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Presented here are the results of a direct search for flavor changing neutral

currents via the rare process Z0 → bs and a measurement of Rbs = Γ(Z0→bs)
Γ(Z0→hadrons)

.

Because the decays Z0 → bb and Z0 → cc contribute significant backgrounds to

Z0 → bs, simultaneous measurements of Rb = Γ(Z0→bb)
Γ(Z0→hadrons)

and Rc = Γ(Z0→cc)
Γ(Z0→hadrons)

were also made. The standard double tag technique was extended and self calibrat-

ing tags were used for s, c, and b quarks. These measurements were made possible

by the unique capabilities of the SLAC Large Detector (SLD) at the Stanford Lin-

ear Accelerator Center (SLAC): The b and c tags relied upon the SLD’s VXD3

307 megapixel CCD vertex detector for topological and kinematic reconstruction

of the B and D decay vertices; the s tag identified K± mesons using the particle

identification capabilities of SLD’s Cherenkov Ring Imaging Detector (CRID), and

K0
S mesons and Λ hadrons by kinematic reconstruction of their decay vertices in

SLD’s 5120 channel central drift chamber (CDC) particle tracking system.
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CHAPTER I

INTRODUCTION

“All these things being considered, it seems probable to me that

God in the beginning formed matter in solid, massy, hard, impenetra-

ble, moveable particles of such sizes and figures, and with such other

properties, and in such proportion to space, as most conduced to the

end for which he formed them; and that these primitive particles being

solids, are incomparably harder than any porous bodies compounded

of them; even so very hard, as never to wear or break in pieces; no or-

dinary power being able to divide what God himself made in the first

creation....

“It seems to me farther, that those particles have not only a force

of inertia accompanied with such passive laws of motion as naturally

result from that force, but also that they are moved by certain active

principles, such as is that of gravity...”

Sir Isaac Newton, as the quote above from Optics (1730) indicates, under-

stood that a central goal of physics was to discover the most fundamental bits of

matter and comprehend the nature of the forces acting between them. This dis-
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sertation presents three modern measurements of the nature of one of the known

fundamental forces – the electroweak force.

Up until the 1930s, all natural phenomena appeared to have their origins

within two fundamental forces – gravitation and electromagnetism. Both forces

were described by classical fields that permeated all of space and extended to

infinity from well defined sources – mass in the case of gravitation, and electric

charge in the case of electromagnetism. But as people started looking more closely

at atomic and subatomic phenomena, it became clear that two new forces were

needed: The “strong force” was introduced to describe how the nucleus of the

atom stayed together despite the electromagnetic repulsion of its constituents, and

the “weak force” was introduced to explain how the neutron could morph into a

proton during a particular form of radioactive decay known as beta decay.

The four forces have radically different relative strengths, and are manifestly

different in character; for example two forces – gravity and electromagnetism –

extend to infinity, while the two nuclear forces have very short ranges. But despite

these differences, there has long been a latent hope that all four fundamental forces

are manifestations of a single interaction or principle, described by a single unified

theory. This hope is not without precedent: Recall that the apparently different

electric and magnetic forces were unified by James Clerk Maxwell in 1865 [1] into

electromagnetism; There was the fleeting success of Theodor Kaluza’s theory –

first proposed in 1919 [2] – to unify classical electromagnetism with gravitation in

the form of a vacuum solution to Einstein’s general theory of relativity written in

five dimensions instead of the orthodox four; and the most recent example was the
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unification of the weak with the electromagnetic interactions into the electroweak

interaction achieved by the Standard Model.

At the present moment in history, 12 matter particles have been identified

which interact through the agencies of these four fundamental forces. Gravitation

has proven the most difficult of these to understand, and no one has yet written

down a consistent quantum field theory for gravity. By comparison, much more

progress has been made in understanding the strong, electromagnetic, and weak

interactions.

Particle accelerators have played a critical role throughout this progress.

The proton accelerator E. O. Lawrence and graduate student M. S. Livingston

successfully demonstrated in January of 1931 was later improved on independently

by E. McMillan and V. Veksler by varying the frequency of the RF fields used to

accelerate the protons. In a synchrotron, the protons must be confined to a narrow

range of orbits which requires large magnetic fields, and in 1953 at Brookhaven,

a group of accelerator physicists invented the principle of “strong focusing” which

allowed much smaller magnets to be used to confine the protons to the required

orbits. Successive generations of proton accelerators achieved higher and higher

energies, from the AGS (Alternating Gradient Syncrotron) to the accelerator at

Fermilab to the CERN (originally Centre Européenne pour la Recherche Nucléaire,

now Organisation Européenne pour la Recherche Nucléaire) SPS (Super Proton

Synchrotron) [3].

Meanwhile, electron accelerators – which had their origins in the cathode ray

tubes of the nineteenth century – saw similar progress and achieved successively

higher energies with each generation, very much in parallel with their proton-
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accelerating counterparts. Many electron accelerators used a linear configuration

in order to avoid the problem of energy losses due to synchrotron radiation, which

is a much more serious problem for lightweight electrons than for relatively heavy

protons. The development of electron accelerators culminated with the two mile

long linear accelerator (linac) at SLAC (Stanford Linear Accelerator Center) and

the 27 km circumference LEP (Large Electron Positron) ring at CERN.

Continuing this historical trend, the LHC (Large Hadron Collider), now un-

der construction at CERN, and the LC (Linear Collider), presently on the drawing

boards at laboratories and universities around the world, respectively represent the

next logical steps in proton and electron collider developments. Proton and elec-

tron colliders naturally complement one another because, while higher energies

can generally be achieved with a proton collider, thus leading to discoveries of new

particles, the precisely known properties of electron-positron collisions provide an

optimum environment for precision measurements [4].

This was the case with the Z0 boson of the electroweak interaction, its dis-

covery having been made at a proton collider – the CERN SPS – leaving precision

measurements to be carried out at e+e− colliders – namely the SLC (SLAC Linear

Collider) and LEP at CERN. Such precision measurements of the Z0 resonance are

important to constrain the Standard Model and also to point the way to alterna-

tive theories which attempt to go beyond the Standard Model. To this end, data

taking with e+e− colliders running on the Z0 resonance began in 1989 at both the

LEP ring and the SLC.

The present analysis includes two such precision tests, the Z0 → bb and

Z0 → cc couplings, Rb and Rc. Measurement of Rb by itself provides an excellent
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test of the electroweak portion of the Standard Model. The Z0 → bb coupling, in

contrast to the couplings associated with other flavor quarks, includes relatively

significant radiative corrections from the large top quark mass due to the relevant

term in the quark mixing matrix, |Vtb|, being ≈ 1. The Z0 → cc coupling is likewise

a valuable test of the electroweak portion of the Standard Model.

However, the original objective of this analysis was to make a direct search

for one of a group of rare processes within the Standard Model known as flavor

changing neutral currents (FCNC). In general, FCNC are decays of a Z0 into a

quark and an antiquark (or a lepton and antilepton for that matter) of differing

flavors. In the search for the process Z0 → bs, by which we mean the sum of the

two charge-conjugate final states bs and bs, the processes Z0 → bb and Z0 → cc are

both important backgrounds – hence measurements of the Z0 → bb and Z0 → cc

couplings are needed.

Chapter II begins with a detailed review of the theory of electroweak inter-

actions in the Standard Model by deriving the electroweak Lagrangian. The CKM

(Cabbibo Kobayashi Maskawa) quark mixing matrix and its origins are also dis-

cussed in detail. Standard Model predictions for Rb and Rc are examined, and the

calculation of Rbs in the Standard Model is reviewed and updated.

Chapters III and IV provide details of the SLD and SLC, respectively. Chap-

ter IV also includes a discussion of the issues associated with beam induced back-

grounds in the SLD detector resulting from its operating in the linear collider

environment – something this author got involved in during the latter half of the

1997-98 run.
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Chapter V provides a primer on detector triggering and other important

aspects necessary for initial event characterization.

Chapter VI gives the overall method of the analysis whereby Rb, Rc, and Rbs

are extracted simultaneously using self-calibrating quark tags.

Chapter VII and chapter VIII examine the methods used for tagging heavy-

flavor bottom and charm quarks, and strange quarks, respectively.

Chapter IX contains the results of the analysis and a discussion of all the

statistical and systematic uncertainties associated with each of the three measure-

ments.
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CHAPTER II

THEORETICAL

FOUNDATIONS

The Standard Model of electroweak and strong interactions consists of a rel-

ativistically invariant quantum field theory with two distinct interactions – the

strong and the electroweak interactions – and incorporates all the known phe-

nomenology of these fundamental interactions. It describes spinless, spin-1/2, and

spin-1 fields interacting with one another in a manner determined by the La-

grangian. Although quite complex in the details, the Lagrangian for the Standard

Model is based on two basic ideas beyond those necessary for any quantum field

theory: The concept of a local symmetry, and the concept of spontaneous symme-

try breaking. The local symmetry determines the form of the interactions between

fields that carry the charges associated with the symmetry (not necessarily the

electric charge), and the interaction is mediated by spin-1 “gauge” particles called

vector bosons. Spontaneous symmetry breaking posits that the vacuum itself has a

nonzero charge distribution (again, not necessarily the electric charge) which gives

rise to the masses of the particles in the theory [5].

The electroweak portion of the Standard Model is based on the local gauge

group SU(2)L×U(1), with resulting gauge bosons W i
µ and Bµ for the SU(2)L and

U(1) factors respectively. This is a theory with a very long Lagrangian with many
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fields, and has the terms

Lelectroweak = LK-G + LY-M + LDirac + LYukawa (2.1)

where LK-G describes spinless Klein-Gordon scalar fields, LY-M is the Yang-Mills

kinetic energy term for the spin-1 vector gauge fields, LDirac describes spin-1/2

Dirac spinor fields, and LYukawa describes the Yukawa interaction between the

spinor and scalar fields. The motivations behind this construction will become

clear in due course. The following sections deal with each of the terms in turn.

2.1 Local Gauge Invariance of a Klein-Gordon Field

Consider the Lagrangian for a complex self-interacting Klein-Gordon field,

LK-G = ∂µφ†∂µφ−m2φ†φ− λ(φ†φ)2. (2.2)

The local gauge transformation which represents the SU(2)L × U(1) gauge sym-

metries is defined by

φ′ = e
i

[
Y W

2
Λ(x)+IW

a Λa(x)

]
φ (2.3)

where the weak hypercharge, Y W (numerically 1 for φ and -1 for φ†), is the gener-

ator of the U(1) gauge symmetry, and the weak isospin, IW
a , is the generator of the

SU(2)L gauge symmetry. The matrices IW
a turn out to be the Pauli spin matrices

times the factor one half, σa/2.
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The potential terms, m2φ†φ+λ(φ†φ)2, in equation 2.2 are already symmetric

under the local gauge transformation defined in equation 2.3, but in order to

eliminate any Λ(x) and Λa(x) dependence in the kinetic term, ∂µφ†∂µφ, the gauge

fieldsBµ for U(1) andWaµ for SU(2)L must be added by generalizing the derivative,

∂µ, to the gauge covariant derivative,

Dµ = ∂µ − ig′
Y W

2
IBµ − igIW

a Waµ (2.4)

such that Dµφ transforms as an SU(2) doublet under the local gauge transforma-

tion, i.e.

