
SLAC-R-734           

Direct CP Violation in b → sγ Decays 

Andrew Eichenbaum 

Stanford Linear Accelerator Center 
Stanford University 
Stanford, CA  94309 

SLAC-Report-734                                                                         

Prepared for the Department of Energy 
under contract number DE-AC02-76SF00515 

Printed in the United States of America. Available from the National Technical Information 
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA  22161. 

November 2004

Ph.D. thesis University of Wisconsin - Madison

____________________
*

*



Direct CP Violation in b → sγ Decays

by

Andrew Eichenbaum

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Physics)

at the

University of Wisconsin – Madison

2004



Direct CP Violation in b → sγ Decays

Andrew Eichenbaum

Under the supervision of Professor Richard Prepost

At the University of Wisconsin — Madison

This dissertation describes a measurement of the direct CP asymmetry between inclusive

b → sγ and b → sγ decays. This asymmetry is expected to be less than 0.01 in the Standard

Model, but could be enhanced up to the order of 0.10 by non-Standard Model contributions.

We use a sample of 89 million BB pairs recorded with the BABAR detector at PEP-II,

from which we reconstruct a set of 12 exclusive b → sγ final states containing one charged

or neutral kaon and one to three pions. We measure an asymmetry of ACP (b → sγ) =

0.025 ± 0.050(stat.) ± 0.015(syst.), corresponding to an allowed range of −0.06 < ACP (b →

sγ) < +0.11 at 90% confidence level.
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1 Abstract

This dissertation describes a measurement of the direct CP asymmetry between inclusive

b → sγ and b → sγ decays. This asymmetry is expected to be less than 0.01 in the Standard

Model, but could be enhanced up to the order of 0.10 by non-Standard Model contributions.

We use a sample of 89 million BB pairs recorded with the BABAR detector at PEP-II,

from which we reconstruct a set of 12 exclusive b → sγ final states containing one charged

or neutral kaon and one to three pions. We measure an asymmetry of ACP (b → sγ) =

0.025 ± 0.050(stat.) ± 0.015(syst.), corresponding to an allowed range of −0.06 < ACP (b →

sγ) < +0.11 at 90% confidence level.
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2 Introduction

Why can’t ignorance be painful?

We currently live in a matter-dominated universe. But, 13.7 billion years ago when the

universe was created. there were equal parts of matter and antimatter. If this 50:50 ratio

of matter to antimatter remained constant throughout the lifetime of the universe we would

not be here. So the question remains, ”Where did all the antimatter go?”

Our best answer is that there are tiny differences in the interactions and decays of matter

and antimatter. These differences were first seen in the 1960’s when the decay of the K-

meson was found to be slightly different than that of its antimatter counterpart (K-meson).

This difference is called CP violation (CP is the changing of matter into antimatter and a

simultaneous mirror reflection).

Our current model of how the universe works at the most fundamental level accounts for

the CP violation seen in the K-meson system. Yet the same model does not account for the

matter - antimatter discrepancies we see within our universe.

To further probe this matter - antimatter asymmetry we study the B-meson. Like the K-

meson the B-meson can violate CP , but its heavier mass allows for decay into more possible

CP violating states. Even though the measured CP violation of the B-meson is larger than

that of the K-meson, the violating effects are still quite small. So we need a large number

of B-mesons for our studies.

To get the large number of B-mesons needed, we use the PEP-II storage rings and Stan-

ford Linear Accelerator Center (SLAC) Linac to produce almost 180 million B-mesons for

this analysis. The BABAR detector then identifies these B-mesons decays, and their decay

constituents. From these reconstructed decays we extract the small number of B-mesons

that could violate CP for further study.



2

2.1 The Standard Model

The Standard Model [1] is the best theory that describes (and accurately predicts) the

interactions between fundamental pieces of matter. Specifically, the Standard Model is a

quantum field theory that is consistent with Special Relativity, and describes the strong,

weak, and electromagnetic interactions between quarks and leptons.

Quarks and leptons are the basic building blocks of matter, where the first generation (see

Table 1) dominates the present universe. Second and third generation quarks and leptons

are heavy unstable elementary particles that are only observed in high-energy processes.

Particle Spin Electric Charge Mass (GeV)

First Generation Quarks and Leptons
u (up) 1/2 2/3 0.0015 - 0.0045
d (down) 1/2 -1/3 0.005 - 0.0085
e (electron) 1/2 -1 5.11×10−4

νe (electron neutrino) 1/2 0 < 10−8

Second Generation Quarks and Leptons
c (charm) 1/2 2/3 1.0 - 1.4
s (strange) 1/2 -1/3 0.080 - 0.155
µ (muon) 1/2 -1 0.106
νµ (muon neutrino) 1/2 0 < 2 × 10−4

Third Generation Quarks and Leptons
t (top) 1/2 2/3 174.3 ± 5.1
b (bottom) 1/2 -1/3 4.0 - 4.5
τ (tau) 1/2 -1 1.77
ντ (tau neutrino) 1/2 0 <0.02

Bosons
g (gluon) [strong] 1 0 0
γ (photon)[EM] 1 0 0
W± [weak] 1 ±1 80.4
Z [weak] 1 0 91.2

Table 1: The Standard Model particles and force carriers. For the quarks and leptons the
physical properties [2, 3] are for matter. The antimatter counterparts have opposite charge.
The quarks and leptons have been split up by their generation, going from lightest to heaviest.
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The Standard Model describes the interactions of quarks and leptons by combining the

theory of electroweak interactions (a combination of electromagnetic and weak interactions)

with quantum chromodynamics (strong interactions). Both electroweak and quantum chro-

modynamics are gauge field theories, whose forces are mediated by gauge bosons. These

mediating gauge bosons are listed in Table 1, and briefly described below:

Gluon : Eight species of the gluon mediate the nuclear strong force.

Photon : The photon mediates the electromagnetic interaction. The electromagnetic force

is on the order of 10−3 times the strength of the strong force.

W± and Z : The W and Z bosons mediate the weak nuclear force. The weak force is on

the order of 10−14 times the strength of the strong force.

Finally, all of the elementary particles in Table 1 have masses. In the Standard Model,

particle mass is acquired through the Higgs mechanism. Specifically, the Standard Model

Higgs is a complex scalar field with only one Higgs doublet, and a non-zero vacuum expec-

tation value. The potential of the field is given by (see Figure 1):

V = −µ2|φ|2 + λ|φ|4, (1)

where φ is the Higgs field.

Through the electroweak symmetry breaking1, the gauge bosons and Higgs receive their

masses. At first order, the mass formulae for the bosons and Higgs are given by:

mW =
1

2
gv, mZ =

1

2

√

g + g′v, (2)

1Spontaneous (electroweak) symmetry breaking is where a system that is symmetric goes into a ground
state that is not symmetric. An example of this phenomenon is a ball sitting on top of a hill as in Figure 1.
The ball starts in a symmetric non-stable state, but when the ball starts rolling, symmetry has been broken
since one direction has been chosen.
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Figure 1: Higgs Potential for positive µ2. The rolling ball shows a choice of direction, thus
a breaking of the symmetry of the system in favor of a ground state.

mH =
√

λv.

Where v (' 246GeV [4]) is the Higgs vacuum expectation value. g and g ′ are the electroweak

gauge coupling constants [5] which are related by the Weinberg (weak) angle θW [6]:

tan θW = g′/g, sin2 θW = 1 − m2
W

m2
Z

= 0.2221 ± 0.0004. (3)

The Weinberg angle is a fundamental parameter in the Standard Model that relates the

relative strength of the W and Z electromagnetic couplings.

Equations 2 imply that boson mass is determined by the strength of its interaction with

the Higgs field. Therefore, the measurement of the coupling constants related to the Higgs

boson is an important check of the mass generation in the Standard Model. Specifically,

the formula mH =
√

λv suggest that the mass of the Higgs boson reflects the strength of

electroweak symmetry breaking dynamics.

Although the Higgs boson mass is a free parameter within the Standard Model, we can

determine its upper and lower bounds. The current experimental constraint on the Higgs

mass is 114 < MHiggs < 193GeV (at the 95% confidence limit). The lower limit on the Higgs

mass comes from direct searches at the LEP experiments [7]. While the upper limit comes
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from precision electroweak measurements of the W and Z bosons at SLAC and CERN [8].

It is notable that even though the Standard Model accurately predicts many phenomena

in sub-atomic interactions, we know that the Standard Model is incomplete. One of the

major questions is, “Why are the strengths of the fundamental forces so different?” We

know that the coupling constants of the strong, weak, and electromagnetic forces change

with the energy at which scale they are measured. We also think that at the time of the

Big Bang, all forces had the same strength. Yet when we run these coupling constants (by

extrapolating current knowledge of the coupling constants to higher energies) we see that

they do not unite (see Figure 2).

Figure 2: The running coupling constants with (right) and without (left) SUSY.

The shortcomings of the Standard Model are described as the Hierarchy Problem, and

comes about from radiative corrections to mass at high energies [4]. There are a number of



6

extensions to the Standard Model that solve the Hierarchy Problem. Three of these solutions

are:

Technicolor : Technicolor models are GUT theories which do not have a scalar Higgs

field. Instead, they have a larger number of fermion fields than the Standard Model.

This larger group is spontaneously broken down to the Standard Model as fermion

condensates form.

Supersymmetry : Supersymmetry is a symmetry that relates bosons and fermions. In

supersymmetric theories, every fundamental fermion has a superpartner that is a boson,

and vice versa.

Superstring Theory : Superstring theory is an attempt to explain all of the particles and

fundamental forces of nature in one theory by modeling them as vibrations of tiny

supersymmetric strings.

For the rest of the paper we will only concentrate on Supersymmetric extensions to the

Standard Model.

2.2 Supersymmetric Extensions to the Standard Model

In SUSY, all fundamental particles have superpartners. For each fermion, there is a spin

zero superpartner, and for each force-carrying boson, there is a spin 1/2 superpartner.

In SUSY there is no Hierarchy Problem. The divergence in scalar mass renormalization

that is present in the Standard Model is canceled out due to the coupling of Standard Model

particles with their SUSY superpartners [9]. Thus, the coupling constants unify at high

energies and the Hierarchy Problem goes away (see Figure 2) [4].

The simplest supersymmetric extension (SUSY) of the Standard Model is called the

Minimally Supersymmetric Standard Model (MSSM) [10]. The Higgs sector of the MSSM
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is comprised of two complex scalar fields with two Higgs doublets [10]. The Higgs doublet

fields H1 and H2 are introduced for the down-type quark/lepton Yukawa coupling and the

up-type quark Yukawa coupling respectively. In this case, there are now five Higgs bosons:

a charged Higgs pair (H±), one CP odd scalar Higgs (A), and two CP even scalars Higgs (h

and H).

Since MSSM Higgs self-interactions are not independent parameters, they can all be ex-

pressed in terms of electroweak gauge coupling constants. Therefore, all MSSM Higgs sector

parameters at tree level are determined by two free parameters, tan β (tanβ ≡ 〈H2〉/〈H1〉)

and mA (mass of the CP odd SUSY Higgs). So for mA � mZ (mZ is the mass of the

Standard Model Z boson), the expressions for the Higgs masses are:

m2
h ' m2

Zcos22β, m2
H ' m2

Asin22β, m2
H± = m2

A + m2
W ,

where mW is the mass of the Standard Model W boson.

2.3 CP in the Standard Model and Beyond

In the Standard Model CP eigenstates of mesons may not be the same as their weak interac-

tion eigenstates, and a framework is needed which quantifies the relationship between them.

We begin by defining the Standard Model operators charge (C), parity (P ), and time (T )

as:

Charge : The charge conjugation operator transforms the particle to its anti-particle with-

out changing position or momentum.

Parity : The parity operator reflects the spatial coordinates through the origin. This is like

a mirror image followed by a 180-degree rotation.

Time : The time reversal operator leaves the spatial direction unchanged, but reverses the

momentum and angular momentum.
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We note that theory states that CPT is conserved in interactions [11], and current

experimental results are consistent with the conservation of CPT [12]. This means that the

mass, charge, and lifetime are the same for matter and antimatter, but decay rates can be

different. Thus, CP or T can be violated in the Standard Model.

Next we put forth the three forms of CP violation in the Standard Model that arise from

weak eigenstates and mass eigenstates not being the same: direct CP violation, CP violation

in mixing, and CP violation in the interference between decays:

Direct CP violation comes from CP violation in decay, where a decay process and its CP

conjugate process have different phases.

CP violation in mixing appears when particle mass eigenstates differ from the CP eigen-

states.

CP violation in interference occurs when final CP states are accessible from different initial

CP states without mixing.

We can now approach the three forms of CP violation in a generalized field theory. We

start with CP violation in mixing by defining a weakly decaying neutral meson X 0 as an

arbitrary linear combination of the flavor eigenstates. If we assume that the X 0 mixes with

its CP conjugate according to the time dependent Schrodinger equation we have:

α|X0〉 + β|X̄0〉, (4)

i
∂

∂t

(

α
β

)

= H
(

α
β

)

≡
(

m11 − 1
2
iΓ11 m12 − 1

2
iΓ12

m21 − 1
2
iΓ21 m22 − 1

2
iΓ22

) (

α
β

)

. (5)

The m and Γ terms represent the mixing and decay features of the state. The off-diagonal

elements of the matrix are potentially complex. Specifically, the phase of the off-diagonal

elements corresponds to the phase of the mixing, and Γ12 represents the coupling to common
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decay modes of the X0 and X̄0 (CPT invariance guarantees that m11 = m22 ≡ m, Γ11 =

Γ22 ≡ Γ, m21 = m∗
12, and Γ21 = Γ∗

12.). Equation 5 then becomes:

i
∂

∂t

(

α
β

)

=

(

m − 1
2
iΓ m12 − 1

2
iΓ12

m∗
12 − 1

2
iΓ∗

12 m − 1
2
iΓ

) (

α
β

)

, (6)

and the mass eigenstates are simply the eigenvectors of the Hamiltonian:

|XH〉 = p|X0〉 − q|X̄0〉, (7)

|XL〉 = p|X0〉 + q|X̄0〉,

where:

|p|2 + |q|2 = 1, (8)

q

p
= −2(m∗

12 − i
2
Γ∗

12)

∆m − i
2
∆Γ

. (9)

The mass difference and decay width difference between |XH〉 (MH , ΓH) and |XL〉 (ML,

ΓL) can be obtained by diagonalizing the mixing matrix:

α = |m12|2 −
1

4
|Γ12|2, β = Re(m12Γ

∗
12), (10)

then:

∆m = |MH − ML| =

√

2α − 2
√

α2 − β2, (11)

∆Γ = |ΓH − ΓL| = 4β/∆m. (12)

We see that an initially pure |X0〉 state will time evolve as a superposition of the mass

eigenstates |XL〉 and |XH〉. The time evolution can be fully expressed in terms of the

physically intuitive quantities m, Γ, ∆m, and ∆Γ.

|X0(t)〉 = g+(t)|X0〉 + (q/p)g−(t)|X̄0〉, (13)

|X̄0(t)〉 = (p/q)g−(t)|X0〉 + g+(t)|X̄0〉,
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where

g+(t) = e−imte−Γt/2(e−i∆mt/2e−∆Γt/2 + e+i∆mt/2e+∆Γt/2), (14)

g−(t) = e−imte−Γt/2(e−i∆mt/2e−∆Γt/2 − e+i∆mt/2e+∆Γt/2).

Now we can move on to CP violation in decay. We consider the decay amplitudes for CP

conjugate states X and X̄ to decay into final states f and f̄ respectively. If we call these

amplitudes Af and Āf̄ , the quantity | Āf̄

Af
| is phase-convention independent.

There are two types of phases present in the amplitudes Af and Āf̄ :

1. Those arising from complex parameters in the Lagrangian: In the Standard Model, such

phases enter only via the electroweak CKM mass mixing matrix (see Section 2.3.1),

and are often called “weak” phases. Such phases appear in Af and Āf̄ with opposite

signs.

2. Those arising from contributions of intermediate on-shell states: Since such contri-

butions are usually dominated by strong interactions, these are often called “strong”

phases. Since they do not intrinsically violate CP , such phases appear in Af and Āf̄

with like signs.

If we separate each decay channel’s contribution to the amplitude into magnitude Ai,

“weak-phase” term eiφi and “strong-phase” term eiδi , we obtain:

|Āf̄

Af

| = |
∑

i Aie
iδi−φi

∑

i Aieiδi+φi
|. (15)

From this we can set that “direct” CP violation only occurs if two terms with differing weak

phases acquire different strong phases:

|A|2 − |Ā|2 = −2
∑

i,j

AiAj sin(φi − φj) sin(δi − δj). (16)
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Furthermore, the rate asymmetry can be expressed in terms of the decay amplitudes:

αs =
1 − |Ā/A|2
1 + |Ā/A|2 . (17)

2.3.1 Standard Model CKM Matrix

Finally, we need a way of relating the weak interaction eigenstates to the mass eigenstates.

We do this by choosing a reference frame where only the down type quark of each gener-

ation (d, s, b) have different weak and mass eigenstates. If we define the weak interaction

eigenstates as (d′, s′, b′), we can then generate a relationship between their weak and mass

eigenstates. This relationship was first developed by Cabibbo, Kobayashi, and Maskawa,

and is known as the CKM matrix [13]. The matrix is then defined by:





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b



 ≡ VCKM





d
s
b



 . (18)

Where the CKM matrix elements are known to be (90% confidence limit assuming only

6 quarks) [14]:





0.9741 − 0.9756 0.219 − 0.226 0.0025 − 0.0048
0.219 − 0.226 0.9732 − 0.9748 0.038 − 0.044
0.004 − 0.014 0.037 − 0.044 0.9990 − 0.9993



 . (19)

From probability requirements, the CKM matrix must be unitary, and from unitarity

constraints, the CKM matrix can be characterized by three real variables and one complex

phase, which allows for CP violation within the Standard Model.

There are then multiple ways that we can transform the CKM matrix for easier interpre-

tation. From experimental results we know that Vus ≈ 0.22 [14], and we can expand about

this parameter λ = |Vus| due to its small value. This leads to Vcb = O(λ2) and Vub = O(λ3).
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To have expansion coefficients of order unity, we construct the parameters: A, ρ and complex

phase η. This expansion is known as the Wolfenstein parameterization [15]:

VCKM =





1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 . (20)

Another way of visualizing the CKM matrix is by using its unitarity constraint: VnlVml =

0 for n 6= m. We can write the CKM matrix elements as a set of three linear equations:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (21)

VusV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0.

Each of these relations requires the sum of the complex quantities to be zero, so we

can geometrically represent these as a triangle in a complex plane. One of the “unitarity

triangles” can be seen in Figure 3.

α
β

γ

VtdV*tb

VcdV*cb

VudV*ub VudV*ub
|VcdV*cb|

VtdV*tb
|VcdV*cb|

βγ

α

ρ

η

10

Figure 3: One of the unitarity triangles for the B-meson. The right figure has been rotated
and the sides normalized by VcdV

∗
cb.
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2.3.2 A Brief History of CP Violation

Until the 1960’s CP was assumed to be an observed symmetry of nature. But, in 1964,

Christensen, Cronin, Fitch, and Turlay discovered the CP violating decay KL → ππ [16].

Since then, the thrust of CP violation studies in sub-atomic physics has been in the K-meson

and B-meson realm. The following is a very brief introduction to K-meson and B-meson CP

physics.

