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Abstract

The E-158 experiment at the Stanford Linear Accelerator Center (SLAC) measures the
parity-violating cross-section asymmetry in electron-electron (Mgller) scattering at low Q2.
This asymmetry, whose Standard Model prediction is roughly —150 parts per billion (ppb),
is directly proportional to (1 — 4sin®@y), where @y is the weak mixing angle. Measuring
this asymmetry to within 10% provides an important test of the Standard Model at the
quantum loop level and probes for new physics at the TeV scale.

The experiment employs the SLAC 50 GeV electron beam, scattering it off a liquid
hydrogen target. A system of magnets and collimators is used to isolate and focus the
Mgller scattering events into an integrating calorimeter. The electron beam is generated at
the source using a strained, gradient-doped GaAs photocathode, which produces roughly
5 x 10! electrons/pulse (at a beam rate of 120 Hz) with ~80% longitudinal polarization.
The helicity of the beam can be rapidly switched, eliminating problems associated with slow
drifts. Helicity-correlations in the beam parameters (charge, position, angle and energy)
are minimized at the source and corrected for using precision beam monitoring devices.

The parity-violating cross-section asymmetry Apy in Mgller scattering is measured to be
Apy = —160421 (stat) £16 (syst) ppb, at an average Q2 of 0.026 GeV2. This represents the
first observation of parity violation in Mgller scattering, and corresponds to the following

low-energy determination of the weak mixing angle:
sin” Oy (Q* = 0.026 GeV?)5g = 0.2381 + 0.0015 (stat) + 0.0014 (syst).

This agrees with the Standard Model prediction of 0.2385 &£ 0.0006. Roughly half of the
experiment’s total data set is represented here. This thesis provides a full description of
the experimental method and analysis procedure used to obtain the above result. It also

discusses the result’s physical implications in terms of possible extensions to the Standard

Model.
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Chapter 1

Theoretical Motivation

1.1 Introduction: The Standard Model

The modern theory of elementary particle physics, built upon the idea of imposing local
SU(3)cxSU(2)r, xU(1)y gauge invariance on a free Lagrangian, and then spontaneously
breaking this underlying symmetry via the Higgs mechanism, has emerged over the past
several decades as the simplest and most successful model for describing all of the fundamen-
tal particles of nature and their interactions (modulo gravity). It has thus truly earned its
place as the “Standard Model” of the field. Imposing the various local gauge symmetries on
the free Lagrangian automatically generates the force-mediating gauge bosons [1, 2]. In the
SU(2),xU(1)y electroweak sector, these acquire mass by the Higgs mechanism, in which
the self-interactions of a doublet of complex scalar fields in the original Lagrangian pro-
duce nonzero vacuum expectation values [3]. Perturbation theory can be applied around
a physical groundstate; this, however, spoils (or “breaks”) the symmetry of the original
Lagrangian.! A convenient gauge transformation can be performed whereby only a single
scalar Higgs field out of the original complex doublet remains. Diagonalizing the mass ma-
trices in the transformed Lagrangian, one finds that three of the four physically observable
vector bosons in the electroweak theory, the W* and Z, have acquired mass terms (or,
equivalently, longitudinal polarization states) [4]. The fourth vector boson, the photon,
remains massless, a reflection of the unbroken U(1)q symmetry.

The masses myy+ and myz are not completely independent parameters. The Standard

!Spontaneous symmetry-breaking also generates the fermion masses. In a sense, the starting Lagrangian is
not really “free,” since it does include Yukawa couplings between the fermions and the Higgs doublet. When
a nonzero vacuum expectation value is introduced by the Higgs scalar, mass terms directly proportional to
this value, but including the original Yukawa coupling strengths as multiplicative factors, result for all of
the different fermions.
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Model makes firm predictions for how they should relate to one another. First, the masses
of the W and the W~ are equal, so that my;+ = my. Second, my; and my are related
by the following equation:

mw

cos by = P (1.1)
7z

Here 0yy is the so-called weak mixing angle, which describes the degree of mixing between the
gauge bosons of the underlying SU(2);, and U(1)y symmetries. More specifically, after the
spontaneous symmetry-breaking procedure described above, the following mass eigenstates

for the electroweak vector gauge fields are found [4]:

1
+ _ 1 ;42
Wi = o (4} Fi42) (1.2)
Z, = —sinfwB, + cos HWAi (1.3)
A, = cosbwyB, +sin HWAi (1.4)

Here (AL, Ai, Az) is the original isotriplet of vector bosons needed for local SU(2);, gauge
invariance, and B,, is the original isosinglet vector boson needed for local U(1)y gauge
invariance. Writing the interaction Lagrangian in terms of these eigenstates, the combina-
tions Wui are recognized as the mediators of the charged weak current, while the combina-
tions Z, and A, are recognized as the mediators of the neutral weak and electromagnetic
currents, respectively. The SU(2);,xU(1)y electroweak theory is often referred to as the
Glashow-Weinberg-Salam (GWS) theory, after the three physicists who made significant
contributions towards its complete formulation [4, 5, 6].

At this point in any discussion of the Standard Model, it is customary to reflect on
its many impressive successes, beginning with its prediction of the neutral weak current.?
Unification of the charged weak and electromagnetic interactions into a single SU(2)xU(1)
symmetry group required the existence of a fourth gauge boson. At the time the model
was being developed in the 1960’s, however, no experimental evidence existed for such
a particle, presumably because it was predicted to be very heavy, with a mass of at least
80 GeV. Confirmation of its existence did not come until 1973, when the Gargamelle bubble
chamber at CERN finally gave the first evidence for a v,e — v, e scattering event, the

unequivocal sign of a neutral weak current interaction [8].

2The prediction of the neutral weak current actually goes back to 1958 [7]. However, it was not until the
GWS theory that its role was actually appreciated.
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In addition to correctly predicting a fundamentally new interaction, the theory also
predicted a very specific helicity structure, which could be experimentally tested. The GWS
theory incorporated left-handed quarks and leptons into isospin doublets, and right-handed
quarks and leptons into isospin singlets. Alternative theories also existed, an example being
the so-called “hybrid” model, wherein right-handed leptons were assigned to isospin doublets
instead of singlets [9]. Continued neutrino observations at CERN had proven unable to
rule out such alternatives. Thus, in 1978, a fixed target experiment at SLAC, involving
inclusive electron—deuteron deep inelastic scattering, measured the first-ever parity-violating
asymmetry in a neutral current interaction [10, 11]. In general, different theories — such
as the GWS SU(2);,xU(1)y theory and the SU(2);,xSU(2)rxU(1)y “hybrid” theory —
gave different predictions for the parity-violating asymmetry in this process [12]. The
value obtained by the experiment agreed precisely with that of the GWS theory, further
establishing the theory’s increasing reputation as the “standard model” of particle physics.

The final major piece of experimental evidence in support of the GWS theory came
in the early 1980’s, after the completion of CERN’s proton—antiproton collider ring. Used
in conjunction with the results of a variety of weak interaction experiments, including
additional neutrino scattering experiments at CERN and muon decay measurements, the
data from the SLAC parity-violating electron scattering experiment could provide a value
for sin? Ay that was good to within a couple percent.? The GWS theory made the following
prediction for how sin? 8y should relate to the coupling constant Gz of Fermi’s original beta,

decay theory [4, 13]:
T

B \/im%/v sin? Oy

Since Gr was already known fairly accurately from earlier nuclear experiments, a mea-

Gp (1.5)

surement of sin?fy could be turned into a prediction for myy and, using Equation (1.1),
myz:

my =82+ 2 GeV myz =92+ 2 GeV (1.6)

In 1983, a group at CERN announced the discovery of the W and Z vector gauge bosons
at 81 £5 GeV [14] and 95 £ 3 GeV [15], respectively. This was in stunning agreement with

3Specifically, the value obtained from this early electroweak data was sin® 6y = 0.207 & 0.005. However,
this result is quoted in the on-shell renormalization scheme, which is different from the modified minimal
subtraction scheme used throughout the rest of this thesis.
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the predicted values obtained from the combined analysis of the world’s electroweak data
and further confirmation of the GWS theory.

This example perfectly typifies the fundamental success of the Standard Model, which
contains only a finite number of free parameters (see below), but yet which must accommo-
date the findings of numerous different experiments. In general, each experiment provides
sensitivity to a different combination of the theory’s free parameters. Thus, combining re-
sults from multiple experiments tests the internal consistency of the model. Occasionally
it may even result in the predictions of particle masses before the particles themselves are
actually observed, as in the case of the W and Z. This in fact happened once again with
the top quark. By the mid 1990’s, the precision of the world’s electroweak data had im-
proved to the point that the mass of the as-yet-undiscovered top quark could be predicted
at m; = 177 £ 20 GeV [16]. In 1995 the elusive quark was discovered at the Tevatron, pre-
cisely where the electroweak data had predicted it to be [17]. Today its mass can be placed
at my = 174 £ 5 GeV [18]. Currently, a similar story could be unfolding with the Higgs
scalar, whose mass is proportional to the vacuum expectation value of its self-interaction,
another free parameter of the Standard Model (in one formulation, at least). A global fit
to all electroweak precision data yields the prediction 45 < mpy < 191 GeV (90% C.L.) for
the Higgs mass [18]. Meanwhile, direct searches at LEP provide a 95% C.L. lower bound
of mpg 2 114 GeV [19]. Run II of the Tevatron is currently extending this limit [20]. Ul-
timately, the Large Hadron Collider at CERN should be able to explore a mass range of
100 GeV to 1 TeV [21]. Should the Higgs be discovered somewhere in this range of energies
(and self-consistency within the model suggests that it should be), and should the discovery
agree with the prediction obtained from the electroweak fit, it would be yet another triumph
for the Standard Model.

Despite the unflagging and at times spectacular success of the Standard Model, it is
likely not destined to be a “final” theory. The reason is that it is too ad hoc and leaves
too many unanswered questions [22]. For instance, why the SU(3)¢, SU(2); and U(1l)y
gauge symmetries, and why is the SU(2)z, symmetry only left-handed? Why are there three
generations of fermions? Why is charge quantized? Why is the SU(2)zxU(1)y symmetry
spontanesouly broken by the vacuum down to U(1)q, providing masses for all of the fermions
as well as the weak gauge bosons? The puzzles surrounding the origin of mass naturally lead

to questions concerning the many free parameters of the Standard Model, of which there
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are 19. First, there are the three gauge couplings g3, g2, and ¢; of the underlying SU(3)¢,
SU(2)z and U(1)y gauge symmetries, respectively. Then there are the nine charged fermion
masses (or, equivalently, their couplings to the Higgs scalar). Also, there are the three angles
and one phase of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Then there is the
Higgs mass and its vacuum expectation value. Finally, there is the QCD parameter 6,
a measure of the degree of CP violation in the strong interaction.* It should be noted
that whereas the Standard Model has been formulated as a theory with massless neutrinos,
recently evidence has accumulated for neutrino mass. This can easily be accommodated
in the model, though at the cost of at least seven new parameters, three masses and four
mixing angles. Because there are so many free parameters that cannot be calculated from
first principles, and because it leaves so many fundamental questions unanswered, ultimately
the Standard Model leaves one unsatisfied.

Perhaps the most glaring problem with the Standard Model is that it is not truly uni-
fied, as one might hope a final theory would be. There are three separate gauge couplings,
each of whose values have been precisely measured by experiment and found to be com-
pletely different. In so-called grand unified theories (GUT’s), the three gauge couplings
are assumed to unify at some very high energy scale myx ~ 10 GeV, resulting in a single
gauge coupling of the larger symmetry group, in which the Standard Model is embed-
ded [23]. Below mx, the theory undergoes spontaneous symmetry breaking, ultimately
resulting in the SU(3)¢, SU(2)r and U(1)y symmetries of the Standard Model. Besides
unification, GUT’s also attempt to provide natural explanations for many of the questions
posed above by employing general symmetry arguments. The simplest such theory is the
SU(5) — SU(3)xSU(2)xU(1) model proposed by Georgi and Glashow in 1974 [24]. How-
ever, this theory, while aesthetically pleasing due to its simplicity, suffers from three major
defects. The first is that it predicts the proton to decay with a characteristic lifetime much
shorter than is experimentally allowed. The second is that the three gauge couplings, when
extrapolated to the supposed unification scale my using the renormalization group equa-
tions, actually fail to meet at a single point, indicating that unification is not attained. This
is illustrated in Figure 1.1(a), which shows the Standard Model prediction for the evolution

of the gauge couplings, assuming no new physics between u ~ m; and myx. The third is

“That @ is very nearly zero, even though in general one would not expect it to be, is one of the more
severe “fine-tuning” problems in the Standard Model.
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Figure 1.1: Gauge coupling evolutions in the Standard Model and in the minimal supersymmetric
extension to the Standard Model. Note that a; = g7?/4m. Based purely on the number of particles
contained in the model, the renormalization group equations can be used to extrapolate «;(u) to
any energy scale p given its value at any other energy. Figure (a) shows how ai_l evolve assuming
the Standard Model is complete (i.e., no new physics above the electroweak breaking scale). In
Figure (b), minimal supersymmetry has been assumed above ~1 TeV. Adapted from Reference [22].

that it introduces a severe gauge hierarchy problem. That is, why is the scale of the unified
symmetry breaking at ~10'5 GeV so vastly different from that of the electroweak symme-
try breaking at ~250 GeV? This would imply extremely large and seemingly coincidental
cancellations between the Higgs’ bare mass and its radiative corrections [25].

Refusing to give up on the beautiful idea of ultimate unification, some have sought to
rectify the situation by appealing to even higher symmetries in nature. This has given rise
to GUT’s involving more complicated symmetry breaking patterns, such as SO(10) and the
superstring-inspired Fg. Most notably, however, it has long been observed that by adding
supersymmetry to the simple SU(5) theory, in which spin-1/2 fermions have spin-0 boson
partners and spin-1 or spin-0 bosons have spin-1/2 fermion partners, grand unification can
be restored [26]. This is shown in Figure 1.1(b). Above the spontaneous supersymmetry
breaking scale mgysy, new particles appear and modify the renormalization group equa-
tions, changing the evolution of the gauge couplings. This has three intriguing consequences.
The first is that the unification scale my is raised to ~10'® GeV, which is even closer to
the Planck mass m, ~ 10! GeV, perhaps hinting at a role played by gravity. The second

035 years, safely beyond the experimen-

is that the proton decay lifetime is raised to ~1
tal limits. Finally, supersymmetry can provide an “explanation” for the gauge hierarchy
problem, as a Higgs boson mass term would violate chiral supersymmetry transformations.
The spontaneous breakdown of supersymmetry then allows the Higgs particle to acquire a

mass myg ~ msysy. 1t should be noted that models with mgysy = 1 TeV, as assumed in



7
Figure 1.1(b), are fully consistent with precision electroweak measurements, though some-
what higher values for mgy sy are also allowed. If mgrsy gets much higher than 10 TeV,
however, not only does the consistency with the precision electroweak data start to suffer,
but the hierarchy problem is reintroduced.

There are thus theoretical reasons to expect new physics at the TeV scale. The physics
program should therefore proceed as it has for decades, with the various colliders exploring
the high-energy frontier and precision electroweak experiments testing the internal consis-
tency of the model. As has happened in the past, it may even be that a high-precision but
low-energy experiment will be able to reveal signs of new physics before it is eventually dis-
covered at a high-energy facility. Accordingly, the rest of this chapter motivates a precision
measurement of the parity-violating cross-section asymmetry in electron—electron scatter-
ing, describing the specific types of new physics signatures it might expect to observe. In
general, such a measurement is very sensitive to the helicity structure of new physics models,
and thus provides information complementary to that obtained from current high-energy
colliders. Chapter 2 details the experimental apparatus and methodology. Chapter 3 gives
a full description of the analysis procedure, with the results being presented in Chapter 4.
Finally, Chapter 5 discusses the findings in terms of the implications they have for various

possible extensions to the Standard Model.

1.2 Parity Violation in Mgller Scattering

The tree level diagrams representing the processes governing electron—electron (Mgller)
scattering are given in Figure 1.2. Since Mgller scattering is a neutral current interaction,
the only forces through which the process can occur are the electromagnetic, mediated by
the massless photon, and the neutral weak force, mediated by the massive Z. The helicity-

dependent cross section can therefore be written as:
2
o+ = |My+ Mz (1.7)

Here M, and Mz are the matrix amplitudes for the electromagnetic and neutral weak
processes, respectively, and the + denotes the helicity of the beam electron (positive for

right-helicity, negative for left-helicity). The target electron is unpolarized, so that any
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Figure 1.2: Neutral current amplitudes contributing to the parity-violating cross section asymmetry
Apy in Mgller scattering at tree level.

helicity-dependence in the cross section can only come from parity-violating terms in the
neutral currents, which themselves arise from the simultaneous existence of both vector and
axial-vector current components. However, the electromagnetic force conserves parity, so
that its matrix amplitude does not depend on the helicity of the beam electron. In contrast,
the weak force is known to violate parity, so that its matrix amplitude does depend on the
helicity of the beam electron. At low energies (Q? < m%), the electromagnetic amplitude,
which goes as a/Q?, completely dominates over the neutral weak amplitude, which contains
a 1/m?% suppression factor because of the massive propagator. Therefore, the ratio of the
Z amplitude to the electromagnetic amplitude should be roughly Q?/ mQZ, which is on the
order of a few parts per million (ppm).

Going further, one can use this extreme disparity in the relative strengths of the two
amplitudes at low Q2 to estimate the size of the accompanying parity-violating asymmetry
Apy in Mogller scattering. Defining the asymmetry as Apy = (o4 —o_)/(0+ + 0_), one
finds that the asymmetry is due to the interference between the electromagnetic and weak

neutral currents:

|M7 + MZ+|2 — |M7 + -MZ—|2

My + Mz 2+ M, + Mg |

2Re (M, (Mz4 — Mz)"}
M, [*

Apy =

(L.8)

Here the fact that Mz < M., appropriate for Q% < m%, has been used. This leads to
an order-of-magnitude estimate for Apy similar to that obtained for the relative sizes of

the amplitudes themselves, namely something on the order of a few ppm. A more precise
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Figure 1.3: Scattering kinematics in center-of-mass frame and laboratory frame. For an incident
beam energy of Epeqm = 48 GeV, the energy of each electron in the center-of-mass frame is approx-
imately 111 MeV.

calculation yields the following result [27]:

_2\/§G’FQ2 1+ cos®
T (34 cos?©)?

Apy = (1 — 4sin®Oy) (1.9)
where G =~ 1.166 x 10> GeV 2 is the Fermi coupling constant, determined from the muon
lifetime; o &~ 1/137.036 is the fine structure constant, determined by Thomson scattering
at Q% =0; Q> = (p — p')? is the square of the transfer four-momentum; © is the scattering
angle in the center-of-momentum frame; and sin? @y ~ 0.2311 is the square of the sine of
the weak mixing angle, more of which will be said below. The small size of the asymmetry
can now be seen to be due primarily to the tiny factor of GrQ? in the numerator, but also
in part to the 1 — 4sin? Ay, suppression factor. Finally, the following relation will often
prove useful:

Q*>=2-(1—cosO) = s-sin*(0/2) (1.10)

NNV

where s = 2mg + 2me Epeqm is the square of the total energy in the center-of-momentum
frame, with m, the electron mass and FEjeqy, the beam energy.

The kinematics for the scattering process are illustrated in Figure 1.3. For a given
incident luminosity, it is appropriate to consider which set of kinematic parameters (namely,
Ehbeam and ©) minimizes the the relative statistical uncertainty §(Apv)/Apyv achievable by
the experiment. The (spin-averaged) differential cross section for Mgller scattering is given

by the following formula [28]:

do _ o&* (34cos’0)
dQ  2meFEheqn  sin® O

(1.11)
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Figure 1.4: Figure (a) shows the differential cross section do/df? and parity-violating asymmetry
Apvy (both in arbitrary units) as a function of |cos ©|. Figure (b) shows the statistical uncertainty

-1
that can be achieved for a given luminosity, proportional to (APV\/ da/dQ) , as a function of

|cos ©]. Small values of |cos O] are seen to be optimal.

Combining this result with that of Equation (1.9), and substituting the variable © for the
variable Q2 using Equation (1.10), the relative statistical uncertainty may be expressed in

terms of Fyeym and © as:

(5(Apv) ~ 1 1
APV \/d?’/dQ APV (112)
x ———(3 + cos®O)

V Ebeam

From this equation, one can see that maximizing E corresponds to minimizing the relative
statistical uncertainty. Likewise, the function 3 + cos? ©, plotted in Figure 1.4(b), shows
a slow variation with respect to ©, with 90° scattering in the center-of-momentum frame
(|cos ©] = 0) being optimal.

The experiment uses the electron beam at the Stanford Linear Accelerator Center
(SLAC), which can generate electrons of energy up to 48 GeV. The experiment is designed
to integrate scattered events in the kinematic range © = 90 to 119 degrees, corresponding
to E' = 13 to 24 GeV, 64, = 4.4 to 7.5 mrad. This range of energies is wide enough to
allow for as much signal acceptance as possible, while just narrow enough to avoid double-
counting problems (since Mpller electrons come in pairs with Ef + EY = FEpear). It also
avoids the significant low-energy, wide-angle backgrounds. It should be noted that this
kinematic range corresponds to Q% = 0.023 to 0.036 GeV?2. The relationships between the

various kinematic parameters quoted here are illustrated in Figure 1.5.
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Figure 1.5: Transformations between various kinematics parameters. Figure (a) plots 644 vs. cos ©.
Figure (b) plots Ej., (the energy of the scattered electron) vs. 64. Figure (c) plots Q% vs. 0j4p.
These plots are useful for getting a feel for the kinematics. In general, wide angles in the lab frame
correspond to backwards scattering in the center-of-mass frame, lower scattering energies, and higher
momentum transfers.

1.2.1 Radiative Corrections and New Physics Sensitivity

Properly averaged over the experimental kinematics, the value of the tree-level asymmetry
is approximately Apy =~ —270 parts per billion (ppb). The asymmetry gets significantly
modified, however, by one-loop electroweak radiative corrections [29]. When discussing
radiative corrections, it is necessary to pick a set of renormalized parameters consistent
with a particular renormalization scheme. Here the modified minimal subtraction (MS)
scheme will be employed. In general, the definitions given earlier for & and G still suffice,
absorbing, for instance, many of the one-loop corrections to muon decay [30]. However, for
some of the less important one-loop effects (specifically, box diagrams involving two massive
bosons), a(mz) = 1/127.9, defined to be the Z-pole value of the fine structure constant in
the MS renormalization scheme, is a necessary substitute. Finally, the following definition

for the weak mixing angle will be used exclusively [18]:
sin” Oy = sin® Oy (mz)zg = 0.23113 + 0.00015 (1.13)

This is the sine-squared of the Z-pole value of the weak mixing angle in the MS renormaliza-
tion scheme, related to the “effective” definition of the weak mixing angle used at eTe™ col-
liders at CERN and SLAC by a simple translation, sin? Oy (m )5 = sin? 6§ —0.0003 [31].

The diagrams representing the most significant one-loop electroweak radiative correc-
tions are shown in Figure 1.6. These include y-Z mixing as well as the W loop contribution

to the anapole moment. In the y-Z mixing diagrams, mixing occurs through vacuum po-
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+ Inverted + crossed diagrams

Figure 1.6: Most signficant one-loop electroweak radiative corrections to the Mpgller scattering
asymmetry. Figures (a)—(c) show the vacuum polarization loops contributing to the v-Z mixing
diagrams. Figure (d) shows the W-loop contribution to the anapole moment.

larization loops involving either W bosons or fermions. In the fermionic loops, all leptons
and quarks with mass less than my contribute.® When evaluating the effects of these di-
agrams on the low-Q? experimental asymmetry Apy, one may use Q? ~ 0 with negligible
error [29]. The general contributions for non-zero Q? will be discussed later. The low-Q?
hadronic contributions, however, cannot be handled perturbatively, since at low energies
the strong coupling constant diverges. Rather, their contributions must be extracted from
ete” — hadrons data via a dispersion relation [33, 34].

The overall effect of one-loop radiative corrections for Q? ~ 0 is to reduce the size of
the asymmetry by roughly 40%, from —270 to —150 ppb [29]. Because the Standard Model
is a renormalizeable quantum field theory, potential “new physics” at higher energies can
introduce one-loop effects that modify Apy in a manner that is entirely analogous to the
way in which the standard electroweak radiative corrections do. For instance, “oblique”
corrections introduce their own vacuum polarization loops in the boson propagators, similar
to the y-Z mixing diagrams shown in Figure 1.6. These modify the self-energies of the
photon, W, and Z, as well as the y-Z mixing (parameterized by the vacuum polarization
functions I, Ilww, Il1zz, and II,z, respectively). Such corrections, caused, for example,
by a new generation of heavy fermions (m; > myz) found in many supersymmetric models
and possessing highly suppressed couplings to the light fermions e, i, 7, u, d, s, and ¢, can be
described by three new parameters S, T', and U [35]. Data from LEP at CERN and the SLC
at SLAC heavily constrain these new parameters [36]. However, if the new heavy fermions

instead have masses not much larger than the electroweak scale (m; ~ O(100) GeV), then

% According to the Marciano-Rosner convention adopted by many of the theory references [31, 32], the
top quark’s contribution is absorbed into the definition of sin? Ay .
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three additional parameters V, W, and X need to be introduced [37]. The X parameter, in
particular, is of interest, for it parameterizes the contributions of electroweak scale oblique
corrections to the off-shell value of the weak mixing angle, i.e.:

sin? Oy (0)

~ 1.032 — 0.033X 1.14
sin2 OW(mz) ( )

The current constraint on X is not nearly as tight as those on S and T', which are provided
by the Z-pole measurements at LEP and SLC, but roughly equal to the present constraint
on U set by the W mass measurement [36]. An off-shell measurement of the weak mixing
angle at the £0.001 level could actually improve the current constraint on X by a factor of
two or three.

So far only new phenomena that affect low-energy observables via radiative corrections
(and then only through “oblique” corrections) have been considered. New physics that
would contribute to the Mgller scattering process through non-radiative means can also be
probed by a measurement of Apy. For instance, many extensions to the Standard Model,
including many grand unified theories and models involving supersymmetry and/or extra
dimensions, propose the existence of new massive neutral gauge bosons, collectively referred
to as Z' bosons [18, 38, 39]. In order to explain the gauge hierarchy problem satisfactorily,
some models require such bosons to exist at the TeV scale. The current limits on the S and
T parameters discussed above require the mixing between the regular Z boson and any new
7' bosons to be extremely small. Nevertheless, a measurement of Apy provides sensitivity
to the possible existence of Z' bosons, provided there are parity-violating terms in their
interactions [34]. The limit on mys that could be placed by a ~10% measurement of Apy
varies depending on the model, but for typical models (such as SO(10) and Fs) energies of
600 to 900 GeV are explored. This is comparable to (if slightly less than) the discovery reach
equivalent of one or two years of Run II data at the Tevatron [40]. However, a low-energy
Mpgller asymmetry measurement complements the direct Z’ searches of the Tevatron and
other colliders in the following important ways. First, should a deviation from the Standard
Model prediction for Apy be observed, the sign of the relative shift would indicate whether
the supposed Z' (if indeed a Z' is respounsible for the shift) couples more strongly to right- or
left-handed electrons. Second, the size of the shift would depend strongly upon the details of

the particular model being considered, which could be very useful in discriminating between
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competing theories, should a collider yield a future discovery.

Finally, lepton compositeness has long been postulated as a possible extension to the
Standard Model [41]. In such models, quarks and leptons are comprised of constituents
held together by forces whose interactions become important at the scale of the binding
energies, parameterized by the quantity Ass (where f denotes the fermion type). Well
below the compositeness scale Ag., the general four-electron contact interaction takes the

following form, assuming that both helicity and flavor are conserved [41]:

4r

Lee = W [ULL (EL’YM'Q[)LV + Nrr (@R’YMPRV + 277LR (EL’YM’Q[}L)(ER'Y“’Q[}R):I (115)

Provided that there are parity-violating terms (i.e., ngrr # 7rL), a measurement of Apy
possesses great sensitivity to the possibility of electron substructure, probing A.. at a level
approaching 10 TeV. This is comparable to the current limits from ete ™ colliders [42].
However, even when in the future the limits are pushed to the 10 — 20 TeV range and
above, a measurement of Apy could provide important insight into the precise nature of

the new interactions, should they exist.

1.2.2 'Weak Mixing Angle

In order to facilitate comparisons to various theoretical predictions as well as to other
experimental results, it is convenient to cast the measurement of the parity-violating Mgller
asymmetry into a measurement of the weak mixing angle. This is accomplished through a
straightforward rearrangement of Equation (1.9), discussed further in Chapter 5. Because
of the electroweak radiative corrections discussed in the last section, however, the weak
mixing angle effectively becomes a function of energy. The following substitution for sin? @y

is therefore made in the tree-level expression for Apy [43]:
sin” Oy — sin® Oy (Q) = [L + Are(Q) + Arg(Q) + Ary(Q)]sin® Oy (mz)zs (1.16)

where Ary, Ary, and Ary, are the radiative contributions coming from the lepton, quark,
and W boson loops, respectively, in the diagrams depicted in Figure 1.6, namely the v-Z
mixing diagrams and the W loop contribution to the anapole moment. These are the only

radiative corrections described by the functions Ary, Ar,, and Ary.
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Figure 1.7: Electroweak radiative corrections to Mgller scattering plotted as a function of energy.
Figure (a) shows the contributions of lepton, quark, and W boson loops separately, but only for the
diagrams contained in Figure 1.6. The quark loop contribution can seen to be capped at low-Q2.
Figure (b) shows the effective running of sin? fy, along with some of its measurements.

The functions Ary, Ary, and Ar, are plotted versus @ in Figure 1.7(a). It is important
to recognize that these functions do not parameterize all radiative corrections modifying
sin? Oy (and, hence, Apy) at arbitrary energies. In particular, at large Q?, appropriate
for future ete™ or e~e” colliders, the effects of WW box diagrams must be taken into
account [43]. Nevertheless, Figure 1.7(a) gives a good general impression of the relative
contributions of each higher-order process over a wide range of energies. It is particularly
relevant for low energies, where the total radiative corrections are dominated by the dia-
grams described by the functions being plotted. One can readily see the “cap” placed on
the low-energy quark contributions, necessary since low-energy QCD is nonperturbative.
At the experimental kinematics, Q ~ 0.2 GeV, sin? @y has risen by roughly 3% from its
Z-pole value, which corresponds to a decrease in Apy of roughly 37% from its tree-level
value. Other radiative corrections, not parameterized by the functions Ar,, Ar,, and Ary,
reduce Apy by a further 3%, resulting in a total reduction of 40% as reported earlier.

In Figure 1.7(b), Equation (1.16) is plotted as a function of (). Various measurements of
the weak mixing angle are also shown on the plot. These include the ) = mz measurements
at LEP and SLC [42], the @ ~ 4 GeV measurement by the NuTeV collaboration [44, 45],
and the @) ~ 0 measurement by the cesium atomic parity violation experiment [46]. These
measurements all suffer from one or more drawbacks, however. In the case of the Z-pole
measurements, that drawback is limited sensitivity to new physics which does not couple

strongly to the Z. For on-shell Bhabha scattering, note that the matrix amplitude Mz of
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the Z-mediated process is large and purely imaginary, whereas the matrix amplitude M x
of a new physical process involving an undiscovered massive particle with mx > myz (to
which the Z couples only weakly) would be purely real and relatively small. Hence, the

total cross section would go as:

d
o (Mgt MxP o~ (Mo [ My
@=mz ) |MX|2 (117)
~ M 1+
M| ( |MZ|2>

No interference between the two processes occurs, and, since |[Mx|? < [Myz|? for Q% ~ m%,

the total cross section is basically the same as if the new interaction was not contributing
at all. Hence, the sensitivity of the Z-pole measurements to things like lepton composite-
ness, exotic Higgs particles, and Z’' bosons that do not couple strongly to the Z is highly
suppressed. Low-energy measurements offer much greater sensitivity.

One such low-energy measurement is provided by the NuTeV experiment at FNAL,
which measures the ratios of neutral current to charged current inclusive cross sections
in the deep inelastic scattering of neutrino and antineutrino beams from quarks in heavy
nuclei. Using the so-called Paschos-Wolfenstein relation [47], these ratios can be used to

extract a value for the weak mixing angle:

o(wyN »v,X)—o(@w,N—v,X) R'—-r-R" 1

.2
= = - — 0 1.18
o(wuyN = p=X) —o(@,N — ptX) 1—r g W (1.18)
where
R — o(vuyN — v, X)
o(uN = p=X) o(TuN — putX) 1 (1.19)
r= SR .
-~ o(@,N—->7,X) o(vuyN — p=X) 2

o(TuN = ptX)
While this measurement does a better job of providing sensitivity to many classes of poten-
tial new physics (such as new “oblique” radiative corrections or Z’ bosons, in addition to
quark compositeness), it suffers from theoretical uncertainties surrounding the complicated
hadronic interactions that must be included in its analysis. Use of the Paschos-Wolfenstein
relation in Equation (1.18) suppresses sensitivity to the considerable theoretical uncertain-
ties associated with charm quark production from scattering off low-momentum sea quarks,

which in the past has severely limited extraction of process-independent observables (such
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as the weak mixing angle) from the results of neutrino-nucleon scattering experiments.
However, there are still large uncertainties associated with the scattering process’s elec-
troweak and pure QED radiative corrections, calculated by Reference [48]. It has been
suggested that effects primarily related to the calculation’s treatment of initial and final
state radiation from quarks and the use of experimental energy cuts can significantly mod-
ify the interpreted value of the weak mixing angle, perhaps by as much as the total quoted
experimental uncertainty [49]. In addition, an independent study of the QCD corrections
relevant for the NuTeV experiment identified several important sources of uncertainty that
remain accounted for in the experiment’s published result [50]. For instance, this study
found that a small (1%) violation of isospin symmetry in the valence parton distribution
functions could by itself reduce the observed discrepancy by a factor of two. These and
other related issues may well be responsible for at least part of the 3 o deviation of the
NuTeV experiment’s result from the Standard Model prediction, without needing to invoke
a “new physics” explanation.

Proceeding further to even lower energies, the atomic parity violation group based at
the University of Colorado have reported on a measurement of the weak charge Qyw of the
nucleus of 133Cs, which can be related to sin? @y in the context of the Standard Model [46].
The measurement relies on the observation of the relative rates of the 6S5p—3 — 7Sp—4 and
6Sp—4 — 7Sp—_3 parity-violating hyperfine transitions in a spin-polarized atomic cesium
beam. The error bar on the measurement, however, is relatively large and is completely
dominated by systematics and theoretical uncertainties, chiefly those associated with the
proper computation of the atomic wavefunction [51]. In order to appreciate the magni-
tude of these uncertainties, it is instructive to consider a sampling (not comprehensive, but
fairly representative of the literature) of the published results interpreting Qu from the
measurements of Reference [46]. Such a sampling is pictured in Figure 1.8. First, in 1999,
Bennett and Wieman updated the two-year-old analysis of Reference [46] using newly avail-
able atomic structure data, resulting in a 2.50 deviation of Qw from the Standard Model
prediction [52]. In 2000, Derevianko included the Breit interaction in the wavefunction
calculations, while also using a new nuclear charge distribution, bringing the Qyy result to
within 1.00 of the Standard Model prediction [53]. In 2001, Derevianko further refined his
treatment of the Breit interaction, employing relativistic many-body perturbation theory

and further reducing the Qy discrepancy to 0.60 [54]. In 2002, however, Dzuba, Flambaum,
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Figure 1.8: Time-history of the theoretical corrections to the Qw (}*3*Cs) measurement of the
Boulder atomic parity violation group. Each data point corresponds to an updated analysis. The
error bars in each case are dominated by systematics and theoretical uncertainties. Significant
deviations from the Standard Model prediction have been reported over the years, but the mean
value has not yet settled, due to persistent theoretical difficulties.

and Ginges improved their methods for handling Coulomb screening effects, as well as im-
proved the overall numerical precision of their calculations. The result was a 2.00 deviation
from the Standard Model prediction, restoring the former discrepancy [55]. Around the
same time, Sushkov showed [56] that vacuum polarization effects in the electronic orbitals
were capable of inducing corrections as large as those found earlier by Derevianko, which
were due to the Breit interaction. Thus, in late 2002, Kuchiev and Flambaum reported on a
calculation that included these QED radiative corrections and brought Qw once again into
agreement with the Standard Model prediction, this time to within 0.80 [57]. Theoretical
work continues, however, with Derevianko suggesting that a fully self-consistent many-body
treatment of vacuum polarization effects has yet to be performed and could change the value
of Qw significantly [58].

The point of this discussion is not to reflect poorly on the results of the atomic parity
violation group, which after all has accomplished a significant feat, namely the first-ever
measurement of a nuclear anapole moment, whose existence was originally predicted by
Zel’dovich in 1958 [59]. Rather, the point is merely to emphasize that interpreting the
group’s measurements of the parity-violating 65 — 7S transition rates in cesium in terms
of fundamental physics parameters, such as Qy or sin? fy, remains a major theoretical
challenge. The original work quoted @y = —72.11+0.27+0.89 [46], compared to the Stan-
dard Model prediction of Qy = —73.10 = 0.03 [18]. Since then, the theoretical uncertainty
has been reduced and the central value has shifted to Quw = —72.71+£0.2940.39 [57]. From

the discussion above, however, it is quite clear that the theoretical uncertainty has mostly
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Figure 1.9: Conceptual design for the experiment. An intense, high-energy, polarized electron beam
impinges on a liquid hydrogen target, and the e"e~ — e~ e~ (Mgller) scatters are focused into an
integrating calorimeter for detection. By rapidly flipping the helicity of the incident electron beam,
the parity-violating scattering asymmetry Apy can be measured.

been underestimated.

The above discussion also serves to highlight the principle motivation for the mea-
surement of the parity-violating asymmetry Apy in Mpgller scattering. The interaction is
purely leptonic, and therefore the electroweak radiative corrections are conceptually simple
and have relatively small uncertainties. There are few hadronic effects to consider and no
atomic wavefunctions to compute. Interpreting the Mgller asymmetry Apy in terms of the
fundamental Standard Model parameter sin? @y is a relatively straightforward procedure
requiring comparatively few corrections and assumptions. Measuring this asymmetry is
therefore a very attractive means for obtaining a precision low-energy measurement of the
weak mixing angle, thereby testing the Standard Model at the quantum loop level and

continuing the search for new physics.

1.3 Experimental Goals and Requirements

The experimental goal is to measure the parity-violating Mgller asymmetry Apy, predicted
to be approximately —150 ppb (before accounting for initial and final-state radiation ef-
fects), to a precision of roughly 10%. This will allow for a nearly £0.001 determination of
sin? @y. The basic experimental design concept is shown in Figure 1.9. A beam of high-
energy, longitudinally polarized electrons impinges on a liquid hydrogen target. Some of
the electrons pass through unimpeded and proceed to the beam dump, while others scat-
ter off the target electrons or protons. Electron—proton (ep) scatters will have a different
energy-angle correlation than the electron—electron (Mgller) scatters. A system of magnets
and collimators can therefore be used as a spectrometer, purifying the signal (i.e., reducing

the backgrounds discussed below) for integration in an electromagnetic calorimeter. The
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polarized electron source at SLAC is able to deliver as many as 5 x 10'! electrons in a single
beam pulse. At 120 Hz, and for a liquid hydrogen target, this corresponds to a very high
luminosity £ ~ 4 x 10?® cm™2s~!. At the scattering angles being considered, which have
already been chosen so as to maximize the experiment’s statistical power, the total cross
section is approximately 10 pbarn, making the detector rate roughly 2 GHz.

The helicity of the electron beam can be manipulated between right and left states at
120 Hz, forming pulse-pairs of opposite helicity. The scattering rates for the two different

beam helicities can then be compared by constructing the following pulse-pair asymmetry:

Apy = 2B 9L (1.20)
OR t+ 0L,

where op and oy, are the scattering rates for the right and left helicity states, respectively.
The scattering rates are obtained by dividing the detector signal by the incident beam in-
tensity, as is described in much more detail in Chapter 3. Since each pulse is expected to
deliver approximately 20 million electrons into the detector, the statistical resolution of the
detector should be as low as (m . \/ﬁ)il ~ 160 ppm per pair. This implies that
an uncertainty on the asymmetry of roughly 15 ppb, corresponding to a ~10% measure-
ment of Apy, should be achievable after just over 100 million pairs. Of course, systematic
uncertainties will also contribute to the total uncertainty 0(Apvy).

As will be seen in Chapters 4 and 5, the primary systematic uncertainties contributing
to 0(Apy) arise from beam effects, physics backgrounds, and asymmetry normalizations. In
addition, theoretical uncertainties associated with the calculation of radiative corrections
(both electroweak and purely electromagnetic) contribute to &(sin? fy), but these are rela-
tively small and will not be discussed until Chapter 5. Asymmetry normalizations include
scale factors such as the beam polarization Py, and the detector linearity e. Both modify
the measured asymmetry in the following way: Apeqs = Areal - Pream - € That is, the mea-
sured asymmetry will at most be equal to, and in general smaller than, the real physical
asymmetry. Since these quantities enter so directly into the interpretation of A,.q from
Apeas, 1t 1s important to keep their relative uncertainties as small as possible. The beam
polarization uncertainty should therefore be kept below 5%, and the detector should be
linear to within 1%.

Because the scattering rate is dependent on the incident beam energy and on the scat-
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tering angle, as can be seen from the cross-section formula in Equation (1.11), helicity-
correlated differences in either the beam energy or in the beam’s trajectory will in general
produce false asymmetries via purely geometric effects. For example, a right-helicity beam
hitting the target at a position that is 10 nm different from that of the corresponding left-
helicity beam will have to scatter by a slightly different angle in order to make it into the
detector’s acceptance, resulting in a false asymmetry of, say, 10 ppb. The same logic applies
to all of the beam parameters E, z, y, 2/, and 4/, where 2’ and 3’ are the incident horizontal
and vertical beam angles, respectively. Hence, the right-left (or “helicity-correlated”) differ-
ences in all of the beam parameters must be carefully monitored throughout the experiment
to correct for beam-related false asymmetries.

The asymmetry correction procedure will be discussed in more detail in Chapter 3.
For now it suffices merely to motivate the goals for how small the various right-left beam
parameter differences should be kept over the course of the experiment. The correlation
coefficients parameterizing how sensitive the asymmetry is to each of the various beam

parameters are roughly of the following size:

0A
0A 0A
92 oy ~ 1 ppb/nm (1.21)
0A 0A
90" Oy ~ 50 ppb/nrad

If each correction is assumed to be accurate to roughly 10%, then right-left differences of
the sizes given below will generate a total contribution of roughly £3 ppb to the systematic

uncertainty 6(Apv) [60]:
AE < 2keV

Az, Ay < 10 nm (1.22)
Az', Ay < 0.25 nrad

The charge asymmetry must be handled differently. Since the detector signal is charge-
normalized, a large charge asymmetry should in theory have no real effect on the observed
asymmetry. However, as will become evident in Section 2.2, a large charge asymmetry hurts
the experiment in a number of ways. First and foremost, since charge couples to all beam

parameters at some level, a large charge asymmetry can produce helicity correlations in
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other beam parameters. In order to ensure that other beam parameters (most importantly
energy) do not develop large helicity correlations, one should start by nulling the charge
asymmetry. Second, a charge asymmetry can produce a residual false asymmetry due to
detector nonlinearities. This can be assuaged by performing an “extra regression” of the
measured asymmetry against the charge asymmetry. This detail will be left until Chapter 3
to be discussed further. For now, one can assume a detector nonlinearity of 1% in order to

set a limit on the maximum allowable charge asymmetry:

\/(3 ppb)2 + (0.01 - Ag)? < 4 ppb

— A < 200 ppb (1.23)

The same limit for Ag can be obtained by noting that beam loading® is estimated to
be as large as 10%, meaning that a 200 ppb charge asymmetry will tend to produce a
20 ppb energy difference. For a beam energy of ~50 GeV, this corresponds to a right-left
energy difference of AE = 2 keV, equal to the limit given in Equation (1.22). The beam
asymmetry limits given in Equations (1.22) and (1.23) have been calculated so as to keep
the total systematic uncertainty contribution from the asymmetry correction procedure at
the =4 ppb level, which is a reasonable goal.

