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1 Introduction 
Let us give first an overview of the idea for the Asymmetric B Factory and then sum- 
marize the goals of this thesis. 

The main physics motivation for the B Factory is a fd and exhaustive study of 
CP violation (a s m d  deviation in Nature’s otherwise symmetric order that has been 
clearly observed but whose origin remain a mystery), using the rich spectrum of B 
meson decays. The rich resonance structure above the b quark threshold is d e d  the 
upsilon (T) system. The first three prominent resonances are the lowest-lying S states 
of a bound ab quark system. The narrowness of the resonances rdects their stability 
against strong decays; the states have insufficient energy to decompose into a pair of 
mesons, each carrying a b quark. The fourth state, T (4s) 3, has just sufficient energy to 
decay to a pair of B mesons (B and B);  this decay totally dominates the disintegration 
of the T(4S). The T(4S) is thus an ideal laboratory for the study d B decays. In order 
to measure CP Asymmetries, the experiment involves measuring the time difference 
between the decay points of the two B mesons produced in the decay of the T(4S). It is 
the need to measure this difference that is responsible for the energy asymmetry of the 
accelerator, With modern detectors it is possible to measure the distance between the 
decay points of two B mesons with a resolution of about 50prn. If a B meson facility is 
run with equd beam energies, the T(4S) is produced at rest in the laboratory and the 
two mesons do not propogate very far before they decay. The typical distance between 
the B meson decay points in this equal-beam energy geometry would be about 30fim, a 
distance too small to discern with today’s detectors. The solution to this dilemma is to 
boost the T(4S) in the laboratory frame by running the storage ring with unequal beam 
energies, hence the name Asymmetric B Factory. The asymmetry denotes the difference 
in energy between the electron and positron beams. For example, if one chooses 9 aad 
3.1 GeV for two beam energies (E&,,. = 4ElavEhigh) the center-of- mass energy is thus 
that of the T(4S) with the average distance between the two B meson decays - 180prn. 
The justification for an asymmetry in the beam energy is now dear: it is required 
to give the T(4S) system a sufficient Lorentz boost to provide a measurable tl - tr 
distribution. But how large does the asymmetry need to be? A precipitous dependence 
an the asymmetry for energy choices below 8 GeV was found. To remain safely above 
this region the energy of the high- energy beam is set at 9 GeV. So B Factory is a high- 
luminosity electron- positron colliding-beam aceelerator that will operate in the IO-GeV 

3Ec.n. = 10.58 GeV 
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center-of-mass energy regime (the electron and positron beam energies were chosen to 
be 9 and 3.1 GeV, respectively. 

High luminosity asymmetric B-Factories with separate beam trajectories require fi- 
nal focusing and bending magnets to be located inside the magnetic field of the detector 
solenoid. It is not possible to align the solenoid axis with both of this separate beam 
trajectories. So one of the trajectories must pass through significant radid fringe field 
components of the detector solenoid (recat discussions show that for decreasing signif- 
icant radial fringe field it is better to have both beam trajectories misaling the solenoid 
axis). The total magnetic field acting on the two separate beams ‘ is a complex su- 
perposition of three dimensiond fields from solenoid, quadrupole and bending magnet, 
which in our case are connected with different axis. Such uncompensated solenoid field 
at the intersection point couple the horizontal and vertical betatron oscillations, dispet- 
sions and emittances, that lowers peak luminosity attainable. b order to account the 
influence of solenoid fringing fields it is necessary to expand the magnetic field through 
high order. The god of this thesis is to understand the effect of linear coupling for 
the B Factory tilted solenoid with the expansion of the magnetic field . The new code 
for the computation of the transfer map is given. The theory of this thesis is based 
on H d I t o n i a a  formalism. It is useful to describe the idea of integration of Hamilto- 
nian equations, to discuss what happens with a phase space portrait in the cases of 
symplectic and not symplectic maps. Here is also shown that use of not symplectic 
integration gives a good model in special cases. The actual compensation of coupling 
is done by means of 4 tilted quadrupoles on each side of the Ip. Some applications of 
transfer matrix (including blow-up of emmitaace) are also discussed. 

2 Theory of linear coupling 
Inside of solenoid the longitudinal magnetic field component B, = const. At the solenoid 
end the field is radial: 

l a  --(?-&) = -- 
r Or as 

So near solenoid axis the end field is given by: 

“For simplicity the next discussion will be done onIy for single (HE) beam 
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e 
And for force we have: 

F, = -(vyB, - u&) 
C 

e Fy = ;(-v,B. + v,&) 

This yields the following equations of motion: 

e aB, 
c 2as  

e 
xN = -v,B, i- -v,-y 

c 

I1 e e BB, 
y = --V,BI - -v.-x 

C c 28s 

Using 5 + + 2 = 0 ,  we obtain 

Let us denote the radius of curvature of the equilibrium orbit by p and the y-component 
of the ideal magnetic field at the equilibrium orbit by B,  so that our equations become: 

1 aB, 1 I 
Y - ---Bay rJn - - -- 

1 
3 - -B,x' 1 aB, y" - - -- 

P P I  & lBPl 

lBPl lBPl 
We can write the equations of motion in the presence of other external magnetic f e  
cussing fields, represented by kl and kt as 