(Dµφ)′ = e
i

[
Y W

2
Λ(x)+IW

a Λa(x)

]
(Dµφ). (2.5)

Simply replacing ∂µφ by Dµφ produces field equations for Bµ and Waµ which

contain no space-time derivatives, meaning that Bµ and Waµ do not propagate. To

rectify this oversight, locally gauge invariant kinetic terms for Bµ and Waµ must

be added to the Lagrangian of equation 2.2. The trick is to define a field tensor

which is invariant under the local gauge transformation of equation 2.3, such that

Fµν transforms as

F ′
µν = Fµν . (2.6)

It turns out that the combination of covariant derivativesDµDν−DνDµ = [Dµ, Dν ],

when acting on any function, contains no derivatives of the function. Thus Fµν ∝

[Dµ, Dν ] is a good choice. The invariant field strength tensor for the U(1) gauge
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field Bµ is

Fµν = ∂µBν − ∂νBµ. (2.7)

The correct invariant field strength tensor for the SU(2)L gauge field Waµ is anal-

ogously

Gaµν = ∂µWaν − ∂νWaµ + gεabcWbµWcν . (2.8)

An appropriate kinetic energy term for a gauge field is one which is quadratic in the

derivatives of the field. Thus it is trivial to write down a term which is quadratic

in derivatives of Bµ and Waµ resulting in the Yang-Mills kinetic energy term [5]

LY-M = −1

4
F µνFµν −

1

4
Gµν

a Gaµν . (2.9)

The locally gauge invariant Lagrangian for the scalar fields becomes

LK-G = (Dµφ)†Dµφ−m2φ†φ− λ(φ†φ)2. (2.10)

Since we desire to end up with one massless and three massive vector bosons, we

require 1 + 3 = 4 independent scalar fields. The simplest choice is a doublet of

complex scalar fields,

φ =


φ3+iφ4√

2

φ1+iφ2√
2

 (2.11)

φ† =
(

φ3−iφ4√
2

φ1−iφ2√
2

)
(2.12)
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where the fields φ1, φ2, φ3, and φ4 are all real. Note also that

φ†φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4). (2.13)

The energy density of the field is the Hamiltonian,

H = π†π +∇φ†∇φ+m2φ†φ+ λ(φ†φ)2 (2.14)

with λ > 0 and where π = φ̇. Note that π†π + ∇φ†∇φ is nonnegative, and is

zero if φ† or φ is constant. H is zero for φ† or φ = 0, but if m2 < 0, there are

nonzero values of φ†φ for which H < 0. The minimum energy will therefore have

a nonzero field configuration. H will have a minimum when both potential and

kinetic energies are at their lowest values [5]. Thus, the vacuum solution is found

by considering

δH = 0 (2.15)

δ
[
m2φ†φ+ λ(φ†φ)2

]
= 0 (2.16)

m2δφ†φ+m2φ†δφ+ 2λφ†φ(δφ†φ+ φ†δφ) = 0. (2.17)

The δφ† and δφ are independent, but what really matters is that the coefficients

on both be zero (and because H is symmetrical in φ† and φ, the coefficients are

the same):

m2 + 2λ(φ†φ)vacuum = 0 (2.18)

2λ(φ†φ)vacuum = −m2 (2.19)
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(φ†φ)vacuum = −m
2

2λ
(2.20)

(φ†φ)vacuum =
1

2
|φV |2. (2.21)

Note that φV is not completely specified; it may lie at any point on the circle in

complex field space corresponding to the minimum of the potential [5].

Suppose φV is real and given by

φV =

√
−m

2

λ
. (2.22)

We can choose to have

φ1vacuum =
φV√

2

φ2vacuum = 0

φ3vacuum = 0

φ4vacuum = 0

(2.23)

with the result that

φvacuum =

 0

φV√
2

 (2.24)

φ†vacuum =
(

0 φV√
2

)
(2.25)

(φ†φ)vacuum =
1

2
φ2

V . (2.26)
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The scalar fields require a representation such that the field with a nonzero

vacuum value is electrically neutral to ensure that the photon Aµ remains massless.

At the same time this field must carry nonzero values of IW
3 and Y W so that Z0

µ

acquires a mass from spontaneous symmetry breaking. The simplest assignment

is [5]

φ =

 φ+

φ0

 (2.27)

φ† =
(
−φ− φ0†

)
. (2.28)

By being clever, it is possible to avoid an inordinate amount of computation, and in

this case being clever means taking full advantage of the SU(2)L gauge symmetry.

First we write the four degrees of freedom in φ so that it looks like the product of

a local symmetry transformation and a simpler version of φ:

φ =

 φ+

φ0

 = e
iπa(x)IW

a
φV

 0

H(x)+φV√
2

 . (2.29)

This amounts to an isospin rotation at each point in space. We have stuffed three

of the four degrees of freedom of the original complex scalar doublet into the three

fields πa(x). We are, in effect, choosing a gauge by making an operator gauge

transformation using πa(x). The field H(x), the fourth degree of freedom, is the

Higgs field. Because of local gauge invariance, we can then write φ in a very simple

form with the phases removed [5]:

φnew(x) = e
− iπa(x)IW

a
φV φ(x) (2.30)
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φnew(x) =

 0

H(x)+φV√
2

 . (2.31)

This choice, called the unitary gauge [5], will make it easy to write out Dµφ

in explicit matrix form. Let us thus drop all the “new” subscripts on the fields in

the unitary gauge.

Dµφ =

(
∂µ − ig′

Y W

2
IBµ − igIW

a Waµ

)
φ

=

∂µ − ig′
Y W

2

 Bµ 0

0 Bµ



−ig1

2

 W3µ W1µ − iW2µ

W1µ + iW2µ −W3µ



 0

H(x)+φV√
2



=

∂µ − i

 g′ Y
W

2
Bµ + g 1

2
W3µ g 1

2
(W1µ − iW2µ)

g 1
2
(W1µ + iW2µ) g′ Y

W

2
Bµ − g 1

2
W3µ



 0

H(x)+φV√
2



=

 − 1
2
√

2
ig (W1µ − iW2µ) (H + φV )

1√
2
∂µH − 1

2
√

2
i
(
g′Y WBµ − gW3µ

)
(H + φV )

 . (2.32)

Substituting φ(x) and Dµφ from equations 2.31 and 2.32 into LK-G of equation 2.2,

we have

LK-G =
g2

8
(W µ

1 + iW µ
2 ) (W1µ − iW2µ) (H + φV )2 +

1

2
∂µH∂µH

+
1

8

(
g′Y WBµ − gW µ

3

) (
g′Y WBµ − gW3µ

)
(H + φV )2

−m
2

2
(H + φV )2 − λ

4
(H + φV )4 (2.33)
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Terms quadratic in the fields are mass terms. After a simple rearrangement

of equation 2.33, we can begin to easily see the mass terms.

LK-G =
1

2
∂µH∂µH +

g2φ2
V

8
(W µ

1 + iW µ
2 ) (W1µ − iW2µ)

+
φ2

V

8

(
g′Y WBµ − gW µ

3

) (
g′Y WBµ − gW3µ

)
+
g2

8

(
W 2

1 +W 2
2

)
H2 +

1

8

(
g′Y WBµ − gW µ

3

) (
g′Y WBµ − gW3µ

)
H2

+
g2φV

4

(
W 2

1 +W 2
2

)
H +

φV

4

(
g′Y WBµ − gW µ

3

) (
g′Y WBµ − gW3µ

)
H

−λ
4
H4 − λφVH

3 − 1

2

(
m2 + 3λφ2

V

)
H2

−(m2φV + λφ3
V )H − m2φ2

V

2
− λφ4

V

4
(2.34)

If we define

(W µ
1 + iW µ

2 ) =
√

2W−µ (2.35)

(W1µ − iW2µ) =
√

2W+
µ (2.36)

then the term

g2φ2
V

8
(W µ

1 + iW µ
2 ) (W1µ − iW2µ) =

g2φ2
V

4
W−µW+

µ

= M2
WW

−µW+
µ (2.37)

and is quadratic in the W± fields, and they will acquire a mass of

MW =
gφV

2
. (2.38)
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The combination
(
g′Y WBµ − gW3µ

)
will also have mass. It can be rewritten

as

(
g′Y WBµ − gW3µ

)
=

√
(g′Y W )2 + g2

×

 g′Y W√
(g′Y W )2 + g2

Bµ −
g√

(g′Y W )2 + g2
W3µ

 .
(2.39)

It is convenient to define the following:

sin θW =
g′Y W√

(g′Y W )2 + g2
(2.40)

cos θW =
g√

(g′Y W )2 + g2
(2.41)

with the consequence that

g′Y W√
(g′Y W )2 + g2

Bµ −
g√

(g′Y W )2 + g2
W3µ = sin θWBµ − cos θWW3µ.

(2.42)

We now define

Z0
µ = sin θWBµ − cos θWW3µ (2.43)

Aµ = cos θWBµ + sin θWW3µ. (2.44)

Thus we “rotate” [5] Bµ and W3µ into the physical fields Z0
µ and Aµ with the result

that only the Z0 gains mass. Mass terms for neutral fields are written with an

additional factor of 1
2

(so that when you take the derivative, the factor of two which
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results from the square of the field cancels with the factor of one half),

φ2
V

8

(
g′Y WBµ − gW µ

3

) (
g′Y WBµ − gW3µ

)
=

[(g′Y W )2 + g2]φ2
V

8
Z0µZ0

µ

=
1

2

[(g′Y W )2 + g2]φ2
V

4
Z0µZ0

µ

=
M2

Z

2
Z0µZ0

µ (2.45)

with

MZ =

√
(g′Y W )2 + g2φV

2
(2.46)

and the interesting result that

MW

MZ

=
gφV

2

2√
(g′Y W )2 + g2φV

=
g√

(g′Y W )2 + g2
= cos θW . (2.47)

Finally, the Lagrangian from equation 2.34 can be written

LK-G =
1

2
∂µH∂µH +M2

WW
−µW+

µ +
M2

Z

2
Z0µZ0

µ −
1

2

(
m2 + 3λφ2

V

)
H2

+
g2

4
W−µW+

µ H
2 +

(g′Y W )2 + g2

8
Z0µZ0

µH
2

+gMWW
−µW+

µ H +

√
(g′Y W )2 + g2MZ

2
Z0µZ0

µH

−λ
4
H4 − λφVH

3 − (m2φV + λφ3
V )H − m2φ2

V

2
− λφ4

V

4
. (2.48)
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2.2 Local Gauge Invariance of a Dirac Field

Now consider the Lagrangian for a massless free Dirac field

LDirac = ψiγµ∂µψ. (2.49)

Because right-handed fields have zero weak isospin, i.e. they are isospin singlets,

right- and left-handed fields behave differently. It will therefore be uesful to con-

sider separately the left- and right-handed components of the Dirac field in order

to derive the electroweak model in terms of the physical fields. To that end, the

following relations will prove helpful:

ψ = ψL + ψR =

(
1− γ5

2

)
ψ +

(
1 + γ5

2

)
ψ, (2.50)

where

ψL =

(
1− γ5

2

)
ψ (2.51)

ψR =

(
1 + γ5

2

)
ψ (2.52)

and for the antiparticles

ψ = ψR + ψL = ψ

(
1 + γ5

2

)
+ ψ

(
1− γ5

2

)
(2.53)

where

ψR = ψ

(
1 + γ5

2

)
(2.54)
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ψL = ψ

(
1− γ5

2

)
. (2.55)

The “L” and “R” on ψL and ψR refer to the handedness, a Lorentz invariant

quantity which is related in a nontrivial way to the helicity, the projection of the

spin s along the momentum p [6]. The corresponding anti-particle for a left-handed

particle, for example, is right-handed; and vice-versa. Another way to put it is that

ψR is the conjugate of ψL, i.e.

ψR = (ψL)†γ0. (2.56)

We again generalize the derivative, ∂µ, to the gauge covariant derivative, but

this time separately for left- and right-handed fields since they are each invari-

ant under different gauge symmetries: The left-handed fields are invariant under

SU(2)L × U(1) while the right-handed fields are only invariant under U(1). Thus

∂µ becomes Dµ for the left- and right-handed fields respectively,

DSU(2)×U(1)
µ = ∂µ − ig′

Y W

2
IBµ − igIW

a Waµ (2.57)

DU(1)
µ = ∂µ − ig′

Y W

2
IBµ. (2.58)

A fully phase invariant generalization of equation 2.49 is then

LDirac = ψLiγ
µ

(
∂µ − ig′

Y W

2
IBµ

)
ψR

+ψRiγ
µ

(
∂µ − ig′

Y W

2
IBµ − igIW

a Waµ

)
ψL. (2.59)
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Equation 2.59 can be rewritten explicitly in matrix form:

LDirac = ψLiγ
µ

(
∂µ − ig′

Y W

2
Bµ

)
ψR + ψRiγ

µ

∂µ − ig′
Y W

2

 Bµ 0

0 Bµ



−ig1

2

 W3µ W1µ − iW2µ

W1µ + iW2µ −W3µ


ψL

= ψLiγ
µ

(
∂µ − ig′

Y W

2
Bµ

)
ψR

+ψRiγ
µ

∂µ − i

 g′ Y
W

2
Bµ + g 1

2
W3µ g 1

2
(W1µ − iW2µ)

g 1
2
(W1µ + iW2µ) g′ Y

W

2
Bµ − g 1

2
W3µ


ψL.