The per-pair detector resolution o4 is defined to be the width of the detector asymmetry
distribution. The final statistical uncertainty on Apy will be governed by this resolution,
via the ordinary statistical averaging formula: §(Apv)stat = 0get/V'N, where N is the
total number of integrated pulse-pairs. The detector resolution receives contributions from
statistical fluctuations, electronics noise, and beam jitter. Beam jitter refers to the random
pulse-to-pulse beam fluctuations that naturally arise in the accelerator. While such random
fluctuations may end up averaging to zero when integrated over the course of the entire
experiment, they still contribute to the asymmetry width. The detector resolution o4, can
therefore be written as:

1
Ut%et = ﬁ + Uzlec + Ugeam (124)

e
where N, is the number of electrons reaching the detector per pair (N, ~ 40 million), o,

is the random electronic noise, and o, is the noise due to beam jitter. Carrying out the

5Beam loading is a measure of the degree to which the beam energy is coupled to the beam intensity. Its
origin is discussed in Section 2.3.
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asymmetry correction procedure on a pair-by-pair basis essentially removes opeq:n from this
equation, drastically reducing the detector resolution. This is of crucial importance, since
this produces a smaller statistical uncertainty.
In order to properly account for beam helicity correlations, the beam parameters must
be carefully monitored on a pulse-by-pulse basis. All first-order beam parameters E, z, y,
z', and y' are monitored, as are some second-order beam parameters. In general, precision
in beam monitoring is more important than accuracy. That is, calibration constants such
as offsets and scale factors, both of which determine accuracy, cancel one another when
composing asymmetry correction quantities such as (xg —zr) - 0A/0z. They help in inter-
preting beam measurements in terms of physical units, but do not contribute significantly
to the Apy measurement. On the other hand, high precision is essential, since any beam
correction is only as good as the resolution of the device making the beam measurement.
That is, systematic uncertainties will be produced that go as (o¢/V/N) - 9A/9¢ where o
is the per-pair resolution of a device monitoring beam parameter £, and N is the total
number of pairs. Given the approximate values for 0A/0¢ listed in Equation (1.21), and
assuming that these systematic uncertainties should be kept at or below the ppb level after
100 million pairs, the following per-pair device resolutions are required:

og <1 MeV Oz, 0y < 10 pm
o w0y S R (1.25)

Oz, 0y < 0.2 prad
Because of the “extra regression” against charge, the resolution of the charge monitoring
devices is not terribly important; per-pair resolutions of 50 ppm or lower will suffice. The
numbers provided in this section are meant merely to serve as approximate guidelines, not
as strict limits. For instance, if 200 million pairs are integrated instead of 100 million,
the resolution requirements for all beam monitoring devices can be relaxed by /2 without

having an impact on the final systematic uncertainty.

1.3.1 Physics Backgrounds

Besides Mpgller scatters, the detector will also have to contend with a number of different
background fluxes [61]. The primary backgrounds are electron—proton (or ep) scatters,

photons, and pions. Some of these backgrounds can be subdivided further according to the
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specific process by which they are created. Each background will be discussed briefly below,
along with the special requirements they may impose upon the experiment. More details
can be found in the next chapter.

The ep background represents the largest background, both in terms of absolute num-
bers and in terms of how it affects the asymmetry measurement. The ep scatters can be
divided into elastic and inelastic scatters. The spectrometer is designed to take advantage
of the differences in the energy-angle correlations for the Mgller and elastic ep (or Mott)
distributions, greatly reducing the Mott background flux. However, initial and final state
radiation is expected to alter the kinematics of the Mott scatters, thereby increasing the
number that make it into the Mgller detector’s acceptance region. The asymmetry carried
by the Mott scatters is roughly of the same order as the Mgller asymmetry itself. The
inelastic ep scatters, on the other hand, are harder to separate from the Mgller scatters
due to the lack of a well-defined energy—angle correlation. Furthermore, the asymmetry
carried by the inelastic ep flux can be very large (a few ppm), particularly in the A™ reso-
nance region. However, the cross section for inelastic ep scattering is much smaller than for
Mott scattering, so the bulk of the ep background in the Mgller detector comes from Mott
scatters [61]. Regardless, an accurate measurement of the Mgller asymmetry will require
a correction to be made for the ep background. The details of this correction are given in
Section 4.8.3.

The photonic background consists mainly of bremsstrahlung radiation emitted from the
target, as well as photons emitted when charged particles hit objects like collimators and the
beampipe. As the beam passes through dipole magnets in the spectrometer, synchrotron
radiation is also produced. All of these photons, which can be classified as either “hard”
(high-energy) or “soft” (low-energy), will add noise and possibly false asymmetries if they
are allowed to reach the detector. They are therefore blocked as much as possible by spe-
cial photon and synchrotron radiation collimators. Neutral hadrons produced by charged
particles interacting within the calorimeter can also present a small background. Correc-
tions must be made for the various photonic backgrounds, as well as the neutral hadron
background, by carefully measuring the detector’s response under a variety of different
experimental conditions, as is described in Section 4.8.2.

Finally, pions are produced in the target through real and virtual photoproduction,

as well as through deep inelastic scattering [61]. The total cross section for real photo-
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‘ Run ‘ Start date ‘ Stop date ‘ Pairs ‘
Run I 12 March 2002 28 May 2002 100 million
Run II | 10 October 2002 | 13 November 2002 | 86 million
Run III 8 July 2003 8 September 2003 | 155 million

Table 1.1: Summary of data collection periods. For each period, the number of pairs listed is the
approximate number of pairs remaining after all analysis cuts have been applied (analysis cuts are
discussed further in Section 4.3). This thesis focuses exclusively on the Runs I and IT data collection
periods.

production is large (~100 pbarn), but the asymmetry is of the same order as the Mpller
asymmetry [61]. On the other hand, the total cross section for virtual photoproduction and
pion production through deep inelastic scattering is considerably smaller (~2 pbarn), but
the asymmetry is much larger (at the level of a few ppm) [61]. The spectrometer acceptance
for the pions is very small, such that the total pion background is expected to contribute
to the primary detector’s signal at the sub-1% level. A simultaneous measurement of the
pion flux and asymmetry is made with a separate, dedicated pion detector. The details of

this correction are given in Section 4.8.4.

1.3.2 Summary of Physics Runs

The total data collection for the SLAC E-158 experiment has occurred in three periods,
referred to as Runs I, IT, and TI1. These are summarized in Table 1.1. This thesis concentrates
exclusively on Runs I and II, which together account for roughly one-half of the total data
set. In general, the experimental conditions were nearly identical for all three runs, with
one exception being the installation of several new collimators between Runs I and II. This
will be discussed further in the next chapter. Occasionally Run III will be referred to,
particularly in the discussion of beam-related systematics. In order to avoid confusion, the

data collection period being discussed will always be made explicit.
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Chapter 2

Experimental Method

2.1 Overview of SLAC Experiment E-158

Figure 2.1 gives a general overview of the setup for the SLAC E-158 experiment. A dis-
cussion of the experimental design naturally divides into seven basic parts: the polarized
electron source, the linac, beam monitoring devices, the target, the spectrometer, the de-
tectors, and the data acquisition system. This chapter describes each of these subsystems
in turn.

The longitudinally polarized electron beam is generated at the source and accelerated
up to an energy of nearly 50 GeV in the two-mile-long linac. When the beam has reached an
energy of 1.2 GeV, it enters an area known as the Accelerator System Setup for Experimental
Testing (ASSET), which houses beam monitoring devices used as part of feedback loops
intended to control helicity correlations in the beam. At the end of the linac, the beam

enters the Beam Switch Yard (BSY), at which point it can be steered in one of three
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Figure 2.1: Experimental overview. For purposes of clarity, the wire array and two toroids in the
alcove are omitted from the picture.
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Figure 2.2: Overview of polarized electron source. The mirror box (which brings the laser down to
the level of the photocathode immediately after the OTS) is not shown.

directions. For this experiment, it is steered into the A-line, which eventually brings the
beam to the main experimental area, known as End Station A (ESA). Along the way, the
beam’s current, position, energy, and spot size are monitored by various devices. The target,
spectrometer, and detectors are all housed in ESA. The spectrometer selects from the many
assorted particles that scatter from the target just those of physical interest, and focuses
them onto the main integrating calorimeter. Signals from all devices are both monitored

on-line and stored for subsequent off-line analysis by the data acquisition system.

2.2 Polarized Electron Source

The Polarized Electron Source (usually abbreviated as the PES, but often referred to simply
as “the source”) consists of two rooms, the Polarized Light Source (PLS) room and the
gun vault, separated by a 20 m long tube called the Optical Transport System (OTS).
An overview of the entire source can be found in Figure 2.2. The tunable pulsed laser
system generates a 300 ns pulse of left or right circularly polarized light, which first travels
through optics designed to minimize all helicity correlations, and then is brought into the
gun vault. Here the laser light impinges on the dc-biased photocathode to produce the

polarized electrons which travel into the injector and then into the linac. The following



28

conduction hand
b

=172

circularly \
polarized | I|I
A
_“il"'l-"*l I|| F,= 143V
W N \
TR - 50 nml =
A1 valemce band —'—M1 !

Foy g 05 ¥
N ([ &12

Figure 2.3: Source operating principle. When circularly polarized light strikes the GaAs crystal (the
laser wavelength tuned to the GaAs bandgap energy), selection rules exist that only favor certain
transitions (Am; = #1), thanks to the semiconductor’s direct-bandgap nature. A mechanical strain
lifts the degeneracy of the P3/, valence band, making some transitions energetically disallowed.

sections describe the entire source in a fair amount of detail. First, a description of the
physical setup will be given, starting with a discussion of the final stage of the source,
photoemission from the photocathode, and then proceeding with a description of the rest
of the source optics system. This will lead into a discussion of the major sources of beam

systematics and the methods used to control and correct for them.

2.2.1 Photocathode

The operating principle behind the source, illustrated in Figure 2.3, is basically the same
as it was for SLAC E-122 back in the late 1970’s [62, 63, 64]. A gallium arsenide (GaAs)
photocathode sits in vacuum in the gun vault, and circularly polarized laser light, its wave-
length (typically 780-850 nm) tuned to the bandgap energy of the GaAs crystal, enters
the gun vault from the PLS via the OTS, where it impinges on the photocathode. If the
band gap energy of the GaAs is close to its work function, then photoemission can occur.
If the band gap energy is less than the work function (a characteristic known as negative
electron affinity, or NEA), then photoemission is likely [65]. Because GaAs is a direct band
gap semiconductor, the electron is left with zero momentum (E = 0) after photoemission.
Consequently, the angular momentum of the photon goes directly into the spin of the pho-
toemitted electron. Selection rules therefore exist that govern the transitions between the
P3/, valence band and the S;/, conduction band when circularly polarized light is used.
For example, for right circularly polarized light, only Am = 41 transitions are allowed.

The extent to which this feature can be used to produce high polarization beams will be
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Figure 2.4: Photocathode structure for Runs I and II. The high doping level (5 x 10'® cm™2 Zn) in
the 10 nm GaAs surface overcomes the surface charge limit effect. The relatively low doping level
(5 x 10'7 cm™2 Zn) in most of the active layer is to ensure minimal polarization degradation.

discussed below.

The photocathode used for E-158 Runs I and II is illustrated in Figure 2.4 [66, 67].
The photocathode is grown by a process known as Metal Organic Chemical Vapor Deposi-
tion (MOCVD) on a GaAs substrate. In MOCVD, other Group V elements (for example
phosphorous) can be substituted for arsenic during the growth process, and these will take
the place of arsenic in the lattice (since they are chemically similar), thereby altering the
spacing of the lattice (since they are not of the same size). Immediately atop the GaAs
substrate is a 2.5 pm thick layer of a GaAs;_,P, binary mixture, where x varies linearly
from 0 at the bottom to 0.34 at the top. The 2.5 pym thick buffer layer immediately below
the active layer, from which the photoelectrons are drawn (and whose 100 nm thickness cor-
responds roughly to the penetration depth of the laser photons), consists of GaAsg g6Po.34.
The amount of phosphorous added during the growth process then suddenly changes going
from the so-called buffer layer to the active layer, causing the lattice constants of the two
respective layers to be different. This sudden lattice mismatch between the active layer
(which contains only 5% P) and the buffer layer (which contains 34% P) produces a small
mechanical strain in the system which lifts the degeneracy of the P3/, states of the valence
band electrons.

The lifting of the degeneracy of the P3/; valence band states via the strain mechanism
allows for beam polarizations of greater than 50% to be achieved [68]. For example, if the
degeneracy was not lifted, then either the —3/2 — —1/2 or the —1/2 — +1/2 transition
could occur during photoemission initiated by a right-circularly-polarized photon. The elec-

tron beam would still be longitudinally polarized, but its maximal polarization would then
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be only 50%. The lattice mismatch is thus essential for a precision parity violation experi-
ment like E-158 because of its need for high beam polarization, but it has the unfortunate
side effect of introducing a sensitivity in the response of the photocathode to residual linear
polarization in the incoming laser light [68, 69]. In other words, the photocathode will emit
more electrons for light that is linearly polarized along some preferred axis. Effectively, the
photocathode’s quantum efficiency gains an analyzing power of a few percent, which plays
an important role in producing unwanted beam asymmetries.

Negative electron affinity is induced by depositing cesium and nitrogen trifluoride (NF3)
on the photocathode’s heat-cleaned surface [70]. This treatment (part of the photocath-
ode’s activation procedure) increases the quantum efficiency (QE) of the photocathode by
several orders of magnitude. This enhancement, however, is very sensitive to the photo-
cathode’s complex surface chemistry and typically deteriorates over the course of several
days as residual gases interact with the NEA surface. To minimize such interactions, the
photocathode is kept in an ultra-high vacuum environment. Cesiations occur roughly every
three days to restore the QE, typically to ~0.4%.

Doping the active layer with zinc overcomes the phenomenon known as surface charge
limit [71, 72]. Too much doping, however, degrades polarization. In order to maximize
polarization, previous experiments tended to use relatively low doping levels. As these
photocathodes were hit with more and more laser power, they became saturated, emitting
fewer and fewer electrons per microjoule of incident beam energy. The solution was found
by doping most of the active layer (90 nm out of 100 nm) with relatively low levels, and

then increasing the doping level by a factor of 100 (to 5 x 10" cm™3) for the topmost 10 nm
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Figure 2.5: Comparison of surface charge limit for old vs. new photocathodes. Photocathode output

is plotted versus laser power for the old and new photocathodes. Because of the highly doped surface

layer of the new photocathode, its output remains linear when the laser power is increased.
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portion of the active layer. As can be seen in Figure 2.5, the new photocathode does not

exhibit any signs of charge limit.

2.2.2 Polarized Light Source

The functions of the PLS can be broken into two basic, separate parts: 1) production
of a stable pulse of laser light tuned to the band gap energy of the GaAs photocathode,
and 2) ensuring that it is as perfectly circularly polarized as possible at the photocathode,
and contains minimal helicity correlations in intensity, position, and angle. The first two
optics benches in the PLS room (the Flash:Ti and diagnostic benches) are largely concerned
with the former function, whereas the last bench (the helicity control bench) is exclusively

concerned with the latter. Each part will now be described.

Flash:Ti Bench

The Flash:Ti laser system is documented in much more detail elsewhere [73, 74, 75]. Inside
the laser cavity, designed at SLAC and built by Big Sky Laser Technologies, two flashlamps
are used to pump a rod-shaped Ti:Sapphire crystal. The flashlamps can fire at any rate
up to 120 Hz, with their firing rate of course determining the maximum beam rate (see
Section 2.3). The one-meter-long cavity is formed by an 85%-reflectivity planar output
coupler mirror and a 99.9%-reflectivity end mirror with a 42 m concave curvature, chosen
to minimize the effects of thermal lensing , thereby optimizing laser stability. A quartz
quarter-waveplate acts as both a Brewster plate, selecting out horizontal polarization, and
a birefringent tuner, which by rotation about its normal axis selects out a wavelength ap-
propriate for the GaAs band gap energy (typically in the range of 780 nm to 850 nm) with a
bandwidth of ~0.7 nm (FWHM). A half-wave plate was at one time required to compensate
for the arbitrary orientation of the Ti:Sapphire laser rod, thereby maximizing transmission
through the Brewster plate. However, between Runs I and IT modifications to the laser head
assembly procedure were made that allowed for control over the crystallographic orientation
of the laser rod, thereby eliminating the need for the half-wave plate (whose removal was
seen to further improve laser stability).

When laser light exits the cavity, it is horizontally polarized and has a temporal profile,
shown in Figure 2.6, largely determined by the pulse shape of the voltage signal driving the

flashlamps. It is then necessary to cut out a “slice” from this ~15 us long pulse, which is
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Figure 2.6: Laser temporal profile, before pulse shaping. On the time axis, ¢ = 0 corresponds to
when the flash lamp fires. After a settling time of a few microseconds, the relative energy jitter in
the laser steadily grows as a function of time (as the intensity drops). The timing of the SLICE high
voltage signal corresponds to a period in which the relative energy jitter is low (< 1%).

done with the slice-selection optics. The slice-selection optics consist of a Pockels cell sand-
wiched between two crossed polarizers. The first polarizer ensures horizontal polarization,
whereas the second naturally extinguishes all light. A Pockels cell is an electro-optical device
consisting of a crystal whose birefringence is proportional to the voltage applied across its
face. It can therefore act as a variable waveplate whose phase retardation (or advancement)
can be controlled electrically. For slice-selection, the so-called “SLICE” Pockels cell receives
a high voltage pulse of duration equal to the desired length of the electron beam pulse and
of amplitude equal to the half-wave plate voltage of the Pockels cell (about 2800 V). While
the high voltage pulse lasts, the orientation of the laser beam’s linear polarization rotates
by 90°, enabling it to pass through the second polarizer.

Using the slice-selection optics, the duration, intensity, and energy jitter of the laser
pulse can be controlled. For instance, lengthening or shortening the SLICE high voltage
signal lengthens or shortens the pulse. Typical sliced pulse lengths are 50-370 ns. Tweaking
the amplitude of the high voltage signal (away from the half-wave voltage) rotates the
polarization by less than or more than 90°, allowing less light to pass through the second
polarizer and lowering the intensity of the pulse. In fact, the amplitude of the SLICE high
voltage signal is used as part of a linac feedback intended to maintain constant intensity
in the electron beam, compensating for the slow decrease in the quantum efficiency of the
photocathode during its 3-day cesiation cycle. Lastly, changing the timing of the high
voltage signal relative to the flash lamp timing determines the energy jitter of the pulse, as

the relative jitter primarily grows over time. This can be seen in Figure 2.6.
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Figure 2.7: Example of pulse shaping waveform. Figure (a) shows the voltage supplied to the
TOPS Pockels cell versus time. Figure (b) shows the resulting time profile of the beam intensity.
Shaping the charge time profile in this way helps alleviate the effects of beam loading.

After the laser slice has been formed, it needs to be shaped in order to compensate
for beam loading effects in the linac (described more in Section 2.3). The pulse-shaping
optics consist of another Pockels cell, called the “TOPS” Pockels cell, sandwiched between
two co-aligned polarizers. The dc power supply for the TOPS cell is connected to a func-
tion generator allowing for modulation of the output high voltage signal according to an
arbitrary waveform generated in 25 ns steps. In practice, a waveform such as that shown
in Figure 2.7(a) is used, so that, as one moves along in time, the orientation of the laser
light’s polarization gets rotated by small amounts, meaning that less light passes through
the downstream polarizer. This configuration allows the controller to give the intensity of
the laser pulse a negative time gradient, as shown in Figure 2.7(b), reducing the overall

effects of beam loading in the electron beam.

Diagnostics Bench

Immediately downstream of the Flash:Ti bench, the diagnostics bench contains optics con-
nected to monitoring various aspects of the sliced laser pulse. Here and elsewhere, photodi-
odes are located behind the broadband NIR-coated high-reflectivity mirrors used to reflect
the laser beam along its designated path. These photodiodes monitor leakage light and
provide measurements of intensity, wavelength, and spot size. On the Flash:Ti bench, a
photodiode (sometimes called the long-pulse photodiode) located behind the mirror imme-
diately upstream of the slice-selection optics monitors the total laser output. Also on the
Flash:Ti bench, a CCD camera installed behind the mirror immediately downstream of the

pulse-shaping optics monitors the spatial profile of the sliced laser pulse. On the diagnostics
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bench, a holographic beam sampler diverts two one-percent samples of the laser beam at
small angles to the primary beam path. One of these samples goes to a photodiode, while
the other can either be focused onto a scanning monochromator for wavelength measure-
ments or (if a remotely insertable mirror is used) can be imaged onto another CCD camera

for spatial profile monitoring.

Helicity Control Bench

By the time the laser beam reaches the helicity control bench, it is vertically linearly po-
larized and sliced into a short pulse of 50-370 ns. As discussed in Section 2.2.1, circularly
polarized light is needed in order to produce longitudinally polarized electrons. All of
the optical components located on the helicity control bench therefore have the dual and
intimately-related responsibilities of ensuring near-perfect circular polarization at the pho-
tocathode while also minimizing helicity correlations in all laser beam parameters (besides
polarization, obviously). Furthermore, they must allow for rapid helicity flips, for which
purpose electro-optical devices such as Pockels cells are ideally suited.

Immediately downstream of the intensity asymmetry (IA) Pockels cell and the piezomir-
ror (a description of whose functions will be deferred until Section 2.2.6), the beam encoun-
ters the polarization optics, consisting of a vertically aligned polarizer followed by two
Pockels cells. The so-called cleanup polarizer serves two purposes. First, it determines the
orientation of the linear polarization for all downstream optics, most importantly the CP
and PS Pockels cells, whose fast optical axes can be accurately set relative to this orienta-
tion, rather than that of some other optical element further upstream. Second, it is used
as the point of combination for the YLF:Ti beam that is used to generate electrons for the
PEP rings as part of the BaBar experiment, which collected data concurrent with this ex-
periment during Run I. Both the Flash:Ti and the YLF:Ti beams share a common path to
the photocathode after they are combined at the cleanup polarizer. The first Pockels cell in
the polarization optics is called the circular polarization, or just CP, cell. It is supplied with
a high voltage pulse of amplitude ~2800 V, corresponding roughly to quarter-wave voltage,
the sign of which determines the helicity of the pulse, either right or left. The fast axis of
the CP cell is oriented at 45° with respect to the vertical, so that, for vertical incoming
polarization, circular polarization of either helicity can be produced. The second Pockels

cell, referred to as the phase shift, or PS, cell, with a vertical fast axis, nominally operates
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at zero voltage. Small (on the order of 10 V) helicity-correlated deviations from zero are
used to correct for phase shifts in the downstream optics and maintain near perfect circular
polarization at the photocathode. The exact way in which the polarization Pockels cells’
voltages are set, and the importance of the choice of voltages, will be more fully explained
in Section 2.2.4, once the various sources of systematics have been described.

Two photodiodes on the helicity control bench monitor the total energy in the pulse.
One of these photodiodes detects leakage light from the cleanup polarizer, and so is sensitive
both to the Flash:Ti pulse as well as to the YLF:Ti pulse. The last optical element on the
helicity control bench, the insertable helicity filter is used when determining the optimal
operating voltages for the CP and PS cells. The helicity filter itself is a linear polarizer
affixed to a quarter-wave plate in such a way that the whole arrangement transmits right
helicity light while extinguishing left helicity light. In practice, the CP and PS voltages are
swept one at a time over an appropriate range while the helicity filter is inserted into the
beam path and a downstream photodiode monitors transmitted intensity. Fitting the data
to parabolas yields the voltages to use in order to maximize or minimize transmission, as
the case may be, thereby ensuring optimal circular polarization. An extinction ratio R is
defined by:

Tiight

R = ‘ught 2.1
Tleft ( )

where Tighy (Tier;) is the transmission for right (left) helicity light. An extinction ratio of
R > 1000:1, for instance, implies circular polarization better than 99.8%, which in turn
implies a linearly polarized component of less than 0.2%. We require that R satisfies this
criterion. Ifit does not, then realignment of the CP and PS cells is necessary. This procedure
does not finalize the CP and PS cells’ voltages, however. First, when the electron beam
becomes available (after initial commissioning and setup), a toroid early on in the linac is
used to measure the charge asymmetry as the CP and PS voltages are tweaked about their
nominal values. This procedure, which will be explained in Section 2.2.5, compensates for
various effects, such as phase shifts in the optics downstream of the CP and PS cell, and
minimizes the asymmetry in the linear polarization at the photocathode. Second, when the
electron beam has been successfully transported all the way down the linac machine and
into End Station A, the Mgller polarimeter is used to check that the Pockels cell voltages

are indeed those that result in the highest polarization at the target. Typical results of
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these types of scans will be given in Section 4.2.

Located just after the PS cell, the asymmetry inverter (sometimes abbreviated as the AI)
comprises two sets of lenses, a lens doublet and a lens quadruplet, which act as telescopes of
magnification M = +2.25. In the doublet configuration, which possesses the magnification
factor M = —2.25, the trajectory and spatial profile of the beam undergo a reflection about
the origin. This is useful in cancelling helicity-correlated position differences in the electron
beam. The two sets of lenses sit on an optics stage which can be slowly translated by
hand from one configuration to the other. Typically the experiment ran for a week in one
configuration and then toggled the AI into the other configuration, hoping in this way to
achieve some level of cancellation of position-related systematics. An insertable half-wave
plate is mounted just downstream of the asymmetry inverter. Along with another half-wave
plate located on the cathode diagnostics bench, this half-wave plate can be used to provide

cancellation of certain classes of beam asymmetries.

Optical Transport System

For practical reasons involving space, safety, and maintenance concerns, the source laser
room is located 20 meters away from the gun vault. It is the job of the optical transport
system (OTS) to transport the beam from the laser room to the optics bench located just
before the entrance to the vacuum containing the photocathode. The OTS consists of a
20-m-long pipe containing a single 5-m imaging lens and a mirror box that brings the laser
beam down to the height of the optics bench (the cathode diagnostics bench, described next)
located just in front of the entrance to the photocathode gun. The imaging lens compensates
for beam divergence. The mirrors in the mirror box are designed to preserve the high degree
of circular polarization. There are two pairs of helicity-compensating mirrors, with the
mirrors within each pair acting to interchange s and p—polarization upon reflection. In this
way, differences in phase shifts and reflectances for s and p—polarizations are cancelled out.

The OTS was once held under vacuum, with window plates installed on either end, to
eliminate air currents that could potentially steer the beam (there is a ~10°C temperature
gradient between the laser source room and the gun vault). However, for this experiment
the OTS was brought up to atmospheric pressure in order to eliminate the stress-induced
birefringence in the window plates, which could otherwise produce helicity correlations in

the electron beam (as will be discussed in Section 2.2.4).
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Cathode Diagnostics Bench

The first item on the cathode diagnostics bench, the imaging telescope, isn’t a diagnostic
at all, but is used to determine the beam spot size on the photocathode. The photocathode
is ~20 mm in diameter and, unlike previous photocathodes, does not need to be fully
illuminated in order to meet the experiment’s beam current requirements. This flexibility
allows one to reduce the spot size by almost half while simultaneously moving the object
point to within a few centimeters of the CP cell. This is a significant reduction of the ~20 m
lever arm actually separating the CP cell and photocathode, and reduces the sensitivity to
Pockels cell lensing effects. After the imaging telescope, another remotely insertable half-
wave plate is mounted. The position (in or out of the beam) of this half-wave plate was
toggled about every two days throughout the entire physics run. This was very important
for reducing the experimental sensitivity to certain classes of beam-related systematics.
Opposite the window leading out of the OTS and immediately after the remotely in-
sertable pick-off mirror (which will be described in a moment), the beam encounters the
vacuum window leading to the beam pipe connected to the photocathode gun. Inside the
gun, the photocathode is held in ultra-high vacuum at a dc bias voltage of —120 kV [70].
The photoemitted, polarized electrons are thus drawn away from the photocathode back the
way the light came in (the gun is thus said to operate in “reflection mode”), until a dipole
magnet bends them into the injector for bunching and subsequent acceleration. The HV
power supply recharges the photocathode in between every pulse as part of an RC-circuit.
The remaining optical elements on the cathode diagnostics bench come into play only
when a 50% pick-off mirror is inserted into the beam path just upstream of the vacuum
window. A paper target is monitored by a video camera. Multiple mirrors reflect the beam
so that the path length from the pick-off mirror to the cathode target is exactly the same as
to the real photocathode. The video camera thus gives an image of the beam spot exactly
as it appears on the actual photocathode. This is an extremely useful feature, especially
for mapping the quantum efficiency over the photocathode’s surface. A diagnostic HeNe
laser (having a very small ~1 mm spot) is used with the pick-off mirror inserted, and the
current drawn from the photocathode is measured as the beam is swept back and forth both
horizontally and vertically. The apparatus is also useful for determining the object point of

the imaging telescope. A wire mesh screen is placed in the beam path near the polarization
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Wavelength: 805 nm (750 — 850 nm)
Bandwidth: 0.7 nm FWHM
Repetition rate: 120 Hz (max.)
Cavity output: 45 mJ (5.4 W at 120 Hz)
Pulse length: 250 ns (50 — 370 ns)

60 pJ in 250 ns (typ.)

Pulse intensity: 600 11J in 370 ns (max.)

Intensity jitter: 0.5% RMS
Position jitter at photocathode: < 70 pm RMS
Circular polarization: > 99.8%

gradient-doped,
strained GaAs
Electron beam polarization: ~ 85%
5x 10" (typ.)
2 x 102 (max.)
Energy spread (e~ beam): ~0.15%

Photocathode type:

Electrons per pulse:

Table 2.1: Summary of the source performance. Unless otherwise noted, all items refer to laser
performance. The laser position jitter at the photocathode is given for a beam ~1 cm in diameter.
Electron beam performance is further discussed and summarized in Chapter 4.

Pockels cells on the helicity control bench, and its z-position is varied as the resulting image
on the cathode target is observed. By finding the position for which the wire mesh screen’s
shadow appears sharpest, the object point is determined to be within a few centimeters of
the CP cell, as noted above. Behind one of the mirrors on the cathode diagnostics bench,
a photodiode monitors leakage light and can be used to give measurements of transmission

and of the actual laser power reaching the photocathode.

2.2.3 Source Performance

A summary of the overall source performance appears in Table 2.1. This table mainly
summarizes the performance of the source laser system, but it also sheds light on three
key aspects of the electron beam — polarization, charge, and energy spread (related to
beam loading) — crucial to the success of the experiment and intimately related to the
performance of both the laser and photocathode. The feasibility of this experiment depends
on the ability to produce a high-charge, high-polarization, and high-energy electron beam,
making SLAC an ideal site for its implementation.

Serious demands were placed on the source to provide a highly stable electron beam of

high current and high polarization. These demands were indeed met, thanks to the new
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gradient-doped photocathode structure, which SLAC developed, as well as to some of the
novel techniques employed in the source optics setup. For example, the TOPS pulse-shaping
is essential for minimizing energy spread due to beam loading, which in turn is essential for
the delivery of a stable, usable ~50 GeV electron beam.

One quantity that had an especially big impact on numerous aspects of the experiment
was the laser intensity jitter. Historically pulse-to-pulse laser intensity jitter was at the
level of 1 — 2% or even higher. Much effort was made to reduce the jitter, and thanks to
many small improvements in the Flash:Ti cavity, the laser power supply electronics, and
the photocathode,' the intensity jitter was gradually reduced to its present value of no
more than 0.5%. Minimizing laser intensity jitter, by lowering the intensity jitter in the
resulting electron beam, helps the experiment in many ways. It lowers energy jitter in the
electron beam, improves beam delivery as well as beam quality, and plays a part in reducing
systematic effects.

Table 2.1 contains information about the beam’s polarization, charge, and jitter, but it
makes no mention of any helicity correlations present in either its intensity, energy, position,
or spot size. Minimizing such helicity correlations, in addition to producing a high-current
beam that is both stable and of high polarization, is the primary concern of the source.
The next section describes how unwanted helicity correlations can arise in the electron
beam. The ways in which these potential sources of systematics are minimized will then be

discussed.

2.2.4 Sources of Systematics

Helicity correlations (wanted and otherwise) are introduced for the first time on the helicity
control bench, starting with the polarization optics. For the purposes here, it will be helpful
to use the Jones matrix formalism, whereby a 100% polarized beam is represented in vector

notation in terms of its electric field vector [76]:

‘E:> _ Ey (t) — B, ez'(szwt) cos ¢ (2‘2)
Ey(t) ' sin @

"Improving the photocathode doesn’t itself reduce laser intensity jitter, but it allows for modifications
to the laser system that can reduce its intensity jitter. For example, the new photocathode requires a
wavelength of 805 nm for peak polarization. This wavelength is much closer to the gain maximum of the
Ti:Sapphire laser crystal, which significantly enhances its performance.
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The varying amplitude term out front can be dropped since it is common to both compo-
nents. Using this notation, then, the laser light after the cleanup polarizer can be repre-

sented as follows:

‘E> _[° (2.3)

This defines the vertical axis. Next come the CP and PS Pockels cells. In general, the Jones

matrix for a Pockels cell pulsed at voltage V' can be written as:

cos(f) —sin(#) 1 0 cos(—60) —sin(—0)
sin(f)  cos(@) 0 &™V/Viw sin(—0)  cos(—0)
(2.4)
1 0
—re)| | R0
0 ezJ

where R(6) is a rotation matrix used to account for the orientation of the Pockels cell’s fast
optical axis with respect to the incoming polarization vector, and § is the phase retardation
introduced between the Pockels cell’s fast and slow axes. It follows that Vj,, is the half-wave
voltage of the Pockels cell, or the voltage for which the Pockels cell acts as a half-wave plate.
The CP cell has its fast axis at 45°, while the PS cell has a vertical fast axis. Using this
formalism, then, the electric field vector of the laser light after the PS cell takes on the
following form:

‘E> _ sin(dcp/2)

_ (2.5)
el (m/240P5) cos(6cp /2)

where dcp and dpg are the phase retardations for the CP and PS Pockels cells, respectively.
Under nominal conditions, the CP cell behaves like a quarter-wave plate (Vop = £V}4,/2),
whereas the PS cell is not pulsed with any voltage. This gives dcp = £7/2 and dpg = 0,
which from Equation (2.5) can be seen to produce perfect circular polarization of either
helicity. In order to generate perfect circular polarization at the photocathode, however, we
must be able to compensate for residual birefringence both in the Pockels cells themselves
as well as in various optical elements downstream of the polarization optics. Residual
birefringence throughout the transport system is a major concern and, coupled with any
analyzing power anywhere in the system (such as that of the strained photocathode), is

capable of producing large helicity-correlations in the electron beam.
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Figure 2.8: Effects of non-zero phase shifts acp, aps, Acp, and Apg. Polarization ellipses are
shown for the laser light at the photocathode. The solid red line denotes the left-helicity ellipse,
while the dotted blue line denotes the right-helicity ellipse. Only nonzero A parameters are capable
of producing linear polarization asymmetries at the photocathode.

In order to compensate for the imperfections produced by residual birefringence, devia-
tions from the nominal operating voltages are necessary. Four new parameters (acp, Acp,
aps, and Apg) are needed to completely span the choice of voltages. The right and left

phase retardations for the CP and PS cells can thus be written in the following manner:

dbcp = =+ (7T/2 + aCP) +Acp
dps = Faps+ Apgs

(2.6)

From this equation, one can see that acp and apg correspond to symmetric deviations (they
affect the voltages of both helicity states by equal but opposite amounts, keeping them
symmetric about the zero-axis), while Acp and Apg correspond to asymmetric deviations
(they ruin the symmetry about the zero-axis). Consequently the @ and A parameters are
often referred to as symmetric and asymmetric phase shifts, respectively.

Another, more physical way in which the phase shifts can be seen to be symmetric and
asymmetric is in the effects they have on the polarization of the laser light. Any deviations
from the nominal operating setpoints (docp = £7/2, dps = 0) distort the perfect circular

polarization, turning it into elliptical, but symmetric and asymmetric phase shifts differ in
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how they do this. The effects of non-zero a and A are shown in Figure 2.8. For o # 0 and
A = 0, the major and minor axes of the polarization ellipse are the same for right and left
helicity light. In other words, the linear polarization component has the same direction for
right helicity light as it does for left helicity light. By contrast, &« = 0 and A # 0 produces
elliptically polarized light with the major and minor axes of the ellipse being switched for
right and left helicity light. In other words, the linear polarization components for right
and left helicity light are orthogonal.

This turns out to be a very important distinction. On the one hand, for A # 0, one
has a linear polarization asymmetry at the photocathode, while for & # 0 one does not.
Consider what would happen if an element was introduced into the system that possessed
a higher transmission efficiency for linearly polarized light along some preferred axis. To a
very small level, at least, every optical element that is not perfectly normal to the beam will
possess a finite analyzing power. The dominant analyzing power in our system, however,
is that of the strained photocathode, which possesses a QE analyzing power on the order
of a few percent. Qualitatively, this will produce an intensity asymmetry equal to the level
of the linear polarization asymmetry (itself proportional to A) multiplied by the analyzing
power in the system. For instance, a linear polarization asymmetry of 1% coupled with an
analyzing power in the photocathode of 1% will naturally produce a charge asymmetry in
the electron beam on the order of 0.01 x 0.01 ~ 100 ppm.

Of course, this treatment just gives an order of magnitude estimate for the effects one
may expect to observe; the actual size of the effects will be larger or smaller depending on
the exact size of the linear polarization asymmetry, the size of the analyzing power, and the
orientation of the analyzer’s preferred axis with respect to that of the linear polarization
asymmetry. A derivation of the general form of the so-called PITA (Polarization Induced
Transport Asymmetry) effect can be found in several sources [75, 77], with the final result

being;:
Q= IR AL _ - Acp + mes - Aps (2.7)
qr + 4L
where Ag is assumed to be the charge asymmetry in the resulting electron beam, gr and
qr, are individual charge measurements for right and left helicities, respectively, and mcp
and mpg are referred to as the PITA slopes for the CP and PS Pockels cells, respectively.

To summarize, looking back at Figure 2.8, one realizes that by manipulating acp, aps,
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Acp, and Apg, it is possible to generate light with arbitrary elliptical polarization at
the photocathode. The symmetric phase shifts acp and aps produce linear polarization
components that are symmetric with respect to helicity. For aqp # 0 the linear polarization
is along the x or y axis, while for aps # 0 it is along the u or v axis (the u-v axis system
is the z—y axis system rotated by 45°). By contrast, the asymmetric phase shifts Acp and
Apg produce linear polarization components that are asymmetric with respect to helicity.
For Acp # 0 the linear polarizations are along the x and y axes (e.g., z-axis for right
helicity, y-axis for left helicity). For Apg # 0 the linear polarizations are along the u and
v axes (e.g., u-axis for right helicity, v-axis for left helicity).2

In addition to phase shifts that are controlled experimentally, imperfections in optical
components can give rise to their own contributions to Agp and Apg. These contributions
are called residual birefringences, and they will be the first source of systematics specifically
discussed below. Residual birefringences couple only to charge asymmetries and, because
of beam loading effects described in Section 2.3, energy asymmetries. Other effects will be
seen to produce helicity correlations in all of the various beam parameters. After describing
each effect and the types of beam asymmetries it is capable of producing, the next section

will turn towards the different ways in which these effects may be minimized.

Residual Birefringence

Up until this point, it has been implicitly assumed that there are no birefringences in
the system other than those possessed by the CP and PS Pockels cells, and that these
birefringences can be totally ascribed to the Pockels effect. In reality, not only do the
Pockels cells contain natural birefringence (which will not be proportional to the E field
applied to the cell), but so do many other optical elements in the source optics system. For
example, a typical glass window will produce a phase shift on the order of 5 nm/cm, which,
for perfectly circularly polarized light at 800 nm, can produce charge asymmetries in the
electron beam on the order of 1000 ppm, given typical photocathode QE anisotropies of
~ 5%. These natural birefringences are referred to as residual birefringence.

The residual birefringence of the Pockels cells themselves can be accounted for by sep-

“Readers familiar with the work of George Stokes will recognize these sensitivities as being to Stokes
parameter 1 (S;) and Stokes parameter 2 (S2), respectively.
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arating Acp and Apg in Equation (2.7) into two variables each, like so:

Acp = Acp + A
cP cP cP (2.8)

Aps = Apgs + AUPS

Here the A terms are the residual birefringences resulting from imperfections in the Pockels
cells, and Acp and Apg are the phase shifts actually controlled by the experimenter.
Substituting Equation (2.8) into Equation (2.7) clearly shows, given some finite amount of
residual birefringence, voltage offsets will be necessary from the nominal operating points
of Vep = £Vow and Vpg = 0.

In general, phase shifts in any optical component downstream of the polarization optics
can be accounted for by making the following substitutions in Equation (2.7):

Acp = Acp+ ALp + Al +--- + A} (2.9)

Aps = Aps+ Ahg + AL+ - + A

where the 7 superscript refers to the it" optical element being considered, and the sub-
scripts 1 and 2 denote sensitivity to the Stokes parameters S; and S, respectively (see the

discussion connected with the footnote on page 43).

Birefringence Gradients

Having introduced the variables A, it is natural to ask what would happen if these new vari-
ables possessed spatial variation. In this case, Equation (2.7) would gain spatial variation,
and the electron beam would thus have a charge asymmetry that varied with position. A
spatially varying charge asymmetry is immediately recognized as a helicity-correlated posi-
tion difference. An example scenario is illustrated in Figure 2.9, which shows a birefringence
with a linear position gradient and the helicity-correlated position difference in the electron
beam that it would cause, assuming a Gaussian laser beam profile. In general, higher order
moments in the spatial profile of the birefringence functions A’ produce helicity-correlated
differences in the higher order moments of the electron beam profile. The next higher order
moment is spot size. The effects that helicity-correlated spot size differences can have on
the physics asymmetry measurement will be discussed in Section 2.5.1.

Because of its natural birefringence, an improperly aligned Pockels cell is capable of
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Figure 2.9: Effects of birefringence gradients. A linear gradient in a birefringence A is shown on
the left. On the right, the effect such a birefringence gradient might have on right- and left-helicity
beams is shown. The birefringence gradient will produce a linear polarization asymmetry that varies
with position. The photocathode’s analyzing power will then transform this into a spatially varying
charge asymmetry, which is the same as a helicity-correlated position difference.

generating helicity-correlated position differences by a means very similar to that just de-
scribed. If a laser beam passes through a Pockels cell at an angle, different rays will travel
different lengths through the cell, and will therefore experience more or less retardation.
This then becomes exactly equivalent to the situation pictured in Figure 2.9. Likewise, a
diverging or converging beam, even if it is perfectly aligned with the Pockels cell, can pro-
duce a similar effect, as different rays will again experience varying amounts of retardation

depending on their location within the beam.

Photocathode Gradients

Gradients in the analyzing power of the photocathode can also produce spatial variations
in the electron beam charge asymmetry given in Equation (2.7), by effectively making the
PITA slopes mcp and mpg functions of position. This effect has been observed in special
tests in the Gun Test Lab (GTL) facility (which is a scale mock-up of the entire polarized
electron source, along with a reproduction of the first few meters of the injector), but
the observations indicate that the effects are of only moderate importance, being able to
produce helicity-correlated position differences on the order of 100 nm [75]. It should be
noted, however, that such effects will be proportional to Acp and Apg.

Another photocathode gradient to consider is one not in the QE anisotropy, but in the
QE itself. Given any helicity-correlated steering effects in the laser system (such as those
to be discussed immediately below), so that right and left helicity beams hit the cathode

at different spots, a QE gradient could cause unwanted helicity correlations in the electron
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Figure 2.10: Effects of photocathode quantum efficiency (QE) gradients. The contour lines rep-
resent a supposed map of the photocathode’s QE. The left-helicity laser beam is shown hitting a
spot on the photocathode with large QE gradients, while the right-helicity beam is hitting a spot
with small QE gradients. Such a scenario will generate a charge asymmetry in the emitted electron
beam.

beam, most noticeably in charge and position,? but to a lesser extent in spotsize as well.
All such effects will tend to be “averaged out” according to how much of the cathode the
laser spot illuminates, which for the current setup is roughly half. Nonetheless, some effects
likely attributable to this scenario, which is sketched in Figure 2.10, have been observed,

and are referred to briefly in Section 4.5.

Pockels Cell Lensing

It is known that Pockels cells can, to some extent, act as imperfect lenses, focusing and
steering the light that passes through them. What’s more, these steering and lensing effects
can be different depending on the voltage at which the Pockels cells are operated (in general
they become more apparent at higher voltage, and depend on the sign of the voltage).
This can have dire consequences, since the CP cell, in particular, continually flips between
£2600 V. Since this voltage determines the helicity of the electron beam, the CP cell is
therefore capable of introducing helicity-correlated steering effects into the source system.

