2 _(p — AV _(n —E4 2
B=-0+ 30407 - .- 247 -, - 24,

where (1+7)* = (1 - % + 72)

14 Appendix 4

The insertion as a whole does not couple horizontal and vertical motion if the four by
four transfer matrix across it, T'p4 , is block diagonal in form. When all the coupling
fields are turned off, the linear motion from any point i to any point j is represented by
the block diagonal matrix M;;. Motion across the k-th coupler is given by Ny i—;. So
the insertion is exactly decoupled if

| Tzpa 0
T‘“‘[ 0 T,BA]

Tpa = MpanNangn-1Man-12n—3 - -NMN - -M 4 (44)

that is, if eight simultaneous equations containing the n coupler strengths k,,- .-, &, are
satisfied. This description is simplified if define the projection matrix P; [5]. Note that
I.P. is now called like C.

P; = M, 2iNai gic1 My (45)

Tea= Mpc(Pn--- P2, P,)Mca

and decoupling conditions become:
P,- PP = [ B0 ]

o P, (46)
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Figure 7: Symbolic representation of LR.

In practice P; is often very close to the identity matrix and can be expanded as a

polynomial in k;:
Po=I+ki-Ki+kl-- 47)

where K; is a block anti-diagonal matrix
Putting (47) into (46) we have the general first order decoupling conditions:

S kK =0 (48)
=1
For solenoid we have linear matrix:

N, = F(I,6*)R(9) (49)

where
{ — solenoid length

6 — angle of rotation about a longitudinal azis.
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R(8) — coupled matriz
F(l,8%) — an uncoupled matriz
If M is the uncoupled matrix from C to the entrance plane of the .solenoid, then:
Po=I+6K,+6*---=M71L'FRM

so that using first order approximation for F and R, we have:

K, = [ _?5.+ ‘g ] (50)

where § = M'M, and S* = M M;
For quadrupole length ! and gradient g, which has been rotated about the beam axis
by an angle ¢ away from midplane symmetry, we have coupling matrix:

No(¢,1,9) = R(—$)N,(0,1, 9) R($) (51)

where N, (0,1, g)-uncoupled matrix
Any rotated quadrupole field can be decomposed into a superposition of a regular

quadrupole (¢ = 0) and a "skew” quadrupole (¢ = {5deg.). A thin skew quadrupole
has the coupling matrix:

1060 0
0110
- ]
Me=lp010 (52
1
loo1
Pp=I+qK;=M7N,M
dimensionless strength of a skew quadrupole
7
then 0 @
K=[ g G (53

where, in terms of Twiss parameters at C and at the skew quadrupole:

0= g [§ 6] —
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—S5:C.(G)?* —8.5.(8:8:)"/*
Q=
i CSG

here S; = sin(¢,) and C, = cos(¢,) are trigonometric functions of the betatron phase.
Note that z, z- transverse coordinates.

Comparing (50) and (53) the first order decoupling conditions have become the four
independent simultaneous equations:

Z 0;5; + Z ¢Q:=0 i (54)

So, in general, to compensate solenoid we need four couplers.

15 Appendix 5

The purpose of this section is to remind the definition of canonical transformation.
We speak about motion in three dimensional space. Let us denote the coordinate by
g = (g1, g, gs). The motion of particles can be described by the Hamiltonian equations:

. oH . _oH
qc'"_a;';' Pu—-‘-—a;: (55)

where p; are the conjugate moments of the variables g;, H-is the Hamiltonian, describing
our system.

The transformation Q@ = Q(g,p,t), P = P(g,p,t) is canonical when there exists a
function H(Q, P, 1) such that the Q and P satisfy the equations: Q= E - P;= "g
From Hamiltonian mechanics follows that the function @ and P sa.t1sfy the followmg
conditions:

[@Qi1=0 [R,F]=0 [QiF]=4¢; (56)
where [A, B] is the Poison bracket of A, B defined as:
8A8B OAOB
A B|= ———
14,8l ; (345 Op; Op; 3%)

If ¢y and pjs-initial conditions for the variables ¢; and the moments p;, we can write
the solution in such form:

¢ = qi(gi0, Pio,t)  Pi = Pi( o, Pio, t)
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