2.3.3 The Neutral K Meson

Neutral K-mesons are mesons with quark content K̄0 = sd̄, K0 = s̄d, and when K-mesons

decay to CP eigenstates, the lifetimes differ hugely between the mass eigenstates. Therefore,

it is convenient to define “long” and “short” mass eigenstates in terms of their lifetimes [17]:

τS = (8.927 ± 0.009) × 10−11s, (22)

τL = (5.17 ± 0.04) × 10−8s,

where the subscripts S and L refer to the short and long-lived mass eigenstates:

|KS〉 = p|K0〉 + q|K̄0〉, (23)

|KL〉 = p|K0〉 − q|K̄0〉,

such that ∆ΓK < 0 by construction. Furthermore, the K-meson mass difference has been

measured to be [17]:

∆mK ≡ ML − MS = (3.491 + −0.009) × 10−15 GeV. (24)

From 12, 22 and 24 we see that:

∆ΓK ≈ −2∆mK . (25)
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The calculation of p/q according to Equation 9 can then be done by defining a phase φ12:

M12

Γ12
≡ −|M12

Γ12
|eiφ12 . (26)

Since the CP violating effects in the K-meson system are known to be small, it is useful to

work in terms of a series expansion of the phase φ12, and to note that to first order,

∆mK = 2|M12|, (27)

∆ΓK = −2|Γ12|,

which gives us:

M12

Γ12

=
∆MK

∆ΓK

(1 + iφ12). (28)

We go on to note that indirect CP violation has been observed in the K-meson system

in complimentary ways:

1. Asymmetries in semi-leptonic K0
L

decays measure the quantity:

δ(`) =
Γ(K0

L
→ π−`+ν) − Γ(K0

L
→ π+`−ν)

Γ(K0
L
→ π−`+ν) + Γ(K0

L
→ π+`−ν)

, (29)

and have found [17]:

δ(µ) = (3.04 ± 0.25) × 10−3, δ(e) = (3.33 ± 0.14) × 10−3. (30)

These are manifestations of CP violation in mixing where we can write δ(`) as:

δ(`) =
1 − |q/p|2
1 + |q/p|2 . (31)

2. Asymmetries in the two-pion channels:

η00 =
A(K0

L
→ π0π0)

A(K0
S
→ π0π0)

, (32)
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η+− =
A(K0

L
→ π+π−)

A(K0
S
→ π+π−)

,

have also been measured [17]:

|η00| = (2.275 ± 0.019) × 10−3, (33)

|η+−| = (2.285 ± 0.019) × 10−3.

Given these measurements, it is possible to separate the contributions from different chan-

nels and construct two complex parameters εK and ε′K whose real and imaginary parts are

sensitive to different types of CP violation:

εK ≡ 1

3
(η00 + 2η+−), (34)

ε′K ≡ 1

3
(η00 − η+−).

Specifically, Re(εK) measures CP violation in mixing, while the Re(ε′K) measures CP vio-

lation in decay.

Experimental results from KTeV and NA48 have found greater than zero results for the

value of Re(ε′K/εK). Specifically the Re(ε′K/εK) = (20.7 ± 2.8)10−4 result from the KTeV

experiment [12], and the Re(ε′K/εK) = (15.3±2.6)10−4 result from the NA48 experiment [18]

have ruled out the possibility of a “Superweak” [19] addition to the Standard Model.

The Superweak theory states that all CP violating decays happen through a direct ∆S =

2 interaction in mixing. Since all CP violation happens in mixing, we would expect that

there would be no direct CP violation. So, the KTeV and NA48 results of a non-zero direct

CP asymmetry clearly disproved the Superweak theory.

2.3.4 The B Meson

The neutral B-meson is the lightest meson that contains the b quark (B0 = db and B0 = db).

Like the K-meson previously discussed, mass eigenstates are different from weak eigenstates.
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But instead of “short” and “long” lived states for the K-meson; the B-meson can be defined

by “light” and “heavy” in terms of the flavor (CP ) eigenstates:

|BL〉 = p|B0〉 + q|B0〉, (35)

|BH〉 = p|B0〉 − q|B0〉.

With the complex coefficients p and q obeying the normalization condition:

|p|2 + |q|2 = 1. (36)

Current experimental values for the mass, mass difference ∆md, and width difference

∆ΓB are [20]:

∆md ≡ MH − ML = .502 ± .007 × 1012s−1, ∆ΓB ≡ ΓH − ΓL, (37)

MB = 5.279.4 ± 0.5MeV, xd ≡ ∆md/ΓB = 0.771 ± 0.012.

Beyond this, the formalism of the B-meson is almost the same as the K-meson.

2.4 Penguin Decays

In the Standard Model, B-meson decays are dominated by b → c transitions that occur

at tree level through flavor changing charged currents. However, flavor changing neutral

currents (FCNC) are absent at tree level. FCNC interactions are processes that change a

quark of one charge to a different quark of the same charge and different flavor (i.e. a direct

b → s or b → d transition). Effective FCNC can take place through second order processes,

represented by a “penguin diagram” [21].

From kaon decay, the difference in decay rates of neutral versus charged current interac-

tions were seen to be quite large:

K+ → π+νν

K+ → π0µ+νµ

< 10−5.
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These measurements allowed Glashow, Iliopoulos, and Maiani (GIM) [22], to predict the

existence of the c quark years before it was discovered. They had reasoned that if there

were only three quarks, then FCNC should be allowed at tree level. By including a fourth

quark in the interactions, and separating the four quarks into two weak doublets, all tree

level FCNC cancel in the decay rate calculation.

In Figure 4, we see the Feynman diagram of a b → sγ (b to s quark transition with a

radiative photon) decay. The second order, effective flavor changing neutral current decay

in which the b → s transition has two vertices has a much smaller decay amplitude than

tree level transitions like b → c. In these electromagnetic penguin decays, a charged particle

emits an external real photon. The inclusive rate is dominated by short distance (weak)

interaction and can be reliably predicted [23].

W– γ

sb
u,c,t 3-2001

8591A21

b

+-W

l

lv

c

Figure 4: Example Feynman diagrams for a Penguin b → sγ decay (left) and a tree level
b → c decay (right).

Calculating inclusive weak decay rates for B-mesons can be done using operator product

expansion. At energy scales µ = mb � MW a set of “effective” local transition operators [24]

is used. For an expansion coefficient, a heavy quark effective theory limit mb → ∞ is used

such that all quantities are explicitly dependent on mb (i.e. the b quark is not explicitly

removed from the theory).

These effective theories start at a higher energy scale (for our case of b → sγ, µ ∼ MW ),

and then integrate out heavier degrees of freedom (W boson and t quark) from explicitly
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appearing in the theory. The effects of the heavy degrees of freedom are not removed, but

simply hidden in a set of effective gauge coupling constants and coefficients describing the

effective strength at our energy scale µ. The effective Hamiltonian is then:

Heff ∼ VtbV
∗
ts

∑

i

Ci(µ)Qi(µ). (38)

Qi(µ) denotes the local operators generated by strong and electroweak interactions, and

Ci(µ) are the Wilson coefficient functions [24]. By integrating out the heavier degrees of

freedom, the physics information is now contained within the Wilson coefficients. The general

expression for the Wilson coefficients is:

Ci(µ) = Ui(µ, MW )Ci(MW ), (39)

where Ci(MW ) is our initial state and Ui(µ, MW ) is the energy scale evolution matrix.

2.5 ACP in B → XSγ Decay

Current predictions of Standard Model direct CP violation in B → XSγ decays have been

calculated using heavy quark effective theory [25]:

As,d
CP =

Γ(B → Xs,dγ) − Γ(B → Xs,dγ)

Γ(B → Xs,dγ) + Γ(B → Xs,dγ)
∼ Im(εs,d)(C2C8 − C2C7), (40)

where C2, C7, and C8 are Wilson coefficients, while εs,d is:

εs =
V ∗

usVub

V ∗
tsVtb

≈ λ2(iη − ρ) = O(10−2), (41)

for b → sγ transitions, and:

εd =
V ∗

udVub

V ∗
tdVtb

≈ ρ − iη

1 − ρ + iη
= O(1), (42)
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for b → dγ transitions. These next-to-leading order calculations estimate Standard Model

CP violation in b → sγ decays at [25]:

ACP = 0.0044+0.0019 +0.0003 +0.0015
−0.0009 −0.0003 −0.0010 (43)

where the three errors are associated with the experimental and theoretical uncertainties in:

αs, CKM matrix, and (mc/mb)
2.

But, amplification of direct CP violation in B → XSγ decays may arise from new physics

contributions in the Wilson coefficient, with strong phases provided by the imaginary parts

of the matrix elements of the effective Hamiltonian [25]. These imaginary parts are seen

at O(αs) from loop diagrams containing light quarks or gluons, while the contributions to

ACP (B → XSγ) from virtual corrections arise from interference of the one loop diagrams with

C7 and tree level diagrams with C8 [25]. These amplifications could be due to CP violating

SUSY parameters (SUSY particles coupling to Standard Model particles could vary with the

CP state of the Standard Model particle), which enter into loop computations. Possible CP

violations of up to 15% [25] would be seen in radiative loop decays like b → sγ if the W

boson (see Figure 4) is replaced by a charged Higgs, or if the W boson and t quark were

replaced with a chargino and an up-type squark or a neutralino with a down-type squark.

Similarly, CP asymmetry in b → dγ decays can be computed [25]. It is found to be

larger than the b → sγ CP asymmetry by a factor ∼ 20 (due to the factors related to the

CKM matrix elements). If only the sum of the b → sγ and b → dγ decays is measured, the

CP asymmetry vanishes (in the limit ms = md = 0) because of the unitarity of the CKM

matrix [25].

The first measurement of an inclusive CP asymmetry was performed by CLEO [26].

They used two distinct methods of flavor tagging. One requires just the high-energy photon

(between 2.2 and 2.7 GeV), and a lepton from the other B to give the flavor tag. In this
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method the dominant source of mistagging is B0 − B̄0 mixing. The method does not distin-

guish between b → sγ and b → dγ. The second method they use, “pseudo-reconstruction”

of a possible Xs system, where Xs refers to inclusive strange hadronic states, which is self-

tagging, although they do not correct for cross–feed from other b → sγ decays in the way

that we do. This method measures the asymmetry in b → sγ alone. Their final direct CP

asymmetry measurement is a weighted average of the two methods. The weighted average

of the asymmetries in b → sγ and b → dγ is quoted from the CLEO collaboration as [26]:

ACP (s+d) = 0.965ACP (b → sγ) + 0.02ACP (b → dγ) = (−0.079 ± 0.108 ± 0.022)(1.0± 0.030).

The first (and by far largest) error is statistical, the second is an additive systematic, and

the third a multiplicative systematic.

A more recent measurement of ACP was performed by the BELLE collaboration [27].

BELLE has released a conference paper containing a measurement of ACP in B → XSγ

decays. With a data sample of 140 fb−1 they use 682 signal events to measure:

ABELLE
CP = −0.004 ± 0.051 ± 0.038, (44)

where the first error is statistical and the second is systematic.
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3 The BABAR Experiment

No software people need to be here...

The BABAR experiment is an asymmetric e+e− B factory at the Stanford Linear Acceler-

ator Center (SLAC). Every year BABAR detects millions of BB pairs produced at the Υ (4S)

resonance, allowing studies of B decays and other bottom and charm dominated processes.

3.1 PEP-II

The PEP-II storage rings supply the BABAR detector with e+e− collisions. They operate at

a center of mass energy of 10.58 GeV directly corresponding to the Υ (4S) resonance. The

Υ (4S) decays almost exclusively decays to BB. The storage rings are composed of a 9 GeV

high energy electron ring, and a 3.1 GeV low energy positron ring.

The electrons and positrons are originally created and accelerated in the SLAC Linac

(see Figure 5), then injected into the PEP-II ring for collision. The asymmetric energies of

the electron-positron collision, boost the produced Υ (4S) in the lab frame to a βγ = 0.56 in

the “forward” direction. This boost causes an average distance of 300 µm between the two

B decay vertices, and allows for accurate measurements of time dependent CP processes.

Current luminosities in the PEP-II rings allow for the collection of 500 pb−1 of data per

day. This corresponds to about half a million produced BB events per day, with a peak

instantaneous luminosity of > 7.7× 1033 cm−2s−1. The effective cross-section production of

fermion pairs at the Υ (4S) resonance can be seen in table 2. We note that bb production is less

than a quarter of total quark pair production, and only about 2% of the total cross-section.

3.2 The BABAR Detector

The BABAR detector is pictured in Figure 6. The detector is made up of 5 subsystems:

a silicon vertex tracker (SVT), a drift chamber (DCH), the detector of internally reflected
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Figure 5: Schematic of SLAC, PEP-II, and placement of the BABAR detector.

e+e− → Cross-section (nb)

bb 1.05
cc 1.30
ss 0.35
uu 1.39

dd 0.35
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼40

Table 2: Production cross-section at Υ (4S) resonance for BABAR.
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Cherenkov light (DIRC), an electromagnetic calorimeter (EMC), and an instrumented flux

return (IFR). Between the EMC and IFR there is a super conducting solenoid, that creates

a uniform 1.5 Tesla magnetic field in the SVT, DCH, DIRC, and EMC.
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Figure 6: BABAR detecor longitudinal view.

3.2.1 Silicon Vertex Detector (SVT)

The SVT is comprised of five layers of double sided silicon strips at 32, 40, 54, 91-127, and

114-144 millimeters away from the interaction point (see Figure 7). The first three layers of

the SVT are placed as close as possible to the interaction point to reduce scattering effects

from the beryllium beam pipe. The outer two layers are used to help associate charged
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tracks reconstructed by the SVT, with charged tracks reconstructed by the drift chamber

(see section 3.2.2).

The geometrical acceptance of the SVT is from 20.1◦ to -29.8◦ (polar angle). This covers

about a 90% of the solid angle in the center of mass or Υ (4S) frame. Typically, 86% of the

solid angle is used for charged particle reconstruction due to edge effects.

The SVT provides position and pulse height information. Calibrated time over noise

threshold allows for dE/dx measurements of charged tracks. SVT only dE/dx measurements

can be used to separate pions and kaons for momenta up to 0.5 GeV.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 7: Longitudinal schematic view of the SVT.

3.2.2 Drift Chamber (DCH)

The BABAR drift chamber is made of 40 layers of hexagonal cells, with one sense wire in the

center of six field wires. For better longitudinal accuracy, 24 of the 40 layers are placed at

small angles relative to the longitudinal direction (see Figure 7). The wires sit in an 80:20

helium:isobutane gas mixture. The inner and forward walls of the drift chamber are kept

as thin as possible to reduce the number of interaction lengths between detector subsystems

components.
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The drift chamber has a dE/dx resolution of 7.5% for separation of low momentum

particles. In Figure 9, we can see good pion/kaon separation for momentum less than 0.7

GeV.
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Figure 8: Longitudinal schematic view of the DCH. The chamber is offset by 0.37 meters
from the interaction point (in the forward direction).
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Figure 9: Plot of dE/dx in the DCH as a function of track momentum for different particle
types.
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3.2.3 Detector of Internally Reflected Cherenkov Light (DIRC)

The DIRC is an innovative detector made up of fused silica bars that are placed between

the DCH and EMC (see section 3.2.4). When particles pass through the DIRC, Cherenkov

photons are transmitted down the bars via total internal reflection. One end of the bar is

mirrored, while the other end is connected to a hemispherical, water-filled container called

the “Stand Off Box” (see Figure 10). The outside edge of the standoff box is covered by an

array of photomultiplier tubes (PMT) for readout.

The DIRC is an intrinsically three-dimensional imaging device. The light patterns on

the PMT’s from the initial and reflected wave fronts are conic sections. By measuring the

photon propagation angles (by knowing the position of the struck PMT’s), we can define

the direction the particle was moving. From the incident time difference of the two wave

fronts, we can define where on the quartz bar the particle was incident. From the photon

propagation angles, we can calculate the Cherenkov angle for an assumed particle hypothesis.

The improvement can be seen for kaons in Figure 11.

Figure 10: Schematic view of the DIRC.
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Figure 11: Invariant Kπ inclusive mass spectrum with and without the use of the DIRC for
kaon identification. The mass peak corresponds to the decay of the D0 meson.

3.2.4 Electromagnetic Calorimeter (EMC)

The BABAR EMC is designed to measure electromagnetic showers above 20 MeV with good

energy and angular resolution. The EMC is comprised of 6580 thallium doped cesium iodide

(CsI(T1)) crystals. The crystals are read out with silicon photodiodes.

The EMC consists of a cylindrical barrel and forward end cap (see Figure 12). The

coverage is from 15.8◦ to 141.8◦, which corresponds to 90% of the solid angle in the Υ (4S)

system.

When a particle strikes the EMC, the corresponding ionization or electromagnetic shower

normally spans multiple crystals. This energy deposit is called a “cluster.” Since multiple

particles can strike a single area, multiple local maxima (“bumps”) can arise. Reconstruction

algorithms try to match DCH tracks with the cluster centroids (energy weighted center) using

χ2 from the expected impact points. All unmatched clusters are treated as neutral particle
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Figure 12: Schematic view of the EMC.

candidates.

In this analysis, EMC angular and energy resolution are very important for reconstructing

the correct photon energy and XS mass. Plots of the angular and energy resolution for the

calorimeter can bee seen in Figure 13. Energy resolution in our photon energy range is

calibrated from Bhabha scattering. The fit energy resolution as a function of photon energy

is:

σE

E
=

(2.32 ± 0.30)%
4
√

E(GeV)
⊕ (1.85 ± 0.12)%. (45)

Angular resolution is measured using symmetric π0 and η decays. The resolution varies

between 3 mrad at high energies, to 12 mrad at low energies:

σθ = σφ =
(3.87 ± 0.07)
√

E(GeV)
± 0.04 mrad. (46)

3.2.5 Particle Identification

For our analysis, we are mainly interested in kaons, pions, and photons. For charged kaons

and pions, the SVT, DCH, and DIRC are used. Tracks formed in the SVT are matched

to tracks formed in the DCH. The dE/dx information (see figure 9) from the DCH is then
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Figure 13: Angular(left) and energy(right) resolution of the EMC for photons coming from
neutral pions.

used to determine particle ID. However, if no track matching is found between the SVT and

DCH, then the SVT has a stand-alone particle ID algorithm.

For high momentum tracks (momentum > 0.7 GeV), the DIRC also provides particle ID

from Cherenkov angle calculations. Separation for pions and kaons is about 4.2σ at 3 GeV

(see improvement in kaon identification in Figure 11).

Excellent angular and energy resolution in the EMC is needed for accurate neutral pion

and photon reconstruction. In Figure 13, we can see the angular and energy resolution for

photons from neutral pions.

3.2.6 Instrumented Flux Return (IFR)

The IFR is designed to be a detector of muons and neutral hadrons (primarily K0
L

and

neutrons) over a large momentum range. It consists of 18 layers of resistive plate chambers

(RPC) in the end caps, and 19 layers in the barrel region. Interspersed between the RPC’s

layers are steel layers that act as a magnetic flux return and hadron absorber. The thickness
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of the steel layers is graduated from a minimum of 2 cm (inner most layer) to a maximum 10

cm (outer most layer). The gradation of the steel allows for better neutral hadron detection

in the inner most layers.

The RPC’s are a cost effective way of instrumenting the IFR. They consist of a 2 mm. gap

that is enclosed by Bakelite (there are spacers to keep the desired thickness). The Bakelite

is covered by a graphite film, then insulator, then readout strips (see Figure 14). When an

ionizing particle passes through the RPC, the resultant streamer depletes the local charge

on the Bakelite, and is detected by the readout strips.
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Figure 14: Longitudinal schematic view of the the IFR RPC’s.
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4 Monte Carlo and Data Samples

Couldn’t we set the chamber efficiency to a .tcl parameter?

We rely on Monte Carlo (simulated decays and detection of the decays including detector

performance) for extracting our cut points, signal efficiency, and fitting technique. We

can cross check our Monte Carlo with non-signal samples (explained later), but important

information like peaking background (background that is indistinguishable from signal) can

only be estimated from Monte Carlo. We use fourth generation BABAR Monte Carlo samples,

and the data sample from November 1999 to June 2002 (RUNs 1 and 2).

The B → Xsγ signal model is described in reference [28]. The model breaks the hadronic

mass (Xs) spectrum into two parts: the resonant K∗ region, and the non-resonant region.

The resonant K∗ region is defined as MXs < 1.1GeV, and is modeled with exclusive K∗ de-

cays. The non-resonant region (MXs > 1.1GeV) is modeled by using Heavy-Quark Effective

Theory. In 1998 Kagan and Neubert calculated next-to-leading order [28] decay rate for the

non-resonant region of B → Xsγ decays.

Kagan and Neubert adopt an exponential distribution that depends on just the first and

second moment of the spectra, i.e. the width of the distribution. The formula is:

F (k+) = (1 − x)ae(1+a)x, x =
k+

Λ
≤ 1, (47)

where Λ = mB meson − mb quark, a can be related to the second moment, and F (k+) is the

b quark momentum distribution in the B meson. The two free parameters Λ and a are

preferably written as a function of the effective b–quark mass, mb (sensitive to the mean

photon energy or first moment), and a parameter, λ1 (directly proportional to the second

moment). The parameters λ1 and mb should be seen as independent, although naively

it might be expected that λ1 increases as mb decreases. Reasonable ranges for the two
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parameters are: 4.55 to 4.95 GeV for mb and -0.5 to -0.2 GeV2 for λ1. It is important

to note that the spectrum does not show a strong dependence on the choice of the shape

function, and that any CP asymmetry seen is not dependent on the spectral shape [25].