(2.60)

The definitions for Z0
µ and Aµ from equations 2.43 and 2.44 yield reciprocal

definitions for Bµ and W3µ,

Bµ = cos θWAµ + sin θWZ
0
µ (2.61)

W3µ = sin θWAµ − cos θWZ
0
µ; (2.62)

the relations

g′ cos θW = g sin θW = e (2.63)

g′ sin θW =
g sin2 θW

cos θW

; (2.64)
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and the definitions for W−
µ and W+

µ from equations 2.35 and 2.36 may all be

substituted into equation 2.60:

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL

+ψLγ
µY

W

2
eAµψR − ψLγ

µ

(
−Y

W

2

g sin2 θW

cos θW

)
Z0

µψR

+ψRγ
µ

 Y W

2
+ 1

2
0

0 Y W

2
− 1

2

 eAµψL

−ψRγ
µ

 −Y W

2
g sin2 θW

cos θW
+ 1

2
g cos2 θW

cos θW
0

0 −Y W

2
g sin2 θW

cos θW
− 1

2
g cos2 θW

cos θW

Z0
µψL

+ψRγ
µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL. (2.65)

Now, for reasons which will only become apparent towards the end, we are

going to add zero to the right-handed couplings of Aµ and Z0
µ, making equation
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2.65 look like

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL + ψLγ
µ

(
Y W

2
+ 0

)
eAµψR

+ψRγ
µ

 Y W

2
+ 1

2
0

0 Y W

2
− 1

2

 eAµψL

−ψLγ
µ

(
−Y

W

2

g sin2 θW

cos θW

− 0

)
Z0

µψR

−ψRγ
µ

 −Y W

2
g sin2 θW

cos θW
+ 1

2
g cos2 θW

cos θW
0

0 −Y W

2
g sin2 θW

cos θW
− 1

2
g cos2 θW

cos θW

Z0
µψL

+ψRγ
µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL. (2.66)

This can be rewritten as

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL

+ψLγ
µ

(
Y W

2
+ 0

)
eAµψR + ψRγ

µ

 Y W

2
+ 1

2
0

0 Y W

2
− 1

2

 eAµψL

− g

cos θW

ψLγ
µ

[
−
(
Y W

2
+ 0

)
sin2 θW

]
Z0

µψR −
g

cos θW

ψRγ
µ

×

 −
(

Y W

2
+ 1

2

)
sin2 θW + 1

2
0

0 −
(

Y W

2
− 1

2

)
sin2 θW − 1

2



×Z0
µψL + ψRγ

µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL. (2.67)

Now comes a little slight of hand: Those zeros we added earlier in the right-handed

couplings for the Aµ and the Z0
µ are really the weak isospin of the right-handed
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fields for which, because right-handed fields are isospin singlets, IW
3 = 0. Not only

that, but in the left-handed couplings for the Aµ and the Z0
µ, those +1

2
s and −1

2
s

are also from IW
3 . Left-handed fields are doublets, and the top half of the doublet

has IW
3,11 = 1

2
whilst the bottom half of the doublet has IW

3,22 = −1
2
. With our feat

of legerdemain, equation 2.67 becomes

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL

+ψLγ
µ

(
Y W

2
+ IW

3

)
eAµψR + ψRγ

µ

 Y W

2
+ IW

3,11 0

0 Y W

2
+ IW

3,22

 eAµψL

− g

cos θW

ψLγ
µ

[
−
(
Y W

2
+ IW

3

)
sin2 θW

]
Z0

µψR −
g

cos θW

ψRγ
µ

×

 −
(

Y W

2
+ IW

3,11

)
sin2 θW + IW

3,11 0

0 −
(

Y W

2
+ IW

3,22

)
sin2 θW + IW

3,22



×Z0
µψL + ψRγ

µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL, (2.68)

and we can now identify the electric charge

qii =
Y W

2
Iii + IW

3,ii (2.69)
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where once again IW
3,ii = 0 and Iii = 1 for right-handed fields. This allows us to

simplify equation 2.68 accordingly

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL

+ψLγ
µqeAµψR + ψRγ

µ

 q11 0

0 q22

 eAµψL

− g

cos θW

ψLγ
µ
(
−q sin2 θW

)
Z0

µψR

− g

cos θW

ψRγ
µ

 −q11 sin2 θW + IW
3,11 0

0 −q22 sin2 θW + IW
3,22

Z0
µψL

+ψRγ
µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL. (2.70)

The right and left handed couplings for the Z0 are defined as

gR = −q sin2 θW (2.71)

gL,ii = IW
3,ii − qii sin

2 θW (2.72)
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which makes equation 2.70

LDirac = ψLiγ
µ∂µψR + ψRiγ

µ∂µψL

+ψLγ
µqeAµψR + ψRγ

µ

 q11 0

0 q22

 eAµψL

− g

cos θW

ψLγ
µgRZ

0
µψR −

g

cos θW

ψRγ
µ

 gL,11 0

0 gL,22

Z0
µψL

+ψRγ
µ

 0 g 1√
2
W+

µ

g 1√
2
W−

µ 0

ψL. (2.73)

Finally, it is time to recombine the terms for the left and right handed inter-

actions. We use the commutation rules for γµ with γ5 and other properties of γ5

to write at last

LDirac = ψiγµ∂µψ

+ψγµqeAµψ

− g

2 cos θW

ψγµ
[(

1 + γ5
)
gR +

(
1− γ5

)
gL

]
Z0

µψ

+
g

2
√

2
ψγµ

(
1− γ5

) 0 W+
µ

W−
µ 0

ψ. (2.74)

This is a popular way to write the Lagrangian for it shows explicitly how the Z0

couples differently to left and right handed particles. However, by defining the

vector coupling, gV

gV = gL + gR
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= IW
3 − 2q sin2 θW , (2.75)

and axial vector coupling, gA,

gA = gL − gR

= IW
3 , (2.76)

we can rewrite the Lagrangian for a Dirac field in its simplest form and as it most

often appears in the literature

LDirac = ψiγµ∂µψ

+ψγµqeAµψ

− g

2 cos θW

ψγµ
(
gV − gAγ

5
)
Z0

µψ

+
g

2
√

2
ψγµ

(
1− γ5

) 0 W+
µ

W−
µ 0

ψ. (2.77)

2.3 The Yukawa Coupling and the Origin of Mass

There is but one loose end. So far, we have the interaction of scalars with

vectors and spinors with vectors. We still need the interaction of scalars with

spinors. This is done with LYukawa. One desired outcome is for LYukawa to be the

source of mass for the fermions. Recall that terms quadratic in the fields are mass

terms. Fermions with mass have an additional constraint – they must exist in both

right handed and left handed states. The only field operators that yield a non-zero
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mass for fermions are bilinear products of fields that flip the particle’s handedness

[7]: ψψ = ψRψR + ψLψL and ψRψL = ψLψR = 0. However, the weak isospin

symmetry forbids such mass operators because they are not invarient under that

symmetry: ψL is a weak doublet whereas ψR is a weak singlet, and the product of

the two is not a singlet as it ought to be to preserve the weak isospin symmetry. But

recall that the Higgs field is an isospin doublet. Thus LYukawa has the form ψφY ψ

where Y gives the strength of the interaction between the fermion in question and

the Higgs boson. It is once again useful to consider left and right handed particles

separately, using the definitions from equations 2.51, 2.52, 2.54, and 2.55. Clarity

will be further improved by considering the various isospin singlets and doublets

explicitly:

ψLi =



 u′Li

d′Li

 Quarks

 ν ′Li

e−
′

Li

 Leptons

(2.78)

ψRi =



u′Ri

d′Ri

Quarks

ν ′Ri

e−
′

Ri

Leptons

(2.79)

ψRi =


(
u′Ri d′Ri

)
Quarks(

ν ′Ri e+
′

Ri

)
Leptons

(2.80)
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ψLi =



u′Li

d′Li

Quarks

ν ′Li

e+
′

Li

Leptons

(2.81)

where i and j denote the three generations of the quarks and leptons. The primes

denote the weak eigenstate basis. The Higgs doublet along with its complex con-

jugate are [8]

φ =

 φ+

φ0

 (2.82)

φ† =
(
−φ− φ0†

)
(2.83)

φ =

 φ
0

−φ−

 = iσ2φ
∗ (2.84)

φ
†

=
(
φ

0
φ+

)
(2.85)
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where φ
0

= φ0†. The Yukawa term in the Lagrangian can be written down explicitly

as

LYukawa =
(
u′Rj d′Rj

) φ+

φ0

Y d†
ji d

′
Ri + d′LiY

d
ij

(
−φ− φ0†

) u′Lj

d′Lj



+
(
u′Rj d′Rj

) φ
0

−φ−

Y u†
ji u

′
Ri + u′LiY

u
ij

(
φ

0
φ+

) u′Lj

d′Lj



+
(
ν ′Rj e+

′

Rj

) φ+

φ0

Y e†
ji e

−′
Ri + e+

′

LiY
e
ij

(
−φ− φ0†

) ν ′Lj

e−
′

Lj



+
(
ν ′Rj e+

′

Rj

) φ
0

−φ−

Y ν†
ji ν

′
Ri + ν ′LiY

ν
ij

(
φ

0
φ+

) ν ′Lj

e−
′

Lj

 .
(2.86)

Particle mass arises directly from the Yukawa interaction because of the non-

zero vacuum expectation value of φ:

φvacuum =

 0

φV√
2

 (2.87)

φ†vacuum =
(

0 φV√
2

)
(2.88)

φvacuum =


φV√

2

0

 (2.89)

φ
†
vacuum =

(
φV√

2
0

)
. (2.90)
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This can be seen explicitly by letting φ → φvacuum and so on in equation 2.86:

Thus LYukawa → LMass

LMass =
φV√

2

[
d′RjY

d†
ji d

′
Ri + d′LiY

d
ijd

′
Lj

]
+
φV√

2

[
u′RjY

u†
ji u

′
Ri + u′LiY

u
iju

′
Lj

]
+
φV√

2

[
e+

′

RjY
e†
ji e

−′
Ri + e+

′

LiY
e
ije

−′
Lj

]
+
φV√

2

[
ν ′RjY

ν†
ji ν

′
Ri + ν ′LiY

ν
ijν

′
Lj

]
=

φV√
2

[
d′iY

d
ijd

′
j + u′iY

u
iju

′
j + e+

′

i Y
e
ije

−′
j + ν ′iY

ν
ijν

′
j

]
. (2.91)

In the garden variety Standard Model, ν ′L = ν ′R = 0 and the neutrinos have no

mass, but as recent empirical evidence suggests, this may not in fact be true. In

any case, I will leave these terms in for the sake of quark-lepton universality.

The Y are actually complex matrices called Yukawa matrices, and since there

are three generations of quarks and leptons, the Yukawa matrices are really complex

3×3 matrices which in general are not diagonal [9]. The consequence of this is that

there may be mixing across generations. To look at things in the mass eigenstate

basis, we would have to diagonalize the Yukawa matrices Y . This is done by two

unitary transformation matrices, as follows:

Ŷ = V Y V † (2.92)

V V † = I. (2.93)

Writing LMass in the mass basis (unprimed) rather than the weak basis (primed)

yields

LMass =
φV√

2

[
diV

d
ikY

d
knV

d†
nj dj + uiV

u
ikY

u
knV

u†
nj uj + e+i V

e
ikY

e
knV

e†
nj e

−
j + νiV

ν
ikY

ν
knV

ν†
nj νj

]
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=
φV√

2

[
diŶ

d
i di + uiŶ

u
i ui + e+i Ŷ

e
i e

−
i + νiŶ

ν
i νi

]
. (2.94)

Finally, we can write

LMass = M̂d
i didi + M̂u

i uiui + M̂e
ie

+
i e

−
i + M̂ν

i νiνi (2.95)

where the mass matrices M̂i have replaced the constants and the diagonalized

Yukawa matrices, φV√
2
Ŷi.

2.4 The CKM Matrix

The weak states (primed) are thus related to the mass states (unprimed) by

u′i = V u†
ik uk u′i = ukV

u
ki

d′i = V d†
ik dk d′i = dkV

d
ki

ν ′i = V ν†
ik νk ν ′i = νkV

ν
ki

e−
′

i = V e†
ik e

−
k e+

′

i = e+k V
e
ki.

(2.96)

In light of this, let’s reexamine the charged current interaction, the last term in

equation 2.77, once again to derive an important result.