Exhaustive studies of Pockels cell lensing effects were never carried out at SLAC, mainly
because they had been studied in detail in previous parity violation experiments [78] em-
ploying polarization optics systems on which the E-158 optics system has been modeled.

These studies suggested a simple and straightforward means of suppressing such lensing

3The position of the laser beam on the photocathode determines the position of the resulting electron
beam, so that helicity-correlated laser beam position differences inevitably show up in the electron beam.
However, a photocathode QE gradient would “muddy” the neat correspondence.
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effects — image the Pockels cell onto the photocathode. Observations in the E-158 op-
tics system seem to indicate that, uncorrected for, Pockels cell lensing effects can result in
helicity-correlated position differences comparable to, if not greater than, those produced
by birefringence gradients. Imaging the CP cell onto the photocathode has reduced the

electron beam’s sensitivity to lensing effects by a factor of 100 or more.

Electronic Cross Talk

Electronic cross talk refers to any unwanted communication of the helicity state of the
electron beam to the data acquisition (DAQ) system. It is of course necessary to transmit
the helicity state to the DAQ at least once, so that it can be recorded for data analysis.
However, special measures (described in the next section) can be taken to minimize the
chances of unwanted transmission of the helicity state.

Electronic cross talk can stem from the CP cell, whose perfectly helicity-correlated
voltage signal of £2600 V can act like an antenna, broadcasting the helicity for outside
“listeners” (other devices’ signals) to pick up. They can also arise from ground loops, which
surreptitiously connect the signals of other devices to the helicity controller. However
it arises, electronic cross talk can result in a mismeasurement of the detector asymmetry
and/or helicity-correlated beam differences. Because of the measures taken both to minimize
the chances of it ever occurring as well as to provide cancellation of whatever systematic
effects it may cause, electron cross talk is not expected to have a major impact on the

experiment.

2.2.5 Passive Systematics Minimization

The previous sections discussed how helicity-correlated systematics can creep into parame-
ters (such as intensity, position, angle, spot size, and in principle even more) of the electron
beam, summarizing the formal discussions provided by Ref. [75]. As was seen in Section 1.3,
such helicity-correlations cause false asymmetries (i.e., asymmetries caused purely by ge-
ometrical effects, and not new physical processes) to be measured by the detector, thus
obscuring the true underlying parity-violating asmmetry Apy. By setting a limit on the
systematic uncertainty of Apeqn at 4 ppb, where Apeqn was defined to be the total false

asymmetry caused by helicity-correlations in the beam parameters, the same section moti-
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‘ Systematic Source ‘ Charge ‘ Energy ‘ Position ‘ Spot size
Residual birefringence 1000 ppm 10 MeV — —
Birefringence gradients — — 1 pm 1 pm
Beam misalignment, divergence — — 1 pm 1 pm
Pockels cell lensing — — 1 pm 100 nm
Cathode gradients 10 ppm 100 keV | 100 nm | 100 nm
Electronic cross talk 1 ppm 10 keV 1 nm 1 nm

| TOTAL | ~1000 ppm | ~10 MeV | ~2 ym | ~1 pm |

Table 2.2: Summary of the potential sources of beam systematics. The estimates for the sizes of
all effects are only approximate (i.e., order of magnitude), and are intended to be representative of
the sizes of the beam asymmetries one would observe if no minimization measures (such as those
discussed in Section 2.2.5) were taken.

vated the following upper limits for the sizes of beam systematics:

Az, Ay < 10 nm
Ax', Ay' < 0.25 nrad

Ag < 200 ppb
AFE < 2keV

(2.10)

These limits represent extraordinary levels of parity between left and right helicity beams.
For instance, since the beam energy is nearly 50 GeV, a 2 keV limit on the right-left energy
difference corresponds to requiring that the energy of the right beam be the same as that
of the left beam to within 40 parts out of a billion.

Meeting the limits put forth in Equation (2.10) requires special attention to all potential
sources of systematics discussed in Section 2.2.4. All of the things one does with the
source optics setup before ever shining light on the photocathode and generating an electron
beam are known as passive systematics minimization, as opposed to active systematics
minimization, which is discussed in the next section.

If nothing was done to optimize the source optics system, one could expect to observe
charge asymmetries in the electron beam on the order of 1000 ppm and right-left position
differences* of roughly 2 um, as indicated in Table 2.2. Because beam loading effects couple
energy jitter to intensity jitter at roughly the 5% level, energy differences of 5 — 10 MeV
would also be observed. Beam helicity correlations of this size are clearly unacceptable,
given the limits of Equation (2.10), and must be reduced.

The Pockels cells used for the polarization optics are selected for the uniformity of their

“For the purposes of this discussion, the “right-left” in “right-left difference” (where “___ 7

to any beam parameter) will be dropped when its absence is judged not to cause confusion.

can refer
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residual birefringence. Multiple pairs of Pockels cells were studied, and those which gener-
ated the smallest helicity-correlated position differences in the laser light they transmitted
were picked for further commissioning. Because residual birefringence gradients are typi-
cally smooth and gradual, minimizing the spot size of the laser beam as it passes through
optics suspected of carrying them is generally considered a good idea, since this reduces the
sensitivity to their effects (by sampling a smaller area over which it may vary). However,
this conflicts with the requirement that the laser be well collimated when passing through
birefringent optics, since reducing the beam’s diameter tends to increase its divergence.

An improperly aligned Pockels cell or an uncollimated laser beam can mimic gradients
in residual birefringence. Therefore, when installing the Pockels cells, great care is taken to
ensure that they are perfectly aligned with the beam. The exact procedure by which this is
accomplished is documented in the SLAC source manual. In addition, three lenses are placed
throughout the system (these have their focal lengths clearly labeled in Figure 2.2) in order
to control the beam’s spot size and divergence at the polarization optics. A safe compromise
between the contradictory goals of reducing the beam’s spot size and divergence is found
by bringing the beam through a gentle focus at the CP and PS cells, with the optimal beam
width at the cells being ~1 mm.

Properly setting the voltages of the CP and PS cells provides the most important passive
means of minimizing systematics. Before laser light is ever brought to the photocathode, the
voltages of the CP and PS cell are scanned in order to find the best set that maximizes the
so-called extinction ratio R, defined in Equation (2.1). This procedure effectively finds the
best set of voltages that compensate for the asymmetric phase shifts A% p and AOPS caused
by the Pockels cells’ residual birefringence (see Equation (2.8) and related discussion). This
maximizes the beam’s circular polarization just after the PS cell. However, perfect circular
polarization is wanted at the photocathode. In essence, all of the various A’ variables in
Equation (2.9) must be found.

The practical way of accomplishing this is to measure the PITA slopes m¢p and mps.
Once the PITA slopes are known, they can be used to adjust Acp and Apg in order to
null whatever charge asymmetry is measured in the electron beam. The PITA slopes are
measured once the laser has been brought to the photocathode and electrons are being
accelerated at least part-way down the linac. A toroid (a beam measurement device sen-

sitive to charge, described in Section 2.4.1) is used to monitor the electron beam charge



charge asymmetry (ppm)

CP Scan (AM2=IN) |

3800F
3600F
3400f
3200
3000
2800
2600
2400
2200
2000
1800
1600

é

l‘s\

Mgp = -2.2 +/- 0.2 ppm/V

Y
} IR .
4

1
-400 -3

00 -200 -100 O 100 200 300 400
Acp (V)

50

charge asymmetry (ppm)

PS Scan (M2=IN) |

7000

6000}

5000
4000
3000
2000
1000

0

-1000[—

-2000

Mpg = 9.9 +/- 0.2 ppm/V

)
.

.
1 1 1 1 1 1 1 1 1

-400 -300 -200 100 0 100 200 300 400
Aps (V)

Figure 2.11: Example PITA scans. These data were taken with the half-wave plate (A/2) inserted
in the path of the laser beam. The charge asymmetry is plotted as either Acp or Apg is varied. The
PITA slopes mcp and mps are used to compensate for phase shifts downstream of the polarization
optics, resulting in near-perfect circular polarization at the photocathode.

asymmetry while Acp and Apg are varied. An example so-called PITA scan is shown in
Figure 2.11. From data like these, mcp and mpg are extracted. Finally, Acp and Apg
are adjusted in order to null the charge asymmetry measured at what were the nominal
operative voltages. This compensates for residual birefringence in optics downstream of
the PS cell, most notably that of the cathode vacuum window at the end of the cathode
diagnostics bench (which has unavoidable stress-induced birefringence).

When correcting for measured charge asymmetries using the PITA slopes, one in theory
has freedom to decide which lever, either Acp or Apg, to use. There exists a line in voltage
space, illustrated in Figure 2.12, upon which the charge asymmetry is zero. The slope of
this line is s = —mcp/mps. If a non-zero charge asymmetry Ay is measured at some nominal
operating point (which can be taken as the origin, and so denoted by the ¢ subscript), it
means that this operating point is not on this line. The most efficient change to Agp and
Apg will be that which brings one back to the Ag = 0 line via the shortest route possible

in voltage space:

A
min (Acp, _ 0 + s ACP)‘
Mps
—Ap - mep
Acr = mép + mi
— N ® (2.11)
Apa = —Ag - mps
PS 2
Mep + Mpg
Here the fact mep - Agp + mps - Aps = —Ap has been used.

Finally, the means by which the photocathode is imaged onto the CP cell has already

been described. This greatly reduces the beam’s sensitivity to Pockels cell lensing effects.



Figure 2.12: Charge asymmetry vs. Acp and Apg. There exists a line in voltage space where Ag =
0. If a nonzero charge asymmetry is measured, changing A p and A pg according to Equation (2.11)
will move the charge asymmetry along a manifold back to the Ag = 0 line.

Helicity Selection and Timeslots

One of the key requirements of the electron source is that it be able to rapidly switch
between helicity states in order to minimize sensitivity to slow drifts. If not done properly,
however, rapid helicity switching can add unwanted noise to the measurements or even
generate false asymmetries via electronic cross talk. Measures must be taken in order to
ensure that neither of these possibilities result.

The helicity of each pulse is controlled by the Polarization Monitor (PMON) system.
PMON uses a 33-bit shift register algorithm [79] to generate two pseudo-random helicity
states, either 00, 01, 10, or 11. It then briefly halts using the pseudo-random bit shift
algorithm and automatically generates the complements of these helicity states. It then
recommences with the bit shift algorithm to generate two more pseudo-random helicity
states, and so on and so forth. It therefore operates in modified pair-wise pseudo-random
mode:

hihyhihy h3hgh3hy hshehshe ... (2.12)

Here the subscripts are used to denote the so-called pulse pairs, which consist of two pulses
with opposite helicities. Since the maximum repetition rate for the source is 120 Hz, it
is clear from this equation that the maximum rate at which pairs may be generated is
30 Hz. This shields out the considerable 60 Hz line noise that would otherwise add a large

amount of random noise into the experiment, ruining the statistical precision.® If 0 is used

5This line noise, however, would not bias the measurement in any way, since it would have no knowledge
of helicity and would therefore tend to cancel out when taking the average.
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to denote a left helicity state, and 1 is used for a right state, and these are denoted by L

and R, respectively, then a possible helicity sequence would be:

AN
LRRLRRLLRLLR... (2.13)

pair
As can be seen, the pairs are interleaved, and are said to inhabit two “timeslots,” each
timeslot effectively a completely separate experiment, since, in general, it sees a consistently
different phase of the 60 Hz line noise. Timeslots are an unavoidable but, as it turns
out, a very useful feature of the experiment. Much more about them will be discussed in
Sections 3.4 and 4.5.

In order to guard against the risks of electronic cross talk, all helicity bits are delayed
by one pulse and RF modulated prior to broadcast. In addition, ground loops are carefully
avoided in all data acquisition systems by using fiber optics (instead of copper cables) to
connect the various VME crates, which house the electronics used by the data acquisition
system. These measures greatly reduce the risks of false asymmetries arising from electronic
pick-up. Any effects that do show up can be cancelled by the insertion of either of the half-

wave plates.

2.2.6 Helicity-Correlated Feedback Loops

Passive systematics minimization can usually bring beam asymmetries down to the level
of roughly 100 ppm for charge and a few 100 nm for position differences. This is an
improvement of roughly one order of magnitude from where the systematics started, but
a huge amount of further reduction is still needed in order to reach the goals put forth in
Equation (2.10). This further reduction is achieved through the use of active feedbacks.
The source uses three active feedback loops on helicity-correlated measurements: an
intensity asymmetry feedback, a right—left position difference feedback, and a source phase
feedback. Each feedback works along the same principle: integrate measurements from a
particular device for a given number of pairs to average out statistical fluctuations, then

induce an asymmetry using a particular control device to compensate for whatever was
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measured. The procedure can be written out as:

Azlnd =0
(2.14)
ina = Aina =9 Aoy
where
Af)bs = Agnd + Aiyst + Aitat (2.15)

Here g is the gain of the feedback (g > 0), A;;q is the asymmetry induced using the
control device, A is the beam asymmetry observed in the measurement device, Agyq is
some underlying beam asymmetry caused by any of the sources of systematics discussed
in Section 2.2.4, and Agy is the random fluctuation measured due to beam jitter. If the
feedback loop integrates N pairs at each time interval ¢, the statistical fluctuations Ag ey will
decrease as o/ V/N, where o is the pulse-to-pulse beam jitter for whatever beam parameter
is being considered.

Following the prescription above cancels out the beam systematic Agyg, so that the
measured beam asymmetry Ags tends towards zero. What’s more, the measured beam
asymmetry can tend towards zero at a faster rate than normal statistical scaling would
seem to allow. This is because the statistical error bars A%,,, are all arranged to cancel one
another out, with the exception of the very last one, when taking the average of all observed
beam asymmetries Agbs. Therefore only one error bar enters into the error propagation
formula.® In this way, the error bar on the final averaged asymmetry will scale as 1/N, and
not as 1/ VN , where N is the number of time intervals.

The intensity asymmetry (IA) feedback uses the IA Pockels cell on the helicity control
bench to apply a helicity-correlated phase shift to the laser beam, rotating its polarization in
a helicity-correlated manner. The cleanup polarizer then transforms this helicity-correlated
phase shift into an intensity asymmetry. In this way, the IA cell and cleanup polarizer
combination is capable of producing charge asymmetries in the electron beam as large as a
few percent, limited by the TA cell’s HV power supply (currently able to produce voltages
up to 750 V).

5The correlation between the random error bars A%,,;, leading towards super-statistical 1/N scaling, is
only perfect for unitary gains (¢ = 1). Non-unitary gains will slow the rate of scaling.
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The position difference (POS) feedback uses a mirror mounted on a piezostack on the
helicity control bench as its control device. This piezostack is connected to three pairs
of voltages that can manipulate the mirror’s orientation on a pulse-to-pulse basis. The
so-called piezomirror can therefore induce helicity-correlated position differences on the
laser beam. The piezomirror can only generate small tilts, though, roughly +50 urad (the
voltages required are only +10 V). The point-to-point imaging of the photocathode onto
the CP cell leaves an effective lever arm of approximately 50 cm for the piezomirror, giving
it a dynamic range of ~50 ym at the photocathode.

Both the TA feedback and the POS feedback use measurement devices situated in an
early region of the linac where the beam has only been accelerated to 1.2 GeV. Feeding back
on the beam early, before it has been accelerated to very high energies, will hopefully sup-
press helicity correlations in beam parameters over which the source has no direct control.
For instance, beam loading couples intensity to energy. Nulling the intensity asymmetry in
the electron beam early in the machine should then also null the energy asymmetry, even
though no direct control over the energy is being exercised.

For much the same reason, a phase feedback is employed, which continually adjusts
Acp and Apg according to Equation (2.11) in order to compensate for whatever charge
asymmetry correction the TA loop has had to make. This keeps the average correction made
by the IA loop small, by maintaining near—zero residual linear polarization asymmetries at
the photocathode. In effect, whereas the IA feedback merely addresses the visible result of
a problem (a charge asymmetry in the electron beam, for instance), the phase feedback goes
after the root of the problem itself (a linear polarization asymmetry at the photocathode,
caused by residual birefringence). Photocathode gradients offer another example of a class
of systematic that benefits from the phase feedback’s habit of adjusting the CP and PS cell
voltages to null linear polarization asymmetries at the photocathode.

For each feedback loop, the number of pairs N integrated at each time interval is de-
termined by the dynamic range of the particular control device used and by the beam
jitter. For instance, the intensity asymmetry loop feeds back on a toroid that typically
measures pulse-to-pulse intensity jitter of 0.5%, which in turn produces jitter in the asym-
metry measurements of 0.5%/v/2 = 0.35%. Since this is far below the dynamic range of the
IA Pockels cell, which can easily produce charge asymmetries (with the cleanup polarizer’s

help, of course) as large as 3%, N need not be very large. Consequently, N = 800 pairs for
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the TA loop, corresponding to typical corrections on the order of 100 ppm.

On the other hand, the POS loop only has a dynamic range of roughly +1 pm at the
1.2 GeV region, due to adiabatic damping effects. © The pulse-to-pulse beam position jitter
is typically on the order of 10 gm. In order to avoid driving the piezomirror too hard,
voltages on the order of only 1 V are desired. Thus, the number of pairs the POS loop
should integrate at each time interval is N = (10 x 10)?> = 10k pairs. The exact value
of N was periodically adjusted during data taking to compensate for changes in jitter and
betatron phase adjustments that the linac operators occasionally made, but N always stayed
within the range of 10k—20k pairs.

The phase feedback has a very long time constant. At every step, it averages the previous
30 TA loop corrections, meaning that it effectively averages N = 30 x 800 = 24 kpairs.
The phase feedback is designed to compensate for slow drifts in the system, such as slow
birefringence drifts. In theory it is not strictly needed, yet it provides a valuable degree of
automation and flexibility.

The gain of each feedback is determined by the stability of its calibration. For instance,
the TA feedback can be calibrated very precisely simply by measuring the half-wave voltage
Viw of the TA Pockels cell, which does not fluctuate over time. Consequently, the gain of
the IA feedback is unity. The POS loop calibration, however, is extremely sensitive to small
changes in a number of system parameters, including the “beam tune” of the injector and
early linac and slow drifts in the phasing of the BPM’s.® For this reason, the POS feedback
is typically run with a gain of 0.25. In fact, because random phase drifts in the linac were
observed to be leading towards natural cancellations of position systematics in the beam by
the time it had reached the target, the POS feedback was actually found to be unneccessary.
As keeping it properly calibrated required careful attention, and if not calibrated it could
actually harm the experiment by producing gross systematics, the POS loop was turned off

for large portions of the data.

"Because of adiabatic damping, beam emittances scale inversely proportional to the beam energy, and
transverse beam sizes and divergences scale inversely to the square root of the beam energy [80].

8The “beam tune” refers to the betatron phase advance from the source to the 1.2 GeV region where
the POS loop’s measurement devices are located. BPM phases are discussed in Section 2.4.2, and, if not
carefully monitored and controlled, can drift due to day—night temperature fluctuations, among other things.
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‘ Systematic Source ‘ Passive Means ‘ Active Means ‘
. . . Null Ag with Acp, Apg;
Residual birefringence beam alignment at CP, PS IA, phase
c . Select CP, PS for uniformity;
Birefringence gradients minimize beam spot at CP, PS POS
- . Beam alignment, collimation
Beam misalignment, divergence at CD, PS POS
Pockels cell lensing Image photocathode onto CP POS
Cathode gradients Keep linear polarlzatlon phase
asymmetries small
. Delay helicity bits;
Flectronic cross talk rf modulate helicity signals
Charge asym: 100 ppm 100 ppb
TOTAL { Pos. diffs: 100 nm 5 nm

Table 2.3: Summary of the passive and active means of beam systematics minimization. The “active
means” column lists which feedback (IA, POS, or phase) specifically addresses which potential
systematic source. The “total” row lists the approximate levels of beam asymmetries that are to be
expected given either passive or passive + active minimization techniques.

2.2.7 Systematics Minimization Summary

Section 2.2.4 described the various ways in which helicity correlations can arise in the
electron beam parameters. Charge asymmetries mainly arise when residual birefringences
induce linear polarization asymmetries at the photocathode. The photocathode’s analyzing
power then transforms this linear polarization asymmetry into a charge asymmetry. The
dominant source of position differences in the electron beam arise mainly from birefringence
gradients and poor beam alignment and/or large divergence through birefringent optics, in
particular the CP and PS Pockels cells. Gradients in the photocathode’s analyzing power
can also play a significant role. As described in the Section 2.2.5, many precautions in
the initial setup of the source optics must be taken in order to reduce sensitivity to these
potential sources of systematics. Even after these precautions are taken, however, further
suppression is needed from active feedback loops. The descriptions contained in the previous
sections, regarding the minimization and control of helicity-correlated systematics in the

electron beam, are summarized in Table 2.3.
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2.2.8 Systematics Reversals

Devices that reverse the experiment’s sensitivity to certain classes of systematics, while
leaving its sensitivity to others unchanged, are often referred to as systematics reversals.
There are two basic types: ones that change the sign of the physics asymmetry Apy, and
ones that don’t. In addition, each reversal may flip the sign of various systematic contribu-
tions A,ys. Reversals that change the sign of the physics asymmetry can be termed physics
asymmetry reversals, while those that do not can be termed false asymmetry reversals.

Their respective effects can be tabulated as follows:

Measured asymmetry

A

~

Physics reversal False reversal
Reversal state 1: Apy + Aiys + Agys Apy + Aiys + Agys (2.16)
Reversal state 2: —Apy — Ay + A Apy + Ay, — A%,
1 x TOTAL: A Apy + Ay,
1 x DIFFERENCE: Apy + A}, A2
where Aiys is a systematic that flips sign like a physics asymmetry, and Agys is one that

is insensitive to the actual beam helicity, and so does not flip sign. The above equations
show that by taking roughly equal portions of data in both states of a reversal device, one
can cancel out at least some classes of systematics. It is useful to have as many systematics
reversals as possible, since different systematics sources will in general respond differently
to different kinds of reversals. The experiment implemented three types of systematics
reversals: a half-wave plate, the asymmetry inverter (AI), and an energy flip.

The half-wave plates, along with the asymmetry inverter, have already been described
in Section 2.2.2. Inserting a half-wave plate into the path of the laser beam between the
polarization optics and the photocathode simply reverses the relationship between the he-
licity bit (0 or 1), and by extension the voltages applied to the polarization Pockels cells,
and the actual orientation of the beam’s elliptical polarization at the photocathode. This,
in turn, can cancel out effects like those called by Pockels cell lensing and electronic cross
talk. It can also provide imperfect cancellation of the position and spot size helicity cor-
relations that result from birefringent gradients. There are actually two half-wave plates

downstream of the CP and PS cells. The one furthest downstream, located on the cath-
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ode diagnostics bench just before the vacuum window entrance to the photocathode gun,
provides the greatest level of cancellation for the greatest number of classes of systematics,
and is therefore the one used.

The asymmetry inverter, located on the helicity control bench, can essentially reverse
the trajectory of all the light rays contained in the laser beam. It does not affect the laser
beam’s polarization in any way, and so does nothing to the actual physical helicity of the
electron beam. Therefore it is a false asymmetry reversal. The asymmetry inverter can
provide cancellation for helicity-correlated position differences in the electron beam, caused
by effects like birefringence gradients, Pockels cell lensing, and beam divergence through
birefringent optics.

The electron beam must bend after the end of the linac in order to be directed into
End Station A (where the main experimental apparatus, including target and detector, is
located). While the beam is bending, the electrons’ spins precess about the dipole magnetic
field. At 45 GeV, the spins precess by 14w, leaving their longitudinal polarization at the
target the same as it was in the linac. At 48 GeV, however, the spins precess by 157,
reversing their longitudinal polarization at the target. This is an especially powerful type
of reversal, since it does not alter the source setup in any way. Consequently, all source—
related systematics should receive at least partial cancellation. In the nomenclature of

Equation (2.16), the energy flip is a physics asymmetry reversal wherein the greatest number

2
SYs

of systematics sources as possible are of the AZ . type. Averaging data taken at both
energy states, multiplying the 48 GeV data by —1 to take into account the minus sign
that is picked up due to the spin precession, should therefore provide a large number of
systematics cancellations. Alternatively, if the same value for the physics asymmetry is
measured for 45 GeV data as for 48 GeV data (correcting for the ~6 ppb/GeV asymmetry
change with energy), then an upper limit can be placed on the systematic contributions, at

least at the level of statistics. The results of all of the systematics reversals will be discussed

in Section 4.4.

2.3 Linac

Electrons are drawn from the photocathode with longitudinal polarizations typically ~80%.

The beam must then be made ready for acceleration in the linac. The first step is called
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Figure 2.13: Linac rf time-structure. Each beam pulse consists of hundreds of electron bunches,
separated by distances determined by the rf structure of the klystron power.

electron capture, which happens in the bunchers and prebunchers. After the bunchers, the
beam has achieved roughly 250 keV of (kinetic) energy and is appropriately synchronized
with the frequency of the rf power provided by the machine klystrons (2856 MHz, in the
S-band). In other words, the electrons ride along in the troughs of the rf waves. The beam
is said to be “bunched,” or “rf modulated,” with the individual bunches of electrons often
referred to as buckets. The bunched beam is then ready for injection into the linac. In
the injector, the beam gains 40 MeV of energy. By the end of the linac, it will have been
accelerated up to a final energy near 50 GeV. Capture, injection, and acceleration do not
significantly degrade the beam polarization.

The relevant timescales for linac machine operation are illustrated in Figure 2.13. A
pulse refers to the 50 — 300 ns of time in which the electrons are mainly distributed. Usually
there are 1 —6 x 10'" electrons per pulse. It is sometimes useful to think in terms of physical
length as opposed to time. By the end of the linac, for instance, a 300 ns pulse will be over
270 feet long, weaving and winding its way through apertures and beam pipes. Again, the
rf modulation means that it will actually be composed of over 850 individual bunches of
electrons, each separated by roughly 4 inches.

The beam rate is defined to be the inverse of the time in between pulses (from the
start of one pulse to the start of the next). This rate is determined by the rate at which
the source laser’s flash lamps fire, as well as by the rate at which the klystrons deliver
accelerating power. The beam rate can vary between 0.5 Hz and 120 Hz. Physics data,
however, is taken almost exclusively at 60 Hz or 120 Hz. It should be noted, however, that
the experiment was designed to be able to run concurrently with the BaBar experiment,

which requires two entirely different beams during a PEP fill, one containing medium-energy
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(9 GeV) electrons, and another containing low-energy (3.1 GeV) positrons. These electrons
and positrons are extracted from the linac and stored in the SLAC PEP-II storage rings.
The pulses containing these beams are collectively referred to as PEP pulses. Although
the machine was upgraded in order to support so-called “interlaced” operation, wherein
the linac could rapidly switch between the very different beam lattices necessary for the
acceleration of either the E-158 beam or the PEP beam (and then either the PEP positron
beam or the PEP electron beam), rising electricity costs have made running the machine
concurrently with PEP too costly for the laboratory to afford. Hence, only Run I consisted
of data taken concurrent with PEP operation. Both Runs II and III were taken in single
beam mode.

As the electron beam passes through an accelerator cavity, it excites resonant cavity
modes (this occurs whether or not the cavity is supplied with rf power) [80, 81]. Creating
these electromagnetic fields costs the beam energy; this is called beam loading. Beam loading
couples intensity to energy, since the total beam loading energy losses are proportional to
the peak beam current. The total energy lost due to beam loading in a particular cavity
is intimately related to the cavity’s design and construction and depends, for instance, on
its resistive wall losses, parameterized by its quality factor (). For the constant gradient
cavities employed at SLAC, the fractional beam loading is roughly 5%. This means that
the intensity of the beam influences its energy at the 5% level. Hence intensity jitter of
0.5% will produce energy jitter of roughly 0.025%.

Beam loading energy losses generally increase over the course of the pulse, as the fields
of the excited modes grow stronger as more bunches pass through the cavity. This plays
a role in determining the beam’s energy spread. Given a pulse with a flat intensity time
profile, beam loading of 5% would cause the tail of the pulse to have 5% less energy than
the head, leading to an energy spread value of 5%, where energy spread is defined to be
(Etait — Fhead)/Fhead- Dispersion could then cause significant transverse position offsets
in the tail of the pulse, leading towards poor beam delivery (such tail offsets can cause
ion chamber trips in the accelerator and A-line) and possible systematic errors stemming
from higher order effects in the asymmetry correction procedure. In the end, the pulse
shaping capability afforded by the TOPS Pockels cell at the source allows for beam loading
compensation. Thanks to this and other procedures performed by the machine operators

(for instance, placing the electron bunches slightly ahead of the rf phase can help minimize
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Figure 2.14: Location of beam monitoring devices.

the head—tail energy difference), energy spread is typically kept below 0.15% [82].

Towards the end of the linac, the beam encounters the dithering region. This consists
of four horizontal and four vertical corrector magnets capable of imparting small (roughly
100 prad) transverse deflections to the beam on a pulse-by-pulse basis. These magnets are
used as part of the beam dithering procedure, described more fully in Section 3.2.3, which
is used to measure the detector’s sensitivity to the various beam parameters, so that false
asymmetries due to beam helicity correlations can be subtracted out. The linac corrector
magnets allow for the evaluation of the detector’s sensitivities to transverse beam motions.
At the end of the linac, a klystron’s phase can be adjusted during in order to measure
the detector’s sensitivity to energy fluctuations. Adjusting the klystron’s phase gives the
experimenter the ability to change the energy of the beam by as much as £100 MeV on a
pulse-by-pulse basis.

2.4 Beam Monitoring Devices

The experiment monitors all first-order and some second-order beam parameters in several
locations, as shown in Figure 2.14. Toroids are sensitive only to charge, beam position
monitors (usually abbreviated as BPM’s) are used to indicate transverse beam position
and, in areas of dispersion, beam energy, the synchrotron light monitor monitors both
energy and transverse polarization, and the wire array measures the transverse position of

the beam as well as higher order moments in its spatial profile.
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Figure 2.15: Beam current monitor (toroid) picture and schematic.

2.4.1 Toroids

Beam current monitors are referred to as toroids, due to their consisting of two iron dough-
nuts (toroids) surrounding the beamline, as shown schematically in Figure 2.15. Each toroid
is wrapped with insulated copper wire, wound approximately 50 times. Ambient rf noise
pick-up is reduced by an aluminum casing, which acts as a Faraday shield. The vacuum
housing through which the beam passes, connected to the main beam line by flanges, is
constructed of ceramic.

The toroids operate as current transformers, so that the electron beam passing through
generates a pulse in the windings whose size is proportional to the beam current [81]. To
maximize the signal-to-noise ratio, it is necessary to stretch the toroid signal out, from 300 ns
(the beam pulse length) to something on the order of 1 ms. This is done by connecting
the toroid windings in series to a resistor and a capacitor of appropriate size, forming an
RLC circuit (typical toroid inductances are on the order of 20 mH). This produces a ringing
signal that, after rectification, can be integrated in an analog-to-digital converter, as will
be discussed further in Section 2.8.

In addition to the main signal windings, each toroid also has a single calibrator winding.
Sending a known current through this calibrator winding simulates the beam, allowing for
calibration of the toroid. Studies of the toroids’ responses to a wide range of calibration
currents reveals the toroid linearity to be better than 99.9%.

As can be seen in Figure 2.15, each beam current monitor actually houses two toroids,
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Figure 2.16: Typical toroid resolution plot. The charge asymmetry measurements of two neighbor-
ing toroids are compared, providing information as to each device’s inherent resolution.

for redundancy. Subtracting the signals of the two neighboring toroids therefore removes
beam jitter (which is highly correlated) and gives a measurement of the amount of random
electronic noise (which is uncorrelated) in the two signals. This procedure yields the devices’

resolution. The pulse-to-pulse toroid resolution o, is defined to be:
1 2
Ores = RMS of (Af — A3) (2.17)

where Ab and Aé are the charge asymmetry measurements for toroid “1” and toroid “2,”
respectively. A typical resolution plot is shown in Figure 2.16. Resolutions of approximately
60 ppm are typically achieved. This can be compared to the typical beam intensity pulse-
to-pulse jitter, which is roughly 5000 ppm.

The experiment utilizes three beam current monitors, each containing two toroids as
mentioned above, for a total of six toroids. The toroids at ASSET are called toroids 1a and
1b. The toroids in the alcove sit a few meters upstream of the target. The two pairs of
alcove toroids are called toroids 2a and 2b, and 3a and 3b. The distance between the two

pairs is roughly 1 meter.

2.4.2 BPM’s

The beam position monitors (BPM’s) are devices comprised of three copper cavities, one
cylindrical and two rectangular, through which the electron beam passes. An actual picture
of one of the BPM’s, along with a schematic drawing, is shown in Figure 2.17. The details

behind the workings of the BPM’s are somewhat complicated, with the mathematics rigor-
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Figure 2.17: Beam position monitor (BPM) picture and schematic. Each BPM consists of three
cavities, which provide sensitivity to charge, horizontal displacements, and vertical displacements.

ously derived in a number of outside sources [81, 83], but the general idea is easily grasped.
As a charged particle beam passes through a copper cavity, it can excite TEM modes de-
pending on the boundary conditions imposed by the cavity’s geometry. The excited modes
are known as resonant modes, and so the BPM’s are often referred to as resonant cavities.
These electric fields contained in the excited modes are detected by a built-in antenna,
whose signal is transmitted by cable to processing electronics.

In every BPM, the cylindrical cavity has a resonant TMy; mode, also called the monopole
mode. The pick-up voltage induced in the antenna by such a mode is, to first order,
independent of the beam offset in the cavity, and sensitive only to the beam charge. This
cavity is therefore referred to as the BPM’s Q-cavity.

The two rectangular cavities have resonant TMo;g or TM99 modes, depending on the
orientation of the cavity. These modes are dipole modes, meaning that not only is the
antenna’s pick-up voltage proportional to the beam charge, but also to the beam’s trans-
verse displacement from the cavity’s center. The TMgy and TM19; modes are sensitive to
horizontal and vertical displacements, respectively, and are therefore known as x-dipole and
y-dipole modes. These cavities are thus referred to as the BPM’s X- and Y-cavities.

The pick-up voltage transmitted via coaxial cable to the BPM processing electronics,
shown schematically in Figure 2.18, oscillates with some frequency w. This frequency w is
determined not only by the natural frequency w.,, of the cavity’s resonant mode, but also
by the frequency wpeqm at which the cavity, which acts like a damped oscillator, is being

driven.? Ideally, the geometry of the cavity will be such that weey = Wpeam = w. In this case

9As described in Section 2.3, the rf modulation of the beam means that Vpeqm = Wheam /2™ = 2856 MHz.
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Figure 2.18: Schematic of BPM processor electronics.

the cavity is said to be “tuned.” Tuning each cavity is accomplished by means of copper
stubs whose position can be finely adjusted, thereby altering the cavity’s geometry, and
hence weqy, in controllable ways.

Each cavity signal decays with a time constant determined by the cavity’s quality factor
@, which also determines the signal’s bandwidth. On the one hand, a high @ is desirable
because it lengthens the period for which the pick-up signal can be integrated, increasing
the signal-to-noise ratio and thus the BPM’s resolution. On the other hand, the @) has to
be low enough in order to accommodate the inevitable “detuning” effects of temperature
oscillations in the accelerator, which cause slow fluctuations in wyeqm. AS a compromise,
the quality factors are generally set (via the same tuning stubs mentioned above) to be
Q@ = 3000, corresponding to a FWHM bandwidth of approximately 1 MHz.

The rf mixer in the BPM processing electronics removes the fast oscillations from the
cavity signal by mixing it with a local oscillator signal possessing the same frequency wpeqm
and phase ¢peqrm as the beam. This process produces two decaying, non-oscillatory outputs,
whose amplitudes are proportional to cos(¢eay — Ppeam) and sin(Geay — Ppeam ), respectively,
where ¢4, is the overall phase of the cavity signal. Both of these signals are then fed into
integrating ADC’s, to be described in Section 2.8. Normally each cavity is “phased” so that
ODcav = Pbeam, SO that only one signal is needed in order to reconstruct all the information
about the beam. For example, a properly tuned and phased X-cavity produces a signal that
is directly proportional to ¢ - x, where ¢ is the beam’s charge and z is its horizontal offset

from the cavity’s center.



66

As can be seen in Figure 2.14, the experiment employs nine BPM’s. Three of these
are located in the 1.2 GeV ASSET region. These BPM’s, known simply as BPM’s 1, 2,
and 3, are used as the measurement devices for the source position feedback. Two BPM’s,
called BPM’s 12 and 24, are located in the Beam Switch Yard (BSY) where the beam goes
through a bend in order to steer it into the A-line, which in turn leads to End Station A,
where the target, spectrometer, and detectors are housed. The dispersion 7 in the BSY
varies, but at BPM 12’s position n =~ —520 mm, while at BPM 24’s position n =~ —410 mm.
Dispersion relates position to energy via the formula (E — Ey)/Ey = (z —z¢)/n, where g is
the nominal reference trajectory for a particle of energy Ey. BPM’s 12 and 24 can thus be
used as energy measurements. Another pair of BPM’s, 31 and 32, are located roughly 42 m
upstream of the target, while yet another pair, 41 and 42, sit roughly 4 m upstream of the
target, in the entrance to the End Station, known as the alcove. Because the more upstream
pair possesses a long lever arm with respect to the target, whereas the more downstream
pair possesses a short lever arm, measurements from these two pairs of BPM’s can be used
to determine both the angle and the position of the beam at the target.

Calibrating a BPM requires monitoring its signals, along with those coming from a
device whose calibration is already known, while moving the beam in finite steps in both
x and y. The wire array (described in Section 2.4.4) is used to calibrate BPM’s 31, 32,
41, and 42. For the calibration of the other BPM’s, nearby devices whose calibrations are
known (such as stripline BPM’s used by the machine operators but not recorded by the
experiment’s data acquisition system) are used. As mentioned in Section 1.3, the absolute
calibration is not important as far as the overall asymmetry measurement is concerned, but
it is useful for diagnostic purposes.

The resolutions of the BPM’s are measured in an analogous manner as for the toroids.
The measurements of neighboring BPM’s are compared, thereby removing correlated beam
jitter and leaving behind only random electronic noise. However, the procedure is a bit
more complicated for BPM’s than it is for toroids, since beam angle jitter will cause the
two position measurements to disagree slightly (since even BPM’s within a pair can be
nearly 1.5 m apart). This is accounted for by using a third BPM, located as far from the

two neighboring BPM’s as possible, to remove angle jitter. As an example, the following
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Figure 2.19: Typical BPM resolution plots. The position measurements of two neighboring BPM’s
are compared, providing information as to each device’s inherent resolution.

prescription is followed to find the pulse-to-pulse resolution o, of a BPM X-cavity signal:

oy = kxRMSof {Az; — (Azg —m-d)} (2.18)

m = (Azz3— Azy)/L

k' = 2/1+d/L+ (d/L)?

Here Az, and Az are the position difference measurements for a given pulse pair for the
two neighboring BPM’s, d is the distance between the two neighboring BPM’s, Azjs is the
position difference measurement for the third BPM (used to take out angle jitter), and L
is the distance between the first and third BPM’s.

The above prescription works for all the BPM’s except for BPM’s 12 and 24, since these
are located in regions of dispersion. Since the dispersions are somewhat different for these
two BPM’s, simply subtracting the measurement of one BPM from that of the other does
not fully remove energy jitter. In fact, it doesn’t even fully remove position and angle jitter,
but may tend to enhance it, since the betatron function’s phase advance is approximately
180° between the two energy BPM’s.!? As a result, a full regression procedure using the
other A-line BPM’s is needed to completely remove position and angle jitter, revealing
the true resolution of the energy BPM’s. Nevertheless, an upper limit can be placed on

the resolution simply by comparing the right—left energy difference measurements taken by

107n fact, the momentum-—defining slits lay between BPM’s 12 and 24, so beam losses on the slits could
further degrade agreement.
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BPM’s 12 and 24. In practice, this upper limit is usually very close (within 20%) to the
result yielded by the full regression procedure, but can sometimes be high by as much as a
factor of two.

The cavity signals must be attenuated before reaching the rf mixer, which begins to
saturate at 300 mV. In order to set the attenuation, the beam is offset by £1 mm (which
corresponds roughly to the maximum beam motions expected) and the attenuation is ad-
justed so that the BPM processor electronics remain well within their linear range. This
defines the BPM’s dynamic range. Having a wide dynamic range (i.e., high attenuation) is
comforting, but it tends to worsen the BPM’s resolution by decreasing the signal-to-noise
ratio in the BPM’s ADC, which is limited by fixed pedestal noise (see Section 2.8). A
dynamic range of +1 mm provides adequate resolution, while still allowing for reasonable
drifts in beam position. Linearity of better than 99% is maintained by implementing an
analysis cut that flags all data where the beam has drifted past the limits imposed by the
dynamic range. Typical resolution plots for two different pairs of BPM’s are shown in Fig-
ure 2.19. Resolutions of 1 to 3 pum are typical for position, while resolutions of 1 to 2 MeV
are typical for energy. These should be compared to typical beam jitter values of ~50 pym

for position and ~10 MeV for energy.

2.4.3 Synchrotron Light Monitor

The synchrotron light monitor, shown in Figure 2.20, is situated in the BSY near a dipole
magnet. As the beam particles bend in the dipole’s magnetic field, every second they lose

the following amount of energy due to synchrotron radiation [80]:

E4
e (2.19)
=0.879 GeV ! T 2gec™! - E2. B?

P, [GeV/sec] =4.23 x 10° m? GeV ?sec™!

Here p is the bend radius for a dipole with a magnetic field strength B, and E is the
beam energy. The synchrotron photons, emitted in the MeV part of the spectrum, produce
electrons and positrons through Compton scattering and pair production as they pass first
through a 1-cm thick aluminum flange (separating the vacuum of the beam pipe from
the outside) and then 1 mm of lead. These electrons and positrons then emit Cerenkov

radiation as they pass through 3 cm of quartz. These Cerenkov photons, emitted in the
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Figure 2.20: Synchrotron light monitor design.

visible part of the spectrum (1 — 3 eV), are directed into light guides (cylinders with highly
reflective interiors), which eventually direct the light towards a photodiode array housed in
lead shielding to protect it from stray photons and background radiation.

There are four photodiodes in the array. Each photodiode is 25 mm in diameter and is
connected to a bias module providing unit gain. The photodiode signals are fed into 16-bit
VME ADC boards, to be described in Section 2.8. Three of the photodiodes sit in the
active region of the detector, while the fourth is blinded with black tape and sits outside of
the active region, yielding a background measurement.

The synchrotron light monitor not only provides sensitivity to the beam’s energy, via
Equation (2.19), but also to the beam’s vertical polarization component. This is because
there is an asymmetry in the power spectrum of the emitted synchrotron radiation that is
proportional to the electron beam’s transverse vertical polarization, if any. Any asymmetry
measured by the synchrotron light monitor therefore can be used to yield the beam’s vertical
polarization component via:

A = P, - A, (2.20)

where P, is the amount of vertical polarization in the beam, and A, is the synchrotron
radiation asymmetry for P, = 1. Actually, A, is defined to be the asymmetry one would
actually measure in the synchrotron light monitor, given flux-weighting appropriate for the
photodiodes, as opposed to a power-weighting appropriate for a calorimeter. Given also
an effective cutoff energy of roughly 3 MeV for the synchrotron light monitor (taken from

GEANT simulations [84]), integration of the flux-weighted asymmetry spectrum indicates
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that A, = 60 & 30 ppm [85].

Accurately knowing the amount of vertical polarization is important because, when the
beam again goes through a bend, this time in the dipole chicane described in Section 2.6.1,
it will emit synchrotron radiation carrying an asymmetry in its power spectrum. If this
synchrotron radiation is allowed to reach the Mgller detector undeterred, it will produce an
asymmetry Asg = P, x (100£50 ppm), assuming a cutoff in the detector’s photon efficiency
at 2 —3 MeV. This background must be corrected for, as will be discussed in Section 4.8.2.
The synchrotron light monitor therefore provides a crucial cross-check for the vertical beam

polarization.