Our various data sets used are listed below:

• Inclusive B → Xsγ signal Monte Carlo events

– The equivalent of 269 fb−1 of events (assuming BF(b → sγ) = 3.5 × 10−4) are

generated using the Kagan and Neubert [28] modeling with parameters mb=4.80

GeV and λ1 = −0.30 GeV2 (KN480) and an exponential shape function.

– A total of 1.13 million events generated with a flat Eγ spectrum in the range 1.6

to 2.7 GeV (0.6 to 3.3 GeV in MXs). We can weight this sample to match any

predicted set of parameters. We use mb=4.80 GeVand λ1 = −0.30 GeV2 unless

explicitly written.

The hadronic sd̄ and sū systems are fragmented into multi-body final states using the

default settings of JETSET [29]. The fragmentation can be checked by comparing

the relative final state yields observed in data with those generated in the inclusive

Monte Carlo. By weighting the different final states in the Monte Carlo to match the

distribution in data, it is possible to obtain a better match of the total Monte Carlo

sample to the data.

From a technical point of view, in order to separate the signal and cross–feed samples (in

the Monte Carlo) we use a Monte Carlo truth–matching (Truth matching is matching

reconstructed Monte Carlo decay to the generated Monte Carlo decay.). For the signal

sample we require that the true (generated) and reconstructed decay mode are the

same, and that all reconstructed daughters match Monte Carlo generated particles:
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– All reconstructed final state daughters are matched to the true final state daugh-

ters.

– The difference between the true and the reconstructed hadronic mass is within

50 MeV.

For cross–feed the equivalent definitions are:

– The true and reconstructed decay mode are the same, and all daughters are truth

matched, but the difference between the true and the reconstructed hadronic mass

is larger than 50 MeV.

– The true and reconstructed decay mode are not the same.

– Not all daughters are truth matched to Monte Carlo particles.

More details about the truth–match are given in the Appendix A. Note again that the

iType mapping does not depend on the b flavor. This means that having the recon-

structed mode identical to the true mode allows the reconstructed b flavor to be different

from the generated b flavor. This case is covered in the systematic Appendix D.1.

• B → K∗(892)γ signal Monte Carlo events

The equivalent of 3656 fb−1 of resonant B → K∗(892)γ signal Monte Carlo (assuming

BF(B → K∗γ) = 4.0 × 10−5) are generated in the following final states:

– K∗0 → K+π−.

– K∗0 → KSπ0, KS → π+π−.

– K∗+ → K+π0.

– K∗+ → KSπ+, KS → π+π−.
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We do not include any modes with a KL, nor do we allow the KS to decay to two π0’s.

In order to simplify the interpretation of our results, we correct the signal efficiency to

account for the full KS decays, i.e. include the KS → π0π0 decays. This entails reduc-

ing the signal efficiency by a factor calculated from isospin considerations. Similarly,

we often write K0. This assumes that the KL contribution is already included.

• cc̄ Monte Carlo events

cc̄ Monte Carlo events are defined as simulated e+e− → cc̄ quark pairs. 102 fb−1 of cc̄

Monte Carlo is generated, assuming σ = 1.3 nb (133 million cc̄ Monte Carlo events).

• uds Monte Carlo events

uds Monte Carlo events are defined as simulated e+e− → uū, dd̄, and ss̄ quark pairs.

99.8 fb−1 of uds Monte Carlo is generated, assuming σ = 2.09 nb (209 million uds

Monte Carlo events).

• BB Monte Carlo events

BB Monte Carlo events are defined as simulated e+e− → BB, where the B-mesons

do not decay to an XS or K∗. 200 fb−1 of BB Monte Carlo is generated, assuming

σ = 1.09 nb(218 million BB Monte Carlo events).

• Off–resonance data

9.6 fb−1 of off–resonance (data taken 40 MeV below the Υ (4S) resonance) data is used.

• On–resonance data

81.9 fb−1 of on–resonance data, which corresponds to (88.9 ± 1.0) × 106 BB events, is

used.
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5 Analysis Strategy

It was good enough for the Italian Renaissance masters.

There are three approaches to measuring ACP in B → XSγ decays: Exclusive, Semi-

Inclusive, and Inclusive.

Exclusive : Reconstruct each individual decay mode and look at the ACP in each individual

decay mode.

Semi-Inclusive : Reconstruct each individual decay mode and look at the ACP in the sum

of all decay modes.

Inclusive : Do not reconstruct the decay, but use photon and event shape information to

define the decay.

Each approach has advantages and disadvantages which are listed in table 3.

Exclusive Semi-Inclusive Fully Inclusive

Reconstruct single states Reconstruct finite number of states Do not reconstruct state
High model dependence Mid model dependence Low model dependence

More handles to reduce background More handles to reduce background Less constraints to reduce background
- Measure hadronic spectrum Measured photon spectrum smeared

by the B motion in the CM frame
3-6 MeV resolution 3-6 MeV resolution 50-100 MeV resolution

Table 3: Advantages and disadvantages for the different ways to measure ACP .

For an ACP measurement, the largest error (aside from the statistical error) comes from

model dependence. The QCD factorization for the Xs is only known to 10%, so the larger

the portion of the Xs reconstructed, the smaller the theoretical error. It is also questionable

as to whether one can measure a CP asymmetry without looking at a large enough portion

of the Xs decay [30].
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We decided to use the Semi-Inclusive approach to extract ACP . We reconstruct 12 self

tagging B → XSγ (b → sγ) decays. To tag the CP of the signal B, we either use the charge

of the kaon, or the net pion charge.

These decays are extracted from the data by a series of cuts on particle quality and event

shape parameters. The final distributions are fitted as function of reconstructed B-meson

mass. Finally, the yields of the two CP states are used to calculate the ACP for the sum of

our 12 modes, where the final equation for calculating ACP from our signal yields is:

ACP = (Ameasured
CP − ∆D

2
)

1

< D >
− AShift

CP . (48)

Where D (the dilution factor) is defined as:

D = 1 − 2ω, (49)

D = 1 − 2ω, (50)

and the average and difference of the dilution are:

< D >=
D + D

2
, (51)

∆D = D − D. (52)

In order to define the CP asymmetry, we first need calculate the mistag rate (see Ap-

pendix D.1), or the probability ω (ω) that a b (b) flavor is reconstructed as b(b) flavor. Thus,

we define the dilution of the two flavors as in terms of the observables, ω and ω:

< D >= 1 − (ω + ω), (53)

∆D = 2 × (ω − ω). (54)

Finally Ameasured
CP is defined as:

Ameasured
CP =

n(b → sγ) − n(b → sγ)

n(b → sγ) + n(b → sγ)
. (55)
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where n(b → sγ) and n(b → sγ) are the numbers of data events in the b → sγ and b → sγ

final states respectively, and the AShift
CP (the detector bias in measuring ACP ) is covered in

Section 9.1.

The exclusive b → sγ decays are identified in the 16 final states listed in Table 4. Note

that out of these final states, the four B to KS decays are mixed–flavor CP states which are

not used for the direct CP violation measurement. These decays are kept in the analysis

to check our understanding of s and spectator quark fragmentation, and of the cross–feed

among different final states. We note that the numbers in the tables and plots refer to only

the 12 final states used for the ACP measurement, except in Appendix D.6.

These hadronic final states do not correspond to all the possible final states into which

the b quark system fragments. Table 4 shows the expected fraction of all final states to which

the identified final states correspond, as a function of the effective b quark mass. The CP

asymmetry is not very sensitive to the b quark mass or the details of the fragmentation, but

it is still desirable to use a significant fraction of the total rate for an inclusive measurement.

We determine from Monte Carlo (simulation) that we study a total of 53.2 % (56.9 %)

final states for mb = 4.65 GeV(mb = 4.80 GeV) within MXs≤ 2.3GeV (The signal model

used is described in Section 4). If we assume that we have the same number of KL’s as KS’s,

then the fraction investigated correspond to 70.9 % (75.7 %) of the final states for mb =

4.65 GeV(mb = 4.80 GeV).

To suppress the BB background (B-mesons that do not decay to an XS), we require the

XS mass to be < 2.3 GeV (see Section 6.7), corresponding to a minimum photon energy,

Eγ > 2.18 GeV, in the B reference system. As mentioned in Section 4, the CP asymmetry

should not be very sensitive to this cut.

We suppress the background from continuum (non Υ (4S) decays) events using a neural

network based on event shape variables. Most of the continuum background comes from
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mb ( GeV) mb (GeV)
Modes 4.65 4.80 Modes 4.65 4.80

B0 → XSγ,XS → Fraction (%) B± → XSγ,XS → Fraction (%)

K+π− 8.4 10.7 KSπ+ 4.2 5.3
KSπ0 2.3 2.9 K+π0 4.5 5.7
KSπ+π− 5.4 6.5 K+π−π+ 10.8 13.0
K+π−π0 13.3 15.8 KSπ+π0 6.6 7.8
KSπ0π0 1.1 1.3 K+π0π0 2.3 2.7
K+π−π+π− 3.2 3.3 KSπ+π−π+ 1.6 1.6
KSπ0π+π− 4.7 4.9 K+π−π+π0 9.3 9.8
K+π−π0π0 2.8 2.8 KSπ+π0π0 1.4 1.4

Total 41.2 48.1 Total 40.7 47.3

Table 4: Studied XS final states and their rates (in percent) according to the Kagan and
Neubert signal model [28] for two different values of the effective b quark mass, mb. The
dependence of the fractions on the b quark mass is a result of the different hadronic mass
distributions. Note that KS includes the decay mode KS → π0π0, and that no constraint is
made on Eγ

initial state radiation, and D(∗) meson decays.

Most events have more than one B candidate, and in these cases we select the candidate

with the lowest value of |∆E∗| (|∆E∗| = E∗
B − (

√
s/2), or the energy difference between

the B candidate and beam energy.). For events in which the “true” candidate has been

reconstructed, the best candidate selection is about 90 % correct. However, there are many

events in which the true candidate is not reconstructed. “Fake” candidates are collectively

known as b → sγ “cross–feed.” Cross–feed candidates are candidates that: are reconstructed

incorrectly, have the wrong XS mass, or the wrong final state is reconstructed. We evaluate

cross–feed contributions using signal Monte Carlo samples, and correct for them in our

analysis.

The continuum, BB and cross–feed backgrounds are subtracted by fitting the beam-

substituted mass distribution, mES (mES =
√

(
√

s/2)2 − p∗2B , or the the beam energy substi-

tuted mass.), to an Argus and a Crystal Ball (see appendix B) line shape. There are small
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components of the BB and cross–feed backgrounds that peak in mES (peaking background),

and we must subtract those separately.

In 12% of the signal events, we can identify an electron or muon from the decay of the

other B [31](lepton tagging). After lepton tagging, the remaining background sample mainly

comes from other B decays (and is very suppressed). The reason why we look at the lepton–

tagged sample, though clearly affected by having low statistics, is because it is a very clean

sample.

For both lepton–tagged and untagged events, we give results in eight categories defined

by: MXs=0.6-1.1GeV (essentially the K∗ resonance), MXs= 1.1-1.5GeV, MXs=1.5-1.9GeV,

MXs=1.9-2.3GeV, MXs=0.6-2.3GeV (all events), B0 decays with a K±, B± decays with a

K± and B± decays with a KS.

We separate the B0 decays with a KS daughter for systematic studies. They are used

in the study of the Monte Carlo modeling of the XS fragmentation. In principle, if there is

a lepton-tag it can be used to tag (CP ) these events, but with a dilution due to B0 − B̄0

mixing. So, we do not include these modes in our direct CP violation measurement.

Note that sometimes an iType number references the decay mode. The iType number is

an integer that indicates the final state we are referring to. It is used for coding purposes.

Table 5 defines the mapping between the iType number and the final state. The mapping

does not depend on the b flavor. The two b flavors are also explicitly indicated in the table

for clarity.



40

iType # Final State

b decay b decay mixed–flavor
1 B+ →KSπ+γ B− → KSπ−γ
2 B+ →K+π0γ B− → K−π0γ
3 B0 →K+π−γ B0 → K−π+γ
4 B0 →KSπ0γ
5 B+ →K+π−π+γ B− → K−π−π+γ
6 B+ →KSπ+π0γ B− → KSπ−π0γ
7 B+ →K+π0π0γ B− → K−π0π0γ
8 B0 →KSπ+π−γ
9 B0 →K+π−π0γ B0 → K−π+π0γ
10 B0 →KSπ0π0γ
11 B+ →KSπ+π−π+γ B− → K−π−π+π0γ
12 B+ →K+π−π+π0γ B− → K−π−π+π0γ
13 B+ →KSπ+π0π0γ B− → KSπ−π0π0γ
14 B0 →K+π−π+π−γ B0 → K−π+π+π−γ
15 B0 →KSπ0π+π−γ
16 B0 →K+π−π0π0γ B0 → K−π+π0π0γ

Table 5: Reconstructed decay modes, corresponding coding referred to by “iType”, and
distinction among b and b final states. The last is important for our definition of the ACP .
The mixed–flavor states are only used for systematic studies.
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6 Selection

We’re not going to need the D∗
S, are we?

Our direct CP violation measurement is statistics limited. Most systematic errors cancel

in the asymmetry ratio of two CP states. In particular, the signal and background shapes,

the spectral shape, and the fragmentation of the XS system are expected to be the same.

There are small differences in reconstruction efficiency and particle identification which are

discussed in the section on systematics.

This makes the optimization of selection cuts straightforward. The statistical error on

the asymmetry is minimized if we maximize the ratio S2/S +B, normalized to the expected

luminosity or number of signal and background events. The background is the sum of the

continuum and BB contributions, except when otherwise specified.

The selection criteria that we apply in the analysis can be summarized in several steps:

• Initial Reconstruction: First we select events according to the event shape and

signal photon cuts. We then reconstruct the B decaying into an energetic photon, a

kaon and n pions in the final states. The total number of reconstructed final states for

the analysis is 16, corresponding to n ≤ 3 (we only use 12 of the 16 modes for the CP

measurement, as already mentioned).

• Particle Quality Criteria: We apply quality cuts on the photons, kaons and pions

which belong to the reconstructed B candidates.

• Neural Network: We then construct a neural net variable, by means of shape vari-

ables.

• Selection: We cut on the neural network distribution and on other variables.
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• Tagging: We split the events in “lepton-tagged” and “untagged” samples (The lepton-

tagged sample is a sub–sample of the untagged sample). The lepton–untagged sample

is made of all the events that pass the selection, while the lepton-tagged sample is

made only of the events whose “other” B is lepton tagged.

• Multiple Candidates choice: After this selection there is usually more than one B

candidate left in each event. We then choose the best candidate per event, taking the

one with the minimum ∆E∗.

Each step is described in detail in the following sections.

6.1 Initial Reconstruction

We start with all events and then apply the same cuts listed below:

• The second Fox-Wolfram moment, R2<0.92 [32].

• At least one photon with energy, E∗
γ in the interval 1.5GeV < E∗

γ < 3.5GeV in the

CMS frame.

• At least three tracks from the pion list. The quality cuts applied on the tracks, ac-

cording to the pion selection, are shown in Table 6.

We then reconstruct the final states described in Table 5 applying three more loose cuts

on the reconstructed B candidates to reduce the multiplicity:

• |∆E∗| < 0.4 GeV.

2For our analysis the Fox-Wolfram moments are defined by:

Hl =
∑

i

|pγ ||pi|
E2

visible

Pl(cos(θi)), (56)

where Pl(x) are the Legendre polynomials, θi is the opening angle between the photon and hadrons, and pi

is the momentum of the hadrons.
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Variable Cut
Minimum Transverse momentum 0.1 GeV
Maximum momentum 10 GeV
Minimum number of DCH hits 12
Minimum fit χ2 probability 0
Maximum DOCA in XY plane 1.5 cm
Minimum Z DOCA −10 cm
Maximum Z DOCA 10 cm

Table 6: Cuts applied by the pion selection. “DOCA” is the distance of closest approach to
the beam spot.

• mES > 5.2 GeV.

• 5.13 < mB < 5.43 GeV.

Where mB is the B meson mass reconstructed from the B daughters.

The efficiencies, after all initial cuts are applied and the 12 final states are reconstructed,

are shown in Table 7. The corresponding average number of candidates after cuts and

reconstruction, assuming at least one candidate reconstructed, are shown in Table 8.

Sample efficiency in %
b → sγ signal 32.2
cc 2.1
uds 2.4

generic BB 0.4

Table 7: Efficiencies obtained from MC signal and background events after all initial cuts.

6.2 Particle Quality Criteria

After initial reconstruction of the B candidates, we apply quality cuts on the reconstructed B

decay daughters. But before we apply individual particle cuts, we cut on the absolute value

of the cosine of the angle θT ∗ . |cos θT ∗| is the angle between the reconstructed B daughters
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Sample multiplicity
b → sγ signal 6.8
cc 6.7
uds 5.6
generic BB 11.1

Table 8: Average number of candidate multiplicities obtained from MC signal and back-
ground events after all initial cuts. At least one candidate is required.

and the rest of the reconstructed particles in the lab frame. The corresponding distribution

can be seen in Figure 15. |cos θT ∗| is flat for signal, but rapidly increases at ±1 for the

continuum background due to its jet-like structure. The cut we apply is 0.8 (optimized

against the continuum background only). We then apply quality cuts on the individual B

daughters.
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Figure 15: The |cos θT ∗ | distribution. The histograms are all normalized to an area of 1.

6.2.1 High Energy γ Selection

High Energy Gamma List For use in this analysis, we provide a specially defined high

energy photon list which selects photons according to a user–defined energy window. The
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selector takes our photon list3 as input, then applies a cut on E∗
γ , and returns a high energy

photon list. We require that the photon associated to the reconstructed B-meson has an

energy of at least 1.8GeV. This cut reduces combinatorics without affecting the signal.

Photon Quality Cuts We then implement quality cuts on the photon selection (not

already implicit in the choice of the photon list):

• The cluster does not contain a noisy or dead crystal.

• The cluster Second Moment < 0.002.

• The photon theta angle in the LAB frame, θγ , is in the fiducial interval: −0.74 <

cos θγ < 0.93.

The Second Moment is a measure of how circular the shower in the calorimeter is, and a

cut on this reduces background from merged π0’s or η’s. If the two photons from a π0 or η

decay are merged and form a cluster, this cluster is more likely to be oval shaped. Clusters

from one photon should be spherical which gives a small second moment.

Bump Distance Cut In order to improve the suppression of background, we implement

an isolation cut on the photon bump (see section 3.2.4): the distance between the photon

bump and another neutral bump or track in the event is computed. The distance between

the photon and any other neutral bump or track on the event is asked to be greater than

20 cm. This cut is done early in the analysis to reduce multiplicity and is tightened later

on for more background suppression.

3The photon list is created from neutral calorimetric clusters which are single bumps (see section 3.2.4)
not matched with any tracks, which have a minimum raw energy of 30MeV, with a lateral moment ≤ 0.8.
The lateral moment is a measure of the spread of the cluster in the EMC. Our signal photons should be not
spread out across the calorimeter, thus they should have a small lateral moment.
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6.2.2 π± and K± Selection

Tracks are requested to pass the pion selection, shown in Table 6. We do not apply particle

identification (PID) to charged pions. We do require PID for charged kaons. We chose a tight

selection as it has a high rejection power and the loss in signal efficiency is acceptable. The

choice of tight kaon particle identification also cuts down on the raw number of combinatoric

background in signal MC. Requiring PID for the kaon helps to suppress the small expected

background from b → dγ. The corresponding mis-id rate for pions as charged kaons is about

2% for our kaon selector.

6.2.3 KS Selection

Our reconstructed KS’s comes from the identification of the KS → π+π− decays. The

KS’s are reconstructed from all pairs of oppositely charged tracks which are assigned the π

mass. The reconstructed KS mass must be within 15 MeV of the nominal mass. For the

KS → π+π− channels we currently use the cuts:

• A mass cut 489MeV < MKS
< 507MeV (see Figure 16 for MC mass fits to truth

matched signal events).

• A decay length cut > 2.0 mm (see Figure 16 for the flight distributions for KS signal

events, continuum, and generic BB background).

• Convergence of the vertex fit. An explicit requirement on the vertex fit is needed as no

convergence is actually required in the KS list, and, if the vertexing does not converge,

4–vector addition is used.
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Figure 16: MC mass fits to truth matched signal and flight distributions for KS signal events,
continuum, and generic BB background. The histograms are all normalized to an area of
1, so their shapes can be compared but not their relative heights. KS flight distance plot
normalized to one.

6.2.4 π0 Selection

Our neutral pion candidates uses the reconstruction of π0 → γγ for our selection criteria.

