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ABSTRACT

This dissertation reports on a precise measurement of the parity-violating asymme-
try in electron-electron (Mgller) scattering at a four-momentum transfer Q? = 0.03
(GeV/c)?. The observed parity-violating asymmetry is Apy = —128 +14 (stat.) +
12 (syst.) x 1072, This is the most precise asymmetry ever measured in a parity-
violating electron scattering. In the context of the Standard Model, the Apy result
determines the weak mixing angle, which is one of the fundamental parameters of
the model. The result is sin? Hi{;f = 0.2403 % 0.0014, which is consistent with the
Standard Model expectation at the current level of precision. The comparison be-
tween this measurement of the weak mixing angle at low Q? and at the Z° pole
establishes the running of sin? fy with 6.50 significance.

In addition, we report on the first observation of a transverse asymmetry in
electron-electron scattering. The observed asymmetry is AIM””‘” = 2.7 x 1075,
which is consistent with the theoretical predictions. We also provide a new mea-
surement of the transverse asymmetry in ep scattering A7 = 2 x 107°.

The consistency of the result with the theoretical prediction provides new limits
on the TeV scale physics. A limit of 0.9 TeV was set on the mass of the extra
Z' boson in the SO(10) Model. A limit of 14 TeV and 6 TeV was set on the

ee’

compositness scales AT and A_,, respectively. Finally a limit of 0.2 TeV was set

on ratio of the doubly-charged Higgs mass to the eeA coupling g%, /m4.
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Chapter 1

Parity-Violating Asymmetry in
Longitudinally Polarized Mgller

Scattering

1.1 Introduction

In the 1970s, particle physics was reformulated when it was shown that all interac-
tions among elementary particles except for gravity can be described by one theory
called the Standard Model. This model, which has been verified experimentally,
is considered to be the most successful theory so far. One of the essential parts
of the Standard Model is the electroweak theory, which unifies electromagnetic
and weak interactions. The theory contains a parameter, the weak mixing angle
denoted by sin? )y, which must be determined by experiments. This parameter is
one of the most important parameters of the Standard Model. Several experiments

have measured this parameter at different energy scale using different elementary



particles.

Although the Standard Model has answered many important questions, it is
believed to be incomplete. More inclusive theories like Superstrings and Super-
symmetry are candidates to complete the Standard Model. However, none of
these theories has been verified experimentally yet. The precise measurement of
any of the Standard Model parameters, for example, the weak mixing angle, is
important since any significant deviation from the predicted value will be a signal

4

of a “new physics”.

1.2 Electroweak Unification

In 1961, Glashow [1] published the first paper on the unification of weak and elec-
tromagnetic interactions; his original aim was to combine the weak and electromag-
netic interactions into a single theory, so that they would appear not as unrelated
phenomena, but rather as different manifestations of a fundamental “electroweak”
interaction. Because of the enormous disparity in strength between weak and elec-
tromagnetic forces, Glashow suggested that the weak interactions were mediated
by extremely massive particles. Of course, this immediately raised another ques-
tion: Why is the electromagnetic mediator, v, massless, when the weak mediators,
W= and Z°, are so heavy?

Glashow had no particularly good answer, but in 1967, Weinberg and Salaam [2]
provided a solution —“Higgs mechanism.” They formulated Glashow’s model as a
“spontaneously broken gauge theory”. Then, in 1971, ’t Hooft [3] demonstrated

that the Glashow-Weinberg-Salaam scheme is renormalizable.



1.2.1 Left-Handed and Right-Handed Fermion Fields.

The weak interactions violate the conservation of parity while the electromagnetic
interactions do not. Therefore, there is a difference in the structure between the
electromagnetic and weak couplings: The electromagnetic vertex is purely vectorial
(7), whereas the weak vertex contains vector and axial vector parts. In particular,
the W# coupling is mixed V' — A in character (v*(1 —+°)) [4]. In order to build a
unified theory, however, we need to have a unified structure.

This difficulty is solved by absorbing the matrix (1—+°) into the particle spinor
itself in order to create “chiral” fermion states. We then define the “right-handed”

and “left-handed” spinor:

14 1=7°
wR_ 9 77/)7 'Q/}L— 9

. (1.1)

The neutrinos are known to be nearly massless. By assuming that they are exactly
massless, the right-handed state of the neutrinos does not exist. Therefore, the
left-handed leptons will form doublets whereas the right-handed ones will form
singlets:

V(-Z Vu 1/7—

y €R y MR » TR- (12)

€ T
L H L L

Consider, for example, the coupling of an electron and a neutrino to the W—.

The contribution to the amplitude (M) from this vertex is given by

[ 1=4P
Jp =V ( 5 )e, (1.3)

which can be rewritten in terms of the chiral spinors:

_ _ 1—7°
Ju = VLV < 9 ) €r- (1.4)




The weak vertex factor is now purely vectorial, but it couples only left-handed
electrons to left-handed neutrinos. It is still structurally different from the funda-
mental vertex in QED. However, the electromagnetic current itself can be written

in terms of chiral spinors:
Jp" = —€yue = €rVuer — ERVuCR- (1.5)

Now we can begin to build a unified theory.

1.2.2 Electroweak Lagrangian of Leptons

The construction of the Standard Model has been described in many review articles
and texts [4-7]. We will try to present this construction for the importance of the
concepts of this model. In the following, we will build a Lagrangian that is a
non-abelian gauge invariant under the symmetry group SU(2) ® U(1). Since the
procedure is identical for all three families, we shall consider only one of them—say

the electron family:

Ve
Y, = VR = €. (1.6)

e
L

To construct the theory, we must use the “minimal coupling rule”, in which
we substitute V, for d,, in order to convert a globally invariant Lagrangian into
a locally invariant one. However, the covariant derivative, V,, introduces a new
vector field that requires its own free Lagrangian. Under the action of SU(2) we

demand the following behavior
77[)L N ei0(x).’i‘wL7 wR N ei0(x).’i‘77/)R7 (17)

where T, = 7./2, r = 1,2,3 are generators of the symmetry group, which can be

represented as Pauli matrices 7,. The covariant derivatives are then constructed



as follows:
[/
Vit = (0 = S W)Y, (1.8)

where g is the coupling constant and W/ are the gauge fields for SU(2). Since
the right-handed electron is a singlet of this SU(2), its covariant derivative will be

identical to its ordinary derivative,

Vg = 0utbr. (1.9)

We should also include the contribution due to the U(1) group to the covariant
derivatives. Therefore, we have to determine the U(1) transformation of the various

fields. Under the action of U(1), we demand the following behavior:
'Q/)L — eiYﬂ(z)wL7 'Q/)R — eiYﬂ(z)wR‘ (110)

Here Y is the generator (just a number) of the U(1) group, called the weak hyper-
charge. It is related to the electric charge ) and the third component of isospin
(T3) by Gell-Mann-Nishijima formula

Q= (T3+%Y). (1.11)

Therefore, Y = —2 for singlets and Y = —1 for doublets, i.e.,

Vip = =, Yibr = —tg. (1.12)

To make the derivatives covariant with respect to these transformations as well,

we must introduce a new gauge field B,, and write
i g -
Vi = (0, — ggwgn . %YBﬂ)wL, (1.13)
and

V. r = (0, — %YB#)wR, (1.14)



¢' is the U(1) coupling constant. The factor 1/2 was chosen to simplify later

expressions. Now we are in a position to write down the Lagrangian for the gauge

fields and the leptons. This is given by

L= Eleptons + Egauge;

where
£leptons = JLZ-IYMVM'Q/}L + ERW“VM/}R;
and
1 Ty 1 v
Louuge = =7 FF™ = ™.

The field-strength tensors are
F,=0W, -0,W;+ gsrsthj’Wﬁ,
and

fuw = 0uB, — 0,B,,.

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

Note that the gauge symmetry does not allow a mass term for leptons or gauge

bosons. A Dirac mass term would be of the form €,egr, which would break the

SU(2) invariance, since ey, is a part of a doublet that transforms differently from

er, which is s singlet. Obviously, these masslessness properties are a phenomeno-

logical disaster: electrons, muons and taus have masses. Three gauge bosons must

somehow get a mass, while gauge boson, coupling to the charge (), must be mass-

less.

The masses are generated through the Higgs mechanism. This mechanism

involves the introduction of a scalar field H(x), which is a doublet of the SU(2)



group with a hypercharge Y = 1. The contribution to the electroweak Lagrangian
due to the Higgs scalar field will then be:

Liiges = (V,H) (V*H) - V(H'H), (1.20)
where the potential is
V(H'H) = M*H'H + \(H'H)?, (1.21)

The coupling of the scalars to the fermions, also known as Yukawa coupling, is

then

EYukawa = _h(ELHwR + ERHT,LPL)J (122)

where h is a Yukawa coupling constant. This interaction term is symmetric under
local SU(2), ® U(1)y transformations, and hypercharge neutral if the Higgs field
has the hypercharge Y = 1. Therefore, the electroweak Lagrangian of the electron

family takes the form

L = Eleptons + Egauge + EHiggs + EYukawa

A YA 1 r Ty 1 v
= wLVYMVuQ/)L + z/)RVYMV;L@[)R ——F F™ — _f;wfu

4w 4
+(V,H)(V*H) — V(H'H)

—h(Y Hr + YpH L) (1.23)

For spontaneous symmetry breaking, we require M? < 0. By choosing one

gauge in which the vacuum expectation value of the scalar field is given by

0
HO == , (124)

U/\/g



where v? = —m?/\, both SU(2), and U(1l)y symmetries are broken. We next
expand the Lagrangian about the minimum of the Higgs potential V' by writing
1 0

H=—

, 1.25
V2 |yt o(z) (1:25)

where o(z) is real scalar field, called the Higgs boson. The Yukawa term in the

Lagrangian has become

EYukawa = —h {ELH’LPR + ERHT'LPL}
= _h(U\}—EO') {EReL + éLeR}

= —@Ee - @aée. (1.26)

V2 V2

Therefore, the electron has acquired a mass of

_mw

V2

Similarly, the Higgs part in the Lagrangian has become:

Me (1.27)

Loiggs = (Vul)(V2H) = V(HH)
%(8“0)(8”0) — M?*0?

+%2{g2|wj — W2+ (¢'By— gW2) + ..., (1.28)
plus interaction terms. We see that the Higgs field has a mass equal to

my; = —2M?. (1.29)

This is then the physical Higgs boson. If we define the charged gauge fields

Wizw 1.30
w \/5 ) ( )



and define the orthogonal combinations

Z, = —Bysinfy + W} cosby, (1.31)
A, = Bycosbty + W, sinby, (1.32)

where 0y is called the weak mixing angle and it is defined by
tan by = ¢'/g, (1.33)

the Higgs part can be rewritten in the form

1
EHiggs 5(8“0)(@0) - ]\420'2
2,2
gv +2 -2 1 2
— —7 1.34
+8{W +W +cosﬁw P, (1.34)

Proportional to g?v?, the term is recognizable as a mass term for the charged vector

bosons W#jE and the neutral gauge boson Z,
My: = gv/2, (1.35)
Mz = gv/2cosby = My / cos Oy, (1.36)

whereas the field A, remains a massless gauge boson. We have achieved the desired
particle content plus a massive Higgs scalar.

But, do the interactions also correspond to those in Nature?

The interactions among the gauge bosons and leptons may be read from Licpions-
Therefore, it is convenient to write Ljepions in terms of the charged gauge bosons
Wj and the neutral ones ZB and A,. The charged gauge bosons couplings to
leptons are given by

9 — -
LZ; = E{I/L’)/NBLWN + €L’)/NVLWJ}
9 1 -1z +
m{w“(l —75)eW, + e (1 —ys)v W, }
9 w4 ittt
= —={y W, +5 W'}, 1.37
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and

7 =" (1—y)e, gt =ey"(1 - ), (1.38)

are the charged weak currents. Equation 1.37 describes the low-energy phenomenol-
ogy (Fermi current-current interactions), provided that, we identify the coupling

constant as

g’ _ GpMy,

8§ 2

With the help of Equation 1.36, we obtain the tree level estimate for the electroweak

(1.39)

breaking scale:
v = (GpV2)H? ~ 246GeV. (1.40)
Similarly, the neutral gauge boson A, couplings to leptons are given by

LY = —gsin Ow{eLy"er +eryertA,

int

= —gsinfyeyteA,, (1.41)
Therefore, we may identify A, as the photon, provided that, we set
gsinfy =e. (1.42)

With the help of Equation 1.39 and Equation 1.42, the gauge bosons Masses can

be rewritten in the form:

62GF
M — 1.43
v 4/2sin? O,y (1.43)
M2 = M2/ cos? Oy . (1.44)

If symmetry breaking in Nature occurs by other mechanisms, the relationship

between the masses will not as simple, and this can be parameterized as:
Mg,

= 1.45
M2 cos? Oy’ (1.45)

p
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where p = 1 in the Glashow-Weinberg-Salam Model. For the neutral gauge boson

Z,, couplings to leptons, we get

g _
L2 = —2 g oAty gz
int 2 cos 9W vpytvrdy

9

2 cos Oy

- ¢ TyH(1 — V" (Cy — C 7
2COSQWstW{W( ¥s5)v + ey (Ca — Cyvys)et Zy,

{(2 sin2 0W — I)EL’)’#GL + 2 SiIl2 QWER’)/“@R}Z#

(1.46)
where

1 1
Cy= ~5 Cy = -3 + 2sin? Oy (1.47)

Looking at one of the leptons [, we can write its couplings to the neutral gauge
boson Z, in the form

€ 7 . < .
EiZnt - —COS 9W sin 9W {lL’)/M(Tg, — SlIl2 QW)ZL + lR’)’ﬂ(— SlIl2 ng)lR}Zﬂ

(1.48)

Here T} is the eigenvalue of Tg (notice that TglR = 0) and e( is the electric charge
of the lepton [. Note that, for the neutrinos, the (i term disappears in any event

since () = 0. In terms of Dirac fermions, the couplings can be written as

e —_
J T cos b s gwlw(clv—cfﬂg,)lzﬂ, (1.49)

where
CY=Ts, Cl =1T5—2sin’0yQ. (1.50)
Therefore the neutral current that couples to Z# is given by

IV =1.(CY = Clhys)l. (1.51)
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1.3 Weak Mixing Angle Measurements

The physics beyond the Standard Model can be established in two distinct ways:

e Directly by observing the particles associated with this new theory.
e Indirectly by observing the influence of these new states on precision

measurements.

For example, the Higgs particle has not been discovered yet, but high precision
measurements at Q* = M2 ! at LEP, combined with the values of My, and m;
measured at the Tevatron, have constrained the mass of the Higgs boson to satisty
the bound mpy < 196 GeV [8]. There are many other indirect constraints on the
Standard Model and its possible extensions that have been obtained by experiment.

The basic renormalized parameters of the Standard Model can be categorized
as: masses, couplings, and mixing angles. In fact, the current experiments have
measured a number of electroweak parameters at 1% or better. These experiments
also test the Standard Model at the level of its radiative corrections. The precision
measurement strategy is to experimentally determine all Standard Model observ-
ables as accuracy as possible. Some of these experiments measured the weak mix-
ing angle. For example, sin®fy, was derived from the low energy neutrino-nucleon
scattering experiment NuTeV, which unfortunately does not match its Standard
Model prediction [9].

Now we will review some of the measurements of the weak mixing angle. How-
ever, the comparison of sin? 8y, between experiments demands a common definition
of that parameter. We begin by writing sin® fy in terms of the bare masses of the

charged gauge bosons W=, the neutral gauge boson Z, and the bare coupling

L Also known as the Z° resonance or the Z°-pole
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constants e and ¢

sin?08, = €2 1 _ (Mg /M) mo” (1.52)
n = — = — = .
g R V2(My)2Gy,

In fact, sin? @y is frequently used in two renormalization schemes: the on-shell

framework and the M S approach [10-12]

- on—she M2

sin? gop—shell = _Vg’ (1.53)
2
0

sin? Oy (0) = 6;2), (1.54)

201~
sin Oy (1) e = e (Wrs 1.55
W( )MS gZ(M)m ( )
sin? 957/ (defined by LEP), (1.56)

They all differ by finite calculable radiative corrections. In principle, one can there-
fore translate between different definitions. The first two definitions, for example,

are related through a quantity called Ar that is a collection of one-loop corrections:

in? Oy (0
sin? gon—shell — Lll_vg(r ). (1.57)

The zero in sin® fy,(0) indicates that the electric charge is renormalized at ¢? =
0. Unfortunately, employing any of these two definitions induces large radiative
corrections in higher orders. These involve aM? /M3, corrections, which can be
misleading [10].

The minimal subtraction (MS) definition, where u is the mass scale of di-
mensional regularization, is theoretical rather than physical. This definition is
useful for renormalization group studies and induces less complicated higher order
corrections. In fact, employing sin? Oy (M )55 generally leads to small radiative

corrections in neutral currents processes.
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The final definition sin® Gﬁ[ff was invented for LEP studies. It has a numerical

proximity to sin’ Oy (My)zrg [13]
sin? 057 = sin® Oy, (M) 775 + 0.0003. (1.58)

Having explained the various definitions of sin® f, we now examine the mea-
surements of sin? fy performed by different collaborations. The weak mixing angle
has been precisely measured, at the Z-pole, by the LEP and the SLD collabora-
tions. The results were in an excellent agreement with the Standard Model, but
additional precise measurements away from the Z-pole were needed not only to
test the Standard Model but also to probe for possible new physics phenomena
beyond the Standard Model. Therefore, two other experiments -NuTev and APV-

measured sin? @y at low energies away from the Z-pole.

Measurements at the Z-pole

The LEP [14] experiment at CERN and the SLD [15] experiment at SLAC mea-
sured forward-backward and left-right asymmetries from electron-positron (e e™)
collisions near the Z-pole. The SLD collaboration studied parity violation in Z

production and decay into charge lepton pairs:
eppte = 2°=1 +17, (1.59)

where [ represents an electron, a muon, or a tau lepton. These processes are
characterized by the Z boson-lepton coupling asymmetries A., A,, and A,. Any
of these asymmetries is defined as

Al - 2vlal

e bl 28 1.60
v +a}’ (1.60)
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where v; and a; are the effective vector and axial vector couplings of the Z boson
to the lepton current, respectively. The Standard Model assumes lepton universal-
ity, so that all three pecies of leptonic asymmetry parameters are expected to be

identical, and directly related to the effective weak mixing angle sin® 95{7

2(1 — 4sin®65//)

A= . 1.61
YT (1 4sin? o) (1.61)

They reported a value of [15]
sin® 0577 = 0.23098 £ 0.00026. (1.62)

The result is in excellent agreement with the Standard Model predictions.

On the other hand, the LEP collaboration extracted sin® fy from several mea-
surements. They measured the forward-backward asymmetry of e} ptet —=2°—
bb and e + et — Z° — ¢€ using samples of hadronic Z° decays in which electrons

and muons were observed. They reported a value of [14]
sin® 0577 = 0.23205 4 0.00068, (1.63)

which is in excellent agreement with the Standard Model predictions as well.

Measurements Off the Z-Pole

Two experiments have measured sin®#fy; at low energies away from the Z-pole.
First, the neutrino-nucleon scattering (NuTeV) experiment [9] at Fermi National
Accelerator Laboratory (FNAL). The NuTeV collaboration extracted sin® fy, from
measurement of the ratio of neutral current and charged current cross sections in

neutrino-nucleon deep inelastic scattering (Figure 1.1)

R — onc(vuN = 1, X) - onc(@uN —-7,X)

. R =N , 1.64
occ(vuyN — p=X) occ(TuN = ptX) (1.64)
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Figure 1.1: Lowest-order diagrams for v,¢ — v,¢ and v,¢ — p ¢ in NuTeV

experiment.

at Q* ~ 30 (GeV/c)?. The cross sections are determined by the Lagrangian for

weak neutral current v — ¢ scattering [9]:

£ o= —SEmra -
[€207(1 = 7")g + exayu(l — 7°)al, (1.65)

where eqL7 » are the chiral quark couplings. The term —@ sin® Oy, where @ is the
quark charge in units of e, contributes to eqL,R for the weak neutral current but
not for the charged one. Therefore, sin?fy, can be extracted from the above ratio.