2.4.4 Wire Array

The wire array is a mesh screen of 32 horizontal and 32 vertical wires, each made of a
copper—beryllium alloy. The operating principle is that of secondary emission. As electrons
in the beam pass through a given wire, they ionize some of the atoms. The momentary
effective charge build-up caused by the loss of some of the freed electrons is registered as
a voltage across a resistor in series with the wire. Thus a voltage signal is produced for
each wire that gets integrated in a CAMAC 11-bit ADC. Two aluminum foils positioned
close in front and behind of the wires are each held at 100 V, which enhances the secondary
emission (and thus the signal) from each wire by about a factor of two. These foils have
holes in their centers so that they do not interact with the beam.

The spacing between the wires is 14 = 1 mils, which roughly equals 356 + 25 pm. The
wires, each only ~180 pum in diameter, are not strong enough to bear the full power of a
~450 kW beam. Under prolonged exposure, they heat up, which can deform them consid-
erably, or even cause them to snap. This happened during the first physics run, when the
wire array was left in for a few weeks. During future physics runs, the wire array was only
placed in the path of the beam for a few hours at a time, and then removed.

The wire array can be inserted or removed from the path of the beam by remote control.
This is useful for getting a sense of the background signal it produces in the Mgller detector
via Mott and Rutherford scattering. Because the wire spacing is a well-known quantity,
the wire array can be used to provide absolute calibration for the target and angle BPM’s
(BPM’s 41 and 42 and BPM’s 31 and 32, respectively). The wire array can also provide

information regarding the beam’s mean position on a pulse-to-pulse basis, though its inher-
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Figure 2.21: Typical wire array output, for a single pulse.

ent position resolution is poor (compared to that of the BPM’s) at roughly 10 gm. More
importantly, however, the wire array provides information as to the beam’s spatial profile
on a pulse-to-pulse basis.

A typical wire array output (after gain matching, discussed immediately below) from a
single pulse is shown in Figure 2.21. From such plots, one can extract not only T and 7,
the mean X- and Y-position of the beam, but also o, and oy, the horizontal and vertical
RMS beam widths. Beam spot size jitter (where spot size is defined to be S = 7wo,0y)
can result in density fluctuations in the liquid hydrogen target (described in more detail in
Section 2.5.1), while helicity-correlated spot size differences can cause false asymmetries in
the detectors. Correcting for this effect will be discussed in Section 4.5.

In order to interpret correctly the data provided by the wire array and retrieve correct
values for T, ¥y, 0,, and oy, all of the wires must be “gain-matched.” This is because the
response of an individual wire to a given incident beam intensity is unique. Gain matching
involves translating the wire array horizontally and vertically in discrete steps while keeping
the beam still. The gains of all the wires are adjusted until the resulting beam profile
shape is the same for every position of the wire array (this assumes that the beam shape
remains fairly constant, which is a fair assumption). During this somewhat time-consuming
calibration procedure, the wire array must be moved far enough so that all of the wires are

sampled. Gain matching was performed approximately once for both Runs I and II.

2.5 Scattering Chamber

The scattering chamber, shown in Figure 2.22, is the cryostat housing the main liquid

hydrogen (LHs) target loop. It also houses a table on which there are several solid carbon
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Figure 2.22: Scattering chamber (a) schematic and (b) picture. In both figures, the beam would
pass from the left to the right. In the picture in Figure (b), the top half of the scattering chamber,
with the LH> target loop, is being lowered into place.

targets of varying thicknesses [86, 87].!" The scattering chamber, roughly 2 m in diameter
and 2 m in height, is connected to the beamline by flanges and is pumped out to a very high
vacuum (10~% — 1079 Torr). The scattering chamber itself remains at room temperature,
with only the target loop being at cryogenic temperature.

Inside the LHy target loop, 55 liters of liquid hydrogen circulates through the main
target tube, which is 154 cm long, 7.62 cm in inner diameter, and aligned with the beam
axis to within 2 mm. The hydrogen flows through the system at roughly 10 m/s, driven
by a 2 horsepower, brushless pump that operates at a repetition rate of up to 60 Hz.
The loop’s heat exchanger circulates cold helium gas and is connected to a Sulzer/CTI
4000 refrigerator capable of removing in excess of 1 kW of heat at 18 K, the approximate
operating temperature of the liquid hydrogen. The beam can deliver up to 500 W of heat,
depending on its current and energy. For this reason, the heat exchanger has a 1 kW heater
included in its assembly. This heater can be controlled automatically by a target control
program, running on a PC in the End Station A Counting House. The PC feedback keeps
the heat load in the cooling system constant despite fluctuations in the delivered beam
power due to beam drop-outs. Under normal operating conditions, the temperature of the
LHy in the loop is constant to within 150 mK over the course of an hour [87].

One of the main requirements of the scattering chamber system was to allow for target

"Liquid hydrogen is the optimal target one can use for an electron—electron scattering experiment. Out
of all materials, it offers the fewest number of backgrounds (many of which grow as Z?) and the maximal
radiation length per total number of Mgller scatters.
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changes remotely, quickly, and without breach of vacuum. Hence the target loop hangs from
a frame whose vertical position is controlled by three motorized jacks. These jacks, hooked
up to a remote controller, can raise the entire target loop by 15 cm, bringing it well out of
the path of the electron beam. Raising or lowering the LHy target takes roughly 10 sec and
does not affect either the loop temperature or the vacuum pressure.

The table holding the various solid carbon targets can be translated horizontally in and
out of the path of the beam, once the LHy loop has been fully raised (microswitches prevent
the table’s movement should the target loop not be raised). The table’s horizontal position
determines which solid target, if any, interacts with the beam. The targets are held in place
by aluminum frames and vary in thickness from 30 pym to 8 cm. These targets are used for
initial spectrometer check-out as well as to make various background measurements, which
are described in Section 4.8.2.

Working around 55 liters of liquid hydrogen (which contains the explosive energy of
roughly 10 kg of TNT) demands special attention to safety [88]. In case of a sudden
failure of the cryogenic system, leading towards a near instantaneous expansion of the liquid
hydrogen, the system was designed to vent the hydrogen gas out the roof of End Station
A through a large pipe. Hazardous Atmosphere Detectors (HAD’s), capable of sensing
small amounts of hydrogen gas, are located near the scattering chamber. Should the HAD’s
detect any hydrogen gas, they sound an evacuation alarm, notify the fire department, turn
on special ventillation fans to full speed, close the hydrogen supply valves, and turn off all
electrical power near the experiment.

To date, this liquid hydrogen target is one of the largest ever built for any physics
experiment. It takes roughly 6 to 8 hours to completely fill the target loop with liquid
hydrogen. Under normal conditions, the target remains stable (i.e., goes without venting)
for a period of several weeks, with most ventings being attributable to occurrences such as
power outages (resulting in a sudden loss of refrigeration in the helium plant) and computer
freezes (which disable the computer program controlling the heater).

In addition to the main LHy target and the solid targets contained in the scattering
chamber, there is an iron foil target available for use. This apparatus is only used while
measuring the beam’s polarization, and is therefore discussed along with the polarimeter

detector in Section 2.7.5.
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Figure 2.23: Pulse length effects. The charge time profiles for two different pulses are shown, with
the total charge in each pulse assumed to be the same. The pulse on the right would deposit more
heat in the target in a shorter period of time than the pulse on the left. This could produce target
density fluctuations which mimic physics asymmetries.

2.5.1 Target Density Fluctuations

Though the temperature stability of the LHy loop is good on long timescales, temperature
fluctuations on very short (a few ms) timescales can produce fake (i.e., non-physics-related)
scattering rate asymmetries [86, 89]. The 154-cm length of LH, through which the electron
beam travels under normal running conditions corresponds roughly to 0.18 radiation lengths.
If, however, the target gets heated by the beam more for one pulse than it does for another,
the liquid hydrogen will expand and its density will be different for the two pulses. Hence,
the amount of hydrogen each pulse sees will be different. If the two pulses are the two in a
helicity pulse pair, this will manifest itself as a scattering rate asymmetry. Such effects are
known as target density fluctuations, and they can both degrade the detector resolution (by
adding random noise which is not taken out by any correction procedure, since the pulse-
to-pulse target density is not known) and potentially cause a helicity-correlated systematic,
if the effect is consistent and stable with respect to helicity.

It is important to note that normalizing the detector signal to pulse charge, as must be
done, does not correct for the problem, since it is the target density itself that is fluctuating.
The detected scattered flux ¢ can be written as ¢ = Nyearm * Niarget - 0, where Npeqp, and
Niarger are the number of particles in the beam and target, respectively, and o is the cross
section governing the process. Normalizing ¢ to Npeam, as is done by normalizing to beam
current, is of course necessary, but it still does not account for fluctuations in Nigpget-

Target density fluctuations can potentially be caused in two ways. The first and probably
more significant effect comes from variations in the beam’s spot size. A smaller beam will
deliver more heat to a smaller volume, consequently heating it more and causing density
fluctuations. The second effect might arise from pulse length variations. There is a source

feedback that keeps the beam current constant, but the length of the pulse may vary.
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Such a scenario is illustrated in Figure 2.23, which shows two pulses having the same
integrated charge, but different intra-pulse charge distributions. The pulse with the higher
peak intensity will deposit more heat in the target in a shorter length of time, leading
towards density fluctuations.

A limit on the size of the false asymmetries stemming from target density fluctuations
can be estimated by looking for correlations between detector asymmetries and spot size
differences, as will be discussed in Section 4.6. However, to ensure that this limit is as small
as possible, it is important that there be sufficient transverse mixing of the hydrogen in
between beam pulses. In this way the volume in which the beam’s energy is deposited is
maximized, minimizing the effects of possible density fluctuations. In order to encourage
transverse mixing, eight wire mesh screens were distributed along the length of the target
tube, positioned randomly every 4 — 8 inches (this avoids resonances which might move
fluid into the beam path in phase with the 120 Hz beam) [86, 87]. These wire mesh screens
have 1.5-inch diameter holes cut into them, allowing the beam to pass through. These
screens were designed to introduce turbulence on the 1 — 2 mm scale (roughly equal to the
beam spot size), as well as to introduce a transverse velocity component to the circulating
hydrogen. This ensures that the liquid in the beam interaction region of the target loop
gets mixed thoroughly throughout the whole volume, reducing the effects of target density

fluctuations.

2.6 Spectrometer and Collimator System

After the liquid hydrogen target, all particles pass through the spectrometer and collimator
system. The main goal of the spectrometer system is to select out from the wide spectrum of
particles generated in the target (which includes not only Mgller scatters of physical interest,
but also Mott’s, inelastic ep’s, photons, positrons, neutrons, and pions) as clean a signal as
possible for integration in the detectors. This is vitally important since the detectors have
an integrated calorimetric response and cannot themselves differentiate between individual
particles. Hence the spectrometer and collimator system is designed to provide a spatial
separation of particles at the position of the detectors, while allowing the primary beam to
pass unimpeded to the beam dump. Figure 2.24 contains an overview of the entire system.

The spectrometer can be broken down into three basic parts: the dipole chicane, the
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Figure 2.24: Spectrometer. Some collimators are omitted for clarity. Note the very different
z and z scales (where z is understood to mean the beam direction, and z represents horizontal
displacements). Sample ray traces are shown for the primary beam, as well as for 14 and 24 GeV
Mgller scatters.

main acceptance collimator (QC1B), and the quadrupole quadruplet. The beampipe snakes
its way through the whole assembly, so that the entire volume through which both the pri-
mary beam and the scattered particles must pass, up until just a few meters before the
detectors, is maintained at high vacuum. Almost all beampipes are made from aluminum,
and all collimators have been fabricated either from copper or from “non-magnetic” tung-
sten, an alloy comprised almost entirely of tungsten, with a few percent of nickel and copper
as balance elements. Iron is avoided in all regions of the spectrometer where the beam might
potentially interact, as the asymmetry in the process of polarized electron scattering off iron
(especially iron that has been partially polarized by stray magnetic fields) is many orders of
magnitude larger than the Mgller scattering asymmetry. The dipole and quadrupole mag-
nets necessarily contain iron, but collimators prevent particles from scattering from these

magnets and reaching the detectors.
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2.6.1 Dipole Chicane

The dipole chicane serves two main purposes. First, it brings the detectors out of the line-of-
sight of the target by creating what’s called a “two-bounce” photon system [61]. The basic
idea is that a photon must bounce twice off the vacuum pipe apertures or collimators in
order to reach the detectors. Second, the chicane eliminates the large background of “soft”
(low momentum) particles that would otherwise swamp the detectors. These are blocked
by various strategically placed masks and collimators. For instance, the field strength of
the first dipole is tuned so that low-energy electrons (with momenta less than 5 GeV) get
“over-bent,” colliding into its left (northern) inner wall. Similarly, because of their positive
charge, all positrons with momenta less than 28 GeV smash into its right (southern) inner
wall. The power deposited by these unwanted background fluxes is quite large (on the
order of kilowatts) and would damage the magnet if left unprotected. For this reason,
water-cooled copper plates have been installed on the insides of the magnet. These kinds
of measures have been taken throughout the dipole chicane.

The dipole chicane is comprised of three dipole magnets with [ B, - dl = 0, so that
it functions as an achromat.'? Synchrotron radiation, however, prevents the chicane from
functioning like a true achromat for all particles passing through it. That is, as particles
travel through the chicane, they lose energy due to synchrotron emission. Higher energy
particles (e.g., primary beam electrons) lose more energy than do lower energy particles
(e.g., signal electrons), as stated in Equation (2.19). The consequence of this is that the
path integral [ B dl becomes slightly energy-dependent. The magnetic strength of the most
downstream dipole is adjusted so that the integral remains zero, but the adjustment only
works for signal electrons. Electrons of higher or lower energies will see a slightly non-zero
J Bidl. The difference is very small, though. In fact, the third dipole’s strength need only
be adjusted by 0.07%, which moves the mean position of the electron fluxes at the detectors
by a few millimeters.

In order to preserve the highest degree possible of azimuthal symmetry in the scattered
particle flux profile, it is important that all three dipoles produce highly uniform magnetic
fields. In addition, so-called pole face rotations must be taken into account. That is, since

particles in the chicane do not enter and exit the dipoles normal to their magnetic pole

12The integral is performed along the beam particle path. The magnetic field strength B, is defined to
be everywhere perpendicular to the particle path.
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faces, field gradients at the entrances and exits of the dipoles produce a small quadrupole
moment in the magnetic field. This quadrupole moment focuses horizontally while defocus-
ing vertically, providing another way in which the azimuthal symmetry of the flux profile at
the detectors can be ruined. If this aberrant quadrupole moment was not corrected for, the
horizontal and vertical dimensions of the Mgller signal flux at the detector would be differ-
ent by 5 mm. A small adjustment in the strength of the fourth spectrometer quadrupole
compensates for this effect.

As mentioned previously, photon collimation is one of the primary reasons for having
the dipole chicane. When thinking about photon collimation, there are three types of
photons to consider: those emitted by synchrotron radiative processes, those emitted by
bremsstrahlung processes, and soft “splash” photons. As the electrons traverse the chicane,
they emit synchrotron radiation. This synchrotron radiation is blocked partly by the main
acceptance collimator, and further by the additional collimators described in Section 2.6.4.
Bremsstrahlung processes in the liquid hydrogen target produce a very large flux of high
energy photons that, if not collimated, would otherwise swamp the detectors and seriously
degrade their statistical resolution. Wide-angle, high-energy photons are largely blocked
by two collimators located between the first and second dipoles and between the second
and third dipoles, respectively (see Figure 2.24). These so-called photon collimators absorb
nearly 2 kW of radiation from this hard gamma flux.

Lastly, as particles hit the inner edges of collimators and beampipes, particularly just
downstream of the quadrupoles, photons that have angles capable of bringing them into
contact with the detectors may be produced by electromagnetic showers. Such edge effects
are often referred to as “shower splash.” To minimize this “splash,” tungsten is used for
collimators that have a direct line-of-sight to the detectors, since its Moliére radius is nearly
40% less than that of copper. Nonetheless, some soft splash photons are still present. A
special collimator designed to suppress these photons further, installed between Runs I and
11, will be described in Section 2.6.4.

All three dipoles generate magnetic fields on the order of £1 — 2 Tesla. They are con-
nected to megawatt—capable power supplies housed in a building adjacent to End Station A.
The high magnetic field strengths require currents on the order of 1 kA, so that the magnets
need to be water cooled in order to dissipate the considerable heat generated. The overall

stability of the chicane, important both for experimental efficiency as well as for personnel
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Figure 2.25: Acceptance collimator (a) design schematic and (b) picture. The dimensions quoted
are for the upstream and downstream faces.

and mechanical safety, is monitored. The dipoles’ power supply currents (which are logged
automatically in the data stream) are connected to an alarm program which alerts the

experimenter to any considerable deviation (typically greater than 0.1%).

2.6.2 Acceptance Collimator

At the end of the chicane, the acceptance collimator (QC1B) defines the energy spectrum of
the particles that are detected. It does this by exploiting the correlation between energy and
angle of the particles downstream of the target. This collimator is depicted in Figure 2.25.
It consists of two annular rings positioned concentrically and connected by spokes, which
serve both to support the inner annulus as well as to block synchrotron radiation (which
carries a large asymmetry) produced in the dipole chicane. Along with the primary beam,
forward-angle Mott and Mgller scatters, as well as the high-energy photon beam (collimated
by the dipole collimators), pass through the innermost aperture. Signal Mgller electrons,
in addition to wide-angle Mott and ep electrons, pass through the radial aperture.

By exploiting the correlation between the momentum of a particle and its scattering
angle (and hence radial position at some point along the z-axis), and by using the fact that
this correlation is different for ep scatters than for Mgller scatters, the exact placement and
size of the radial aperture can be used in conjunction with the quadrupoles discussed below
to cleanly separate signal from background. Figure 2.26(a) shows the radial position of the
scattered flux at the main calorimeter versus momentum without the acceptance collimator
in place. In this configuration, one would be forced to either throw out many good Mgller

scatters (decreasing the signal) or accept more Mgller scatters at the expense of including
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Figure 2.26: Scattered flux phase space plots, for QC1B (a) out and (b) in. Here Rge; is the radial
position of the particles at the detector face.

more ep’s and Motts (decreasing the signal to noise ratio, and possibly increasing the
systematic error due to the large asymmetry in the inelastic ep’s). The same scattered flux
phase space plot is shown in Figure 2.26(b), except this time with the acceptance collimator
in place. To a large extent, the Mgller, Mott, and ep electrons have been cleanly separated.
There is still some contamination of the Mgller signal in the region 15 < r < 23.5 cm, the
active area of the main calorimeter. The acceptance collimator was designed to maximize
the signal to noise ratio in the detector. The levels of background contamination is discussed
further in Section 4.8.3.

The acceptance collimator consists of two sections brazed together to form a single,
composite structure. The upstream portion (12 inches thick) is made of copper, while the
downstream portion (3 inches thick) is made of tungsten, to avoid the photon “splash”
described on page 78. To further suppress this potential source of background, by reducing
the amount of edge material having a direct line-of-sight to the detectors, all edges (with
the exception of the outermost one) flare radially inward or outward when viewed along
the collimator’s length, so that they remain more or less parallel to the passing particles’
trajectories. The overall thickness of the collimator is 40 radiation lengths, divided roughly

equally between the copper and tungsten, with the entire collimator being water cooled.

2.6.3 Quadrupole Quadruplet

The acceptance collimator alone cannot achieve the signal separation needed by the inte-

grating calorimeters, which cannot use energy as a means of particle identification. Con-
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sequently, the momentum—dependent focusing power of quadrupoles is used to separate
the Mgller and ep fluxes at the face of the detector. Four highly uniform quadrupoles
are arranged in alternating FFDF D fashion, forming a quadrupole quadruplet. Here F
and D refer to focusing and defocusing action, respectively, in the horizontal axis. The
quadrupoles’ field gradients vary by less than 0.1% in the region in which particles travel.
When turned on, the quadruplet focuses particles in the energy range 14 — 24 GeV (typical
of the Mgller electrons) and shifts them radially inwards by 10 cm or more, while tending
to defocus particles of higher energy slightly and moving them radially inwards by only a
few centimeters on average. This focusing—defocusing action can best be appreciated by
looking at an illustration such as that in Figure 2.27. The data contained in the plots come
from a simpler version of the Monte Carlo to be discussed in Section 4.8.3, and are meant
only to provide a qualitative illustration, not to get quantitative estimates of signal rates.
With the quadrupoles off, the Mgller and ep distributions overlap considerably. When the
quadrupoles are turned on, however, the Mgller peak becomes tightly focused and moves
radially inward, while the ep distribution becomes slightly defocused and does not move

much. Thus the two signals are separated and can be integrated independently.

2.6.4 Additional Collimation

The previous sections described the salient features of the spectrometer in a fair amount of
detail. However, there are a few items that were not mentioned, but which nonetheless merit
description. These are: the calibration collimator (QC1A), the collimator masks (CM1—8),

and additional synchrotron collimators. These collimators are pictured in Figure 2.28.
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Figure 2.28: Additional collimators. Figure (a) shows the calibration collimator QC1A in front
of the main acceptance collimator QC1B. Figure (b) shows the collimator masks CM2-8 and the
synchrotron collimators in the drift pipe downstream of the last spectrometer quadrupole. Note the
two pieces of CM8 (north and south pieces).

The calibration collimator is basically the negative of the acceptance collimator. That
is, it is designed to block all particles that make it through the radial aperture in the
acceptance collimator. Actually, there are six holes bored through the collimator to allow
some particles to pass. The collimator is remotely insertable and removable. For nominal
physics running, it is completely removed from the beamline. It is only inserted for special
“calibration” runs, hence its name. It is needed for polarimetry, in order to minimize
the backgrounds for this measurement. The two larger holes centered on the vertical axis
serve for this purpose. It is also needed for profile scans. The four smaller holes allow for a
precise determination of the Mgller and ep fluxes at the detectors. Like the main acceptance
collimator, the calibration collimator is composed of 12 inches of copper followed by 3 inches
of tungsten, for an overall thickness of 40 radiation lengths.

The collimator masks CM1 —7 are mounted at various locations along the beamline (the
first is located between the second and third quadrupoles, while the remaining are located
between the last quadrupole and the detectors) and are intended to block stray photons.
Without these masks, soft “splash” photons, especially from the inner edges of the main
acceptance collimator and the photon collimator between the first and second dipoles, as

well as energetic multi-bounce photons from the target would hit the detector. These seven
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masks are tungsten rings, supported by horizontal spokes.

The last collimator mask (CMS8) sits directly in front of the detector cart. The significant
flux of high-energy ep scatters interacting in the calorimeter produces neutrons and other
neutral hadrons that are capable of penetrating the shielding encasing the PMT’s, thereby
generating significant responses in the tubes’ cathodes. Since the ep flux possesses a large
asymmetry, this neutral background flux will also carry a large asymmetry. This 9-inch-thick
tungsten and lead collimator encircles the beampipe and reduces this neutral background
by an order of magnitude. The collimator is actually constructed out of two separate
pieces that can be inserted and removed remotely. When inserted, the assembly suppresses
the background for the Mpgpller detector, at the cost of eliminating all signal in the ep
detector. This unexpected background was discovered during Run I, after which time CM8
was designed, constructed, and installed. Hence, this collimator is only present during
nominal Run II physics running.

The last additional collimation to discuss are two sets of synchrotron collimators. Of
the collimators already described, the spokes of the main acceptance collimator and those of
CM1 and CM7 are designed to block substantial amounts of background synchrotron radia-
tion. Two more sets of synchrotron collimators are necessary to bring the total synchrotron
background down to an acceptable level. Both sets are horizontal spokes, 20 radiation
lengths (7 cm) thick and made of tungsten. The first set is located just downstream of the

last quadrupole, while the last set is bolted directly to the face of the detector.

2.7 Detectors

The detector cart, pictured in Figure 2.29, is located 60 meters downstream of the target. It
houses most of the detectors used in the experiment, with the exception being the luminosity
monitor, which is located 8 meters further downstream. The first detector package in the
cart is the profile monitor wheel. It is used to check collimator alignment and to tune
the spectrometer during commissioning, as well as to make accurate measurements of the
signal and background fluxes. After the profile monitor comes the main calorimeter, which
integrates the Mgller and ep fluxes separately. The polarimeter (not shown in the figure, but
located between the profile wheel and the integrating calorimeter) is used to make periodic

measurements of the beam’s longitudinal polarization. Finally, there is a pion detector,
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Figure 2.29: Detector cart. Note the shielding for the main integrating calorimeter PMT’s. The
collimator mask CM8 (not present for Run I) is not pictured, but would be between the signal exit
window and the profile wheel.

which is used to measure the pion flux.

2.7.1 Mpgller and ep Detectors

The design concept of the Mgller and ep detectors (which are the names given to the two
parts of the main integrating calorimeter) was driven by the large flux of particles they
would see [61, 90]. In order for the experiment to be feasible, very forward-angle Mpller
scatters (# = 4 — 8 mrad in the lab frame) need to be detected. At these angles the cross
sections are rather large (o = 10 pbarn), especially given the very high beam luminosity
(£ ~4x10% cm™2s7!). The flux accepted by the calorimeter is 20 million electrons per
pulse at 120 Hz, with an average energy of 17 GeV. This translates into a total radiation
dose of about 100 Mrad for the entire experiment. One rather new detector technology
particularly adept at dealing with such high dose rates is known as quartz fiber calorimetry
[91].13

The basic idea behind quartz fiber calorimetry is illustrated in Figure 2.30. The detector
is comprised of fused silica optical fibers sandwiched between 3-mm-thick copper plates. As
charged particles travel through the copper, they produce electromagnetic showers. The
charged particles in the showers then emit Cerenkov radiation as they pass through the

silica fibers. The plates are angled at 45° with respect to the incident electron flux, so that

13This is a bit of a misnomer, since the “quartz” used is not crystaline, but amorphous (fused) silica.
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Figure 2.30: Working principle of quartz fiber calorimetry. Figure (a) shows the details of the
quartz fibers used. Figure (b) shows the whole idea.

most of the Cerenkov radiation emitted will be in a direction parallel to that of the fibers.
The fibers then act as optical guides, channeling the photons towards photomultiplier tubes
(PMT’s) for photon detection. Detectors employing this technology have been proposed
for the CMS experiment at CERN, where the expected total dose exceeds 1 Grad [91].
Besides radiation hardness, another useful benefit of this technology is the quick response
time associated with the Cerenkov process.

One feature of quartz fiber calorimetry is that the size of the signal generated in the
PMT’s by any given electron is proportional to the electron’s initial energy, since the number
of photons produced is directly proportional to the total charged path length of the electron’s
shower, which in turn is directly proportional to the energy of the electron. Simulations
show that, for the chosen thickness of the calorimeter, each electron should produce roughly
20 photons.

The thickness of the main integrating calorimeter (both the Mgller and the ep portions)
was chosen to be thick enough so that energy fluctuations in the showers are as small as
possible (shower energy fluctuations result in photon number fluctuations, which limit the
statistical resolution of the photon detectors), while at the same time limiting its thickness to
reduce its sensitivity to unwanted background particles, such as minimum-ionizing particles
(abbreviated as MIP’s) and pions [61]. The chosen length of 16 radiation lengths of copper
was found to be a good compromise.'* For example, the energy-weighted contribution from
charged pions should be less than 0.1% of the signal from the electrons. The chosen length

also ensures that the muon signal will be completely negligible. The 5% energy fluctuations

14 A pproximately 10% of the active volume of the calorimeter comes from the silica fibers. Their relative
contribution to the detector’s radiative thickness is therefore only 1%.
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Figure 2.31: Mgller and ep detector design. The quartz—copper sandwiches, with the protruding
fiber bundles, are clearly visible in (a). Those fiber bundles “feed” the collected photons into light
guides, as shown in (b), which then bring the light to PMT’s housed in protective shielding.

in the showers caused by this rather short length should result in only a minor resolution
degradation.

The geometry of the calorimeter is shown in Figure 2.31. The whole calorimeter sur-
rounds the beamline and is subdivided both radially and azimuthally. The Mgller detector
is actually comprised of three separate rings, referred to as the “in,” “mid,” and “out” rings.
These rings are divided azimuthally into 10, 20, and 20 separate sections, respectively. The
ep detector is one single ring, subdivided into 10 azimuthal sections. This radial and az-
imuthal subsectioning is summarized in Figure 2.32. Each section gets its own PMT, which
receives light from the fibers sandwiched between all the plates contained in that particular
section. The bundled fibers actually direct the photons to air light guides, consisting of
two end mirrors and a mirrored cylinder, which direct the light into the PMT’s (since the
light is well collimated leaving the fibers, very few bounces are needed). The light guides
allow for the PMT’s to be distanced radially from the beamline, where the particle flux
is significantly reduced. In addition, the PMT’s are housed in a 7-inch-thick wall of lead
shielding. These measures reduce the total integrated dose that each PMT may receive to
roughly 10 ppm of their maximum dose level [90].

As mentioned previously, the signal flux at the calorimeter is roughly 20 million electrons
per pulse, with each electron producing on average 20 photons for the PMT’s. The radial
profile of the flux and the segmentation of the Mgller and ep detectors are such that any

one PMT may face as many as 20 million photons on a pulse-by-pulse basis. At these high
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#
Region sections  Rmin Rmax
in 10 15cm  185cm

. v 1 (15-215cm)
mid 20 185cm 21.5cm -
out 20 215cm 235cm I
ep 10 26.1cm 35cm 1l

Figure 2.32: Dimensions of Mgller and ep detector rings. The rings each have different numbers
of azimuthal sections (i.e., fiber bundles), each with a dedicated PMT. The “in” and “mid” rings
together form Region I, while the “out” and “ep” rings constitute Regions II and III, respectively.

rates, both cathode and anode saturation could present problems, as both are capable of
producing signficant nonlinearities in the detector PMT signals unless special measures are
taken. To avoid cathode saturation in the R2154 Hamamatsu PMT’s, a copper wire mesh
screen rests on each PMT’s cathode, assisting in the quick redistribution of charge over
the cathode’s surface in between beam pulses. To avoid anode saturation, the gain of each
PMT’s base is adjusted so that its output signal is no more than 0.5 V, given the highest

expected beam intensity.

2.7.2 Luminosity Monitor

The signal for the luminosity monitor (located 8 m downstream of the detector cart) is
comprised of very forward—angle scattering Mott and Mgller electrons. An EGS4 simulation
finds that the contributions from those two sources are 70% and 30%, respectively [92]. The
average energy of these particles is roughly 40 GeV, with the average scattering angle being
approximately 1.5 mrad. At these kinematics, the physics asymmetry present in the signal
is expected to be roughly —10 ppb, just below the statistical precision that can possibly be
achieved with the detector, given the flux (high though it is) and integrated running time
for the experiment. The detector is therefore capable of providing a useful null cross-check
for the main Mgller asymmetry measurement, as will be discussed below.

The design of the luminosity monitor was driven primarily by the extraordinarily high
flux the detector would be subjected to [93]. Under nominal running conditions, GEANT

simulations predict an incident flux at the detector’s location of approximately 350 million
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Figure 2.33: Luminosity monitor schematic, (a) side and (b) front view. Both rings are separated
into eight chambers, each of which generates its own signal.

electrons per pulse, which, given their average energy, corresponds to nearly 270 W of power
at 120 Hz. These electrons deposit roughly half of their total energy, for a total of 130 W
of power deposited at 120 Hz. Over the course of the experiment, this works out to a total
integrated dose on the order of a few Gigarads. Because of the challenges connected with
such high rates and working in such a high radiation environment, an ionization chamber
design was settled upon. lonization detectors can be made very robust against radiation
damage and have been shown to remain very linear up to high signal fluxes.

As shown in Figure 2.33, the luminosity monitor is divided into two rings, referred to
as the front and back rings, respectively. Each ring surrounds the beam line, so that the
considerable signal of primary beam electrons and high energy photons (roughly 500 kW
of power at 120 Hz) passes harmlessly through its center. The inner and outer radii of the
active area for each ring are 7 cm and 10 cm, respectively, large enough to accommodate
the bulk of the signal.

Each ring is segmented into eight separate chambers (each “ring” is therefore actually
octogonal in shape). Inside each chamber are eleven parallel plates, positioned transverse
to the beamline and held alternately at ground or 100 V (and called cathodes and anodes,
respectively). When a scattered Mott or Mgller electron traverses the chamber, it ionizes
gas molecules, freeing electrons and creating ions. The liberated electrons, and, more slowly,
the ions, travel along the electric field lines towards the plates, where they are collected (the
electrons to the anodes, the ions to the cathodes). Thanks to the plates’ capacitance, this
momentary charge build-up generates a voltage drop which is then detected.

A delicate balance exists between the choice of plate separation distance, plate voltage,
and the size of the signal produced by the detector. In general, higher voltage and small

plate separation is good because it minimizes the time that the ions and electrons spend
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traversing the distance in between the plates, thereby minimizing the chances of ion recom-
bination, which can produce non-linearities. However, very high voltages and very small
plate separations can lead towards damaging (and potentially dangerous) arcing effects. In
the end, a voltage of 100 V (as previously stated) and a plate separation of 1 mm was chosen
as the best compromise. In addition, each chamber is filled with Ny as a buffer gas (the
pressure being held just above atmosphere). By displacing comparatively reactive oxygen
from the insides of the chambers, the inert buffer gas further reduces the chances of electron
and ion recombination enroute to the plates.

The electronics associated with the luminosity monitor are particularly simple. The
chosen plate separation and plate voltage values produce a typical output signal from a
single chamber between 4 and 8 V, allowing the raw detector signal to be fed directly into
an ADC, without the need for any amplifiers. Two signals are drawn from each chamber.
One is the high voltage signal supplying the anodes, with the dc-bias filtered out. The
other is the high voltage signal supplying the cathodes. These two signals are transmitted
via a single twin-ax cable to a 16-bit integrating ADC. Having the ADC channel read the
signals differentially greatly reduces the sensitivity to transmission noise due to pick-up in
the cables.

To counteract the effects of the high radiation environment in which the luminosity
monitor must operate, a number of precautions have been taken. First, the entire detector
is constructed almost entirely of aluminum. Second, where they are needed, the BNC
connectors are made with a filling of highly radiation-resistant material known as rexolite,
instead of the standard Teflon. Lastly, immediately upstream of the front ring is 7 radiation
lengths (25 inches) of aluminum preradiator. This preradiator acts both as shielding for
synchrotron radiation (largely emanating from the last chicane dipole in the spectrometer)
as well as a showering medium for the signal electrons. The amount of degrader used was
chosen to place the front ring close to shower maximum, while at the same time eliminating
as much of the 17 W of incident synchrotron radiation as possible. Between the front and
back rings is an additional 4 radiation lengths (14 inches) of aluminum, placing it well
beyond the shower maximum. Simulations predict (and observations confirm) the signal
size in the front ring to be three times higher than in the back ring. This enables the back
ring to act both as a relative linearity check for the front ring, since its smaller signal size

ensures that it will remain linear to higher currents, as well as a cross-check for asymmetry
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Figure 2.34: Schematic of profile wheel. The profile wheel supports four quartz Cerenkov scanners,
used to map out the signal flux. The whole wheel can rotate, and each quartz scanner can be moved
radially along linear drive rails.

measurements, since ultimately both rings detect the same source.

Overall, the luminosity monitor serves two main purposes. The first purpose, to look
for the effects of target density fluctuations, has already been described in Section 2.5. The
second purpose is to monitor false asymmetries. Because its expected physics asymmetry
is so small, and because it is more sensitive to changes in beam parameters, the luminosity

monitor is a valuable online monitoring device for many systematic effects.

2.7.3 Profile Monitor

Sitting directly in front of the main integrating calorimeter, the profile monitor, shown in
Figure 2.34, consists of a large wheel which supports four movable quartz Cerenkov scanners.
Each scanner consists of a 5-mm thick quartz block tilted 45° from the beam axis. Charged
particles produce Cerenkov radiation in the quartz. The light travels down the length of
the mirrored light guide into a PMT placed at the end. To prevent Cerenkov production in
the light guide from contributing to the PMT signal, the light guides are evacuated to 0.6
Torr.

Because of abundant soft backgrounds, two of the quartz Cerenkov scanners are mod-
ified, as shown in Figure 2.35. In these two scanners, insertable 15-mm thick tungsten
preradiators are placed directly in front of the quartz blocks. This 6 Xy preradiator shields
out low momentum background particles and amplifies high momentum signal particles,

which shower in the tungsten. In addition, these scanners have insertable shutters in front
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Figure 2.35: Detail of one modified Cerenkov scanner on the profile wheel. A tungsten radiator
in front of the quartz block amplifies the signal. A remotely insertable/removable shutter can allow
for background measurements.

of the PMT’s, which allow for measurements of the background signals produced by ener-
getic particles that penetrate the lead shielding of the PMT’s.

The scanners are all attached to arms that can be moved radially inwards and outwards,
between 15 cm and 55 cm from the beamline. In addition, the entire wheel itself can rotate
by 180°. AIll movements are controlled remotely by a LabView program, and automated
scans are performed to map out the particle flux both radially and azimuthally. The quartz
blocks’ radial and azimuthal dimensions are only 5 mm and 20 mm, respectively, giving
the scanners adequate position resolution. In this way, fairly detailed profile maps of the
Mgller and ep fluxes can be obtained. All scanner data are read out by standard CAMAC
11-bit ADC’s, high precision not being required (only pulse averages are taken, not pulse
differences).

For nominal physics running, all quartz scanners are removed to their maximum radial
positions, so as not to contaminate the signal flux. Special profile scans are conducted by
rotating the wheel and moving the scanners radially in and out. The profile maps thus
produced are useful in a number of ways. First, they provide a means of inspecting the
alignment of collimators and of the detector, as well as checking that the spectrometer
magnets are correctly set. This is important during the initial commissioning phase of
each data taking period (i.e., at the beginnings of Runs I and II). Second, insertion of the
calibration collimator described in Section 2.6.4 provides a very clean radial separation of
the Mpller and ep fluxes for certain azimuthal angles. Essentially, these profile maps help
calibrate a detailed Monte Carlo simulation that calculates the total ep (both elastic and
inelastic) contribution to the Mgller asymmetry. In addition, this simulation verifies the

experimental kinematics (i.e., (Q?)), which is necessary when relating the final asymmetry
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Figure 2.36: Pion detector schematic (side view). Note the lead shields, the middle one housing
the PMT’s for the main integrating calorimeter as described in Section 2.7.1.

to a value for the weak mixing angle.

2.7.4 Pion Detector

As described in Section 1.3.1, it is necessary to measure the pion flux seen by the Mgller de-
tector in order to compensate for the dilution this flux will produce as well as any significant
asymmetry it may contribute to the Moller asymmetry. A pion detector is therefore placed
directly behind the Mgller detector, shielded by an additional 25 cm of lead. The amount
of shielding was chosen in order to suppress the Mgller electron flux completely (these elec-
trons are considered a background for the pion detector, and their flux is expected to be
several hundred times greater than the pion flux), while allowing for some enhancement of
the pion signal due to hadronic showering [94]. The total amount of shielding in front of
the pion detector corresponds to 60 radiation lengths and 0.3 nuclear interaction lengths.
In addition to the shielding in front of the pion detector, there is some shielding between
the pion detector and the beam pipe to reduce further electromagnetic background.

The active part of the pion detector consists of 10 fused quartz cylinders, each 4 cm in
diameter and 10 cm in length. These cylinders are placed azimuthally about the beamline
and are tilted by 45° with respect to the beam axis, as is shown in Figure 2.36, which
contains a picture of the arrangement. Charged particles passing through each quartz
cylinder produce Cerenkov radiation, which is detected by an attached PMT. The physical
region the quartz cylinders define corresponds to the same radial coverage as the Mgller

detector’s active region (r = 15—23.5 cm). However, due to the large angular spread of the
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Figure 2.37: Polarimeter schematic. This is a view looking downstream in front of the profile wheel.
The polarimeter is positioned between the profile wheel and the main integrating calorimeter. Note
that the whole polarimeter assembly can move vertically 25 cm. The scanning range is indicated in
the figure.

hadronic showers, the pion detector’s acceptance is actually much larger than its physical

size would suggest.

2.7.5 Polarimeter

The measured physics asymmetry involves a normalization to the beam polarization. The
polarization is limited by strain relaxation in the source photocathode, and laboratory
“bench” tests typically yield values of ~80% or higher. However, these numbers are subject
to modification due to a number of effects, some involving changes in the photocathode itself
(for instance, zinc dopant levels could change due to migration during the heat cleaning
process just before cathode activation in the gun) and others merely involving changes in
operation (for instance, voltage changes in the CP and PS Pockels cells). Nevertheless, since
these effects are unpredictable and fluctuate at some level over time, an in situ measurement
of beam polarization is an absolute necessity. Furthermore, the error on this polarization
measurement must be kept as small as possible, since it influences the final error on the
physics asymmetry measurement.

Polarization is measured by inserting a remotely insertable/removable iron foil target
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into the path of the beam.'® There are several foils to choose from, with thicknesses of
20 pm, 50 pm, and 100 pm. In order to eliminate as much of the background flux as
possible, all other targets are removed from the beam line, including the liquid hydrogen
target and the wire array. To further suppress the background noise (radiative Mott’s as
well as inelastic ep’s), the calibration collimator is also inserted into the beamline, and
special quadrupole magnet settings are used.

Helmholtz coils are then supplied with roughly 6 A of current, generating a magnetic field
of ~100 G that saturates the foil target, causing a known fraction of the atomic electrons
to align their spins with the magnetic field. Some of the electrons in the beam scatter off
the atomic electrons, pass through the spectrometer, and are detected by the polarimeter,
described below. The cross section for this Mgller scattering process is suppressed when the

two electrons’ spins are anti-aligned, so that the following asymmetry can be formed [95]:

Ap, = O — 04 —Pr Py (7+C082 @) SiIf@ ‘
o+ o1y (3+C082 @)

cos 0 (2.21)

where Pr and Pp are the polarizations of the foil target and beam, respectively, © is the
scattering angle in the center-of-mass frame, and 6 is the angle between the target and beam
electrons’ polarization axes. When writing o4, for instance, the first arrow (in this case
up) refers to the helicity of the target electron, while the second arrow (in this case down)
refers to the helicity of the beam electron. Knowing Pr, ©, and 6, the beam polarization
Pp can be extracted from a measurement of Ap,.

The Helmholtz coils are set up to provide a magnetic field longitudinal to the beam
axis. The field lines will actually be parallel to the foil’s surface, inducing the atomic
electrons’ spins to be aligned accordingly. Having the foils horizontal therefore maximizes
the longitudinal analyzing power (cos #) and hence the asymmetry, but increases the chances
of multiple scattering, which dilutes the asymmetry. As a compromise, the foils are tilted by
20° with respect to the beam axis. Using rough numbers for the variables in Equation (2.21),
Pp =~ 8%, Pg ~ 80%, © = 90° (corresponding to 4.6 mrad in the lab frame for a 45 GeV
beam), and 6 = 20°, one finds Ap. =~ 0.047.

The polarimeter, whose design is illustrated in Figure 2.37, sits between the profile

monitor and the main integrating calorimeter. It is a quartz—tungsten Cerenkov calorimeter,

15 Al iron foil targets are actually composed of Supermendur, an alloy consisting of 49% iron, 49% cobalt,
and 2% vanadium.
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composed of six quartz plates (each 6 mm thick) sandwiched between seven tungsten plates
(also 6 mm thick), the latter having reflective surfaces. These reflective surfaces aid in
bouncing Cerenkov radiation created in the quartz plates towards a highly reflective cylinder
that acts as a light guide. The light guide in turn brings the photons to a PMT, which then
can be kept well away from the beamline and shielded by a lead enclosure. The quartz—
tungsten plates are angled at 30° with respect to the beam axis to aid in light collection.

The holes in the calibration collimator allow for only a specific range of the Mgller flux
to pass, corresponding to 90° scattering in the center-of-mass frame, which maximizes the
asymmetry. While this cuts down the overall rate, Ap. is so large compared to the po-
larimeter’s statistical resolution that this rate reduction doesn’t matter. More importantly,
the collimator suppresses the ep background. In order to measure the background that
persists, the polarimeter is scanned radially, from 15 cm to 40 cm below the beamline. In
addition, the signal contribution coming from background hitting the PMT is measured
by rotating a mirror inside the light guide, which prevents any Cerenkov (i.e., signal) light
from reaching the PMT. For polarimetry, the polarimeter sits at the Mgller peak, roughly
18 c¢m from the beamline. During nominal physics running, however, the polarimeter sits
at 50 cm from the beamline, so that it does not interfere with the primary data collection

for the parity violation measurement.