The neutral pions are comprised of photons that belong to the photon list. At the initial

reconstruction level the momentum of the π0 is required to be at least 200 MeV. The raw

mass is constrained to be in the window 90− 170 MeV (see Figure 17). A mass constrained

fit is then applied.

6.3 Neural Network (NN)

Most of the background in the inclusive analysis arises from continuum production of a high

energy photon either through initial state radiation (ISR) or through a π0/η decay. These

backgrounds are suppressed using event shape variables. The shape variables are described

in the following. However, instead of applying a cut for each variable separately, they are

combined in a neural net in order to improve the total rejection power.

The neural net is a standard supervised learning, feedforward, backpropagation, neural
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Figure 17: MC signal mass fits for truth matched π0’s.

network [33]. We use the Stuttgart Neural Network Simulator [34], with a developed Root

based front end called RooCards4. We use 25 input variables, one hidden layer with 50

hidden nodes, and one output node to differentiate signal from continuum background. The

details and validation are discussed in the next few sections.

6.3.1 Input Variables for the Neural Net

The shape variables that are used as input to our neural net are:

cos(thrust) : The cosine of the reconstructed B direction with respect to the z axis. For

continuum this is peaked towards one, while for signal it is lower.

|cos θT ∗| : Although a loose cut at 0.8 is already applied on this variable, we find effective

to include it in the neural net, as it still has a good separation between signal and

background events.

|cos θB∗ | : The angle of the reconstructed B candidate with respect to the beam direction

4RooCards is a privately developed interface between ROOT and SNNS.
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computed in the CMS frame. For signal events, |cos θB∗ | should fall off at high values;

for background, |cos θB∗ | should be flat given the direction of the B.

| cos θ′ | : Cosine of the photon in the recoil (or primed) frame. It is defined from the beam

momenta and the reconstructed high–energy photon candidate by ~p(e+)+~p(e−)−~p(γ) =

0. This is therefore the qq rest–frame for an ISR event; in it, the ISR background has

a two–jets structure.

W2 : The second Fox-Wolfram moment.

R2 : The ratio of second to zeroth Fox-Wolfram moment. A lower R2 is characteristic of the

isotropic decay of signal events, as opposed to Bhabha and tau events and continuum

background.

R2′ : R2 computed in the photon recoil system (defined above). This is useful in further

reducing continuum events with initial state radiation. By investigating the frame

without the potential ISR photon, the R2′ value can filter out continuum.

Eθ(1 − 18) : Energy flow cones in the CMS frame about the reconstructed B direction,

in 10o increments (18 total). By looking at the energy flow cones we can separate

out continuum from the more isotropic/spherical signal events. The energy of the

reconstructed side of the event is removed from the cones.

Plots of the six shape variables can be found in Figure 18, the |cos θT ∗| variable can be

found in Figure 15, normalized to the same area since relative shape is the important factor.

6.3.2 Neural Network Basics

A neural network is used to combine our twenty-five variables (see Section 6.3.1) into a single

variable to separate the signal and background processes. The basic structure of a neural
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Figure 18: Shape variables going into the neural net: | cos(thrust), |cos θB∗ |, | cos θ′ |, W2,
R2 and R2′. The histograms are all normalized to an area of 1.
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network is depicted in Figure 19. At the bottom of the diagram, event variables xi enter

the network as input nodes in red. Linear combinations of these variables are sent up to the

hidden nodes (blue): the jth hidden node will receive receive the linear combination:

yj =
∑

aijxj.

Each hidden node receives a different linear combination of the input variables. This input

is then transformed by an “activation” function, in this case the tanh function (our xj and

g(yj) functions). The activation function determines how fast the output of the hidden layer

varies as a function of the input. If the input range is small, a linear response is recovered;

if it is large, a step response results. At each stage, there is “bias” node (purple) which

provides a constant output. The bias node is used to set the zero-level of the output.

A linear combination of the output from the hidden nodes g(yj):

z =
∑

bjg(yj),

are then passed to the output node where it is again transformed by an activation function.

The mathematical chain from input to output is shown on the right of Figure 19. A neural

network can in principle have many hidden layers and output nodes. In general, neural

network structures can be specified by the number of input nodes (network variables), the

number of hidden layers with the number of nodes in each hidden layer, and number of

output nodes. Hence the example in Figure 19 can be described as a neural network with

four input nodes, one hidden layer with three nodes and a bias node, and one output node.

In this analysis, we end up using a configuration with one hidden layer.

6.3.3 Training the Neural Network

The free parameters of a neural network are the coefficients aij and bj that are used to form

the linear combination of input nodes to the hidden nodes, and the hidden node outputs to



52

Figure 19: Basic structure of a single hidden layer neural network. Input nodes (red) corre-
sponding to event variables are passed to “hidden” nodes (blue) as linear combinations. The
line combination is then transformed bay an “activation function,” in this case the tanh(x).
Linear combinations of the hidden node outputs are then passed to the output node (black),
where it is transformed once again by the activation function to give the final neural network
output.

the output node respectively. The optimal set of coefficients are determined by a process

known as “back-propagation.” The performance of the neural network for any given set of

coefficients is summarized by the sum-squared error (SSE):

SSE(aij, bj) =

N
∑

a=1

[NN( ~xa; aij, bj) − F ( ~xa)]
2 .

Here, the xa represents the vector of input variables for the ath event, NN( ~xa; aij, bk) is

the neural network output for this vector with the coefficients aij and bj, and F ( ~xa) is the

desired output for this vector (e.g. 0 if it is a vector corresponding to a background event,
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1 if it is a signal event). The SSE then represents a “χ2” for the network configuration that

can be minimized in a manner completely analogous to a fit via gradient descent. This is

precisely the back-propagation algorithm: the derivatives of the SSE relative to changes in

each of the coefficients are evaluated and the coefficients adjusted accordingly and iteratively

to minimize the SSE.

6.3.4 Note on Neural Networks

Another way you can think of a neural net, is that it is a simple set of transformations.

Starting with a vector X, we apply a transformation matrix and get to the next layer in

our neural net. Using our neural net in Figure 19, we can see that our initial input nodes

would be our vector X, and we have two transformations to get to our output vector (node).

The values of the transformation matrices are set from the training procedure. All matrix

elements are initially randomized, and then using a procedure of successive approximations

we set the individual matrix element values.

It is then easy to see why training has to be well monitored. Too little training will give

you a result, but not the best result. Too much training (or not a large enough training set)

can cause the transformation matrices to learn about your specific training set.

6.3.5 Training/Optimization of the Neural Net

The training samples used in the neural net were created from a reduced data set using all

previously discussed cuts in Section 6.2.

We use truth–matched signal events (as described in section 4) for signal and uds and cc

MC for background5. If there are more B candidates per event, the one with the smallest

∆E∗ is chosen.

5Generic B B MC was not used as a background-training sample. The generic B B sample introduces
biases toward acceptances of lower multiplicity modes if used.
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We find that a ratio of 7/8, signal to background is the optimal ratio of input events for

training the neural net. Total data sets of 1400 signal and 1600 background events are used

for the final training sets (no improvements are seen with larger data sets).

One hidden layer with 50 hidden nodes is the best configuration for our neural net. An

increase or decrease in the number of hidden nodes actually shows a loss of signal/background

differentiation. Using 50 hidden nodes in more than one hidden layer shows no improvement

in signal or background definition.

Training is done in a round-robin format. Signal and background samples are broken up

into three sub-samples. Two of these samples are used for training, and the third for testing.

For each of the three training/validation sets a best number of training cycles is found along

with a best neural net cut point. An example can be found in Table 9.

Sample # Cycles Best NN Cut Point
Training 1 400 0.62
Training 2 400 0.66
Validation 350 0.62

Table 9: For a neural round-robin training set, the optimum number of cycles to train per
sub-sample, and the best neural network cut point.

The neural network output is shown in Figure 20 for various MC samples. Each candidate

has a neural network computed weight; 1 is signal like while 0 is continuum background like.

6.3.6 Comparison to a Linear Discriminant

In a previous version of this analysis, performed with only a quarter of the data, a Fisher

(linear) Discriminant was used for continuum background suppression. We check if we have

gained any improvement in S2/S+B using the neural net instead of the Fisher Discriminant.

Current neural net signal and background efficiencies are 73.9 % and 31.4 % respectively,

relative just to the particle quality criteria cuts, while for the old Fisher Discriminant the
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signal and background efficiencies were 20.4 % and 2.7 %, respectively. Using the expected

yields, we have an S2/S +B = 47.0 for the new neural net, while the old Fisher Discriminate

had an S2/S + B = 36.6. Thus, we are able to allow more than three times more signal

through, while still improving our S2/S + B by 28%.
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Figure 20: Neural net output for various MC samples: 1 is signal like, while 0 is continuum
background like. The histograms are all normalized to an area of 1.

6.4 Final Selection Cuts

Using the neural net and a few more discriminating variables, we make our final selection

cuts. The criteria used to optimize the cuts is S2/S + B. The background is the sum of

continuum and B B events except for the optimization of the neural net and the minimum

K and π momentum cuts, which are devised to get rid of continuum and B B events,

respectively. A lower cut on mES at 5.27 GeV is applied when computing S2/S + B as it

corresponds to optimize the selection in the signal region.
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In the following, we describe the other variables used:

cos θB∗: Even though we have included cos θB∗ in the neural net (see section 6.3), we can

still improve our S2/S +B by applying a harder cut on cos θB∗ by itself. We must remember

that neural nets are good at multivariable relationships, but bad at single variable cutting.

So, if we have a variable that by itself can provide a good cut, and the relationship between

that variable and other variables can be used in a multivariable analysis, then the variable

should be cut on and still used in the multivariable analysis (i.e. our neural net). Thus, we

require that cos θB∗ < 0.8 besides the use of it in the neural net.

∆E∗ window: Random combinatoric background is reduced by putting tight constraints

on our ∆E∗ distribution. In Figure 21 we can see the ∆E∗ distribution for signal and

backgrounds. We cut at: −0.1 < ∆E∗ < 0.1GeV.
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Figure 21: Plot of ∆E∗ for signal and background. The falling off of the background ∆E∗

distributions come from cuts made before this plot was made. The histograms are all nor-
malized to an area of 1.

Neural Network Cut: The minimum neural net output is requested to be 0.4 (1 is signal

like while 0 is continuum background like). Note that in Table 9 the neural net cut is tighter
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than 0.4 because there were no cuts on other variables differently from the current case.

Minimum K and π Momentum: In order to reduce the combinatorial background from

low momentum pions and kaons we set minimum momenta requirements. Since the higher

multiplicity modes carry less momentum (see Figure 22) we must have a sliding scale. This

cut also allows us to not worry about discrepancies between lower and higher momentum

particle reconstruction. The corresponding cuts can be found in Table 10. We require no

minimum daughter momentum in the K∗ region ( 0.6 GeV< MXs< 1.1 GeV) due to no gain

in S2/S + B.

Number of π′s in Final State Minimum K Momentum ( GeV) Minimum π Momentum ( GeV)
1 0.7 0.5
2 0.7 0.3
3 0.7 0.2

Table 10: Minimum π and K momentum cut per number of π′s in tag or untagged state
with 1.1 < MXs< 2.3 GeV.

The pion momentum cut was done with a best S2/S + B requirement. The minimum

kaon momentum is chosen to be greater than 0.7 GeV due to the kaon selection. Above 0.7

GeV the kaon selection uses DIRC information and is a much cleaner sample.

Bump distance Cut: A tighter selection that the one already devised in Section 6.2 is

applied, tightening to 28 cm and 40 cm the maximum distance between the signal photon

bump and the closest track and neutral bump, respectively. The corresponding distribution

can be seen in Figure 23.

π0 and η Vetoes: There is also a background component in which one photon from an

asymmetric π0 or η decay can have sufficient energy to be considered as our high energy

signal photon candidate. A π0 and η veto is implemented to remove this.
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Figure 22: Kaon momentum for 2/3/4 body and all decays in our on-resonance sidebands.
Notice the step like distribution before 0.7 GeV due to no DIRC requirement for charged
kaons with less than 0.7 GeV.
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Figure 23: Charged(left) and neutral(right) bump distance distribution for signal and back-
ground MC events. The histograms are all normalized to an area of 1.
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The “veto” π0’s are made of photons from the photon list and our high energy photon.

The lower cut on the photon energy from the list is set to 50 MeV. The energy of the veto

π0 is required to be at least 200 MeV, and the veto π0’s raw mass must be in the window of

90− 170MeV. The “veto” η’s are made of photons from the photon list and our high energy

photon. The lower cut on the photon energy from the list is set to 100 MeV and a cut on

the η mass between 470 and 620 MeV is applied.

If there is a π0 or η veto candidate with a reconstructed mass in the range:

116MeV < mπ0 < 152MeV,

524MeV < mη < 566MeV,

the event is rejected. In Figure 24, the closest masses per event (in case of overlap) to

the π0 and η PDG masses are shown for a sample of Xsγ signal MC, cross-feed and generic

BB background MC.
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Figure 24: Closest masses per event (in case of overlap) to the π0(left) or η(right) PDG masses
for Xsγ signal MC and generic BB background MC. The histograms are all normalized to
the luminosity.
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6.5 Tagging

We break up the data sample into a “lepton–tagged” and “untagged” sample. The untagged

sample is inclusive of all the events which pass the selection, while the lepton–tag sample

is a sub–sample of the untagged one made of all the events which are lepton–tagged. We

are currently using the Moriond Tagging method [31]. The Moriond Tagger uses all recon-

structed tracks not used to produce our signal B-meson decay, and tries to determine if the

reconstructed tracks could come from the other B-meson. The tracks are usually associated

with high-energy leptons or K mesons.

The tagged sample uses four Moriond Tagging categories: Electron/Kaon, Muon/Kaon,

Electron only, and Muon only. The leptonic tag helps in reducing the continuum background

for those events, which are tagged.

6.6 Multiple Candidates Choice

After all the candidate selection criteria are applied, on average we still have more than one

candidate per event (see Table 11 for details). For the final fits, we only want one candidate

per event. So, for best candidate selection, we choose the candidate with the smallest |∆E∗|.

Sample Final average
multiplicity

b → sγ signal (KN480) 2.30
cc 2.29
uds 1.88
generic BB 1.96

Table 11: Average candidate multiplicities obtained from MC after all cuts are made.
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6.7 XS Mass Cut-Off

As referenced in Section 4, an asymmetry in b → sγ decays should not be dependent on the

XS mass [25] (or signal photon energy). In order to find the best point to apply a cut–off on

the hadronic mass, we need to apply all the selection criteria and finally fit the total expected

number of signal and background events (the fit will be described in the next section). The

criterion used to choose the best MXs cut-off is: the number of expected signal event, to

the total statistical error of the peaking signal and background events. This is similar to

choosing the cut–off according to the usual S2/S + B criteria. However, minimizing the

statistical error from the full fit takes into account the presence of a non–peaking component

of our background (which is the dominant background contribution). A MXs mass cutoff of

2.3 GeV is found to be optimal.

MXs GeV Number of Signal Number of Signal / Statistical Error
2.0 - 2.1 79 1.86
2.1 - 2.2 67 1.97
2.2 - 2.3 51 1.88
2.3 - 2.4 28 1.55

Table 12: Number of signal events per 100 MeV mass bin in XS (full mES range). The ratio
of increased number of signal events to the statistical error in the peaking component of a
fit to the signal background events is our criteria to choose the cut–off point.

6.8 Final Efficiencies

After the best candidate selection, we compare the final efficiencies and expected number

of events for signal and background in Table 13. The corresponding breakdown of the

efficiencies for the different selection criteria for the signal events can be found in Table 14.
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Signal MC category
Category Efficiency % Expected number of events
MXs= 0.6-1.1 GeV 17.1 784
MXs= 1.1-1.5 GeV 6.46 325
MXs= 1.5-1.9 GeV 3.73 190
MXs= 1.9-2.3 GeV 3.51 78
MXs= 0.6-2.3 10.8 1394
B0 Decays 11.4 786
B+ Decays with a KS daughter 10.4 250
B+ Decays with a K+ daughter 9.70 357

Background
Background type Efficiency (%) Expected number of events
Generic B Background 0.0014 1297
Continuum Background 0.0045 10036
Cross-feed - 1210

Table 13: Final efficiencies and expected number of events for different types of signal and
background definitions. Expected number of events for full mES distribution.

Cut Signal % Generic B % Continuum %
|cos θT ∗ | < 0.8 81.3 61.9 17.1

KS Quality Criteria 96.4 57.6 63.8
Bump Distance > 20 cm 100 81.7 79.0

Eγ > 1.8 GeV 99.2 30.2 49.2
no noisy or dead crystal 97.7 98.8 96.3

cluster second moment < 0.002 98.5 85.4 89.5
−0.74 < cos θγ < 0.93 98.5 96.3 95.2

|cos θB∗ | < 0.8 91.6 86.5 79.8
−0.10 < ∆E∗ < 0.1GeV 76.0 45.0 45.3

NN Output > 0.4 73.9 63.7 31.4
Min K and π Momentum 78.6 66.4 73.3

Charged Bump Distance > 28 cm 98.6 96.9 96.0
Neutral Bump Distance > 40 cm 87.2 50.0 60.6

π0 and η Veto 90.0 67.2 83.2

Table 14: Efficiency of the cuts normalized to all cuts before (above) them for the MXs=1.1-
2.3 GeV mass range.
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7 Fitting of Monte Carlo and Data

It does not do to leave a live dragon out of your calculations, if you live near him.

We fit to the mES distribution since the expected signal and background shapes can be

defined by well-known functions. The continuum background from cc̄ and light quark jets

can be fit with the Argus function [35] (see Appendix B for details on the fitting functions).

The truth–matched (see Section 4) signal events can be fitted by a Crystal Ball function [36]

to account for the radiative tail in the photon energy measurement (again see Appendix B

for details). The number of events found by floating the normalization in the Crystal Ball

function is our final extracted signal (n(b → sγ) and n(b → sγ)).

The main challenge is to describe the shape of the generic BB̄ and cross–feed back-

grounds. Ideally we would define separate shape functions for these each data type. Due to

the limited statistics of the current data sample, we need to reduce the number of degrees

of freedom. All of the fitting procedures are done using Monte Carlo weighed to expected

luminosities except where noted.

We can adequately describe both the generic BB̄ sample and the cross-feed sample by the

sum of an Argus and a Crystal Ball function. The background Crystal Ball shape is taken

from the truth matched signal shape. We can also describe the sum of these two samples

in the same way, i.e. by one Argus shape plus the signal Crystal Ball. Thus we fit the

full sample with two Argus functions, and a Crystal Ball function. The Crystal Ball shape

parameters are defined by a fit to the weighted average of the truth-matched signal Monte

Carlo samples in hadronic mass bins. The Crystal Ball parameters show no dependence on

the hadronic mass bin within our errors.

One Argus shape is fixed from a fit to the continuum Monte Carlo (see Figure 25). The

second Argus shape is allowed to float to account for uncertainties in our knowledge of the
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Figure 25: Plots of continuum Monte Carlo(left) and off-resonance data(right) for the 1.5-
1.9 GeV region. Both plots have be normalized to expected luminosity.

cross–feed and BB̄ backgrounds. This gives us 3 degrees of freedom in our fits: the number

of events in the signal Crystal Ball function, the relative number of events in the free Argus,

and the slope parameter of the free Argus. We then subtract this small peaking background

(cross-feed + BB Monte Carlo) from our data fits to find our signal. A summary of the

functions used and parameters can be found in Table 15. A toy study was done to check if

the fitting biased the results in any way, details of the study can be found in Appendix C.

From now on we will only be presenting numbers for b events, b events, or the average

of the two. A cross–check that the fitting parameters are consistent between b and b events

is made in Appendix D. We justify the fitting technique with toy Monte Carlo as shown in

Appendix C.

7.1 Fitting of the Different Monte Carlo Categories

In the following, we describe the fits to our data sets according to the functions described in

Table 15.
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Data Set Type Fit Function
[free parameters]

Signal MC Crystal Ball (free)
[mean, α, σ, n]

XFeed MC Argus (free) + Crystal Ball (as signal)
[Argus shape parameter, relative # of events in A and CB]

BB MC Argus (free) + Crystal Ball (as signal)
[Argus shape parameter, relative # of events in A and CB]

Continuum MC Argus (free)
[Argus shape parameter]

Off-resonance data Argus (free)
[Argus shape parameter]

XFeed+BB MC Argus (free) + Crystal Ball (as signal)
[Argus shape parameter, relative # of events in A and CB]

XFeed+BB+Continuum MC Argus (free) + Argus (as continuum) + Crystal Ball (as signal)
[Argus shape parameter, relative # of events in A and A and CB]

XFeed+BB+Continuum MC Argus (free) + Argus (as continuum) + Crystal Ball (as signal)
+ Signal MC [Argus shape parameter, relative # of events in A and A and CB]
Data Argus (free) + Argus (as continuum) + Crystal Ball (as signal)

[Argus shape parameter, relative # of events in A and A and CB]

Table 15: Functions and free parameters used to fit the various data samples. Legend: A =
Argus function, CB = Crystal Ball function.