1 
x - -B,x' 1 aB, 

y" + = lBpl82 lBpl 
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. 
where B,, B,, B, are the three. field components and Bp is the magnetic rigidity. One 
can rewrite (1) and (2) in another form [l]: 

(3) 
1 I xi' + klz = -(K + ,M')y - My 
1 YtJ + kzY = -(K - -M')Z 2 + Ms' 

K ( s )  and M ( s )  axe introduced like 

The associated Hamiltonian might be found in the following way: 

I 
; p . = x ' + p y  

1 1 
(x' + ZMy)' = -klz - ky - 5My' 

(4) 

Y 

The general solution of Hill's equation, Le., linear equations with periodic coefficients 
and Without first derivative terms, are given by well known Courant-Snyder theory [9]. 
Representing by z either z or y we have: 

z = au(s)cos(&$ + 6) = Aeiq4 + C.C. (6) 

where u(s) = f l  , t# = J&, Q denotes the number of betatron osdllations per 
revolution. The term C.C. denotes the complex conjugate. The arbitrary constads 
a,6 or the oomplex constant A = :eis are determined 5om initial conditions. From 

5 



the canonical equations 5 = , 2 = E we can dso get the expressions for pt 
and pr. Ln order to get the expression of H as function of (Aj, s) we have to put the 
expressions for 5 ,  y and ps, pr into the Hamiltonian, Eq.(5). Knowing the expression for 
H ( A j ,  A;.,s) it is possible to find the e-qlicit form of Aj. That was done by Guignard 
[l]. The proportional coefEident in the expressions of Aj is given in the general form 
(using n = &I for difference and sum resonances respectively) by Guignard theory [l]: 

Where A-distasrse from resonance. 
In such expression for k the real term represents the skew quadrupole field effects 

aad the image one represents the longitudinal field effects. 2 , f 2 are phases pz , p,, 
respectively. Therefore it is possible to compensate the effects of a longitudinal field with 
skew fields by virtue of the phase terms. In other words, a set of skew quadrupoles can 
compensate both the random tilts of the main magnets and the solenoids contribution. 
So, as n = AI, we see from such Hamilton pertubation theory that in order to decouple 
our equations it is necessary to use .C decoupling skew quadrupoles. To show this &t 
was the g o d  of the passage above. 

In the case of B Factory tilted solenoid we should write the Hamiltonian with ex- 
pansion of the magnetic &Id. This is done in the next section. 

3 Hamiltonian of particle motion t o  arbitrary order 
The Lagrangian for the relativktic motion of a particle with charge e aad rest mass rn 
in a magnetic field described by vector potential A is given by the familiar relation: 

u2 e . -  

The position vector r' in Eq. (8) refers to a &xed coordinate system. It is useful to 
introduce the natural coordinates 5,  y, 8. W e  assume that an ideal closed orbit (design 

SThe definition of canonical transformation is given in Appendix 5 
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orbit) exists describing the path of a particle of coastaat energy Eo.* We ab assume 
that the dose orbit comprises piecewise ffat curves which fie either in the horizontal or 
vertical plane so that it has no t~ r s ion .~  The design orbit which will be used as the 
reference system will be described by the vector 6(s) ,  where s is the length along the 
design orbit. An arbitrary particle orbit ?(s) is then described by the deviation 67 of 
the particle orbit 7(s) horn the design orbit 4 ( s ) :  F(:(s) = c ( s )  -+ G ( s )  The vector 
6F can usually be described using an'orthogonal coordinate system accompanying the 
particles: 

<(s) - a unit normal vedor 
?(s) - a unit tangent vector 

8(s) = x z - a unit binormal vector 
we require that the vector G(s) is directed outwards if the motion takes place in the 
horizontal plane and upwards if the motion takes place in the vertical plane. So that 
this vectors and their derivatives are connected by Frenet relations; 

dg ' dF dia' 
ds ds ds - = -K(s)n'(s) - = K(s)+)  - - - 0  

such a representation has the disadvantage that the direction of the nonnal vector Z(s) 
changes discontinuously while the paxticle trajectory is going over kom the vertical 
plane to the horizontal plane and vice versa. So is more convenient to introduce new 
unit vectors 7, c,  5, which change their directions continuously [4]. 

if the orbit lies in  the horizontat plane 
,+;(-,(SI = { '(s) 

-6(s) if the orbit lies in the vertical plane 

$(s) 
G(4 = { Z(s) if the orbit lies in the vertical ptane 

i f  the orbit lies in the horizontal plane 

the orbit-vector +(s) can be written as: 

qs, 5 ,  Y) = 6 ( s )  + z(8)G(s) + y(s)e"y(s) 

in such definitions we have following Fkenet relations: 
de", 
ds 
- = K,1 

(9) 

6Neglecting of murse energy variations due to radiation loss 
lis discussed in Appendix 1 
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de", - = Ky? as 

ping (9) and (10) we get: 

") +jea+ge; 
. dG de: 

7 = s  -+z-+y-- 
( d s  ds ds 

or 

Thus in our coordinate system 2, y, 8 the Lagrangian becomes: 

$= F ~ ( I +  K=X + x Y y )  + =e: + #c 

with the corresponding Hamiltonian: 