LCC =
g

2
√

2
ψγµ

(
1− γ5

) 0 W+
µ

W−
µ 0

ψ. (2.97)
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In the weak basis (primed), equation 2.97 looks like

LCC =
g

2
√

2

[
u′Riγ

µW+
µ d

′
Li + d′Riγ

µW−
µ u

′
Li

+ν ′Riγ
µW+

µ e
−′
Li + e+

′

Riγ
µW−

µ ν
′
Li

]
, (2.98)

but in the mass basis (unprimed), equation 2.97 looks like

LCC =
g

2
√

2

[
uiV

u
ikγ

µW+
µ V

d†
kj dj + diV

d
ikγ

µW−
µ V

u†
kj uj

+νiV
ν
ikγ

µW+
µ V

e†
kj e

−
j + e+i V

e
ikγ

µW−
µ V

ν†
kj νj

]
=

g

2
√

2

[
uiγ

µW+
µ (VCKM)ij dj + di

(
V †

CKM

)
ij
γµW−

µ uj

+νi

(
V †

MNSP

)
ij
γµW+

µ e
−
j + e+i γ

µW−
µ (VMNSP )ij νj

]
, (2.99)

where V uV d† = VCKM , the Cabibbo-Kobayashi-Maskawa matrix, and where V eV ν† =

VMNSP , the Maki-Nagakawa-Sakata-Pontecorvo matrix [10]. VCKM and VMNSP

are both unitary because V u, V d†, V e, and V ν† are all unitary transformation

matrices, and any matrix which is the product of two unitary matrices is itself

unitary. This may be proved as follows: If A and B are both unitary matrices,

then A†A = AA† = 1 and B†B = BB† = 1. If A†B = C, then B†A = C†, and

C†C = B†AA†B = B†(AA†)B = B†B = 1. VCKM would be the identiy matrix

were it not for the difference between the rotation matrices for the up-type quarks,

V u, and the down-type quarks V d. It is that difference that determines the amount

of generation mixing in weak interaction processes [9]. For that reason, all the mix-

ing can be placed in either the up-type or down-type quarks, and convention has

favored the down-type quarks. The upshot is that weak charged currents change

flavors.
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Let’s also reexamine the the neutral current interaction, the third term in

equation 2.77.

LNC = − g

2 cos θW

ψγµ
(
gV − gAγ

5
)
Z0

µψ. (2.100)

In the weak basis (primed), equation 2.100 looks like

LNC = − g

2 cos θW

[
u′iγ

µ
(
gV − gAγ

5
)
Z0

µu
′
i + d′iγ

µ
(
gV − gAγ

5
)
Z0

µd
′
i

+e+
′

i γ
µ
(
gV − gAγ

5
)
Z0

µe
−′
i + ν ′iγ

µ
(
gV − gAγ

5
)
Z0

µν
′
i

]
, (2.101)

but in the mass basis (unprimed), equation 2.100 looks like

LNC = − g

2 cos θW

[
u′iV

u
ijγ

µ
(
gV − gAγ

5
)
Z0

µV
u†
jk u

′
k

+d′iV
d
ijγ

µ
(
gV − gAγ

5
)
Z0

µV
d†
jk d

′
k

+e+
′

i V
e
ijγ

µ
(
gV − gAγ

5
)
Z0

µV
e†
jk e

−′
k

+ν ′iV
ν
ijγ

µ
(
gV − gAγ

5
)
Z0

µV
ν†
jk ν

′
k

]
= − g

2 cos θW

[
uiγ

µ
(
gV − gAγ

5
)
Z0

µui + diγ
µ
(
gV − gAγ

5
)
Z0

µdi

+e+i γ
µ
(
gV − gAγ

5
)
Z0

µe
−
i + νiγ

µ
(
gV − gAγ

5
)
Z0

µνi

]
. (2.102)

Because V fV f† = I, LNC is the same in both the weak (primed) and mass (un-

primed) bases. The weak neutral current is therefore flavor-diagonal: There are

no tree-level flavor changing neutral currents.
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2.5 Rbs in the Standard Model

Just because there are no tree-level flavor changing neutral currents does

not mean that they are forbidden at higher orders. Indeed, loop order “penguin”

diagrams specifically allow for flavor changing neutral currents.

The curious name “penguin” has its origins in a game of darts which occurred

at a Geneva pub in the summer of 1977 among experimentalist Melissa Franklin

and theorists John Ellis, Mary K. Gaillard, Dimitri Nanopoulos, and Serge Rudaz.

Somehow the telling of a joke about penguins evolved into a bet whereby the loser

of the dart game had to use the word penguin in his or her next paper. It seems

that at some point Rudaz took Franklin’s place in the game and proceeded to

defeat Ellis [11]. Ellis recalls that “for some time, it was not clear to me how

to get the word into this quark paper that we were writing at the time. Then,

one evening I stopped on my way back to my apartment to visit some friends

living in Meyrin, where I smoked some illegal substance. Later, when I got back

to my apartment and continued working on our paper, I had a sudden flash that

the famous diagrams looked like penguins. So we put the name into our paper,

and the rest, as they say, is history” [12]. At the end, the paper contains an

acknowledgment to Franklin for “helpful discussions” [13].

The Standard Model prediction for the branching ratio for Z0 → bs+ sb has

been worked out by M. Clements et al [14]. We have calculated Rbs = Γ(Z0→bs+sb)
Γ(Z0→hadrons)

from their computation assuming the current experimental values for the various

quark masses, CKM matrix elements, and so on.

The calculation is done in the ’t Hooft-Feynman gauge because the vector

boson propagators assume their simplest form and the unphysical scalars take on
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the masses of their physical partners. The ten diagrams to be calculated are shown

in Figure 1. Note that the tree-level diagram is conspicuously absent.

The matrix element for Z0 → bs + sb in the massless b, s approximation is

then

M =
g3

(4π)2
u(pb)ε/(1− γ5)v(ps)[A(mt)V

∗
tsVtb +A(mc)V

∗
csVcb +A(mu)V

∗
usVub]

(2.103)

where A(mj) represents the sum of the ten diagrams in Figure 1 and is a function

of the internal quark mass mj. Summing over the spins of b and s gives

∑
spins

|M|2 =

[
g3

(4π)2

]2

8(pα
b p

β
s + pα

s p
β
b − gαβpb · ps)εαε

∗
β

×|A(mt)V
∗
tsVtb +A(mc)V

∗
csVcb +A(mu)V

∗
usVub|2. (2.104)

After averaging over the Z0 spin,

|M|2 =

[
g3

(4π)2

]2

8(pα
b p

β
s + pα

s p
β
b − gαβpb · ps)

1

3

(
−gαβ +

PZαPZβ

M2
Z

)
×|A(mt)V

∗
tsVtb +A(mc)V

∗
csVcb +A(mu)V

∗
usVub|2. (2.105)

Multiplying by the phase space and integrating yields for the partial width

Γ(Z0 → bs+ sb) = 2× 3
1

2MZ

∫ d3pb

(2π)32Eb

d3ps

(2π)32Es

(2π)4δ4(PZ − pb − ps)|M|2.

(2.106)



36

b, s

s, b

u, c, t

u, c, t

W

W

W

W

W

b, s

Z 0

s, b

W

W

f f

f

f

f

f

f

(F)

(G) (H)

(J) (K)

(D)

(E)

(C)

(B)(A)

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

b, s

s, b

Z 0

u, c, t u, c, t

u, c, t u, c, t

u, c, t u, c, t

b, s

u, c, tu, c, t

u, c, t

u, c, t

s, b

Z 0 Z 0

Z 0 Z 0

Z 0 Z 0

Z 0 Z 0

FIGURE 1. Feynman diagrams which contribute to Z0 → bs+ sb in the ’t Hooft-
Feynman gauge.
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We used in the calculation the following values for the mixing angle and

masses [15]:

sin2 θW = 0.23113 (2.107)

MW = 80.4251 GeV (2.108)

MZ = 91.1876 GeV (2.109)

mt = 174.3 GeV (2.110)

mc = 1.25 GeV (2.111)

mu = 0.00325 GeV. (2.112)

A(mj) is a cumbersome expression for arbitrary mj: Numerical values for A(mj)

corresponding to mt, mc, and mu are

A(mt) = −0.74 (2.113)

A(mc) = −0.18− 0.21i (2.114)

A(mu) = −0.18− 0.21i. (2.115)

The constant g was as usual

g =

√
4πα

sin θW

(2.116)

where α−1 → α(MZ)−1 = 127.922 [15].
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The elements of the CKM matrix were calculated from the Wolfenstein pa-

rameterization as follows [16]:

VCKM =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (2.117)

(2.118)

where

λ = |Vus| (2.119)

A =
|Vcb|
|Vus|2

(2.120)

ρ = 1− |Vtd| cos β

|Vus||Vcb|
(2.121)

η =
|Vtd| sin β
|Vus||Vcb|

(2.122)

and where [15]

|Vus| = 0.2225 (2.123)

|Vcb| = 0.04 (2.124)

|Vtd| = 0.009 (2.125)

sin 2β = 0.78. (2.126)

Performing the Integration over phase space, the partial width is

Γ(Z0 → bs+ sb) = 1.0× 10−7 GeV. (2.127)
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Taking Γ(Z0 → hadrons) = 1.7422 GeV [15],

Rbs =
Γ(Z0 → bs+ sb)

Γ(Z0 → hadrons)
= 5.8× 10−8. (2.128)

2.6 Rb and Rc in the Standard Model

The quantities Rb = Γ(Z0→bb)
Γ(Z0→hadrons)

and Rc = Γ(Z0→cc)
Γ(Z0→hadrons)

provide excellent

tests of the Standard Model. Because Rb and Rc are ratios between two hadronic

rates, propagator (oblique), radiative, and QCD corrections which affect all quark

flavors largely cancel [17]. And Rb and Rc are insensitive to the as yet unknown

Higgs mass [18].

The Z0 → bb vertex in particular is unique in that it receives relatively large

radiative corrections from one-loop Feynman diagrams involving the t quark. This

is due both to the t quark’s large mass and to |Vtb| being ≈ 1. The quantity Rb

may thus be used to observe vertex corrections directly resulting from the presence

of the t quark [17, 19].

The tree level contribution (diagram (A) in Figure 2) to Rq is, it turns out,

fairly easy to work out. First recall from equations 2.75 and 2.76 that the vector

coupling gV and axial vector coupling gA were defined as

gV = IW
3 − 2q sin2 θW (2.129)

gA = IW
3 (2.130)
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meaning that gV and gA depend on the charge q and weak isospin IW
3 of the

quark in question. A slight change of notation would therefore be helpful: Thus

by gqV and gqA we mean the vector and axial vector couplings, respectively, for a

specific quark flavor q. The matrix element may be read off from the Lagrangian

in equation 2.77:

M = − g

2 cos θW

u(pq)ε/(gqV − gqAγ
5)v(pq) (2.131)

Summing over the spins of q and q gives

∑
spins

|M|2 =
[

g

2 cos θW

]2
8(pα

q p
β
q + pα

q p
β
q − gαβpq · pq)εαε

∗
β(g2

qV + g2
qA).

(2.132)

After averaging over the Z0 spin,

|M|2 =
[

g

2 cos θW

]2
8(pα

q p
β
q + pα

q p
β
q − gαβpq · pq)

1

3

(
−gαβ +

PZαPZβ

M2
Z

)
×(g2

qV + g2
qA). (2.133)

Multiplying by the phase space and integrating yields for the partial width

Γ(Z0 → qq) = 3
1

2MZ

∫ d3pq

(2π)32Eq

d3pq

(2π)32Eq

(2π)4δ4(PZ − pq − pq)|M|2.

(2.134)

Only the factor (g2
qV + g2

qA) in equations 2.134 and 2.133 is dependent on quark

flavor; all other factors in the matrix element and the integral over phase space
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are the same for all quark flavors. In the ratio Rq = Γ(Z0→qq)∑
q
Γ(Z0→qq)

, all other factors

cancel leaving only

Rb =
g2

bV + g2
bA∑

q(g
2
qV + g2

qA)
(2.135)

Rc =
g2

cV + g2
cA∑

q(g
2
qV + g2

qA)
. (2.136)

The loop order computation has been worked out by Bryan Lynn and Robin

Stuart [19] among others. The loop-order Feynman diagrams which contribute to,

in this case, the Z0 → bb vertex are shown in Figure 2. Diagrams for Z0 → cc are

identical apart from replacing q = +2
3
, IW

3 = +1
2

quarks with q = −1
3
, IW

3 = −1
2

quarks, and vice versa.

The Standard Model gives the following values for Rb and Rc [15]:

RSM
b = 0.21569± 0.00016 (2.137)

RSM
c = 0.17230± 0.00007. (2.138)

Although this analysis presents measurements of Rb and Rc which agree well

with the Standard Model, the present harmony between theory and experiment

has not always attained. Figures 3 and 4 [20, 21, 22, 23, 24, 15] compare theoretical

calculations with experimental measurements of Rb and Rc over the past decade.