The NuTev collaboration reported [9]
sin? 9o —shell = 0.2277 4 0.0013 (stat.) & 0.0009 (syst.), (1.66)

which is 3 standard deviations above the Standard Model prediction. The cause
of this discrepancy is not known. It could be explained by theories beyond the
Standard Model such as extra gauge bosons, new couplings, etc [16,17].

Second the Atomic Parity Violation (APV) experiment [18] which measured
the 65 — 7S transition probability in atomic Cesium at Q? ~ 10~%. They then

extracted sin? @y from measurement of the weak charge of the nucleus

Qw = p[Z(1 — 4sin*Oy) — N). (1.67)
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The Standard Model predicts Qw (}**C's) to be [19]
Qw (***Cs)sy = —73.19 4 0.03. (1.68)
The APV collaboration achieved a result of [18]
Qw (' C0s) 4py = —72.69 + 0.48, (1.69)
which is equivalent to
sin? Oy (M) 375 = 0.2292 £ 0.0019. (1.70)

The APV measurement of sin? fyy is consistent with the Standard Model prediction
(+1.00) [19]. Selected measurements of sin®#/ as a function of Q? are shown in

Figure 1.2.

New Measurements

In the light of this situation new results from other experiments can add important
information to these interesting deviations from the Standard Model predictions.
Two new measurements involving polarized electron scattering: parity-violating
Moller (ee) scattering at SLAC [20], which is known as E158, and elastic parity-
violating Mott (ep) scattering at Thomas Jefferson National Accelerator facility
(JLab) [21], which is known as QWEAK.

Both experiments have the same energy scale, Q* ~ 0.03 (GeV/c)?, which
makes the E158 and QWEAK measurements of sin? fy particularly interesting.
Any agreement with the Standard Model would imply that the most likely expla-
nation for NuTeV result is atomic and hadron structure effects.

This dissertaion reports on the most recent result measured by E158 which
has determined the weak mixing angle off the Z-pole by measuring the right-left

asymmetry in electron-electron (e~ e™) scattering.
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Figure 1.2: Measurements of sin® 9;’;’0 as a function of the momentum transfer Q.

The QWEAK experiment has recently been proposed and approved at JLab
using the continuous electron beam accelerator facility(CEBAF). QWEAK seeks
to perform the most precise determination of the weak charge of the proton Qyw (p)

off the Z-pole, using parity-violating elastic ep scattering.

1.4 Parity-Violating Mgller Scattering and Qyy (e)

We will now discuss the role of the neutral currents and the parity violating asym-
metry in testing the Standard Model described above by measuring one of the

most important parameters for this model- sin® 6y .
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1.4.1 Why Parity-Violating Asymmetry?

Polarized electron scattering off an unpolarized target provides a clean window to
study weak neutral interactions by measuring the asymmetry [22]

dO’R—dO'L

Apy = ———.
PV dogr + doy,

(1.71)

In these experiments, we separately measure the differential cross-sections, dog
and doy, for the scattering of left-handed and right-handed electrons on an unpo-
larized target, respectively. The asymmetry in Equation 1.71 is then obtained by
computing the ratio of the difference to the sum of these cross-sections.

This asymmetry has the following features:

1. The asymmetry comes from the interference between the weak and electro-
magnetic amplitude. That is, the asymmetry is proportional to the Gp/«a

and hence larger than usual weak interaction effects which are O(G%) [10].
g « | Aem +Aweak |2;

| AemAweak | ~ | Aweak | ~ GFQ2
| Aem |2 + | Aweak |2 | Aem | dma

~

(1.72)

Apy

2. Most systematics errors that arise in cross-section measurement, such as the

target thickness, beam energy, cancel in the ratio.

3. Finally, the relative sign between the weak and electromagnetic interactions,
determined by the parity experiments, provides an additional check on vari-
ous models. in fact, some models may predict the correct magnitude for the

asymmetry, but the wrong sign!

Several experiments used polarized electron beams to study parity violation.
These experiments are listed in Table 1.1. The first experiment, SLAC E122 per-
formed from 1978-79 [23], studied deep inelastic scattering of polarized 18 GeV
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electrons from an unpolarized liquid deuterium target. E122 made the first obser-
vation of parity violation in a weak neutral scattering. It was one of the experiments
that ensured the existence of the Standard Model. The next two experiments were
performed at Mainz [24] and Bates [25]. They also gave results consistent with
theory. Finally, SAMPLE [26] and HAPPEX [27] experiments, which search for

strange form factors in the nucleon.

Experiment Reaction Apy
SLAC E122 [23] eD DIS 10—4
Mainz [24] eBe? QE  107°
Bates [25] eC'? elastic 1076

Sample(Bates) [26] ep elastic 10—%

Happex [27] ep elastic 10—5

Table 1.1: History of parity experiments.

The size of the asymmetry, measured by these experiments, is in the range of
10~* — 1077, which is extremely small. Therefore, measuring these small asymme-

tries presents two unique problems:

1. Collection of a sufficient number N of events, since the statistical error,
AApy, is proportional to 1/v/N. For the experiments in Table 1.1, N is in
the range of 10'° — 10'6

2. Control of systematic uncertainties.
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1.4.2 Right-Left Asymmetry in Mdgller Scattering

We consider here the case of polarized Mgller scattering e"e™ — e”"e”. Our
primary focus will be on the use of a very intense highly polarized electron beam
(P, > 0.8) in fixed target unpolarized electron scattering.

The right-left asymmetry for polarized electrons scattering on an unpolarized
target is given by
dor — doy,
dog + doy,

(dorg + dogr) — (dop, + dopg)
(dO’RR + dO'RL) + (dULL + dO'LR) 7

(1.73)

where do;; denotes the cross section for an incoming electron of helicity ¢ on a
target of helicity j, which is given by do;; ~ >, |Mijw|?, where k and [ are the

helicity of the outcoming electrons. Since dogry = dopg by rotational invariance,

dorr — dopr
dO'RR + dO'LL + 2dO'RL

_ SoulMerk)? — IMppwl*} ‘ (1.74)
Y oelUMerpl? + IMeopg|? + 2| Mep g |?}

ARL =

The tree level calculations of all helicity amplitudes, were performed several years
ago [22] and were used to calculate the asymmetry.

The interaction Lagrangian is given by

Line = gyJ" A" + g5 2"

= g,[—ev.e]A" + gz[ev.(Cy — C9vys)el Z*, (1.75)
where

1 1
C4 = 3 Ct = 5~ 2sin® Oy (1.76)
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(PjsA)

Figure 1.3: The kinematics of ee elastic scattering in the center-of-momentum

frame. (k,, \), etc, denote four-momenta and helicity of electrons.

and
= = ¢ (1.77)
=6 927 2 cos Oy sin Oy '
We consider the collision
ep (k,A) +e5 (p, A) = e5 (K, N)ey (K, A), (1.78)

where (k,\) denote four momenta and helicities, respectively. The Kinematics of
the collision in the center-of-mass frame is shown in Figure 1.3. The four Feyn-
man diagrams representing the tree-level amplitudes for ee scattering via v and Z

exchange are shown in Figure 1.4. The total amplitude is then given by [22]
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e e e e
e e e e
Figure 1.4: Lowest-order diagrams for e"e~ — e~e~, which lead to the right-left
asymmetry, Agr.

2

Manxy = (s (6) T ()70 7
g2
—1—1_—7y)sﬂ,\(p')%u,\(k).ﬂ,\:(k')’y“uA(p)
—2g7, ! e e — / e e
40 (K)7(CF = Cis)ua(k)-2n (97 (G = Clis)ua (p)
z
2g2 — / € e — ! e e
+M§uA(p )7(CV = Chys)ua(k).ux (k)" (CV — Chys)ua(p),
z

(1.79)

Here X and A represent the initial electrons’ helicities while A" and A’ represent the
final electrons’ helicities. The interference between these amplitudes, 7.e. the elec-

tromagnetic and weak amplitudes, gives rise to the standard model prediction [22]

GrQ? 1—
Aule e »ee) = T Qute), (1.80
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where

y = sinZ(Qcm/2),

Q> = —¢ =yk'+k)?
= y(2m2 + 2mEbeam)fixed target,
¢ = (K —k)> (1.81)

Here, )? is the momentum transfer, G is the Fermi coupling constant, « is the
fine structure constant, m is the electron mass, F is the incident beam energy, 6.,
is the scattering angle in the center-of-mass frame. In this expression, terms of
order m/E and m/Q have been dropped since we assume m? < Q? < m%. At

tree level, the weak charge of the electron, Qy (e), is given by
Qw(e) = 4sin’ Oy — 1, (1.82)

where 6y is the weak mixing angle. In terms of 6., [20],

G 4sin 6
App(e e = e e ) = —mE—F em
rrle e —ee) m Jora B+ o0

For fixed target experiments, the asymmetry in Equation 1.80 is very small

Qw (e)- (1.83)

because of the tiny G factor and the 4sin® 6y — 1 suppression factor. For E =
50 GeV, E' = 25 GeV (corresponding to fcm = m/2 where the asymmetry is
maximal) and 100% beam polarization (i.e. P, = 1), Ay is —3.2x1077. Radiative
corrections [28] reduce this asymmetry by more than 40%, as disscused in the
following section.

If we measure the right-left asymmetry with a fractional statistical error of
10%, we can then measure the weak mixing angle with a precesion of 0.001, since
the asymmetry is proportional to (4sin? 6y — 1):

5sin2 0W - 1— 4sin2 9W 6ARL

A 4sin’ Oy — 1) = r~ :
R ¢ ( St ) SiIl2 9W 4sin2 9W ARL

(1.84)
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Therefore, using the predicted Standard Model value of sin?fy at @Q* = 0.03
(GeV/c)?, sin? fy, = 0.238, one can get

§sin? 6 dA
5 W .05 SR
Sin 0W ARL

(1.85)

Therefore, a measurement of the right-left asymmetry with a precession of § Ag;, /Ag, =~
0.1 can result in a measurement of sin? fy, with a precession of § sin® Oy / sin Oy ~

0.005, i.e. dsin® Oy ~ 0.001.

1.4.3 One-Loop Radiative Corrections

A measurement of AAgp; to £1.4 x 1078 is only useful if one knows the standard
model prediction to that level of certainty. Such precision requires the inclusion
of quantum loop effects. Indeed, because of the tree level prediction is suppressed
by 4sin®fy — 1, one anticipates that the relative size of one-loop contributions
without such a suppression factor will be quite big, and that indeed turns out to
be the case.

The largest leading-order corrections to the right-left asymmetry Ay at low

energies come from three sources [28]:
1. vZ mixing and the W-loop diagrams.
2. WW and ZZ box diagrams.
3. Boxes containing one photon and the Z-loop diagrams.

Considering the one-loop radiative corrections to Ay, Equation 1.80 is modified

as [28]:

G,.Q? 1—vy
A — L Loe, 1.86
i W 2ral+yt+ (1 —y)t w(©) (1.86)
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in which the tree level suppression factor Qy (e) = 4sin® 6y — 1 was replaced by

the following leading-order expression:

w(e) = pldsin® hw(Q7) — 1 - Fils,c) — Fa(Q% y)}, (1.87)
(1.88)
and
s = sin’ Oy (m,)55m,
c = cos’ Ow(m.)is

Here p is a function of radiative terms and has a numerical value of almost one,
p =~ 1.00122.

The most important loop corrections come from the running sin? Oy (Q?). It
comes from the vZ-mixing and the W-loop diagrams illustrated in Fig. 1.5 and is

given by
sin? Oy (Q?) = k(Q?) sin® Oy (M., )73, (1.89)
where k(Q?) is the electroweak form factor and at low Q? is given by:
#(0) = 1.0301 £ 0.0025. (1.90)

This correction is very significant. At low (?, it represents a 3% shift in the
effictive sin? fy. Since Agg is proportional to Qw(e) = 4sin? Oy — 1, that +3%
increase in sin? 0y, gets amplified in Az, and gives rise to a —38% reduction in
Arr [29].

The next source of one-loop corrections, F(s, ¢), comes from the WW and ZZ
box diagrams shown in Figure 1.6

a(m,) B 3a(m,)
47 52 32ms2c?

Fi(s,c) = (1 —4s)[1+ (1 — 45%)?]. (1.91)
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Figure 1.5: vZ mixing and W-loop diagrams

The WW box is not suppressed by 4 sin? @y — 1 and gives rise to +4% increase in
Agr. On the other hand, the ZZ box diagrams are suppressed by 4sin® 6y, — 1.
Therefore their contribution is tiny, 0.1%.

The last source of one-loop corrections, F»(Q?, y), comes from boxes containing
one photon and Z-loop diagrams (see Figure 1.7) giving rise to Q? dependent
corrections. For y = 1/2 and Q* = 0.025 GeV?, F, gives rise to a —6% reduction
in Agyr.

Collecting all of the one-loop corrections, one finds, for y = 1/2 and Q% = 0.025
GeV?,

LO(e) = —0.046 % 0.002. (1.92)

This represents a 40% + 3% reduction in the asymmetry because of quantum
loop effects. For y = 1/2 and Q* = 0.025 GeV?, one finds that the radiative
corrections reduce Agy from —2.97 x 1077 to —1.80 x 1077 [28].
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Figure 1.7: Boxes containing one photon and Z-loop diagrams.
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1.5 Weak Mixing Angle and Physics Beyond the
Standard Model

The Standard Model of elementary particles has been regarded only as a low-
energy effective theory of the yet-more-fundamental theory. The Standard Model
unfortunately cannot be valid to high energy scales up to the Plank scale (~ 1.2 x
10" GeV), where gravity is expected to become strong. Although the measurement
reported in this thesis is not precise enough to be a major quantitative test of
physics beyond the Standard Model, it can be sensitive to different aspects of new
physics. In the following, we indicate how the proposed measurement may be
sensitive to new physics. We consider four cases: 1) the effect of Z' bosons on
low-energy neutral current phenomena 2) contact interactions 3) doubly-charged

Higgs bosons 4) Supersymmetry. We discuss the latter in detail in the next section.

1.5.1 Extra Neutral Gauge Bosons

The Standard Model can be extended to include extra neutral gauge bosons (called
Z's bosons) via the existence of one or more U(1) gauge symmetries beyond the
hypercharge gauge asymmetry, U(1)y. These extra gauge bosons arise quite nat-
urally in Grand Unified theories [10,33]. For example, the SO(10) model has one
such additional boson, which is denoted by Z,, while Eg model has Z, as well as a
second neutral boson,Z,,. The masses of these bosons are not specified, but limits,
at the range of ~ 17V, have been set [22]. Neutral current experiments can set
constrains on the mass of these extra Z’ bosons in terms of the known Z and the
weak mixing angle as well.

If we consider adding two new neutral gauge bosons, Z;,¢ = x, ¢, to the Stan-
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dard Model, the fermionic sector of the electroweak neutral current interaction

Lagrangian is given by [22],

e

Ling = e AP T + ZrINC + g5 21T, (1.93)

sin By cos Oy
where ¢ is the coupling for the new gauge bosons. The combinations [10]

Zy = Zfcos B+ Zysinf,

z' = —ZV sin 3 + Z; cos 3, (1.94)

with —m/2 < 8 < 7/2, can be taken as mass eigenstates with m, and mz,. Given

the above interactions, Apy is increased by a factor [22]

AL m% 5
=1 + 7—%(cos® B+ /= sinBcosf3)
gy 7, 3
my oo D
+ 7T——(sin” 3 — gsmﬂcosﬂ). (1.95)
ZI
8

For SO(10) model, § = 0, that expression simplifies to

A}S;?/(lo) m2
=1+7—%. (1.96)
AR ",

Therefore, if the Z’ interacts with electrons, E158 would measure a non-Standard
Model contribution to the expected Mgller asymmetry. Conversely, if the E158 re-
sult for sin® @y is within 20 from the predicted Standard Model value, a lower

limit of 600 to 900GeV can be set on the mass of the Z' [22].

1.5.2 Contact Interactions

The SM assumes the known quarks and leptons to be pointlike. Many authors have

proposed models in which quarks and leptons are composite structures: bound
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Figure 1.8: Tree-level diagram contributing to Mgller scattering mediated by the

extra neutral guage boson, Z'.

states of more fundamental constituents, which are often called “preons”. Such
composite structure could include the existence of new low-energy contact inter-
actions (preon-binding interactions), governed by a coupling of strength 47 and a
mass scale A [33,34].

Considering only helicity and flavor conserving interactions, the general four-

electron contact interaction Lagrangian takes the form [34]

47

Econ — SAo
"T2A2,

L (@ L7uL)? + 1rr(Y g Yur)” + nor(W L) (@ ryur)], (1.97)

where A, is the composite mass scale for electron contact interactions. The quan-
tities nrr, Mrr, and npr can take values of £1,0 depending on the model under
consideration. In analogy to Equation 1.52, one may write [33]

T NLrp T NRR T NLR
GvF\/§ Age

E158 is sensitive to LL-RR interactions of the form (¢, v,11)?— (¥ gvutr)?. There-

.2 pnecont 2 nSM
sin® 0" —sin” 0" = +

(1.98)

fore we can define positive and negative deviations from the Standard Model by
ChOOSng N = NNRR — +1 and ""Lr = 0. i.e.

T ML T NRR
Grv2  AZ
In this case, E158 will be capable of setting a 2¢ limit on A.. at 10 TeV.

: 2 nmeas 2 nSM
sin® 0" — sin” Oy = £

(1.99)
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1.5.3 Doubly-Charged Higgs Bosons

Doubly-charged Higgs bosons are a natural feature of right-left-symmetric models,
which provide an attractive extension of the Standard Model. These theories
contain two W bosons W, and Wx and two neutral guage bosons Z; and Z;. The
W, and Z; are those already discovered. In the fermion sector, RL models contain
the usual quarks and charged leptons as well as three light-neutrinos (couple to
the Standard Model type W) and three heavy-neutrinos (couple mainly to Wy).
Regarding the Higgs sector of RL models, the Higgs fields of the minimal models
are one bidoublet ¢, one left-handed triplet Az, and one right-handed triplet Ag.

These fields can be represented by the 2 x 2 matrices [36]:

o +
¢ = o o 7 (1.100)
K
- A+ 2 A++ 1
A, = L/V2 L : (1.101)
Ay +ALVZ
I A+ 2 A++ ]
Ap = k2 i . (1.102)
A ARV

doubly-charged Higgs bosons couple charged-lepron pairs, other Higgs bosons,
and guage bosons. They contribute to Mgller scattering at tree level as shown in

Figure 1.9. The process is described by the Lagrangian [37]

2
Lrotter = 2%76% VYR YRV R+ H.C, (1.103)
A

where g2 . is the eeA coupling. This equation is similar to the one used by Eichten,
Lane, and Peskin (Equation 1.97) to describe the contact interactions, which leads
to [37]

gzeA _ Am

— = = —. 1.104
2MZ T, (1.104)
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Figure 1.9: Tree-level diagram contributing to Mgller scattering mediated by
doubly-charged Higgs boson, A~

Therefore, limits on the composite mass scale A, for nzr = 1 can be easily con-
verted into limits on the ratio g2, /2M3.

For the parity violating Mgller asymmetry measured by E158, A,. = 10 TeV
corresponds to g%, /2M% ~ 1077 GeV~2. This is an improvement of an order of
magnitude compared to limits of g2, /2M3Z < 107° GeV 2 set by (g — 2), and

muonium-antimuonium experiments ? [20)].