We defined the conjugate momenta as: 

dL e mi: 
pz = - = -A, + ax c ~q' 

Putting %.(I41 and Eq.(12) into (13) one can get €or the Hamiltonian: 

Tn2 

H =  Jq 
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And using the relation; 

- - m2v2 rn2(k2 + i2 + i2(1 + K=x + & Y ) ~ )  
1-- 

-- ua 3 -  
1 - 3  dr 

we have: 

Let us denote K, = $ (we assume KI = 0 ) .  The coresponding c a n o n i d  equations are 
given by: 

ln Q.(17) the time t appeared as independent variable, it is more useful to introduce 
the arc length 8 of the design orbit as independent variable and define a new Hamiltonian 
as K = - p a .  

x e  
P C  

- rnlcl-  (pz - -A,)2 e - (pv - -A,)' e - (1 + -)-A# 
c 

K = -pa = -(1+ 
C 

Let us denote new variable 6 = 9 thus 

aa the term (e). e< 1 we dropped it here. Since the d a b 1 e  t ( s )  increases without 
limit, it is more usefd to introduce the new variable t' = 8 - &(SI, which describes the 

pendix 3. 
"The g a d  form of Hamiltonian B ,  including the term (m4t?f is given at the Ap 
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delay in arrival time at position s of a particle travelling at the speed of light e. The 
further change of variables can be achieved using the generating function [4]: 

FCp, i , ~ )  = Ff&,pU, x , Y , ~ ,  t * , ~ )  = -psS - pug - t’6 + S6 + 8 

corresponding transformation equations: 

SO that gives additional term: 

dF 
d S  

Jt = R + - = I? + (1 + a) 

md the Hamiltonian becomes: 

Since we have l(pg - &AY)I = Ikmq,I << 1 (the same for z and z )  the square root can 
be expasded in B series. For B Factory solenoid we should also account contribution to 
this Hamiltonian from bending magnet aad quadrupoles. Expanding the form of OUT 
Hasliltonian and accounting bending magnet and quadrupoles terms, we have: 

4 Expansion of Vector Potential 
In this section we are going to remind the expansion of solenoid fields, which is given 
by Ripken [4]. 

OLater k will be E H a n d f i a p  
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Figure 1: Radialfield. 

B = rotA 

In the current free region (Fig.1) the radial field B, and the longitudinal field B, can 
be written as power series [3]: 
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Putting (20) , (21) into the Maxwell equations: 
., -. 

divB = 0 ; rotB = 0 

- 
one obtains [4]: 

By equating d c i e n t s  of each power one then obtains: 

If we now define the longitudinal field on the s-axis B,(O, 0, s) = b ( s ) ,  the coefficients 
h, b, b.... can be calculated. Though the field components in the field free region me 
given by: 

00 5 
B&, Y, s) = -& = = h U + l ( S )  - (z2 + g2y 

u r o  r 

m 

Ba(& Y , 9) = S&) - (2 + Y2)*” 
V=O 

So the vector potential: 
1 b2&) . rZuy F (2v + 2) 

= F (2Y + 2) 

A, = - 

1 h, (s) r2”x 

A, = 0 

Now we can write Hamiltonian equations of motion. 

tion will be discussed in the next part. 
There are many different ways of integration such differential equations. This ques- 

12 



5 Integration of Hamiltonian equations 
As it was mentioned above, m a y  different ways of integration differential equations 
numerically are exist. The methods are usually described by the accuracy of single 
step in time. W e  have deal with differential equations, which are derivable from a 
Hamiltonian. The exact solution of such a system of differential equation leads to a 
symplectic map from the initial conditions to the present state of the system. 

5.1 Symplectic conditions 
Using the definition of canonical transformation lo for our transformation from the 
initial conditions to the values at time # we have: 

or 

If we consider the six dimensional vector x = (41 ,  pi,  qr , pt , qj , p ~ )  and d&e the Jaco- 
bian of our trasformation: 

Then the condition (24) can be expressed in t e r m s  of matrix M as following: 

lOAppendix 5 

- S. M = s (W 
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where 

S= 

- 0  1 0  0 0 0 '  
- 1 0  0 0 0 0 
0 0 0 1 0 0  
0 0 - 1 0  0 0 
0 0 0 0 0 1  

- 0  0 0 0 - 1 0 .  

5.2 Syrnplectic integrator . 

Most of the high-order (k >> 2) integration methods are not exactly symplectic. The 
determinant of the Jacobian of the transformation for one time step differs slightly from 
unity and thus the system will be damped or excited arti6cidy. 