In 1995 in particular, the agreement between theory and experiment was at an all

time low – bad enough in fact to precipitate what came to be known as the “Rb-Rc

crisis”. Figures 5 and 6 [25] show the state of the experimental measurements

of Rb and Rc respectively at that time. Figure 7 [25] shows that experimental
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FIGURE 3. History of the Rb measurement over the past decade. The sudden shift
of the measured value toward the Standard Model prediction after 1996 coincided
with SLD’s first measurement of Rb.
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measurements at the time ruled out the Standard Model at better than the 99.9%

confidence level for a t quark mass of 175 GeV.

Several issues contributed to the Rb crisis: Measurements from DELPHI un-

derestimated the detector resolution systematic uncertainty; the OPAL measure-

ment miscalculated the hemisphere correlation and the Monte Carlo statistical

uncertainty [26, 27].

2.7 Z0 → bs in Models Beyond the Standard Model

Secretary of Defense Donald Rumsfeld once famously remarked that “as we

know, there are known knowns; there are things we know we know. We also

know there are known unknowns; that is to say we know there are some things we

do not know. But there are also unknown unknowns – the ones we don’t know

we don’t know. And if one looks throughout history..., it is the latter category

that tend to be the difficult ones” [28]. Experimentally, the Standard Model is

in very good shape: All the fermions of three families of quarks, leptons, and

neutrinos have been seen, and the Standard Model is consistent with high precision

electroweak measurements. We know the answers to most of the questions: They

are, increasingly, what Rumsfeld would call “known knowns.” There are numerous

other models which build on the success of the Standard Model, but with far less

empirical support and with predictions that remain to be tested experimentally.

We know some of the questions to ask, but we do not yet know the answers. Such

models constitute Rumsfeld’s “known unknowns.” Implicit in any search for what

is ostensibly a forbidden process is a latent hope that something new will be found,
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FIGURE 5. Measurements of Rb during the “Rb-Rc crisis” in 1995, as shown at
EPS-HEP 95.
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FIGURE 6. Measurements of Rc during the “Rb-Rc crisis” in 1995, as shown at
EPS-HEP 95.
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FIGURE 7. Measurements of Rb and Rc had ruled out the Standard Model with
a t quark mass of 175 GeV at better than 99.9% C.L. during the “Rb-Rc crisis” in
1995, as shown at EPS-HEP 95.
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that new questions will have to be asked, and that one of Rumsfeld’s “unknown

unknowns” will cease to be so, giving the field of physics a new “known unknown”

to pursue. But it is to some of the existing “known unknowns” – models that build

on the success of the Standard Model – that we now turn.

The most model independent and general flavor changing neutral current

Lagrangian may be written

L = − g

2 cos θW

b
[
γµ
(
gV − gAγ

5
)

+
iσµνqν
mb +ms

(
κ− κ̃γ5

)]
Z0

µs. (2.139)

The first term in square brackets is probed by B → Xsl
+l−. The second term is

probed by Z0 → bs and is not constrained elsewhere [29].

What follows is a survey (which is by no means exhaustive) of some of the

models which go beyond the Standard Model and a speculative discussion of their

respective effects on flavor changing neutral currents.

– The two Higgs doublet extension of the Standard Model, under most the-

oretical assumptions, produces an enhancement in Rbs. Figure 8 illustrates

the additional Feynman diagrams which contribute to Z0 → bs. Most mod-

els of this type attempt to eliminate flavor changing neutral Higgs boson

exchange, but contributions from the charged Higgs boson in particular –

which emerges from the extra Higgs doublet – may nonetheless increase Rbs

significantly [30]. And in models which do not a priori eliminate flavor

changing neutral Higgs couplings, the branching ratio B(Z0 → bs) may be

as high as ∼ 10−6 [31].
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contribute to Z0 → bs.

– Gluino exchange in minimal supersymmetry provides only a small contribu-

tion to Rbs compared to the contribution from the Standard Model [32].

– Left-right symmetric models include additional gauge fields analogous to the

Waµ fields from the SU(2)L gauge group in the Standard Model. These

additional gauge fields – call them Xaµ – come from the new SU(2)R gauge

group. These new gauge fields have additional Feynman diagrams analogous

to those in Figure 1 with the W propagators replaced by X propagators [33].

However, left-right symmetric models still predict values for Rbs that are not

too different from the Standard Model [34].

– Models which attempt to give masses to the quarks through the analogue of

the seesaw mechanism for neutrino masses require additional left-right sym-
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metric singlet quarks which can give rise to flavor changing neutral currents

through their mixing with the conventional quarks [35].

– Models with extra down-type quark singlets that arise naturally in string

compactified gauge groups like E6 would require a larger Yukawa matrix

for the down type quarks. The CKM matrix would therefore no longer be

unitary, allowing tree level flavor changing neutral currents [36, 33] and may

be expected to enhance Rbs by approximately an order of magnitude above

that predicted in the Standard Model [34].

– Models with dynamical electroweak symmetry breaking are motivated chiefly

by the ongoing failure to detect the Higgs boson experimentally. One of the

key questions of electroweak symmetry breaking is whether the Goldstone

bosons of the Higgs mechanism are composite or elementary. Such questions

concerning compositeness must always be related to some momentum or

distance scale, qν in the Lagrangian above, since systems which appear to

be elementary at some scale may in fact be composite when viewed at some

higher momentum (shorter distance) scale. In other words, it may turn out

that there are no elementary scalars, and that their effects are replaced by the

dynamics of fermions. This usually implies the existence of new fermions and

some kind of new strong interaction between them in order for a composite

fermion-antifermion bound state to be formed which can play the role of the

Higgs scalar fields. Technicolor is the simplest new strong confining gauge

force. However, technicolor models have difficulty generating fermion masses

without generating large flavor-changing neutral currents beyond what is

seen empirically [37].
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– Strong supersymmetric electroweak symmetry breaking, so called “S-color,”

where the “S” stands for “super” or “scalar,” can be thought of as the su-

perpartner to the technicolor mechanism. In these models, the Goldstone

bosons of the Higgs mechanism are composites of scalars. Such models have

no problem with fermion masses, which arise from ordinary Yukawa cou-

plings, because they contain an elementary Higgs multiplet that gets a vac-

uum expectation value by mixing with the composite fields of the S-color

sector. Moreover, flavor changing neutral currents are naturally suppressed

in the usual way [38].
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CHAPTER III

THE SLD DETECTOR

3.1 Overview

Proposed in 1984 and installed in 1991, the SLAC Large Detector (SLD)

replaced the less sophisticated Mark II detector at the interaction point (IP) of

the SLAC Linear Collider (SLC). A brief engineering run in 1991 was followed by

physics data taking the next year when 10,000 Z0 decays were recorded. By 1993,

improvements in the operation of the SLC resulted in increased luminosity and

over 50,000 Z0 decays logged. For the 1994-95 run, further improvements in SLC

hardware and operation yielded over 100,000 Z0 decays recorded. The SLD vertex

detector was upgraded for the 1996 run, but because of scheduling constraints,

budget cuts, and a fire in the North Damping Ring of the SLC, the run lasted

only two and a half months. Against these odds, however, the SLC still managed

to deliver 50,000 Z0 decays. The final SLD run began in mid 1997 and continued

until mid 1998, but ended abruptly one week early because of a vacuum leak in

the SLC positron source. A total of over 350,000 Z0 decays were recorded [39].

This history is summarized in Figure 9.

The SLD was a general purpose particle physics detector with almost com-

plete solid angle coverage. The layout of the detector was similar to an onion,
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Physicist

FIGURE 10. Cutaway of the SLD detector.

with multiple layers where each different layer was intended to measure different

aspects of a Z0 decay. The detector consisted of a cylindrical barrel with endcaps

on each end. In this analysis, only events which were well contained within the

barrel region of the detector were considered. The detector is illustrated in Figure

10.

Particle tracking and momentum measurements were provided by a CCD

vertex detector and a high resolution central drift chamber (CDC) all in a 0.6

Tesla magnetic field provided by a conventional aluminum solenoid. Particle iden-

tification was provided by a Cherenkov ring imaging detector (CRID) in which
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Cherenkov light from a charged particle was optically focused onto a detector in

such a way that the Cherenkov angle and in turn the velocity of the particle could

be measured. The calorimeter consisted of two parts: a liquid argon calorime-

ter (LAC) with lead radiators was located inside the solenoid, and the laminated

iron of the magnetic flux return was instrumented with limited-streamer-mode

tubes to complete the energy measurement. The streamer tubes of this warm iron

calorimeter (WIC) were instrumented with strip readout to provide muon tracking

in addition to calorimetric data. A cross section of the detector is illustrated in

Figure 11.

3.2 Luminosity Monitor (LUM)

The Luminosity Monitor Small Angle Trigger (LMSAT), or more often simply

the luminosity monitor (LUM) was used to measure the luminosity delivered by

the SLC. It worked by measuring the rate of small-angle Bhabha scattering events,

e+e− → e+e−. This process was ideal for measuring the luminosity because of the

large event rate and the dominance of the QED t-channel photon exchange, which

could be precisely calculated in QED. The LUM covered the angular region between

28 and 65 milliradians: The cross section for e+e− → e+e− into this region was

approximately 120 nanobarns, and was four times the hadronic Z0 cross section at

the Z0 peak [40].

Designed and built at the University of Oregon in collaboration with the

University of Tennessee, the LUM was a finely-segmented silicon-tungsten sampling

calorimeter which pioneered the use of silicon calorimetry. Indeed, it proved to be
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FIGURE 11. Cross section of the SLD detector along the beamline.
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FIGURE 12. Luminosity Monitor.

such a successful design that two of the four LEP experiments (OPAL and ALEPH)

subsequently replaced their luminosity monitors with silicon-tungsten calorimeters

similar to the LUM [41].

Consisting of 23 layers of alternating tungsten radiator plates and highly

segmented silicon detectors, the LUM was located about 1 meter downstream

from the IP [41, 42, 43, 44]. Electromagnetic showers developed in the tungsten

radiator plates and the ionization signal was detected in the silicon detectors with

an energy resolution of about ±3% at 50 GeV. The LUM is illustrated in Figures

12, 13, and 14.

Beyond measuring luminosity, the LUM also performed a critical function

when tuning the SLC for collisions. Virtually any campaign to reduce beam in-

duced backgrounds necessarily started with the north and south LUMs (for the
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FIGURE 13. Photograph of three of the four luminosity monitor modules during
construction.
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FIGURE 14. Photograph of one octant of one layer of the the luminosity monitor
silicon detector. The silicon pads are visible through the G10 motherboard.
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positron and electron beams respectively) because when backgrounds were high,

other SLD detector subsystems could not be activated without risking damage.

3.3 Vertex Detector (VXD3)

Starting at the interaction point and moving radially outward, the first onion-

like layer of the SLD was the vertex detector (VXD). The purpose of the VXD was

to measure the trajectories of charged tracks in a Z0 decay event with sufficient

precision that by extrapolating the tracks back to the interaction region (IR), it

was possible to distinguish between tracks coming from the primary vertex (PV)

located at the interaction point (IP), and tracks coming from any secondary or

tertiary vertices associated with the decays of particles containing heavy quarks.

Indeed, as will be explained elsewhere, this was the entire basis of heavy-flavor

quark tagging.

The VXD employed in SLD utilized silicon pixel charged coupled devices

(CCDs) as the medium to detect the ionization deposited by charged particles,

and was the first such use of CCDs in a colliding beam environment. The linear

collider environment made the use of a vertex detector based on CCD technology

appealing for the following reasons [45]:

1. very small beam spot producing a well defined primary vertex.

2. small diameter beam pipe compatible with the limited area coverage practical

with CCD detectors.

3. long interval between beam crossings. While this interval was not sufficient

for complete readout, the background integrated during readout would be
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only ∼ 10 beam crossings as opposed to ∼ 105 beam crossings for a typical

storage ring.

Over the years, SLD collected physics data using two different CCD technol-

ogy based vertex detectors. After tests with a prototype detector VXD1 consisting

of a few ladders, the 120 Mpixel VXD2 was installed for physics runs from 1992-95.