2The transformation of muonium (u+e~ = M) into antimuonium (u~e* = M) is a process
in which the lepton flavor Ly is changed by 2 units (i.e. ALy = 2). Feinberg and Weinberg
described this process by the Hamiltonian [38]:

G, — —
L:Moller = % '(/)u')/u(]- + '75)1/16 1/}”7#(1 + '75)1/16 + HC; (1105)

where G ;77 is a four-fermion coupling constant. The first search for this process was carried out

by a group at the Los Alamos Meson Facility in the late 1960s.
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1.6 Parity-Violating Mgller Scattering as a Probe
of Supersymmetry

In this section we will show that the E158 precise measurement of the weak mixing
angle of the SM can be used as a probe of Supersymmetry (SUSY). SUSY is
considered to be the most promising candidate for a unified theory. It is just a
generalization of the Standard Model, but it requires the existence of additional
“superparticles”, that are necessary to complete the symmetry. In other words,
the scenario of the proton and antimatter may be repeated: at least doubling the
degrees of freedom with an explicitly broken new symmetry. Antimatter does exist,
so may “supermatter”. Despite the absence of experimental evidences, there are

several theoretical arguments, that support SUSY.

i- It turns out that the gauge coupling constants become equal at p ~ 2 x
10 GeV given the Minimal Supersymmetric Standard Model (MSSM)
particle content [39]. On the other hand, the three gauge coupling con-
stants miss each other quite badly with the Non-Supersymmetric Stan-
dard Model particle content (Figure 1.10). This observation obviously

suggests the possibility of supersymmetric grand unification.

ii- The local version of supersymmetry leads to a partial unification of the

Standard Model and Gravity, the so-called “Supergravity” [39].

iii- Why is the typical energy scale associated with the electroweak sym-
metry breaking-roughly, the typical size of all masses of elementary
particles—so much smaller than the Planck energy? From a technical

standponit, the question should be, “Why is the Higgs boson so much
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Figure 1.10: Running of the gauge coupling constants in the Standard Model and
in the MSSM.

lighter than the Planck mass?” This question is known as “hierar-
chy problem.” The most popular theory-but not the only proposed
theory-to solve the hierarchy problem (i.e. to answer the question) is

Supersymmetry.

We will give a small preview of one of the most realistic SUSY theories, the
Minimal Supersymmetric Standard Model (MSSM), then we will discuss the weak

mixing angle within this model.

1.6.1 Supersymmetric Extension of the Standard Model

The construction of the Minimal Supersymmetric Standard Model (MSSM) has
been described in many review articles and texts [39-42]. The MSSM is essentially
a straightforward supersymmetric version of the Standard Model with the minimal

particle content. It is the most widely studied realistic SUSY.

Superfields

Superfields were first introduced by Salam and Strathdee. All particles in super-

symmetric Yang-Mills theories fall into such superfields, which have both bosons
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and fermions. There are two types of superfields: chiral and vector superfields.
Chiral superfields ® has only two physical degree of freedom, which can then

describe the left- or right-handed component of an SM fermion. The same super-

fields will also contain bosonic partenetrs, the sfermions. The chiral superfields

are functions of z, #, §, with 6,0 being anti-commuting two-component Weyl spinors

{6,0} = {0,0} = {0,0} = 0. They take the form [41]
®p(x,0) = d(x) + 0“Ya(z) + 0“0 e s F (1), (1.106)

where ¢ is a complex scalar field, 1 is a Weyl fermion, and F' is a non-dynamical
auxiliary complex scalar field. Lagrangians for chiral superfields consist of two
parts, the Kahler potential and the superpotential. The Kahler potential is nothing
but the kinetic terms for the fields. The superpotential is defined by a holomorphic
function, W(®), of the chiral superfields in order to eliminate the non-dynamical
auxiliary field £

Vector superfields V (z,6,0) are supersymmetric generalization of the gauge
fields. In the MSSM, the spin-0 bosons and the spin-1/2 fermions of the SM are
described by the ciral superfields, while the spin-1 gauge bosons of the SM are
described by the vector superfields. In the W-Z gauge 3, the superfield may take
the general form [41]

V(x,0,0) = —00,0A(x) + 000N (x) — i000A(x) + %HH@D(x), (1.107)

where A* a vector (gauge) field, A a Weyl fermion (gaugino), and D is a non-
dynamical auxiliary real scalar field. Lagrangians for vector superfields are the

kinetic terms for these fields.

3The Wess-Zumino (W-Z) gauge is a representation for the superfields, in which several aux-

iliary fields are equal zero.
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Particle Content

Particles in the MSSM come in three generations in a similar way to the SM. Each

generation is described by five left-chiral superfields [42]:

fermion sfermion
I ~ 7
=" =
e e
Bl=(ed)y B =@
QI — ui QI — ’&2
dp, d}
U=y 07 = ()

D' =) D= ()
where I = 1,2, 3 refers to the three generations. For the quarks and leptons, we
normally have left-handed and right-handed fields in the SM. In order to promote
them to chiral superfields, all right-handed fields were charge-conjugated so that

they become left-handed Weyl spinors.
The gauge sector is described by vector superfields [42]:

gauge gaugino

Wy Wl weak isospin gauge fields,r = 1,2, 3.
B, Bu weak hypercharge gauge fields.
Gy, GZ QCD gauge fields,a =1,---,8.

For the Higgs sector, a Higgs chiral superfield has to be introduced in order
to break SU(2) x U(1)y. The SM Higgs can be easily embedded into a chiral
supermultiplet H. However, we need two of them since the superpotential can be

constructed as a holomorphic function of chiral superfields and not of thier complex
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conjugates. Therefore, we need to introduce another chiral supermultiplet. In
all, we have two chiral supermultiplets for the Higgs sector: H, has hypercharge

Y = —1/2, while Hy has hypercharge Y = +1/2 [42]:

Higgs Higgsino
ar | [ A
H, = “ H, = -
H, H,
w0 | . [
Hy=| " | Hy=|"_"°
Hy Hy

Superpotential

In order to define the theory, we have to write down the superpotential and intro-
duce soft breaking terms (without them it is impossible to break spontaneously the
gauge symmetry, and also, we know that SUSY is broken in our world). “Soft”
here means that the cancellation of quadratic divergencies is maintained. The
most general form of a superpotential which preserves the gauge invariance of the

Standard Model is [39]

W = ()\U)IJHUQIUJ + ()\D)IJHdQIDJ + ()\E)IJHdLIEJ +puH, Hy
()\’[])[JKUIDJDK + ()\’D)[JKQIDJLK + ()\’E)[JKLIEJLK + M’ILIHU
(1.108)

The first three terms correspond to the Yukawa terms in the SM. The subscripts
I, J, K are generations indices. The matrices A\p and Ay give masses and mixing
between quarks as described by the CKM. The matrix A\g is diagonal in order to
leave neutrinos exactly massless. The parameter p gives mass to both fermions

and bosons of the chiral supermultiplets H, and H,.
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Regarding the soft breaking terms, such terms can be divided into two classes:
mass terms for the sfermions, gauginos and Higgsinos, and Yukawa-type coupling
terms (trilinear terms):

Lsopr = L1+ Lo, (1.109)
—Ly = mi|LP +mL|EP + m|QF +mf|U)” +my|D|*
1. -~ 1 R B
+§M1BB + EMQWW + §M3GG
+my, [Hy* +m% |Hal, (1.110)
—Ly = (Ap)HyL'E? + (\y) 1y HQ'U” + (Ap)1sHyQ' D’
+BuH, Hy+ c.c. (1.111)

Note that the mass-squared parameters for squarks and sleptons are all hermitian

3 x 3 matrices while the coupling B is a complex number.

R-parity

Because of the Baryon-Lepton (B-L) invariance, the MSSM superpotential pos-
sesses a discrete symmetry called the R-parity and defined by [41]:

R, = (—1)»8%h, (1.112)

where s is the spin of the particle. Under R,, all Standard Model particles, namely
quarks, leptons, gauge bosons, and Higgs bosons, carry even parity while their su-
perpartners odd due to the (—1)?* factor. This fact has two consequences. First,
the Lightest Supersymmetric Particle (LSP) is stable. Second, superparticles can
be produced or annihilate only in pairs. Therefore, the typical signature of super-
symmetry at collider experiments is the missing energy, since superparticles can
be produced only in pairs, and they decay eventually into the LSP, which escapes
detection [41].
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Higgs Sector

So far, we defined the field content and all initial parameters of the MSSM. To
obtain the physical spectrum of particles present in the theory, one should carry out
the standard procedure of the gauge symmetry breaking via vacuum expectation

values of the neutral Higgs fields [39]
0
(H,) = [ 1 (Ha) = [Ud] : (1.113)

Using these equations, the masses for all fermions, sfermions, gauge bosons, gaug-
inos, Higgs, and Higgsinos can be worked out.

Each of the two Higgs doublets has four real scalar fields, ¢.e., we should expect
eight physical particles. However, three of these scalar fields are eaten by W+, W—,
Z" bosons when the symmetry is broken. Therefore, we are left with five physical
scalar fields: two CP-even scalars h’, H°, a CP-odd scalar A°, and two charged

scalar H and H~. Their masses are given by [39]

mio = 24+ my, +my,, (1.114)
my. = miy +mio, (1.115)

1
my,my, = 5( 2o +my \/m?AO +m%)? — 4m?,m7 cos? 23). (1.116)

Here, tan = v, /vy.

The mass spectrum for the gauginos and Higgsinos are more complicated be-
cause once SU(2), x U(1)y is broken they mix among themselves. As a result, all
neutral “inos”, namely two neutral Higgsinos H?, HY, the neutral wino WW?, and

the neutral bino B, mix with each other to form four Majorana fermions called
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neutralinos: x? for i =1,2,3,4

My 0 —MzSweg MzSwSsa B

R, 0 M, mzcwcg  —MzCwsg w3
(B W H A -
—MzSweg MzCyCg 0 —u H,

MmzSwsg —MzCwSg — 1 0 ]—NIS

Here, sy = sinfy, cyy = cosbhyy, sg = sin3,cg = cos 3. Similarly, the charged
Higssinos H;f, H; and the charged winos W+, W~ mix with each other and form

two massive Dirac fermions charginos: X5 for i = 1,2

M2 \/imws/g W+

[W- H; ] N
V2myeg f Hf

The masses and mixing angles of the charginos and neutralinos are therefore com-

pletely determined by the values of the four parameters M;, M,, p, and tan 3.

1.6.2 Weak Charge and Supersymmetry

Conservation of R-parity in the MSSM implies that every vertex must have an even
number of superparticles. Consequently, for a process like the Mgller scattering,
ee — ee, all superparticles must live in loops [43] such as those shown in Fig 1.11.

Including these loop corrections, the weak charge of a fermion f is modified to [44]
Qw(f) = 2T — 4rQ;sin® Oy + A, (1.117)

Here, Kk = 1 4+ 6k and A denoting the SM radiative corrections as well as SUSY

loop corrections:

Ok = 6KSM+6/‘€SUSY; A= )\SM"‘)\SUSY; (1118)
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Figure 1.11: SUSY loop corrections to Qy (e). Shown are corrections from sleptons

contributing to vZ mixing diagram (a) and a chargino-loop diagram (b).

and

2 1
R T Y

3 Js
2 —s

E[HvZ(QQ) 3 HvZ(Mg)]
55 Q2 M2

c? Aa  1IL,,(M3)

o T (1.119)

+(

c2

-5
The oblique parameters, 7" and S, and the two gauge boson self-energies, I,z and
I1,,, come from the vZ mixing diagrams, which are the main SUSY contributions
to 0k.

Calculated running of the weak mixing angle in the SM and the MSSM is shown
in Figure 1.12. From this figure, it is apparent that another measurement of the

weak mixing angle at the TeV energy scale would be useful to probe the SUSY
and this is what the LHC will explore.
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Figure 1.12: Running of the weak mixing angle in the SM, defined in the MS
renormalization scheme. The dashed line indicates the reduced slope for the min-
imal supersymmetric standard model. E158 and QWAEK measurements have

arbitrarily chosen vertical locations [44].
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The possible SUSY shifts in Qy (e) and Qy (p) have opposite sign while in other
new physics scenarios 0Qw () /Qw (e) or 0Qw (p)/Qw (p) can have either sign. This
implies that a deviation of ~ 20 or more could help to distinguish between the
MSSM and other new physics scenarios. On the other hand, agreement between
the results of E158 and QWEAK and the SM prediction can not produce any
significant constraints on the MSSM. Now the question is: will the E158 and

QWEAK experiments observe correlated deviations?



Chapter 2

Experimental Overview and

Background Processes

In the previous chapter, we discussed the motivation and the need for another
measurement, for the weak mixing angle. We also discussed how the weak mixing
angle and the right-left asymmetry, Ag;, in Mgller scattering are related to each
other. E158 collaboration carried out this measurement using the 48-GeV polarized
electron beam in End Station-A (ESA) at the Stanford Linear Accelerator Center
(SLAC). This chapter provides an overview of the experiment, while Chapter 3
describes those components of the experiment that are most relevant to the topic
of this dissertation. In Chapters 4, 5, and 6, we will describe several aspects of the
analysis of the experiment. Conclusions and a brief discussion about the future

experiments will be provided in Chapter 8.
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Figure 2.1: A schematic of the experimental setup in E158.

2.1 Overview of the Experiment

The main components of the experiment setup consist of the following:

1. Polarized electron Beam: to create a beam of electrons whose net longitudinal

polarization is as large as possible with rapid reversal.
2. Accelerator: to achieve the required kinematics.
3. Target: to create a specific desired interaction, ¢.e., Moller scattering.

4. Spectrometer: to select out the desired scattered electrons in the desired

kinematic range.

5. Detectors: to detect and quantify the scattered flux.

A schematic of the E158 experiment is shown in Figure 2.1.

As a source of polarized electrons, we used the SLAC intense and highly polar-
ized electron beam. This beam met the requirements of our measurement in terms
of high intensity, hight polarization, and rapid reversal. In fact, the polarized elec-
tron source at SLAC can produce 5 x 10'! electrons per pulse at a repetition rate
of 120 Hz. These electrons were accelerated in the LINAC and precisely moni-

tored along their path. Inside ESA at SLAC the electrons hit a liquid hydrogen
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target. The flux coming out from the target has different types of scatters; includ-
ing Mgller, ep, primary beam, etc. The Moller scatters had to be focused on the
detector face and separated as much as possible from all other types of scatters.
Therefore, we used a spectrometer composed of several magnets and collimators.
Mgller scatters were then detected by a copper/quartz fiber calorimeter.

In the next section, we will focus on the background processes for which the
spectrometer was accurately designed. A schematic of the experiment is shown in

Figure 2.1.

2.2 Background Processes

There are number of background processes to Moller scattering in 158 listed below

that can be grouped into four categories: electrons, pions, photons, neutrons.

2.2.1 Electrons

The ep scattering process was expected to occur in E158, where the incident elec-
tron scatters off a nuclear proton in the liquid hydrogen target. The spectrometer
was designed to separate Mgller and ep scatters. However, there was still significant
amount of the ep flux hitting the Mgller detector.

The dynamics of this process is not simple as the Mgller scattering, but rather
it is complicated, since the proton is a bound state composed of three quarks,
antiquark pairs, and gluons. This state is bound by the strong interactions that
are described by the theory of Quantum Chromodynamics.

In fact, the are three types of ep scattering:

1. Elastic ep scattering
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This process happens at low Q%: Q% < 0.01 GeVZ. Here the proton behaves
as a point like, ¢.e., this process is described by the theory of QED instead
of QCD. In addition, the parity-violating asymmetry in elastic ep scattering

has approximately the value of the corresponding Mgller asymmetry.

2. Inelastic ep scattering

This process happens when the incident electron radiates before scattering off
the proton. In this case, the proton falls apart and all kinds of hadrons may
come out: pions, kaons, etc. The parity-violating asymmetry in this process
is not well known theoretically but it is much larger than the asymmetry in
either Mgller or elastic ep scattering. Therefore, it is the most important

contribution to the experimental Mgller asymmetry.

3. Deep Inelastic ep scattering

This process happens at high Q% Q% > 1 GeV2. In this case, the incident
electron penetrates the proton and interact with one of the quarks. Elec-
trons from deep inelastic scattering (DIS) are produced at large angles with

respect to the spectrometer acceptance. Hence they do not contribute to the

background in E158.

At Q? = 0.03 GeV?, which is the energy scale of E158, the ep scattering is a
superposition of both elastic and inelastic. An accurate estimate of the elastic and
inelastic ep distribution in the Mpgller detector is then required. A correction to
the experimental (Mgller) asymmetry, due to this background, was estimated from
data that was collected by the ep detector (see Section 3.4.1), as well as Monte

Carlo simulations.
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2.2.2 Pions

Pions are generated in E158 through three processes—real and virtual photopro-
duction and deep inelastic ep scattering. High-energy pions, unlike electrons, can
punch through the collimators. Pions produced in the deep inelastic scattering
process are the most important pion background. A correction to the experimen-
tal asymmetry due to the 7 flux was determined from data that was collected by

the pion detector (see Section 3.4.2).

2.2.3 Photons

There are three primary sources of background photons:

1. Synchrotron Radiation

One source of the background photons is the synchrotron radiation (SR).
A transverse polarization in a transverse field results in the emission of a
synchrotron radiation. The synchrotron radiation in E158 is generated at

two different places along the experiment.

First, a synchrotron light is emitted in the large bend in A-Line before the
spectrometer. This synchrotron light results in beam asymmetries, and its

effect is measured by the synchrotron light monitor (SLM).

Second, a synchrotron light is emitted in the spectrometer dipoles in particu-
larly in dipole D3. This synchrotron light may contribute to the asymmetry
measured by Moller detector. In fact, the SR from this dipole can have an
asymmetry of Agg = 100 ppm for a 100% vertical polarization [45]. This

asymietry is suppressed by the small amount of residual vertical polarization
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and the small SR background in the Mgller detector .

2. High-Energy Photons

There was a significant amount of high-energy photons generated at the
target once the beam passed through. However, this light was suppressed by
the photon collimator (see Section 3.3.2). Unfortunately, this collimator itself
became a source of high-energy photons from showers occurring at its inner
edge. The same thing took place with the momentum collimator, leading us
to the conclusion that this light could have contributed to the experimental

asymmetry.

3. Low-Energy Photons

A small flux of low-energy electrons scattered off the aluminum beam pipe
and gave rise to secondary (low-energy) photons that were able to hit the

detector.

2.2.4 Neutrons

A small flux of neutrons and other neutral hadrons were generated in the calorime-
ter from the scattered electron flux. These hadrons penetrated the shielding and
gave rise to a significant response in the PMTs. Corrections to the experimental
asymmetry due to the neutral backgrounds (photons and neutrons) were made

using data that was taken under special experimental configurations.

!The spectrometer was designed to suppress this synchrotron flux as much as possible using

some collimators. However, its effect must be measured.



Chapter 3

Experiment Technique

3.1 Polarized Electron Beam

The polarization can be a powerful tool for suppressing backgrounds as well as
for carrying out precision electroweak measurements as we shall see. The power
of polarization has already been demonstrated at the Stanford Linear Collider
(SLC) where sin?0y has been very precisely determined using e~ polarization
(P.- ~ 77%) at the Z pole [46]. The left-right asymmetry for eTe~ — hadrons

o(ete, — hadrons) — o(ete, — hadrons)
o(ete, — hadrons) + o(ete, — hadrons)

ALR: (31)

has been measured to about 2% and used to obtain sin® 0y (my)ys to about
+0.0004%. At the Z pole, Apg is predicted (at the tree level) to be

2(1 — 4sin® Oyy)

- 3.2
1+ (1—4sin®fy )2’ (3:2)

ALR

1.€.,

ASiH20W -~ 1 AALR
sin29W o 10 ALR .