7.1.1 Signal Fits

In the top left plot of Figures 26 and 27 we show a typical mES signal shape for the region

MXs = 1.1−1.5 GeV. The Monte Carlo signal distribution, taken from either the flat signal

Monte Carlo or the KN480 model, is weighted to match the expected data yields and then fit

with a Crystal Ball function. The Crystal Ball shape parameters can be found in Table 16.

Note that there is no apparent variation in these parameters as a function of MXs, and we

assume that the signal shape does not differ in b and b events. When studying the systematic

contributions in Section 9, we do check that this assumption is correct.

7.1.2 Background Fits

We have three types of background in this analysis: cross–feed, BB, and continuum. The

first two give a peaking contribution that is modeled in order to extract the signal yield from
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Figure 26: Individual Monte Carlo mES plots for 1.1-1.5 GeV mass bin for b events: top left
signal, top right cross-feed, bottom left BB, and bottom right continuum.

MXs(GeV) α σ (MeV) n
0.6-1.1 2.74±0.12 2.28±0.49 2.57±1.60
1.1-1.5 2.79±0.17 2.09±0.33 1.85±0.94
1.5-1.9 2.86±0.23 2.32±0.47 1.03±0.74
1.9-2.3 2.89±0.35 2.35±1.38 0.76±0.89

Weighted Average 2.78±0.09 2.20±0.23 1.22±0.47

Table 16: Values and error weighted average of truth–matched Crystal Ball parameters
(both b and b events fit together). See Appendix B for the Crystal Ball definition and the
description of the free parameters.
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Figure 27: Individual Monte Carlo mES plots for b events in the 1.1-1.5 GeV mass bin: top
left signal, top right cross-feed, bottom left BB, and bottom right continuum.

data. In the following, the procedure adopted to fit the backgrounds is described.

Cross–feed and Generic B Fitting (Peaking Background)

Examples of fits to these two background components can be see in Figure 26 top right

(cross–feed) and bottom left (BB̄), and Figure 28 for a combined fit of cross-feed and BB.

Since they have different shapes, the fitting of the combined cross–feed and generic BB

background with a single Argus and Crystal Ball function must be justified. This is done in

Appendix C.

Continuum Fitting

The continuum background is fit with an Argus function (see Figure 26 bottom right) whose

shape is defined from Monte Carlo. We compare equivalent amount of continuum Monte

Carlo samples and off-resonance data (see Figure 25). Since they agree, we can use the

continuum Monte Carlo to define our continuum Argus functions for the final fits.
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Figure 28: Peaking Monte Carlo (Xfeed+BB) background untagged mES plot for 1.1-1.5
GeV mass for b events.

mES (GeV)
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

nt
s 

/ (
 0

.0
03

07
69

2 
G

eV
 )

0

10

20

30

40

50

60

A RooPlot of "mES"

# Cont Arg =  848

 13±# Peaking BG = -2.6 

 31±# X+B Arg =  105 

Cont slope = -15.5

Fit alpha =  2.2

Fit peak =  5.3

Fit sigma =  0.0028

Fit tail =  1.2

 38±X+B Slope = -86.7 

cutoff =  5.3

Chi2/dof = 1.73

# Entries = 949

mES (GeV)
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

nt
s 

/ (
 0

.0
03

07
69

2 
G

eV
 )

0

10

20

30

40

50

60

A RooPlot of "mES"

mES (GeV)
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

nt
s 

/ (
 0

.0
03

07
69

2 
G

eV
 )

0

20

40

60

80

100

A RooPlot of "mES"

# Cont Arg =  848

 20±# Peaking =  167 

 32±# X+B Arg =  100 

Cont slope = -15.5

Fit alpha =  2.2

Fit peak =  5.3

Fit sigma =  0.0028

Fit tail =  1.8

 74±X+B Slope = -86.4 

cutoff =  5.3

Chi2/dof = 2.01

# Entries = 1114

mES (GeV)
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

nt
s 

/ (
 0

.0
03

07
69

2 
G

eV
 )

0

20

40

60

80

100

A RooPlot of "mES"

Figure 29: Cross–feed, BB, and continuum combined fit(left), and full Monte Carlo fit
(right), for the 1.1-1.5 GeV mass bin for b events.

7.1.3 Full Fits

Finally we perform a fit to the full signal plus backgrounds. We simply add the truth–

matched signal Monte Carlo to our background samples and fit again (see Figure 29). The

difference in the peaking components between the full fit and the peaking background fit
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should be our signal. See Table 17 for the expected yields in our nine categories. This is the

same fit we will be used for data.

Category Lepton–Tag # Peaking # Peaking Signal + # MC Signal
Background Background

MXs=0.6-1.1 GeV Tagged 3±3 54±8 50
Untagged 18±11 435±30 392

MXs=1.1-1.5 GeV Tagged 0±2 23±6 23
Untagged 5±6 159±20 162

MXs=1.5-1.9 GeV Tagged 2±3 17±5 15
Untagged 8±8 91±20 05

MXs=1.9-2.3 GeV Tagged 1±3 9±5 8
Untagged 20±13 67±28 44

MXs=0.6-2.3 GeV Tagged 5±6 101±12 94
Untagged 44±19 734±49 697

B0 Tagged 3±4 55±8 51
Untagged 11±13 420±34 393

B + decay Tagged -1±2 16±5 17
with KS Untagged 8±9 133±24 116
B + decay Tagged 3±4 30±7 27
with K+ Untagged 17±11 134±22 125

Table 17: Estimated peaking background (cross–feed and BB) from Monte Carlo samples,
expected peaking component from the Monte Carlo full fit, and actual number of Monte
Carlo truth–matched signal events in the full fit for our nine data categories. The “MC
Signal” plus the “Peaking Background” bins equal “Peaking Signal + Background” bins
within error. The b and b events have been averaged, as this is only to test that the fitting
method works.

7.2 Results from Monte Carlo Events

Results from the Monte Carlo fits to the peaking background and full data set are reported

in Table 18. They are split into the two CP states (b and b).
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Expectations from MC events
Peaking background events Fitted Signal+Background MC

MXs(GeV) b b b b

Lepton–tagged events
0.6-1.1 1.3±2.7 4.4±2.3 51.1±8.0 55.9 ±8.3
1.1-1.5 -0.3±2.0 0.5±1.9 22.2±5.7 21.6 ±5.
1.5-1.9 1.9±2.8 2.2±2.7 17.6±5.0 16.1±5.0
1.9-2.3 -0.9±3.1 1.5±3.4 5.3 ±4.9 8.0 ±4.5
0.6-2.3 1.8±5.9 8.2±5.7 98± 12 104±12
B0 1.2 ± 3.9 4.0 ± 3.8 52.9 ± 8.6 56.4 ± 8.4
B ±(K±) 3.0 ± 3.6 3.9 ± 3.6 29.0 ± 6.6 31.3 ± 7.0
B ±(K0) -2.19± 2.3 0.2 ± 2.0 16.5 ± 5.5 15.0 ± 4.9

Lepton–untagged events
0.6-1.1 22 ±11 14 ±10 434±31 435 ±29
1.1-1.5 6.3±6.5 4.9±5.9 167± 20 152 ±20
1.5-1.9 10.9±9.0 4.9 ±7.3 91±21 90 ±19
1.9-2.3 18±13 21±13 22±23 69±25
0.6-2.3 40±19 48±19 714±50 754 ±48
B0 18 ± 13 21 ± 13 419 ± 34 420 ± 33
B ±(K±) 14 ± 11 20 ± 11 180 ± 28 180 ± 26
B ±(K0) 9.0± 8.8 6.8± 8.4 113 ± 22 150 ± 22

Table 18: Monte Carlo peaking background and peaking signal + background events as a
function of the hadronic mass bins for lepton–tagged and untagged events. The quoted errors
are just statistical errors.
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8 BF(B → K∗γ) Cross Check

How are you doing...

Before looking at our expected signal in data, we would like to be able to cross check

our selection and fitting technique. Using the off-resonance data we can compare contin-

uum Monte Carlo to data for background shapes. But for signal shapes we must look at

a similar decay type to the one in which we are interested. To do this cross–check we

measure the branching fraction of the four B → K∗γ modes: K∗± → K0π±, K∗± → K±π0,

K∗0 → K±π∓, and K∗0 → K0π0. In order to do that, we devise a B → K∗γ dedicated selec-

tion, using the same variables used for the b → sγ analysis but optimizing the cuts for these

signal events. The fitting technique is the same as described in Section 7. In the following,

we first describe which are the new optimized cuts for the B → K∗γ final state, then we

show the branching fraction results.

8.1 Selection Differences

Only four cuts are changed between the B → Xsγ, and the B → K∗γ modes. Having a

higher signal to background ratio, we are able to open up the ∆E∗, neural net, and cos θB∗

cuts. We also do not require a minimum daughter momentum for the K∗ region. In addition,

we are able to use a stricter truth-matching definition in this region. The difference between

the true and reconstructed hadronic mass is required to be within 25 MeV instead of 50 MeV

as described in Appendix A.

For the K∗ region our new cuts are: -0.15 < ∆E∗< -0.1 GeV, neural net output > 0.3,

and |cos θB∗ | < .85 (see Figure 30). Table 19 shows the chosen decay mode versus true decay

mode for all K∗ candidates after the selection and the best candidate selections are applied.
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Figure 30: ∆E∗, |cos θB∗ |, and neural net output distributions for the K∗ region.

K∗± → K0π± K∗± → K±π0 K∗0 → K±π∓ K∗0 → K0π0

K∗± → K0π± 99.9 0.0789 0 0
K∗± → K±π0 0.253 99.7 0 0
K∗0 → K±π∓ 0 0 99.8 0.214
K∗0 → K0π0 0 0 3.7 96.3

Table 19: Chosen decay mode versus true decay mode for all K∗ candidates (in percent).
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8.2 Fitting the K∗

The fitting of the K∗ follows the same procedure as in Section 7. The average weighted

Crystal Ball shape parameters (see Appendix B) among all the K∗ final states are: α =

2.25±0.22, σ = 2.71±0.07 MeV, n = 2.20±0.96.

In Figure 31 we show the individual Monte Carlo mES plots for all four K∗ modes com-

bined, while in Figure 32 we show the full signal and background fits for the combined K∗

modes for data and Monte Carlo events, so that we might compare data, Monte Carlo dif-

ferences. We have also compared the ∆E∗ distribution for data and Monte Carlo; this can

be seen in Figure 33.
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Figure 31: Individual Monte Carlo mES plots for all four K∗ modes combined: top left signal,
top right Xfeed, bottom left BB, and bottom right continuum.
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Figure 32: Full signal + background fits for the combined K∗ modes; left Monte Carlo, right
data.

Figure 33: Overlay of Monte Carlo(triangles) and data(circles) for ∆E∗. All cuts except our
∆E∗cut have been applied and mES asked to be greater than 5.271 GeV.
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8.3 K∗ Branching Fractions

K∗ Branching fractions are determined from the differences in peaking component in the

final data fit, and the peaking component of the Monte Carlo background fits. The final

branching fraction results can be found in Table 20. They are in good agreement with current

2003 PDG averages of 3.8± 0.5× 10−5 for charged B’s and 4.3± 0.4× 10−5 for neutral B’s.

This cross–checks that our selection and fitting technique work.

Mode # of BG Signal Efficiency BF Statistical Error
Subtracted Signal (%) X 10−5 X10−5

B± → K∗±γ, K∗± → K0π± 125 18.9 3.35 0.45
B± → K∗±γ, K∗± → K±π0 113 11.1 3.43 0.63
B0 → K∗0γ, K∗0 → K±π∓ 518 20.4 4.28 0.24
B0 → K∗0γ, K∗0 → K0π0 40 10.4 3.88 1.06

Table 20: Final branching fractions and statistical errors for the four reconstructed K∗ modes
for the current analysis.
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9 Systematic Uncertainties

...Fine, how are you?

All systematic errors cancel by definition in the measurement of the CP asymmetry,

except for systematic effects which are different for b and b final states. The effect of these

differences is to fake a CP asymmetry.

In the following sections, we will describe the fake CP asymmetry due to detector biases

which affects the signal events. All other systematic effects are negligible and can be found in

Appendix D. These include: detector biases of the mistagged events and the corresponding

asymmetry, CP asymmetry in background events (cross–feed, B B, and continuum), and

possible contributions to the CP asymmetry due to other sources .

9.1 CP Asymmetry in Signal Events Due to Efficiency Biases

The detector efficiency is not symmetric for positive and negative charged tracks. Tracking

efficiency differences can arise from the opposite curvature of the tracks in the solenoid field.

In the Drift Chamber this couples to the drift electron direction, which is distorted by the

Lorentz angle effect. This can affect both the track reconstruction and the dE/dx particle

identification information. The other major source of asymmetries is the different strong

interaction rates of positive and negative particles, particularly charged kaons. This leads

to tracking efficiency asymmetries and particle identification asymmetries.

To estimate the contribution to the CP asymmetry due to the particle efficiency asym-

metry for charged pions and kaons we study the on–resonance and off–resonance data. The

on–resonance data are divided in the following categories:

• On–resonance sideband sample: The on-resonance sideband sample defined by

|∆E∗| < 0.3GeV and mES < 5.27GeV or 0.11 < |∆E∗| < 0.3GeV and mES > 5.27GeV,
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and releasing completely the Neural Network cut to gain in statistics.

• On–resonance continuum enriched sample: The on-resonance continuum en-

riched sample is defined by |∆E∗| < 0.3GeV and mES < 5.27GeV or 0.11 < |∆E∗| <

0.3GeV and mES > 5.27GeV, and NN < 0.4.

• On–resonance continuum suppressed sample: The on-resonance continuum sup-

pressed sample is defined by |∆E∗| < 0.3GeV and mES < 5.27GeV or 0.11 < |∆E∗| <

0.3GeV and mES > 5.27GeV, and NN > 0.4.

• On–resonance antiveto sample: the on-resonance antiveto sample is defined by

on–resonance data cut out by the π0 and η vetoes (see section 6.4).

All samples are lepton–untagged. The measured flavor asymmetry, defined previously as

Equation 55:

Ameasured
CP =

n(b → sγ) − n(b → sγ)

n(b → sγ) + n(b → sγ)
.

Results for the four on–resonance samples and the off–resonance data are shown in Table 21

as a function of the hadronic mass.

From Table 21, we learn that there is a non–null asymmetry in all the data samples.

However, the on–resonance antiveto sample and the off–resonance data are not statistically

significant. All of the on–resonance sideband samples show an asymmetry. The fact that the

asymmetry is present both in the continuum enriched and suppressed samples means that

it is not due to the asymmetry in the BB sample.

The asymmetry in the data is tracked down to have a dependence on the charged kaon

momentum. Results are reported in Table 22. The fact that there is a strong asymmetry for

low energy kaons is mainly due to the different nuclear cross–section for positive and negative

kaons, especially at low momenta. The nuclear cross–sections, are shown in Appendix E.
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As lower momentum kaons are mainly present at higher hadronic masses, there is a higher

asymmetry in the on–resonance and off–resonance data at higher hadronic masses.

Finally, we have studied the events with just KS as a function of the KS momentum.

Results are reported in Table 23, and show an asymmetry. We assume that it is due to the

fact that the K0 and K0 have a different nuclear cross–section.

Before defining the strategy to adopt regarding Monte Carlo events, we need to look at

the Monte Carlo events and study any CP asymmetry bias they have. We have used the

official recipes from the tracking and PID groups to correct Monte Carlo events. In both

cases, look–up tables for positive and negative charged tracks and kaons are provided. These

contain the ratio of the tracking efficiency in data and Monte Carlo and the absolute efficiency

of our kaon selector. We have tabulated the PID corrections in Appendix D Table 40.

The apparent CP asymmetry in signal Monte Carlo events, corrected by the tracking and

PID, is analyzed. Results are shown in Appendix D Table 41 as a function of the hadronic

mass bin for lepton-tagged and untagged events, and there is no evidence of bias within the

statistical errors.

We have formulated some hypotheses to try to understand the reasons why the Monte

Carlo events do not simulate the asymmetry found in data properly. We know that there is

not a good hadronic model for kaons in the low momentum region, and KS regeneration is

not simulated [37]. We have tried to quantify the asymmetry caused by the different nuclear

interaction of charged kaons in the beam–pipe and SVT which is not simulated or taken into

account by the tracking and the PID. The study can be found in Appendix E. We show that

we manage to explain a negative asymmetry around 0.005 − 0.01 with our simple model.

Since Monte Carlo events do not show the same asymmetry as seen in data, we re–weight

the Monte Carlo events according to the asymmetry found in data as a function of the kaon

momentum. After reweighing signal Monte Carlo as a function of kaon momentum (see
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Argus Crystal Ball

MXs(GeV) b b Ameasured
CP b b Ameasured

CP

On–resonance sideband data
0.6 – 1.1 2376 2367 0.00±0.01
1.1 – 1.5 3222 3263 0.01±0.01
1.5 – 1.9 7429 7208 -0.02±0.01
1.9 – 2.3 15319 14669 -0.02±0.01
0.6 – 2.3 28346 27447 -0.016±0.004
B0 8520 8319 −0.01±0.01
B ±(K±) 6581 6417 −0.01±0.01
B ±(K0) 4716 4620 −0.01±0.01

On–resonance continuum enriched sample
0.6 – 1.1 1140 1135 0.00±0.02
1.1 – 1.5 1583 1640 0.01±0.02
1.5 – 1.9 3483 3405 -0.01±0.01
1.9 – 2.3 6953 6593 -0.02±0.01
0.6 – 2.3 13159 12773 -0.01±0.01

On–resonance continuum suppressed sample
0.6 – 1.1 1236 1172 -0.03±0.02
1.1 – 1.5 1639 1623 0.00±0.02
1.5 – 1.9 3946 3803 -0.02±0.01
1.9 – 2.3 8366 8076 -0.02±0.01
0.6 – 2.3 15187 14674 -0.02±0.01

On–resonance antiveto Sample
0.6 – 1.1 100 ±11 87 ±10 -0.07±0.08 -8.6±3.6 8.5 ±5.1 0.33±0.28
1.1 – 1.5 355 ±21 319 ±20 -0.05±0.04 14.6 ±9.2 21.6±9.0 0.19±0.36
1.5 – 1.9 664 ±28 705 ±28 0.03±0.03 21.6 ±9.0 32 ±11 -0.12±0.27
1.9 – 2.3 1545±28 1524 ±28 -0.01±0.01 23 ±14 22 ±16 -0.02±0.47
0.6 – 2.3 2664±55 2633 ±55 -0.01±0.01 62 ±21 79 ±22 0.12±0.22

Off–resonance Data
0.6 – 1.1 1282 1300 0.01 ± 0.02
1.1 – 1.5 940 1111 -0.07 ± 0.02
1.5 – 1.9 2403 2291 0.03 ± 0.02
1.9 – 2.3 3959 4455 -0.07 ± 0.02
0.6 – 2.3 8576 9157 -0.03 ± 0.01

Table 21: Fitted number of events in Argus and peaking the Crystal Ball fitted distributions
in on–resonance sideband data, on–resonance continuum enriched and suppressed data, an-
tiveto sample and off–resonance data for b and b flavors. The corresponding CP asymmetry
is computed.
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Argus

PK(GeV) b b ACP

K On–resonance sideband data
0.2 – 0.4 1092 ±33 1061 ±33 -0.014 ±0.022
0.4 – 0.6 3633 ±60 3464 ±59 -0.024 ±0.012
0.6 – 0.8 3283 ±57 3061 ±55 -0.035 ±0.013
0.8 – 1.0 2346 ±48 2138 ±46 -0.046 ±0.015
1.0 – 1.2 2280 ±48 2285 ±48 0.001 ±0.015
1.2 – 2.0 8526 ±92 8523 ±92 0.000 ±0.007
2.0 – 3.0 2636 ±51 2601 ±51 -0.007 ±0.013
3.0 – 4.0 542 ±23 521 ±23 -0.020 ±0.030

Table 22: CP asymmetry dependence on the charged kaon momentum in on-resonance side-
band data.