In 1996 an improved vertex detector, VXD3 [45], was installed. VXD3 was made

possible by advances in CCD technology, and with 307.2 Mpixels was an evolu-

tionary improvement over VXD2 both in terms of the solid angle coverage and

impact parameter resolution. Because this analysis used only the data collected

from 1996-98, VXD2 will not be described here. The VXD3 detector is illustrated

in Figures 15 and 16. Figure 17 shows the position of VXD3 relative to other

components in the beam line near the interaction point of the SLC.

VXD3 used 96 CCDs [46] each with an active area measuring 80×16 mm2 (see

Figure 21). Two CCDs were mounted on a beryllium substrate to form a ladder,

as shown in Figure 18. The two CCDs overlapped by ≈ 1 mm to allow their

relative alignment using charged tracks. These ladders were mounted onto a series

of three concentric beryllium annuli in a shingled arrangement, so that complete

azimuthal coverage was attained, with ≈ 500 µm overlap between adjacent ladders

for alignment purposes. This is shown in Figure 19 and 20. VXD3 was designed

with a small inner layer of mean radius 28 mm, with the radii of the two outer

layers considerably larger to allow for a long lever arm for precise extrapolation

back to the IR: The mean radii of the middle and outer layers by comparison were

38.2 mm and 48.3 mm respectively.
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FIGURE 15. Photograph of one half of the VXD3 vertex detector before installa-
tion at the interaction point. (Photographer: J. Brau.)
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FIGURE 16. Cut-away isometric drawing of the VXD3 vertex detector.
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(I register,) shifts signal charge packets to each end of the device. A serial register
(R register) at each end shifts charge packets to a pair of output circuits. The I
clock runs at 100 kHz while the R clock runs at 5 MHz.

Each individual pixel was 20 × 20 × 20 µm3. Each CCD had a total of

4000×800 pixels and was divided into four quadrants, with one output amplifier for

each quadrant located at the four corners of the CCD. Readout was accomplished

as follows: The I clock caused rows of signal charge packets in the parallel register

(I register) to shift towards the two shorter sides of the CCD, where the serial

register (R register) was located. Once a row had been loaded into the R register,

the R clock successively moved each signal charge packet in the register to the

output amplifier. The I clock ran at 100 kHz while the R clock ran at 5 MHz. This

is illustrated in Figure 21. To read out the entire dectector took 0.2 seconds, or 24

beam crossings at 120 Hz. Because the pixel occupancy was < 10−4, rejecting the

background pileup hits was not difficult.
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VXD3 was mounted in a nitrogen gas cryostat (see Figure 20) and maintained

at a temperature of about 185 K. It was necessary to operate the detector at low

temperatures to reduce lattice defects caused by radiation damage, which could

cause trapping centers to develop in the silicon. Because CCDs are read out

serially, a trapping center affected not just nearby pixels, but could impact the

charge transfer out of all pixels behind it in that column.

For VXD3 to reach it’s full potential, the CCDs had to be aligned with respect

to one another and with respect to the rest of the SLD to a very high degree of

precision. The alignment procedure was done in two stages: An optical survey

of all ladders and all barrels was performed in order to determine the internal

geometry of the detector to a degree of accuracy sufficient for the second stage in

which beam-related tracks were used for the final alignment. The ladder survey

determined the geometry of each CCD surface and the relation of the two CCDs

to each other, while the barrel survey fixed the relative positions of the ladders to

each other. The optical survey determined the global geometry to within < 20 µm

(< 1 pixel) rms. A secondary goal of this optical survey was to measure aspects

of the geometry which would be difficult to determine from tracks, such as the

complex shapes of the CCDs themselves, the gravitational sag of the ladders, and

temperature scaling corrections. These three aspects were important factors in

achieving the 4 µm precision.

The optical survey was followed by a track-based internal alignment [47].

VXD vectors were forced to go through two track hits precisely, with the track

curvature measured by the central drift chamber (CDC). The residual of a third
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hit or other constraint to this fixed vector was then measured. Several types of hit

vectors from tracks were used for this process:

1. Doublets – tracks with momentum greater than 1 GeV from hadronic Z0

decays which passed through the overlapping region (z) of two CCDs on the

same ladder.

2. Shingles – tracks with momentum greater than 1 GeV from hadronic Z0

decays which passed through the overlapping region (rφ) of two ladders in

the same layer.

3. Triplets – tracks with momentum greater than 1 GeV from hadronic Z0

decays and with hits in all three layers.

4. Pairs – back to back tracks from Z0 → µ+µ− or Z0 → e+e− events, with the

residuals being measured as the mis-distance between the two tracks at the

IP.

5. VXD3 vs. CDC track angle matching – tracks from the Z0 → µ+µ− or

Z0 → e+e− events measured by the CDC were compared with the angle

measured from the hits in layers 1 and 3 of VXD3. The residual angle was

converted into a residual distance on the reference CCD.

6. IP constraint – tracks from light flavor selected hadronic Z0 decays with

momentum greater than 7 GeV and with hits in layers 1 and 3. On average,

such tracks should project back to the SLC interation point.

These different residual types are illustrated in Figure 22. The doublets constrained

the relative locations of two CCDs on the same ladder; the shingles provided direct
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connections between different ladders within a layer; the triplets related ladders on

different layers; pairs related opposite regions of the detector; and the IP constraint

added two further residuals for the offset of the IP from the nominal location of

the event IP.

The detailed internal alignment yielded a single hit resolution of 3.8 µm (see

Figure 23) and an impact parameter resolution (as a function of momentum and

angle) of [48]

σrφ = 7.8⊕ 33

p sin3/2 θ
µm (3.1)

σrz = 9.7⊕ 33

p sin3/2 θ
µm (3.2)

as explained in Figure 24.

3.4 Central Drift Chamber (CDC)

Moving radially outward away from the interaction point past the vertex

detector, the next onion-like layer of the SLD was the central drift chamber (CDC).

The purpose of the CDC was to measure the positions and momenta of charged

particles, and was the primary tracking system for the entire SLD detector.

The CDC [49] was comprised of a cylindrical annulus of length 2 m with an

inner radius of 20 cm and an outer radius 1 m. Inner and outer low-mass cylinders

made from an aluminum and Hexcel fiberboard laminate surrounded an annular

region containing wires strung between two dished aluminum endplates. The CDC

contained 80 layers of sense wires arranged in ten staggered superlayers of eight
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FIGURE 22. Construction of the VXD3 residual types. The thick and thin lines
represent the North and South CCDs respectively.
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wires each. Six superlayers had a 41 mrad stereo angle with respect to the beam

axis. This is illustrated in Figure 25. Each cell measured about 6 cm in φ by 5 cm

in r and was composed of eight sense wires, 18 inner field wires held at a potential

of -3027 V which focused the electric field lines to produce a charge amplification

of about 105 in the region near the sense wires, 23 high voltage outer field wires

held at a potential of -5300 V, and 2 guard wires which ran at an intermediate

voltage to grade the field between the sense wires and the inner and outer field

wires [50], as shown in Figure 26. The sense wires were of 25 µm gold plated

tungsten while the guard wires and inner and outer field wires were of 150 µm

gold plated aluminum. The CDC had a total of 5,120 sense wires in 640 cells, for

a grand total of 32,640 wires.

When a charged particle transited the central drift chamber, gas molecules

along the particle track were ionized. Electric fields directed the free electrons

toward the sense wires (see Figure 27). Through the phenomenon of gas multi-

plication, the charge represented by these ion pairs was amplified by a factor of

104-105 at the sense wire. The charge incident on a sense wire served as the basis

of the electrical signal developed by the drift chamber.

The gas mix was comprised of a 75% CO2, 21% Ar, 4% isobutane, and 0.2%

H2O, yielding a drift velocity vd of 7.9 µm/ns in the average field of 0.9 kV/cm.

The trajectory of a charged particle in rφ was determined by the addresses

of the sense wires which collected ionization current. Additionally, the timing of

the leading edges of the pulses was used to estimate the precise distances of the

wires from the track. The position in z was determined from the ratio of the pulse

heights at the two ends of the wire, and was accurate to within about 5 cm.
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The hits within a cell were then combined into a vector, which was the basic

element for track finding. A pattern recognition program combined the vectors

from adjacent cells into track candidates: The algorithm found circular segments

in rφ consistent with at least two axial superlayer vectors, and combined this with

VXD hits and stereo vectors to determine the track angle in rz. A detailed fit

was then performed on these track candidates taking into account electric and

magnetic field variations and energy loss in the detector materials. The vectors

assigned to the track were then removed and the algorithm was iterated until no

more tracks were found.

The momentum resolution function of the CDC was measured using both

mono-energetic Z0 → µ+µ− events and cosmic ray events. In the case of the

cosmic ray events, the upper and lower halves of each track were considered as two

separate tracks, and the two measured momenta were compared. The momentum

resolution function was determined to be

σ(p⊥)

p2
⊥

= 0.0050⊕ 0.010

p2
⊥

(3.3)

The first term represents the effect of measurement uncertainty and the second

term takes into account multiple scattering.
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3.5 Cherenkov Ring Imaging Detector (CRID)

The next onion-like layer of the SLD was the Cherenkov ring imagining de-

tector (CRID) which provided the SLD with a particle identification capability

crucial to this analysis. The CRID consisted of a barrel system and two endcaps,

as illustrated in Figure 11.

Charged particles emit Cherenkov light whenever they pass through a medium

at a velocity greater than the speed of light in that medium, i.e. such that

βn > 1 (3.4)

where β is the ratio of the velocity of the charged particle to that of light in a

vacuum, and n is the index of refraction of the material. The yield of Cherenkov

photons per unit wavelength λ is proportional to 1/λ2 and the emission is therefore

concentrated in the short-wavelength region of the spectrum [51]. The light is

emitted continuously in conical sheets with angle θC to the trajectory of the charged

particle:

cos θC =
1

βn
. (3.5)

The Cherenkov ring imaging detector measureed this angle thereby giving infor-

mation on the velocity of the particle. When this information was combined with

knowledge of the momentum of the particle (obtained, for example, from the cen-

tral drift chamber), the particle’s mass could be calculated, and the identity of the

particle deduced [52].
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By using media of different indices of refraction, discrimination between e,

π±, K±, and p over a large momentum range could be obtained. Indeed, as will be

explained elsewhere, this was the basis of K± tagging in this analysis. In the SLD

CRID, two different radiator materials were used: Liquid C6F14 having an index

of refraction of nliquid = 1.277 and a gaseous mix of C5F12 and N2 having an index

of refraction of ngas = 1.001725. These media were chosen to provide particle

identification coverage with a minimum momentum gap between the two with

the liquid radiator most effective in the low momentum range and the gaseous

radiator most effective in the high momentum range. Figure 28 illustrates the

Cherenkov angle curves for π±, K±, and p as a function of momentum for the two

radiators. Both media also had good transmission in the relevant UV wavelengths

with relatively low chromatic dispersion.

Charged particles passed first through the 1 cm thick liquid radiator and

the Cherenkov photons were allowed to propagate some distance before encoun-

tering the photon detector forming a “proximity focused” image at the detector.

After passing through the photon detector unimpeded, the charged particles then

passed through the 45 cm thick gas radiator and these Cherenkov photons were

optically focused by spherical mirrors onto the opposite side of the photon detec-

tor. The Cherenkov photons, whether from the liquid or gas radiators, passed

through quartz windows on the front and back of the photon detector box and

photo-ionized gaseous Tetrakis Dimethyl Amino Ethylene (TMAE). An electric

field drifted the photoelectrons at a constant velocity axially along the detector

box to a picket fence of proportional wires where they were read out. Three coordi-

nates gave the origin of the photoelectron: The drift time of the electron gave the
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axial coordinate, the wire address where it was counted gave the lateral coordinate,

and charge division on the proportional wire gave the conversion depth [53]. This

is explained schematically in Figure 29.

The angles θC and φC , where θC is the Cherenkov angle and φC is the az-

imuthal angle in the plane perpendicular to the track, were reconstructed from all

relevant hits in the CRID for each charged track extrapolated from the SLD central

drift chamber. Figure 30 shows plots for isolated gas rings in hadronic events. The

angular resolution and number of photons were found by a fitting procedure.

The average reconstructed θC for β = 1 tracks was 675 mrad in the liquid

radiator and 58.6 mrad in the gas radiator. The average number of detected

photons per β = 1 track in µ-pair events was 16.1 for the liquid radiator and 10.0

for the gas radiator [54].

3.6 Liquid Argon Calorimeter (LAC)

The liquid argon calorimeter (LAC) was the second to last onion-like layer

of the SLD detector and was the last of the detector subsystems to reside inside

the SLD magnet coil.