2.8 Electronics and Data Acquisition

2.8.1 Description of ADC’s

Custom 16-bit integrating analog-to-digital converters (ADC’s) were designed and built
specifically for this experiment [96]. The main design goal was to allow for the integration
of signals coming from various types of devices (toroids, BPM’s, PMT’s, etc.) while intro-
ducing minimal electronic noise. The basic schematic for the ADC, designed to be fully
VME-compatible, is shown in Figure 2.38. A single ADC board contains six channels each
of which accepts twin-ax inputs.

The operational amplifier (op-amp) directly after the channel input can either be run
in differential mode or single-ended mode. In differential mode, the difference between the
two leads of the input twin-ax cable gets amplified. If one of these leads is in fact ground,

then the ground is said to be left “floating.” In single-ended mode, there are no floating
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Figure 2.38: Schematic of a 16-bit VME ADC. The experiment uses ADC boards containing six
ADC channels each. The details of a single ADC channel are shown. All of the channels on a given
board share a common board memory and timing settings.

grounds. The second lead of the input is connected to the ADC’s ground.

After the op-amp, the signal first goes through a voltage-to-current conversion resistor.
The signal then encounters the capacitor of an integrator stage. This integrator output can
be summed with the output from a digital-to-analog converter (the so-called DAC offset),
which was designed to achieve sub-channel resolution in the ADC’s. In reality, this feature
was never needed, and even degraded the resolution slightly rather than improved it (due
to a presumed design flaw), and so was never used.

A jumper on the ADC board can be toggled to select between running in bipolar and
unipolar modes. Bipolar mode allows for the integration of both positive and negative
signals by adding a constant offset voltage at the sum stage. This necessarily halves the
amplitude of the maximum input voltage allowed, however. In unipolar mode, the input
signal must be either all-negative or all-positive, which allows for the integration of larger
input voltages.

After the sum stage, the signal is digitized by the ADC and stored in the Field Pro-
grammable Gate Array (FPGA) memory buffer. Along with the gain, the FPGA sends var-
ious timing triggers to the integrator stage; the gain and these triggers can all be changed
remotely using the VMEDbus system. The timing triggers are illustrated in Figure 2.39.
The “start” trigger (also called the “pre-beam” trigger) defines the start of each pulse.

Some time ¢, later, the “reset” trigger for the integrator stage is released. This opens a
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Figure 2.39: Definitions of ADC timing parameters. The timing should be set such that the signal
arrives several microseconds after the last baseline sample has been taken.

relay allowing charge to accumulate on the integrator’s capacitor.'® The ADC then begins
sampling and storing what are called “baseline” samples at time #,. A total of N baseline
samples are taken, where N can be 1, 2, 4, 8, or 16 (this too can be remotely set using
the VMEbus system). After the signal has finished integrating on the capacitor, the ADC
again begins sampling and storing what are called “peak” samples, at time ¢, after the last
baseline sample. The same number of peak samples as baseline samples are automatically
taken. Both individual baseline and peak samples are separated by time ¢; (almost always ¢;
is set to be 1 us). After all peak samples have been taken, the reset trigger is again engaged,
shorting the capacitor and releasing all accumulated charge. The FPGA then subtracts the
average of the baseline samples from the average of the peak samples, storing the difference

in memory which can be read out through the VMEbus system.

2.8.2 Types of Signals

The above description pertains to all of the VME ADC boards used in the experiment.
The same basic boards are used to integrate signals from the toroids, the Mpller and ep
detectors, the BPM’s, the luminosity monitor, the pion detector, and the SLM. The boards
only need minor modifications (some of them in the hardware, some of them in the software)
to accommodate all of these different signals. Essentially, the integration gate (defined by
tp), along with the integrating capacitor and/or the voltage-to-current conversion resistor,

needs adjustment depending on how long the signal lasts. The board’s gains can also be

6Merely opening the relay induces a small charge on the capacitor, even though the signal has not arrived
yet. This is reflected in Figure 2.39.
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modified to accommodate input signals of varying voltage levels. In addition, each board
may be run in differential or single-ended mode, and in bipolar or unipolar mode, depending
on the type of input.

The various modifications listed above, minor though they may be, greatly influence
the noise performance of the board, i.e., the resolution it is capable of putting out for a
particular input signal. This is because the boards possess a strong noise component in the
MHz frequency range, but much lower noise at lower frequencies. Depending on the board’s
gain settings, this fast noise can end up getting amplified. For relatively weak input signals
in the MHz frequency range, for example, the noise can end up being several channels. This
noise is referred to as pedestal noise, since it is the natural noise of the electronics itself, and
is present even in the absence of signal (a pulse with no beam is referred to as a pedestal
pulse). Since the VME ADC'’s are 16-bit, this works out to a pedestal-limited resolution of
approximately 3/2'¢ ~ 50 ppm, if the ADC is operated at full range. If the ADC is not
operated at full range (which is the usual case), the situation gets even worse, with the limit
being set at 100 ppm, perhaps. In addition, if the ADC is being operated in bipolar mode,
the resolution gets worse (higher) by a further factor of two.

Unfortunately, since the beam pulse length is on the order of a few 100 ns, most beam
signals naturally have a significant signal component in the MHz range. Depending on
the specific measurement, per-channel resolution of better than 100 ppm may not be an
absolutely necessity, in which case the noise is not a problem. This is the case for the pion
detector, the SLM, and the BPM’s, for instance. For other signals, however, per-channel
resolution of better than 100 ppm is important to have, in which case something must be
done in order to improve the signal-to-noise ratio. This may include simply amplifying the
signal before it is fed into the ADC, so that high ADC gain settings (which tend to amplify
pedestal noise) are not needed.'” It may also include shifting the signal out of the MHz
frequency range through the use of transformers, as is done in the toroid electronics and,

as will be seen below, in the Mgller and ep detector electronics.

'"This amplification, if needed, should be done as close to the signal’s origin as possible, to avoid amplifying
transmission noise picked up in the cables.
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Toroid Signals

As was described in Section 2.4.1, the raw toroid signals are connected to a resistor and
capacitor in series, forming an RLC circuit. The output therefore rings with characteristic
frequency w = 1/ VLC and decays with a settling time 7 that is proportional to the circuit’s
quality factor @ (explicitly, 7 = 2Qv/LC).'® Since the ADC’s are limited by pedestal
noise, making the @) as large as possible (i.e., stretching the signal out for as long as
possible) improves the overall resolution of the measurement, by increasing the charge on
the integrator and thus the signal-to-noise ratio. Stretching the signal out also shifts the
signal into a lower frequency range where the noise performance of the ADC boards is
better. In practice, the @) is adjusted so that the toroid signals last for several milliseconds,
of which the first millisecond is integrated in the ADC’s. The @ is so large, in fact, that
the signal may have not died out by the time the next pulse starts, especially at 120 Hz,
when pulses are only separated by 8 ms. Such “hysteresis” effects, whereby the charge
measurement for one pulse reflects at some level the charge measurement of the previous
pulse, would obviously be catastrophic. The simple solution is not to reduce the @ (which
would degrade the resolution), but to suddenly overdamp the toroid signal, using a large
resistor connected to the toroid electronics by a relay, at some point after the ADC has
finished its integration, typically at 3 ms.

The toroid signals are amplified by preamplifiers physically located nearby the toroids
themselves, avoiding amplification of transmission noise picked up over the ~100 feet of
cable connecting the toroids to the actual ADC’s. The ringing toroid signals must be
rectified before entering the ADC’s, which are operated in single-end mode. As modified
for toroid signal input, the ADC’s exhibit excellent signal-to-noise behavior, introducing
pedestal noise of 1 channel or less. If the full range of the 16-bit ADC’s were to be used,
this could allow for toroid resolutions of roughly 15 ppm; resolutions nearly this good were
actually observed in special beam tests. However, in reality the full range of the ADC’s is

not exploited, so that pulse-to-pulse resolutions in the 50 to 60 ppm range are more typical.

18 Technically the circuit rings with frequency w = /1/LC — (R/2L)2, but for small values of R (corre-
sponding to the case of small damping), one can write w ~ 1/v/ LC with negligible error.
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Figure 2.40: Electronics schematic for the main integrating calorimeter. The signals originate
from the detector PMT’s in the MHz range, but are shifted into the kHz range using isolation
transformers.

BPM Signals

As described in Section 2.4.2, the BPM processing electronics produce decaying, non-
oscillatory signals. High ) cavities lead towards better resolution, but detune quicker
and hence need to be watched more carefully. The @ of the cavities are set such that the
BPM signals die out several hundred nanoseconds after the end of the beam pulse. The
signals are therefore in the MHz range. In addition, the signals can be positive or negative,
so their ADC boards must operate in bipolar mode. Also, having a sufficient dynamic range
(e.g., £1 mm) is important, so a signal produced when the beam is at 100 pm, for instance,
cannot saturate the ADC. All of these constraints ensure that the resolutions of the ADC
boards are not too impressive, at the 100 ppm level. However, better resolutions are not
needed, since at the very most the experiment only calls for pulse-to-pulse position reso-
lutions of 1 pm, which is equal to 1000 ppm resolution if 1 mm is defined as “full range.”

Beam motions greater than £1 mm are not expected.

Mgller and ep Detector Signals

The Mgller and ep detector signals originate from the PMT’s in the MHz range and with
values less than 0.5 V (this avoids anode saturation nonlinearities, as discussed in Sec-
tion 2.7.1). The detector signals require board settings that produce unacceptable levels of

noise (at the 100 ppm level, as with the BPM ADC’s). To reduce the noise, the calorimeter
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Figure 2.41: The width of the Mgller detector asymmetry distribution is squared and plotted versus
the inverse of the beam intensity. The y-intercept reveals the square of the inherent electronics noise.
The beam energy was not changed for this intensity scan.

PMT signals are made to look more like the toroid signals through the use of the electronics
shown schematically in Figure 2.40. Isolations transformers (RLC circuits) sit in a chassis
located near the main integrating calorimeter. Connecting each PMT output to a trans-
former shifts the signal to a lower frequency range, producing an oscillatory, decaying signal
like that of a toroid. It also results in improved noise performance in the ADC boards. In
addition, it prevents the formation of ground loops, since the grounds of all PMT channels
are connected via the tubes’ high voltage supply.

After the isolation transformers, each PMT signal gets amplified by a set of preamplifiers
whose gains are remotely adjustable. Typically an overall gain of 100 is used. After traveling
along roughly 200 feet of twisted pair cable, the signal gets rectified in an absolute value
circuit before being fed into one channel of an ADC board identical to those used for the
toroid signals.

The width of the measured detector asymmetry distribution receives contributions from
a number of sources, including beam jitter, counting statistics, and electronics noise. Re-
gression (or beam dithering) corrects for the effects of beam fluctuations, as will be discussed
in the following chapter. The contribution from electronics noise can be observed by plot-
ting the square of the width of the regressed detector asymmetry distribution versus the
inverse of the beam intensity. Such a plot is given in Figure 2.41. Data was taken at a wide
variety of beam intensities, from roughly 2 x 10'° e~ per pulse to over 5 x 10!! e~ per pulse.
As one can see, for higher intensities (moving left along the horizontal axis), the width of
the asymmetry distribution gets smaller, since the contribution from statistical fluctuations

is reduced. By extrapolating the data to the y-intercept, one takes the limit of infinite
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beam current, which leaves only the contribution from electronics noise. From the plot, the
electronics noise contribution to the detector width is found to be v/12060 = 110 ppm. The
overall width of the Mgller detector, as will be seen in Section 4.4, is typically 190 —200 ppm,
meaning that the electronics noise contribution, while smaller than for the BPM ADC’s, is
still a non-negligible fraction of the total width.

While the Mgller and ep detector electronics have not quite met the design goal of
achieving a noise performance of roughly 40 ppm, they do meet the linearity goal set at 99%.
Because of the measures taken to suppress cathode and anode nonlinearities, the linearity
of the entire system (including the electronics) is found to be 99 £ 1% [97]. This result
applies to the local signal region relevant for nominal physics running. For lower flux levels
(for instance, those produced by the special calibration runs discussed in Section 4.8.2),
very small signals are generated, and the linearity of the system is much worse, at roughly
80% [98]. The main reason behind these low-level nonlinearities is that the rectifier circuit

tends to distort small signals.

Luminosity Monitor Signals

Like the BPM signal, the luminosity monitor signal sits in the MHz frequency range. How-
ever, as mentioned in Section 2.7.2, its raw signal is of a sufficient size such that amplifiers
are unnecessary. In addition, its anode and cathode voltages are read in differentially, so
that transmission noise pickup is further suppressed. Its signal is unipolar and does not
fluctuate much, so that its ADC’s can be run nearly at full range. All of these factors
combine to give the luminosity monitor ADC’s surprisingly good noise performance, similar

to that of the toroids.

2.8.3 Data Acquisition

The experiment employs a data acquisition (DAQ) system, developed and implemented
specifically for the ESA fixed target program at SLAC [99], consisting of numerous VME
crates distributed over the entire SLAC site, communicating with one another through a
combination of both network (TCP/IP) and fiber optic connections. A general outline
of the DAQ system is given in Figure 2.42. Two “master” VME crates, one located at
ASSET and the other in ESA, gather data from all of the 16-bit VME ADC’s (described
in the previous section) along with all of the 11-bit CAMAC ADC’s. In addition, these
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Figure 2.42: Overview of data acquisition (DAQ) system. The two “master” crates at ASSET and
in ESA communicate to other VME crates via fiber optic cabling. For purposes of clarity, only a few
VME crates are pictured. Each crate receives data from VME modules within, which may be I/0
modules, 16-bit ADC modules, or modules for communicating with CAMAC crates (to name just
a few examples). The helicity bits are generated by the PMON controller at CID and broadcast to
other receiver units over the SLCNet.

crates receive a wealth of other information, as well. For instance, the status of the various
insertable/removable optics components (e.g., half-wave plates, asymmetry inverter) as well
as the Pockels cell voltages at the source are sent to an I/O module in a VME crate at CID.
The helicity of the beam, as determined by PMON, is rf modulated and broadcast (after a
one-pulse delay) to the two master crates.

Data from the two master crates are merged, loosely synchronized, and logged to SLAC’s
tape silos for storage by an ESA computer. The total amount of data logged for each 120 Hz
event is roughly 2.5 kB. During nominal physics data taking, typically 20 GB are logged
each day. Several real-time analysis processes perform simple online monitoring functions,
in order to ensure good data quality. For instance, one process displays detector signal levels
(useful for checking for dead PMT’s and/or power supply problems), while another displays
mean beam intensity and position, along with beam jitter numbers. This latter display is
simultaneously monitored both by ESA experimenters as well as machine operators, and is
indispensable for maintaining good beam quality.

The DAQ system was designed to operate at up to 120 Hz, the maximum beam rate.
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The whole system is triggered by the beam trigger. The DAQ system is even triggered for
PEP pulses (when BaBar is running concurrently), although these are not used for physics
analysis. In addition to normal physics pulses and PEP pulses (also called “witness” pulses),
there are pedestal pulses. During pedestal pulses, a special source permissive is disabled,
so that the source laser flash lamps fire 50 us out of time with the accelerator rf. Hence, no
electrons are accelerated down the linac. Pedestal pulses therefore contain no electrons, but
otherwise the machine is operating nominally. As a result, they are used to calibrate the
responses of all read-out devices (toroids, BPM’s, detector PMT’s, etc.) when everything
in the experiment is up and running but the actual beam. Pedestals are averaged for each
timeslot separately, since the two timeslots are sensitive to different phases of the 60 Hz
line noise. For each timeslot, the average of the five previous pedestal pulses is subtracted
from every physics event.

The next step after pedestal subtraction is to generate helicity-correlated differences and
asymmetries for all of the various read-out devices. As will be seen in the next chapter, it
will be necessary at this time to find a way to correct for the effects of beam fluctuations,
which not only are capable of generating false asymmetries, but also enlarge the widths of

the detector asymmetry distributions.
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Chapter 3

Data Analysis

3.1 Overview

In order to minimize sensitivity to slow drifts, the experiment must switch rapidly between
helicity states, forming helicity pulse pairs. This rapid helicity switching is done in a pair-
wise pseudo-random manner, forming so-called “timeslots” to remove sensitivity to the
60 Hz line noise. Approximately every 30 ms then (depending on the beam rate), another
right—left detector asymmetry can be formed. The goal of the experiment is to achieve
a measurement of the parity—violating cross section asymmetry Apy in Mgller scattering,

which can be written as:

Apy = ZB— L (3.1)

where o and o, refer to the cross sections (proportional to the scattering rates) for right
and left helicity beams, respectively. In order to obtain the correct cross-section asymmetry,
false asymmetries due to helicity correlations in the beam parameters must first be removed.
The main purpose of this chapter is to describe how this is done, as well as to discuss the

means by which a systematic error can be ascribed to this correction procedure.

3.2 Beam Fluctuations

Assuming the target and main integrating calorimeter are perfectly co-aligned, a properly
centered beam will produce little or no azimuthal variation in the signal levels of the detector
PMT’s. In other words, each PMT in a given detector ring (in, mid, out, or ep) should
produce nearly the same size signal for the same high voltage. If, however, the beam were

to shift slightly in any direction, the signal sizes in some of the PMT’s will increase while
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those in others will correspondingly decrease. The calorimeter therefore takes advantage of
the azimuthal symmetry of the scattered electron flux, cancelling out (to a large extent, at
least) the effects of beam fluctuations.

The cancellation of beam effects due to azimuthal symmetry is not perfect and cannot
be taken for granted, since at any time an unforeseen problem could affect one or more
of the detector channels, rendering them unusable and thereby destroying the symmetry.
For this reason, it is still necessary to monitor the sensitivity of the detector to beam
fluctuations. Since the Mgller and ep detectors consist of a total of 60 channels, one must
first decide how to handle the data. For instance, when correcting for beam-related false
asymmetries, should all “good” channels (meaning those not affected by hardware failures)
first be averaged, taking full advantage of the cancellation due to azimuthal symmetry?
Because each channel actually requires a different statistical weight, as will be made clear
in Section 3.3, the channels must not be averaged first. Instead, beam fluctuations should
be corrected for on a channel-by-channel basis, the asymmetry in each detector channel
being computed separately. Averages of channels, using the appropriate channel weights,
can then be calculated later. In fact, various linear combinations of channels, some being
very sensitive to fluctuations in individual beam parameters, can be studied in order to

attribute an overall systematic uncertainty to the correction procedure.

3.2.1 General Formalism

As long as the dependence of a given detector channel’s signal d; on each of the beam
parameters is approximately linear over the beam jitter range, one may write the following
Taylor expansion for that channel’s measured asymmetry A;:
. diR - diL _ aphys
Aj= ———==A""+Ag + Z ag AL (3.2)
dip + di, ¢

where ¢ runs over all beam parameters except charge, namely ¢ = {E, z, y, 2/, '}, and the
« parameters are correlation coefficients (called “detector slopes”) relating the sensitivity
of each detector channel to each of the beam parameters. In other words, ag; = 0A;/0¢.

The units of these detector slopes are therefore ppm/MeV, ppm/um, and ppm/urad, or

!This reasoning is most applicable when the spectrometer quadrupoles are off. Even with the quadrupoles
on, however, so that the signal flux is radially focused, cancellation of beam fluctuations’ effects will still
occur.



107
something equivalent. The quantities Ag and A¢ are the charge asymmetry and the
helicity-correlated difference in beam parameter ¢, respectively. Equation (3.2) says that
the asymmetry actually measured by detector channel 7 is equal to the true underlying
physics asymmetry in the scattering process being studied, plus false asymmetries due to
helicity correlations in the beam parameters.

The first step in removing false asymmetries due to beam fluctuations is to normalize
each detector signal to the beam charge ¢ as measured by one of the alcove toroids. To
first order, this is equivalent to subtracting out Ag = (¢r —q1.)/(qr + q1) in Equation (3.2)
above. This is done before all other data processing, so that Equation (3.2) should really

be rewritten as:

dip /4, —di,/q h
A~ = R R L L :Af ys+ [0 ZA 33
‘ diR/qR + diL/qL 25: ¢ < ( )

These detector asymmetries are referred to as charge-normalized asymmetries. Note that
to first order, normalizing the detector signals does not change the detector slopes ag;.
The second step in removing false asymmetries due to beam fluctuations is to somehow
measure the detector slopes ag;. This is done two different ways: through linear regression
and by the process of beam dithering. Each of these methods will briefly be described in
the sections immediately following. Once the detector slopes are known, the true physics

. h .
asymmetries AP can be uncovered and used for further processing.

3.2.2 Linear Regression

In its simplest form, linear regression involves plotting the charge-normalized detector chan-
nel asymmetries versus the helicity correlated differences in each of the beam parameters.
An example of this is illustrated in Figure 3.1. First the charge-normalized asymmetry in a
given detector channel is plotted against AFE. The slope is found, and then A; — a;g- AE is
plotted against Az. This slope is found, and then A; — a;5 - AFE — a;; - Az is plotted against
Ay. This procedure continues so on and so forth until all slopes ag; have been found. In
fact, the procedure has to iterate and begin again, this time beginning with all the slopes
that have already been found, and looking for small deviations from these slopes. That is,

once all the slopes have been found, A; — Z ag; - A is plotted against AF, and a small

deviation da;r from the slope a;r already found is obtained. This is used to get the new

slope, a;g — a;g + da;g. The same procedure continues for all of the beam parameters,
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Figure 3.1: Linear regression example, for the charge-normalized asymmetry in the third PMT of
the “mid” ring (mid02). In Figures (a)—(c), the asymmetry is corrected for an increasing number of
beam parameters. Note the scatter of the data becoming smaller and smaller as regression proceeds.
Figure (d) shows the fully regressed asymmetry plotted against AE, showing no dependence. After
regression, the asymmetry should not depend on any beam parameter.

updating the slopes as the necessary deviations are found, until during one iteration none
of the slopes changes by more than some tolerance limit. At this point, the slopes have
all converged to their final values, and the detector channel asymmetry exhibits no further
dependence on any of the beam parameters, as illustrated in Figure 3.1(d).

In addition to being tedious and inefficient, the above procedure yields unphysical slope
values, since correlations among the beam parameters ensure that the values obtained for
the slopes depend on the order in which they are found. It would be much better to perform
a one—pass fit in which all of the slopes are found simultaneously. Not only would this be
much faster and more economical with CPU time, but it would yield slopes whose values
actually reflected some sense of physical reality. That is, suppose there existed a correlation
between E and z, such as there exists due to dispersion. With the iterative procedure
described above, if the oy, slope happened to be found first, it would tend to “absorb” some
of the value of the ap slope. The exact amount it would absorb would depend on the

particulars of the scenario, and could range from all of it to just part of it. Nevertheless,
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with the non-iterative procedure about to be described, the correct, physical slopes will be
found.
The non-iterative procedure uses matrix inversion to find the best fit for the detector

slopes ag;. This is done by first defining a x? for the detector slopes’ solutions:

X* = < (Ai — ) g A§> > (3.4)
€

Here A; is the charge-normalized asymmetry in detector channel 7, the sum runs over all
beam parameters except charge, and the brackets denote averaging over all pairs. Minimiz-

ing the function y? with respect to ag; gives the following matrix solution:

(A; - AE) (AE?*Y (AE-Az) - (AE-Ay') B
(A; - Az) (Az - AE) (Az?) - (Az-AyY) Qg
(4 - Ay') (Ay'-AE) (Ay-Az) - (Ay?) iy
This can be re-written using the following simplified notation:
A, =M-q, (3.6)

where 4; = ((A; - AE), (A; - Az),...,(4; - AY)), & = (¢iE, g, - - ., @ty ), and the covari-

ance matrix M has components M;; = (A¢; - A¢;). The solution is of course:
a;=M1.4 (3.7)

Thus by keeping track of the correlations between A; and all of the beam parameter helicity
correlations A¢, it is possible to solve for all of the detector slopes ag; simultaneously. Since
regression works by calculating average values for various covariance matrices, it obviously
needs a finite statistical sample with which to work. A regression cycle of 10k pairs was
chosen as a good compromise between wanting to reduce statistical fluctuations on the
computed slopes, while still retaining sufficient sensitivity to slow drifts and other possible
effects that could fluctuate over time.

In writing Equations (3.4)—(3.7), one minor point has been glossed over. Namely, the
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quantities A; and A¢ should actually have their averages subtracted out. In other words,

Equation (3.4) should technically be written as:

= <({Ai R R —A—g})2> 53)

where A; is the average charge-normalized asymmetry in detector channel 4 for that particu-
lar regression cycle, and A¢ is the average helicity-correlated difference in beam parameter €.
This will introduce terms like A;- AE and AE-Ax into Equation (3.5). Because all helicity-
correlated differences in the experiment are small compared to the beam jitter, such terms
will only result in very minor corrections to the detector slopes ayg;. Thus, in the interests
of clarity, these higher-order terms have been dropped from the equations.

In principle, there are a number of effects which can interfere with the successful imple-
mentation of linear regression. In particular, finite device resolution can cause additional
noise in the diagonal elements of M, effectively increasing them, while leaving A; uncom-
pensated. In theory, this can result in a systematic reduction in the sizes of the calculated
slopes. In other words, for a given beam parameter £, finite resolution in the device mon-
itoring £ will always result in the calculated slope ag; being smaller than the true slope.
This can produce a systematic error, though studies have shown that such effects are prob-
ably negligible. Nevertheless, an additional method of arriving at the detector slopes would
provide a useful check.

Another important reason why some other method of getting «; is necessary is that
linear regression fails when one or more parameters begin to dominate over all others. For
instance, suppose the jitter in ¢’ suddenly falls dramatically compared to all of the other
beam parameters. Effectively, then, the last column and the last row of M will be small
compared to all other columns and rows. As the jitter in y' gets smaller (or, equivalently,
as the jitter in all of the other beam parameters gets larger), the last column and row will
look more and more like a zero column and a zero row. Thus M will grow more and more
singular. As this happens, the matrix inversion will blow up, and the whole process will
fail. What is happening in this scenario is that the beam jitter is failing to span the whole
parameter space. While data cuts can mitigate this potential problem, an independent

method of finding the detector slopes, one that does not rely on beam jitter to span the
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parameter space, is still a good idea.

3.2.3 Beam Dithering

Beam dithering implements much the same procedure as linear regression, but in a much
more controlled way. It uses the magnets and klystron phase described in Section 2.3 to
introduce small perturbations in the beam’s position, angle, and energy, while simultane-
ously monitoring the responses of the BPM’s and detectors. The goal of this analysis is to
arrive at the detector slopes «; = 0A;/0¢;, which is accomplished by again defining a X2

function for minimization:

2

(3.9)

dd;/q od;/q 0§
9C; _§< 3 3—C’j>

where C refers to the 4 dithering object. Since there are eight magnets and one klystron
phase, j = {1,2,...,9}. Here i is a free index, referring to a particular detector channel.
Notice that 0(d;/q)/0¢ is written, and not 0A;/0¢;. The former can be referred to as
“unnormalized” detector slopes, since they are related to the actual detector slopes by a
simple normalization constant (see below). Minimizing x? with respect to the choice of

unnormalized detector slopes 9(d;/q)/0¢ yields the following solution:

2 (0di)q 08\ = 0di/q [ 0& O¢;
kz::I ( 8Ck 8—Cjk> o Z 8& Z <8Ck 6C]k> (3.10)

l k=1

which can be rewritten as D = § - B if the following matrices are defined:

Dy = Z 9d; /q 35]

dC), 9C,,
i 0 (3.11)
! Z « OC}, IC},
R adz/q
o= ey

Solving Equation (3.10) by inverting the matrix B yields:

B=D-B! (3.12)
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This is the fundamental equation for beam dithering, yielding the unnormalized detector
slopes 0(d;/q)/0¢. As stated earlier, these are related to the more useful normalized detector

slopes 0A;/0¢; by a simple normalization factor:

04A; 1 09(di/q)
e 2(dijq) ¢ (3.13)

where (d;/q) is the average of the charge-normalized detector signal for channel 7. Thus
beam dithering can be used as a completely independent means of arriving at the detector
slopes 0A;/0¢;, which can then be used to correct for false asymmetries. A new set of slopes
is obtained at the end of every completed dithering cycle.

There is one main caveat to consider when contemplating the beam dithering procedure
outlined above. Namely, the beam dithers C; should completely span the beam parameter
space. That is, at least five of the vectors 0§/0C; (where & is understood to run over all
of the beam parameters) should be linearly independent. If there are not five such beam
dithers producing linearly independent responses in the beam parameters &, then the matrix
B above will become singular. Thus the matrix inversion in Equation (3.12) will fail, and
the detector slopes will remain unattainable. In practice, an analysis is performed that finds
the optimal (i.e., most linearly independent) set of five dithers, and it is only these that are
used for the full analysis. Thus the sums in Equations (3.9)-(3.11) only proceed over these

five dither objects, and not the full set of nine.

Beam Dithering Example

The treatment above describes beam dithering mathematically. It is useful, however, to
see an example of what beam dithering involves experimentally. One object (either one of
the corrector magnets or the klystron phase) is dithered at a time. Dithering occurs on a
very fast timescale. A voltage signal, called the dithering bit, encodes both which object is
being dithered, and the amount by which the object is being dithered. Each dither follows
the same basic three—step pattern shown in Figure 3.2. At any one step in the pattern, the
dither value is held constant for roughly 10 pulses (or ~0.1 sec at 120 Hz) before moving on
to the next step in the pattern. The overall pattern repeats for roughly 2 seconds, at which
point the beam ceases to be dithered for approximately 30 seconds. Then the next object

in the dithering cycle is dithered. A dithering cycle is complete when all eight magnets
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Figure 3.2: Beam dithering pattern. The plot on the left shows the “macroscopic” features of the
overall pattern. One object is dithered for ~2 sec, and then a different object is dithered ~30 sec
later. The plot on the right shows the “microscopic” features of the dithering pattern. The dithering
occurs in a simple three—step pattern, with each step corresponding to ~0.1 sec.

and the klystron phase have been dithered. The klystron phase actually gets dithered four
times in a row, in order to reduce the uncertainty associated with that particular slope.

Note that the 2-seconds—on, 30-seconds—off pattern implies that the beam is being
actively dithered about 7% of the time. During Run I, the beam dithering procedure was
still being refined. While problems were being addressed, the amount of beam dithering
was less, roughly 4%. As will be seen in the next chapter, all data for which the beam was
actively being dithered is removed from the normal analysis chain. Such removal guards
against the possibility that the large beam deviations required by dithering might produce
systematic effects that would be hard to correct for.

To further illustrate the dithering procedure, Figure 3.3 shows the response of one BPM
and one charge-normalized detector channel to the dither of a corrector magnet during a

typical cycle. These data would be used to obtain one of the ng ¢ quantities and one of
J

the gé; quantities in Equation (3.11). A total of 30 such quantities (corresponding to the
responses of five BPM’s and one detector channel to five “optimal” dithers) are needed in
order to fill the matrices contained in that equation. These plots could therefore be used
along with the 28 other similar plots not shown to arrive at a complete set of detector
slopes 0A;/0¢, using Equations (3.12) and (3.13). These would only be the slopes for one
channel, though. In order to get the slopes for all detector channels, this analysis would of
course need to be repeated for the other 49 Mgller channels, the 10 ep channels, and the 16

luminosity monitor channels.
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Figure 3.3: The response of a BPM and a detector channel to a corrector magnet dithering during
one cycle. BPM and detector signals are plotted versus a bit value representing the magnet’s field
strength. The detector channel (mid04) has been normalized to charge as well as to its average
signal size. Dithering can be seen to affect it at the sub-1% level.

3.2.4 Beam Fluctuations Summary

Correcting detector channel asymmetries A; consists of three basic parts, as can be seen
from the plots shown in Figure 3.4. Figure (a) shows the raw asymmetry distribution for
the entire Mpller detector for one run (corresponding to roughly one hour’s worth of data,
or 200 kpairs at 120 Hz).? The data is very clean, so that the distribution appears as a
Gaussian, but the distribution’s width is large, nearly 3000 ppm. Recall from Section 2.7.1
that the entire Mgller detector receives approximately 20 million electrons every pulse. Thus
the width of its asymmetry distribution should be roughly 200 ppm, containing a ~170 ppm
contribution from statistical fluctuations and a ~110 ppm contribution from the electronic
noise in the ADC'’s.

The first step in correcting for the effects of beam fluctuations is to normalize all of
the detector channels’ signals to charge. This removes the ~3000 ppm fluctuations due to
intensity jitter (coming mainly from jitter in the source laser beam). Figure 3.4(b) shows
the Mgller detector asymmetry distribution after charge normalization. Its width has been
greatly reduced to on the order of 300 ppm. This includes a ~200 ppb contribution coming
from energy jitter, a ~100 ppb contribution coming from position jitter, and a ~200 ppb
contribution coming from statistical fluctuations and ADC noise.

The second step in correcting for beam fluctuations is to find the detector slopes d;, by
using either linear regression or beam dithering. Once these have been found, the third step

is to subtract out on a pair-by-pair basis the false asymmetries ;g - AF, i - Az, . .., (g -

2The precise way in which data from different channels are combined will be discussed in Section 3.3.
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Figure 3.4: Example of Mgller detector asymmetry correction procedure. Here the Mgller detector
consists of just the “in” and “mid” rings. Normalizing the detector’s signals to charge and regressing
against beam parameter differences drastically reduces the width of the asymmetry distribution.

Ay’ produced by helicity correlations in the beam parameters E,z,...,y’. Figure 3.4(c)
shows the Mgller detector asymmetry distribution after false asymmetries due to beam
helicity correlations have been subtracted out. The few slightly non-Gaussian tails evident
in Figure (b) have disappeared, and the width is now just over 200 ppm.

Normalizing the detector signals to charge (equivalent to subtracting the charge asym-
metry Ag) and subtracting out false asymmetries on a pair-by-pair basis therefore not
only shifts the mean of the detector asymmetry distribution (to the extent that the beam
asymmetries are non-zero), but drastically reduces its width. There are two main caveats,
however. First, the correction procedure only works for first-order beam effects. Higher or-
der effects are discussed in Section 3.4. Second, this procedure obviously cannot correct for
the electronic noise in the ADC’s. Nevertheless, the procedure works well enough that, after
approximately 200 million pairs, a statistical uncertainty of 200 ppm/ V2 x 108 =~ 14 ppb
should be achievable.
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3.3 Data Weighting

Once the detector slopes @; are known, one can correct for false asymmetries due to helicity

correlations in the beam parameters, in the following way:
A; = Ameas Z i A& (3.14)

Here Aj"°** are the raw, charge-normalized detector asymmetries, and the sum runs over
all beam parameters except charge. This gives a corrected asymmetry A; for every channel
(note the change in nomenclature from that of Section 3.2). All channels must be averaged
in order to form one grand asymmetry for the whole detector. Channel asymmetries are

averaged with so-called channel weights:

N

D (A - wy)

1
A=t ——— (3.15)

D wi
i

where w; is the weight given to channel 7. The choice now becomes how to weight the
various channels? The simplest prescription is to give all channels equal weight, in which
case the formula above becomes A = % >~ A;. This is not the statistical average, however,
since not every detector channel necessarily has the same statistical weight. As mentioned
in the description of the Mgller detector in Section 2.7.1, each channel is sensitive to a
different azimuthal and radial range of the electron flux. Both because the signal flux is
not absolutely uniform over the face of the detector, and because beam motion can cause
the flux to be off from the center of the detector, different channels will see more or less
scattered electrons per pulse. Channels with greater statistics need to be given more weight,
and those with fewer statistics less weight. Since the detector is not precisely gain—matched,
signal height cannot be taken as a strict indicator of a channel’s statistical weight. Hence,
a first—pass analysis is performed in order to obtain the width of each channel’s asymmetry
distribution after beam fluctuations have been removed via Equation (3.14). This width is

inversely proportional to v/ N, where NN, is the number of signal electrons for that particular
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channel. The channel’s statistical weight can therefore be set equal to:

w; = 0%2 (3.16)
where o; is the RMS of the distribution of A;. Using the statistical weights in Equa-
tion (3.15) does a much better job of giving a true sense of the asymmetry in the underlying
physics than the simple % > A; formula.

It is important to recognize that using improper (or, perhaps, “non-optimal”) channel
weights does not change the asymptotic mean of the final asymmetry, but only enlarges the
statistical uncertainty. That is, no matter what weights one chooses to use (as long as their
sum is non-zero, so that Equation (3.15) can be used), given an infinite amount of running
time, the same physics asymmetry will be recovered. In other words, all weighting schemes
converge towards the same final answer, just at different rates. Given a finite amount of
running time, however, it can be very important to pick the weighting scheme that converges
with the fastest rate (i.e., the one that produces the smallest final statistical uncertainty).
Also, given a finite amount of running time, different weighting schemes will yield slightly
different means.

The statistical weights given by Equation (3.16) are only correct if electronic noise
contributions to all channels’ widths are neglected. To recover the minimum statistical
uncertainty, the channel weights must reflect the true statistics in each channel as closely
as possible. Electronic noise can vary from channel to channel and can contain correlations
between channels. By definition, the optimal set of channel weights w; yields the smallest
asymmetry widths allowed by counting statistics, and therefore minimizes the following

covariance matrix:

Mij = (Ai- Aj) — (Aq) - (45)
2 (3.17)
min Z M;j w; w; — Zwi -1 ——> optimal set of w;
i, i
where the brackets denote averaging over all pairs. The (> w; — 1)2 term constrains the
sum of the weights to be close to unity. This minimization procedure is carried out for

every run separately, so that each run has its own set of channel weights.

To appreciate the difference a particular set of weights can make, it is instructive to look
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Figure 3.5: Effects of channel weighting on Mgller asymmetry. Figure (a) uses the equal 1/N
weights. Figure (b) uses the quasi-statistical 1/07? weights. Figure (c) uses the proper statistical
weights given by Equation (3.17). The latter weights give the smallest statistical error as well as
the most Gaussian profile, signified by the smallest 2.

at a sequence of plots as contained in Figure 3.5. Each plot shows the Mgller detector asym-
metry distribution for the same data set (roughly 2 million pairs) but uses different channel
weights to generate the asymmetries. Figure (a) uses the simple A = % > A; (ie., equal
weighting) formula. Figure (b) uses the quasi-statistical weights given by Equation (3.16).
Figure (c) uses the true statisical weights expressed by Equation (3.17), which take elec-
tronics noise contributions into account. By using the correct statistical weights, the RMS
of the distribution has been reduced nearly 8%, from 232 ppm to 214 ppm. Accordingly, the
final statistical error bar is smaller. In addition, the profile has become much more Gaus-
sian, signified by the fact that the y? per degree of freedom has been reduced from 2.0 to
1.1. Only by properly taking into account the various correlations between channels due to
common mode electronics noise can the non-Gaussian tails be largely removed. The mean
of the distribution has also changed somewhat, but this is to be expected. Different channel

weights will tend to move the final answer around within the limits set by the statistics, but
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as discussed before, as more data accumulates these differences become smaller and smaller,
until eventually all weighting schemes return the same final answer.

The full asymmetry analysis is therefore a multi-step procedure requiring three separate
passes over all the data. On the first pass, the detector slopes ; are computed either by
regression or by beam dithering. A new set of slopes is computed either every 10k pairs
(for regression) or every dithering cycle (for beam dithering). On the second pass, these
slopes are used to correct for beam—induced false asymmetries via Equation (3.14). The
corrected channel asymmetries A; are used to calculate the covariance matrix M. At the
end of each run, this matrix is used to generate the channel weights w; that yield the
smallest asymmetry widths. On the third and final pass, these channel weights are used in
conjunction with the detector slopes to compute the asymmetry for the whole detector, as
expressed by Equation (3.15).

For any given detector, this procedure yields a separate asymmetry and statistical error
bar, A+ §A, for every run. These run—by—run asymmetries are combined in order to form

a final grand asymmetry A,y in the following manner:

N

Z (Ar - wy)

Apy = 1 (3.18)

N
> wr
r

Here N is the number of runs in the data set, and w, = (1/6A4,)? is the relative weight
for that particular run. Choosing each run’s weight to be inversely proportional to the
square of its asymmetry’s error bar ends up being equivalent to weighting by the total
number of electrons detected during each run. This, in turn, ensures the smallest statistical
uncertainty on the final grand asymmetry.

This “final” grand asymmetry Ayaw actually requires further modification so that it
can be compared to the Standard Model prediction for the parity violating cross section
asymmetry Apy in Mgller scattering. Namely, normalizations (such as beam polarization)
and physics backgrounds need to be taken into account. The corrections stemming from

these sources are discussed in Section 4.8.
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3.4 Treatment of Systematic Uncertainties

The previous sections described the methods by which beam—induced false asymmetries are
subtracted from the data and the grand asymmetry A,y is obtained. The correction pro-
cedure removes noise caused by beam fluctuations and false asymmetries caused by helicity
correlations in the beam parameters, while the particular weighting scheme is chosen to
yield the smallest statistical uncertainty possible. There remains the possibility, however,
that the correction procedure fails to account for first-order beam effects properly, or that
higher-order beam effects not accounted for by the correction procedure are in fact impor-
tant. The first possibility reduces to the detector slopes obtained by regression and by
beam dithering being somehow wrong, whereas the second possibility reduces to the detec-
tor slopes constituting an incomplete set. Both possibilities need to be addressed, and by
doing so a systematic uncertainty can be ascribed to the asymmetry correction procedure.
This section will not give a final number for this systematic uncertainty (that will actually
be given along with the other results in Chapter 4). Instead, it will present the methods by

which that uncertainty can be ascertained.

3.4.1 First-Order Asymmetry Systematics

That the detector slopes &; are not grossly wrong is attested to by the fact that they con-
sistently succeed in reducing the width of the Mgller asymmetry distribution from typically
300 ppm and above to roughly 200 ppm. If the slopes were wrong, the correction pro-
cedure would not subtract out noise in a coherent manner, meaning that the asymmetry
distribution widths would at best stay the same, and at worst grow bigger, potentially a
good deal bigger. This, then, is the first qualitative assurance one has that the correction
procedure is handling the first order systematics correctly. In order to set a quantitative
limit on how well the first-order correction procedure is working, however, it is necessary to
look at different linear combinations of detector channels, some of which possess heightened
sensitivity to fluctuations in specific beam parameters.

Each ring of the main integrating calorimeter consists of a given number of channels,
each of which gets assigned a different weight. Up until now, the weights have been picked
to reflect the statistics collected by each channel. These weights can be referred to as

“monopole” weights, since the sum of the weights in a given ring is constrained to be nearly
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unity. Using them therefore returns what is basically the “monopole moment” (i.e., the
statistical average) of the detector’s asymmetry data.
In contrast, there are also “dipole” weights, which return the “dipole moments” of
the detector’s asymmetry data, often simply referred to as dipole asymmetries. Dipole

asymmetries are defined in the following manner:

9 o (i — i

X dipole: A, = Z A; sin M (3.19)
Nring i ring
9 o (i —

Y dipole: A, = " 4; cos 2m (i = ivop) (3.20)
Nring i Nring

Here A; is the corrected, charge-normalized asymmetry for channel 7, and 44, is defined to
be the channel number of the “top” of the ring. The dipole asymmetries are calculated for
each ring separately. Note that finding the dipole asymmetries basically just boils down
to using a different set of weights in Equation (3.15), ones that vary sinusoidally around
the azimuth of each ring. However, the sum of the dipole weights is zero, so one cannot
divide by their sum in Equation (3.15). Instead, one simply divides by Nyi,4, the number
of channels in the ring.

To better understand what the dipole asymmetries really mean, consider a beam per-
fectly centered on both the target and the detector. Imagine a beam with no helicity-
correlated differences in any beam parameter, i.e., AE =0, Az =0, ..., Ay’ = 0. Under
these conditions, the signal heights in all of the detector channels in a given ring will tend
towards the same value for both beam helicity states. Consequently, the asymmetry in
each detector channel will tend towards the same value, that given by the physics. Equa-

tions (3.19) and (3.20) will thus return zero. This makes sense, because in this case there is
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Figure 3.6: Example of a vertical dipole asymmetry.
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perfect symmetry in the detector’s asymmetry data. Now imagine that for the left helicity
state, the beam obtains a small vertical displacement, i.e., Ay # 0. The signal sizes in some
of the channels closest to the left-helicity beam will increase, while those directly opposite
will decrease in a similar fashion. This will produce an azimuthally varying asymmetry, as
depicted in Figure 3.6. Using the monopole weights will tend to cancel out these effects, as
larger asymmetries on one side of the detector are compensated for by smaller asymmetries
on the other side. Using the dipole weights, however, will tend to enhance these effects,
uncovering the amplitudes A, and A, of any azimuthal variations in the detectors’ asym-
metries. As will be seen below, this can be useful when studying the systematic uncertainty
associated with the asymmetry correction procedure.