In addition there is another way of viewing this approach (21: If we iterate any 
explicit integration step whether canonical or not, eventually the absolute error in the 
coordinates and the momenta gets large. For not symplectic integration step, where 
spurious damping or antidamping occurs, q and p either settle onto some fixed point or 
diverge roughly exponentially. In the case of the symplectic map it does not happen. 
The symplectic integration ~ t e p  with a s&ciently small step size generates a phase 
space portrait which is close to that of the original system. So in the symplectic case it 
is possible and sometimes attractive to replace the differentid equation by a symplectic 
map. The development of such symplectic map was done by E.Forest and R.D.Ruth 

Unfortunately, their technique of successive canonical transformations works for the 
Hamiltonian, which is written in form H = A ( p )  .f Vlz).  In our case we have H = 

or the troublesome term: p A. This leads to matrix inversion even in the first 
order case. It is possible to write down a second order map, but in assumption for first 
order in A. W e  are interested in high-order expansion of fields and even a third order 
map is not enough. It is seemed possible to use for this purpose the one-map integrator, 
based on Lie groups [2] (Use of higher map integrator needs to split H into two pieces 
which can be solved exactly. For our Hamiltonian the achievement of such condition is 
diacult) such sympledic integrator will be used later if it be necessary to make a modal 
€or our symplectic problem. But now we use another way: In many applications the 
salient features of the solution appear only after long time or large number of iterations. 

PI- 
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We are not interested in "tracking" so for our purposes and for simplicity we can use 
not spplectic integrator. Here is used Runge Kutta fourth order method (that means 
that in a s m a l l  time step 21 the integration is accurate through order Id). 

5.3 Fourth order Runge Kutta formula 

h = hf'(zn + h,gn + ka) 
In each step the derivative is evaluated four times: once at the initial point, twice at 
trial midpoints and once at a trial endpoint. Rom this derivatives the h a l  function 
d u e  is calculated: 

kl k2 k3 ki 
Yn+l = y, + -+ T+ 7 -t +O(h5) 6 

In our case such procedure is made for five parameters 2,p,, y , p , , p t  (no direct depen- 
dence &om time t ) .  

Using such technique the transfer matrix of solenoid 4 t h  field expansion was achieved. 
The next step was to write the coordinate transformation due to tilted solenoid. This 
is shown in the next section. 

6 Coordinate transformation due to tilted solenoid 
A number of features suggested to write a new code rather than using present acceler- 
ators codes. As it was mentioned before, the solenoid axis does not 'lie on top of the 
reference orbit, since the beam have to be separated to minimize parasitic crossings. 
But quadrupoles and horimtal bending magnets, which a m  located inside the de*- 
tor, must lie on the reference orbit. The code which is presented here overcomes this 
troubles. 

We use a Hamiltonian, which is written in the form af Eq.(19), where the canonid 
variables and the independent variable refer to a charged particle in the & m e  of the 

15 



reference orbit, that coincides neither with reference frame at the collision point nor 
with frame of the solenoid axis. 

W e  use the trajectory of the beam center with solenoid off as a reference orbit. This 
reference orbit is defined solely by the horizontal and vertical bending fields and the 
quadrupoles. Note that a solenoid tilted horizontal by an angle q5 will produce a vertical 
bending field of the strength &,sin($) that acts on top of the horizontal bending fields.'l 

Thus we have to introduce two coordinate transformations Ti relates the frame of 
the reference orbit to the fiame of the collision axis and 2'9 relates the coordinates of 
the collision &s to the coordinate inside the solenoid frame. W e  introduce three sets 
of unit vectors corresponding ta ea& of the three frames: e:, e:, eb, for the reference 
orbit, e:, e:, e6 for the collision point and e:, e:, ef: for the frame of the solenoid. 

Figure 2: T h e  axis of the reference orbit, the solenoid azis and the longitu- 
dinal crtis of the beam at the collision point. 

llThe vertical difference be tww the trajectory with and without solenoid is only about 
1 mm for both rings. 

I 
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x,  = xc cos($) + z, - sin(#) 
Z, = x E  - sin(4) + z, - cos(4) T2= { 

The origin of the reference orbit frame: ob is moving dong the reference orbit which 
is determined by the horisontal bending angle of the dipoles a. Let us denote the 
entrance of the magnet by 6:. The origin of the reference orbit frame in the collision 
frame may now be expressed by: 

and 

We assume that a positive bending angle bends the particle towards the positive hori- 
zontal axis. For small bending angle we may approximate Eq.(26) by: 

And the coordinate transform valid on the reference orbit lying in the field region at 
the bending magnet is: 

xc = zc(s') + z;(s:)pscY + p& + z*cos(cr) + %&(a) 
TI= { 

z, = zc(sf) + zt(sf)p,a! - p.$ - zbsin(cr> + zbcos(ct) 

Using this code the transfer matrix for tilted solenoid (without effect of torsionla) 
waa calculated. To prove our use of not symplectic integrator the transfer matrix was 
checked with symplectic condition (25). The deviation from a symplectic transfer matrix 
is smaller than lo-', that allow us to make the statement that use of not symplectic 
integrator in our case is possible through very good accuracy. 

%his effect is discussed in Appendix 1 
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, 

Tunwupls = 

7 Transfer matrix for €3 Factory solenoid 
In the particular case of B Factory tilted Bolenoid with the extension of the magnetic 
field up to the fifth order we got the following numericd matrices. 