(3.3)
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At the SLC, the dominant systematic error is a £0.5% polarization uncertainty
which contributes a £0.0001% uncertainty in sin® fy,. Because the e~ polarization

is not 100%, the experiment actually measures

N, — Ng
Ameasured — — A Pe— 3.4
e = e = A (34)

where N;, i = L, R, are the number of events for each polarization setting. There-
fore, the +0.5% uncertainty in P,- leads to about a +0.0001% systematic error in

SiIl2 9W

3.1.1 Source

Polarized electrons can be produced by various techniques. The requirements of
an ideal source are: high intensity, hight polarization, and rapid reversal of helic-
ity. Given these considerations, photoemission from a Gallium Arsenide (GaAs)
photocathode is the best choice. The source consisted of four main parts: laser
bench, diagnostics bench, helicity-control bench, and cathode diagnostic bench.
A schematic diagram of the SLAC-E158 Polarized Electron Source is shown in
Figure 3.1.

At the laser bench, the laser beam was generated using a flashlamp-pumped
Ti:Sapphire laser. The laser bench also included pulse-shaping optics. At the
diagnostics bench, the laser beam was divided into three branches. Two of them
were used to monitor the characteristics of the laser beam while the third and main
branch was traveling through to the helicity-control bench.

A circularly polarized light was produced at the helicity-control bench. The
circular polarization of the laser, which in turn determines the polarization of
electrons, was controlled by two linear polarizers and two Pockels cells known as

the CP and PS cells. A Pockels cell is a birefringent crystal whose birefringence
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is controlled by an applied high voltage. The axes of the linear polarizers and the
PS Pockels cell are along the x and y axes, while the axes of the CP Pockels cell
are along v and v (the u and v axes are rotated by 45° with respect to z and y).
This configuration can generate arbitrary elliptical polarization. The electric field

vector following the PS cell can be expressed by [47]

E, sin(—‘s(;”)
|E) = =| 5 , (3.5)
E, 5 t0ps) cos(%42)

where dcp and dpg are the polarization phase shifts imparted by the CP and PS

Pockels cells. The laser circular polarization following the PS cell is given by
P, =sindcp cosdpg. (3.6)

Nominally, dcp = £7/2 and dps = 0 gives perfect tcircular polarization. A
positive phase shift on the CP Pockels cell produces one helicity, while a negative
HV pulse produces the opposite helicity. The sign of the phase shift is set by a
pseudo-random number generator that updates at 120H z (the electron beam pulse
rate) [48]. The purpose of the helicity-control bench was not only to generate highly
polarized laser beam, but also to reduce beam helicity-correlated asymmetries
through asymmetry reversal devices as will be discussed later.

The laser beam was then transmitted via a 20-m long optical transport sys-
tem (OTS) to the cathode diagnostic bench where a photoemission from a GaAs

photocathode took place. The photoemission is a three step process:

1. An electron is exited from the valence band to the conduction band by light

from the laser beam.

2. The electron diffuses to the photocathode surface.
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Figure 3.2: A schematic diagram shows the photoemission process from a Gallium

Arsenide (GaAs) photocathode to create polarized electrons.

3. The electron escapes to the vacuum. It is then accelerated and injected to

the main accelerator.

As shown in Figure 3.2, the right-helicity light excites electrons from the
P_35,my; = —3/2 to the Sy, m; = —1/2 level and the left-helicity light will
excite electrons from the Ps,m; = +3/2 to the Sije,my = +1/2 level. The
cathode was operated so that the emitted electrons move in the opposite direction
of the incoming light, so that a right- and left-helicity laser light yielded left- and
right-helicity electrons, respectively, as defined in Figure 3.3. After exiting the
cathode, the emitted polarized electron beam was bent by 38° as it entered the

accelerator.

3.1.2 Accelerator

The polarized electron beam, coming out from the cathode, is accelerated through
the SLAC’s two-mile accelerator, LINAC, which can achieve a maximum beam
energy of 51 GeV. The LINAC consists of 30 sectors; each one has a group of 8
klystrons.

At the end of the LINAC, the polarized electron beam passes through the A-
Line, where the beam must bend 24.5° in order to enter End Station A (ESA).
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Twelve dipole and twelve quadrupole magnets are used together to bend the beam
in the A-Line area. This is where the g — 2 precession happens and the sign of the
physics asymmetry is reversed if the beam energy is raised from 45.0 GeV up to

48.3 GeV. The target, spectrometer and detectors were placed inside the ESA,.

3.1.3 Feedback System

In parity violation experiments, we measure a certain quantity, e.g. the asym-
metry, under certain experimental conditions. We then reverse the experimental
conditions and measure the same quantity again. To measure the asymmetry, we
only reverse the helicity of the electron beam. Other than the helicity, all experi-
mental conditions should be the same at a level below the statistical precision of
the asymmetry measurement.

Ideally, changing the voltage on the Pockels cell changes no laser beam charac-
teristics except for the helicity. In practice, the intensity and the position of the
beam on the cathode are correlated with the helicity.

Because of the differences in the laser intensity and position at the cathode,
helicity-correlated differences in the beam parameters originate. They then prop-
agate through the accelerator and result in helicity correlations with the intensity,
position, angle, and energy at the target, which in turn can lead to false asymme-
tries known as “bearmn asymmetries”. These false asymmetries have the same size
of the statistical precision that we seek to achieve in the experiment.

E158 used different methods to control the beam asymmetries.

1. The electron beam helicity was chosen pseudo-randomly at 120 Hz.

2. A great deal of suppression in helicity-correlated differences can be achieved

at the electron source with the help of a feedback loop that controls the
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helicity reversal in the optics leading to the photocathode, and with the help
of physics asymmetry reversals as well as false beam asymmetry reversals (as

discussed in the previous chapter).

3. A cross-check was also provided by the luminosity monitor that is supposed

to measure null asymmetry.

4. E158 required very precise monitoring of all beam parameters in order to
trace any helicity-correlated differences in beam parameters and make the

appropriate corrections to the experimental asymmetry.

Helicity Sequence

The helicity of the electron beam was governed by an electronic system called
PMON. Each electron pulse was first divided into four quadruplets. Two pair of
pulses were then created using these four quadruplets. This was done by choosing
the helicities of the first and second quadruplets randomly (using PMON). The
helicities of the other quadruplets, however, had to be complements of the first and
second helicities. For example, if the helicities of the first and second quadruplets
were chosen to be LR, the helicities of the other quadruplets had to RL. The first
pair is called timeslot0 and the second pair is called timeslotl. In principle, the
asymmetries observed by the two timeslots should not be different. Therefore, it

can be used as a method to supress helicity-correlated asymmetries.

Feedback Loop

Feebback is essential for suppressing any charge asymmetry at the electron source.

If the source system induces a charge asymmetry A”¢, the overall beam asymmetry
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Figure 3.5: A schematic shows the helicity sequence technique.
is then given by [49],
AZeam — A;cnd + A]sctat, (37)

where £ is the number of the current feedback loop and A" is due to stat fluctu-

ations. The induced charge asymmetry A¢ is given by the following formula,

Aind - — ), (3.8)
/42?d = /42252 - fQZ???la

which leads to
AZeam _ Aztat_FAztiz?i. (39)

The results of this feedback algorithm on the beam asymmetry is shown in Ta-
ble 3.1.

The average beam asymmetry over N feedback cycles is then,

N
> Afeom (3.10)
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Table 3.1: The feedback algorithm on the beam asymmetry.
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the help of the feedback loop.
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By following this basic prescription, the average beam asymmetry approaches

zero [50] as shown in Figure 3.6.

3.1.4 Asymmetry Reversals

A powerful way to cancel the systematic effects is to reverse the sign of the physics
asymmetry by a method that leaves the sign of the systematic effects unchanged.
This is done in two different methods: first by rotating a half-wave plate in the
laser transport line and second by changing the beam energy. Another way to
cancel the systematic effects is to reverse the sign of the false beam asymmetry
and keep the physics asymmetry unchanged. This is done by the ”asymmetry

inverter” device.

Half Wave Plate

Immediately before the cathode, there is an insertable half wave plate that reverse

the polarization of the laser beam independently from the Pockels cell.

g — 2 Precession

An additional method for flipping the sign of the physics asymmetry is the g — 2
spin precession in the A-Line, which reverses the polarization of the electron beam
by 180° provided that the beam energy is raised from 45.0 GeV up to 48.3 GeV.
Consequently, E158 runs at both energies (the highest energies available at SLAC)

at which the electron polarization is longitudinal.
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Asymmetry Inverter

It is a system of four lenses sitting immediately before the half wave plate. They
reverse the beam position and intensity and leave the sign of the physics asymmetry
unchanged. In other words, they do the opposite job that the half wave plate does.
Ideally, adding two equal sets of data with opposite-sign beam asymmetries should

then cancel beam asymmetries.

3.1.5 Beam Monitoring

It was very important to verify that the helicity reversal did not change the physical
characteristics of the beam. The differential cross-section depends to a certain
extent on the energy, position, and angle of the beam. If there are systematic
differences in any of these parameters, which correlated to the helicity of the beam,
there will be contributions to the measured asymmetry. These contributions could
definitely affect our interpretation of the final result. Therefore, E158 required very
precise monitoring of all beam parameters, in order to trace any helicity-correlated
systematic differences in these parameters.

Four kinds of devices have been used to monitor the beam parameters: toroids
for charge, beam position monitors (BPMs) for position, angle, and energy, a wire
array for beam spot size, and a polarimeter detector for polarization. A schematic
of these monitoring devices is shown in Fig. 3.7. The polarimeter detector is out of
scope since it was placed inside ESA between the profile detector and the Mgller

detector.
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Wire Array

The wire array was used to measure the beam size, also known as the spotsize, and
to provide a two-dimensional profile for the beam intensity, when it is inserted in
the beam path. It is a movable unit consisting of two planes of very thin wires, one
running horizontally and the other vertically, and an aluminum foil sitting next
to the two planes. The Aluminum foil was set at some particular high voltage, so
that pulses can be induced through the wires when the beam hits these individual

wires. The aluminum foil has a one inch hole through which the beam can pass.

Polarimeter

The polarimeter is a movable Cherenkov colarimeter used to measure the longi-
tudinal polarization of the electron beam by measuring the right-left asymmetry
when the electron beam scatters off a longitudinally polarized iron foil target.

The polarimeter detector was placed between the profile detector and the Mgller
detector. It consistes of six quartz plates sandwiched between seven tungsten
plates. The Cherenkov light, which was produced at these plates, is transfered
through a light guide made of an aluminum tube. The Cherenkov light is then
reflected by a mirror to be collected by a PMT.

During the polarization measurement, which happened every other day, the
liquid hydrogen target was removed and the foil target was moved into the elec-
tron beam. The holy collimator (see Section 3.3.4) was also inserted during the

measurement in order to minimize the background scatters.
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3.1.6 Electron Beam Characteristics

The polarized electron source produced 5 x 10'! electrons per pulse with 88%
beam polarization at a repetition rate of 120 Hz. The experiment was carried
out at two beam energyies, 48.3 GeV and 45.0 GeV in order to cancel systematic
effects. A description of these effects will be disscussed later. The electron beam

characteristics are summarized in Table 3.2.

Polarization 88%
Energy 45GeV
Intensity 5x10'! e~ /pulse
Pulse Length 275 ns
Repetition Rate 120 Hz
Beam Spot Size ~1 mm

Table 3.2: Beam characteristics.

3.2 Target

3.2.1 Liquid Hydrogen Target

The most practical source of target electrons is hydrogen since the relevant back-
ground are elastic and inelastic ep scattering and photonproduction of pions off
protons at very low (Q?, which are well understood and can be suppressed. More-
over, it provides the least amount of radiation loss for a given target thickness. The
number of incident electrons on the target was at the range of 2 —5 x 107 electrons

per pulse. More than 107 scattered electrons must be detected every beam pulse
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in order to achieve a statistical error close to 10® on Ag;,.

E158’s target was made of a aluminum pipe of 1.5 m-long, filled with liquid
hydrogen [51]. One side of the pipe was connected to a heat exchanger that was
designed to remove heat from the target and keep the target at a temperature of
about 17.9 k. This heat exchanger was simply a copper coil through which helium
(at 4 k) flows. The other side of pipe was connected to a pump in order to moves
the hydrogen through the system at a flow rate of 10 m/s. A schematic of the
target loop is shown in Figure 3.10

Inside the pipe, a series of wire-mesh partial-disks spaced along the hydrogen
pipe. The purpose of the wire mesh was to introduce turbulence of about the beam
spotsize (1-2 mm) as well as transverse flow in the target region. This technique
allows the unheated liquid hydrogen to mix into the beam volume thoroughly.
Therefore, the liquid hydrogen density fluctuations due to beam heating, which
contributes to the physical asymmetry,can be minimized.

The hydrogen target was housed inside a vacuum aluminum chamber (2m X
2m) that was attached to the electron beam line. Inside this chamber, there was
a table holding several solid carbon targets that were used for spectrometer and
detector studies. The target loop can be moved vertically (up to 15 cm out of the
beam) while the solid target table can be moved horizontally by remote control.
Therefore, one of the targets, either the liquid hydrogen target or one of the carbon
targets, can be in the beam path.

Liquid hydrogen density fluctuatuions due to beam heating are known as “target

boiling’. The effect of target boiling on the width of the physical asymmetry is

oA = ,/% + (#)2, (3.11)

given by [52]:
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where N is the number of events integrated, [ is the effictive target length and o[l
is the RMS fluctuation in [. Therefore, we require # < % There are two ways to
determine this effect. The first is to measure the width of the asymmetry o[ALg]

as a function of the intensity I. If there is no boiling and # is negligible,
O'[ARL] X \/[71. (312)

The second test requires that there be two independent detectors measuring the
asymmetries AL, and A%; simultaneously then a correlation between the asym-

metries can be measured

O = < App AR > (e[1]/1)?
olARlo[AR] 1N+ (a[l]/1)*

If C' is small, boiling is negligible. For E158, the Luminosity Monitor played the

(3.13)

role of the second detector as we will see later.
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3.2.2 Longitudinally Polarized Iron Foil Target

The electron beam polarization was measured by measuring the right-left asymme-
try when the electron beam scatters off a longitudinally polarized iron foil target.
A set of three iron foils of different thicknesses (20, 50 and 100 pum), located in
front of the schattering chamber, was used for this purpose. Each foil can be moved
into and out of the beam. The polarization of the foils is provided by a Helmholtz

coil magnet.

3.3 Spectrometer

E158’s used several magnets and collimators to separate the scattered particles of
interest from backgrounds and to define the kinematic acceptance. The spectrom-

eter was designed to meet the following requirements:

1. Kinamatics: The f.o.m.! varies slowly with 6., and is relatively flat in
the range —0.5 < cosf., < 0 (see Figure 3.11). On the other hand, the
asymmetry is maximal at £’ = 25 GeV and fall to zero at E' = 0 GeV and
E" =50 GeV. Therefore, the range of desired scattering energy is 10 < B’ <
40 GeV which corresponds to the range of scattering angles 2.25 < 4, < 9

mrad. Consequently, the spectrometer was designed for the detection of very

!The f.o.m. stands for figure of merit M that is defined by [52]

d 1
M, = Pf,A%Vd—gAQ ~ T

(3.14)
where P,- is the polarization, T is the total running time of the experiment, and AQ ~
A cos @iy A is the solid angle. Here, 04, is the scattering angle in the lab frame and ¢ is

the azimuthal angle.
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Figure 3.11: The behavior of the asymmetry, the differential cross section, and the

figure of merit as a function of | cos .y,

forward-angle (0.27° —0.41°) Moller scatters with the supperession of photon

and ep elastic and inelastic background.

2. The experimental parity violating asymmetry Apy was expected to be 150
ppb, which is almost eight order of magnitude smaller than the electromag-
netic asymmetry Aggp from polarized electron-polarized iron. Therefore,
all the spectrometer equibments should not be made of iron. Therefore, all
pieces of beam pipe were made of Aluminum and all collimators have been

made of copper or non-magnetic tungsten.

3. The Mgller detector should be located as far from the target as possible so
that the Mgller/ep radial separation at the detector is maximized. Therefore,

the spectrometer runs almost 60 meters.

A schematic of the spectrometer is shown in Figure 3.12.
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Figure 3.12: A schematic of the spectrometer

3.3.1 Dipole Magnets

The flux comming out from the Target going to the spectrometer include the

following:
1. Mgller scatters.
2. ep scatters.
3. Primary beam at the initial beam energy 48 GeV.
4. Soft (low-energy) particles which include photons, positrons and electrons.

The first part of the spectrometer is a set of 3 dipole magnets, known as the
dpiole chicane. These magnets bend all charged particles away from the beam
axis, allowing collimation of the high energy photons, which are generated by the
target along the beam axis. Therefore, the primary beam as well as the Mgller flux
travel cleanly through the dipole magnets. Copper masks have been placed inside
and between the the first and second dipole to block all electrons at energies less

that 9 GeV.
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The Dipole magnets were designed to preserve the azimuthal symmetry of
the scattered flux. However, the azimuthal symmetry is slightly distored leaving
the dipole magnets. This effect was corrected by the second set of magnets; the
quadrpole magnets (discussed below).

All charged particles travelling through the dipole magnets exercise synchrotron
radiation in the horizontal plane. This energy loss 2 causes the Mgller flux to shift
about 3 mm off-center at the detector face. This effect, however, can be corrected

by adjusting the field of the third dipole to keep the Mgller fulx.

3.3.2 Photon Collimators

Two photon collimators, each is a 40-radiation-length tungsten cylinder centered on
the beam axis, have been used to suppress the photon flux. The first collimator is
located between the first and second dipoles. The second collimator is immediately

located behind the second dipole.

3.3.3 Momentum Collimator

The momentum collimator is immediately placed behind the third dipole magnet.
It is made of two concentric cylinders, connected by two pices of metal in the
horizontal plane as shown in figure 3.14. The thickness of the two cylinders as well
as the two connectors is 20 r.[. of copper (the front side) plus 20 r.l. of tungsten
(the rear side). This particular design for the momentum collimator defines the
momentum acceptance of the spectrometer. Only Mgller flux, with momenta in

the range 11 — 25 GeV, and ep scatters, with momenta of ~ 40 GeV, can pass

2The amount of energy loss due to the synchrotron radiation is proportional to the momentum-

square of the charged particle
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Figure 3.13: Top: a schematic of the photon collimator. Bottom: a schematic of the
holy collimator (front) and the momentum collimator (back). 3QC1A and 3QC1B
are the common experimentral names for the holy collimator and the momentum

collimator, repectively
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through this collimator.
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Figure 3.14: A schematic of the momentum collimator. Upstream and downstream

refer to the front and rear sides, respectively.

3.3.4  Holy Collimator

The holy collimator can be moved into and out of the beam. When it is moved
into the beam, it completely blocks the momentum acceptance of momentum colli-
mator. It consists of two semi-cylindical shells as shown in Figure 3.13. The main
use of this collimator is the study of the inelastic ep flux.

Four 1x1 c¢m holes have been cut in the holy collimator at various radii but
they were 90° apart. When this collimator was inserted, the holes created a very
clean separation between the Mgller and the ep flux at the detector face. Two
larger holes (2x2.6 cm) were also cut in the holy collimator, which were used for

the polarimetry measurement.
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Figure 3.15: A simulated radial profile of the Mgller and ep fluxes coming out from

the momentum collimator (left) and after passing the quadrapole magnets (right).

3.3.5 Quadrupole Magnets

As we mentioned earlier, the flux leaving the momentum collimator is a mixture
of 11-25 GeV Mogller scatters and 40 GeV ep scatters with very-forward scattering
angles: 4 < 6, < 7 mrad . Both scatters are then focused on the detector
face by a lens consisting of four quadrupole magnets, which sit right after the
momentum collimator. The quadrupole focusing is proportional to the energy of
the particle passing through them. Therfore, the lower energy Mgller flux is much
more strongly focused than the ep flux, i.e., the quadrupole magnets provided a
clean separation between the Mgller flux and the ep flux.