Dipole asymmetries may only become statistically significant on certain timescales. On
short timescales, beam jitter may completely swamp whatever beam systematic is causing
the dipole asymmetry. On long timescales, however, things may tend to average out, thanks
to the periodic systematics reversals performed at the source (see Section 2.2.8). On just
the right timescales (long enough to average out jitter and reveal the systematic effect, but
short enough that no systematics reversals are averaged over), the dipole asymmetries may
become apparent as statistical outliers.

The most relevant timescale for studying such systematics is called the “slug.” A “slug”
is defined as a period of time for which the energy of the beam, the state of the source
half-wave plate, and the state of the asymmetry inverter all remain unchanged. In other
words, a slug is a period of data taken under nominally static conditions. Typically, a slug
lasts only two days, at which point either the energy, the half-wave plate, or the asymmetry
inverter is changed. For illustrative purposes only, a slug plot of the “out” ring’s horizontal

dipole asymmetry A, is given in Figure 3.7. There are many statistical outliers readily
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Figure 3.7: Slug plot of the X dipole asymmetry for the “out” ring, for Run II only.
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apparent, and this is reflected in the very poor x? per degree of freedom of the data.
Note that this figure shows data that has been corrected for beam effects. As such, one
would naively expect there to be no statistically significant asymmetry dipoles, since the
correction procedure should have effectively removed all helicity-correlated systematics on
a channel-by-channel basis. What, then, could be responsible for the statistical outliers?

As it turns out, dipole asymmetries can arise via two different mechanisms:

1. Transverse beam polarization: As mentioned in Section 2.2.8, the spins of the elec-
trons precess as the beam passes through the bend in the BSY. If the energy is not
precisely set to one of the two values that preserves longitudinal polarization (either 45
or 48 GeV), then the beam will acquire a small horizontal polarization component. In
addition, imperfect beam steering through quadrupole magnets in the A-line can re-
sult in small horizontal and vertical polarization components. Transverse polarization
components will create dipole asymmetries through two photon exchange processes,
which are described further in Section 4.8.5. These processes couple horizontal beam
polarization to a vertical dipole asymmetry, and vertical beam polarization to a hor-

izontal dipole asymmetry.

2. Improper beam corrections: If the asymmetry correction procedure is somehow flawed
(e.g., if the detector slopes are wrong due to a BPM malfunction), then it will ef-
fectively leave some of the beam helicity correlations unaccounted for in the data.
These residual helicity correlations can then produce contributions both to the overall

monopole asymmetry as well as to the dipole asymmetries.

The contributions stemming from the first mechanism can be estimated from specific mea-
surements in a straightforward manner, as will be discussed in Section 4.8. Estimating the
extent to which the second mechanism contributes, that is, the uncertainty on the first-order
beam corrections, is a bit trickier. In the end, it relies on a useful (if lucky) feature of the
data, namely, the fact that the data can be neatly divided into two timeslots, each of which
happens to have very different beam systematics.

Regardless of the sizes of the beam systematics which they contain, two independent
subsets of the same overall data set should produce statistically consistent final answers, if
the asymmetry correction procedure works properly. The extent to which the two subsets’

answers disagree, in fact, can be taken as a measure of how well the procedure works. The
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larger the differences in the corrections between the two subsets, and the better the final
agreement, the more the correction procedure can be trusted. The systematic error of a
particular asymmetry correction AA is therefore equal to the following:

A — A

st —
1% order error §(AA) = AL, A4,

L AA (3.21)

where A; and A are the corrected asymmetries of data subsets 1 and 2, respectively, for
a particular combination of detector channels that are especially sensitive to the correction
being tested, and AA; and A A, are the sizes of the corrections themselves. For instance, it
has already been discussed how the horizontal dipole patterns have heightened sensitivity
to helicity correlations in . Hence, one ring’s X dipole will be used to place a limit on
the systematic uncertainty of the Az asymmetry correction. Likewise, one ring’s Y dipole
will be used to place a limit on the systematic uncertainty of the Ay asymmetry correction.
This method of estimating the uncertainties attributable to each of the beam corrections

will be fully exploited in Section 4.4.

3.4.2 Higher-Order Asymmetry Systematics

The method described immediately above only addresses the uncertainties associated with
the first-order beam correction procedure. The two subsets into which the whole data set is
divided turn out to have very large first order corrections (i.e., terms directly proportional
to beam helicity correlations via the detector slopes «;), which completely obscure any
higher order effects there might be. Comparing the final asymmetries for these two data
subsets can therefore place a limit on how well the first-order correction procedure works,
but it cannot yield information as to the significance of higher order systematics. Higher
order systematics could still be responsible for more subtle effects that do not necessarily
scale with those of the first-order beam corrections. It is ostensibly these subtle effects, in
fact, that are responsible for the statistical outliers in the data presented in Figure 3.7.
First of all, the meaning of “higher-order” asymmetry systematics should be clarified.

One can begin by furthering the Taylor expansion of Equation (3.3), including higher order
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terms as one goes along:

ACO) = Aphys
0A

om = Yy =22

A }g: 78 ¢

A0 = Y% 0°A AEAC (3.22)
= T 08o¢

Ameas  —  AO(0) 4 4O(1) 4 A4O(2) 4 ...

The sums always proceed over the beam parameters E, z, y, ', and y’. The O(2) terms
included here can be shown to be small compared to the O(1) terms, since the former are
suppressed by an additional factor of a beam helicity correlation A (typically very small),
and the second-order partial derivatives of the measured asymmetry are no larger than the
first-order ones [100]. However, the formalism in Equation (3.22) does not include all of the
relevant sources of higher order systematics.

One obvious higher order systematic that Equation (3.22) does not include, and which
has already been discussed in Section 2.4.4, is the spot size induced asymmetry. This
effect’s contribution to the final experimental asymmetry will be calculated in Section 4.4.
Perhaps the most significant higher order effects not contained in Equation (3.22), however,
are intra-pulse beam effects. As will be seen below, systematics from such effects basically
stem from the fact that no device in the experiment (no BPM, no toroid, and no detector
channel) is sampled in discrete steps over the length of the beam pulse, with a flash ADC
for example. The experiment uses integrating ADC’s, so that only averages are measured.
Consequently, it is possible that the beam parameters could be changing within a pulse in
such a way that the computed first-order corrections do not correctly account for the actual
false asymmetries observed by the detector.

An example of an intra-pulse beam effect is shown in Figure 3.8. This example shows
all of the necessary ingredients to generate a systematic error in the asymmetry correction
procedure. First, the beam needs to have a time dependence in at least one of its parameters
(. In this case, the beam energy is changing over the course of the pulse. Second, the helicity
correlation in another beam parameter &, not necessarily the same as (, must also have a

time dependence. In this case, AFE grows from 20 keV to 100 keV over the course of the
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Figure 3.8: Example of intra-pulse beam effects. The detector slope a g is assumed to be a function
of energy. Since the pulse energy varies as a function of time, the slope ag/(t) effectively becomes a
function of time. In this case, the false asymmetry observed by the detector, (ag(t) - AE(t)), would
not equal the correction computed, (ag(t)) - (AE(t)).

pulse. Third and lastly, the detector slope a¢ for beam parameter { must itself vary as a
function of . The reason that these conditions create an error in the computed asymmetry
correction can be easily understood by noting that the actual false asymmetry observed in

the detector is equal to the following;:

(-89 = 1 [ ac(c(t) - Ag(o) (3.29

where ((t) is the value of beam parameter ( evaluated at time ¢, A{(¢) is the helicity
correlation in beam parameter £ evaluated at time ¢, and 7 is the total pulse length. Because
ag varies as a function of ¢, and ¢ changes as a function of time, the detector slope g
effectively becomes a function of time, a fact reflected in the above equation when writing
ag (C(t)). Since the experiment only measures the averages of the detector slope and of the
beam helicity correlation over the course of the pulse, an error in the computed correction

will result, owing to the following simple fact:

(g - AL) # (ag) - (AL) (3.24)

The detector actually sees (a - Af), whereas the experiment only measures (a¢) and (AE),
so that one can only use these quantities when computing a correction. Given a scenario
similar to the simple one pictured in Figure 3.8, where both the beam parameter ( and the
helicity correlation A vary linearly over the pulse, and the detector slope oy is assumed
to vary linearly as a function of (, the error in the correction procedure stemming from
intra-pulse beam effects will be exactly equal to the following:

1 Do ‘

higher order error = — 3 (Chead — Ctait) * (Aéhead — A&tait) (3.25)
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where (peqq and (iq; are the values of beam parameter ¢ at the head and tail of the beam
pulse, respectively, and similarly A&peqq and A&yqi are the helicity-correlated differences in
parameter £ at the head and tail of the pulse. In fact, even if a time dependence much
more complicated than that pictured in Figure 3.8 is assumed, one can proceed by dividing
the beam pulse up into an arbitrary number of roughly linear segments, and then using
Equation (3.25) on each of these segments individually, obtaining a separate error for each
segment. These errors can give a feel for the rough size of the effects capable of being
produced, as well as actually be added up (either linearly or in quadrature, depending on
how conservative one wants to be) to get an overall systematic uncertainty estimate for
these important “higher order” effects.

Comparing Equation (3.25) to Equation (3.22), one sees that Equation (3.25) is indeed
“higher order” in the sense that it contains second-order partial derivatives of the measured
asymmetry 0%A/0£0¢. However, it only contains terms first-order in A¢, so it is not higher
order in beam asymmetries. Thus, depending on the exact shape of the beam and on the
functional form of ag, these error terms could potentially be as significant as the O(1) terms
in Equation (3.22).

As will be seen in Section 4.4, the detector slopes and beam shape are such that the
higher-order error terms of Equation (3.25), while non-negligible, do not appear to be larger
than 10 ppb. The evidence for this comes from two sources. First, a thorough characteri-
zation of the beam was performed, from which beam shape data could be gathered [101].
A detailed Monte Carlo simulation of the target and spectrometer system was also used to
ascertain the detector slopes’ dependences on each of the beam parameters. From these two
pieces of information, it is possible to construct “worst-case scenarios” that are useful in
quantifying the likely systematic error stemming from higher order effects. Second, during
Run IIT several of the BPM signals were actually divided into four time slices, which could
then be used in the regression analysis. Analysis of this “sliced” data is ongoing, but so far
it has proven invaluable in testing various hypotheses and providing a fuller sense of the
processes behind the behavior responsible for the statistical outliers evident in Figure 3.7.

The sliced data from Run III, in fact, is largely responsible for the decision to divide
the Mgller detector into a Region I and II. As will be seen in the next chapter, Region II
(the “out” ring) shows evidence for being particularly sensitive to beam parameters that

exhibit strong intra-pulse variation, whereas Region I does not show corresponding behavior.
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Analysis of the sliced data supports the conclusion that it would be better to drop Region 11
from the actual physics analysis, treating it instead as a sensitive monitor for beam effects
(much like the luminosity monitor). In doing so, one loses some statistical power, but this
loss is more than made up for by the accompanying decrease in the systematic uncertainty
due to higher-order beam effects.

Perhaps the most important observation to make regarding higher-order asymmetry
systematics is that such terms will undoubtedly be correlated in some manner to charge.
This is simply because all aspects of the beam, even higher order moments and shapes, are
to some extent affected by the overall beam intensity. For instance, wakefield effects, which
are the mechanism responsible for inducing so-called “banana shapes” in the beam, scale
with beam intensity [81, 102, 103]. Therefore in addition to normalizing the detector data
to beam intensity (equivalent to subtracting out the first-order dependence on the charge
asymmetry), the full asymmetry correction procedure should include regression against
charge. This regression slope ag will absorb at least part of the detector’s dependence
on all higher-order beam systematics, including intra-pulse effects, as well as account for
imperfections in the normalization procedure due to toroid and detector nonlinearities.
The summation over the beam parameters in all equations in this chapter analogous to
Equation (3.14) should therefore include an extra term «ag - Aq.

The “extra” regression against charge can be thought of as an acknowledgement that
the precise dependence of the measured asymmetry on the charge asymmetry is a bit more
complicated then the standard A™¢% = APMS + A, formula would suggest. In reality, the
deviation from this simple formula should be small, corresponding to charge slopes ag on
the order of 1% or less. Indeed, the size of the charge slopes can be taken as an indication of
the relative importance of higher-order beam effects. This approach is more fully explored
in Section 4.4. This, then, offers a third way in which an upper limit can be placed on the
contributions of higher-order asymmetry systematics to the final experimental error bar.

Estimation of systematic uncertainties is always a difficult task with a somewhat ques-
tionable outcome. Estimating the systematic uncertainty in the asymmetry correction pro-
cedure is especially difficult, since so many higher-order beam parameters (mostly relating
to beam shape) went essentially unmeasured during Runs I and I1. Nevertheless, this section
has motivated three independent methods by which an upper limit can be placed on the

effects of higher-order beam systematics. First, the sizes of the effects can be estimated



129

using Equation (3.25). Second, analysis of the “sliced” data in Run IIT can be used to
show the extent to which failure to regress against beam shape information affects the final
answer. Third and lastly, the charge slopes can be used to indicate the relative importance
of higher order effects. While none of these methods is absolutely foolproof by itself, and
all are to some extent limited by statistics, together they provide reasonably convincing

evidence for an upper limit on the beam-related systematic error in Runs I and II.

3.5 Asymmetry Blinding

In order to avoid bias, particularly when applying cuts to the data, the Mgller detector
asymmetries are “blinded” by a random offset whose value remains hidden to all exper-
imenters. This offset is chosen by a pseudo-random algorithm having a flat probability
distribution between a given set of limits. The limits are chosen to be the same order
of magnitude as the Standard Model prediction for the size of the asymmetry. Thus the
random offset can be any number between —200 ppb and 4200 ppb.

Separate blinding offsets are chosen for Runs I and II, in order that each result can be
unblinded independent of the other. The blinding offset is chosen at the beginning of each
data—taking period and kept encrypted until the time of the unblinding. The same offset is
applied to every Mgller detector channel asymmetry for every pair, and is applied during
the “prompt” processing of the data. Prompt processing generates processed pair-wise data
structures from raw event—wise data structures. The raw event-wise data structures only
contain raw signal data from all of the ADC’s (plus other devices such as VSAM’s and
I/O modules), and occur for every beam pulse. The processed pair-wise data structures,
however, contain asymmetry information for all of the signals, and so only occur for every
pulse pair. The raw data structures are useful for quickly looking at the gross characteristics
of the detector and beam (signal heights, signal noise, beam jitter, beam position, etc.),
but are not used for much more than that. The real detector analysis, involving corrections
for beam-related false asymmetries and averaging over many channels and pairs, uses the
processed data structures.

The Mogller detector asymmetries remain blinded until the analysis of the data has been
finalized. That is, all cuts are decided upon while the data is blinded. This avoids taking

the effect a particular cut has on the final answer into account when evaluating the cut’s
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worthiness. As will be seen in Section 4.3, however, there are relatively few cuts, and all
of them are designed to merely guard against hardware failures of one type or another.
Nevertheless, a “blind” analysis helps provide an additional layer of protection against the
possibility of experimental bias.

It should be emphasized that blinding only applies to the Mgller detector. For instance,
beam asymmetries, ep detector asymmetries, luminosity monitor asymmetries, and pion
detector asymmetries all remain unblinded. One reason for this is that all these quantities
only become interesting as they relate to the asymmetry in the Mgller detector. That is,
most of these quantities should be zero (or nearly zero) within the statistical precision of
the measurements, and any departure from zero does not signal “new physics,” but rather
some systematic problem that needs to be identified and addressed. For example, a large
asymmetry in the luminosity monitor, after correcting for beam effects, could signal some
systematic problem with the regression and/or beam dithering procedure. Likewise, the
pion detector asymmetry is only useful as a background measurement that then needs to
be subtracted from the Moller result. The ep asymmetry, on the other hand, is predicted to
be large (on the order of 1 ppm, although more precise predictions are hard to make) and
does in principle contain interesting physics. However, the ep detector was not designed to
make a clean measurement of any one physical parameter. As with the pion detector, it is
useful primarily as a background measurement. Hence, it does not make sense to blind these

quantities, since their knowledge does not threaten to bias the main physics measurement.
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Chapter 4

Experimental Results

4.1 Data Organization

This chapter presents the “unblinded” results from the first two periods of physics data
collection, referred to as Runs I and II, for SLAC experiment E-158. The data can be
organized in a variety of ways, depending on the timescale one wants to probe. On the
shortest timescales, the data are divided into pulse pairs of opposite helicity. Depending on
the beam rate, pulses within a pair are separated by either 17, 34, or (very rarely) 67 ms.
On somewhat longer timescales, the data are grouped into individual runs, the length of a
run being limited primarily by the size of the raw event data structure. In order to keep
the size of each run’s raw data file on disk on the order of a few hundred megabytes, a
run typically lasts one hour. The longest timescale, and one that is particularly relevant
when studying systematics, is the slug, which is the longest grouping that can be made of
consecutive runs taken under nominally identical conditions.

Typically a slug consists of two days’ worth of data, equal to several million pairs. Slugs
can be combined to study systematics even further. For instance, all of the 45 GeV slugs
taken with the source half-wave plate inserted into the source laser’s path, and with the
asymmetry inverter in the +2I position, can be grouped together to study the experiment’s
sensitivity to this particular configuration. The first run (3690) used for the analysis of
Run I data started on 12 March 2002. The last run (5606) ended just after midnight
on 28 May 2002. This period consisted of 24 slugs. The first run (6695) used for the
analysis of Run II data began on 10 October 2002, while the last run (7855) ended on

13 November 2002. There were a total 14 slugs during this period.
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4.2 Polarimetry

As soon as possible after the electron beam is produced, the PITA slopes mcp and mpg
are measured using an ASSET toroid. The voltages of the CP and PS Pockels cells are
then adjusted to null the measured charge asymmetry. Because this charge asymmetry is
proportional to the terms Acp and Apg, which themselves generate linear polarization
components in the source laser beam, nulling the charge asymmetry with the CP and PS
cells should correspond to maximizing the electron beam polarization. To check this, so-
called polarimetry scans are conducted soon after the beam reaches the ESA. Polarimetry
scans involve tweaking the CP and PS cell voltages, one at a time, about their nominal
operating points, while measuring the beam’s polarization using the normal polarimetry
procedure described in Section 2.7.5. The data from a typical scan are shown in Figure 4.1,
yielding a set of Pockels cell voltages that maximizes the beam polarization. Polarimetry
scans must be conducted for each state of the half-wave plate, because the half-wave plate
introduces additional phase shifts that both change the PITA slopes and produce linear
polarization asymmetries at the photocathode. These then need to be compensated for
using Acp and Apg.

Once a particular set of optimal voltages has been obtained for a given state of the
half-wave plate, its values are entered into the source control program. In addition to
interacting with the PMON system to control the helicity of each beam pulse, the source

control program implements the helicity-correlated feedback loops described in Section 2.2.6.

‘ CP Pockels Cell Scan (A/2 out) | ‘ PS Pockels Cell Scan ( A/2 out) |
o -3.65F < 360
> E > C
S F — < E A, =10 +/-41V
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<3758 | < 37F
5 . 8; & -3.75F
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g 39F T 2 39b
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= '4;\\\\\\\\\\\\\\\\\\\\\\\\\\\\ = -4}\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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Figure 4.1: Example Acp and Apg polarimetry scans. These data show that no offsets from the
nominal Pockels cell voltage values are necessary in order to achieve maximal beam polarization.
This is consistent with the fact that nulling the charge asymmetry with Acp and Apg simultaneously
maximizes polarization.
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Figure 4.2: Polarimetry measurements for Runs I and II. Figure (a) shows typical polarimetry
measurements. The broad distribution centered about zero is a “background” run taken with no
target. Figure (b) shows every polarimetry measurement for Runs I and II. The error bars are
dominated by systematics, which are stable over time, and thus they have been reduced for purposes
of clarity. The dotted lines show the average polarization for both runs.

In particular, the phase feedback constantly monitors the asymmetry correction the IA loop
is making to null the charge asymmetry and adjusts Acp and Apg to keep this correction
small. Typically these changes are very small (on the order of tens of volts) and fairly stable
over the course of a slug. Thus, the beam polarization needs only to be monitored at the
beginning and (sometimes) end of a slug.

A typical polarimetry analysis plot is shown in Figure 4.2(a). For redundancy, the
polarimetry procedure is repeated with the foil-saturating magnetic field reversed, as can be
seen from the two Gaussian asymmetry distributions on either side of zero. This redundancy
check verifies that the observed asymmetry is a real physics effect due to polarized Mgller
scattering. A number of factors need to be taken into account in order to convert the
raw asymmetry measured by the polarimeter into an actual measurement of the beam
polarization [104]. First, a dilution factor due to the photonic background is measured by
taking data with the iron foil target in and out, as well as with the spectrometer quadrupoles
on and off. Second, the ep background (both radiative Mott scattering as well as deep
inelastic scattering) needs to be subtracted out. This background is estimated by first
scanning the polarimeter radially inwards and outwards, mapping the area from 15 to
40 cm. These scans are then compared to a GEANT simulation. From these studies the ep
background in the region of the polarimeter is determined to be 8 & 3% [104].

After background subtraction, the beam polarization can be obtained using Equa-

tion (2.21), assuming the target polarization and scattering kinematics are known. The
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beam polarization is found to be very stable throughout Runs I and II, as can be seen from
Figure 4.2(b). The plot in this figure shows all of the polarimetry measurements for boths
Runs I and II. The error on each data point is completely dominated by systematics. The
statistical error is negligible, since a 10 minute polarimetry measurement can easily reduce
the statistical error to less than +1%. The major sources of systematic uncertainty are the
3% uncertainty in the background subtraction procedure, as well as the 3% uncertainty in
the measurement of the absolute target polarization. Several other effects contribute each
at the 1% level.

Most of the polarimetry measurements were made using either the 40 or 50 pym iron
foil, but the 20 and 100 pm foils were also sometimes used. While the polarization values
obtained using the 20, 40, and 50 pm foils all agree with one another, the value obtained
using the 100 pm foil significantly disagrees. This is due to the Helmholtz magnetic field
(~90 gauss) being too low to fully saturate the relatively thick foil. For Run III, a more
powerful supply was installed for the Helmholtz coils, which were then capable of generating
stronger magnetic fields that could fully saturate even the 100 pm foil. Polarization values
obtained using all four foils now agree. Nevertheless, all polarimetry measurements for
both Runs I and IT are given equal weight, and the observed spread due to target thickness
is taken as an additional contribution to the total systematic error. The final results are

therefore:
Run I Run II

Pp = 84.9+4.6(syst) % 84.3 £ 4.6 (syst) %

(4.1)

There is no reason to assume run-to-run (or even slug-to-slug) polarization fluctuations
beyond the limits set by the systematics-dominated error bars. Therefore, these polariza-

tions are taken to be effectively constant for both runs.

4.3 Data Cuts

Data cuts ensure that the data used for physics analysis is of optimal quality. In order
to guard against potential bias, however, no helicity-related quantities are ever involved in
any of the cuts. All cuts are merely designed to guard against hardware failures of one
type or another. There are relatively few cuts, so each will be described below. Along with

its description, the approximate data loss rate resulting from each cut, averaged over both
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Runs I and II, will also be given (in parentheses):

torLevel (2%) Eliminates low-intensity data. Both pulses within a pair must contain at

least 1 x 101 electrons.

diffTrigger (5%) At a very small level, the gain of the toroid electronics depends on the
amount of time since the previous beam pulse (the instantaneous beam rate). The
variable diffTrigger records how much time has elapsed since the previous beam
trigger. If the two pulses in a pair have different diffTrigger values, the toroids
could have had slightly different gains during the time the two pulses occurred. In
this way relatively large charge asymmetries (a hundred times larger than the normal
beam jitter) could be erroneously recorded. It is important to eliminate these spurious
asymmetry measurements by requiring both pulses within a pair to have the same

diffTrigger values.

timeslot (2%) The timeslot variable records the phase of the beam pulse with respect
to the 60 Hz line noise. Normally the helicity algorithm operates such that both pairs
within a pulse occur within the same timeslot. Occasionally, however, a timing glitch
occurs, and a pair will have “mixed timeslot” data, which must be cut in order to

eliminate the substantial 60 Hz line noise.

outliers (3%) A simple version of the GoodBeam cut described below. It monitors all
of the BPM and toroid measurements, looking for pairs in which the two pulses’
measurements differ wildly from one another (more than six times the normal jitter).

It does not look at any helicity-correlated quantity. It also includes the torLevel cut.

nodither (4%) Eliminates data for which the beam was actively being dithered. This

data is only used for the dithering analysis.

— regUsed (10%) This is basically a combination of the five cuts above. Its loss rate

indicates the level at which the above cuts are correlated.

trans90 (0.4%) Transmission through the entire linac and into ESA is normally very good
(losses are typically 1%). Beam instability can cause significant losses due to beam
scraping, so that the ratio of the alcove toroid average signal level to that of the ASSET

toroids falls below 90%. It is essential to eliminate these occurrences, since they could
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Figure 4.3: Examples of beam quality cuts, with the large red asterisks corresponding to data
that is eliminated by each cut. Figure (a) shows an example of a sudden beam centroid “jump”,
eliminated by the GoodBeam cut. Figure (b) shows an example of a klystron cycle, eliminated by
the GoodEnergy cut. Figure (c) shows an example of a sudden BPM phase spike, eliminated by the
GoodPhase cut.
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potentially cause detector asymmetry outliers that are impossible to correct for. This

is a stretched cut (two pairs before and 4 pairs after the bad pair).

toroidAgree (0.1%) All four alcove toroids have resolutions typically in the range of 30
to 70 ppm. They should therefore show agreement roughly at this level. If two alcove
toroids disagree by more than 1000 ppm, this indicates something unusual happened
(i.e., a momentary hardware failure). Neither toroid measurement can be trusted. To

be conservative, then, the pair is thrown out.

GoodBeam (6%) Includes the simple outliers cut above (stretched by £1 pair), but also
implements a more sophisticated cut intended to eliminate severe beam instabilities.
Regions of unusually large beam position jitter or very rapid beam centroid “jumps”
are removed, as such behavior usually indicates poor beam stability and can adversely
affect the data quality. The cut is stretched by 450 pairs for optimal performance.

An example is given in Figure 4.3(a).

GoodEnergy (2%) Occasionally a klystron power supply fails, at which point the beam
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loses roughly 200 MeV of energy. A spare klystron automatically compensates a few
pulses later by turning on. Eventually, the first klystron recovers, resulting in an
excess 200 MeV of energy, at which point the compensating klystron turns off, finally
returning the entire system to the starting configuration. This sequence of events is
commonly referred to as a “klystron cycle,” and is handled automatically by the linac’s
energy feedback loop. Klystron cycles result in sudden beam motions, which adversely
affect data quality. They are easily caught and eliminated by the GoodEnergy cut,
with some overlap with the GoodBeam cut. Like the GoodBeam cut, the GoodEnergy

cut is stretched by £50 pairs. An example of the cut is given in Figure 4.3(b).

GoodPhase (3%) By constantly monitoring the phase of each BPM’s Q-cavity signal (which
should be independent of beam position), a BPM feedback loop ensured that all BPM’s
remained properly phased. Occasionally, large phase adjustments resulted in sudden
spikes to appear in the BPM’s Q-cavity phases. These phase spikes can affect the
BPM’s X and Y measurements, inducing large noise in the readings. A typical spike
signature is shown in Figure 4.3(c), which shows a fast rise time, followed by a slower
decay. The cut is therefore stretched for five pairs before and 50 pairs after the bad

pair.

— GoodAll (8%) A combination of the previous three cuts. This loss rate indicates the

level of correlation between the three cuts.

rate (0.8%) In addition to the diffTrigger cut, which basically ensures that both pulses
in a pair were taken at the same instantaneous rate, there is a cut on the absolute rate.
This rate cut only affects a small portion of the data, namely runs taken between
23 April 2002 and 27 April 2002, when the toroid damping hardware was being tested
and finalized. An error in the DAQ triggering setup means that all non-120 Hz data
in one of the timeslots (timeslot==0) should be rejected for this period. A typical

example from one run (run 4724) during this period is shown in Figure 4.4.

source (0.2%) The CP and PS cell voltages are read out by an I/O module at the source.
The source cut first checks that the Pockels cell voltage data is present in the data
stream, and not missing due to intermittent data packet loss. Secondly, it checks

that the CP cell’s high voltage is good (|Vep| > 2000 V), which ensures good beam
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Figure 4.4: Example of rate cut for run 4724. The histograms show the toroid 2a-3a asymmetry
agreement distributions before and after the rate cut is applied. The cut eliminates the non-
Gaussian outliers in the agreement distribution.

polarization, essential for any asymmetry analysis. Note that the PS cell’s voltage is
always within a few hundred volts of zero. This cut is stretched by £120 pairs, in
order to account for a time delay in the method by which the source voltages are read

out.

dagError (0.2%) Very infrequently the DAQ can suffer a problem whereby its triggers get
mixed up, causing normal beam pulses to be mislabelled as pedestal pulses. Such an
event is called a “mixed-up spill.” The signature for a mixed-up spill is a pedestal
with abnormally high signal levels in some (but not necessarily all) of the ADC’s.
As a precaution, all data is rejected starting 500 pairs before the first detection of a

mixed-up spill.

bpmlinear (1%) If the beam moves beyond +1 mm from cavity center in any of the BPM’s,
those BPM'’s signals may exceed the linearity range of the rf mixer in the BPM elec-
tronics. Nonlinear BPM measurements can produce systematic errors in the asymme-
try correction procedure. The bpmlinear cut eliminates all data for which the beam
has drifted beyond +1 mm in any of the BPM’s, ensuring better than 99% linearity.
This cut is stretched by 2 pairs before and 4 pairs after the offending pair.

mollerAdc (0.04%) This cut removes all pairs for which any Mgller detector ADC is sat-
urated or close to it (greater than 50000 channels or less than —100 channels). The
gains of the Mgller ADC’s were set such that typical signal levels were 20000 to
30000 channels, far below the saturation regime where nonlinearity problems begin

to appear. A highly saturated ADC reads out as negative. A saturated Mgller ADC
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channel signifies a temporary problem with the Mgller electronics, in which case none
of the Mpller ADC data can be trusted, so that the entire pair is removed from the
analysis. This very conservative approach still only results in a negligible amount of

data loss.

mollerAsym (0.07%) Occasionally the DAQ fails to read out a Mgller ADC board, result-
ing in some detector channels with nonsensical values. These can result in nonphysical
channel asymmetries larger than 0.9 (i.e., 2900000 ppm). If this every happens, the
entire pair’s data is likely compromised, and so is rejected. This is not a helicity-

correlated cut, as only the absolute values of asymmetries are monitored.

regSlopes (0.2%) The regression procedure treats both timeslots independently. Occa-
sionally, due to beam drop-outs and rate limits, one timeslot might only have a few
pairs’ worth of data by the time the other timeslot has collected its full 10k pairs,
signifying the end of the regression cycle. Whenever one timeslot has fewer than
100 pairs for a given regression cycle, the data for that timeslot is simply removed.
The errors on the computed slopes would otherwise be much too large for them to be

of any use.

The combined data loss rate for all the above analysis cuts is approximately 18%. The
total number of pairs passing all of the cuts is 186,040,008. Since the cuts are carefully
designed not to involve any helicity-correlated quantities, they do not bias the final answer
in any way. Explicit checks are made that eliminating any particular cut does not signif-
icantly shift the measured asymmetry. By guarding against things like hardware failures
and poor quality beam, however, the cuts do manage to reduce the noise in the asymmetry

measurement, decreasing the final statistical uncertainty.

4.4 Mgller Asymmetry

This section presents the results of the Mpgller detector asymmetry analysis. Unless oth-
erwise stated, linear regression has been used to correct all asymmetries for beam effects,
with beam dithering being used as a means of checking the regression procedure. Further-
more, since the analysis has been finalized, all results presented will be “unblinded,” that

is, without the random offset from zero meant to protect the analysis from experimental
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Figure 4.5: Ring monopole asymmetries for the Mgller detector for Runs I and II, plotted for two
very different timescales. In the left-hand plots, each data point represents approximately 1 hours’
worth of data. The data is completely statistics-limited, and no outliers are observed. In the right-
hand plots, each data point represents approximately 2 days’ worth of data. Systematic effects now
produce noticeable outliers, particular in the “out” ring’s data.

bias. Finally, while beam effects have been corrected for, other corrections and dilutions
due to background fluxes (e.g., photons and ep’s), as well as the normalization due to beam
polarization, have not been taken into account. These will be discussed in Section 4.8.

In Figure 4.5, the asymmetries in each of the rings of the Mgller detector are plotted
separately as a function of time for two very different timescales. First, the results are
given on a run-by-run basis, so that each data point represents approximately one hour’s
worth of data. Second, the results are shown on a slug-by-slug basis. The y? per degree
of freedom of the run-by-run plots are all fairly good at 0.96, 1.03, and 1.30 for the “in”,
“mid”, and “out” rings, respectively. Big problems, however, are revealed by the “out”
monopole slug plot, as evidenced by its reduced x? value of 3.81. This is a good example
of how subtle systematic effects only become visible after integration over long periods of
time, typically days, whereas on shorter timescales of hours, they are completely hidden by

statistical fluctuations.

This example shows that the run-by-run plots are of little use when diagnosing system-
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Figure 4.6: Monopole asymmetry for Mgller “out” ring versus different timescales. The most useful
timescale is that which results in the worse x? per degree of freedom.

atic problems, and they will not be shown in the future. What timescale, then, is best when
assessing the quality of the data and looking for potential systematic effects? That question
is answered by a series as plots as shown in Figure 4.6. This figure again shows the “out”
monopole asymmetry plotted as a function of time, but here the timescale is varied even
further. First the asymmetries are plotted for every ten consecutive runs (being careful
not to mix runs from different slugs). The x? per degree of freedom has risen from the
1.30 it was for the run-by-run plot to 2.36. Next the asymmetries are again plotted versus
slug. The x? per degree of freedom has risen to 3.81. Next the asymmetries are plotted
for roughly every two consecutive slugs, with more slugs sometimes being added in order
to decrease the statistical error bar for a given data point. The x? per degree of freedom
has once more risen, this time to 5.03. Finally, the asymmetries of consecutive slugs are
averaged even further before being plotted. Here each data point represents a little over
one week’s worth of data. The x? per degree of freedom has fallen this time to 2.73, lower
than it was for the slug plot.

Figure 4.6 sheds light on the answer to the question of which is the most appropriate
timescale for the study of systematics. More and more significance is gained by the statistical
outliers as the timescale is increased from runs to slugs and then to groupings of two or
three consecutive slugs, corresponding to several days’ worth of data. However, on longer
timescales such as a week or more, the statistical outliers begin to lose their significance,

implying that some form of systematics cancellation is occurring. Whatever systematics
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Figure 4.7: Ring dipole asymmetries for the Mgller detector for Runs I and II. Dipole asymmetries
are much more sensitive to beam motions and, hence, to beam-related asymmetry systematics.

there are thus seem to be most stable on the timescale of days, and eventually begin to
randomize on the timescale of weeks. In the future, most quantities will therefore be plotted
versus slug number, accepting that, strictly speaking, this timescale may not be the most
sensitive to systematics effects, since the slug plot in Figure 4.6 does not have the maximum
x? per degree of freedom. Still, the slug is probably the most relevant timescale for most
plots, since it is defined to be the longest consecutive period over which the experimental
configuration is stable.

In Figure 4.7, the dipole asymmetries for each of the Mgller detector rings are plotted
versus slug number. These dipole combinations are extremely useful as extra-sensitive
monitors for things like beam systematics, transverse polarization components, and uneven
ep leakage, as was discussed in Section 3.4. Bearing that in mind, it is not unreasonable
that some of the means are non-zero and that some of the plots have a poor x? per degree of
freedom. Both the “in” and “mid” rings of the Mgller detector (constituting Region I) have
X dipole asymmetries more or less consistent with zero, and with few statistical outliers.

This can be taken as evidence, for instance, that the average vertical polarization component
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is small, and that the errors stemming from the large Az and Az’ beam corrections for these
rings are under control. The same rings, however, have significantly non-zero Y dipole
asymmetries, evidence for a small horizontal polarization component due to an improperly
set beam energy. In addition, there are a small number of statistical outliers in the Y dipole
asymmetry plot for the “in” ring, where the x? per degree of freedom is 2.2. This is perhaps
evidence for a small dependence on fluctuating higher-order beam effects, though it could
also simply be due to the beam energy being off by different amounts for different slugs.
In stark contrast to the relatively problem—free Region I, Region II of the Mgller detector
(the “out” ring) shows serious problems. In addition to the average X and Y asymmetry
dipoles for Region II not agreeing with those of Region I, just as the Region IT monopole
does not agree with the Region I monopole, the Region IT dipole asymmetries exhibit wildly
erratic behavior, with many significant statistical outliers. The X and Y dipole slug plots
for Region II have values of x? per degree of freedom equal to 9.3 and 6.2, respectively.
This observation is only one item in the long list of problems associated with Region IT of
the Mgller detector. The three major pieces of evidence pointing towards serious problems

with the “out” ring are summarized below:

1. The values of x? per degree of freedom are poor for the “out” ring, for monopole as
well as dipole slug plots. Either the first-order beam corrections are incorrect, or some
higher-order unmeasured quantity (e.g., intra-pulse beam shape) is affecting the “out”
ring. As will be seen in the next section, the first-order beam corrections appear to
be correct with excellent precision. That means that higher-order beam effects are

probably the cause. That the “out” ring is affected more than either the “in” or “mid”
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Figure 4.8: Typical detector slopes for all three rings of the Mgller detector for Runs I and II
Figure (a) shows the 0A/0xz' slope (where z' is written as dX'), while Figure (b) shows the charge
slope. The charge slope is essentially the deviation (in percent) from perfect linearity. For instance,
ag = 1% is the same as ag = 0.01 ppb/ppb.
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ring is probably related to the fact that the “out” ring is typically five to ten times
more sensitive to beam motions than either the “in” or “mid” ring. This can be seen
in Figure 4.8(a), which shows a typical detector slope, 0A/0x', averaged for every
slug for all three rings. Since the “out” ring is much more sensitive to beam motions,
perhaps it should come as no surprise that it is more susceptible to higher-order beam

effects.

2. The charge slope in the “out” ring is typically ten times bigger than the charge
slopes for the “in” and “mid” rings, as shown in Figure 4.8(b). As discussed in
Section 3.4.2, the charge slope absorbs some of the detector’s dependence on higher-
order beam effects. Charge slopes of 1% or less are acceptable given detector and
toroid nonlinearities, but charge slopes of 10 or 20% as shown by the “out” ring clearly
reveal an inadequacy of the correction procedure. It is also relevant that the period
having the largest charge slope deviations (and with the largest slopes in general),
Slugs 25 to 30, is precisely the same period showing some of the most erratic behavior

in the “out” monopole and dipole plots.

3. Finally, regression against the sliced BPM data in Run III only shifts the overall
asymmetry in Region I by 5 ppb. By contrast, the overall asymmetry in Region II
moves by 20 ppb. Furthermore, all of the problems with the “out” plots having
large values of x? per degree of freedom get fixed by regression against these extra
parameters in Run III. This supports the conclusion that the “out” ring possesses a
large sensitivity to higher-order beam effects such as intra-pulse beam shape. Since
the sliced BPM signals are not available in either Run I or II, and nothing in the
data suggests that the sensitivity of the “out” ring is any less than it is for Run III,
the overall asymmetry of the “out” ring for Runs I and II can only be trusted at the
~20 ppb level. Combining the “out” ring’s data with that of the “in” and “mid” rings
would introduce a significant source of error. It is, therefore, better to drop Region 11
from the actual physics analysis, losing some statistical power, but at the same time

avoiding a substantially increased systematic uncertainty.

From the observations listed above, it seems clear that the “out” ring suffers from a
heightened sensitivity to higher-order beam effects, such as intra-pulse beam shape fluctua-

tions. Errors stemming from such effects are described by Equation (3.25). Referring back
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Figure 4.9: Mgller detector asymmetry versus slug number. Figure (a) shows the raw, uncorrected
values, while Figure (b) shows the values after correction for beam effects, using linear regression.

to this equation, one notices that the size of the error produced is directly proportional to
the derivatives of detector slopes with respect to the various beam parameters. Since the
“out” ring’s slopes are five to ten times larger than those of either the “in” or “mid” ring, it
seems plausible that the derivatives of its slopes should also be relatively large. In fact, they
might even be larger than one would naively expect, due to the complicated interactions of
the “out” ring’s signal (which sits at the very edge of the rapidly diminishing Mgller signal
peak, as shown in Figure 2.27) with collimators in the spectrometer system. Regardless,
the “out” ring’s slope derivatives are large, so that intra-pulse beam shape fluctuations due
to wakefield effects produce errors via Equation (3.25) much larger in Region I than are
produced in Region I. It should be noted that most of the significant statistical outliers in
the slug plots of the “out” ring’s monopole and dipole asymmetries occur during periods
in which the beam energy is 45 GeV. The beam intensity is higher for 45 GeV than it is
for 48 GeV, so that wakefield effects will be worse for 45 GeV data. Consequently, intra-
pulse beam shape fluctuations will also be worse, which is consistent with there being more
statistical outliers.

However it arises, the “out” ring’s heightened sensitivity to higher-order beam effects
means that its data should not be included in the Mgller asymmetry analysis. Hence, in all
future dscussions the “Mpller detector” will refer only to the “in” and “mid” rings (Region I)
of the main integrating calorimeter. Figure 4.9(a) shows the raw, uncorrected Mgller asym-
metries for every slug in Runs I and II, while Figure 4.9(b) shows the asymmetries after
beam fluctuations have been removed using linear regression. Integrated over the entire
course of Runs I and II, first-order beam effects can be seen to influence the Mgller asym-
metry result by —29.1 ppb, effectively increasing the absolute size of the underlying physics

asymmetry by 18% (or nearly two statistical standard deviations). This is inferred from the
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Figure 4.10: Mgller detector asymmetry for various experimental configurations. Figure (a) con-
tains four exclusive data sets, along with the overall result. Figure (b) contains four non-exclusive
data sets, followed by the overall result. For instance, in Figure (b), the “45 GeV” data point
contains both half-wave plate “in” as well as half-wave plate “out” data, while the “A\/2 = in” data
point contains both 45 GeV as well as 48 GeV data.

size of the correction induced by the linear regression procedure. The precision with which
this correction is actually known (that is, the systematic uncertainty in the correction) is
the subject of the next section. The first-order correction procedure also improves the av-
erage resolution of the Moller detector by nearly 50%, reducing it from roughly 410 ppm to
220 ppm (both numbers quoted on a per-pair basis). This in turn reduces the size of the
final statistical uncertainty from nearly 30 ppb before regression to just under 16 ppb after
regression. The correction procedure also improves the x? per degree of freedom from 1.2
to 0.9, removing all of the statistically significant outliers.

One way to judge the overall consistency of the data and to see whether or not there
are any gross systematics affecting it is to look at the plots contained in Figure 4.10. These
plots give the Mpller detector asymmetry for various experimental configurations (e.g., 45 vs.
48 GeV, half-wave plate in vs. out, etc.).! As discussed in Section 2.2.8, each configuration

will in general provide sensitivity to different classes of systematics, so that the asymmetry

!The physics asymmetry flips sign when either the half-wave plate is inserted or the beam energy is
switched to 48 GeV, and here (and everywhere else, unless stated otherwise) these factors of —1 have been
taken into account.



147

theg\r}g —— 6.9+ 450

ZSIGE'CQ e -143.7 £ 415

i\g%lg\r/ o -176.1 + 22.2

All\él%lg\r/ ot -143.4 + 228

Mgllller ] -160.2 + 15.9
|

‘ L ‘ L ‘ L ‘ L L ‘ L ‘ L
-400-300-200-100 0 100 200 300
Asymmetry (ppb)

Figure 4.11: Energy-separated “out” monopole result, compared to that of the Mgller detector.
The 45 GeV “out” ring asymmetry disagrees with the overall Mgller result, whereas the 48 GeV
“out” ring asymmetry shows good agreement. This is evidence for exacerbated wakefield effects at
lower beam energy (corresponding to higher beam intensity).

may potentially change depending on the configuration. For instance, it has already been
noted that the problems in the “out” ring seem to be exacerbated in the 45 GeV data. This
can clearly be seen from the plot contained in Figure 4.11. While the 48 GeV “out” ring
asymmetry agrees with the overall Mgller asymmetry (which is itself invariant with respect
to beam energy), the 45 GeV “out” ring asymmetry shows a clear discrepancy, likely due
to the larger wakefield effects at higher beam intensities.