- 1.589 3.623 0.000 0.000 0.000 0.03229 
0.462 1.683 0.000 0.000 0.000 0.01646 
0.000 0.000 0.482 2.063 0.000 0.00000 
0.000 0.000 -0.390 0.404 0.000 0.00000 
-0.011 -0.005 0.000 0.000 1.000 0.00000 
0.000 0.000 0.000 0.000 0.000 1.00000 

 couple = 

- 1.388 3.620 0.0400 0.1028 0.0000 0.03235 
0.462 1.682 0.0074 0.0445 0.0000 0.01648 

-0.025 -0.078 0.4807 2.0609 -0.0002 0.00103 
0.006 0.020 -0.3907 0.4031 0.0001 -0.00042 
-0.011 -0.005 0.0000 0.0007 1.0000 0.00000 
0.000 0.000 0.0000 0.0003 0.0000 1.00000 

where: 

Length from I.P. to the end of sblenoid - 2772. Uncoupled and coupled matrices are given 
for the exit of the quadrupole (2.lm). The following list contains the location aad the 
strength of the magnets inside the experimental solenoid. 

8 Decoupling 
Our purpose is to use this transfer matrix to decouple the normal modes at the inter- 
action point. 
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Type exit [m] 
DRIFT 0.2 
H3END 0.25 
HBEND 0.30 
HBEND 0.35 
HBEND 0.70 
DRIFT 0.90 
QUAD 1.20 
QUAD 1.50 
QUAD 1.80 
QUAD 2.10 . 

X F V T  
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
-0.355 
-0.355 
-0.355 
-0.355 

BofkG] 
0.000 

. 3.100 
5.400 
6.500 
7.500 
0.000 
0.000 
0.000 
0,000 
0.000 

Tabie 1: List of elements. 

Name Type 
QT1 tilted QUAD 
QT2 tilted QUAD 
QT3 tilted QUAD 
QT4 tilted QUAD 

integrated strength [I/m] 1 arc Iength [m] 
8.993-04 7.45 
-5.753-03 35.976 
1.02E-02 45.040 
8.08E03 58.954 

Table 2: Strength of skew qund. necessary for decoupling. 

These values were obtained by matching the off diagonal dements of the transfer 
matrix RIJ ,Rl r ,  R u ,  By. Note that the same skew quadrupoles must be also placed 
on the other side to compensate the second part of solenoid. But as we used four 

LsSuch way ie diecussed at the Appendix 4. 

19 



additional elements, the Twiss parameters at the IP shifted slightly: /9= from 0.7[rn] 
to 0.74[m] and B, from 0.03[m] to O.O297[m]. In order to return badr the d u e s  of 
/3-functions IP, we used 6 regular quadrupoles (QD4 to QDS4). So we matched the 
tramfa matrix elements Rlt ,  R ~ F ,  R13, R g g ,  R ~ J ,  RY,  R J ~ ,  Ra, €244 to their values 
in the condition solenoid off. For complete compensation we should also compensate 
the dispersive elements. In the case of tilted solenoid we have horizontal dispersion 
which produces the vertical dispersion. But the main influence on dispersion gives the 
vertical corrector, which is placed immediately after the solenoid. So the compensation 
of the dispersion lies out off this paper as we discuss here only the effect of solenoid. 

9 Some application of transfer matrix 

9.1 Beam shape, change in beam-size 
Let us introduce the beam ellipse, using the de5nition of sigma matrices used at TRANS- 
PORT [IO] (Fig.3) 

Figure 3 Beam ellipse in definitions of sigma matrices. 

-=zmm=the maximum (half)-width of the beam envelope in the x (bend)-plane. 

In such dekitions one can write the equation of ellipse in the couple case: 
&=YmU: 

uwx2 - 2u,xy + u*=y2 = e 
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If now define new axis through main axis of the tilted ellipse and write the relations 
between new and old coordinates: 

5’ = 5 COS(+) -k y * Sin(+) y’ = 3 * CU$(#) - 2 h(#) 
One can easily get the relation for angle, putting this relations into equation (27): 

(28) 
%y tan(24) = 

QW - =w 

The transverse beam atea (for luminosity calculation) is given by: 
2 1 .  A = ~ f ~ z z ~ ,  - cZg)z 

The maximum angle for the coupled beam shape was 1.4 degree. The dependence of 
angle 4 fiom longitudinal coordinates during the interection region is shown on Fig.4 

The numbers for 4 and s are given at table 3. 
It is interesting to note that the low energy beam feels an about three times stronger 

solenoid field compared with the high energy beam. Fig.(5) shows that the tilt of the 
~0;rrna.l modes is about three times larger compared to the high energy beam. The 
numbers for q5 and s for LE beam are given at table 4. 

element I exit 
DRIFT I 0.2 

#[des] 
0.190 

HBEND 
HBEND 
BBEND 
RBEND 
DRIFT 
QUAD 
DRIFT 

Table 3: Dependence of angle 4, which corresponds tu the tiited beam ellipse 
in coupling m e ,  from longitudinal coordinate 

5.2 Equilibrium transverse emittance 
It is interesting now to get information about emittance change due to the coupling. 
Let us fitst remind some general ideas from theory. 
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Figure 4: Dependence of the tilt of horizontal mode w.r.t. the vertical a& 
from tongitudind coordinate. 

The equilibrium transverse emittance of the beam in a storage ring is the result of two 
competing processes: I> the quantum fluctuations due to the emission of synchrotron 
radiation blow up the beam 2) the process of radiation damping tends to reduce the 
transverse beam size. The balance stuck between these two processes determines the 
value for the equilibrium emittance. 