Figure 3.15 shows a simulated profile of the Mgller and ep fluxes right af-
ter passing through the momentum collimator and 30 meters after passing the
quadrapole magnets. This Figure illustrates the sigle peak for both Mgller and ep
scatters coming out from the momentum collimator. However, after passing the
quadrupole magnets, there are two peaks: the inner one is for the lower energy

Mgller scatters and the outer peak is for the highr-energy ep scatters.
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3.3.6 Synchrotron Collimators

There are two pices of metal, known as the spokes, that connect the inner and outer
cylinders of the momentum collimator. These pices help to block the synchrotron
radiation that is created in the dipole magnets. Therefore, they are called the
synchrotron collimators. However, some light light passes through the central
hole of the momentum collimator. Therefore, two additional sets of synchrotron
collimators are used to block the remaining synchrotron radiation. The first set is
made of tugsten (20 r.l. thick), and sits right after the quadrupole magnets. The
second set is made of tungsten (20 r.l. thick) as well, but it is mounted to the
detector face. Both sets remain in the shadow of the momentum collimator, so
that they do not block the Mgller flux. Yet, 11% of the Moller flux is lost due to

the synchrotron collimators.

3.3.7 Drift Pipe

There is a 30 m drift region from the quadrupole magnets to the detectors. To
maintain the quality of the flux, this drift region is enclosed in an aluminum pipe
that was held under vacuum. Otherwise, the flux can degrade.

The synchrotron collimators, following the quadrupole magnets, sit inside this
pipe. In addition, there are seven other collimators, known as the masks. These
masks were placed inside drift pipe. They consist of tungsten rings supported by
horizontal tungsten bars. With the help of these masks, background from low-
and high-energy photons that are generated at the edges of the collimators, was

blocked. Moreover, the tungsten bars provided additional synctrotron protection.
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3.3.8 ep Collimator

The flux of electron hitting the ep detector can leak into the Mgller detectror re-
sponse due to shower spreading. Between Runs I and II, a new movable collimator
was added just infront of the ep detector, which completely blocked and absorbed
the charge particles, that would otherwise hit the ep detector 3.

3.4 Detectors

The E158 detectros were designed to monitor the Mgller asymmetry as well as
the asymmetries of background processes. Therfore, E158 has seven integrating

detectors:
1. Mgller Detector
2. ep Detector
3. Pion Detector
4. Luminosity Monitor
5. Synchrotron Light Monitor (SLM)
6. Profile Detector
7. Polarimetry Detector

A schematic of all these detectors is shown in Figures 3.16 and 3.17. In the following

subsections, we will give a small idea about each one of them.

3Data collected during Runs II and III, was taken with the ep collimator inserted.
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3.4.1 Mgller and ep Detectors

The Mgller calorimeter is the primary detector in the experiment. It was designed

to meet the following requirements:

i- Maximum response to the elastically scattered electrons.
ii- Small response from pions, low energy photons, and hadrons.
iii- No response from heavy ions (non-relativistic particles).

iv- Excellent radiation resistance

The Moller and ep detectors [53,54] have the same design and they are considered
to be one unit, which was built using the “Quartz Fiber Claorimetry” technique.
The basic principle for quartz fiber claorimetry is rather simple: when high-energy
charged particles traverse dielectric media, part of the light emitted by exited
atoms appears in the form of a coherent wavefront at fixed angle with respect to
the trajectory-a phenomenon known as the Cherenkov effect. Such radiation is
produced whenever the velocity of the particle exceeds ¢/n, where n is the refractive
index of the medium. Here, the medium is the copper and the fibers act as optical
guides for the generated light that propagates towards the photomultiplier tubes
(PMTs).

The Mgller-ep unit consists of two cylinders centered about the beam line as
shown in Fig. 3.18. The inner cylinder detects the Mgller electrons, while the
outer one detects the ep electrons. Each cylinder consists of a sandwich of layers
of copper plates and quartz optical fibres, oriented at 45° to the incident electrons,
so that most of the Cherenkov radiation will be emitted in a direction parallel to
the fibers. The detector was 16 r.1., long enough for electrons to interact and short

enough for pions not to interact.
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Basic Idea

/‘///‘D quartz light guide
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Figure 3.18: A schematic of the Mgller-ep unit, which shows the orientation of the
copper plates and quartz optical fibres with respect to the incident beam (left). A
schematic of a layer of fibers that acts as an optical guide for the generated light

that propagates towards the PMTs (right).

Figure 3.19: Radii of active regions of Mgller and ep detectors.



81

Each layer of the 8.5 cm-wide fibers was divided into three sections (2 cm, 3
cm, and 3.5 cm) by collecting the fibers in three groups. This technique provided
radial and azimuthal segmentation to the Mgller detector, and divided the active
volume in three rings: inner, middle, and outer as shown in Figure 3.19. Once the
fibers exit the copper, they were bent, so that Cherenkov radiation—from particles
travelling prallel to the beam line outside the coppler—-does not produce photons.
Groups of layes of fibers were bundled and connected to light guides that were

buried in a lead shielding and connected to the photomultiplier tubes (PMTs).

3.4.2 Pion Detector

The 7 detector [55] measures the flux and rate asymmetry of the pions in the
acceptance of the Mgller detector. It is made of 10 fused quartz cyclinders (¢ = 4
cm, L =10 c¢m) installed around the beam pipe with azimuthal asymmetry. They
are tilted by 45 degrees with respect to the beam axis for better Cherenkov light
collection (Figure 3.4.2).

The pion detector sits immediately behind the Mgller detector and a heavy lead
shielding 25 cm thick. The shielding was thick enough to kill the Mgller electron
flux, which was expected to be several hundred times higher than the 7 flux. Some
shielding has also been inserted between the beam pipe and the pion counters to

reduce the electromagnetic background.

3.4.3 Luminosity Monitor

The luminosity monitor is located about 70 m from the target. [t was designed to
detect ep scattered electrons as well as a large number of the high-energy Mgller

electrons at very forward-angle: 0.1 mrad in tha lab frame. The luminosity monitor
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Figure 3.20: A schematic of the
Mogller, ep, and pion detectors.
The pion PMTs are in red

was used to achieve two goals:

1. False beam asymmetry detection: In principle, the Mgller and ep detectors
and the heavy lead shielding sitting after the Mgller detector should kill all
Mgller and ep electron flux. Therfore, the luminosity monitor should measure
a null asymmetry. Therefore, any deviation from zero for the physics asym-
metry, measured by the luminosity monitor, indicates a potential systematic

false-asymmetry.

2. Measuring liquid hydrogen target desity fluctuations (target boiling): Target
density fluctuations, due to the electron beam heating, can be measured by
looking at the residual correlation between the Mgller detector and luminos-

ity monitor signals, after removing all fluctuations in beam parameters.

The luminosity monitor consists of 16 identical gas chamber proportional ion
counters, devided into two rings, concentric around the beampipe [56]. The front
ring is known as “flumi” and the rear ring is known as “blumi”. There are 7 r.l. of
Aluminum in front of the front ring, and 4 r.l. of Aluminum between the front ring
and the rear ring. This amount of Aluminum helps to get rid of the synchrotron

radiation as well as to shower the incoming signal. A schematic of the front view
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Figure 3.21: A schematic of the front view of the luminosity monitor

of the luminosity monitor is shown in figure 3.21

3.4.4 Synchrotron Light Monitor (SLM)

The synchrotron light monitor detector analyzes synchrotron radiation (SR) that is
emitted when the electron beam bends at the A-Line. The SR penetrates through
a 1 cm-thick aluminum flange and 1mm of Lead. These materials act as a converter
to produce electrons and positrons from Compton scattering and pair production.
These electrons and positrons then emit Cherenkov radiation in a 3 cm-thick quartz
bar. The visible light produced is reflected by a mirror and detected by three 25
mm-diameter photodiodes housed in a lead shielding to prevent background from
low-momentum photons. A schematic of the SLM is shown in figure 3.22.

The intensity of the emitted synchrotron light is directly proportional to square
of the beam energy E?. Therefore, the SLM can be used to measure the beam
energy. The measurement, provided by the SLM, is not linear in the energy.

Therefore, this measurement is not very useful to remove the systematic effects
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Figure 3.22: A schematic of the synchrotron light monitor (SLM).

due to the beam energy differences. Moreover, the beam position in the A-Line

bend is very sensitive to variations in the beam energy.

3.4.5 Profile Detector

The profile detector is located few inches in front of the Mgller detector. It was
used to map the radial and azimuthal flux distribution incident on the Mgller and
ep detectors. It consists of four quartz Cherenkov counters. Each counter was
mounted on a derive capable of moving radially to cover the full radial range of
interest, or being away from the Mgller and ep flux during the normal running.
The derives are in turn mounted on a wheel capable of rotating 180 in order to
cover the full azimuthal range (Figure 3.23).

In general, each of the quartz Cherenkov counters has a piece of quartz followed
by a vacuum light guide to carry the Cherenkov light from the quartz to a PMT.
However, two of them have extra features to minimize the background, for a very

accurate measurements of the Mgller and ep flux. The first feature is a tungsten
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Figure 3.23: A schematic of the wheel and four Cherenkov counters of the profile

detector.
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Figure 3.24: A schematic diagram of a single Cherenkov counter
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Figure 3.25: A profile scan by the profile detector. The location of the Mgller
detector, regions I and II, and the ep detector, region III, are indicated. Data are
shown by closed circles. The Monte Carlo result is given by the open histogram

with contributions from Mgller (shaded) and ep (hatched) shown, separately

preradiator placed in front of the quartz to block the low-momentum particles and
shower the high-momentum ones. The second feature is a shutter that blocks all
photons. A schematic diagram of one of these two Cherenkov counters in shown
in Figure 3.24. A tipical profile scan is shown in Figure 3.25, showing the radial

acceptance of the Mgller and ep detectors.



Chapter 4

Analysis of the Mgller
Asymmetry

4.1 Data

E158 collected physics data for three different periods of time (3 Runs'): spring
2002, fall 2002, and summer 2003. The number of pulse pairs that were collected
for these three Runsis 107.8 x 10, 117.8 x 10%, and 154.5 x 10% pairs, respectively.
This data was collected at a rate of 120 Hz (most of the time) or 60 Hz and at
two different beam energies (45 GeV and 48 GeV). The beam energy was changed
3, 2, and 7 times and the half-wave-plate state was flipped 20, 12, and 29 times in
Runs I-I11, respectively.

”

Each data set was divided into subsets of pairs, called “runs.” Each run has

typically 4 x 10° pairs. Each data set was also divided, on the basis of the energy

! Run refers to the data set that was collected for a certain period of time. Run IIlin particular

refers to the data that was collected for the summer 2003.
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state and the half-wave-plate state, into subsets of runs called “slugs.” For Run
I1I, for instance, the data was divided into 37 slugs.

Not every event, collected during the physics Runs, can be used in the analysis.
In fact, two types of cuts were applied to the whole data set. The first type
is known as the baseline cuts. These cuts removed all data taken during any
hardware failure. The second type of cuts were applied in the analysis process.
They were used to reduce the systematic uncertainties. The details of these cuts
are discussed in Ref. [50]. A list of all cuts and their effects on a data sample
are shown in Table 4.1. The sample contains about 19 x 10° pulse pairs, which
represents about 10.7% of the whole data set before applying any cuts. Both the
basline cuts and the systematics cuts removed about 3 x 10° pulse pairs, i.e., a
loss of 15.6% only occurred. In fact, applying all cuts to the whole data set results
in a reduction of only 14% only [57].

4.2 Mgller Detector Analysis

In this section, we will discuss the analysis of the data that was collected by the

Mgller detector. Corrections from background processes will be discussed later.

4.2.1 Asymmetry Equation
Detector Signal

The cross section ¢ is proportional to the detected scattered flux, i.e., the detec-
tor signal S. Therefore, the measured asymmetry A7“** in the cross section is

equivalent to:

Apeas = 20 = Ok (4.1)
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Cut Number of Pairs (x10%) Percentage
Baseline 1.279 6.61%
Regression Slopes 0.000 0.00%
Beam 1.112 5.74%
Toroid Agreement 0.001 0.01%
Transmission 0.010 0.05%
Energy 0.239 1.23%
BPM Phases 0.385 1.99%
Rate 0.000 0.00%
Total 3.025 15.63%

Table 4.1: List of all cuts and the number of pulse pairs that were removed by

applying these cuts on a data sample.
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where Sg.(SL,) is the signal from the ith channel of the detector for the right(left)
handed pair of pulse p.
Charge Normalization

By normalizing the channel signal to the beam charge, helicity-correlated differ-

ences in the beam intensity are automatically corrected

SR, _ St

meas __ QR QL
A= S (4.2)

Qr QL

It is obvious form this equation that, to first order, the physics asymmetry can
be written as Apy = Apeqs — Ag, where the charge asymmetry, Ag, is simply
(Qr—Qr)/(Qr+Qr). Yet, the residual beam asymmetry due to the beam intensity

differences were calculated and subtracted from the physics asymmetry.

Beam Effects Subtractions

The corrections, due to beam asymmetries, can be expressed as a Taylor series.
Taking into consideration the first-order terms only, the corrected asymmetry, for

a channel i, is then given by
A;?T‘T‘ — A;r:eas _ Afsam) (43)
and

Abeem — g, ml, (4.4)

where A7 is the charge-normalized asymmetry for a channel 7, s, is a correction
coefficient between this channel and the monitor 7 and mg is the helicity-correlated
difference in this monitor. The correction coefficients (slopes), s;;, can be calcu-

lated in two different methods: regression and dithering.
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Figure 4.1: A schematic illustrating the regression (left) and dithering (right)

methods of removing the beam contributions.

The correlation between the beam and the measured channel asymmetries is
linear to fist-order. Consequently, it was possible to remove the beam contributions
by applying a least square linear regression to the measured asymmetry of each
channel. To do this, the asymmetry of each channel was plotted against all beam
asymmetries (multi-dimensionally) and a single linear fit is made to the data. The
regression slopes, s;;, were then obtained for each channel 7 and for each beam
parameter j. The regression slopes were calculated for every 10° pair of pulses,
which was enough to minimize the statistical uncertainties of the linear fits.

The dithering slopes were obtained by perturbing steering coils in the accel-
erator C;,. We then measured the response of the BPMs, Am;, and the detector
channels, AA”“* to these perturbations. In other words, we measured the par-
tial derivatives 0A["***/0C) and Om;/0C). The required slopes, s;;, were then

obtained by solving the matrix equation

8mj
A 4.
aC om; 9C, 25 aC, (4:5)

8A£neas _ Z aA;neas %
J

See Chapter 5 for more details on the dithering analysis.
The dithering method does not statistically minimize the width of the exper-

imental asymmetry. Consequently, the width of the asymmetry determined from
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the dithering analysis might be larger than the width of the regressed asymmetry.
Therefore, the regression analysis was the dominant for calculating the experimen-

tal asymmetry.

Weights

Our formula for calculating the asymmetry accounts for one channel only. However,
the overall detector asymmetry must be calculated. The simplest formula for the

total asymmetry is the sum of all individual channel asymmetries:
Ared =" Ars, (4.6)
i

Since different channels detect different numbers of incident electrons, Equation 4.6

can not be useful. Therefore, individual channels should be weighted

A;eg — A;fgiwl — (Azzeas B S;’U m%)wz ) (47)
w;

w;
The weighting scheme, w;, should removes most of the statistical error. So in order

to minimize the overall detector width, the variance
V(A) = W;W,cov(A", A7), (4.8)

where

1
Wi = S (4.9)

cov(Ay, 4;) = NLP(ZAiAj)—%(ZAi)(ZAj), (4.10)

is minimized to obtain the weights w; [58].
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One-Run Asymmetry

So far, A7 has been defined for one (L,R) pair of pulses, p. For one run, the
value of the detector asymmetry, A7, is given as the mean value of the per-pair

asymmetry, A7, over all pairs of this run:

reg
ATt — Zp AI’
T

N,

p

1 Ameasyt — s, mlw'
- sz[ P PP (4.11)
p

(2
wy

where N, is the total number of pulse pairs in one run, A7*** the charge-normalized
per-pair asymmetry of a channel i, s, is the per-pair regression slope between
this channel and a monitor j, mg; is the per-pair helicity-correlated difference of
the monitor j, and wj; is the weight of this channel for a particular run. Note that
the weights w; are constant over the whole run, ¢.e., are the same for all pulse

pairs in one run. The width and the error of A7° are simply obtained from the

distribution:
1
AT = (A AT, (4.12)
Pop
2 Ared
SATeY = oA (4.13)

VN,
To obtain the asymmetry of a number of runs, N, the statistical-weighted

average of A7% is taken:
Sl A
27{21 wy
w, = — (4.14)

ATed

where o, is the error on the detector regressed-asymmetry for a run r. The width
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and the error of A" are given by

1 N 1
S = ;702(%@), (4.15)
2 reg
sares = A (4.16)

VN

where N is the total number of runs for a particular energy state.

One-Energy Asymmetry

To calculate the total experimental asymmetry, the data must be separated by
energy state, so that the different ep corrections can be added to each set. Then

we combine the asymmetry for two energy states according to:
Atotal = Z WEAE; (417)
E

where

1
5AZ

- = 1
2k 543,
The statistical error on A,y are obtained by

1

——
\ 28 5T

Wi (4.18)

§At0tal(stat) = (419)

Blinding

Finally to prevent bias of the physics result, a simple blinding algorithm was used
to hide the true value of the physics asymmetry. This algorithm shifts the raw

asymmetry of each channel by a fixed amount A’:
Areas — Amees 4 AL (4.20)

A’ is constant across all Moller channels and across all pairs.
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Figure 4.2: Regression analysis for the Mgller detector

4.2.2 Regressed Mpgller Asymmetry

Only corrections due to the beam asymmetries will be taken into account in this
section. Other corrections from background processes will be discussed later. The
effects of the regression procedure for the Mgller detector are illustrated in Fig-
ure 4.2. The first frame of this figure shows the raw asymmetry distribution for
one run. The distribution has an rms of 471 ppm. Regression against the energy,
position and angle BPMs, which is shown in the second frame, reduces the rms to
193 ppm.

In order to examine the distribution of the asymmetry and determine whether
the data has outliers or not, we plot the asymmetry versus run number and versus
slug number, as shown in Figure 4.3. The data is fit with a zero-degree polynomial,
which gives the total asymmetry averaged over time. In principle, the yx? and the
associated probability from this fit are a measure of experimental consistency. To

see the shape of the distribution around the mean, one can look at the pull plots

Ageg_Atotal A;eg_AtOtal
sty and e

(Figure 4.4), where the quantities are histogramed for all

runs and for all pulse pairs , respectively.
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Moller Asymmetry vs. run
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Figure 4.3: The regressed Mpller asymmetry as a function of run number (top)

and slug number (bottom) in Run III.
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Figure 4.4: The regressed Mgller asymmetry pull plot per pulse pair (left) and per
run (right) in Runs IIL.
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Measured A ., (ppb)

Run 11T
PRELIMINARY

06/26/2004
45 GeV HWP IN -86.0 + 31.4
45 GeV HWP OUT 2725+ 31.7
48 GeV HWP IN -127.1 + 28.6
48 GeV HWP OUT —— -172.2 + 28.6
MOLLER combined -118.1 + 15.0

1 L 1 L 1 L 1 1 L 1 L 1 L 1 L 1
-300 -250 -200 -150 -100 -50 0 50 100

Figure 4.5: The regressed Mgller asymmetry at different settings of the HWP
and the energy in Run III. The asymmetries have already been corrected for the

reversal sign.

As was discussed earlier, the asymmetry reversal techniques should cancel the
systematic effects. Therefore, it is necessary to look at the experimental asymme-
try for the different settings of the half-wave-plate and the energy of the beam.
Figure 4.5 shows the asymmetry for these experimental settings.