Argus

PKS
(GeV) b b ACP

KS On–resonance sideband data
0.2 – 0.4 311±18 300 ±17 -0.018 ±0.041
0.4 – 0.6 836±29 780 ±28 -0.035 ±0.025
0.6 – 0.8 823±29 752 ±27 -0.045 ±0.025
0.8 – 1.0 743±27 753 ±27 0.007 ±0.026
1.0 – 1.2 681±26 663 ±26 -0.013 ±0.027
1.2 – 2.0 2501±50 2462 ±50 -0.008 ±0.014
2.0 – 3.0 835±29 812 ±28 -0.014 ±0.024
3.0 – 4.0 218±15 196 ±14 -0.053 ±0.054

Table 23: CP asymmetry dependence on the KS momentum in on–resonance sideband data.
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Tables 22 and 23), we find a small ACP in our expected result (see Tables 41 and 42 in

Appendix D).

The observed differences of the signal Monte Carlo are the shifts (ACP
Shift) we need to

apply on our final measurement. We take the difference assuming that the original fake

asymmetry in Monte Carlo is actually zero, and difference from zero is due to the statistical

fluctuations. The shifts we need to apply to data are shown in Table 24. The error of the

shifts is the sum in quadrature of the statistical error and the error from the variation of of

the weights ±1σ from Tables 22 and 23.

Note that for the lepton-tagged sample we need also to attribute an error due to the

lepton-tag asymmetry [31]. We attribute a total error of 0.01 for the tagging categories used

in our analysis.

MXs( GeV) ACP
Shift
tag. ACP

Shift
untag.

0.6 – 1.1 -0.014 ± 0.025 -0.014 ± 0.015
1.1 – 1.5 -0.016 ± 0.068 -0.016 ± 0.028
1.5 – 1.9 -0.017 ± 0.079 -0.016 ± 0.033
1.9 – 2.3 -0.017 ± 0.091 -0.017 ± 0.038
0.6 – 2.3 -0.014 ± 0.023 -0.014 ± 0.015
B0 -0.006 ± 0.028 -0.006 ± 0.014
B ±(K±) 0.0041 ± 0.045 -0.007 ± 0.018
B ±(K0) -0.026 ± 0.060 -0.048 ± 0.026

Table 24: Shifts due to the fake detector CP asymmetry in reconstructed data signal events
as a function of the hadronic mass bins for lepton-tagged (ACP

Shift
tag. ) and untagged events

(ACP
Shift
untag.). This is our only systematic error.
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10 Results

You need to be really concerned when statements like that come from me.

In this section the determination of the ACP as a function of the hadronic mass is per-

formed. In the following, we describe the formula used for the measurement of ACP , and a

summary of the inputs for calculating ACP . We then present the results from our measure-

ment. We remind ourselves that the formula for calculating ACP from experimental values

was defined before as Equation 48:

ACP = (Ameasured
CP − ∆D

2
)

1

< D >
− AShift

CP .

10.1 ACP (b → sγ) Numerical Inputs from Monte Carlo

Table 25 shows a summary of the reconstructed number of Monte Carlo b and b events

events for the categories we study, computed as the difference between the background

subtracted Monte Carlo events and the expected peaking contribution from cross-feed and

B B Monte Carlo events. The relation between the reconstructed number of events, the

background subtracted Monte Carlo events and the expected peaking contribution was shown

in Section 7. The values for the Monte Carlo samples are already reported in Section 7 and

copied here again for clarity.

Table 26 shows a summary of the values of ∆D and < D > obtained from the mistag

rates for b and b events. Using Equations (49), (50), (51), (52) we derive the relation between

∆D and < D > and the mistag rates, Equations 51 and 52.

The mistag rates were already derived in Appendix D.1 and reported now again for

clarity.

Finally, the detector ACP , as derived in the systematic Section 9.1, is reported in Table 27.

All the ingredients necessary to compute the CP asymmetry in Monte Carlo are now in place
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and it will be described in the next section.

Expectations from MC events
Peaking background events Full MC peaking events nrecoed

MXs( GeV) b b b b b b

Lepton–tagged events
0.6-1.1 1.3±2.7 4.4±2.3 51.1±8.0 55.9 ±8.3 49.8 ± 8.4 51.5 ± 8.6
1.1-1.5 -0.3±2.0 0.5±1.9 22.2±5.7 21.6 ±5.5 22.5 ± 6.0 21.1 ± 5.8
1.5-1.9 1.9±2.8 2.2±2.7 17.6±5.0 16.1±5.0 15.7 ± 5.7 13.9 ± 5.7
1.9-2.3 -0.9±3.1 1.5±3.4 5.3 ±4.9 8.0 ±4.5 6.2 ± 5.8 6.5 ± 5.6
0.6-2.3 1.8±5.9 8.2±5.7 98± 12 104±12 96.2 ± 13.37 95.8 ± 13.3
B0 1.2 ± 3.9 4.0 ± 3.8 52.9 ± 8.6 56.4 ± 8.4 51.7 ± 9.4 52.4 ± 9.2
B ±(K±) 3.0 ± 3.6 3.9 ± 3.6 29.0 ± 6.6 31.3 ± 7.0 26.0 ± 7.5 27.4 ± 7.9
B ±(K0) -2.19± 2.3 0.2 ± 2.0 16.5 ± 5.5 15.0 ± 4.9 18.7 ± 6.0 14.8 ± 5.3

Lepton–untagged events
0.6-1.1 22 ±11 14 ±10 434±31 435 ±29 412 ± 33 421 ± 31
1.1-1.5 6.3±6.5 4.9±5.9 167± 20 152 ±20 161 ± 21 147 ± 21
1.5-1.9 10.9±9.0 4.9 ±7.3 91±21 90 ±19 80 ± 23 85 ± 20
1.9-2.3 18±13 21±13 22±23 69±25 4 ± 26 48 ± 28
0.6-2.3 40±19 48±19 714±50 754 ±48 674 ± 53 706 ± 52
B0 18 ± 13 21 ± 13 419 ± 34 420 ± 33 401 ± 36 399 ± 35
B ±(K±) 14 ± 11 20 ± 11 180 ± 28 180 ± 26 166 ± 30 160 ± 28
B ±(K0) 9.0± 8.8 6.8± 8.4 113 ± 22 150 ± 22 104 ± 24 143 ± 24

Table 25: Monte Carlo peaking background, full Monte Carlo peaking events and recon-
structed number of events from the difference of the full Monte Carlo peaking events and
Monte Carlo peaking background as a function of the hadronic mass bins for lepton–tagged
and untagged events. The quoted errors are just statistical errors.

10.2 Expected ACP (b → sγ) in Monte Carlo Events

The ACP in Monte Carlo events, using Equation (48), and using the input numbers from

Tables 25, 26 and 27, are shown in Table 28. As can be observed in Table 28, we do not

expect an asymmetry in Monte Carlo events.

10.3 Data Fits

Figure 34 shows the background subtracted fits to the data for MXs = 0.6 − 2.3 GeV.

The results for all the categories we study are shown in Table 29. The expected peaking
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Lepton–tagged events
MXs( GeV) ω ω ∆D < D >
0.6 – 1.1 0.0017 ± 0.0009 0.006 ± 0.002 0.004 ± 0.002 0.996 ± 0.001
1.1 – 1.5 0.013 ± 0.007 0.014 ± 0.008 0.001 ± 0.011 0.987 ± 0.005
1.5 – 1.9 – 0.012 ± 0.0009 0.0120 ± 0.0009 0.9940 ± 0.0005
1.9 – 2.3 0.015 ± 0.011 – -0.015 ± 0.011 0.993 ± 0.006
0.6 – 2.3 0.0021 ± 0.0009 0.007 ± 0.002 0.005 ± 0.002 0.995 ± 0.001
B0 0.004 ± 0.002 0.012 ± 0.003 0.008 ± 0.004 0.992 ± 0.002
B ±(K±) – – – –
B ±(K0) 0.006 ± 0.003 0.002 ± 0.002 -0.004 ± 0.004 0.996 ± 0.002

Lepton–untagged events
MXs( GeV) ω ω ∆D < D >
0.6 – 1.1 0.0049 ± 0.0005 0.0052 ± 0.0008 0.0003 ± 0.0009 0.9950 ± 0.0005
1.1 – 1.5 0.012 ± 0.003 0.008 ± 0.003 -0.004 ± 0.004 0.990 ± 0.002
1.5 – 1.9 0.004 ± 0.002 0.007 ± 0.004 0.003 ± 0.004 0.995 ± 0.002
1.9 – 2.3 0.014 ± 0.004 0.010 ± 0.005 -0.004 ± 0.006 0.988 ± 0.003
0.6 – 2.3 0.0052 ± 0.0005 0.0056 ± 0.0007 -0.004 ± 0.006 0.988 ± 0.003
B0 0.0073 ± 0.0008 0.0072 ± 0.0011 0.000 ± 0.001 0.9928 ± 0.0007
B ±(K±) 0.0014 ± 0.0005 0.0009 ± 0.0006 0.000 ± 0.001 0.9989 ± 0.0004
B ±(K0) 0.006 ± 0.001 0.007 ± 0.002 0.001 ± 0.002 0.994 ± 0.001

Table 26: The dilution difference, ∆D, and average, < D >, and mis–tag rates (ω and ω
for b and b events, respectively) as derived from signal Monte Carlo events in Section D.1
for lepton–tagged and untagged events. Where there is – means that there were not enough
statistics.

MXs( GeV) ACP
Shift
tag. ACP

Shift
untag.

0.6 – 1.1 -0.014 ± 0.025 -0.014 ± 0.015
1.1 – 1.5 -0.016 ± 0.068 -0.016 ± 0.028
1.5 – 1.9 -0.017 ± 0.079 -0.016 ± 0.033
1.9 – 2.3 -0.017 ± 0.091 -0.017 ± 0.038
0.6 – 2.3 -0.014 ± 0.023 -0.014 ± 0.015
B0 -0.006 ± 0.028 -0.006 ± 0.014
B ±(K±) 0.0041 ± 0.045 -0.007 ± 0.018
B ±(K0) -0.026 ± 0.060 -0.048 ± 0.026

Table 27: Shifts due to the fake detector CP asymmetry in reconstructed data signal events
as a function of the hadronic mass bins for lepton–tagged (ACP

Shift
tag.) and untagged events

(ACP
Shift

untag.).
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MXs( GeV) ACP
MC
tag. ACP

MC
untag.

0.6 – 1.1 0.02 ± 0.12 0.01 ± 0.05
1.1 – 1.5 -0.03 ± 0.19 -0.04 ± 0.10
1.5 – 1.9 -0.06 ± 0.27 0.03 ± 0.18
1.9 – 2.3 0.02 ± 0.64 0.85 ± 1.00
0.6 – 2.3 0.00 ±0.10 0.02 ± 0.05
B0 0.00 ± 0.13 0.00 ± 0.06
B ±(K±) 0.03 ± 0.20 -0.02 ± 0.13
B ±(K0) -0.12 ± 0.24 0.16 ± 0.14

Table 28: Expected ACP (in Monte Carlo) as a function of the hadronic mass bins. The
ACP is not corrected by the mistag rate and the detector shift. The quoted errors are just
statistical errors.

contribution from cross-feed and B B Monte Carlo are used for background subtraction. We

have now all the information needed in order to measure the direct CP violation in data.

10.4 Measured ACP (b → sγ) in Data Events

The measured ACP in data events, using Equation (48), and using the input numbers from

Tables 26, 27 and 29 is shown in Table 30 for all of our categories. The same results described

in Table 30 are also presented in Figure 35 for clarity.

The measured value of the ACP for MXs= 0.6 − 2.3 GeV is our most significant result,

and is consistent with zero within 5.0 % statistical error and 1.5 % systematical error. The

breakdown in categories show that the results are all consistent with zero within 1-2 σ. We

note the opposite behavior of the last two categories (B±(K±) and B±(K0)). These two

categories are 2.3 σ apart and represent the values of the direct CP asymmetry for the

charged B categories split into charged and neutral kaons. When we further investigate this

deviation and find that:

• The asymmetry is only seen in hadronic masses greater than 1.1 GeV. There is no

asymmetry in the K∗ region.
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Data events
Full MC peaking events nrecoed

MXs(GeV) b b b b

Lepton–tagged events
0.6-1.1 45.2 ± 8.3 44.9 ± 8.8 40.8 ± 8.6 43.6 ± 9.2
1.1-1.5 21.3 ± 5.2 19.7 ± 5.9 20.8 ± 5.5 20 ± 6.2
1.5-1.9 21.9 ± 6.7 18.9 ± 5.5 19.7 ± 7.2 16.9 ± 6.2
1.9-2.3 10.0 ± 5.1 17.3 ± 4.9 8.5 ± 6.1 18.2 ± 5.8
0.6-2.3 99.0 ± 13.0 102.0 ± 12.0 90.8 ± 14.2 100.2 ± 13.4
B0 52.2 ± 9.1 57.6 ± 9.1 48.2 ± 9.9 56.4 ± 9.9
B ±(K±) 37.0 ± 7.4 24.7 ± 6.6 33.1 ± 8.2 21.7 ± 7.6
B ±(K0) 10.1 ± 4.8 19.3 ± 5.2 9.9 ± 5.2 21.5 ± 5.6

Lepton–untagged events
0.6-1.1 392 ± 30 418 ± 31 378 ± 31.6 396 ± 32.9
1.1-1.5 167 ± 21 142 ± 22 162.1 ± 21.8 135.7 ± 22.9
1.5-1.9 144 ± 18 135 ± 19 139.1 ± 19.4 124.1 ± 21.0
1.9-2.3 122 ± 26 85 ± 33 101 ± 29.1 67 ± 35.5
0.6-2.3 835 ± 51 809 ± 51 787 ± 54.4 769 ± 54.4
B0 476 ± 34 465 ± 36 455 ± 36 447 ± 38
B ±(K±) 249 ± 29 162 ± 28 229 ± 31 148 ± 30
B ±(K0) 107 ± 23 175 ± 23 100 ± 24 166 ± 25

Table 29: Data peaking yield and corresponding reconstructed number of events (after the
Monte Carlo peaking background from Table 25 is subtracted) as a function of the hadronic
mass bins. The quoted errors are just statistical errors.

MXs( GeV) ACP tag. ACP untag.

0.6 – 1.1 -0.02 ± 0.15 ± 0.03 0.003 ± 0.059 ± 0.015
1.1 – 1.5 0.04 ± 0.21 ± 0.07 0.108 ± 0.108 ± 0.018
1.5 – 1.9 0.09 ± 0.26 ± 0.08 0.072 ± 0.110 ± 0.033
1.9 – 2.3 -0.34 ± 0.34 ± 0.09 0.224 ± 0.293 ± 0.038
0.6 – 2.3 -0.04 ± 0.10 ± 0.02 0.025 ± 0.050 ± 0.015
B0 -0.08 ± 0.14 ± 0.03 0.015 ± 0.059 ± 0.014
B ±(K±) 0.20 ± 0.20 ± 0.05 0.222 ± 0.117 ± 0.018
B ±(K0) -0.34 ± 0.25 ± 0.06 -0.201 ± 0.135 ± 0.026

Table 30: Measured final ACP in data as a function of the hadronic mass bins.
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Figure 34: mES plot for all for data events (MXs= 0.6–2.3 GeV): the first row shows the
lepton–tagged events, the second row shows the lepton–untagged events. The left column
shows the b flavor sample, the left column shows the b flavor sample.

• The asymmetry is not seen in two hadronic body final states (non resonant Kπ decays).

• The asymmetry is seen in three and four hadronic body final states (Kππ and Kπππ

decays).

• The asymmetry is seen in the tagged sub–sample. Since the tagging is limited to the

other B, this is almost an independent sample.
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)
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Figure 35: Measured ACP values for all the studied categories for lepton–tagged (triangles)
and untagged (circles) events. The ACP numbers are for the untagged events.
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The further breakdown of the CP asymmetry in the charged B modes can be seen in

Figures 36 and 376.

We conclude that we are statistically limited and for now we interpret the split as a

statistically fluctuation. More data will enlighten the reasons of the current 2.3 σ in the

charged B categories.

Finally, as shown in Table 30, the results obtained using lepton-tagged and untagged

samples are very consistent, although the lepton-tagged sample corresponds only to a fraction

of the total sample.

6As we do not have the breakdown of the mistag rates and detector shifts as a function of the decay mode
and hadronic mass bins, which are limited by the signal statistics, the mistag rate and detector asymmetry
as for the all category MXs= 0.6–2.3 GeV are used.
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γ ±π S K→ ±B

γ 0π ± K→ ±B

γ ±π ± K→ 0B

γ ±π ±π ± K→ ±B

γ 0± ±π S K→ ±B

γ 0π ±π ± K→ 0B

 γ ±π ±π ±π S K→ ±B

γ  0π ±π  ±π ± K→ ±B

γ  ±π ±π ±π ± K→ 0B

 syst± stat ±  CP A
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 0.015± 0.634 ±-0.487 

 0.015± 0.192 ±0.205 

 0.015± 0.118 ±0.298 

 0.015± 0.386 ±-0.552 

 0.015± 0.151 ±-0.020 

 0.015± 0.417 ±-0.304 

 0.015± 0.339 ±0.448 

 0.015± 0.306 ±0.110 
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Figure 36: Measured direct CP asymmetry as a function of decay mode.
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Figure 37: Measured direct CP asymmetry as a function of hadronic mass.
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11 Summary and Conclusions

It looks like we have done a precision study.

The measurements of the direct CP violation in the inclusive process b → sγ is performed

using 89 million BB pairs. Signal event yields are extracted from the exclusive reconstruction

of 12 final states, with continuum and BB backgrounds are reduced mainly by means of a

neural network variable. The B candidate with the smallest |∆E∗| is chosen if more than

one candidate survives the selection, and the mES distribution is fit to extract our signal. We

perform separate analyses with and without a lepton-tag from the other B, since the lepton-

tagging gives a significant reduction in continuum background. The flavor of the exclusive

final states is identified either by the overall charge for B± decays, or by the charge of the

Kaon in the Xs system, for B0 decays.

We split our sample into several categories for which the direct CP asymmetry is mea-

sured. We show that the asymmetry does not depend on the hadronic mass, with the direct

CP asymmetry using all our reconstructed events is [38]:

ACP = 0.025 ± 0.050 ± 0.015,

for the lepton–untagged sample, and

Atag
CP = −0.038 ± 0.103 ± 0.023,

for the lepton tagged sample. The results are consistent with Standard Model predictions

within the experimental resolution. These results bound an ACP asymmetry in B → Xsγ

decays to −0.06 < ACP (b → sγ) < +0.11 at the 90% confidence level.

We can compare our results with the BELLE result of ACP in B → XSγ decays [27]

introduced earlier. With a data sample of 140 fb−1 they reconstruct 682 events to measure:

ABELLE
CP = −0.004 ± 0.051 ± 0.038.
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Both BELLE and BABAR ACP measurements are consistent with Standard Model pre-

dictions, but CP asymmetries can arise from various Standard Model extensions. Various

SUSY models (see Table 31) can increase CP asymmetries to >∼ 0.15 in B → XSγ decays,

and with our current analysis we can only limit the possible ACP parameter phase space.

Model ACP

Standard Model [25] +0.004
2 Higgs Doublet [39] +0.006
3 Higgs Doublet [39] ∼ −0.03 - +0.03

Supergravity [40, 41, 42] ∼ −0.10 - +0.10
SUSY with Squark Mixing [25, 43, 44] ∼ −0.15 - +0.15

SUSY with R-parity Violation [45] ∼ −0.17 - +0.17

Table 31: CP asymmetries in various models. Ranges are approximate using current knowl-
edge of B → Xsγ decays.

11.1 Outlook

By 2006 BABAR should accumulate ∼ 500 fb−1, and will improve our statistical errors by

more than a factor of two. With the higher statistical sample we can also perform dedicated

studies to determine detector CP effects that will reduce the systematic error by greater

than a factor of two.

With higher statistics, dedicated detector studies, and new signal extraction techniques,

future ACP measurements of B → XSγ decays should have total expected errors of < 0.02.

With these limits, we will be able to put stricter constraints on physics contributions beyond

the Standard Model.

All work supported in part by the U.S. Department of Energy under contracts number

DE-AC02-76SF00515 and DE-FG02-95ER40896.
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A Truth–Match for Signal and Cross–Feed

Truth–matching our signal events would mean finding a GHit associated track with the

B daughters and have the track come from the B (“full truth–match”). In reality, we

need to apply a “pseudo truth–match,” for which we use the information carried on by the

reconstructed hadronic mass, because the truth-matching is not perfect. This happens when

one of the reconstructed daughters is not close enough to the MC truth track in p/θ/φ.