If the asymmetries for two different experimental configurations disagree, then there is
some unidentified systematic error that is affecting the data. Averaging the data from the
two different configurations will yield some degree of cancellation, though at what level is
unclear. On the other hand, invariance with respect to configuration changes (especially the
energy change) is a good indication that beam-related systematics are under control. This
is not a very powerful test, however, providing an upper limit on systematic contributions
only at the level of the available statistics. A tighter limit can be placed by following the

prescription presented in the next section.

4.5 Beam Asymmetries

Integrated over the course of both Runs I and II, the beam asymmetries average to roughly
370 ppb for charge, 0.4 keV for energy (corresponding to less than 10 ppb of the beam’s

total energy), less than 10 nm for position, and less than 0.35 nrad for angle, as shown
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Figure 4.12: Beam asymmetries plotted against slug number for Runs I and II.

in Figure 4.12. This represents many orders of magnitude improvement over the typical
starting points for beam asymmetries, which are on the order of 1000 ppm for charge, 1 MeV
for energy, and 1 pum for position. As discussed in Section 2.2.7, both passive and active
means of minimization are responsible for these drastic reductions in beam systematics.
In addition to beam control (i.e., controlling and minimizing beam asymmetries through
the source setup), beam monitoring is an absolutely vital part of the experiment. Correcting
for beam asymmetries and removing the noise in the detector caused by natural beam fluc-

tuations relies on the ability to measure the beam parameters accurately and precisely on

‘ Parameter ‘ (A) £ 0 Agpar £ 0 Agyst ‘
Q 367 + 233 + 3 ppb
E 0.4+1.3+0.2 keV
X —1.5£+£4.5+0.4 nm
Y —-9.9+3.3+0.9 nm
X' 0.36 =0.16 £+ 0.02 nrad
Y’ 0.13 £ 0.07 £ 0.02 nrad

Table 4.1: Summary of beam asymmetry data for Runs I and II. Each beam parameter has three
quantities associated with it. The first gives the average right-left asymmetry (or difference), inte-
grated over both Runs I and II. The second gives the statistical uncertainty on the measurement,
which is due purely to beam jitter. The third quantity is the systematic uncertainty, resulting from
the finite device resolution.
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Figure 4.13: Monitors exhibiting heightened sensitivity to one particular beam parameter. For
example, the Mgller monopole is most sensitive to the energy correction, whereas the “mid” ring Y
dipole is most sensitive to the Ay correction.

a pulse-to-pulse basis. Grouping the beam monitoring devices in pairs allows for their pre-
cision to be determined by comparing the measurements of neighboring devices. Table 4.1
summarizes the beam asymmetry data for Runs I and II, showing both how well each quan-
tity’s helicity-correlated asymmetry converges to zero, compared to what is allowable given
the beam jitter, and also how well each asymmetry is measured.

Of course, the results presented in Table 4.1 are impossible to interpret without knowing
the detector slopes ag¢, which parameterize the detector’s overall sensitivity to each beam
parameter. The sizes of the beam asymmetries themselves are not so important, nor how
well they are measured, but rather the size of the false asymmetries they induce in the
Mgller detector, and how well these false asymmetries can be corrected for. Determining
the extent to which the beam corrections work correctly is the subject of this section.

In general, the different moments (i.e., monopole, X dipole, and Y dipole) of each
detector ring’s asymmetry data will possess heightened sensitivity to a particular beam
parameter. For instance, as shown in Figure 4.13(a), the corrections to the Mgller monopole
are often dominated by the energy correction. For the corrections in a given slug to be
dominated by the energy correction requires two things. First, it requires that the energy
slope is significantly non-zero. Second, it implies that the energy difference (integrated over
the slug) is significantly non-zero. The energy slope is stable at the few percent level over
time, but of course the energy differences constantly fluctuate about zero. Hence for any
given slug the Mgller monopole corrections may or may not be dominated by the energy
correction, but often they are. Similarly, as pictured in Figure 4.13(b), the corrections to the

mid ring’s Y dipole are often dominated by the y correction. It is possible to find monitors
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Figure 4.14: Large timeslot differences in the beam asymmetries. The intensity asymmetry (TA)
feedback loop does not null the charge asymmetry for both timeslots separately, only the sum of
both timeslots. Therefore, since each timeslot is sensitive to a different phase of the 60 Hz line noise,
large timeslot differences in the charge asymmetry (and, by extension, all other beam asymmetries)
can arise.

that are mainly sensitive to just one beam parameter in every case, with the hardest case
being that of y'. Perhaps because the Ay’ differences themselves are never too large, it is
rare to find a monitor whose corrections are dominated by the vy’ correction. However, for
at least one slug’s worth of data, the out ring’s Y dipole does have its corrections dominated
by that of 3.

The next step in estimating the uncertainties in each of the corrections is to somehow
divide the data such that the corrections needed by the two subsets are very different. The
two timeslots serve this purpose extremely well, since the beam asymmetries in each of
the timeslots can be radically different, as shown in Figure 4.14. This makes sense, given
that each timeslot is essentially a completely separate experiment, sensitive to a different
phase of the considerable 60 Hz line noise. The helicity-correlated feedback loops are not
programmed to pay attention to timeslot, so they null the total charge asymmetry. The two
timeslots can (and do) therefore have wildly different charge asymmetries. For example,
the charge asymmetry in one timeslot can be +10 ppm, while that in the other might
be —10 ppm. Since every other beam parameter is influenced by charge at some level,
these large timeslot differences in the charge asymmetry will tend to produce large timeslot
differences in the other beam asymmetries as well.

Large timeslot differences in the beam asymmetries, it turns out, are a good thing, for
they allow an accurate estimation of the uncertainty in the correction procedure. Consider
a beam correction AAg in a special monitor (denoted by the asterisk *) that is particularly
sensitive to a given beam parameter £. If the correction AAE1 needed in one timeslot is

radically different than the correction AAZ2 needed in the other timeslot, and if the two
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timeslots’ asymmetries A] and A3 agree after those very different corrections are applied,
then the first-order correction procedure can be said to work very well. As discussed in Sec-
tion 3.4.1, the relative error in the procedure of correcting for helicity-correlated differences
in beam parameter ¢ is equal to:

Al — A

relative error of A¢ correction = ‘m (4.2)

Multiplying this fraction by the size of the correction AA¢ needed by the Mgller detector,

one arrives at the first-order error in the Mgller asymmetry due to the A¢ correction:

Al — A

bsolut f A tion= |———=—1-AA 4.3
absolute error of A¢ correction ‘ AA — AAL ¢ (4.3)

This technically assumes that the total correction in each monitor is large and dominated by
one beam systematic (the one whose correction is being “tested”). If the correction being
tested is statistically insignificant, then the denominator of Equation (4.3) will be small
with respect to its error. Hence the denominator’s fractional error will be large. On the
other hand, if the correction being tested is large, then the denominator’s fractional error
will be negligible compared to that of the numerator (assuming that the correction works
more or less correctly at the 10% level), so that Equation (4.3) will yield an answer with a
sensible error bar.

The other possibility is that the correction being tested is large, but not much larger
than other corrections. In that case, correlations between parameters can arrange it so that
systematic errors cancel each other out, resulting in final asymmetries that may agree despite
individual beam corrections being flawed. While arguably still correct, estimating the first-
order systematic uncertainty using a monitor in which multiple corrections are equally
important should return a less conservative estimate of the error. All of the assumptions
listed here (that the total correction in each monitor is large, dominated by one beam
systematic, and works at least at the 10% level) can be tested by inspecting the result of
Equation (4.2). If the calculated error turns out to be significantly non-zero, then one of
the assumptions is likely faulty.

An example of this procedure can be seen in Figure 4.15(a), which shows the Mpgller

monopole asymmetry, both its raw value as well as its corrected value, plotted versus slug
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Figure 4.15: Significant timeslot differences in the beam corrections can be used to assign an
error to the correction procedure. If a particular monitor’s raw asymmetries for either timeslot
are drastically different, but its corrected asymmetries both agree, then the first-order correction
procedure can be said to function properly.

for both timeslots separately. The Mgller monopole is most sensitive to energy, so it can
be used to obtain a relative uncertainty for the energy correction. There are many slugs
with significant timeslot differences in the energy correction, Slugs 17, 23, 26 and 35 among
them. For all of these slugs, however, the corrected Mgller asymmetries agree very well
with regard to timeslot, despite the fact that drastically different corrections are needed.
For instance, using Equation (4.2), the relative error for Slug 23 can be calculated as the

following;:

(—=0.21 £0.11 ppm) — (—0.003 £ 0.13 ppm)
—2.51 ppm — 2.94 ppm

Slug 23 : 374+32%  (4.4)

Slugs 17, 26, and 35 produce similar estimates of 4.4 +2.3 %, 5.4 +4.6 %, and 4.5 +4.7 %,
respectively. In fact, if this procedure is repeated for all other slugs where the assumptions
can be verified to hold, the error obtained is on average five percent (4.8 £ 1.4 %), as shown

in Figure 4.16(a).
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Figure 4.16: Relative errors of the AE and Ay corrections versus slug.
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‘ Parameter ‘ Monitor ‘ Rel. Error ‘ Correction ‘ Error ‘

Q — — —0.8 ppb —
E Mpoller A 5% 17.7 ppb | 0.89 ppb
X mid A, 1% 1.2 ppb | 0.01 ppb
Y mid A, 3% —5.5 ppb | 0.17 ppb
X' out A, 3% 20.3 ppb | 0.61 ppb
Y’ out A, 6% —3.7 ppb | 0.22 ppb
TOTAL: — 4% 29.2 ppb | 1.1 ppb
Cross-check: | Moller A 5% 29.2 ppb | 1.5 ppb

Table 4.2: Summary of first-order uncertainties in beam corrections. The second column gives
the monitor whose corrections are most often dominated by each parameter. Here A denotes a
monopole asymmetry, A, denotes an X dipole asymmetry, and A, denotes a Y dipole asymmetry.
The fourth column gives each beam parameter’s correction to the Mgller monopole asymmetry. No
error estimate for the charge correction is given, since this is handled by the linearity correction to
be discussed later.

As another example of the procedure, Figure 4.15(b) shows the mid ring’s Y dipole
asymmetry, both its raw and corrected values, plotted versus slug for both timeslots sep-
arately. Using this plot in conjunction with Figure 4.13(b), one can find many slugs in
which the corrections are large, have big timeslot differences, and are dominated by the Ay
correction, Slugs 11, 12, 14, 23, 26, and 35 among them. Slug 35 sets what is by far the

most significant limit:

(0.13 + 0.17 ppm) — (0.16 %+ 0.16 ppm)

0.2 + 2.0 45
5.09 ppm — (—6.83 ppm) - % (4.5)

Slug 35 :

The other slugs where the assumptions can be verified to hold all return errors at the
few percent level. The average uncertainty for the Ay correction for all of these slugs is
calculated to be 3.2 + 1.3 %. The individual slug relative errors for the Ay correction are
shown in Figure 4.16(b).

Table 4.2 summarizes the results of using Equation (4.3) to estimate uncertainties for all
of the beam corrections for the Mgller asymmetry. For each correction, all of the slugs for
which the assumptions underlying the equation can be shown to hold are used to calculate
an average relative error. In general, it makes a difference whether or not the absolute
value is taken in Equation (4.3) before finding the average of all the slugs’ errors. Taking
the absolute value before finding the average tends to overestimate the relative error, but
usually not by much. Since a conservative estimate is desirable, this is the approach used.

Adding all of the individual errors in quadrature, the total uncertainty in the asymmetry
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correction procedure due to first-order beam effects is 1.1 ppb, roughly 4% of the 29.2 ppb
total correction.

As a cross-check, the last row of Table 4.2 shows the error on the total correction ob-
tained by using the Mpller monopole itself as the sensitive monitor. Here the strategy for
picking the “best” slugs is somewhat different. Instead of picking slugs where one correction
dominates, here one wants slugs in which many different corrections are important. As dis-
cussed earlier, natural correlations between beam parameters may actually cause systematic
errors to cancel one another out, returning an estimate for the total error that is perhaps
too small. In this case, however, as one can see by comparing the last two rows of the table,
this method actually returns a relative error of 5%, slightly larger than the 4% obtained
by adding the individual errors up in quadrature. This could simply be due to statistical
fluctuations. To be conservative, this larger 1.5 ppb error is taken, after rounding up, as

the final first-order uncertainty on the asymmetry correction procedure:
total 15t-order beam correction (Runs I & IT) = 29.2 & 2.0 ppb

Unfortunately, the above procedure cannot be used to place a limit on the size of the
error possibly stemming from higher-order beam effects, since its methodology relies on
finding slugs in which the beam contributions to a given monitor’s asymmetry are dominated
by a single first-order systematic whose correction works at the 10% level or better. By
construction, the effects of higher-order asymmetry systematics will be highly suppressed,
so that no meaningful limit on their relative importance can be made. Other methods,
namely those discussed at the end of the last chapter, must be employed.

The first method involves “worst-case scenario” calculations, or applying Equation (3.25)
under various conditions in an effort to reveal the order of magnitude of the effects that
can be reasonably expected to appear in a given monitor. These calculations rely on three
pieces of information: (a) the dependence of the detector slopes on all of the other beam
parameters, (b) intra-pulse variations in the beam parameters (the beam shape), and (c)
intra-pulse variations in the beam parameters’ helicity correlations. The first piece of in-
formation comes from a Monte Carlo simulation, while the other two come from a mix of
direct observations, measurements, and sensible assumptions. For the given inputs, one
finds the effects produced in the “in” and “mid” rings generally bounded by 10 ppb, while

in the “out” ring, because it is so much more sensitive to beam motions, the effects can be
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five to seven times larger. These numbers are for integration over the course of the entire
experiment. On shorter timescales, fluctuations might produce larger effects.

The second method for estimating the experiment’s sensitivity to higher-order beam
effects assumes a single dominating source of higher-order systematics common to the Mgller
detector and the “out” ring [105]. In this case, one can write the measured asymmetries in
each of these monitors as the sum of the actual physics contributions and the contributions

coming from the single dominating systematic asymmetry Agy:

Ameas,l = Aphys,l +a- Asyst (4 6)

Ameas,2 = Aphys,Z +ag- Asyst

where «; relates how sensitive the measured asymmetry A,eqs,; (here i refers to a given
monitor, either the Mgller detector or the “out” ring) is to the systematic asymmetry Agys;.
The coefficients «; may be very different for the two monitors. The physics contributions
Aphys,i may also be different, due to the disparity in size of the ep contributions. Solving
Equation (4.6) for o-Agys, which is defined to be the higher order systematic’s contribution

to the Mgller asymmetry, one finds:

oy

aq - Asyst = [(Ameas,l - Ameas,2) - (Aphys,l - Aphys,?)] : (47)

a1 — a2

It is worth mentioning that any potential “new physics” effects causing Ay;eqs,; to be different
from A, pys,; will completely drop out from this equation, since such effects will contribute to
the Mgller detector and to the “out” ring equally. By somehow measuring (or estimating)
the coefficients q;, or at least their ratio, the systematic contributions to the two monitors
can be obtained.

As a first approximation, one can use the measured charge slopes as estimates for the
coefficients oy and s in Equation (4.7). As long as the real coefficients scale with charge
(which should be the case, assuming the underlying problem is due to intra-pulse variations
in beam shape), one should be able to simply use ag; and agy in Equation (4.7) instead
of a1 and ao. In fact, only the slopes’ relative sizes are important. Referring back to
Figure 4.8(b), one sees that age ~ 10 - ag;. Using a; = 1 and ay = 10 in Equation (4.7)
(the units being unimportant), one finds the higher order systematic’s contribution to the

Mgller asymmetry in Runs I and II to be between +5 and +10 ppb.
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A second method for extracting the ratio of oy to ap works by noise analysis, recognizing
that the more sensitive a monitor is to the underlying systematic, the worse its asymmetry
distribution will look on a slug-by-slug basis. Essentially, then, one uses the x? per degree of
freedom of the two monitors’ slug plots as “proxy” variables for the coefficients a;. Again,
only their ratio is important, so that to a good approximation one may write [105]:

an

an

~ 5Ameas,1
5Ameas,2

where d A;eqs,; is the statistical uncertainty in the final asymmetry measurement for a given
monitor, and Xzo 5, s the x? per degree of freedom of that monitor’s asymmetry slug plot.
Of course, if a monitor’s reduced x? happens to be smaller than unity (which could happen
due to statistical fluctuations), it is still possible to calculate the statistical error on the
ratio | /2|, and one should compute this error regardless. In the end, the results returned
by this method are consistent with those of the previous method, namely that the size of
the higher order systematic’s contribution to the Mgller asymmetry in Runs I and II is
between 7 and 15 ppb.

It is instructive to use these methods to estimate the size of the contribution of higher-
order beam effects to the Mgller asymmetry in Run III, for which time-sliced BPM data
is available. These methods predict that, given a single dominating source of higher-order
systematics, the contribution to the Mgller asymmetry in Run III should be within £15 ppb,
which is a pretty large range. Nevertheless, it is consistent with the actual results, which
show that regression against the extra sliced BPM signals shifts the final Mgller asymmetry
by 5 ppb.

Preliminary Run IIT analysis shows that all of the gross problems discussed previously,
relating mainly to the “out” ring, get fixed by regression against the sliced BPM signals,
giving evidence that it is indeed predominantly intra-pulse beam fluctuations that are re-
sponsible for the statistical outliers in the various monitors’ asymmetry distributions. Given
that this is the case, the main assumption underlying the methods just described for estimat-
ing the contributions of higher-order asymmetry systematics, that there be one dominating
systematic, and that it be intra-pulse beam fluctuations, appears valid. Therefore, the lim-
its arrived at above can be taken as fair approximations, though there is evidence that they

might be overestimations, since the Run III prediction (AA,ys = +15 ppb) is three times
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Figure 4.17: Front and back luminosity monitor asymmetries for different experimental conditions.

the observed shift in the Mgller asymmetry (AA = 5 ppb) when the sliced BPM data is
regressed against. Bearing all this in mind, a best estimate for the uncertainty in the Runs I

and II Mgller asymmetry due to higher-order beam effects is =10 ppb.

4.6 Luminosity Monitor Asymmetry

The luminosity monitor is designed to function primarily as a probe for false asymmetries,
including beam-related ones as well as those induced by electronics cross talk. The physics
asymmetry it is sensitive to is predicted to be small (approximately —10 ppb), at least com-
pared to the statistical precision that is realistically achievable. In addition, the luminosity
monitor is very sensitive to beam motions. These two facts make it an obvious choice as
a false asymmetry probe, as any significant deviation from zero in its asymmetry can be
immediately interpreted as being due to a helicity correlation in some parameter of the
beam.

The asymmetries observed in both rings of the luminosity monitor for Runs I and II
are shown in Figure 4.17. The front and back rings can be seen to agree, the front ring’s
asymmetry being —14.7 £ 9.2 ppb, and the back ring’s asymmetry being —17.2 £ 15.4 ppb.
However, clear indications of systematics are visible in Figure 4.17, particularly in the

45 GeV data. As with the “out” ring, this could be due to increased wakefield effects
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at the higher beam intensity exacerbating higher-order beam effects. Regardless of what is
causing the deviations, the systematics cancellations provided by the half-wave plate toggles
and the energy changes seem to work very well, reflected in the fact that the luminosity
monitor’s final asymmetry agrees with the physics prediction at the 10 ppb level. While this
is indeed an encouraging result, its full implications for the Mgller asymmetry are unclear,
since the two detectors’ signals are very dissimilar. That is, what affects one detector does

not necessarily affect the other, and vice versa.

4.6.1 Spotsize Asymmetry Correction

One systematic source that affects both the luminosity monitor as well as the Mgller de-
tector (though by different amounts) is the so-called spotsize systematic, whereby helicity
correlations in the beam’s spotsize cause target density fluctuations, which in turn in-
duce false asymmetries in the detectors. In order to set a limit on how severely spotsize-
induced target density fluctuations could be affecting the detectors’ asymmetries, coeffi-
cients «, relating how sensitive a given detector’s asymmetry is to right-left differences
in the beam’s spotsize o (as measured by the wire array) are determined empirically
for every run in which the wire array was present in the beamline.? For the Mgller de-
tector, typically |ay| ~ 10 — 20 ppm/mm?, while for the luminosity monitor, typically

2, The average right-left difference in the beam’s spotsize for

|ay| = 30 — 100 ppm/mm
Runs I and II is (2.8 £ 8.2) x 1075 mm?, corresponding to right-left differences in the
beam’s horizontal and vertical widths of 0.8 £ 1.9 nm and 0.1 £ 1.8 nm, respectively. This
should be compared to a typical beam spotsize of 3 —4 mm? (roughly a round spot 2 mm in
diameter). The spotsize asymmetry contribution to the Mgller asymmetry for Runs I and

IT is found to be less than 0.5 ppb. No correction will therefore be made, but the actual

uncertainty contribution will be taken as =1 ppb.

Long exposure to the beam can damage the wire array. This was discovered during Run I, when the wire
array was damaged halfway through the run. In addition, the wire array slightly increases the backgrounds
due to ep and Rutherford scattering, which affects the asymmetry measurement by a few ppb [109]. For these
reasons, it was only inserted for approximately two hours every day during Run II. The spotsize asymmetry
correction is therefore based upon measurements from a subset of the data that should be representative of
the whole.
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4.7 Pedestal Asymmetries

The term “pedestal asymmetries” refers to asymmetries that are present in ADC channels
even in the absence of any beam (i.e., even in pedestal pulse data). Such asymmetries can
be an indication of electronic cross talk either from the source PMON system or from the
CP cell pulsing at 2600 V in (as is necessary) a helicity-correlated manner. It is important
to estimate at what level such false asymmetries could be affecting the Mgller asymmetry
measurement.

In order to set a rigorous limit on the size of potential cross talk in the toroids and
detector channels, a series of runs were taken during the summer between Runs I and II
with every subsystem operating nominally, but with no beam actually being delivered.? For
instance, the source Pockels cells were pulsing at their usual voltages and the PMON system
was duly determining the helicity of each “beam” pulse and broadcasting it to the rest of
the experiment (after its normal one-pulse delay). In addition, dc biases were fed into a few
detector ADC channels and a toroid ADC channel such that their signals (in ADC counts)
were roughly the same size as they were when beam was being delivered. Also, a toroid
calibrator was used to produce a signal (again, of roughly equal size as that generated by
the actual beam) in two of the actual toroids in the alcove.

Roughly 20 million pairs were taken during this period of a few weeks in an effort to
probe for electronics cross talk effects. Because the DAQ system was experiencing some
serious problems that were to be fixed shortly thereafter, the efficiency of the DAQ-related
analysis cuts was quite low for this period, so that less than 10 million pairs were successfully
analyzed. Nevertheless, this data is able to place constraints on pedestal asymmetries in
the detector and toroid electronics at the 3 — 5 ppb level.

In terms of how such asymmetries might potentially influence the Mgller asymmetry,
cancellation due to the half-wave plate and energy flips must be taken into account. When
either the half-wave plate is inserted or the beam energy is 48 GeV, a negative factor
gets applied to all pedestal asymmetries. If equal amounts of data are taken in so-called

“positive” and “negative” states, then all pedestal asymmetries will exactly cancel. The

3Because the electricity rates were prohibitively expensive, the linac could not be operated during this
period. Therefore no beam could be delivered, making it an ideal opportunity for “false asymmetry” runs.
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exact suppression factor f is calculated in the following way:

(1/54.)" — (1/5A_)?
(1/3A4)7 + (1/5A2)°

f= = 0.06 (4.9)
where 0A, and 0A_ are the statistical uncertainties of the Mgller asymmetry for all “posi-
tive” and “negative” data, respectively.* Therefore, a pedestal asymmetry of 3 — 5 ppb will
only contribute to the Mgller asymmetry at the 0.2 — 0.3 ppb level.

Except for the few channels mentioned above into which dc biases were fed, all other
ADC channels were merely monitored during this period for helicity-correlated pedestal
differences, not asymmetries. Most of the channels show pedestal differences smaller than
a millichannel, but some of the BPM ADC channels show pedestal differences as large as a
few millichannels, significant at the two or three—sigma level. In particular, the energy- and
angle-sensitive BPM’s show the biggest effects, presumably because these BPM’s are located
furthest from their associated electronics, so that they are connected to the longest copper
cables. These long copper cables make more sensitive antennas to any helicity-correlated
noise broadcast from the source.

To interpret how helicity-correlated BPM pedestal differences of a few millichannels
might influence the Mgller asymmetry, one must convert ADC channels to real position
units. Using the BPM calibration constants, one finds that a few millichannels corresponds
to a few tenths of a keV in energy, a few nanometers in position, and nearly one hundred
picoradians in angle. Mutliplying these differences in turn by typical Mgller detector slopes
of 10 — 20 ppb/keV for energy, 1 ppb/nm for position, and 10 — 50 ppb/nrad for angle,
one finds their contributions to the Mgller asymmetry to amount to a few ppb in each
case. Again, however, the suppression factor of 0.06 resulting from half-wave plate flips and
energy changes, calculated in Equation (4.9), applies. This means that false asymmetries
due to pedestal differences of a few millichannels in the BPM’s should contribute to the
Mgller asymmetry at the sub-ppb level, which can be neglected.

In fact, it is possible to check this analysis using the actual production dataset. Each
BPM is comprised of three resonant cavities, two cavities sensitive to position (the X and
Y cavities) and one sensitive to charge (the Q cavity, also called the ¢ cavity). If a BPM’s

Q-cavity signal is normalized to charge as measured by a toroid, all beam intensity jitter

“Explicitly, for 45 GeV running, all A/2 = “out” data is “positive” and all A/2 = “in” data is “negative”.
For 48 GeV running, all \/2 = “in” data is “positive” and all A/2 = “out” data is “negative”.
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is removed. The signal therefore becomes a very quiet monitor sensitive only to electronics

noise. The following charge-normalized Q-cavity asymmetries Ag are thus observed:

A :¢R/qR_¢L/qL
" b/t t b/,

(4.10)

where ¢, and ¢, are the BPM Q-cavity signals, and ¢, and ¢, are the beam charge
measurements, for a right and left helicity beam pulse, respectively. If any of the measured
asymmetries A4 are in fact non-zero, then false asymmetries in the electronics can only be
to blame. In addition, if electronics cross talk is indeed producing significant asymmetries
in these BPM Q-cavity signals, they should be stable with respect to both half-wave plate
flips and energy changes.

The analysis of the charge-normalized BPM Q-cavity asymmetries in Runs I and II
yields results that are consistent with those of the special false asymmetry runs conducted
during the summer. Namely, a few BPM’s show evidence for pedestal differences of a few
millichannels, which have already been seen to be capable of producing effects in the Mgller
detector at the few ppb level. After the suppression factor (f = 0.06) due to experimental
configuration changes, however, the size of the effects produced in the Mgller detector gets
reduced to less than one ppb, which can safely be ignored. This method has the advantage
of using the actual physics data to set limits on the contributions to the Mgller asymmetry
coming from helicity-correlated pedestal differences in the BPM’s, yet confirms the results

already obtained.

4.8 Final Experimental Asymmetry

The final step in the asymmetry analysis is to correct for the effects of physics backgrounds,
which may themselves contain physics asymmetries. In general, all backgrounds, whether
they carry an asymmetry or not, will dilute the Mgller asymmetry measurement. As long
as a particular background flux is small relative to the Moller signal (¢prg/P0 = forg S 0.1,
where ¢q is the Mgller signal flux and ¢y, is the background flux), this dilution takes on a
simple form: Ajeqs = Apv/(1 — forg). Additionally, again assuming that the background

flux is relatively small, an asymmetry Az, in the background flux will produce a shift in

the measured asymmetry that is also easily expressed as AAprg = forg - Apkg. The effects
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of a physics background can therefore be corrected for using the following formula:

Ameas - fbkg i Abkg .
L — forg ’

Apv = (AApkg = forg = Abkg) (4.11)

Finally, the polarization and linearity corrections must be taken into account. Both enter in
as scale factors, so that the final formula for determining the actual parity-violating cross-
section asymmetry in Mgller scattering from the measured Mgller detector asymmetry can

be written as:

1 . Ameas - fblcg i Abkg .
€ Pheam 1_fblcg ’

Apy = (AAprg = forg - Abkg) (4.12)

where Ppeqm is the beam polarization and e is the average degree of nonlinearity exhibited
by the detector signals with respect to signal flux. Since many of the background flux mea-
surements will involve extrapolations from very small detector signal levels, it is appropriate

to discuss the linearity correction first.

4.8.1 Linearity Correction

On the one hand, there has already been evidence presented that the average nonlinearity
for the Mgller detector is small. Referring back to Figure 4.8(b), one sees that the charge
slopes ag for the “in” and “mid” rings, which among other things are sensitive to detector
nonlinearities, rarely exceed 1%. In fact, the average charge slope for the Moller detector
for Runs I and II is 0.7%. However, in addition to being sensitive to detector nonlinearities,
the charge slopes are also sensitive to higher-order beam effects, so this cannot be taken
as strong evidence for the absence of nonlinearities. Two more rigorous approaches, each
addressing a different type of nonlinearity, will now be described.

There are two sources of nonlinearity to consider. First, for very high signal fluxes, the
PMT’s can saturate, through either anode or cathode effects. This will produce the type of
nonlinearity that is most relevant for normal conditions. Under special conditions, however,
like those discussed in the following section, the signal flux can be extremely small, less than
1% of its normal strength. In these cases, a second type of nonlinearity, resulting from the
Mgller detector electronics distorting signals of a few millivolts, can arise.

In order to constrain the detector’s linearity under nominal conditions, special runs
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were conducted during Run IT in which the polarized iron foil was inserted (and the liquid
hydrogen target removed) and various “filters” placed over some of the detector PMT’s.
These filters were aluminum foils with either 0.5-inch or 1-inch holes punched through their
centers. Placing these filters over a given PMT would reduce its light level to either 15% or
50% of nominal, therefore simulating varying flux levels. From bench test observations, the
operation of the PMT’s at the lowest light levels (which are still high enough to avoid the
distorting effects of the Mgller electronics, but low enough so that neither cathode nor anode
effects contribute) is known to be very linear. Comparing the asymmetries measured by a
given tube with and without filters therefore yields an indication of the tube’s nonlinearity

at high flux, since:
Ahigh — (1 _ a) _Alow

meas meas
— low
=¢€ Ameas

(4.13)

where APi9h and Alow are the measured asymmetries for high and low flux levels, respec-
tively, and « is the degree of nonlinearity. The iron foil is inserted so that the asymmetries
are large enough to be measured quickly with high relative precision. At the gains at which
the PMT’s were operated for Runs I and II, this analysis reveals the detector linearity to
bee=99+1%.

The procedure described above provides an accurate means of determining the linearity
of the detector in response to small to medium-sized variations in flux (in other words,
flux levels remaining at least 10% of nominal). This is the scale that is relevant for the
actual Mgller asymmetry measurement. However, for neutral background measurements,
the spectrometer quadrupole magnets are turned off, for reasons that will be discussed
below. In addition, thinner targets (or no target at all) are sometimes necessary to use.
Both of these conditions result in a drastically reduced total flux at the detectors, usually
1% of nominal or less. For these special runs, it is important to have a good understanding
of the detector’s response to very small signal fluxes.

Towards this end, a series of runs was taken with various targets (including the normal
LHy target, a 1-cm-thick carbon target, a 4-cm-thick carbon target, the 100 pm iron foil
target, the wire array, and no target at all), thereby subjecting the PMT’s to various levels
of incident flux. In addition, the gains for each of the detector PMT’s were varied, so that
the response of the detector’s electronics could be probed over a wide range of input levels.

Analysis of this data was able to result in the desired linearity calibration down to small
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signal levels, as described more thoroughly in Reference [98]. Using this important low-level
linearity calibration, it is then possible to estimate the size of the neutral background flux

as well as its contribution to the Mgller asymmetry.

4.8.2 Neutral Background Corrections

There are three basic types of neutral backgrounds that might be affecting the measured
Mgller asymmetry at some level: photonic backgrounds, neutral hadronic backgrounds, and
shower-spread effects in the calorimeter. The photonic background can be further divided
into synchrotron, high energy, and low energy photons. Each of these background sources
can be either suppressed or enhanced by changing various conditions of the experiment,
such as the target and the collimator arrangement. Estimates of the backgrounds can be
obtained by studying the detector’s response to these changing conditions, as is described

in the sections below.

Synchrotron Photons

Synchrotron radiation, particularly from the last magnet in the dipole chicane, is mostly
blocked by collimators designed for this purpose. However, multibounce photons may still
present a small background in the Mgller detector. This background is easily measured by
taking data with all targets removed from the beamline. These measurements indicate that
the synchrotron flux is 0.15 + 0.05 % of the Mpgller flux, and is relatively flat with respect
to the azimuth. Therefore its contribution to the dipole asymmetries can be completely
ignored. However, it can still contribute to the overall Mgller asymmetry, if the synchrotron
flux is found to possess an asymmetry itself.

An asymmetry A, in the synchrotron flux can only result from a vertical polarization
component P, in the electron beam. For P, = 100%, the asymmetry produced in the
Mgller detector is estimated to be 1004+ 50 ppm, assuming a cutoff in the detector’s photon
efficiency at 2—3 MeV [85]. It therefore only remains to determine P, and the synchrotron
flux’s contribution to the Mgller asymmetry will be known.

The beam’s vertical polarization component P, is estimated two different ways. One es-
timate comes from the synchrotron light monitor (SLM) analysis, coupled with a knowledge
of the corrector magnet strengths in the A-line. Simulations show that for 100% vertical

polarization, the asymmetry measured by the SLM should be roughly 60 £ 30 ppm, after
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correcting for beam asymmetries, particularly in energy, to which it is very sensitive [85].
The actual asymmetry measured by the SLM is approximately 0.01 & 0.04 ppm for Runs I
and II combined, implying an average vertical polarization of P, = 0.02 £ 0.3 %. This
only addresses what the vertical polarization is at the location of the SLM, which is at the
beginning of the A-line. The polarization at the end of the A-line may actually be slightly
different, due to the effects of imperfect vertical steering through the A-line.

Any net bend in the vertical direction will induce a small vertical polarization compo-
nent, as the beam electrons’ spins precess about the horizontal magnetic field lines steering
the beam. To a good approximation, the induced vertical polarization can be written as a

function of the net vertical bend angle 0, as follows:

Py ~ =100 X Phegm X 0 (4.14)

where Ppegn, is the beam’s longitudinal polarization (roughly 85%). Time histories of the
strengths of the vertical corrector magnets from the SLM to the end of the A-line show that
8, ~ 50 prad, leading towards an estimate for an additional induced vertical polarization of
AP, =~ —0.4%. Adding this to what was measured using the SLM, the vertical polarization
component at the end of the A-line is found to be P, ~ —0.4+0.4 %, where the uncertainty
comes from both the SLM measurement as well as the corrector strength measurements.
This estimate for the vertical polarization component can be compared to what is
obtained from the dipole asymmetry analysis. Dipole asymmetries arise from two main
sources: improper beam corrections and two-photon exchange processes. Assuming the
latter dominates (which for the Moller detector is a fair assumption, though perhaps not
for the “out” ring or the luminosity monitor, since these detectors are so much more sen-
sitive to beam motions, particularly higher-order beam effects), one can use a calibration
of this effect at some known transverse polarization to deduce the transverse polarization
components at a later time, given a set of measured dipole asymmetries. This method is
further explained in Section 4.8.5. A calibration reveals that 85% transverse (horizontal)
beam polarization produces a Y dipole asymmetry of —3.0 £ 0.3 ppm. From Figure 4.7,
one can see that the measured X dipole asymmetry for Runs I and II was —31 £ 17 ppb
(combining the “in” and “mid” rings’ results), implying an average vertical polarization of

Py = —-0.9+0.5 %, which is consistent with the result obtained above.
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Using P, = —1+ 1 % as a conservative estimate for the average vertical polarization
component, the synchrotron flux’s contribution to the Mgller asymmetry can be written as:

AA = Py fsp - Asg (4.15)

SR

= (=0.01 £0.01) x (0.0015 % 0.0005) x (100 % 50 ppm)

= —2=x1ppb (4.16)

Neutral Hadrons

High-energy ep scatters interacting in the calorimeter produce neutrons and other neu-
tral hadrons that can penetrate the shielding encasing the PMT’s, generating significant
responses from the tubes’ cathodes. Since the ep flux possesses an asymmetry that is differ-
ent from that of the Mgller flux, this neutral hadron background flux will dilute and shift
the measured Mgller asymmetry. At the end of Run I, special runs were conducted in which
the detector’s light guides were all covered at their ends with aluminum tape. The tubes
were then referred to as “blinded.” Under these conditions, only neutral hadrons capable of
penetrating to the phototubes’ cathodes could contribute to the detector’s signal, which fell
to 0.6 £ 0.4 % of its normal value. Inserting the special CM8 collimator, which suppresses
the ep flux in the calorimeter by more than an order of magnitude, reduces the sizes of the
blinded PMT signals by a factor of two. Therefore half of the neutral hadron flux hitting the
PMT’s is presumed to be produced by the ep scatters. The asymmetry of the ep flux was
measured during Run I to be approximately —1.5 ppm. Consequently, the neutral hadron

background will cause an asymmetry shift in the Mgller detector equal to:

AA, . = (0.003 £0.002) x (—1.5 ppm) = —5 £ 3 ppb (4.17)

Note that the neutral hadrons produced by the Mgller electrons in the calorimeter will
neither dilute nor shift the measured asymmetry, since they will carry the same asymmetry
as that of the Mgller flux. Also note that this neutral hadron background flux was completely
eliminated for Run II, as the CM8 collimator reduced the total ep flux in the calorimeter

by more than an order of magnitude.
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Shower Spreading

Initially there was concern that, to some extent, electromagnetic showers produced by
charged particle interactions in the ep detector might be leaking into the Mgller detector’s
fibers, specifically those of the “out” ring. By turning the quadrupole magnets off, thereby
more than doubling the flux of particles hitting the ep detector, and monitoring the “out”
ring’s signal size as the special CM8 collimator was inserted and removed (bearing in mind
that this collimator will also suppress the neutral hadron background, which has been
measured independently using the blinded tube data), shower-spread effects from the ep
detector were found to be completely negligible. In fact, the “out” ring is not even being used
for the Mgller asymmetry measurement. Therefore, even if this background did contribute

to the “out” ring’s signal, it would not affect the Mgller result.

Hard and Soft Photons

The last background to consider is that of the non-synchrotron photons. These photons
can be broadly divided into two classes: high-energy (“hard”) and low-energy (“soft”)
photons. Hard photons can be produced by bremsstrahlung processes in the target. The
chances of such photons hitting the detector are greatly reduced by the photon collimators.
Nevertheless, a small background may persist due to multiple scattering off collimator edges.
Photons can also be produced when charged particles (pions or electrons) hit the beampipe
inside the quadrupole magnets and the inside edges of the acceptance collimator. These
photons may be hard or soft, depending on the energy of the charged particle. The special
collimators CM1 — 7 were designed to eliminate the soft photon background produced by
beampipe and collimator “splash.”

In general, sensitivity to photonic backgrounds, both hard and soft, is enhanced by
turning the spectrometer quadrupole magnets off. This “sweeps” the charged particle flux

out of the “in,”

mid,” and “out” rings and almost completely into the ep detector (see
Figure 2.27). In this configuration, any signal observed by the Mgller detector could be
coming either from photons (including synchrotron, hard, and soft photons) or neutral
hadrons. The synchrotron and neutral hadron backgrounds have already been measured.
It therefore remains to separate out the hard photonic background from the soft. This is

done by comparing “quads off” data taken before and after the collimators CM1 — 7 were
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.. Neutral Shower
Run Conditions | Synch. v Hadrons Spread Hard v | Soft ~y
No target Vv X X X X
Blinded tubes X Vv X X X
CM1 — 7 = out,
CMS8 = out v v v v v
CM1 — 7 = in,
CM8 = out v v v v %
CM1 — 7 = in,
CMS8 = in v % X v X
Forg (%) 02+0.1 ] 0.1+0.1 — 04+02] —
AAy, (ppb) 0+3 —2+1 - 3£3 -

Table 4.3: Summary of neutral background corrections for Runs I and II. All runs have the
quadrupole magnets turned off.

installed. After subtracting out the synchrotron and neutral hadronic contributions, one is
left with the separate hard and soft photonic backgrounds.

By studying the “quads off” data taken with and without the special collimators in
place, it was concluded that the hard photon flux is 0.4 £0.2 % that of the Mpller flux, and
that the soft photon flux is negligible. In addition, even with collimators CM1 —7 and CMS8
installed, an asymmetry of roughly 2.5 ppm is observed in the Mgller detector. These large-
asymmetry photons are produced by either pions or electrons colliding with the beampipe
and collimator edges. Part of the hard photon flux is undoubtedly due to bremsstrahlung
processes in the target, and these photons are expected to carry a very small asymmetry,
since they are created by very low Q? processes. To be conservative, however, the entire
hard photon flux is assumed to be due to beampipe and collimator scattering, and to carry
therefore the large asymmetry. Turning the quadrupole magnets off increases the amount
of charged particles hitting the beampipe by a factor of three. Therefore, the correction to

the Mgller asymmetry due to the hard photon flux is estimated to be:

AA., = (0.004 +0.002) x (1/3) x 2.5 ppm = 3 + 3 ppb (4.18)

where the uncertainty has been increased to account for the uncertainty associated with the
exact source of the background.
Table 4.3 summarizes all of the neutral background information. The table displays

the dilution factors fy, for each source, as well as each source’s contribution A4y, to the
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Figure 4.18: Examples of flux profile scans used to calibrate the experiment’s Monte Carlo.
Figure (a) shows an example with the calibration collimator QC1A inserted. Under these condi-
tions, the Mgller and ep fluxes become widely separated, allowing for an accurate determination of
the ep flux. The calibrated Monte Carlo simulation can then be compared to a second scan with
QC1A removed, an example of which is shown in Figure (b).

Cerenkov signal (arb. units)
Cerenkov signal (arb. units)

Mgller asymmetry measurement. In addition, the table shows which run conditions enhance
or suppress each background’s effect on the detector, thereby indicating the means by which

each background can be measured.

4.8.3 ep Correction

The largest background in the Mgller detector, both in terms of its rate as well as its
overall effect on the measured asymmetry, is the ep background. It consists of both elastic
(Mott) scatters as well as inelastic ep scatters. To calculate the ep correction to the Moller
asymmetry, a detailed Monte Carlo simulation [106] of the entire experiment (from the
target to the detector) was calibrated with the data obtained by the profile monitor.? These
data were taken with the calibration collimator (QC1A) inserted. With this collimator in
place, all particles must pass through very small radial apertures (typical openings are
Ar ~ 1 cm, and can be seen in Figure 2.28(a)), resulting in a clean separation of the Mgller
and ep peaks at the detector. Input parameters to the Monte Carlo (e.g., spectrometer
optics, collimator positions, etc.) were tuned until the simulated profiles agreed with the
actual radial and azimuthal flux maps, as shown in Figure 4.18.

The flux maps reveal that approximately 7% of the Mgller detector’s signal is due to the
ep background. Most of this background (about 6% of the total 7%) consists of radiative

Mott’s, that is, elastic ep scattering events that include initial and/or final state radiation.

This custom-built Monte Carlo was checked by a completely independent GEANT-based simulation
[107]. The two codes produced results in good agreement.
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RunI Run IT

Energy fep | AAep fep | AAep

45 GeV | 7.8+0.9 % | —32.6 £ 5.0 ppb || 6.4 +0.8 % | —27.5 +4.1 ppb
48 GeV | 7.0+0.8 % | —34.4+ 5.4 ppb || 6.1 0.6 % | —29.5 = 4.1 ppb

Table 4.4: Summary of the total ep contributions to the Mgller asymmetry for Runs I and II.

Without this “radiative tail”, in fact, the Mott contribution to the Mgller flux would only
be roughly 1%, equal to that of the inelastic ep’s. Though fewer in numbers, the inelastic
ep scatters, because of the large asymmetry they carry, provide a larger contribution to the
Mgller asymmetry than do the radiative Mott’s.