Another comparison can be made by looking at the experimental asymmetry for
the individual rings of the Mgller detector, since the asymmetry is not expected to
vary much between them (Figure 4.6). The IN and MID rings agree very well, but
the OUT ring is slightly shifted. Higher-order systematics, which will be discussed
later, are the cause of this shift.

The last comparison can be made by looking at the experimental asymmetry

for the three data sets ? as shown in Figure 4.7. Note that this is not the final

?Run I and Run II were discussed in details in Refrences [59,60].
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Measured A ., (ppb)

Run III
PRELIMINARY
06/26/2004
IN -117.0 + 24.5
MID -109.9 + 19.5
ouT -123.9 + 27.0
MOLLER combined -118.1 + 15.0
| L | L | L | | L | L | L | L |
-300 -250 -200 -150 -100 -50 0 50 100

Figure 4.6: The regressed Mgller asymmetry for each ring in Run III.

result yet. As was mentioned earlier, in this section we considered corrections due
to beam fluctuations only. Therefore, the uncertainties shown in Figure 4.7 are

only the statistical uncertainties.

4.2.3 Azimuthal Dependence in Mgller Asymmetry

The actual measured Asymmetry, A,,cqs, has two components:
Ameas = APV + AT: (421)

where A7 is the transverse asymmetry due to a small component of transverse

polarization of the beam (see Chapter 7 for more details). Ay can be written as
AT = Ad sin ¢, (422)

where A, is called the dipole, while Apy refers to what is called the monopole. The

azimuthal angle, ¢, of the scattered electron around the beam direction is measured
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Figure 4.7: The regressed Moller asymmetry for Runs [-III. Only statistical uncer-

tainty and beam corrections are considered in this plot.

from the direction of the transverse polarization. A dipoleY, Ay, can result from

a residual P, component of the beam polarization, due to imperfect horizontal

beam steering and a dipoleX, A4, can result from a residual P, component of the

beam polarization, due to imperfect vertical beam steering. Therefore, A, takes

the form

Ap = Agp sin ¢ + Agy cos ¢.

(4.23)

The dipole asymmetries Aqy and Ag, can be then computed using the measured

asymmetry after regression:
Adz

Agy

2 .
N DA i

2 .
N ; Al cos ¢,

(4.24)

(4.25)
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and

.2
Ly 4.2

where Aj"*** is the measured asymmetry for a channel ¢ and N; and §; are the
number of channels and the phase of the ring j, respectively. The phases ; were
calculated using the dithering analysis [61].

Figure 4.8 shows the observed dipole asymmetry as a function of the azimuthal
angle ¢ (the channels of the individual rings of the Moller detector). Table 4.2

summarizes the observed dipole asymmetries of the Mgller detector.

Adz (PPb) Ady (PPb)

Detector Run I Run II Run III

IN —74.6+£39.4 217.5+36.9  —41.24£36.0  41.54+33.4 —60.9£30.8 —15.4428.6
MID —69.4+32.8 155.8+£30.2 48.4430.2 62.0£28.5 —50.8+£25.4 24.1£22.8
ouT 99.0£74.5 489.2+73.4 320.84+70.3  142.6£61.2 —106.7+£38.0 122.24+34.8

Table 4.2: The dipole asymmetry of the Mgller detector in Runs I-III.

Now the question is how do we correct the measured Mgller asymmetry due to
that small non-zero transverse beam polarization?

This azimuthal asymmetry is not necessarily bad. These asymmetries, mea-
sured by the channels of the Mpller detector, should average to zero (parity is
conserved by QED interactions). This happens only if the weights of these chan-
nels are picked appropriately. Therefore, the channels weights w; (Equation 4.8)
should be modified in order to nullify the azimuthal dependence. The azimuthal

bias in the measured asymmetry takes the form:

A(A) = AgWisin ¢ + Ag, W, cos ¢'. (4.27)
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Figure 4.8: The dipole asymmetry vs. the azimuthal angle ¢ in Run III.
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To avoid such bias, the sum (Ag, W; sin ¢")? + (Ag, W; cos ¢*)? is simply minimized.

Therefore, the whole sum:
WiWjcov(A', A7) — (AgWisin¢')? — (Ag,W; cos ¢')?, (4.28)

should be minimized in order to get the weights w;. This attepmt, unfortunately,
results in a bigger statistical error in the Mgller asymmetry. Therefore, it was
not applied. On the other hand, from the data taken by running the electron
beam at 46 GeV and 43 GeV, where the beam polarization was fully transverse,
it was estemated that the contribution due to transverse polarization component

was —8+ 3 ppb for Run I, =5+ 3 ppb for Run II, and —5 £ 2 ppb for Run III [62].

4.3 Asymmetry Corrections
The measured asymmetry may be written as:
A = A Al AL (4.29)

where A2"Y* is the Moller physics asymmetry to be determined, and A%&™ and A%9?
are contributions to the measured asymmetry from beam asymmetries and from
background processes. In the following secitons we will discuss these contributions

to the measured asymmetry.

4.3.1 Beam Systematics

To first order, six correlated beam parameters described the trajectory of a beam
pulse: charge, energy, and horizontal and vertical position and angle. The regressed

beam asymmetries due to these six parameters are calculated in the same way the



104

Mgller asymmetry is calculated (Equation 4.11). Therefore, for a single run, r, one

can write:

1 s, miw
Abeam — § Pij ,p 4.30
(s Np . wzz ) ( )

and the beam asymmetry for a set of runs, N, would be

N
Abeam T
Abeam — Zr:l r w) (431)

Zivzl Wy

where w, is given by Equation 4.14. The beam asymmetries and their corrections

are summarized in Table 4.3. Errors on corrections are not shown in this table,

but they are discussed below.

Beam Parameters Beam Asym. Corr. (ppb)

Q 73.34288 ppb ~0.9
E —2.3£1.9 KeV 24.3
X 9.4£5.9 nm —-10.4
Y 11.846.0 nm —20.8
02 —0.0£0.2 nrad 6.2
0y —0.240.1 nrad 3.2
Total - 1.7

Table 4.3: Beam differences and asymmetries for Run III.

Systematic Uncertainties from First-Order Beam Asymmetries

The error for each beam correction is dominated by the jitter in the beam param-

eters. Therefore, they can not be assigned as a first-order systematic error on the
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experimental asymmetry. On the other hand, we used the the timeslot data to
calculate these first-order systematic errors. Figure 4.9 shows a comparison be-
tween the two data: timeslot 0 and timeslot 1. We take the difference between the
regressed asymmetry of the timeslot 0 and the regressed asymmetry of the times-
lot 1. We then divide this difference by the difference between the corresponding
beam corrections. This ratio is then used as a suppression factor for the beam
corrections. To calculate these values, different detectors were examined so that
we get the smallest suppression factor. For example, the dipole asymmetries are
sensitive to beam asymmetries and in particular, dipoleX is sensitive to the beam
position x and to the beam angle 6,. Therefore, the dipoleX asymmetries of the
MID and OUT detectors were used to calculate the systematic errors of the beam
parameter x and 6, respectively. Similarly, the dipoleY asymmetries of the MID
and OUT detectors were used to calculate the systematic errors of the beam pa-
rameters y and 0, respectively. Finally, the systematic error on the energy was
estimated using the monopole asymmetry for the Mgller detector.

Using the observed beam corrections, A’*™ we estimate the systematic errors,
6%¢am due to the first-order beam asymmetries according to [63]

A9 AT

Agfam _ Al{fam

Speem — | - Abearm |, (4.32)

where 4 here is an index for one of F,z,y,0,,0,. The total systematic error on
the Mgller asymmetry due to the the first-order beam corrections is then the

quadrature sum of the systematic uncertainties on each beam correction;

o= > 42 (4.33)

Table 4.4 summarizes the beam corrections, calculated by regression, the sup-

pression factors, and the resulting systematic errors associated with each beam
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Measured A,, (ppb)

R
-144.3 + 34.70
-87.1+ 35.80
-117.0 + 24.50
MID ts0 -114.3 + 27.60
MID ts1 -96.9 + 28.70
MID -109.9 + 19.50
OUT ts0 -71.1 + 38.00
OUT tsl - -203.4+ 38.90
ouT -123.9 + 27.00
MOLLER ts0 -113.7 £ 21.10
MOLLER tsl -122.8 + 21.80
MOLLER -118.1 + 15.00
| | | | | | | | | | | |

-400 -300 -200 -100 0 100

Figure 4.9: The regressed Mgller asymmetry for the two timeslots (ts0 & tsl) in
Run III.

parameter. For the ratio, (Ag™ — A®)/(Af“™ — A%¥“™) used in Equation 4.32,
one standard deviation was considered and not the central value. This is consid-
ered to be a conservative way to estimate the systematic errors 62°™. By applying
this procedure, the overall first-order systematic uncertainties, together with sys-
tematic uncertainties from beam false asymmetries (discussed below), were found
to be 1.13 4+ 0.87 = 2 ppb. By applying the same procedure to Run I and Run
I1, first-order systematic uncertainties were found to be 3 ppb and 2 ppb, respec-

tively. An comparison between the beam corrections for Runs I[-III is shown in

Figure 4.10.

Systematic Uncertainties from Beam False Asymmetries

The readout of a monitor, X, can be written as X = C -V, where C is the

calibration constant and V' is the voltage deposited in the cavity of the BPM.
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Parameters Corr. (ppb) Suppression Error (ppb)

Q —0.9 - 0.0
E 24.3 2.58% 0.63
X —10.4 2.04% 0.21
Y —20.8 3.57% 0.74
0 6.2 8.44% 0.52
0. 3.2 4.69% 0.15
Total 1.7 - 1.13

Table 4.4: Systematic uncertainties from first-order beam asymmetries.

Measured A | . (ppb)
Run 111
06/26/2004
RunI —o— 41+ 3
Run IT - 19+ 2
Run IIT 2+ 2
P S S ST S S RN ST N1 oo b e by
-60 -40 -20 0 20 40 60

Figure 4.10: Beam corrections in Runs I-III.
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Then the average and difference (known as BPM agreement) of two BPMs, which

are measuring the same beam parameter, are given by:

Y CiVi + GV OV =GV
ave — #7 agr — #

Therefore, the width of the average and the difference can be written in the form:

G+ Gy
2 )

Cl-C2

X =
J( ave) V 9 )

0(Xegr) =V

for some calculable voltage V. By solving these two equations, one can get

Ch 4+ Oy
Xope) = 0(Xupp) - L2,
J( a’Ue) J( agr) Cl . 02

The r.h.s of this equation gives the false asymmetry. Now, if we multiply both sides
of this equation with the regression slope of the associated beam parameter, we
will get the systematic uncertainty due to the false asymmetry of that particular
beam parameter. Results are shown in Table 4.5. The total uncertainty, which is
given by the direct sum, is 0.87 ppb. Similarly, the systematic uncertainties due

to the false beam asymmetry for Run I and Run II were found to be less than 1

ppb.

Systematic Uncertainties from Higher-Order Beam Asymmetries

In addition to the familiar beam systematics, which come from six beam parame-
ters: Q, F, x, y, 0, and 0,, the OUT ring of the Mgller detector was particularly
sensitive to other systematics. These extra systematics were unclear at first. As
shown in Figure 4.11, the y? distribution of the OUT ring showed significant non-
statistical fluctuations, which were not explained by systematics uncertainties from

first-order beam asymmetries or from false asymmetries in the beam monitors.
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Figure 4.11: SLUG plot for the OUT ring without (top) and with (bottom) the

time-dependant corrections. The x goes down from 95/36 to 37/36.
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Parameters Regression slopes False Asymmetry Error (ppb)
E —17.68  ppb/KeV 0.04 KeV —0.77
X 0.003 ppb/nm 0.16 nm —0.12
Y —0.59  ppb/nm 0.07 nm 0.08
02 —16.86 ppb/nrad 0.36 nm —0.02
0z 18.91 ppb/nrad 0.22 nm —0.04
Total - - —0.87

Table 4.5: Systematic uncertainties from beam false asymmetries.

One hypothesis was that there is a significant variation in the shapes of the
pulses, and that the electronics do not integrate pulses of different shapes in the
same way. This hypothesis was carefully tested and it was proved to have a very
weak effect. See Appendix A for more details.

Another possible hypothesis to explain these large y? values was the existence
of unmeasured beam parameters. The effects of these extra unmeasured beam
parameters happen within the duration of one beam pulse and, therefore, they
were undetected by the BPMs, since these BPMs integrate over the entire length
of the electron beam pulse. We called these extra beam parameters: highr-order
beam systematics.

In order to measure these extra beam parameters, we had to measure the beam
asymietries as a function of time inside the electron beam pulse. Therefore, we
added slice signals from the cavity BPMs before we started collecting the data
of Run III. We then regressed all detector asymmetries against these sliced sig-
nals. Such regression reduced the x? of the OUT ring to roughly 1 per degree of
freedom [64](Figure 4.11).
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To estimate the higher-order beam systematics in Runs I and II, regression
using the sliced signals for Run III, together with an analysis of the OUT ring
for Runs I and II, were used [65]. The whole idea is to write down the measured

asymmetry as a sum of the real physics asymmetry A, and false asymmetry
A=A + oAy, (4.34)

where A,y is the higher-order beam systematics that we hope to estimate, and o
is a coefficient. Although we did not measure the quantity oA,y in Runs I and II,
we estimated its value using two detectors, e.g. IN+MID and OUT, with known
expected asymmetries. If A,; and A,5 are the known asymmetries of these two
detectors, one we can solve Equation 4.34 for a; Ay

a1 a1

=AA

a1 — Qo a1 — Qo

alAsyst - [(Al - AQ) - (Arl - ATQ)] (435)

The two coefficients a7 and ay were estimated by various methods. One of these

methods is the ratio of the charge slopes
@ _ @
Q2 Q2

This is because most of the beam asymmetries are sensitive to charge. As a cross-

(4.36)

check, the higher-order beam systematics in Runs III were estimated using this
method as well as the sliced signals analysis. A very good agreement between the
two methods was obtained [65]. In conclusion, the higher-order beam systematics
were estimated to be at the level of 10 ppb, 15 ppb and 2 ppb for Runs I-III,

respectively [65,66].

Systematic Uncertainties from Beam Spotsize

The spotsize (the helicity-correlated differences in the beam size) was measured

by the wire array device. It is defined as S = mo,0,, where o is the width of the
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| Average spotsize Nent = 492
Mean = 3.589
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Figure 4.12: A histogram of the average spotsize, S.

beam size in either = or y. A histogram of the average spotsize, S, for each run
is shown in Figure 4.12. The systematic uncertainties due to the beam spotsize is

given by [67]
Agpor = a[moy(Dy) + w0, (Dy)], (4.37)

where « is a correlation factor and (D,) and (D,) are the average = and y spotsize
differences. The overall systematic uncertainty due to beam soptsize was found to
be 0.05+0.5ppb, —0.84+0.7 ppb, and 0.54+0.7 ppb for Runs I-I1I, respectively [68].

Because the effect of the beam spotsize is less than one ppb, it was neglected.

Comparing Regression with Dithering

As we mentioned earlier, the beam corrections to the measured asymmetry were
calculated in two different methods: regression and dithering. The dithering/regression

plays two important roles in the experiment:
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1. Reduce the contribution to the width of the asymmetry due to beam noise.

2. Reduce the effect of helicity correlated beam differences on the average asym-

metry.

In order to examine the reliability of the dithering/regression corrections, one needs
to compute the width of the asymmetry with and without dithering/regression.

In addition, the asymmetry is not expected to vary much between the two
methods. Therefore, it is necessary to make a comparison between the asymmetry
corrected by regression and the asymmetry corrected by dithering. Although,
the final result was computed using the regression corrections, dithering analysis
worked as a very important double-check for the regression analysis.

The dithering coils did not work well for a number of runs we, therefore, carried
out the dithering analysis on one common data set where both regression and
dithering worked very well. The beam corrections for both regression and dithering
are summarized in Table 4.6. The systematic uncertainties shown in this table were
calculated using the same method that was discussed above. The overall difference
between dithering and regression was about 1 ppb. Figure 4.13 shows the Mgller
asymmetry determined by dithering at the different settings of the half-wave-plate
and the energy in Run III. A comparison between those asymmetries corrected by

regression and those, corrected by dithering is shown in Figure 4.14.

4.3.2 Corrections from Background Processes

The detector signal S has two components:

S = Sy + S, (4.38)
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Beam Corrections (ppb)

Beam Parameters Regression Dithering
Q —0.4+£0.00 —2.7£0.00
E 22.1£0.58 27.0£0.68
X —11.5+0.23 —5.44+0.13
Y —20.8£0.75 —24.9£0.87
0. 8.0+0.64 1.74+0.11
0. 1.54+0.07 3.340.15
Total —0.1£1.17 —2.3+1.12

Table 4.6: Corrections due to the beam differences calculated by regression and

dithering.

Blinded A ., by Dithering (ppb)

Run III

06/26/2004
45 GeV HWP IN 47.1+ 343
45 GeV HWP OUT —— 745+ 34.2
48 GeV HWP IN 8.5+ 29.2
48 GeV HWP OUT —e— -44.9 + 28.8
Average 16.8 + 15.7

| L | L | L L | L |
-300 -200 -100 0 100 200

Figure 4.13: Blinded Mgller asymmetry determined by dithering at different set-
tings of the HWP and the energy in Run III. The asymmetries have already been

corrected for the reversal sign.
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Measured A , (ppb)
BLINDED
Run IIT
IN dit. 225+ 25.8
IN reg. 14.3 + 24.7
MID dit. ———— -59.3 + 31.7
MID reg. —— -58.3 + 31.2
OUT dit. -9.9 + 294
OUT reg. -6.4 = 28.9
MOLLER dit. 16.8 + 15.7
MOLLER reg. 15.8 = 15.1
l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1
-200 -150 -100 -50 0 50 100 150 200

Figure 4.14: The blinded Moller asymmetries using regression and dithering cor-

rections in Run III.

where Sj; and Sp are the contributions to the signal due to Mgller scattering and

background processes, respectively. Therefore, the asymmetry takes the form

A

where

/5

The Mgller asymmetry,

SR _ SL
Sk SL”
(St — Si) + (S§ — Sp)
(Si +Si) + (S§ —Sp)’

Au(L = fB) + fBAB, (4.39)
SE st SE_gk
SE+8L TP SE-sSE
1
. 4.4
o
B B

Ay, can be then given in terms of the measured asym-
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metry, A, the background asymmetry, Ag, and a factor fg:

A— fBAp

Ay = o7, (4.41)

The factor fp is called a dilution factor since it has a value < 1, i.e., it leads to

a dilution of (decrease in) the asymmetry Apy. By taking, into consideration, all

background processes, we end up with

Ameas _ Zbkg fbkgAbkg _ Ameas _ A A
I_Zbkgfbkg a L—f '

In the following subsections, we will discuss these background processes and

Apy =

(4.42)

their contributions to the Mgller asymmetry.

ep Corrections

Corrections due to elastic and inelastic ep processes were determined using the
data that was collected by the MOTT detector, and by Mont Carlo simulation as
well. Figure 4.15 shows the Monte Carlo simulation and a real data scan that was
taken by the profile detector. This scan was taken using the holy collimator in
order to create a clean separation between the Mgller and the ep scatters.