Our strategy is to allow for a window in reconstructed/true (i.e. generated) hadronic mass

difference to catch the signal which would otherwise be lost. In Figure 38, the difference

between the reconstructed MXs and the true MXs for “fully truth–matched” signal events is

shown. This sample tells us which is our resolution on the hadronic mass.

Figure 39 shows the difference between the reconstructed MXs and the true MXs for

events which are not “fully truth–matched,” but whose tracks have an associated GHit track

and the B reconstructed final state is the same than the generated one. Both events with

MXs greater and lower (ie K∗ mass peak) than 1.1 GeV are shown. We can see that there is

a combination of signal and Xfeed. The cut at |Reco MXs- True MXs| < 0.05 GeV recovers

these lost signal events. Actually at lower MXs masses, the window does not need to be as

large due to the lower number of bodies. So for the K∗ region (MXs< 1.1 GeV) we only

require this window to be 0.025 GeV. The events which do not pass the cut on the hadronic

mass are considered cross–feed events.

Figure 40 shows all the other events, that is, the ones whose tracks have all a GHit track

associated but the reconstructed final state is different from the generated one, and all the

events in which at least a B daughter track does not have an associated GHit track.
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 / ndf 2χ   1292 / 81

Constant  99.43±  7076 
Mean      7.035e-05± 0.0001501 

Sigma     7.325e-05± 0.006907 
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Figure 38: (Reco MXs- True MXs)(GeV) for fully truth–matched signal events.
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Figure 39: (Reco MXs- True MXs)(GeV) for events which are not “fully truth–matched,”
but whose tracks have an associated GHit track and the B reconstructed final state is the
same than the generated one. The left plots shows the events for MXs> 1.1 and the right
one for MXs< 1.1.
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Figure 40: (Reco MXs- True MXs)(GeV) for Xfeed events: events whose tracks have all a
GHit track associated but the reconstructed final state is different from the generated one,
and all the events in which at least a B daughter track does not have an associated GHit
track.
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B The PDFs used in the fits

B.1 Argus Background Distribution

The Argus distribution for the background shape defined:

A(m ; m0, c) =
1

N
· m

√

1 − (m/m0)2 · exp(c (1 − (m/m0)
2)) (m < m0).

Note that m0 represents the kinematic upper limit for the constrained mass and is usually

held fixed at half of the center of mass energy (nominally 5.29 GeV/c2 for Y(4S) events) in

a fit. The minimum value of m0 must be ≥ the maximum value of m. The parameter c is

what is usually referred to as the Argus parameter or Argus shape parameter in the text.

B.2 Crystal Ball Line Shape Distribution

The Crystal Ball line shape distribution:

C(m ; m0, σ, α, n) =
1

N
·







exp (−(m − m0)
2/(2σ2)) , m > m0 − ασ

(n/α)n exp(−α2/2)

((m0 − m)/σ + n/α − α)n , m ≤ m0 − ασ,

is useful for fitting a radiative tail. It consists of a Gaussian signal peak matched to a power

law tail. Note that the tail parameter, n, is not necessarily an integer, and is usually held

fixed in a fit: lower values generate a longer tail. The parameter α determines the crossover

point from the Gaussian distribution to the power law tail distribution, in units of the peak

width, σ. Typical values for |α| are 0.6–1.1. With α > 0 the tail is below the peak, and with

a negative value and the two ranges switched the tail is above the peak.
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C Toy Study

To ensure that the fitting is done correctly, we run a toy Monte Carlo study. The toy Monte

Carlo example are not for b or b specific events, and were from an earlier data set without

optimized cuts. The toy set simply gives us a range of signal to background ratios to check

our fit technique.

First, we have checked that if the cross–feed and generic BB are added together, and

then fit with a single Crystal Ball and Argus function, we get the same number of peaking

background events in the Crystal Ball function as we do if we fit them separately. Examples

of the expected numbers of peaking events from several fits can be found in Table 32. In

the table we report the results from the fits to the Xfeed and B B samples separately, the

Xfeed and B B together, the Xfeed, B B and continuum together, the full Monte Carlo (i.e.

backgrounds and signal events summed up). The difference between the number of events

from the full Monte Carlo fit and the peaking component of the fit to the Xfeed, B B and

continuum together is our signal background subtracted, to be compared to the expected

signal events.

Second, we check whether the number of peaking background and signal events has any

bias. Table 33 gives the percent of the pulls and the statistical error in percent for our toy

Monte Carlo examples. Note that the statistical error is much larger than the pull error.

The largest expected pull relative to expected statistical error is less than 4%. This gives

an expected pull of < 1 event for the worst case scenario. The statistical errors of the full

fits are much larger that one event, so we conclude that the fit method does not contribute

a significant systematic error.
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MXs Peaking Peaking Peaking Combined Peaking Expected
(GeV) Xfeed BB Xfeed and BB Full Fit Signal
1.1-1.2 1.2±2.3 0.0±0.4 0.7±2.3 60±10 65.1
1.2-1.4 2.4±5.4 0.0±3.3 2.4±4.3 137±15 133.6
1.4-1.6 6.2±5.8 1.0±2.2 7.3±5.8 105±23 106.0
1.6-1.8 5.1±7.9 0.0±5.7 5.0±6.2 76±14 73.7
1.8-2.0 8.1±7.4 4.0±4.9 8.4±7.3 51±14 54.9
2.0-2.2 1.7±8.1 1.1±6.4 1.8±6.1 32±11 19.6
2.2-2.4 2.3±7.4 2.3±7.4 2.0±7.5 20±12 10.5

Table 32: This table shows results from toy data set fits to the peaking components of
Monte Carlo samples, number of expected peaking background from cross–feed and BB
Monte Carlo, their combined fit, fit after adding the continuum Monte Carlo, and then fit
after adding the signal Monte Carlo. One can subtract the “Peaking Combined Xfeed +
BB” from the “Peaking Full Fit” column to get the result in the “Signal” column. These
numbers come from the toy study data set, and are to be used to show that the fitting
technique is consistent.

MXs Pull in Stat. Error in Pull in Stat. Error in Pull in Stat. Error in
( GeV) Peaking BG (%) Peaking BG (%) Full BG (%) Full BG (%) Sig.+BG (%) Sig.+B (%)
1.1-1.2 9 329 8 111 1 52
1.2-1.4 12 179 12 214 2 36
1.4-1.6 12 79 13 506 1 22
1.6-1.8 9 124 12 783 3 18
1.8-2.0 6 87 31 181 4 12
2.0-2.2 7 66 18 81 8 12
2.2-2.4 2 375 10 275 2 9

Table 33: The pull error and statistical error for all the toy examples. Large statistical errors
come from low statistics, e.g. for the 1.6-1.8 GeV bin, the 783% statistical error comes from
an expected peaking component of 1.2±9.4 events. These numbers come from the toy study
data set, and are to be used to show that the fitting technique is consistent. All possible
pulls correspond to pulls of < 1 event in the final fit, and are not consistently in the positive
or negative yield direction.
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D Supplementary Systematics Section

D.1 CP Asymmetry in Mistagged Signal Monte Carlo Events due

to Mis-ID Biases

Some signal events are not properly tagged in the correct CP state due to detector effects.

This can generate a fake CP asymmetry. In this section we discuss only those events that

are still classified as “true” signal events, i.e. reconstructed in the same or opposite flavor,

and with a hadronic mass within 50 MeV of the generated value. Events reconstructed with

opposite flavor are what we call “mistagged” events.

Table 34 shows how signal events can have mis-identified particles. This can lead to

a different or identical CP to the one with which they were generated. In the table we

ignore cases in which the mis–ID is due to the combination of several sources as this gives

a negligible contribution. There is a negligible contribution to this from charge confusion,

(i.e. change of the charge(s) of a K+ and/or a π−), but there is a higher contribution from

pion mis–identification as a kaon7.

We estimate the mistag rate using reconstructed signal Monte Carlo event. However,

the Monte Carlo does not reproduce correctly the asymmetry in data events; we have re–

weighted the Monte Carlo events as described in Section 9.1, and we apply the tracking and

PID tables (pion to Kaon mis–identification rate as a function of the pion momentum from

the PID tables is shown in Table 43). The mistag rate is defined as the percentage of times

the wrong b–flavor is reconstructed with respect to all the events which pass the selection.

Results are reported in Table 35 as a function of the hadronic mass. The error on the mistag

rate is the sum in quadrature of the statistical error, and the error from the variation of

of the weights ±1 σ from Tables 22 and 23. Note that in case that there are not enough

7Note that we may easily have a kaon mis–identified as a pion (K+ → π+), since there is no particle
identification applied to the charged pions (i.e. we do not veto charged Kaons in the pion selection).
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statistics to measure the mistag rate, so we assume that the mistag rate is zero.

In order to estimate the flavor asymmetry in the misidentified events, we compute the

asymmetry of the wrongly reconstructed b flavor events versus the wrongly reconstructed

b events, normalized by the total events which pass the selection. The results are shown

in Table 36, and the asymmetry is consistent with zero within one sigma. The detector

asymmetry and the mistag rate error from the flavor asymmetry from misidentified events

is: the sum in quadrature of the statistical error and the error from the variation of of the

weights ±1 σ from Tables 22 and 23. Note that in case that there are not enough statistics

to measure the flavor asymmetry in the misidentified events, we assume that the flavor

asymmetry is zero.

Final State Same flavor Opposite flavor
B+ → Ksπ

+γ — π+ → π−

B+ → K+π0γ — K+ → K−

B0 → K+π−γ — K+π− → π+K−

B+ → K+π+π−γ K+π+ → π+K+ K+ → K−

B+ → Ksπ
+π0γ — π+ → π−

B+ → K+π0π0γ — K+ → K−

B0 → K+π−π0γ — K+π− → π+K−

B+ → Ksπ
+π−π+γ — π+ → π−

B+ → K+π+π−π0γ K+π+ → π+K+ K+ → K−

B+ → Ksπ
+π0π0γ — π− → π+

B0 → K+π−π+π−γ K+π+ → π+K+ K+π− → π+K−

B0 → K+π−π0π0γ — K+π− → π+K−

Table 34: Cases in which mistagged signal events generate the same or the opposite flavor
due to charge confusion or pion mis–ID as a Kaon. It is assumed that the signal events are
not re-classified as cross–feed as a result of the mis-interpretation.
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mistag rate for signal events
MXs( GeV) ωtag ωuntag

b flavor
0.6 – 1.1 0.0017 ± 0.0009 0.0049 ± 0.0005
1.1 – 1.5 0.013 ± 0.007 0.012 ± 0.003
1.5 – 1.9 – 0.004 ± 0.002
1.9 – 2.3 0.015 ± 0.011 0.014 ± 0.004
0.6 – 2.3 0.0021 ± 0.0009 0.0052 ± 0.0005
B0 0.004 ± 0.002 0.0073 ± 0.0008
B ±(K±) – 0.0014 ± 0.0005
B ±(K0) 0.006 ± 0.003 0.006 ± 0.001

b flavor
0.6 – 1.1 0.006 ± 0.002 0.0052 ± 0.0008
1.1 – 1.5 0.014 ± 0.008 0.008 ± 0.003
1.5 – 1.9 0.012 ± 0.0009 0.007 ± 0.004
1.9 – 2.3 – 0.010 ± 0.005
0.6 – 2.3 0.007 ± 0.002 0.0056 ± 0.0007
B0 0.012 ± 0.003 0.0072 ± 0.0011
B ±(K±) – 0.0009 ± 0.0006
B ±(K0) 0.002 ± 0.002 0.007 ± 0.002

Table 35: The mistag rate for signal events lepton-tagged (ωtag) and untagged (ωuntag) events
is shown for the b and b flavors. Monte Carlo events are re–weighted. Where there is a ”–,”
means that there were not enough statistics.

MXs( GeV) ACP
fake

tag. ACP
fake

untag.

0.6 – 1.1 -0.002 ± 0.001 -0.0002± 0.0004
1.1 – 1.5 0.000 ± 0.006 0.002 ± 0.002
1.5 – 1.9 -0.006 ± 0.005 -0.002 ± 0.002
1.9 – 2.3 0.008 ± 0.006 0.002 ± 0.004
0.6 – 2.3 -0.002 ±0.001 -0.0001± 0.0005
B0 -0.004 ± 0.002 0.000 ± 0.0008
B ±(K±) – 0.0003 ± 0.0005
B ±(K0) 0.002 ± 0.002 -0.0005 ± 0.0012

Table 36: Fake ACP in mistagged events due to detector bias as a function of the hadronic
mass bins. The events are split into lepton-tagged (ACP

fake
tag.) and untagged events

(ACP
fake

untag.). Monte Carlo events are re–weighted. Where there is a ”–,” means that
there were not enough statistics.
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D.2 CP Asymmetry in Cross-Feed Monte Carlo Events Due to

Detector Effects

There can also be a CP asymmetry in the cross–feed events due to detector efficiency bi-

ases. In this section we consider only the peaking component of the cross–feed which is

subtracted directly from the fitted yields in data. Cross–feed includes signal events which

are reconstructed in a different final state from which they were generated, either due to the

replacement of one particle by another (e.g. KS replaced by a charged kaon or π0 replaced

by a charged track), or due to the event being reconstructed with more or less particles

than the generated final state. Cross–feed also includes cases where the final state is the

same as from which they were generated (although it may have the opposite flavor), but the

reconstructed hadronic mass differs from the generated mass by more than 50 MeV. Finally,

the cross-feed includes the other b → sγ final states which were not included in our study.

Table 44 identifies the different cases in which replacing a particle leads to a final state

different from the signal final state. Table 45 shows the cases of adding or removing a particle.

Note that we have to include the cases where an initial mixed–flavor becomes a b or b flavor

(is included in our 12 modes), and where an initial b or b flavor becomes a mixed–flavor (is

removed from the 12 modes).

There are no recipes available for estimating the rates for replacing or adding particles,

so we use the peaking component of the cross–feed events from the reconstructed signal

Monte Carlo samples. Results of the difference in the peaking component of b and b cross-

feed events are shown in Table 37. As the statistical error is very large we do not observe

any asymmetry. We do not reweight the cross–feed events as we do for the signal, to take

into account detector asymmetries, because the statistical error is so large that variations of

1− 2 % are negligible. We note that the peaking background components are just ≤ 5 % of

the peaking yield.
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Cross–feed events

MXs( GeV) b b ACP
Xfeed
tag. b b ACP

Xfeed
untag.

0.6 – 1.1 3.85 ± 3.10 1.30 ± 3.73 0.50± 0.97 13.4 ± 10.0 22.3 ± 10.6 -0.25± 0.43
1.1 – 1.5 10.0 ± 49.2 10.0 ± 50.2 0.00±0 3.51 3.77 ± 5.73 5.22 ± 6.08 -0.16± 0.95
1.5 – 1.9 1.39 ± 2.29 1.0 ± 2.29 0.16± 1.37 3.77 ± 7.36 6.72 ± 7.57 -0.28 ±1.05
1.9 – 2.3 1.44 ± 2.22 0.38 ± 1.60 0.58 ±1.96 4.58 ± 6.65 -0.015 ± 6.36 1.01± 2.92
0.6 – 2.3 30.5 ± 14.6 2.77 ± 4.32 0.83± 0.80 30.5 ± 14.6 32.2 ± 14.9 -0.03± 0.33
B0 2.86 ± 2.95 0.31 ± 2.46 0.80 ± 1.69 15.29± 9.95 10.43 ± 9.99 0.19 ± 0.56
B ±(K±) 3.02 ± 3.40 2.05 ± 2.75 0.19 ± 0.91 10.03± 8.94 11.91 ± 8.86 -0.09 ± 0.58
B ±(K0) 0.75 ± 1.61 0.30 ± 2.05 0.43 ± 2.46 5.00 ± 6.58 9.71 ± 7.36 -0.32 ± 0.73

Table 37: Fit peaking component for b and b cross-feed Monte Carlo events and corresponding
ACP for lepton-tagged and untagged events. The events are scaled to luminosity.

D.3 Background Asymmetry of Monte Carlo Events

Similarly to signal events, background events are affected by the detector asymmetry. In

this section we study the apparent CP asymmetry in Monte Carlo background events. Note

that the fits (described in Section 7) assume that the b and b flavors have the same fitting

parameters. This assumption is cross-checked in Section D.4.

To study the Monte Carlo background asymmetry we look at the generic B B Monte

Carlo events and the continuum Monte Carlo events. We compare the number of events in

the fitted Argus shape and the peaking Crystal Ball for b and b events. Only lepton–untagged

samples are used because of higher statistics. The results are shown in Table 38. As in the

signal Monte Carlo events, we do not see any asymmetry in the background Monte Carlo

events.

D.4 Variation of Fitting Parameters

In performing the fits described in Section 7, the Crystal Ball and one of the two Argus

functions are fixed (see Table 15). The Crystal Ball parameters are obtained from a weighted

average of the parameters from the fit to the b + b signal events in the hadronic mass bins

(see Table 16). The fixed Argus shape parameters come from the fit to the continuum Monte



105

Argus Crystal Ball

MXs(GeV) b b ACP b b ACP

Generic B B MC
0.6 – 1.1 17.7±4.9 12.3±4.4 -0.18±0.22 -0.7±2.4 .7±2.8 0.01±2.2
1.1 – 1.5 19.4±4.8 20.2±4.8 0.02±0.18 0.6±2.0 0.1±1.7 -0.71±4.9
1.5 – 1.9 106 ±11 95 ±10 -0.05±0.07 2.9±4.8 8.0±2.8 0.47±0.44
1.9 – 2.3 493 ±24 490 ±24 0.00±0.03 1.9±10.2 14.9±10.6 0.77±1.12
0.6 – 2.3 636±28 641 ±28 0.004±0.31 5.1±11.6 13.9±11.8 0.46 ±0.96
B0 284±19 281±19 -0.01±0.05 6.3±8.6 4.6±8.3 -0.16±1.12
B ±(K±) 214±16 224±16 0.02±0.05 0.0±6.1 7.6±6.7 0.33±0.43
B ±(K0) 137±13 137±13 0.00±0.07 -0.9±4.9 1.2±5.2 0.91±4.33

Continuum MC
0.6 – 1.1 1261 1245 -0.01 ± 0.02
1.1 – 1.5 848 842 0.00 ± 0.02
1.5 – 1.9 1570 1531 -0.01 ± 0.02
1.9 – 2.3 2879 2842 -0.01 ± 0.01
0.6 – 2.3 6576 6460 -0.009 ± 0.009
B0 2584 2548 -0.01±0.01
B ±(K±) 2491 2369 -0.02±0.01
B ±(K0) 1573 1543 -0.01±0.02

Table 38: Fitted number of events in Argus and peaking the Crystal Ball fitted distributions
in generic B B and continuum Monte Carlo events for b and b flavors. The corresponding
CP asymmetry is computed. The events are lepton–untagged.
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Carlo.

In this section, we cross–check that the fitting parameters are identical between the b

and b flavors. We have looked at the lepton–untagged sample as there are more statistics.

We have made the following tests:

• We have looked at the fits on the continuum Monte Carlo and checked that the Argus

shape parameter is the same for b and b final states (see Table 46).

• We have fit the signal events with a free Crystal Ball shape and checked that the Argus

shape parameter is the same for b and b final states (see Table 47).

• We have looked at the fits on Xfeed+BB background and checked that the Argus

shape parameter is the same for b and b final states (see Table 48).

The results are practically identical between the b and b final states, as expected. Thus,

we do not attribute any systematic error for possible differences in the fitting parameters.

D.5 NN Validation

We validate the NN showing that there is a good agreement between data and Monte Carlo

for both the background and signal events. In order to compare the NN for background

events, we have used the 9.6 fb−1 of off–resonance data. The overlay of the off-resonance

data and continuum Monte Carlo (normalized to the same luminosity) is shown in Figure 41.

Similarly, we look at the NN for the signal B → K∗γ data (see section 8) and Monte Carlo

events in Figure 42 for lepton-tagged and untagged events.