Once the ep flux distributions are known, the contributions to the Mgller asymmetry
can be calculated using the Monte Carlo simulation. The main complication arises from the
fact that the inelastic ep asymmetry is not entirely well known theoretically. On the one
hand, above the so-called “resonance region”, corresponding to W > 3 GeV, where W is
the total four-momentum of the recoiling system, the asymmetry is easy to calculate, using

the following formula [108, 109]:
Aepinet(Q%) = (0.5£0.5) x 107" GeV™2-Q?  (for W > 3 GeV) (4.19)

This formula, valid for the experimental kinematics (Q? < 0.04 GeV?), has a large un-
certainty associated with it, but this uncertainty only affects the correction to the Mgller
asymmetry at the few ppb level. On the other hand, in the resonance region (M, <
W < 3 GeV), the value of the inelastic ep asymmetry for low Q2 is not well known. Its
value must be derived from the ep detector’s asymmetry measured in Run I, which is
—1.433 £ 0.045 (stat) ppm for 45 GeV running and —1.736 4 0.063 (stat) ppm for 48 GeV
running. The reason there are two asymmetries is that the kinematics for the ep scatters
(and thus the average Q2 of those events) is very different depending on the beam energy.
Thus, as will be seen, the ep correction to the Mgller asymmetry is energy-dependent.
The total ep correction to the Mpller asymmetry can be written as the sum of three
terms [109]:
AAep = AAcp clast + DAAep inel,w>3 + AAep inel, v <3 (4.20)

Here A A¢p 145t is the asymmetry contribution of the elastic ep (Mott) scatters; AAep iner, v >3

is the asymmetry contribution of the inelastic ep scatters, for W > 3 GeV; and AAcp inet,w<3
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is the asymmetry contribution of the inelastic ep scatters, for W < 3 GeV. All but the last
term (AAep inel,w<3) are computed entirely by the Monte Carlo simulation. The last term is
extracted from the ep detector’s asymmetry measurement. The total ep contribution to the
Mgller asymmetry, averaged appropriately over 45 GeV and 48 GeV data for both Runs I
and II, is AA.y, = —31 & 5 ppb, where the largest uncertainty comes from the uncertainty
in the constant of proportionality in Equation (4.19). The results are presented in more

detail in Table 4.4.

4.8.4 Pion Correction

Like the ep background, the pion background carries a large asymmetry (on the order of
one ppm). However, its flux is much smaller, so its overall effect on the Mgller asymmetry
will not be as large. In order to determine the pion flux’s contribution AA, to the Mgller
asymmetry, as well as its dilution factor f,, three pieces of information are required. The
first is the actual asymmetry A, carried by the pion flux. This quantity is extracted from
the pion detector’s asymmetry measurement, after correcting it for the dilution presented
by the electron “background”. The amount of electron contamination in the pion detector
is measured by inducing a large asymmetry in the electron signal by inserting the polarized
100 pm iron foil into the beamline and comparing the asymmetry of the pion detector to
that of the Mgller. This analysis reveals that roughly 14% of the pion detector’s signal
comes from the electron flux. The corrected pion asymmetry is then calculated to be
Ar =—1.02 £ 0.33 (stat) ppm.

The second piece of information needed to calculate the pion background’s contribution
to the Mpller asymmetry is the relative pion rate n,. The flux dilution factor f, is related
to the ratio e, of the pion detector’s mean Cerenkov response for pions and electrons by
the following equation: f; = €, - n;. The relative pion rate n, can actually be estimated
from the knowledge of the width of the pion detector’s asymmetry distribution, assuming
the detector’s energy resolution and detection efficiency are known from simulation [94]. A
typical channel’s asymmetry width is 1.35%, leading to an estimate of 0.62% as the relative
pion rate in the Mgller detector [94].

This estimate can be compared to a more direct measurement using the concept of
relative attentuation [94]. The signal level in a pion counter is monitored as increasing

amounts of shielding are placed in front of it. A GEANT simulation is used to calculate,
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given a certain number of electrons and pions at the start, how many will remain after
a given amount of shielding, and what the response of the pion counter will be. The
measured attenuation of the pion counter’s response as a function of shielding length can
then be used to reveal the precise mix of electrons and pions there must have been in front
of the shielding. By this method, the relative number of pions to Mgller electrons in front
of the Mgller detector is found to be n, = 0.63 £ 0.21%.

Finally, the ratio €, of the pion detector’s mean Cerenkov response for pions and elec-
trons must be simulated. Simulations show that e, = 22 £ 15 %. This large uncertainty
dominates the final uncertainty on the pion flux measurement and stems from the fact that
the mean Cerenkov response of the pion detector to pions is quite sensitive to the pions’
average energy, which is only known at the +15 GeV level. Using these three pieces of
information, the dilution factor and asymmetry contribution of the pion flux to the Mgller

asymmetry can be calculated for Runs I and IT as:

fr = €r-ny=(22+£15 %) x (0.63 £ 0.21 %)
0.1+0.1 %

AA;, = fr-Ar; =1(0.001+£0.001) x (—1.02 £ 0.33 ppm)
1£1ppb

%

(4.21)

Q

4.8.5 Transverse Asymmetry Correction

The channel-by-channel asymmetries for the “in” and “mid” rings, averaged over all of
Runs I and I, are shown in Figure 4.19. The asymmetries exhibit clear sinusoidal variations.
In other words, there are non-zero dipole asymmetries: combining the results of the two rings

together, A, = —31 £ 17 ppb and A, = 112 £ 18 ppb. These non-zero dipole asymmetries
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Figure 4.19: Channel-by-channel asymmetries in the “in” and “mid” rings for Runs I and II. For
the “in” ring, the second channel (in01) basically corresponds to the vertical direction, whereas for
the “mid” ring, the fourth channel (mid03) does. In either case, the primary component of the
azimuthal variation in the asymmetry can be interpreted as a vertical dipole asymmetry.
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can arise via two distinct mechanisms, improper beam corrections and two-photon exchange
processes. The latter mechanism dominates in the case of the “in” and “mid” rings.
Transverse asymmetries in Mgller scattering can arise from purely QED processes,
namely those described by one-loop photon diagrams. Interference between the imaginary
part of the two-photon exchange amplitude and the real part of the one-photon exchange
amplitude results is an asymmetry that is directly proportional to the sine of the azimuthal
angle ¢ [110]:
Ap) x s-(pxp) x sin(p) (4.22)

where s is the spin of the incoming electron; p and p’ are the four-momenta of the incoming
and scattered electron, respectively; and ¢ is the azimuthal angle of the scattered electron
around the beam direction, measured from the direction of s. Normally s || p, so that no
dipole asymmetries (as measured by the experiment) result. However, if s acquires trans-
verse polarization components (i.e., P, or P,), dipole asymmetries will become manifest.
Specifically, P, can be seen via Equation (4.22) to produce a vertical dipole asymmetry,
while P, will produce a horizontal dipole asymmetry.

Using the monopole weights, as is done when computing the actual Mgller asymmetry,
obviously suppresses these dipole effects. Given an infinite amount of running time, the
transverse asymmetries will tend to contribute nothing to the Mgller asymmetry. However,
given a finite amount of running time, statistical fluctuations can create a measurable bias
to the Mgller asymmetry. This bias is easily computed, given the average channel weights

w; and X and Y dipole asymmetries, A, and A,:

X dipole bias = A; > w; - sin (¢ — prop) (4.23)
3

Y dipole bias = A, Zwi - cos (i — brop) (4.24)
i

Here the sums run over both the “in” and “mid” rings; ¢; is the phase of channel 7, for a
given ring; and ¢y, is the phase of the top of the ring. Applying these formulae, one arrives
at a total contribution of —6 £ 3 ppb to the Mgller asymmetry for both Runs I and II.

As has been mentioned previously, the transverse asymmetry can be a useful method
for determining transverse polarization components. During Runs I and II, a portion of

the running time was dedicated to running “off-energy” at 43 and 46 GeV. At these en-
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Figure 4.20: Channel-by-channel asymmetries in the “mid” ring for 43 and 46 GeV data. The
azimuthal variations are evidence for a transverse asymmetry caused by two-photon exchange pro-
cesses. Since the horizontal beam polarization changes sign going from 43 GeV to 46 GeV, the
asymmetry is also expected to change sign, as is observed.

ergies, because of the g — 2 spin precession in the A-line, the beam’s polarization should
be 85% horizontal instead of longitudinal (43 GeV and 46 GeV correspond to opposite
horizontal polarizations). Measuring the azimuthal asymmetry variation at these energies
therefore provides a clean calibration of the size of the asymmetry dipoles that the two-
photon exchange processes can produce. The results of the 43 and 46 GeV data are shown
in Figure 4.20. The clear reversal of the behavior with respect to energy, as predicted by
the physics, is evident. The data indicate a total dipole asymmetry of —3.0 £ 0.3 ppm
(divided between a ~1.5 ppm X dipole asymmetry and a ~2.5 ppm Y dipole asymmetry),
which agrees with a calculation that has been made for the experimental conditions [110].
Though it is impossible to induce 85% vertical polarization, the effect would be entirely anal-
ogous. Any dipole asymmetry measurements from the actual physics dataset can therefore

be turned into transverse polarization measurements, using the following formulae:

P, 33.3 + 3.3 %/ppm x A, (4.25)

P, = 33.3+33 %/ppm x A, (4.26)

This is precisely the method used to provide one estimate for the vertical polarization
component Py in Section 4.8.2, which was necessary in order to calculate the synchrotron

flux’s contribution to the Mgller asymmetry.

4.8.6 Final Asymmetry Calculation

All of the corrections and backgrounds discussed above are summarized in Table 4.5. Results

for both Runs I and IT have been combined, using appropriate weighting. For instance, the
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Runs I and II
Correction or Background f (%) | AA (ppb)
Beam corrections (1% order) — —29 £2
Beam corrections (higher order) — 0=£10
Beam spotsize — 0+1
Transverse pol’n — —6+3
ep (elastic + inelastic) 6.8+0.7| —-31£5
High energy photons 0.4+0.2 3+3
Synchrotron photons 0.2+£0.1 —2+1
Neutral hadrons 0.1+0.1 —2+2
Pions 0.1£0.1 1+1
| TOTAL [ 7.6 £0.7 [ —66+12

Table 4.5: Summary of all corrections and background contributions to the measured asymmetry for
Runs I and II. It is important to remember that the +29 ppb correction to the Mgller asymmetry (to
account for the effects of beam asymmetries) has already been taken into account by the regression
procedure.

neutral hadron contribution is different for Runs I and II because of the installation of the
additional collimator CMS8 before Run II. The two runs’ flux measurements f; and fs should

therefore be combined according to each run’s statistical weight:

fi w1+ fa-we
w1 + w2

ftot = (4.27)

where w; and wo are the statistical weights for Runs T and II, equal to 1/6(A4;)? and
1/6(A2)?, respectively, where (A1) and 6(As) are the statistical uncertainties on the two
runs’ asymmetry measurements. The same type of statistical-weighted average is then taken

to find the uncertainty on the combined flux measurement:

6(f1) - w1+ 0(f2) - w

w1 + woy

6(frot) = (4.28)

The same method can be applied to the asymmetry contributions AA. For example, in
Run T the neutral hadron contribution is —5 4+ 3 ppb, while in Run II it is zero. The
statistical uncertainties of the Mgller asymmetry measurements for Runs I and II are 23
and 22 ppb, respectively. Using these numbers in the above equations yields —2 £ 2 ppb as
the average neutral hadron asymmetry contribution. It should be noted that this treatment

is exactly equivalent to computing a separate asymmetry for each run individually, and

then combining the results according to their statistical weight. It should also be noted
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Runs I and I1
Normalization n (%)
Beam polarization 84+5
Linearity 9=+1
| TOTAL | 83+5 |

Table 4.6: Summary of normalization factors for Runs I and II.

that averaging the systematic uncertainties in this way assumes that they are not statistics
limited, which in some cases may be a conservative approach.

For the ep background, further averaging is necessary. This is because, as Table 4.4
shows, the ep flux and its asymmetry are different for the two beam energies (due to the
slightly different kinematics at either energy). Thus, to find the average ep contribution (or
the average ep background flux) for Runs I and II combined, one must average over each
run’s energy subsets separately, in a manner entirely analogous to Equation (4.27) above,
weighting by the statistical uncertainty of each subset’s asymmetry measurement.

Aside from corrections and backgrounds, normalization factors (i.e., beam polarization
and linearity) must be taken into account. These results are summarized in Table 4.6. Using
all of these corrections, dilutions, and normalizations in Equation (4.12), the final result for

the parity-violating asymmetry in Mgller scattering at Q? = 0.026 GeV? is:
Runs I and IT:  Apy(Q? = 0.026 GeV?) = —160 + 21 (stat) + 16 (syst) ppb

Of the total 16 ppb systematic uncertainty, 12 ppb comes from the asymmetry corrections
(mainly the uncertainty due to higher-order beam effects), 10 ppb from the normaliza-
tions (mainly the uncertainty in the beam polarization measurements), and 1 ppb from the
dilutions (mainly from the ep background).

Figure 4.21 shows the parity-violating asymmetry Apy for every slug of data for both
Runs I and II. Only the statistical error bars have been plotted. The true physics sign of
each slug (i.e., the factor of —1 to account for the status of the half-wave plate as well as
for the beam energy) has been suppressed, so that the asymmetry can be seen to alternate
stably over time as the half-wave plate is inserted and removed and as the beam energy is
switched from 45 to 48 GeV. Such a plot reinforces the fact that the asymmetry observed
in the detector is indeed due to a helicity-dependent term in the Mgller scattering cross
section, and not due to, for instance, electronics cross talk. Such a plot is convincing

because changing the beam energy from 45 to 48 GeV, or inserting a half-wave plate in the
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Figure 4.21: Parity-violating cross section asymmetry Apy in Mgller scattering, plotted versus slug
number, for Runs I and II.

path of the laser beam at the source, manages to change, in a very passive way, the beam
helicity at the target, while affecting as little else in the experiment as possible.

When computing the significance of this first observation of parity violation in Mgller
scattering, the true measured asymmetry, that is, the asymmetry given by Equation (4.11),
which takes into account all corrections and dilutions, but not any normalizations, must
be compared to its total uncertainty. The true measured asymmetry is —133 ppb, while
its uncertainty contains the following contributions: 17.2 ppb from statistics, 12.4 ppb
from corrections, and 1.0 ppb from dilutions. The significance of the observation of parity

violation in Mgller scattering is therefore:

Significance of parity violation observation = 133 =630

V17.22 +12.42 + 1.02

Normalizations (i.e., beam polarization and linearity) are necessary in order to extract the
true value of the underlying physics asymmetry, which may then be interpreted in terms of
Standard Model parameters (e.g., the weak mixing angle). This facilitates comparisons to
other experiments and theoretical models, as will be discussed in the next chapter. However,
for merely setting a limit on the signficance of parity violation in the process of Mgller
scattering, the actual value of the underlying physics asymmetry is of no consequence; only

the deviation of the measured asymmetry from zero matters.
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Chapter 5

Conclusions

5.1 Calculation of the Weak Mixing Angle

The preceding chapter gave the final result for the value of the parity-violating asymme-
try Apy in Mpoller scattering, averaged over the specific experimental kinematics. This

asymmetry can be related to a particular value of sin? fy via the following equation [29]:

2v2G rQ? 1+ cos© . 9 2
PV T brem " (31 cos? ©)2 ( sin” 6w (@ )MS)

= AP Firem - (1 — 45in* 0 (Q¥)515)

(5.1)

The factor Fyrem takes into account initial and final state bremsstrahlung radiation
effects [111], whose Feynman diagrams are depicted in Figure 5.1. These effects are similar
to the electroweak radiative corrections discussed in Section 1.2.1, but must be calculated
for the specific experimental spectrometer acceptance values, 13 < E’' < 24 GeV; therefore
they have not been mentioned until now. Likewise, the effective analyzing power AP ab-

sorbs the asymmetry’s dependence on @Q? and © and depends on the precise experimental

€ € e e

+ Inverted + crossed diagrams

Figure 5.1: Bremsstrahlung radiation diagrams modifying the tree level expression for Apy. The
effects of such diagrams must be carefully evaluated for the given experimental kinematics. The
diagrams factorize and largely cancel in the asymmetry ratio [29], which is enhanced by 1% [111].
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(Fbrem> (AP> <Q2> i (COS ®> <01ab>
1.01 £0.01 | —3.34 £ 0.02 ppm | 0.026 GeVZ | —0.2 | 5.7 mrad

Table 5.1: Average kinematic values for Runs I and II. Only the errors on Fpem and AP influence
sin? fyy. The quantity Fprem is obtained from calculating the effects of the diagrams in Figure 5.1,
while AP is obtained from a detailed Monte Carlo simulation of the experiment.

kinematics and geometry. It is calculated using the same detailed Monte Carlo simulation
that is used to determine the ep correction to the Mgller asymmetry [107].

Since the kinematics of the scattered electrons reaching the detector’s acceptance can
change depending on the beam energy, in general both Fy,.q,,, and AP will be different for
the two energy states. The average values for these parameters, along with the average
values for Q?, cos © and 64, to which they correspond, are given in Table 5.1. One can use

the values from this table to find the average value for the weak mixing angle:

(5.2)

sin? y (Q? = 0.026 GeV2)rs = (Apv) )

1

— X ]_ [ S A A
4 < <-AP> : <‘7:brem>
0.2381 = 0.0015 (stat) & 0.0014 (syst)  (5.3)

This low-energy weak mixing angle measurement is shown in Figure 5.2(a), which also shows
the results of the Z-pole measurements as well as those of the NuTeV experiment and the
Boulder atomic parity violation group.

In order to more directly compare the results of the various experiments to one another,
all measurements are evolved to the Z-pole. The contributions of electroweak radiative
corrections, which modify sin? 0y for Q # my, must therefore be removed. The full set
of electroweak radiative corrections relevant for Mgller scattering at Q? ~ 0.03 GeV? has
been calculated in Reference [29]. The dominant corrections, produced by the -Z mixing
diagrams as well as the W loop contribution to the anapole moment, have been discussed
in Section 1.2.1. The net effect of all one-loop radiative corrections is to make the following

substitution for sin? Oy [29]:
sin? Oy (Q? = 0.026 GeV?) = (1.0301 % 0.0025) x sin® Oy (my) + 0.0004 +0.0003  (5.4)

The uncertainty of £0.0025 comes from the interpretation of the eTe~ — hadrons data that
is necessary in order to properly handle the vacuum polarization loops involving quarks.

The uncertainty of £0.0003 comes from the box diagrams involving one photon and one
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Figure 5.2: Run I and II results for sin? @y,. Figure (a) shows the approximate evolution of sin? fyy
as a function of energy, superimposing its precise measurements at different energy scales. Figure (b)
evolves all measurements to the Z-pole for a more direct comparison.

heavy boson, as well as the Z-loop contribution to the anapole moment. In order to evaluate
these diagrams’ contributions, a value for sin? @y must be chosen. Instead of carrying out
a proper analysis in order to determine which value (sin? @y (my) or sin? Oy (0)) to use, the
average value is chosen. The spread is then used to estimate a theoretical uncertainty. Use

of Equation (5.4) thus yields the following value for the weak mixing angle:

sin? Oy (m 7 )5 = 0.2308 = 0.0015 (stat) =+ 0.0015 (syst) (5.5)

Of the £0.0015 systematic uncertainty, £0.0014 comes from experimental systematics (raw
asymmetry corrections, beam polarization, analayzing power, etc.), while £0.0006 comes
from the theoretical uncertainties in the electroweak radiative correction calculations dis-
cussed above. This value for sin? @y (m ) is compared to those of the other measurements
in Figure 5.2(b). The central values and error bars are current as of the time of this writing.
However, the central values and/or error bars of both the NuTeV and Q (Cs) results may
change in the future, due to the reasons discussed in Section 1.2.2. The “World Avg.”
data point reflects the average of all the world’s electroweak data (current as of July 2002),

including the “direct” Z-pole measurements at SLAC and CERN [18].
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‘ Experiment | X+4(X) |
World average (1996), Ref. [36] | 0.13 £0.51
Qw (Cs), Ref. [57] 0.22 +0.29
NuTeV, Ref. [44] —0.60 £ 0.21
This measurement 0.05 + 0.27

‘ New world average ‘ —-0.19+£0.14 ‘

Table 5.2: Limits on the extended oblique corrections parameter X. Off-shell measurements of the
weak mixing angle are particularly sensitive to this parameter, as it is directly proportional to the
“running” of sin® fyy.

5.2 Physics Implications

From Figure 5.2, it is clear that no significant discrepancy from the Standard Model pre-
diction has been observed in this measurement of the parity-violating Mgller scattering
asymmetry. This result can therefore tighten the constraints on many “new physics” mod-
els, including those involving new heavy fermions, new massive gauge bosons, and lepton

compositeness. The impact on each of these constraints will now be discussed.

5.2.1 Oblique Corrections

Current electroweak data, primarily from the ete™ colliders, can tightly constrain the
Peskin—Takeuchi parameters S, T, and U used to parameterize oblique corrections from
new particles with mpe, > myz [35]. However, if the mass constraint is relaxed, so that
Mpew = O(100) GeV, the “extended” oblique corrections parameters V, W, and X need
to be introduced [37]. Low-energy measurements of the weak mixing angle are particularly
sensitive to the X parameter, since its value can be related directly to the running of the

weak mixing angle [29]:

% ~ 1.032 — 0.033X (5.6)
This equation merely states that, according to the Standard Model, sin? §y-(0) should be
roughly 3% larger than sin? @y (mz) (here sin? @y (mz) refers to the world average value
of 0.23113 £ 0.00015). Any deviation from this behavior could signal the influence of new
oblique corrections (modifying the II, 7z vacuum polarization function) whose relevant energy
scale is roughly equal to that of electroweak symmetry-breaking. The ) ~ 0 measurement of

the weak mixing angle reported on here finds that sin? @y rises by 3.040.9 %, corresponding

to the constraint X = 0.05+0.27. This limit can be compared to those obtained from other
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electroweak measurements in Table 5.2.

5.2.2 New Neutral Gauge Bosons

New heavy neutral gauge bosons, collectively referred to as Z’ bosons, are a fairly ubiquitous
feature of many extensions to the Standard Model currently being pursued, including grand
unified theories (GUT’s), supersymmetric theories, models with extra dimensions, and su-
perstring theories. In general, each theory specifies its own definitions for the couplings of
the new Z' boson to the various other particles of the Standard Model, resulting in very
model-dependent predictions for how a given observable will be affected. It is therefore hard
to discuss limits on mz in a general, model-independent fashion. However, the implications
for a “typical” model, namely an Eg-inspired GUT [112], will be discussed below.

The additional U(1) gauge symmetries contained in Fg models require two additional
neutral gauge bosons, Z, and Z,. In general these additional bosons mix with one another
as well as with the Z. However, from the Z-pole measurements constraining the Peskin-
Takeuchi parameters .S and T, the degree of mixing with the Z is known to be very small.
The angle 8 specifies the degree to which the Z, and Z, mix with each other in order to

form the following mass eigenstates [34]:

Zg = Zycosf+ Zysinf3

Zy = —Zysinf+ Zycos 3 (5.7)
T <g< 7
2 -7 72

The symmetries in the theory completely specify the couplings of these eigenstates to the
chiral fermion states of the Standard Model. Parity-violating terms do exist in the interac-

tion Lagrangian. In fact, one finds that Apy is enhanced by the following factor [29]:

147 {::—gzﬁ (cos2 B+ \/gsinﬁ cos B> + 77:222 <sin2 8 — \/gsinﬁcos ﬁ) } (5.8)

!
Zg

By comparing this prediction to the actual measurement of Apy, limits can be placed on
mz, (which is defined to be lighter than mzé). For example, considering the case where
B = 0, the theory becomes effectively like an SO(10) GUT with a single extra Z, boson.

The overall agreement between the Apy measurement and the Standard Model prediction,
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Figure 5.3: Mass exclusion limits for extra neutral gauge bosons. Figure (a) shows how a single
SO(10) Z, would modify Apy. The fact that the measured value agrees with the Standard Model
sets a 95% C.L. limit of mz_ > 430 GeV. Figure (b) shows the resulting mass limits for an Es model,
in which two additional neutral bosons Z, and Z, exist. These mix (the mixing is parameterized
by the angle ) to form the mass eigenstates Zs and Zj (with mz, < mzﬁg). The data curves

correspond to various boson mass fractions mz, /m Zy-

however, imposes the constraint mz, > 430 GeV at the 95% confidence level. This is
illustrated in Figure 5.3(a). The structure of the more general Es theory can be probed
by plotting the 95% confidence level limit on mz, as a function of the mixing angle 3, as
shown in Figure 5.3(b). When constructing such a plot, a value for m z, must be chosen,
subject only to the constraint that mz, <m 7y, The physically observable mass eigenvalues

can be written as:

2 _ 2 2 02 02
mz, = mz + (me mZX) sin® 8 (5.9)
m2, = m?% + (m%Z —m?% )cos?p

z Zy Zy Zy

Requiring mz, to be lighter than m 2 is therefore equal to requiring that my < mgz,, as
long as [#| < m/4. Outside of this range of 3, the relationship between mz and mgz, is
simply reversed. The data curves in Figure 5.3(b) therefore all show cyclic behavior with
period 7/2, with each data curve corresponding to a different boson mass fraction my g /mz,
(or mz, /mz, for [B| > m/4). As was seen before, for |3 — 0 the model becomes more
SO(10)-like, and a limit of 430 GeV for the mass of Z, (which essentially becomes the same
as Zg) is obtained. For 8 # 0, however, the mass limit on m 75 becomes very sensitive to the
particular choice of input parameters. It is interesting to note that for some input values,
two additional neutral gauge bosons are actually more compatible with the data than is
a single extra gauge boson (i.e., “simple” SO(10) is less favorable than Fg). For example,
for mz, & 2mg, and B ~ —m/6, a Zg boson could exist as low as 340 GeV and still not

generate effects that would show up in the present measurement of Apy. Accommodating
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a Zg boson with a mass much lower than this requires a large discrepancy between the
masses of the underlying Z, and Z, bosons and fine-tuning the mixing angle 3.

As with the X parameter analysis, these mass limits should be compared to those
already obtained, either from e™e™ collider data, direct searches at pp colliders, or precision
low-energy measurements. Data from the eTe™ colliders at SLAC and CERN have already
ruled out the possibility of additional light neutral bosons (with masses less than my) of
almost any sort [18]. Also, LEP-IT data places a constraint on the mass of an SO(10) Z,
at roughly 680 GeV [42]. Direct searches at the Tevatron have yielded limits not quite as
high, mz, > 595 GeV [18]. For the LEP-II data, adding a second gauge boson, as in an
Eg model, loosens the constraints somewhat, depending on the particulars of the model.
Two specific models are model 9 (8 = n/2) and model n (tan3 = —4/5/3). This latter
model arises naturally in some superstring theories. The limits from LEP-II are roughly
450 GeV for these two models [42], whereas the Tevatron is able to do better, excluding
new bosons up to 600 GeV [18]. An additional SO(10) Z, would modify Qw (Cs) in the

following manner [34]:

2
Quw ("$Cs) = —T73.10 £ 0.03 + 65.4—Z (5.10)
my,
The difference between the atomic parity violation group’s measurement of Qyy and the
Standard Model prediction is 0.39 £ 0.49, corresponding to an impressive ~750 GeV limit

on the mass of the Z,, if the theoretical uncertainties in the atomic transition amplitudes

are taken at face value.

5.2.3 Lepton Compositeness

Contact interactions provide a general method of characterizing the effects of new high
energy physics on low energy observables [41, 113]. Examples of new high energy physics
include new interactions (such as the additional neutral gauge bosons discussed above) and
fermionic substructure. The possibility of fermionic substructure, in which quarks and lep-
tons, instead of being pointlike as has been assumed until now, are actually bound states
of more fundamental constituents, is an intriguing feature of many possible extensions to
the Standard Model. The energy at which the constituent binding forces become impor-

tant is parameterized by the compositeness scale As;, where f denotes the fermion type
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LEP-I1 Mgller

Model | (nir, nrr; MLr) | Al / Ag (TeV) | AL /AL (TeV)
LL (=L, 0, 0) 71/ 9.0 7.0/ 7.9
RR (0, =1, 0) 70 /8.9 7.9 /7.0
VV | (1, £L, £1) 15.9 / 18.0 iy —
AR | (=1, =1, 7)) 113 /115 — ]

Table 5.3: Limits on the electron-electron compositeness scale A.. for various models. For each
model, two one-sided 95% C.L. lower limits are quoted. The first corresponds to the upper sign
of the model parameters 7, while the second corresponds to the lower sign. The LEP-II limits
come from a combined analysis of the ALEPH, DELPHI, L3 and OPAL Bhabha scattering data at
Vs & 200 GeV [42].

being considered. For example, well below the electron compositeness scale A.., the La-
grangian describing the new physics can be written as an effective four-electron contact

interaction [41]:

47 — — — _
Lee = Wge [ULL (¢L’YM’I/JL)2 + Nrr (¢R7M¢R)2 + 277LR (¢L'Yu7/}L)(¢R7u7/}R)] (5'11)
In most typical models, the helicity amplitudes are defined to be n;; = £1. In particular,
this measurement of Apy is sensitive to the left-handed (LL) and the right-handed (RR)
models, which define (nzr, nrr, nLr) to be (£1, 0, 0) and (0, £1, 0), respectively. The

contact Lagrangian in Equation (5.11) leads to the following modification of sin? fyy:

© (L — MRR)
C7YF\/§ Age

sin? Oy (meas.) — sin? Oy (SM) = (5.12)

where sin? fy-(SM) is the Standard Model prediction for sin®6fy, and sin? Oy (meas.) is
what is actually measured. The limits this measurement sets on A.. for the LL and RR
models are compared in Table 5.3 to those obtained from the LEP-II eTe™ collider data.
(Note that the other low-energy weak mixing angle measurements considered here, namely
the NuTeV experiment and the atomic parity violation experiment, are insensitive to Ag.
The atomic parity violation experiment, however, is sensitive to A.4, which parameterizes
contact interactions between quarks and electrons.) For each model, two lower bounds are
given, corresponding to the two different cases nrrrr) = +1 and nprrry = +1. This
experiment is not sensitive to the vector (VV) or axial-vector (AA) models, since they
define nrr = 1L

This discussion has treated lepton compositeness within the context of an effective four-



186

Fermi contact interaction. In general, this same type of treatment can extend to any new
class of physics involving very high energy scales. For instance, limits on the masses of new
neutral gauge bosons can be obtained following this prescription, as long as one properly
defines the helicity amplitudes (n.r, nrr, nLr) for the particular model being considered
(e.g., SO(10), Eg, etc.) [113]. An example is the brief hint in 2001 of a statistically significant
finite compositeness scale for the AA model. Specifically, a combined analysis of LEP-II
data found that 7.2 < Af (AA) < 15.8 TeV (95% C.L.) [114]. Among other things, this
could have been interpreted as possible evidence for a new gauge boson [115]. However, in
2003, this preliminary result was repudiated by a more complete analysis [42].

Another example of how this formalism can be interpreted in terms of specific models
is for the case of doubly-charged Higgs bosons, which abound in certain extensions of the
Standard Model, such as left-right supersymmetric models [116, 117]. Assuming ma-- is
the mass of the doubly-charged Higgs boson and g is the eeA™~ coupling strength, the

following ratio can be solved for using the AZ limits given above [118]:

92 4
mA__ = (AZe)?

(5.13)

This leads to the limits gze/mz,, < 0.017 G or 0.022 Gp, depending on the helicity
structure one assumes. This is roughly a factor of five times better than the current limits
for gge / mZA__, which come from a variety of sources, including studies of muon decay and
Bhabha scattering data [118]. One can choose to convert these limits into mass limits, if

one assumes a particular value for gee.

5.3 Future Prospects

The results presented here have summarized the analysis of Runs I and II of SLAC
experiment E-158. Since this comprises roughly one-half of the total data set, one may
expect a decrease of approximately 1/4/2 in the statistical uncertainty on the sin? f; mea-
surement. What effect might this increased statistical resolution have on the final weak
mixing angle measurement? This question is explored in Table 5.4, which essentially reit-
erates the discussion at the end of Chapter 4, but in terms of d(sin? fyy/) as well as (Apy).

This table also attempts to project the future likely final uncertainty on sin® 6y, based on
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Runs I & IT Runs I, IT & II1
Source of uncertainty | §(Apv) (ppb) / 6(sin? Oy) | §(Apv) (ppb) / 6(sin? Oy)

Statistics +21 / £0.0015 +14 / +£0.0010
Asymmetry corrections +12 / £0.0011 +9 / £0.0008
Background dilutions +1 / £0.0001 +1 / £0.0001
Normalizations +10 / £0.0007 +6 / +£0.0004
Analyzing power (AP) — ] £0.0001 — / £0.0001
Bremsstrahlung (Fyrem) — / £0.0001 — / £0.0001
Electroweak r.c.’s — / £0.0006 — / £0.0004

\ TOTAL \ +26 / £0.0021 \ +18 / £0.0015

Table 5.4: A listing of the contributions to §(Apy) and d(sin® fy). The right-most column gives the
projected estimates for the final errors, once the Run III data is included. Note that some sources
only contribute to §(sin?fy), not to §(Apy). The dominant sources of uncertainty are shown in
bold. These represent the areas on which similar parity-violating electron scattering experiments
should focus in order to drive §(sin® fy) to the smallest possible value.

the best information available at the present time. One can see that there are four dominant
sources of uncertainty: statistics, asymmetry corrections (primarily the beam corrections),
normalizations (primarily the beam polarization), and the theoretical uncertainty in the
calculation of the electroweak radiative corrections. This latter uncertainty stems from
the handling of the low-energy quark loop contributions, which must be interpreted from
ete” — hadrons data. This uncertainty contributes whenever one tries to compare the
sin? fy measurement to any Standard Model or “new physics” prediction, and so should
be counted as a real uncertainty. It has been noted that, with a more careful analysis, this
uncertainty could be reduced by perhaps a factor of two [29].

Assuming that the reductions in the uncertainties projected in Table 5.4 actually occur,
the discovery reach for the various classes of new physics discussed in the previous sections
can be reevaluated. With a total uncertainty of £0.0015 on the final measurement of
sin? Ay, the X parameter constraint would decrease to X = #0.2. In addition, the extra
7' models would be probed at the 400 — 600 GeV level with 95% confidence, depending on
the specifics of each particular theory and how the mean value of sin? @ moves. Finally,
assuming the mean value of sin? @y remains roughly the same, the 95% C.L. limits on
A} (LL) and A, (LL) would increase to 8.2 and 9.6 TeV, respectively.

This experiment builds upon the work of a long line of fixed target parity-violating elec-
tron scattering experiments, beginning in 1978 with the pioneering efforts of SLAC experi-

ment E-122, whose results were so crucial in establishing the GWS theory as the “standard
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model” of particle physics. That experiment measured the parity-violating asymmetry in
inclusive electron—deuterium scattering, which was of order 100 ppm for the experimental
kinematics, ultimately achieving a precision of roughly 10 ppm [11]. Since then, technology
has improved considerably, so that the current experiment measures an asymmetry of order
100 ppb with a precision of 26 ppb, and a precision of nearly 15 ppb could potentially be
within reach. Future parity-violating electron scattering experiments (see below) plan to
measure O(100) ppb asymmetries with precisions of roughly 10 ppb. This experiment has
clearly shown the feasibility of making such measurements. However, how far can the basic
techniques of such measurements be pushed? Table 5.4 may help to illuminate an answer.

Disregarding the statistical uncertainty in Table 5.4, the only significant uncertain-
ties that remain are those due to asymmetry corrections, normalizations, and electroweak
radiative corrections. The likelihood of the reduction in the theoretical uncertainties con-
nected with the computation of the electroweak radiative corrections for this experiment
has already been commented upon. In any precision parity violation experiment, one-loop
electroweak radiative corrections are essential to compute, and in fact provide one of the
primary motivations for conducting such experiments, allowing the Standard Model to be
tested at a very deep level. Unfortunately, a general discussion of their significance is hin-
dered by the fact that they are naturally very process-specific. As this experiment has
shown, however, even in the theoretically clean leptonic sector the uncertainties associated
with such calculations can be substantial, contributing at the few percent level. Hadronic
processes will tend to suffer from even larger uncertainties. Clearly, then, such uncertainties
must be taken into account if precisions of a few percent are desired.

For any parity-violating electron scattering experiment, beam polarization is likely to
contribute signficantly to the overall uncertainty. In the case of the present experiment, the
uncertainty reduction projected in Table 5.4 amounts to improving the beam polarization
measurement error from 5% to 3%. This should be possible, assuming various refinements in
the polarization analysis procedure. In general, beam polarization measurements are easily
capable of achieving precisions of 3%, and in fact even better precisions are possible [119].
Thus, while beam polarization should be a primary concern for any future parity violation
experiment, it does not present an insurmountable obstacle.

The last issue relates to the asymmetry corrections. The most troublesome asymmetry

corrections for the present experiment are those due to higher-order beam effects, such as
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intra-pulse beam fluctuations. As the preliminary analysis of the Run III data has shown,
splitting the BPM signals into time slices provides valuable information, and should defi-
nitely be considered for any future, high-precision parity violation experiment. Backgrounds
must be considered as they relate to each specific experiment. For the present experiment,
the most significant background is presented by the ep flux. Correcting for the sizeable
asymmetry it induces in the Mgller detector, however, can be accomplished such that the
uncertainty introduced to Apy is only 5 ppb. Each experiment must be designed with the
relevant backgrounds in mind, eliminating or greatly reducing them whenever possible, and
also providing the necessary means (for example, with insertable/removable components)
for sensitive background measurements.

As an example of a future high-precision parity-violating electron scattering experi-
ment, the Queqr collaboration at the Jefferson National Accelerator Facility (JLab) plans
to determine the weak charge of the proton (which is directly proportional to sin?fy)
by measuring the parity-violating asymmetry in elastic ep scattering at a kinematic point
of Q% = 0.03 GeV? [120]. The experiment will use a 6 GeV continuous electron beam
(~180 pA) with ~80% polarization, scattering it off a 35 cm LHy target. The parity-

violating ep asymmetry A%, can be related to sin? @y in the following way [120]:

—GrQ?
A2

AR, = {1 - 4sin? O + Q*B(Q)} (5.14)
where B(Q?) is a nucleon structure function defined in terms of neutron and proton electro-
magnetic and weak form factors. While these quantities have been measured very precisely
by previous JLab experiments [121, 122, 123], nucleon structure is expected to be the largest
source of theoretical uncertainty, contributing to §(sin? fy) at the +0.0002 level. In all, the
experiment plans to measure A%pv ~ —280 ppb to a precision of nearly 10 ppb, correspond-
ing to a low-energy measurement of sin?fy with a total uncertainty of roughly +0.0007.
This very precise, off-shell measurement of the weak mixing angle will search for many of
the same types of new physics as SLAC experiment E-158, such as Z’ bosons and new heavy
particles in vacuum polarization loops. However, since it employs a semi-leptonic process,
in general it will not be sensitive to the exact same types of effective contact interactions.
The compositeness scale A, will be probed at above the TeV level.

A potential 12 GeV upgrade to the JLab beam will make possible two other exciting
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opportunities to test the Standard Model with increasing precision [124]. First, a repeat
of the present parity-violating Mgller scattering experiment, but with subtle differences in
the kinematics, is being considered. The upgraded 12 GeV, ~80% longitudinally polarized,
100 pA continuous electron beam will be scattered off a 75 cm LHs target. A spectrometer
and collimator system will be used to isolate the Mgller scatters from the other back-
grounds. At 12 GeV, and at the optimal kinematic operating point of Q? ~ 0.008 GeV?,
the parity-violating Mgller asymmetry Apy will be four times smaller, roughly 40 ppb, and
the measurement will necessarily be harder and take longer. However, with essentially one
full year of running, it is calculated that Apy could be measured with a precision approach-
ing 1 ppb, corresponding to an uncertainty in sin?fy, of +0.0004. Since this proposed
experiment would observe exactly the same physical process as the present experiment, it
would probe the same types of new physics as discussed in this thesis, though with increased
sensitivity. Electroweak-scale oblique corrections would be probed at four times the present
level, corresponding to §X = +0.05. Extra Z, bosons in the SO(10) model, for instance,
would be sought up to nearly 1 TeV. In fact, a Z, boson with mz, =~ 800 GeV, which is
well outside the current limits set by LEP, would enhance Apy by nearly 10%. A 1 ppb
asymmetry measurement would therefore be able to detect such a particle at the impressive
3.60 level. In addition, electron compositeness would be probed at the 17 TeV level with
95% confidence.

A second proposed experiment for the upgraded 12 GeV JLab facility is called the
DIS-parity experiment [124]. It would measure the parity-violating asymmetry in electron—
deuterium deep inelastic scattering, much like the first neutral current asymmetry mea-
surement, SLAC experiment E-122. However, the upgraded JLab beam would be able to
provide enough luminosity to allow for a 0.6% statistical measurement of the O(100) ppm
asymmetry. Systematic uncertainties would actually dominate the measurement, resulting
in a final precision of roughly 1.3% (compare this to the ~10% measurement of 26 years
ago). This would translate into a +0.0016 measurement of sin? fy;. One of the interesting
aspects of the DIS-parity experiment is that its average Q? of 2.9 GeV? is very nearly equal
to that of the NuTeV experiment. Thus, it offers the possibility of being able to resolve the
30 deviation presently reported by that collaboration.

On the end of the spectrum opposite to the high-precision parity-violating electron scat-

tering experiments described above, there are the collider programs currently in operation
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or else under construction. For example, the Tevatron continues to explore the high energy
frontier in its search for the Higgs particle. In several years, perhaps as soon as 2007, the
Large Hadron Collider (LHC) at CERN is scheduled to begin taking data. The LHC consists
of a ring 8.6 km in diameter. Inside this ring, two counter-rotating 7 TeV proton beams will
collide with each other at four interaction points. The nearly 17-mile-long tunnel will house
thousands of two-in-one superconducting magnets, able to produce the +8 T fields needed
to steer the two proton beams in opposite directions. Many of the physics goals motivating
the construction of the LHC relate to the dynamics of electroweak symmetry-breaking. Is
there indeed a Higgs particle? If so, what is its mass? Does supersymmetry play a role?
The LHC will have a profound impact on the entire field of particle physics, if not by what
it finds, then by precisely what it does not find.

5.4 Summary

From the earliest days of the Standard Model, parity-violating scattering asymmetries have
played a crucial role in determining the precise way in which the elementary particles
interact. The experiment described in this thesis has measured the parity-violating cross-

section asymmetry Apy in Mgller scattering, obtaining the following result:
Apy = —160 £ 21 (stat) = 16 (syst) ppb (5.15)

This is for the the kinematics Q? = 0.026 GeV?2. This result provides the first-ever confirma-
tion of parity-violation in electron—electron interactions at the 6.3 o level. The measurement
can be interpreted in terms of the weak mixing angle in the MS renormalization scheme,

yielding the following results:

sin® Oy (Q% = 0.026 GeV?) = 0.2381 + 0.0015 (stat) 4 0.0014 (syst) (5.16)

sin® Oy (mz) = 0.2308 & 0.0015 (stat) & 0.0015 (syst) (5.17)

These measurements have significant implications for several classes of new physics, includ-
ing new gauge bosons, new heavy fermions, and electron compositeness. In the SO(10) Z,
model, for instance, no evidence for new bosons is found up to approximately 430 GeV at

the 95% confidence level. The constraint on the parameter X describing electroweak-scale
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oblique corrections, including the possibility of new fermions of O(100) GeV mass, is im-
proved by almost a factor of two. In addition, the lepton compositeness parameters Af,
and A_, are probed at the 7 TeV and 8 TeV level, respectively. These limits are found
to be comparable to those provided by the high-energy colliders, and will only grow more
interesting as both the statistical and systematic uncertainties in Equations (5.15) continue
to be reduced by further analysis of additional data.

The techniques used by polarized electron scattering experiments have advanced consid-
erably since their advent in the 1970’s, allowing for the measurement of exceedingly small
asymmetries [125]. This experiment has clearly demonstrated the feasibility of measuring
O(100) ppb asymmetries with precisions approaching 10 ppb. A future generation of ex-
periments proposes to push the technologies even further by working to achieve O(1) ppb
uncertainties on parity-violating asymmetries. Such measurements provide rigorous tests
of the Standard Model at the quantum-loop level and are an essential part of the larger
physics program dedicated towards a fundamental understanding of the inner workings of

nature.
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