The parity-violating ep asymmetry is given by [69]

dO’L—dO'R . GFQ2

Arp = = —
Lk dor, + dogr 4121

[Qw (p) + F7(Q%,0)], (4.43)

where Qw (p) 3 is the weak charge of the proton and F? is a form factor. This
asymmetry was found to be —1.43+0.04 ppm at 45 GeV and —1.74+0.06 ppm at
48 GeV. The difference in the asymmetry is due to the fact that A., ~ 1071Q? for
elastic and A,, ~ 107°Q? for inelastic, and Q? itself is significantly different for the

3At the tree level, Qw (p) is given by Qw (p) = 1 — 4sin® Gy .
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Figure 4.15: The Monte Carlo simulation (blue) and a real data scan (red) that
was taken by the profile detector with the holy collimator inserted.
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two energy states. This indicates that the Mgller asymmetry must be separated by
the energy state, so that the different ep corrections can be added to each sector.
For a detailed description of the procedure for estimating both the elastic and the

inelastic ep corrections, see Reference [70]. These corrections are summarized in
Table 4.7.
Pion Corrections

The effect of the m background in the measured parity-violating asymmetry is given

by [55]

€N,
Ameas - = Aw

Ne
_ eNx ’
1 N

Apy = (4.44)

where A, is the parity-violating asymmetry, measured by the 7 detector, N, and
N, are the pions and electrons rate in the Mgller detector, and € is the ratio of the
Cherenkov energy deposited by pions over the Cherenkov deposited by electrons in

the Mgller detector. In Equation 4.44, the term E]]\Y” A, gives the correction to the

experimental asymmetry due to the m background with a dilution factor of ENﬁ
The flux ratio %—’; and the energy ratio € were estimated via a GEANT simu-
lation. The asymmetry measured by the 7w detector was found to be 1.35 4+ 0.43
ppm, 0.78 + 0.45 ppm, 0.55 £ 0.37 ppm with dilutions factors of 0.001 4 0.001,
0.001 £ 0.001, and 0.002 £ 0.002 for Runs I-III, respectively [71]. A reduction of
about 40% can be noticed in the measured A, in Runs II and III. This reduction is
due to the ep collimator , which was installed between Run I and Run II. There-
fore, pions from ep detector were suppressed, while pions from Magller detector

were seen by the pion detector. The overall pion correction is then 1.87 4+ 1.54ppb,
1.08 + 1.03 ppb, and 0.74 £ 0.75 ppb for Runs I-III, respectively.

4Also known as the 3CMS8 collimator.
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Neutral Backgrounds

The corrections from neutral backgrounds (photons and neutrons) in the Mgller
detector and their dilution factors were estimated by auxiliary measurements made
during Runs LII, and III. The results from the analysis [72] of these background

studies are summarized in Table 4.8

Luminosity Monitor Asymmetry

As mentioned earlier, the asymmetry measured by the luminosity monitor is ex-
pected to be zero. The luminosity asymmetry was calculated using the standard
formula of the Mgller asymmetry, except that extra cuts were applied to the raw
data. These cuts remove any event that was collected when any of the channels of
the luminosity monitor was dead. The luminosity monitor measured an asymme-
try of —16 £ 15 ppb, —14 £ 12 ppb, and —45 £ 14 ppb in Runs I-I1I, respectively.
The non-zero asymmetry, seen by the luminosity monitor especially in Run III,
insure our hypothesis regarding the extra beam parameters, which were measured
by the sliced beam signals. Figure 4.16 shows the asymmetry measured by the
front luminosity monitor at the different settings of the half-wave-plate and the

beam energy in Run III.

4.3.3 Beam Polarization
The measured asymmetry is related to the parity violating asymmetry by

Ameas - Pe : APV; (445)

where P, is the longitudinal polarization of the electron beam. Therefore, an

accurate measurement of P, is required. By using the SLAC polarized electron
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Measured A | ., (Ppb)

Run III
06/26/2004
45 GeV HWP IN -58.8 + 249
45 GeV HWP OUT —— -99.2 + 26.3
48 GeV HWP IN -30.9 + 29.3
48 GeV HWP OUT -29.1 + 30.1
Average -455 + 13.7
| L | L | | L | L | L
-300 -200 -100 0 100 200

Figure 4.16: Luminosity monitor asymmetry at different settings of the HWP and

the energy in Run III. The asymmetries have already been corrected for the reversal

sign.
2 E_ Asymme{ry VS, S|ug Number A Lumi Asymmetry (ppm? Vs, MoIl‘l:r Asymmelry (ppm)
1.5 : % T oimy o
: Chi2= 2751 —
E 1 _— Mean =-0.021 +/- 0.016 500/
o g
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el | l ‘1 g
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Figure 4.17: The left-right asymmetry as a function of data samples measured
by the Luminosity monitor in Run I (left). The Mpgller asymmetry against the
Luminosity monitor (right), which shows that there is no indication for target

boiling.



123

beam scattering off a longitudinally polarized iron foil target, we computed the

left-right asymmetry measured by the polarimeter detector [73]
Apolarimeter daLL - dURL

LR dop, + dogg

(7 + cos? Ocpr) sin? Oy

= pbeam o plot
¢ ¢ (34 cos? 0o )?

, (4.46)

where P’ is the longitudinal beam polarization, Petfrget is the longitudinal iron
foil polarization , and O, is the center of mass scattering angle.

For Ocy = 90° and Pef_"“ ~ 8%, the left-right asymmetry, measured by the
polarimeter detector AL i around 0.05. This asymmetry in turn had to
be corrected from background scatters, which come mainly from ep electrons and
low-energy photons. This background was estimated by GEANT simulation to be
(8 & 3)% of the asymmetry measured by the polarimeter detector.

The overall electron beam polarization was 0.85 4+ 0.05 for Run I, 0.84 + 0.05

for Run II, and 0.85 4+ 0.04 for Run III.

4.3.4 Linearity of the Mgller Detector

The measured asymmetry is related to the parity-violating asymmetry by [75]
Ameas =e€- APV; (447)

where € is the detector linearity. In fact, € directly depends on the flux F' seen by

the detector
e=1—BF+O(BF)? (4.48)

where [ is a constant. At large input signals, SF > 1, which means that the

detector response is non-linear. A good method to measure € is to compare the
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detector asymmetries obtained at different flux conditions. A low flux was obtained
by covering the Mgller PMTs with aluminum foil with half-inch hole punch through
it. To get a higher flux, the hole diameter was increased to be one-inch instead of

half-inch or the PMTs remained uncovered. We then estimated e from

high high
An’fgas _ 1 _/BF v

Alow - 1 — ﬂFZow :

meas

(4.49)

assuming that SF > 1 i.e. the detector response is very linear at low flux [74].
Results from this analysis show that the linearity of the Moller detector is 0.99 +
0.01 in Runs I-11I.

4.4 Apy

As mentioned earlier, in order to calculate the experimental asymmetry, the data
must be separated by energy state, so that the different ep corrections can be added
to each set. For one energy state, E, the physics asymmetry is given by:
B lA%was _ AAE

n 1—fE '

where AAp +§(AAg) and fr £+ fr are the linear sums of all corrections and dilu-

Ap (4.50)

tions for various background sources, respectively. Their errors are the quadrature

sum of the individual errors on the corrections or the dilutions;

0(AAp) = Y 6(AAY)2, (4.51)
5fp = /Za(fg)z (4.52)

n=+dn is a normalization factor, which is the direct product of the detector linearity,

€, and the beam polarization, P. The detector linearity and the beam polarization
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are the same for the two energy states. Therefore, the error on the normatization

factor dn is calculated as

o = n\/(%P)z - (%), (4.53)

All corrections, dilutions, and normalizations are listed in Table 4.9.

The statistical and systematic errors on Ay are obtained by

dAp(stat) = apdALY, (4.54)
JAg(syst) = \/OtZE(S(AAE)Z + BEOf3 + YEOn?, (4.55)
where
! (4.56)
ap = —/——, :
Y (- fr)
Ag

A
e = == (4.58)

n

To get the final physics asymmetry Apy, we combine the asymmetries A, due

to the two energy states, using their statistical weights 0 A _ (stat)
APV - ZWEAE, (459)
E

where

1
5AZ

-
2 5AT
The statistical and systematic errors on Apy are obtained by

SApy(stat) = —— (4.61)

Vs
SApy (syst) = \/ D ald(AAR)) Z Bl fr)? ZyEén (4.62)

Wg =

(4.60)
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where
CYIE = Wgayg, 513 = WgBE, “YIE = Wgve. (4-63)

Using these equations, the measured parity-violating asymmetry in the Mgller

scattering was found to be

Run I: —175 4 30 (stat.) £ 20 (syst.) ppb
Run II: —144 + 28 (stat.) £ 23 (syst.) ppb
Run III: —107 £ 18 (stat.) £ 20 (syst.) ppb
Run I-III combined: —128 + 14 (stat.) & 12 (syst.) ppb

A plot of the parity-violating asymmetry for each slug for Runs I, II, and III
is given in figure 4.18. The sign flips, due to the energy state and half-wave-plate
state, are not included in order to illustrate that the measured asymmetry has the
expected sign flips with respect to energy and half-wave-plate configuration. A
comparison of the parity-violating asymmetry between the three Runs and their

average is shown in Figure 4.19.
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Figure 4.18: The parity-violating asymmetry for each slug in Runs I-1II. The data

has not corrected for asymmetry sign flips and the gray solid line represents the

grand average with the expected asymmetry sign for each sign flip configuration.

The uncertainty shown is only the statistical uncertainty.
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Measured A ,, (ppb)

Runs -1
PRELIMINARY

06/26/2004
Run I —_—— -176 £ 30
Run II -145+ 28
Run IIT -107 £ 18
A,y combined -128+ 14

L | L | L | L | | L | L | L | L
-300 -250 -200 -150 -100 -50 0 50

Figure 4.19: A comparison of the parity-violating asymmetry between Runs I-I11

and their average. The uncertainty shown is only the statistical uncertainty.



Chapter 5
Dithering Analysis

The cross-section is assumed to be sensitive to six independent beam parame-
ters: charge, energy, 2 position coordinates, and 2 angle coordinates, namely:
Q,E,z,y,0,,0, The basic idea is to monitor the helicity-correlated differences in
these parameters using two kind of devices, toroids and beam position monitors
(BPMs), then evaluate the sensitivity of the cross-section to the beam motions
as seen by these BPMs. From this information we should be able to evaluate
the contribution to the measured raw asymmetry due to the helicity-correlated

systematics differences in the position and the angle of the the electron beam.

5.1 Mathematical Formulation

The following is a mathematical formulation of the problem. From Equation 4.4,

considering one PMT only, one has

aAmeas

Abeam —
OM;

AM, (5.1)

where 0A™* /OM; are the first-order correction coefficients, called the dithering
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slopes and AM; are the helicity-correlated differences in the BPM i. We will drop
the suffix “meas” in A,,..s for simplicity.

Our goal is to find these slopes. This is achieved by perturbing steering coils
in the accelerator C; and then measuring the response of the BPMs and the cross-
section to these perturbations. The partial derivatives that are being measured by

perturbing the coils are

g_é, % (5.2)
which are called the detector signal slopes and the beam parameter slopes respec-
tively.

The required partial derivatives 0A/0M; can be then computed by solving the

matrix equation:

94~ 94 9N,
9C; ~ 4= OM; aC;’

(5.3)

where j here is the number of coils. To solve Equation 5.3, we perform a standard

x* minimization with respect to 21 where [77]

coils 5
0A 0A 0M,;
2 _ _ ty2
=2 9C; 2= on; ac; ) (5.4)
_7:]_ =1
Now let us impose the minimization condition:
ox?
RV (5:5)

We get from Equation 5.3 and Equation 5.4

S =AM, (5.6)
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where
Si:g)—]\i, i=1,...,6, (5.7)
Ap=70 PaGEE, k=1,...,6, (5.8)
Mikzzg‘jﬁsg—g%, ik=1,...,6. (5.9)

Note that the elements of the two matrices A and M can be easily computed, since

they are given by the measured partial derivatives % and g]g?.
J J

Therefore, we can
compute the required coefficients, which are the elements of the matrix S, once we
invert the matrix M.

We also note that the dimensionality of the problem, which is defined by the
dimension of the matrix M, is independent of the number of coils used. In reality,
we used all working coils to perturb the position and the angle of the beam. How-
ever, we choose one set of four of coils to calculate the matrix elements M;, and

perform the analysis, which was enough for the precision of our measurements.

5.2 Data Analysis

Corrections to the measured asymmetry due to beam asymmetries were calculated
using the dithering slopes as well as regression slopes as we discussed in Chapter 4.
This was the most important gaol, since this test provided a crosscheck for the
Mgller asymmetry analysis. In the following subsections, we will view the other

aspects of the dithering analysis.

5.2.1 Phase Angle of Dipole Asymmetry

Dithering slopes are very sensitive to the dipole asymmetries (Figure 5.1). In fact,

they were used determine the phase angles which in turn determine the actual
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orientation of the detector. It was very important to determine those angles since
they were used to calculate the azimuthal contribution to the asymmetry. In order
to calculate these phases, we define the weighted average of the dithering slopes,

R, for a particular beam parameter as follow

N
R=Y w's, (5.10)
k=1

where N is the number of channels in one of the rings of the Moller detector, wy
is the weight for a channel k£, and Sj is the dithering slope for the channel £ and

for the beam parameter under consideration. We then calculated three quantities:

2
N
wh = 2 singk (5.11)
% cosdF
where
o
¢ = % +6. (5.12)

These three quantities give three different states, namely: Monopole (R,), X-
Dipole (Rx), and Y-Dipole (Ry). Here 0 is the phase angle and can be expressed

as:

§ = tan_l(g—;). (5.13)

The above calculations show that the phase angles take the values:
1372 IN
0 =4 —65° MID (5.14)
131° OoUT
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Figure 5.1: Dithering slopes (0A/Jy) as a function of ¢ for each detector. The
detectors in this graph go in the order: FLUMI, BLUMI, IN, MID, OUT, and EP.

5.2.2 Beam Sensitivity

We used the dithering slopes to study the sensitivity of the monopole and the
dipole asymmetry to the beam asymmetries. This was done by examining the
dithering slopes against time as shown in Figure 5.2, where one can tell that the
Y-Dipole is sensitive to the y-position of the beam while the Monopole and the
X-Dipole are not.

This particular test lead to a new fact that we learned about our experiment.
We first noticed some oscillatory behavior in the dithering slopes for some detectors
and not others. For example, Figure 5.3 shows this behavior in the Luminosity
Monitor. An excellent candidate for such behavior was the temperature of the
environment, which might affect the spectrometer tunning. In addition, the tem-

perature might affect the length of the cable of the BPM that transfers the signal.
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Figure 5.2: Dithering slopes (0A/0y) as a function of time at monopole and dipole
for the Moller and ep detectors.
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Figure 5.3: Dithering slopes (0A/JF) as a function of time at monopole and dipole

for the Luminosity Monitor.

To investigate that, we plotted the dithering slopes vs time of day as shown in
Figure 5.4. We found out that all beam parameters experience significant fluctu-
ations due to the temperature of the environment. For example, the beam energy

shows a fluctuation of 50 ppm/pum.

5.2.3 Correlation Between Beam Parameters

Correlation between beam parameters were examined by the dithering analysis.

In fact, the mount of correlation between two beam parameters p; and ps

corr(p. pg) = (p1 — P1) (P2 — P2) o . ‘
(p P ) \/(pl _]9_1)2(192 —}9_2)2, Di aA/aMz (5 15)
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Figure 5.4: Dithering slopes (0A/OFE) as a function of time of day for the Lumi-

nosity Monitor.
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was calculated for each detector using the dithering slopes. These values give a
symmetric correlation matrix. For the MID ring in Run I, for instance, the matrix

took the form

Q E x Yy 0, 0,
Q@ 100% 33% —-9% —"% 14% —4%
E 100% —32% —22%  33% —36%
x 100%  64%  39%  62%
Y 100%  46%  42%
0, 1.00% 0%
0y 100%

which tells us that there is a weak correlation appears between the beam position
x and y while there is no correlation between 6, and 6,. The charge is weakly
correlated to other beam parameters as well. The energy is not strongly correlated
to other beam parameters either. This is shown in Figure 5.5 in which we plotted
0A/OM; vs 0A/OM; for some beam parameters. The non-observed correlation
between the beam parameters indicates that the regression method can be safely

used in the asymmetry analysis.

5.2.4 Weights

As we mentioned in the previous chapter, we tried various schemes of weight to
calculate the overall detector asymmetry. Some of these schemes minimize the sta-
tistical width of the asymmetry, while other schemes take care of systematics errors
such as the transverse (dipole) contribution. Dithering slopes helped to examine
the different effects of these schemes. For example, we considered the two weight-

ing schemes: MollerE and MollerDipoleRing. The first scheme gives a standard
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Figure 5.5: Shown are the weak correlation between the beam positions x and y

(left) and the zero correlation between the energy and 6, (right).

statistical minimization, while the second one minimizes the dipole contribution.
A comparison between the two schemes shows a significant disagreement in the
OUT ring (roughly 200 ppm/um) while it shows an excellent agreement in IN and
MID rings (Figure 5.6).

5.2.5 Memo Output

As mentioned earlier dithering/regression correction reduces the contribution to
the width of the asymmetry due to beam noise. In order to study the noise
at the run level, outputs for each run (similar to what is shown in Figure 5.7)
provided useful information on how dithering/regression correction reduced the
noise, especially for the sensitive rings. These outputs are known as the Memo
outputs.

These outputs show two kinds of information, monitor and detector informa-
tion. In the monitor section, the memo output included information about the
BPM electronic noise, as well as the correlation between the beam parameters.

For the detectors sector, the calculated dithering slopes were summarized. Also
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Figure 5.6: A comparison between two schemes of weights MollerE and MollerDipo-

leRing, using the dithering slopes.
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the width of the raw and corrected asymmetry was provided.

5.3 Summary

In conclusion, dithering analysis played a very important role in the data analysis of
E158. The dithering analysis really increased our knowledge about the systematics
in the experiment. We obtained very useful information about the relationship
between the beam and the detector that can be used not only in E158 but in

future experiments as well.
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Chapter 6

Weak Mixing Angle and Other

Implications

6.1 Calculation of sin’ 0y

Our measurement of Apy is related to the electron weak charge, Qf, by

Apy = App = A(Q%, y)QSy,

where

GFQ2 1—y

2 e
A(Q,y)— 4\/§7ra1+y4+(1—y)4

Fb.

(6.1)

(6.2)

is known as the analyzing power. A(Q? y) depends on kinematics and the ex-

perimental geometry and was determined from a Monte Carlo simulation. The

factor F, = 1.016 £ 0.005 accounts for hard initial- and final-state radiation [78]

(Figure 6.1). We may then write,

e APV
=A@y

(6.3)
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Figure 6.1: Bremsstrahlung corrections to the analyzing power.

The average values of the kinematics variables were Q? = 0.025 (GeV/c)? and
y = @Q*/s ~ 0.57. To take into account the LO corrections, we compute G form

muon lifetime using one-loop formula [79]
G, =1.166 x 10"°GeV 2, (6.4)
and employ «a(mz)
almyz) =127.9£0.1, (6.5)

defined by modified minimal subtraction scheme (MS) at u = my, which reduces
the NLO effects. Calculations of A showed that A = 3.28 + 0.06 ppm in Run I,
A =3.34 £ 0.05 ppm in Run II, and A = 3.28 £ 0.05 ppm in Run III.

As shown Table 6.1, the weak charge of the electron ()f;, was found to be

Q% = —0.0388 + 0.0042 (stat.) £ 0.0040 (syst.), (6.6)

which is consistent with the Standard Model expectations [80] of —0.046 % 0.002.
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Q%W Stat. Error Syst. Error sin? BWM—S Stat. Error Syst. Error

Run I —0.0535 0.0092 0.0062 0.2292 0.0024 0.0016
Run II —0.0433 0.0085 0.0069 0.2318 0.0022 0.0018
Run III —0.0326 0.0055 0.0035 0.2346 0.0014 0.0009
Average —0.0388 0.0042 0.0040 0.2330 0.0011 0.0010

Table 6.1: The E158 result for the weak charge for the electron. The first error is

the statistical error while the second error is the systematic error.

In the M S scheme, sin? Owps yields:
sin® 0w~ = 0.2330 = 0.0011 (stat.) £ 0.0010 (syst.), (6.7)

which gives a Standard Model pull of 1.20. This result, together with other exper-
imental measurements, are presented in Figure 6.2.