9.2.1 General introduction 

The Courant-Snyder invasiant of the betatron motion or the square of the invariant 
amplitude is given by: 

this formula describes an ellipse in the (zp, 2;) phase space and the square of the invariant 
amplitude is just the area of the ellipse divided by R or the emittance. The presence of 
dispersion in the ring causes a particle, with an energy different from the design energy 

up = yx; 4- 2axpx; + pxa” 
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3" 
2.5 
2. 
1.5 
1. 
0.5 

Figure 5: Dependence of the tilt of horizontal mode w.r.t. the vertical uxia 
from. longitudinal coordinate for LE beam. Length fi.orn I.P. to the end of 
soIenoid - 2m. 
to execute betatron osciIlations around a new closed orbit, different from the design 
orbit. So that we cas separate the radial motion into two parts: 

If we use the standard form of the equations of motion, we can write for the displacement 
2, 

s: = k(s)zc + K(8)6 
where K(s)-  curvature function, k(s)-  periodic function with a period of at most the 
circumference of the ring, 6-fractional energy deviation. The displacement 2, is propor- 

~ 

tiond to the energy deviation: %(a)  = q(s)6 If we put such relation in the equation 
above, we we that the dispersion function q satisfies the following equation: 8'' = 
wrl + K ( s )  
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element 
DRIFT 
HBEND 
HBEND 
HBEND 
HBEND 
DRIFT 
QUAD 
QUAD 
QUAD 
QUAD 
DRIFT 
QUAD 

- 
exit 
0.2 
0.25 
0.30 
0.35 
0.70 
0.90 
1.20 
1.50 
1.80 
2.10 
2.80 
3.30 

- 

- 

7l-m- 
0.00 
0.55 
0.69 
0.82 
0.96 
1.93 
3.05 
3.25 
3.20 
2.74 
1.60 
1.54 

TabIe 4 Dependence of angle 4, which corresponds to t h e  tilted beam ellipse 
in coupling case, from longitudinal coordinate for LE b a n .  

9.2.2 Quantum fluctuation 

If account the radiation, the invariant amplitude of the electron betatron oscillations 
will no longer remain constant. Due to the emission of photon the particle's energy is 
reduced, but its displacement and the slope of the trajectory do not change, so we can 
write: 

U JJ 
q E  A x = Q = A x ~ - ~ -  * Ax'=O=AX&- E '  

If our particle was following the design trajectory before radiating , it now starts per- 
forming betatron oscillations with its square of invariant amplitude given by: 

lJ 
a' = 7Az; + SaAxpAs& + PAX: = (Z)'H 

where H = vL + dcqq' + @q'' this function describes the growth of the invariant 
betatron amplitudes due to the radiation-induced quantum fluctuations. 

One can write the full expression €or the growth of the square of the invariant 
betatron amplitude due to the quantum excitation ai 

f 1K3/Hds 
da2 2CqEUo -- 

To I K'da - Q z =  dt 
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where 
551ic m C, (quantum constant) = == 1.468 

3 2 d ( r n ~ ? ) ~  
E - design energy 

f KZds 2 r , ~ 4  UO (radiation loss per turn) = 
3(mc2)3 

9.2.3 Radiation damping 

The betatron oscillations decay exponentially with the damping time. For example, 
the damping time for horizontal betatron oscillation is given by T= = $% , where 
damping partition number J, is introduced by = 2 , TO = a VO 

9.2.4 

The total rate of change of the square of the invariant betatron amplitudes can be 
summarized then as: 

d < a 2 >  2 < a z >  
=&a- 

dt 72 

A stationary distribution of the horizontal betatron oscillations of many particles is then 
characterized by the mean square horizontal spread at the beam: 

Variety of technique for emittance calculation 

(30) 

(31) 
1 

a s p  2 1  = - c tz2 > A($) = ~T=QJL(s) 

The ratio e, = q, p z ,  = f7.Q is exactly the equilibrium beam emittance. Note that it 
is independent of the asimuth s. 

2 

For emittance calculation we used computer optics program MAD, which uses two 
different way t o k d  the emittance: 

1) Chao’s technique [SI of the transport matrices. At that technique coupling is 
included in the evaluation of the distribution parameters, ~ s s u m i n g  that the coupling 
effects can be approximately described by a set of coupling coefficients which specify the 
coupling strength averaged over one revolution of the storage ring. In this method, each 
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linear element in the storage ring lattice is represented by 6 x 6 TRANSPORT matrix, 
which transforms the state vector X as an electron passes through the element. Knowing 
the TRANSPORT matrix transformations around the storage ring, the distribution 
parameters CPLIL be obtained from the eigenvalues and eigenvectors of 8ome matrices, 
which are described in his paper. 