Calorimetry in this context refers to the destructive measurement of the

energy of a particle, i.e. the original particle enters the calorimeter and interacts,

but does not transit the detector. The interaction can be either electromagnetic if

it is initiated by photons and electrons, or hadronic if it is initiated by the inelastic

scattering of hadrons. These interactions, when sufficiently high in energy, develop

into showers – literally streams of particles produced or knocked out by a sequence



83

Ch
ar

ge
d T

ra
ck

Mirror
Array

Gas Radiator

External
Field Cage

Liquid Radiator
C   F6    14(        )

Drift Box

e + e

e–

C2H6 + TMAE

(C5 F12   N2 Mix)
n = 1.001725

n = 1.277

CATHODE

ANODE WIRE
PLANE

PHOTONS FROM
GAS RADIATOR

TIME

PHOTONS FROM
LIQUID RADIATOR

WIRE
ADDRESS

CHARGE DIVISION
THIRD COORDINATE

READOUT

e–

y

x
z

FIGURE 29. The barrel CRID showing one sector in both the transverse (top left)
and axial (top right) views. At bottom is a view of the CRID photon detector box.
Cherenkov photons from the liquid radiator are proximity focused on one side of
the box while Cherenkov photons from the gas radiator are focused using an array
of spherical mirrors onto the other side of the box. Gaseous TMAE is used to
convert the Cherenkov photons into photoelectrons which drift onto a picket fence
of proportional wires. The origins of the photoelectrons are determined from the
drift time, the wire address, and charge division on the proportional wire.



84

200

0
s ~ 4 mr

0–20 20

(d)

0 100 200–200 –100
–100

100

0

(a)

0

200

400

600

Fit Residuals   (mrad)

C
ou

nt
s

0
0

200

400

600

C
ou

nt
s p > 7 GeV/c

(b)

80 160
Ring Radius   (cm)

0
C

ou
nt

s

(c)
n  ~ 8

20

40

60

0
Hits / Ring

10 20 30

q C
 s

in
f C

   
(m

ra
d)

qC  cosfC    (mrad)

7458A26
6–93

FIGURE 30. (a) Gas ring photons integrated over many hadronic events, (b)
projection of (a) in Cherenkov angle, (c) number per ring derived from fits, and
(d) the residuals with respect to the fitted Cherenkov ring angle, from which the
local resolution is extracted.



85

of interactions. In general, a calorimeter detects the remnants of the interaction

by measuring the ionization signature from the shower [55].

The canonical layout of a sampling calorimeter is a sandwich of high-Z pas-

sive absorber material to catalyze shower development and active material where

ionization is detected. The LAC was a lead-liquid argon sampling calorimeter con-

sisting of planes of lead absorbers, arranged in stacks of plates held alternately at

ground and -2 kV and separated by several millimeters of pure liquid argon. The

LAC worked as an ion chamber by collecting the charge deposited in the argon

gap by electromagnetic or hadronic showers originating predominantly in the lead

plates. SLD was originally conceived with a uranium-liquid argon calorimeter.

Strictly speaking, when the ratio of the electromagnetic to the hadronic response

of a calorimeter to particles of equal incident kinetic energy is 1, the calorime-

ter is said to be “compensating” [56, 57]. This is ideally achieved by making the

active medium sensitive to nuclear fragments so as to, in effect, replace some of

the energy normally lost to nuclear breakup. Early studies by Brau and Gabriel

[58] to understand compensation in uranium calorimeters and to optimize the

SLD calorimeter revealed that the uranium-liquid argon calorimeter was unlikely

to achieve compensation through this mechanism, although the suppressed elec-

tromagnetic response did tend to reduce the ratio of the electromagnetic to the

hadronic response toward 1. However, the advantages of uranium absorbers were

modest and did not produce a sufficient improvement over a pure lead-liquid argon

calorimeter to justify the added cost. When these predictions were supported by

beam tests, the present lead-liquid argon design was adopted.
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Two types of calorimeter modules were employed in the SLD barrel LAC:

Electromagnetic (EM) modules and hadronic (HAD) modules. The EM modules

consisted of stacks of 2 mm thick lead plates separated by 2.75 mm gaps of liquid

argon for a total of 21 radiation lengths; the HAD modules consisted of 6 mm

thick lead plates again separated by 2.75 mm gaps of liquid argon for a total of 2

absorption lengths [17]. The calorimeter stacks were divided into readout towers

that projected back to the beam interaction point. Tower sizes were chosen to

provide the best possible efficiency for isolating electrons from b quark jets, the

lowest possible π/γ overlap background, and the best position resolution, subject

to the constraints of economy. At z = 0, the θ angle subtended at the tower

entrance was 36 mrad for the EM section, and 72 mrad for the HAD section. The

inner section of the EM module contained 70 segments along the z direction while

the outer section contained 68. The inner section of the HAD module contained 32

segments along the z direction while the outer section contained 30. In azimuth,

there were 192 EM segments and 96 HAD segments. This gave a total of 32,448

channels in the barrel LAC. The EM and HAD modules are illustrated in Figure

31.

These modules were arranged in an annular configuration with an inner radius

of 1.77 meters and an outer radius of 2.91 meters. The barrel LAC was longitu-

dinally segmented into three compartments by two aluminum washers welded to

the inner wall of the dewar. In each of the three compartments, 48 EM modules

occupied the inner portion of the annulus and 48 HAD modules occupied the outer

portion for a total of 288 individual modules.
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For showers of energy E, the energy resolution of the LAC was measured to

be σ/E = 15%/
√
E for electromagnetic showers and σ/E = 60%/

√
E for hadronic

showers.

The LAC was important in this analysis because, as will be explained else-

where, it was the basis for the hadronic event trigger, and was also used in the

determination of the thrust axis.

3.7 Magnet Coil

The magnet coil was made of 10 km of 5 cm × 7 cm rectangular Al conductor

wound in four 127 turn layers to give an 80 ton cylinder 5.9 m in diameter, 6.4

m long, and 29 cm thick. It produced a uniform solenoidal field of strength 0.6

Tesla in a volume of 175 m3. An electric current of 6,600 amps at a potential

difference of 750 V flowed through the magnet coil to produce the magnetic field.

This produced 5 MW of heat which had to be removed. A one inch diameter hole

ran longitudinally through the rectangular conductors for cooling water to flow:

The total flow rate for the entire solenoid was approximately 50 liters per second

[53].
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3.8 Warm Iron Calorimeter (WIC)

The final onion-like layer of the SLD was the warm iron calorimeter (WIC),

and was the only detector subsystem (notwithstanding the Compton polarimeter

and the WISRD, both discussed in the next chapter) to reside outside the magnet

coil.

The barrel WIC was an octagonal cylinder surrounding the magnet coil and

was composed of 14 layers of 5 cm thick steel plates separated by 3.2 cm gaps. The

steel in the barrel provided the flux return path for the magnetic field. Detector

elements placed in the gaps converted this passive flux return into a calorimeter

with the steel plates doubling as absorber elements.

The detector elements consisted of long, retangular tubes similar to those

developed by the Iarocci group in Frascati for the Mont Blanc proton decay ex-

periment. They had an active section of 9 mm × 9 mm, and were constructed in

groups of eight tubes from 1 mm thick extruded PVC. At the center of each tube

was a 100 µm Be-Cu wire. The tubes were filled with 88% CO2, 9.5% isobutane,

and 2.5% Ar. The barrel section contained approximately 40,000 of these tubes.

In addition to the Iarocci type tubes were strips – both transverse and logitu-

dinal, and pads. The strips were made from 1.6 mm thick Glasteel sheet laminated

with 25 µm Cu on both sides. On the top side, the actual strip electrodes were

made by removing lines of Cu 2 mm wide, with the strip electrodes located under

the active regions of the tubes. The Cu on the opposite side of the Glasteel sheet

formed the ground plane. The pads were likewise made using Glasteel sheets lam-

inated with Cu on one side, with Cu removed to form the individual pads [53].

The general layout of the barrel WIC is shown in Figure 32.
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3.9 Simulation Tools

Simulated data generated using Monte Carlo techniques are de rigueur in

most particle physics experiments. The Monte Carlo simulation is, in effect, the

physicists’ chance to play God, for only in simulated data can all the physical

parameters associated with a particle or event be known with absolute certainty

and adjusted with impunity. Underlying physical processes and the response of the

detector to them can be studied, and background rates, biases, and acceptances

that are impossible to determine from the data can be reasonably estimated.

The measurements presented in this analysis relied on a Monte Carlo simu-

lation based on the JETSET 7.4 event generator, which was intimately connected

with string fragmentation in the form of the time-honoured “LUND model.” Fi-

nally, a detailed simulation of the detector was performed with GEANT 3.210.

In some semblance of a time order, the evolution of a typical simulated SLD

event proceeded as follows [59, 60]:

1. Initially two beam particles were coming in towards each other.

2. The incoming particles entered a hard process, where then a number of out-

going partons – usually two – were produced. It was the nature of this process

that determineed the main characteristics of the event.

3. The hard process often produced a short-lived resonance – specifically a Z0

gauge boson – whose decay to normal partons had to be considered in close

association with the hard process itself.
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4. The outgoing partons branched to build up final-state showers.

5. The QCD confinement mechanism ensured that the outgoing quarks and

gluons were not observable, but instead fragmented to color neutral hadrons.

In the LUND string fragmentation model, the long-range confinement forces

were allowed to distribute the energies and flavors of a parton configuration

among a collection of primary hadrons [59]. The LUND parameters were

specifically tuned to hadronic e+e− annihilation data [61]. However, charm

and bottom data indicated the need for a harder fragmentation function:

Fragmentation functions for b and c quarks were according to Peterson et al.

[62].

6. Many of the produced hadrons were unstable and decayed further. For the

B meson decay simulation, the CLEO QQ generator [63] was adopted, with

adjustments to improve the agreement with inclusive particle production

measurements from ARGUS and CLEO [64]. Semileptonic decays followed

the Isgur-Scora-Grinstein-Wise (ISGW) form factor model [65] with the in-

clusion of D** production.

7. The detector’s response to charged and neutral particles was modeled using

GEANT 3.210 [66], with a detailed geometric description of the SLD.

Beyond the orthodox SLD Monte Carlo, two non-standard simulations were

run. One simulation varied the b quark mass in JETSET to study the running b

mass effect. Another simulation demanded that the the Z0 decay to a b quark and
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an s quark in one instance, and to an s quark and a b quark in another [67] in

order to have simulated flavor changing neutral current events for training neural

networks, tuning cuts, and so forth.
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CHAPTER IV

THE SLC

4.1 Introduction

Over the past 40 years, accelerators have become the main tool for exploring

the fundamental particles and forces of nature. SLAC was the first large-scale

electron accelerator and began operation in the mid 1960s. This was followed by

the evolution of electron-positron storage rings starting with the early ADONE and

SPEAR rings at Frascati and SLAC respectively having center of mass energies of

a few GeV, and culminating most recently with the LEP collider at CERN having

a center of mass energy of over 200 GeV. The evolution of both hadron and e+e−

colliders is shown in Figure 33 [68].

Because of energy losses to synchrotron radiation, the bending radius of an

electron storage ring must increase approximately as the square of the energy, and

thus the size and cost must also increase as the square of the energy, while the size

and cost of a linear collider scale approximately linearly with energy. The LEP

ring is already 27 km in circumference making even modest increases in energy

impractical.

M. Tigner, in 1965, proposed the original “apparatus for electron clashing-

beam experiments,” although beam spot size appeared to motivate his ideas rather
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FIGURE 33. The energy in the constituent frame of electron-positron (circles) and
hadron (squares) colliders: Filled circles and squares refer to machines which have
been constructed; the open circle and square are planned machines. The energies
of hadron colliders have been derated by factors of 6-10 in this plot in accordance
with the fact that the proton’s incident energy is shared among its quark and gluon
constituents. (From W. K. H. Panofsky and M. Breidenbach, Rev. Mod. Phys.
71, 1999.)
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than limiting energy losses to synchrotron radiation: “In order to be useful for

clashing-beam work an acceleration device must produce beams of small-cross sec-

tion or high enough quality that they may be focused to a small spot in the

interaction region or regions. Such beams are well known to be produced by linear

radio-frequency accelerators” [69].

The SLAC Linear Accelerator (linac), upon which the SLC is built, is a

particle accelerator in which electrons (and positrons) are accelerated in a straight

line by means of radio frequency electric fields (RF), as illustrated in Figure 34.