In the effective scheme:
sin? 0577 = 0.2403 & 0.0010 (stat.) & 0.0009 (syst.) (6.8)

which gives a significance of 6.50. This result is the most precise measurement
of sin? Oy at low Q2. The result is plotted, together with a theoretical prediction

from Czarnecki and Marciano, in Figure 6.3.

6.2 E158 Result and Physics Beyond the Stan-
dard Model

As we discussed earlier, the E158 result for the weak mixing angle can be used to

set limits on certain physics theories beyond the Standard Model. As an example
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Figure 6.2: Summary of Weak Mixing Angle measurements at the Z° pole.

of the sensitivity of the measurement to physics beyond the Standard Model, a
limit can be set on the mass of the extra Z’ boson in the SO(10) Model. The

sensitivity is given by (Equation 1.96):

Apges 1 — dsin® gy my
— =14+7—2, 6.9
ASV 1 —4sin? O™ m?, (6.9)

1.€e.

Tm% (3 — sin® 05

2 nSM :n2 gmeas
sin” 0" — sin” 07}

m2zl -

(6.10)

By solving this equation, a limit of ~ 0.9 TeV can be set on the mass of Z'.
Another example of the sensitivity of the E158 result to physics beyond the
Standard Model is the limit that can be set on the compositness scale A, for

contact interactions among electrons. The sensitivity is given by (Equation 1.99):

T Nrr+ ML
Gpv2 AL

.2 nmeas - 2nSM __
sin® Oy~ —sin“ Oy =+

(6.11)
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where nrp = 1y, = 1. At the 95% confidence level, this equation yields A}, > 6.4
TEV and A, > 13.9 TeV for a positive and negative deviations from the Standard
Model, respectively. And if the this four-electron interaction is mediated by a
doubley-charged Higgs boson, A*™*, a limit on the mass of this Higgs can be set
to be:

2
geeA 4T
~— =0.2TeV 6.12
ma A2, v ( )

using the upper limit of A,.



Chapter 7

Azimuthal Asymmetries in

Transversely Polarized Scattering

In addition to the parity-violating asymmetry, Apy, a nonzero azimuthal asymme-
try Ar can be generated. This azimuthal asymmetry is governed by QED interac-
tions alone. E158 measured such azimuthal asymmetry in single-spin, transversely
polarized Moller scattering. In fact, a fraction of the running was carried out with
transverse polarized electron beam in order to measure this azimuthal asymmetry,
while most of the data was taken with longitudenal polarized electron beam in
order to acheive our precise measurement of the parity-violating asymmetry, Apy .
Moreover, the longitudinally polarized beam, that was used to measure Apy, was
found to be ~ 88% polarized. This means that a correction to Apy, due to a small

non-zero transversely polarized beam, had to be made.
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7.1 Theoretical Motivation

The azimuthal asymmetry, Ar(¢), for single-spin transversely polarized Mgller
scattering was calculated up to the leading one-loop order by Barut and Fronsdal
in 1960 [81], and again by DeRaad and Ng in 1975 [82]. In 2004, calculations at
the two-loop order were performed by Schreiber and Dixor [83].

The azimuthal asymmetry is governed by an operator of the form S - (K x K'),
where S is a spin and K and K’ are two momenta for two different particles.
This asymmetry arises at one-loop order from the interference between the tree

diagrams and the box diagrams and it takes the form [83]

AT(¢) = sin ¢, (71)

where ¢ is the azimuthal angle of the scattered electron around the beam direction,
measured from the direction of the transverse polarization. If the central-of-mass
energy is much larger than the electron mass /s > m,, the asymmetry coefficient

ag at the leading-order takes the form

LO Me
ap” =a—f(0 7.2
T \/gf( )7 ( )
where « is the fine structure constant, # is the scattering angle in the center of

mass frame, and f(#) is given by:

s{3s (t(u — s)in(—t/s) —u(t — s)in(—u/s)) — 2(t — u)tu}

A2 + tu + u?)? ‘sinf, - (7:3)

f0) =

s =2m.E, u:—§(1+cosﬁ), tz—%(l—cos@). (7.4)

The function f(6) is odd under § — 6 — w. Therefore, the the asymmetry in

¢ can be completely canceled if there is a high acceptance in 6. Because of the 6
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Figure 7.1: One-loop Feynman diagrams contributing to the azimuthal asymmetry

for transversely polarized Moller scattering.

acceptance of the E158 Moller detector, the sensitivity of E158 to Ay (@) is quite
high. The E158 detector is well segmented in ¢, but poorly segmented in 6.

This transverse asymmetry is not small. Given the fact that the CM energy at
E158 is roughly 0.2 GeV, an azimuthal asymmetry at the order of am,/y/s ~ 1073
can be observed. This is two order of magnitudes larger than the parity-violating
asymmetry, Apy ~ 1075,

At this precision level, it is important to include the QED next-to-leading
order (NLO) radiative corrections to Ay(¢). The NLO contribution to Ay (¢)
comes mainly from two-loop scattering amplitudes for e“e~ — e~e~ and one-loop
scattering amplitude for e“e~ — e~e~7. The azimuthal asymmetry Ar(¢) is then

modified as follows:

Ap(¢) = o Csing. (7.5)

where o1 is the NLO asymmetry coefficient. This leads to 1% increase in the

magnitude of the asymmetry [83].
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7.2 Data Analysis

In this chapter we will discuss the analysis of the data taken with a transverse

electron polarization at beam energies 43 GeV and 46 GeV.

7.2.1 Data

The transverse-polarization data was collected for several days in Spring 2002, Fall
2002, and Summer 2003. E158 collected over 24 x 10° pulse pairs at two different
beam energies (43 GeV and 46 GeV). The liquid hydrogen was used as a target for
the data that was collected in Spring 2002 and Fall 2002, while the 8-gm carbon
target was used in Summer 2003.

In order to clean the data from any outliers, certain cuts were applied to the
data. These were the same cuts applied to the longitudinal-polarization data.
Applying these cuts to the whole data set resulted in a reduction of about 16% in
the number of pulse pairs [84].

7.2.2 ee & ep Transverse Asymmetries

The same method described in Chapter 4 was used to calculate both the longitu-
dinal and trasnverse asymmetry. Only corrections due to the beam asymmetries
were taken into account. Other corrections from background processes were not
considered here.

Recalling equation 4.21

Ameas = APV + AT - Adz sin ¢ + Ady CoS ¢7
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where the dipole asymmetries, Agy and Ay, are given by
Age = 2 ATsin @', Ag, = 2 ALY ‘
d.’l:_ﬁz i SIH¢, dy_ﬁz 3 COS¢7
o o

where

211

Here Apy is the parity-violating asymmetry due to a small component of a longi-
tudinal polarization of the beam. Therefore, we expect A, to be few ppm while
Apy should be 0 for a 100% polarized beam.

Figure 7.2 shows the sin function of the experimental asymmetry, which meets
our expectations. In a manner similar to the longitudinal Mgller asymmetry, we
first examine the distribution of the asymmetry and determine whether the data
has outliers or not. In this context, we plot the asymmetry against data samples
(slugs). This is shown in Figure 7.3. Despite the big statistical error on the second
and the fourth slugs, the data seems to be clear from any outliers.

We expected the elimination of the systematic effects by the use of the asym-
metry reversal techniques. The experimental asymmetry was then calculated for
the different settings of the half-wave-plate and the energy. We also did not expect
the asymmetry to vary much between the individual rings of the Mgller detector.
Figure 7.4 shows that, particularly in the OUT detector, there is no significant
cancellation.

In conclusion, the observed azimuthal asymmetry in the Mogller detector is
Ajﬂf[‘””e’“ = 2.7 ppm, which is consistent with the theoretical predictions. In the ep
detector, the observed transverse asymmetry is A% = 2 ppm, which is about five

orders of magnitude smaller than the predicted asymmetry.
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Figure 7.2: Transverse asymmetry for the individual rings of the Mgller Detector
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set.
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Figure 7.4: Transverse asymmetry of the Mgller detector for Run II (top) and Run
IIT (bottom).
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7.2.3 Other Transverse Asymmetries

Verifying the transverse asymmetry of the 7 detector was critical, since few hundred
ppm in the 7 detector could easily result in 1 ppm in the ep transverse asymmetry.
The transverse asymmetry of the 7 detector was found to be at the level of 1 ppm.
The luminosity detector, on the other hand, shows a significant dipole asymmetry
at the ppm level. The cause of this asymmetry is not yet clear, but it may result
from higher-order beam systematics. Anlaysis using the sliced signals is occurring

to detrmine the cause.

Syst. Error

Detector Run II (ppb) Run III (ppb)

Mogller 15 1
ep 16 4
Lumi 33 9

Table 7.2: First-order uncertainties for the transverse asymmetry.

7.2.4 First-Order Beam Systematics

We followed the same procedure that was used to estimate the first-order system-
atics on the longitudinal data. In fact, the same suppression factors—the ratios
between the difference in the regressed asymmetry for the two timeslots and the
difference in the corresponding beam corrections for the two timeslots—were used
in the transverse analysis. First-order uncertainties were then calculated according

to
reg reg
Ay " — Ay

5beam _ |
i - beam beam
AOi o Ali

. Abearn|. (7.6)
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Here, A%%™ are the beam corrections for the transverse asymmetry. Calculations

showed that these errors are few ppb and can therefore be disregarded (Table 7.2).



Chapter 8

Future Experiments and Final

Conclusions

8.1 Future Experiments at LHC

The Large Hadron Collider (LHC) currently under construction at the European

Organization for Nuclear Research (CERN) is believed to hold the key to many

new discoveries in particle physics. The LHC project was approved by the CERN

Council in December 1994. Inside the 8.6-km-diameter LHC ring, two 7-TeV

proton beams with a center-of-mass energy of 14 TeV and a luminosity of 103!
2

cm 2 s~ will collide with each other. The machine is expected to start operating

in 2007.

8.1.1 LHC Plans

Several experiments are planned to participate at the LHC. The two largest exper-

iments are a Compact Muon Solenoid (CMS) [85] and A Toroidal LHC Apparatus
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Figure 8.1: Cutaway view of the CMS detector.

(ATLAS) [86]. The CMS detector is designed to detect the Higgs boson, while
the ATLAS detector will carry out precise measurements of the Standard Model
parameters. Layouts of the CMS and ATLAS detectors are shown in Figures 8.1
and 8.2, respectively.

Two other experiments have been approved to run at the LHC: A Large Ion
Collider Experiment (ALICE) and Large Hadron Collider Beauty (LHCb) [87] ex-
periment. ALICE is a heavy ion detector designed to study the physics of nucleus-
nucleus interaction at LHC energies. The goal is to study the physics of strongly
interacting matter at extreme energy densities, where the formation of a new phase
of matter—the quark-gluon plasma—is expected.

The goal of the LHCb experiment is to perform measurements of CP violating
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processes and rare decays in the B meson systems with unprecedented precision. By
measuring CP violation in many different decay modes of B mesons and comparing
the results with predictions from the Standard Model, researchers will surely lead
to a new interpretation of physics beyond the Standard Model. Cutaway views of

the ALICE and LHCb detectors are shown in Figures 8.3 and 8.4, respectively.

8.1.2 Possible SUSY Decays and Productions at LHC

Electroweak symmetry breaking now takes various approaches. Some of these ap-
proaches depend on the Higgs mechanism, while others are Higgsless. Ultimately,
the experiment determines what form of electroweak symmetry breaking is appli-

cable, making the Higgs boson the primary goal of the LHC project.
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Figure 8.4: A schematic of the HLCb detector.

The symmetry of the MSSM is broken by two Higgs doublets giving five Higgs
bosons: two CP-even Higgs bosons h’, H?, a CP-odd Higgs boson A°, and a pair
of charged Higgs bosons H*. Although a discovery of the lightest Higgs boson at
the LHC will favor Supersymmetry, failure to discover a Higgs boson below 130
GeV will rule out the MSSM 1.

The possible Higgs production channels at LHC would be [88]

99 — H,
VV — H,

qq —V + H,
99,97 — QQ + H,

where V refers to W or Z boson and @) refers to the heavy quarks, namely b and

t.
!The upper limit on the lightest Higgs is M}, < 130 GeV at the loop level.
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In addition to the Higgs production at LHC, the cross-section of a number
of SUSY decays and productions will be measured. These cross-sections are well
described by the mSUGRA model 2. Within this model, the lightest charginos
(X7) have the following leptonic decay modes [88]:

oo X

XE = Frv—=
S 2 e 17
5o wE = Fy

Notice that in all above decay modes, one lepton (I*) and missing energy (}?) are
produced. On the other hand, leptonic decays of X3 give two leptons and missing
energy.

The squarks and gluinos can also be studied at the LHC, and these can have

strong decays [89]:

dr,r — 49, 9918, T4L.R,

2There are several MSSM models. Each model is based on a certain mechanism of supersym-
metry breaking. These models predict different experimental signatures. The Minimal Super-
gravity (mSUGRA) is the model most often used to interpret experimental data. It has only five
free parameters and therefore, it is widely used to study production and decay of SUSY particles.

The five free parameters of this model are

mo The common scalar mass at GUT scale,
my /s The unifying gaugino mass,

Ag The common trilinear term,

tan 3 The MSSM mixing angle: tan f = v, /vg,

wH, Hy The sign of the Higgs bilinear term.
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or they can have weak decays:

Qe — 9%, G —dX5, G- qq%, 90X, 9x;-

The left sleptons can decay to charginos and neutralinos through the following

decays [88]:
=0 ki, 7= uil, UXT
The right sleptons only decay to neutralinos and mainly to the LSL:
Ip— 1%

The total cross sections of all these decays have been studied [89].

8.1.3 CP Violation at LHC

One of the mysteries of elementary particle physics is the CP violation that can
be generated in both weak and strong interactions. The first observation of a CP
violation was made in 1964 [91] in neutral kaon decays. CP violation has been
detected only in K measons. However, some experiments such as CLEO, BABAR,
and BELLE are searching for CP violation in B measons so will LHCb. B meason
has an enormous number of decay modes and, therefore, provides a wealth of
opportunities to seach for a CP violation.

The CKM matrix, introduced by Kobayashi and Maskawa [90] to specifies the
couplings between the quarks, is the cause of the CP-violating phenomena in the

weak interactions
Uui Uus Uwp
U=\ Uua Us Usp |- (8.1)
Ua U U
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The elements of this matrix generate nine unitary conditions. Six of these con-
ditions can be presented as triangles in the complex plane using Wolfenstein'’s
parameterization [92]. The angles of these triangles, a, #, and 7, can be obtained
from direct measurements of the CP asymmetries in B meason decays.

Various decay modes of the B measons will be studied through the LHC, for
example [87]:

B) — 7tr,
B — Kn,
BY — ptr,
B) — J/Y K.

The LHCb detector also has the capabilities finding rare decays of B and 7

measons.

8.2 BTeV at the Tevatron p-p Collider

The Tevatron proton-antiproton (p-p) collider at the Fermi National Accelerator
Lab (Fnal) is being prepared to host a new experiment called BTeV [93]. This
experiment, which is expected to commence operation in 2009, will study CP
violation in mixing and rare decays of beauty and charm quark states.

The BTeV experiment has almost the same goals as LHCb. Both experiments

2 571, However, both experiments have

intend to run at luminosity of 2 x 10%? cm ™
advantages and disadvantages. One of the issues that favors LHCb, for instance,
is the cross-section of the b production, which is expected to be five times larger

at the LHC than at the Tevatron. On the other hand, BTeV and LHCb have
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Figure 8.5: Layout of the BTeV detector.

comparable sensitivities in charged modes. However, BTeV is superior in modes
with 7’s and 7°’s due to the pixel ditectors of the BTeV detector [94,95].
A layout of the BTeV detector is shown in Figure 8.5. The main components

of this detector consist of the following
1. Pixel Ditectors: to measure the positions of charged particles.

2. Silicon Strips: to measure the momenta of charged particles.

w

. Ring Imaging Cherenkoc Detector (RICH): to identify charged particles.

W

. Electromagnetic Calorimeter: to detect photons and electrons.

5. Muon Champers: to identify muons using a toroidal magnet.
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8.3 Conclusions

The results from the first of three E158 run periods have been already pub-
lished [96]. Here, we report on the preliminary results from the full data set. The
SLAC-E158 experiment provided a very precise measurement of parity violation

in Mgller scattering. The measured parity-violating asymmetry is
Apy = —128 + 14 (stat.) £ 12 (syst.) x 10°7. (8.2)

This is the most precise asymmetry ever measured in a parity-violating electron
scattering. In the context of the Standard Model, Apy result determines the weak

mixing angle:
sin? 0w = 0.2330 £ 0.0011 (stat.) & 0.0010 (syst.). (8.3)

This gives a Standard Model pull of 1.20.

In addition to the parity-violating asymmetry, we provided a measurement of
the transverse asymmetry in Mgller scattering and ep scattering. The observed
asymmetries are AM?"" = 2.7 x 1075 and AY = 2 x 107°, respectively.

The consistency of the result with the theoretical prediction provides new limits
at the TeV scale, comparable in sensitivity and complementary to other weak

neutral current measurements at low Q*. A limit of 0.9 TeV was set on the mass

of the extra Z' boson in the SO(10) Model. At the 95% C.L., limits of 14 TEV

ee’

and 6 TeV were set on the compositness scales A}, and A, respectively. Finally,
a limit of 0.2 TeV was set on the ratio of the doubly-charged Higgs mass to the

eeA coupling g2, A /mA.



Appendix A

Electronics Noise Test

As discussed in the Chapter 4, the OUT ring of the Mgller detector was particu-
larly sensitive to other hidden beam parameters. The x? distribution of the OUT
showed significant non-statistical fluctuations. One hypothesis was that, there is
a significant variation in the shapes of the pulses, and that the electronics do not
integrate pulses of different shapes in the same way. This variation in the pulse
shapes is caused by the banana shape of the beam. The banana effects are small
on the beam positions = and y. Therefore, the IN and MID detectors that were at
most sensitive to x and y deal with constant pulse shapes. On the other hand, the
OUT and LUMI detectors deal with variable pulse shape, generated by the beam
banana shape [97]. The evidence that supports this idea was the linearity that the
OUT detector shows under dithering but not under changes in the beam charge,
(2. Dithering does not change the shape of the pulse. Changing (), however, may
change the pulse shape.

Luckily, the effect of pulse shape was measured. The idea was to produce

two different pulse shapes. One is a square box and the second is a square box
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Figure A.1: A schematic illustrating the electronics noise test (left) and the actual

obtained signals from the LEDs (right).

with a spike at the end. The signals were then measured by two different ADC’s
(Figure A.1). Therefore, a system of two PMTs looking at the same two LEDs
was built in a dark box. One PMT was connected to the regular Mgller detector
electronics. The other PMT was connected to different electronics: camac that
are known to have responses independent of the pulse shape. One LED fired on
the even pulses and both fired on the odd pulses. This setup created two signals
of different amplitudes proportional to the amount of light coming out from the
LEDs, i.e., LED, and LED,; + LED,. This means that the moller ADC should
give two integrating values called, for instance, moller® and moller! depending on
the ingoing signal. Similarly, the camac ADC does.
The quantity studied is the super-ratio

SR _ Rmoller (A].)

Rcamac
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where

moller? camact

Rmoller = W; Rcamac = W (A2)

In the ideal scenario, this ratio mathematically should be equal 1. However, it can
be different than 1 for one of two reasons: the geometry of the setup that actually
can be detected by just switching the PMTs, or the ADCs do not integrate the
two different pulses in the same way.

The result of this test is shown in Figure A.2. The noise effect was found to be
less than 1%. Therefore, it was neglected. It was obvious then that the hypothesis
is wrong. Therefore, we worked on the sliced signal regression to minimize the

residual systematics effects.
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