2) Another technique uses the definition of emittance with synchrotron radiation 
intenrals. 

v 

So that J, = I - $ 

Note also that one of the present day technique for coupled emittance is based on the 
projections of ,B functions on old axis, so that you have deal with four new @ functions 
and new emittances e l  and Q [7]. This technique gives: 

< Yys)  >= elayl(S) + QSy3 

c XY >= c l J m c o s ( # ~ l  - 4 y l )  + e J ~ w s ( h 3  - 43) 
In the case of small coupling € 1  and e3 are very close to ordinary e= and el.  We 

compared e= using both techniques 1) and 2), that gave us in the uncoupled case the 
same result cS[lr micro m] = 0.047 

For coupled case the first technique was used and we got the following blow up of 
emittance: 

Emittance nzlio[vert./hor.] = 0.123 

10 Conclusion 
In this thesis we hsve presented the transfer matrix for B F'actory tilted solenoid with 
the expansion of magnetic field up to the Hth order. Starting with the general theory 
of Jinear coupling, we got the Hamiltonian for solenoid with the bending magnet asd 
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quadrupole inside. The solenoid axis is tilted by 20 mrad horizontally w.r.t. the collision 
ax is  and at the entrance and the exit of the solenoid the beam will sense transverse and 
longitudinal non-linear fields. To account both this eEects the expansion of the magnetic 
field waa done. The code of coordinate transformation, which relates the frame of the 
reference orbit to the frame of the Collision axis and to the solenoid frame, has been 
introduced. W e  tried to show that not symplectic fourth-order Runge Kutta integration 
method, which had been used for integration of our Hamiltonian equations, might be 
used as a model for "not tracking" problems. The deviation fiom a symplectic transfer 
matrix is smaller than lo-'. Using the transfer matrix, the change in beam shape 
and blow up of emittance, due to the solenoid coupling, w w  discussed. In order to 
compensate this effect we used 4 tilted quadrupoles on each side of the IP. Our method 
based on the Hamiltonian in Eq.19 integrates along a reference orbit which is defined 
only by the horizontal and vertical bending fields and not by the tilted solenoid. In order 
to get the Hamiltonian, which is associated with a non-planar Curva.ture of the reference 
orbit, it is necessary to account the effect of torsion. l4 In that case the transformation 
between the three different coordinate systems will become more complicated. 

11 Appendix 1 
If torsion z 0, we have reference orbit (the trajectory of the beam center with solenoid 
of€) in horizontal plane. When we switch on solenoid the trajectory of central particle 
goes in vertical plane, but the reference orbit lies at the same horizontal plane. The 
effect of torsion gives us the change of the reference orbit, it no longer lies in horizontal 
plane. In other words we must account torsion when we go .from plane problem to the 
motion of particle in space. Now curves are placed in space. Let us consider the natural 
coordinate system (Fig. 6): 

n(s) - normal vector ; b(s )  - binormal vedor 

T ( S )  - tangent vector ; K ( s )  - curvature ; R - torsion 
For our curvilinear system of coordinates the reference curve is given by r = ro(a), 
tangent vector to the curve at s is given by ~ ( s )  = 9. ~(s),b(s),n(s) and its 

14This effect is discussed in Appendix 1 
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n 

0 

Figure 6: Moving tripod of the orbit. 

derivatives ate connected by Renet- Serret formulas: 

Let us explain the definition of torsion: T h e  plane containing the point ro(s) and par- 
d e l  to T' and n' is usually cded  the osculating plane. Unless the curye be plane, the 
osculating plane varies as the point moves dong the curve. The h g e  in the direction 
depends evidently upon the form of the curve. The ratio of the angle AB, between the 
binormals at two points of the curve and their curvilinear distance As expresses our 
idea of the mean change in the direction of the osculating plane. zf we take the limit of 
this ratio, as one point approaches the other as the measure of the rate of this change 
at the latter point. This limit is called the second curvature or torsion and its inverse 
the radius of torsion. 

In curvilinear system of coordinates m e  can write magnetic field like B = B,r + 
B,n + B,b, where s, 3, y- curvilinear coordinates of point P, which is represented by 
radius-vector r = r g ( s )  + m(s) + yb(s). For solving Maxwell equations we must know 
the relations between our field components and contravasiant and covariant components 
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of B field [SI. 

1 
14- I C X  B, B3 = By - contravariant components (35) B ' = B ,  B2= 

€31 = B, 
here we use K = 
can get equations of motion [8]: 

3 2  = (1 + Kx)B,  & = By - covariant components 

and denote torsion by 52. Putting (35) into Maxwell equations one 

where 2 = g[(  1 + K x ) ~  + (2' + + (y' - nz)']* or in linearized form: 

where 
eB,O 
Pc 

92 = P ( 1 -  n) - R2 + - 
eB,O 
Pc 

gv = K2n - - - 
In that case it is easy to get Hamiltonian: kt us rewrite Ek4.(37) in form similar to (3) 
and (4): 

1 

1 

XI' + k;x = -[K + s M l ] y  - R'y - My' - 2 0 ~ '  

f +  kzc2*y = -[IC - -M)x 2 

(38) 

(39) + O'X + Mx' + ~ Q x '  



1 1 b H  

p; = -k:y -Kx + (2M +at) * (ps - -My -Sty) = -- 
2 a!J 

p; = 4:z -Ky - (p+ n) (py + p z  + 03) = -Y& 

1 1 a H  

and we have Hamiltonian: 
1 1 1 
2 2 

2 

H = -[KC;Z’ + k;y2 + 2Kzy(pS - -My)2 + (py + ~ M Z ) ~  + (PI - fly)’ + (py + + 
(40) 