D.6 Fragmentation Corrections

The Monte Carlo generator for inclusive B → XSγ uses JETSET to fragment the XS system,

ignoring resonant substructure. The fractions of each final state obtained from JETSET are
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Figure 41: The left plot is an overlay of 9.6 fb−1 of off-resonance data on top of an equal
amount of uds and cc Monte Carlo. The right plot is of the off-resonance NN output (after
all cuts and |∆E∗| best candidate selection) for the b (circles) and b (triangles) final states.
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Figure 42: The plots (left untagged background subtracted, right tagged) are an overlay
of scaled B → K∗γ Monte Carlo signal, and on resonance data after all the selection cuts
are applied. Moreover, the mES cut has been tightened to 5.271 GeV to show the NN
performance on “signal” like events.
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not expected to model the data accurately due to this unmodeled resonance structure. To

check this, we compare data and Monte Carlo fractions above MXs = 1.1GeV in the various

categories. In particular, the dominant contribution will be given by the ratio of charged and

neutral kaons. When applying the fragmentation corrections, we re-weight both the signal

and cross–feed events according to the data Monte Carlo comparison.

We first try a “worst case” scenario by reweighting the Monte Carlo K± to KS ratio. We

increase the K± relative yields by 10% in signal Monte Carlo events. We refit the peaking

background events and the full Monte Carlo events, and from the difference of the peaking

components we compute the ACP . The results can be found in Table 39 and show no evidence

of an induced ACP . We have also done the same study with the π0 to π ratio set to 1.5. This

50% deviation gives a CP asymmetry of 0.05 ± 0.07.

# Peaking Background # Peaking Signal + Background

MXs(GeV) b b b b ACP

lepton-tagged events
0.6-1.1 1.7±2.4 0.9±2.4 60.8±8.6 55.3±8.2 0.050±0.10
1.1-1.5 0.4±2.0 -0.4±2.3 28.1±6.2 29.2±6.5 -0.02±0.16
1.5-1.9 3.1±3.1 3.6±3.5 22.0±5.8 25.4±6.2 -0.07±0.18
1.9-2.3 4.3±4.3 -2.2±4.2 12.5±5.6 6.5±5.5 0.32±0.44
0.6-2.3 12.6 ±6.7 2.3 ±6.8 125±13 119 ±14 0.02 ± 0.08

Lepton–untagged events
0.6-1.1 17.1±9.3 14.7±9.7 411±27 424±30 -0.02±0.04
1.1-1.5 6.5±6.0 7.5±6.7 169±21 183±22 -0.04±0.08
1.5-1.9 6.9±8.1 15.7±9.8 95±21 119±25 -0.11±0.16
1.9-2.3 17±14 12±14 101±30 76±28 0.14±0.24
0.6-2.3 48 ± 21 58 ±21 776± 51 777±53 0.00 ± 0.05

Table 39: Number of peaking background events and number of peaking signal and back-
ground events, for lepton-tagged and untagged events, with K± yield increased by 10%.

Then by looking at data we found a K+ to KS ratio of 1.08 ± 0.08, and a π0 to π ratio

of 1.20. So we reweighted the signal Monte Carlo by a factor of 1.08 for the kaon ratio and
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1.2 for the pion ratio. This reweighting of the Monte Carlo to data gave a CP asymmetry

of -0.003 ± 0.052.

We also checked that the B +(K+) decay to B 0(K0) decay (The B 0(K0) decays were not

used in the main analysis.) ratio was the same as found earlier for the K+ to KS ratio. We

found the B +(K+) decay to B 0(K0) decay ratio to be 0.99 ± 0.11, and in good agreement

with the previous K+ to KS ratio.

Momentum RUN1 RUN2
( GeV) ε(K+) ε(K−) ε(K+) ε(K−) ACP

Det

0.250–0.500 1.000 ± 0.014 1.000 ± 0.014 1.000 ± 0.013 0.990 ± 0.013 -0.003 ± 0.007
0.500–0.625 0.935 ± 0.011 0.907 ± 0.010 0.918 ± 0.009 0.877 ± 0.010 -0.019 ± 0.005
0.625–0.750 0.812 ± 0.010 0.791 ± 0.010 0.807 ± 0.009 0.783 ± 0.009 -0.014 ± 0.006
0.750–0.875 0.713 ± 0.010 0.713 ± 0.010 0.716 ± 0.008 0.690 ± 0.009 -0.011 ± 0.006
0.875–1.000 0.807 ± 0.009 0.771 ± 0.009 0.798 ± 0.007 0.786 ± 0.008 -0.014 ± 0.005
1.000–1.120 0.855 ± 0.008 0.839 ± 0.008 0.854 ± 0.007 0.827 ± 0.007 -0.013 ± 0.004
1.120–1.250 0.864 ± 0.008 0.857 ± 0.007 0.857 ± 0.006 0.860 ± 0.006 -0.001 ± 0.004
1.250–1.500 0.884 ± 0.005 0.875 ± 0.005 0.881 ± 0.004 0.865 ± 0.004 -0.007 ± 0.003
1.500–1.750 0.888 ± 0.005 0.892 ± 0.005 0.885 ± 0.004 0.883 ± 0.004 0.001 ± 0.002
1.750–2.000 0.888 ± 0.005 0.885 ± 0.005 0.891 ± 0.004 0.884 ± 0.004 -0.003 ± 0.003
2.000–2.250 0.898 ± 0.005 0.879 ± 0.006 0.893 ± 0.005 0.893 ± 0.005 -0.004 ± 0.003
2.250–2.500 0.878 ± 0.007 0.888 ± 0.006 0.878 ± 0.006 0.881 ± 0.005 0.003 ± 0.003
2.500–2.750 0.879 ± 0.007 0.861 ± 0.008 0.872 ± 0.006 0.851 ± 0.007 -0.011 ± 0.004
2.750–3.000 0.857 ± 0.009 0.829 ± 0.009 0.845 ± 0.008 0.835 ± 0.008 -0.011 ± 0.005
3.000–3.250 0.810 ± 0.011 0.792 ± 0.012 0.815 ± 0.009 0.800 ± 0.010 -0.010 ± 0.006
3.250–3.500 0.763 ± 0.014 0.749 ± 0.014 0.763 ± 0.012 0.732 ± 0.012 -0.016 ± 0.009
3.500–3.750 0.698 ± 0.017 0.680 ± 0.017 0.708 ± 0.014 0.701 ± 0.014 -0.008 ± 0.011
3.750–4.000 0.623 ± 0.020 0.611 ± 0.021 0.638 ± 0.016 0.616 ± 0.017 -0.015 ± 0.015
4.000–5.000 0.458 ± 0.015 0.431 ± 0.015 0.440 ± 0.013 0.437 ± 0.013 -0.014 ± 0.016
0.250–5.000 0.848 ± 0.002 0.834 ± 0.002 0.848 ± 0.001 0.834 ± 0.001 -0.0061 ± 0.0009

Table 40: Kaon efficiency ε(K+) and ε(K−) for positively and negatively charged kaons
during RUN1 and RUN2 as a function of the kaon momentum and the resulting detector
efficiency CP asymmetry. The kaon efficiency is obtained from the official PID tables. The

apparent CP asymmetry is defined as ACP
Det =

ε(K−) − ε(K+)

ε(K−) + ε(K+)
.
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Categories ACP
Det

tag. ACP
Det

untag.

MXs= 0.6 – 1.1 GeV 0.013 ± 0.015 0.000 ± 0.005
MXs= 1.1 – 1.5 GeV -0.027 ± 0.048 -0.014 ± 0.018
MXs= 1.5 – 1.9 GeV 0.040 ± 0.055 0.041 ± 0.021
MXs= 1.9 – 2.3 GeV -0.029 ± 0.064 0.035 ± 0.024
MXs= 0.6 – 2.3 GeV 0.009 ± 0.013 0.003 ± 0.005
B0 0.018 ± 0.018 0.002 ± 0.006
B ±(K±) -0.025 ± 0.028 -0.027 ± 0.010
B ±(K0) 0.000 ± 0.031 0.011 ± 0.011

Table 41: Apparent CP asymmetry in reconstructed Monte Carlo signal events due to the
detector efficiency bias as a function of the hadronic mass bins for lepton-tagged (ACP

Det

tag.) and untagged events (ACP
Det

untag.).

MXs( GeV) ACP
Det

tag. ACP
Det

untag.

0.6 – 1.1 -0.002 ± 0.015 -0.014 ± 0.006
1.1 – 1.5 -0.043 ± 0.047 -0.031 ± 0.018
1.5 – 1.9 0.023 ± 0.055 0.025 ± 0.021
1.9 – 2.3 -0.046 ± 0.063 0.017 ± 0.024
0.6 – 2.3 -0.005 ± 0.013 -0.012 ± 0.005
B0 0.012 ± 0.018 -0.003 ± 0.006
B ±(K±) -0.032 ± 0.028 -0.034 ± 0.010
B ±(K0) -0.047 ± 0.030 -0.037 ± 0.011

Table 42: Apparent CP asymmetry in reconstructed Monte Carlo signal events due to the
detector efficiency bias as a function of the hadronic mass bins for lepton-tagged (ACP

Det

tag.) and untagged events (ACP
Det

untag.). The signal events are re–weighted according to the
ACP found in data events.
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Momentum Range RUN1 RUN2
( GeV) ε(π+ → K+) ε(π− → K−) ε(π+ → K+) ε(π− → K−) ACP

fake

0.250–0.500 0.004 ± 0.003 0.003 ± 0.002 0.004 ± 0.002 0.003 ± 0.002 -0.0003 ± 0.0012
0.500–0.625 0.020 ± 0.004 0.011 ± 0.003 0.011 ± 0.003 0.008 ± 0.002 -0.0029 ± 0.0014
0.625–0.750 0.028 ± 0.004 0.019 ± 0.003 0.015 ± 0.002 0.017 ± 0.003 -0.0007 ± 0.0014
0.750–0.875 0.001 ± 0.001 0.003 ± 0.002 0.002 ± 0.001 0.002 ± 0.001 0.0004 ± 0.0007
0.875–1.000 0.007 ± 0.002 0.010 ± 0.002 0.008 ± 0.009 0.009 ± 0.002 0.0011 ± 0.0010
1.000–1.120 0.013 ± 0.003 0.012 ± 0.003 0.014 ± 0.002 0.011 ± 0.002 -0.0016 ± 0.0012
1.120–1.250 0.019 ± 0.003 0.018 ± 0.003 0.017 ± 0.002 0.018 ± 0.002 -0.0000 ± 0.0013
1.250–1.500 0.021 ± 0.002 0.015 ± 0.002 0.021 ± 0.002 0.016 ± 0.002 -0.0029 ± 0.0010
1.500–1.750 0.017 ± 0.002 0.016 ± 0.002 0.021 ± 0.002 0.014 ± 0.002 -0.0024 ± 0.0010
1.750–2.000 0.018 ± 0.003 0.020 ± 0.003 0.020 ± 0.002 0.017 ± 0.002 -0.0005 ± 0.0011
2.000–2.250 0.024 ± 0.003 0.024 ± 0.003 0.019 ± 0.002 0.018 ± 0.002 -0.0003 ± 0.0013
2.250–2.500 0.031 ± 0.004 0.030 ± 0.004 0.026 ± 0.003 0.028 ± 0.003 0.0002 ± 0.0017
2.500–2.750 0.016 ± 0.004 0.022 ± 0.004 0.023 ± 0.004 0.026 ± 0.004 0.0026 ± 0.0018
2.750–3.000 0.031 ± 0.005 0.028 ± 0.005 0.027 ± 0.004 0.032 ± 0.004 0.0009 ± 0.0023
3.000–3.250 0.029 ± 0.006 0.033 ± 0.007 0.027 ± 0.005 0.032 ± 0.005 0.0031 ± 0.0028
3.250–3.500 0.024 ± 0.006 0.029 ± 0.007 0.035 ± 0.007 0.028 ± 0.006 -0.0002 ± 0.0031
3.500–3.750 0.046 ± 0.010 0.047 ± 0.010 0.041 ± 0.009 0.033 ± 0.008 -0.0036 ± 0.0045
3.750–4.000 0.037 ± 0.011 0.025 ± 0.010 0.023 ± 0.008 0.019 ± 0.007 -0.0052 ± 0.0044
4.000–5.000 0.021 ± 0.007 0.023 ± 0.008 0.019 ± 0.006 0.027 ± 0.007 0.0054 ± 0.0034
0.250–5.000 0.019 ± 0.001 0.016 ± 0.001 0.019 ± 0.001 0.016 ± 0.001 -0.0008 ± 0.0003

Table 43: Pion to Kaon mis–ID rates ε(π+ → K+) and ε(π− → K−) for positively and
negatively charged pions during RUN1 and RUN2 as a function of the pion momentum and
the resulting fake CP asymmetry. The pion mis–ID rates are obtained from the official PID

tables. The fake CP asymmetry is defined as ACP
fake =

ε(π− → K−) − ε(π+ → K+)

ε(K−) + ε(K+)
.
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Final States Same flavor Opp. flavor To mixed-flavor From mixed-flavor
B+ → Ksπ

+γ — Ks → K− — —
B+ → K+π0γ π0 → π− — — —
B0 → K+π−γ — K+ → Ks — —
B0 → Ksπ

0γ — — — Ks → K±

π0 → π±

B+ → K+π+π−γ π+ → π0 K+ → Ks — —
B+ → Ksπ

+π0γ — Ks → K− π+,0 → π0,− —
B+ → K+π0π0γ π0 → π− — K+ → Ks —
B0 → Ksπ

+π−γ — — — Ks → K±

π± → π0

B0 → K+π−π0γ π0,− → π+,0 K+ → Ks — —
B0 → Ksπ

0π0γ — — — Ks → K±

π0 → π±

B+ → Ksπ
+π−π+γ — Ks → K− π+ → π0 —

B+ → K+π+π−π0γ π+,0 → π0,− — K+ → Ks

B+ → Ksπ
+π0π0γ — Ks → K− π+ → π0 —

B0 → K+π−π+π−γ π− → π0 K+ → Ks — —
B0 → Ksπ

0π+π−γ — — — Ks → K±

π±,0 → π0,±

B0 → K+π−π0π0γ π−,0 → π0,+ K+ → Ks — —

Table 44: Cross–feed events that can contribute to CP asymmetries due to replacement
of a final state particle. The table also includes cases where not mixed–flavors change to
mixed-flavors, and vice-versa.
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Final States Same flavor Opposite flavor To mixed-flavor From mixed-flavor
B+ → Ksπ

+γ +π0 — +π− —
B+ → K+π0γ +π0, +π− — — —
B0 → K+π−γ +π0, +π+ — — —
B0 → Ksπ

0γ — — +π0 +π±

B+ → K+π+π−γ +π0, −π+, +π− — — —
B+ → Ksπ

+π0γ ±π0 — — +π−

B+ → K+π0π0γ −π0,+π− — — —
B0 → Ksπ

+π−γ — — +π0 ±π±

B0 → K+π−π0γ ±π0,−π−,+π+ — — —
B0 → Ksπ

0π0γ — — −π0 +π±

B+ → Ksπ
+π−π+γ — — — −π+

B+ → K+π+π−π0γ −π+, −π0 — — —
B+ → Ksπ

+π0π0γ −π0 — −π+

B0 → K+π−π+π−γ −π− — — —
B0 → Ksπ

0π+π−γ — — — −π±

B0 → K+π−π0π0γ −π0,−π− — — —

Table 45: Cross–feed events that can contribute to CP asymmetries due to the addition or
removal of a pion in the final state. Again note that there are cases where not mixed-flavors
change to mixed–flavors, and vice-versa.

Float Argus Shape

MXs(GeV) b events b events

Continuum MC events
0.6-1.1 -33.0 ± 4.0 -31.1 ± 4.0
1.1-1.5 -15.5 ± 4.9 -13.6 ± 4.9
1.5-1.9 -5.6 ± 3.6 -2.1 ± 3.7
1.9-2.3 -5.0 ± 2.6 -4.3 ± 2.7
0.6-2.3 -9.2 ± 1.8 -10.2 ± 1.8

B0 -14.5 ±2.8 -16.9±2.8
B ±(K±) -5.3 ±2.9 -3.4±3.0
B ±(K0) -6.6 ±3.6 -9.6±3.7

Table 46: Comparison of b and b Argus parameters for a fit to the lepton–untagged continuum
MC events.
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Float Crystal Ball
MXs(GeV) σ (MeV) α n

b events b events b events b events b events b events

Signal MC events
0.6-1.1 2.73±0.11 2.74±0.12 2.3±0.5 2.3±0.5 2.39±1.48 2.64±1.72
1.1-1.5 2.80±0.17 2.78±0.17 2.1±0.3 2.1±0.3 2.01±1.01 1.78±0.86
1.5-1.9 2.89±0.23 2.82±0.22 2.6±0.6 2.1±0.4 0.68±0.76 1.37±0.71
1.9-2.3 2.94±0.42 2.84±0.29 2.6±2.2 2.1±0.6 0.40±0.91 1.12±0.87
0.6-2.3 2.80±0.09 2.78±0.10 2.4±0.3 2.2±0.3 1.32±0.56 1.68±0.69

B0 2.74 ±0.19 2.75±0.10 2.5±0.3 2.5 ±0.3 1.46 ±0.70 1.26 ± 0.59
B ±(K±) 3.04 ±0.19 2.93±0.21 2.2±0.2 1.7 ±0.4 1.28 ±0.30 2.27 ± 1.26
B ±(K0) 2.70 ±0.19 2.67±0.18 2.5±0.2 2.2 ±0.4 1.15 ±0.36 1.70 ± 0.95

Table 47: Comparison of b and b floated Crystal Ball parameters for lepton–untagged signal
MC events (normally fixed to a weighted average).

Float Argus Shape
Argus shape parameter Argus yield

MXs(GeV) b events b events b events b events

cross–feed and B B MC events
0.6-1.1 -132 ± 14 -133 ± 14 173 ± 15 176± 15
1.1-1.5 -79 ± 17 -72 ± 18 95 ± 11 89± 11
1.5-1.9 -45 ± 10 -50 ± 27 263 ± 18 271± 18
1.9-2.3 -37 ± 6 -32 ± 6 692 ± 29 680± 28
0.6-2.3 -53 ± 5 -51 ± 5 1214 ± 39 1205± 39

B0 -56.7 ±7.3 -56.8±7.4 543±27 524 ±26
B ±(K±) -48.8 ±8.4 -46.0±8.2 402±23 417 ±23
B ±(K0) -52.5 ±10.0 -46.4±10.0 267±18 263 ±18

Table 48: Comparison of b and b Argus parameters and corresponding yields for a fit to the
lepton–untagged cross–feed and B B MC events.
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E Nuclear Cross–sections for Charged Kaons

Kaons that interact before the DCH could be undetected. The difference in the cross–section

between K+ and K− (see Figures 43 and 44, respectively, for their cross–sections) can be the

source of a fake charge asymmetry. This effect could be not completely taken into account

by the tracking and PID tables, the first because it is based on a pion sample, the second

because they already assume the existence of a track.

In order to estimate the size of the possible asymmetry, we use the simple model described

in BAD #2398. It is based on the cross–section for the kaon nuclear interaction as a function

of the kaon momentum and uses a simplified material model before the DCH.

Table 49 shows the CP asymmetry we find as a function of the kaon momentum. The

errors on these asymmetry predictions are around 0.1 % above 1 GeV, 0.2 % between 0.6

and 1.0 GeV, and 0.5 % below 0.6 GeV. On top of these errors we need to add a small

factor due to the incorrect modeling of the detector.

From Table 49 we can see that the ACP numbers are a little too low to account for the

CP asymmetries in the data below 1 GeV, but they certainly go in the right direction.

8Internal BABAR document
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Figure 43: Total and elastic collision cross–section for K+p, K+d (total only) and K+n as a
function of the laboratory beam momentum and total center–of–mass energy.
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Figure 44: Total and elastic collision cross–section for K−p, K−d (total only) and K−n as a
function of the laboratory beam momentum and total centre–of–mass energy.
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K+ K−

PK (GeV) σ(mb) 90o(%) σ(mb) 90(%) ACP

0.4-0.6 15 0.9 50 3.0 ∼ -0.015
0.6-0.8 13.8 0.81 32.4 1.90 -0.0082
0.8-1.0 16.0 0.94 37.9 2.22 -0.0096
1.0-1.2 18.8 1.10 42.4 2.49 -0.0104
1.2-1.4 19.1 1.12 30.9 1.81 -0.0052
1.4-1.6 18.4 1.08 29.6 1.74 -0.0050
1.6-1.8 18.3 1.07 28.8 1.69 -0.0047
1.8-2.0 18.2 1.07 26.8 1.57 -0.0038

Table 49: CP asymmetry (last column) we find as a function of the kaon momentum (first
column). The other columns show the details needed to extract the ACP : the second and
the fourth columns show the kaon cross–section while the third and fifth columns show the
percentage of lost kaons due to the nuclear interaction at 90o.
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