-May2 1 + p z 2 1  1 

k; = ki - Q4 + Mi2 
that effect of torsion gives us additional terms for our Hamiltonian: 

kz = k2 - Os - Mi? If compare Eq.(40) with Eq.(5), we see 

1 MR MQ 
2 2 - [ (pz  - s2y)2 + (py + 0s)’ + T Y 2  + -z21 

For not linear case one c m  get [9]: 

1 
H = c[m2c2+ -- (pr - 4 + Qy@, - 4) - n x ( p y  - eA,))2 + (1 + Kx)2 

(,p= - + (py  - (41) 

12 Appendix2 
This section will be devote to the definition of torsion and curvature in red variables. 

For partical motion in constant magnetic field we have: 
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1 ?= 4- i voz 

-Rwsin(wt + a) 
--Rwcas(wt + a) 1 

this relation gives us torsion: 

and from = Kn' we have: 
K = h 2  

J M L  w -  CBC 
R =  eB E here uot = 

13 Appendix 3 
At that section we introduce the Hamiltonian with small  term q: 
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, 

or using po = and defining pi = -a we have: 
P D C '  

2Pl - rn22 = &1- - + p : )  cz Po 
(Eo 4 

so OUT Hamiltonian becomes: 

where (1 + q)2 = (1 - 2 +$) 

14 Appendix4 
The insertion as a whole does not couple horizontal and vertical motion if the four by 
four transfer matrix across it, TBA , is block diagod in form. When al l  the coupling 
fields are turned off, the lineas motion from any point i to any point j is represented by 
the block diagonal matrix Mij- Motion across the k-th coupler is given by ZVzk,t-I. So 
the insertion is exactly decoupled if 

TBA = ~B,2nNZn,an-lMzn-l,2n--2 * .NMN 9 *MI,A (44) 
that is, if eight simultaneous equations containing the n coupler strengths kl , . -, k,, are 
satisfied. This description is simplified if d e h e  the projection matrix Pi IS]. Note that 
I.P. is now called like C. 

pi = M=,2iNai,zi-1Mzi-i.c (45) 
TEA = M B C ( ~ ~  - - - p2, ~ ~ ) M c A  

and decoupling conditions become: 
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Figure 7: Symbolic representation of I.R. 

n 

In practice Pi is often very close to the identity matrix and can be expanded as a 
polynomial in S: 

where Ki is a block anti-diagonal matrix 

~ : : I + + - K ~ + k ~ * - -  (47) 

Putting (47) into (46) we have the genetd first order decoupling conditions: 

For solenoid we have lineas matrix: 

where 
1 - solenoid length 

9 - angle of rotation abut a longitudinal axis. 



R(B) - coupled matrix 
F(I,02) - an uncoupled matrix 

If M is the uncoupled matrix from C to the entrance plane of the solenoid, then: 

Pa = I + eK, + 8' - -  = M-lL-lFRM 

so that using first order approximation for F and R, we have: 

where S = Mzl M, and S+ = M;' M, 

by an angle (b away from midplane symmetry, we have coupling matrix: 
For quadrupole length 1 and gradient g, which has been rotated about .the beam axis 

N,(h 49) = R(-4)WO, W R ( 4 )  (51) 

where N,(O, 7, g)-uncoupled matrix 
Any rotated quadrupole field can be decomposed into a superposition of a regular 

quadrupole (# = 0 )  and a "skew" quadrupole (4 = 45deg.). A thin skew quadrupole 
has the coupling matrix: 

r l  o o 0 1  

I N4a= I 0 0 1 0 
o l i o  

dimensionless strength of a skew quadrupole 

then 
I f q = [  -Q+ O "1 0 

where, in t e r m s  of Twiss patameten at C and at the akew quadrupole: 

1 
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1 

here S, = sin(#=) and Ca =  COS(^^^) are trigonometric functions of the betatron phase. 
Note that 2, z- transverse coordinates. 

Comparing (50) and (53) the first order decoupling conditions have become the four 
independent simultaneous equations: 

So, in general, to compensate solenoid we need fou couplers. 

15 Appendix 5 

The purpose of this section is to remind the definition of canonical transformation. 
W e  speak about motion in three dimensjonal space. Let us denote the coordinate by 
g = ( ~ 1 ,  q z ,  43). The motion of particles can be described by the Hamiltonian equations: 

where pi are the conjugate moments of the variables qi, H-is the Hamiltonian, describing 
our system. 

The transformation Q = Q ( q , p ,  t ) ,  P = P(q, p ,  t )  is canonical when there exists a 

&om HamiItonian mechanics follows that the function Q and P satisfy the follomng 
conditions: 

where [A, B] is the Poison b d e t  of A, B defined as: 

, pi=,& 

[Qi, Qj] = 0 [P,,J‘j] = 0 [Qi,pj] = &j (56) 

function B(Q, P, t )  such that the Q and P satisfy the equations: (& = e - ? Q i  

) ‘AJ31=&&-%& 3 

aAaB a A a 3  

If qio and pia-initial conditions for the variables gi and the moments pi, we c8tl write 
the solution in such form: 

qi = qi(qio,pio,t) pi = ~ i ( ~ i o , ~ i o , t )  
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