The passage of the electrons are synchronized with the phase of the accelerating

fields. The SLAC linac is a three kilometer long disc-loaded copper wave guide

placed on concrete girders in a tunnel about 25 feet underground, and is fed by

approximately 240 65 MW S-band klystrons spaced at 40 foot intervals. A klystron

is a microwave generator consisting of an electron tube wherein a beam of electrons

from a hot cathode is passed through a resonant cavity where it is modulated by

high frequency radio waves. The electrons are bunched as they pass through a final

cavity, where they induce RF with a higher gain. The RF from the klystrons is

transmitted by rectangular waveguides to the disc-loaded wave guide of the linac.

Figure 35 illustrates the layout of the SLC including linac, damping rings,

positron source, positron return line, arcs, and beam dumps. Nan Phinney de-

scribes the SLC [70]:

“Built on the existing SLAC Linac, the SLC is a ’folded’ version of

a linear collider where both electron and positron bunches are acceler-

ated in the same beam pipe to about 50 GeV. The SLC cycle begins
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with two electron bunches stored in the north damping ring and two

positron bunches stored in the south damping ring. On each pulse, one

positron bunch followed by both electron bunches are accelerated in

the linac. The second positron bunch remains in the damping ring for

an additional damping cycle to reduce the large incoming emittance.

Two thirds of the way along the Linac, the second electron bunch is ex-

tracted onto a target to produce a new pulse of positrons. The leading

positron and electron bunches are separated by a bend magnet at the

end of the Linac, bent around two roughly circular transport lines, the

Arcs, and brought into collision at the Interaction Point (IP). In the

last 150 meters of beam line, the Final Focus, the beams are focused to

micron size for collision. They then travel back through the opposite

Final Focus and are extracted onto high power beam dumps. At the

same time, two new bunches of electrons are produced by the polarized

source and accelerated to 1.19 GeV into the north damping ring. The

new positrons are transported back to the beginning of the linac where

they are coaccelerated with the electrons and injected into the south

damping ring, joining the positron bunch from the previous pulse. This

cycle repeats 120 times a second.”
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4.2 Polarized Electron Source

The electron bunches accelerated by the SLC were longitudinally polarized.

Electrons were produced from a photoemission electron gun which utilized a semi-

conductor cathode. Optical pulses from a Nd:YAG-pumped Ti:sapphire laser were

chopped by a Pockels cell optical pulse chopper to produce the short optical pulses

required, and then circularly polarized by a pulsed Pockels cell optical retarder.

This circular polarization, necessary for the production of longitudinally polarized

electrons, was reversed randomly on a pulse-to-pulse basis. These short, circularly

polarized optical pulses excited electrons from the valence to the conduction band

of the GaAs photocathode, the surface of which was treated with cesium and NF3

to attain a negative electron affinity which allowed the excited electrons to escape

the photocathode with a quantum efficiency of about 0.1%. The SLC polarized

source is illustrated schematically in Figure 36.

Space-charge and transient phenomena make the bunching and capture of

short duration electron pulses problematic: However these difficulties decrease sig-

nificantly in bunches having a longer duration. A subharmonic buncher consisting

of two cavities located between the electron gun and the S-band linac was used to

shorten the two-nanosecond duration polarized electron pulses from the gun down

to 100 picoseconds in duration. A 10-cm traveling wave buncher further reduced

the duration of the electron pulses to 20 ps, and a standard 3-meter accelerator

section prepared the pulses for injection into the main linac [71].

Although the electrons started off circularly polarized, they got horizontally

polarized by the bending magnets in the transfer line which sent the electrons

to the north damping ring – the so called “linac-to-ring” (LTR). A solenoid spin
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FIGURE 36. The SLC polarized source.
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rotator then vertically polarized the electrons, and this vertical spin was preserved

during the 8.3 µs store in the north damping ring. Two additional spin rotators

were installed, one in the ring-to-linac (RTL) transfer line and one at the entrance

to the linac, and coupled with the rotation induced by the transfer line, these

allowed the spin to be oriented in an arbitrary direction at injection to the linac.

In practice however, these two additional spin rotators were not used because the

solenoids would have coupled the horizontal and vertical emittances and prevented

operation with “flat beams.” The orientation of the spin was preserved in the linac,

and then precessed through the bending magnets of the north arc. It turns out

that the spin orientation is extremely sensitive to minor orbit changes through

the arc due to a resonance between the precession of the spin and the betatron

oscillations induced by the north arc lattice. This feature was quickly turned to an

advantage, and since 1993, “spin-bumps” in the orbit through the north arc have

been used to orient the spin direction as desired. Nominally, the electrons arrived

at the IP longitudinally polarized [70]. Figure 9 shows the average polarization

attained during each run period.

4.3 Measuring the e− Polarization

The polarization of the SLC electron beam was measured using the asym-

metry in the Compton scattering cross sections for the Jz = 3/2 and Jz = 1/2

combinations of circularly polarized light and the longitudinally polarized electron

beam. The longitudinal component of the electron polarization Pe can be extracted
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from the measurement of this asymmetry as follows:

Ameasured =
σJz= 3

2
− σJz= 1

2

σJz= 3
2

+ σJz= 1
2

= adPePγAC(E) (4.1)

where ad is the measured analyzing power of the detector, Pγ is the measured

longitudinal component of the laser polarization, and AC is the Compton scattering

asymmetry as a function of energy which is calculable from QED.

The SLC polarimetry system is shown in Figure 37. Circularly polarized

photons of energy 2.33 eV from a frequency-doubled YAG laser collided with the

electron beam at a point 33 m downstream from the SLC interaction point. The

backscattered electrons were then separated from the main beam by a dipole bend

magnet and aimed into a Cherenkov detector. This detector used an array of

propane radiators coupled to PMT readouts to measure the energy spectrum of

the scattered electrons in the range 17 to 30 GeV. The energy corresponding to

each channel of the detector was determined by the channel’s distance from the

beam line.

Two other detectors, the polarized gamma counter (PGC) and the quartz

fiber calorimeter (QFC), made additional measurements of the beam polarization.

Both worked by observing the scattered photons rather than the electrons, as

shown in Figure 37. Both detectors provided consistency checks of the Compton

Polarimeter result with a precision of better than 1%.

This analysis was not, however, dependent on the polarization measurement.
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4.4 Beam Energy Measurement

Both the electron and positron beams passed through extraction-line spec-

trometers installed approximately 150 m downstream from the IP before ultimately

reaching their respective beam dumps. In each spectrometer, the e± bunches trav-

eled through three dipole magnets: The second magnet was a spectrometer magnet

which bent the beam; the first and third magnets bent the beam perpendicular to

the bend direction of the spectrometer magnet and caused the beam to emit two

stripes of synchrotron radiation. A quadrupole doublet upstream of the bending

magnets focused the e± and synchrotron stripes approximately 15 m downstream

of the spectrometer magnet. Synchrotron radiation detectors located at this focal
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point measured the distance (approximately 27 cm) and thus the angle between

these two stripes, which allowed a determination of the beam energy [72].

The synchrotron radiation detectors consisted of arrays of 75 µm diameter

copper wires spaced 100 µm apart. Incident synchrotron radiation ejected elec-

trons from the wires via Compton scattering. These were known as wire imaging

synchrotron radiation detectors (WISRDs).

The precision of the WISRD, based on magnetic measurements done on the

bench in 1988 and in situ surveys done about once per SLD run indicated an

uncertainty on Ecm of about ±20 MeV. However, a Z0 peak scan was performed

during the 1997-98 SLD run which allowed the WISRD energy spectrometer to be

calibrated against the precise Z0 mass measurement obtained at LEP. From this,

the total uncertainty on Ecm was found to be ±29 MeV [73].

4.5 Emittance Preservation

The SLC is likely the most difficult accelerator ever operated: Linear colliders

are inherently less stable than storage rings, and each pulse is an injected pulse.

Emittance preservation is the key to high luminosity with low detector backgrounds

in a linear collider.

In a linear colider, the luminosity depends on the beam intensities, transverse

beam size, and repetition rate:

L =
fN+N−

4πσxσy

Hd (4.2)
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where f is the repition rate and N± are the numbers of particles per bunch for

electrons and positrons. The σx,y are the horizontal and vertical beam sizes. For

small, intense, oppositely charged beams, there is an additional enhancement from

the attractive forces between the bunches which causes each beam to be focused

by the field of the other: Hd takes into account this disruption enhancement or

pinch effect. During the 1997-98 run, the number of positrons and electrons per

bunch was typically around N± ≈ 4× 1010; horizontal and vertical beam sizes as

low as σx = 1.5 µm and σy = 0.65 µm respectively were achieved; the repetition

rate was f = 120 Hz; and the disruption enhancement got as high as Hd = 2.0.

[39]

Emittance ε is a phase-space measurement of the quality of a beam with

regard to the spacial spread and uniformity of the momenta of its individual par-

ticles, and is the area in phase space of the ellipse enclosing the particles within

one σ [74]. Emittance is defined as the product of the beam size σx,y and angular

divergence Θx,y [75],

εx,y = σx,yΘx,y. (4.3)

Using the definition of emittance, one may re-express the luminosity as

L ∝ ΘxΘy

εxεy

Hd. (4.4)

Emittance is the key to the successful operation of a linear collider: The basic

strategy is to decrease the emittances and increase the angular divergences to the

extent possible.
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Location εx (m·Rad) εy (m·Rad)

Injection e− 2× 10−4 2× 10−4

e+ 1× 10−3 1× 10−3

Extraction 3.0× 10−5 0.3× 10−5

Sector 28 4.0× 10−5 0.6× 10−5

Final Focus 5.5× 10−5 1.0× 10−5

TABLE 1. Typical horizontal and vertical emittances, εx,y, achieved during the
1997-98 run. The numbers represent emittances measured at different locations
throughout the SLC: Injection into the damping ring, extraction from the damping
ring, close to the end of the linac (sector 28), and in the final focus.

A damping ring is essentially a small storage ring the purpose of which is to

reduce the emittance of a beam. Because of synchrotron radiation, the beam loses

energy as it travels around the damping ring. The lost energy is replaced by an

RF source, but only the longitudinal component is replaced. Thus the tranverse

emittance is reduced, or “damped.” A damping ring is illustrated in Figure 39. A

schematic of the north damping ring is shown in Figure 40. The beam emittance

is plotted as a function of damping ring store time in Figure 41 [76].

At the SLC, the damping rings were located quite near the front end of the

accelerator such that the emittances of the electron and positron beams were as

small as possible as they propagated through the rest of the machine. The goal

in SLC operation then became to preserve – to the extent possible – whatever

emittances were achieved after extraction from the damping rings. Table 1 shows

typical values for the beam emittances at various locations in the SLC which were

achieved during the 1997-98 run [39, 77, 78].

One of the most important sources of emittance growth in the SLC occured

early in the accelerator where there was a mismatch between the incoming beam

and the optics of the beam line lattice. If the beam was not matched to the lattice
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FIGURE 39. Because of energy losses to synchrotron radiation, the phase space
occupied by a charged particle beam – the emittance – decreases in a damping ring.
The lost energy is replaced by an RF source, but only the longitudinal component
is replaced. Thus the tranverse emittance is reduced, or “damped.” Note that
Liouville’s Theorem doesn’t apply to the damping ring because it is disapative.
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FIGURE 40. Schematic of the North Damping Ring of the SLC showing the latice
of dipole bend and quadrupole focusing/defocusing magnets, the NDR klystron,
and the injection and extraction septums.
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FIGURE 41. Beam emittance in m·Rad plotted as a function of store time in msec.
(The different lines in the plot represent variations in the mid-store frequency shift
of between 25 and 150 kHz.) (From P. Ramondi et al., Luminosity Upgrades for
the SLC, PAC99, 1999.)

at the entrance of the linac, dispersion resulting from the beam passing off-axis

through the quadrupole magnets would interact with the correlated energy spread

along the beam resulting in a larger final transverse emittance. [70]

Wire scanners are beam profile monitors which provide measurements of

beam size and position in all three planes (vertical, horizontal and longitudinal).

They consist of a wire capable of being moved precisely through the path of a beam

and a detector which measures the amount of charge striking the wire. The wire

is scanned across the path of a beam, and the wire’s position is compared to the

beam’s intensity in order to measure the beam profile. It takes four wire scanners,

separated in betatron phase but otherwise near to each other in the machine, to

provide the measurement of the beam emittance at a particular region of the SLC.

Over 60 wire scanners distributed throughout the SLC from the injector to the
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final focus were used to measure the beam emittances at different locations, and

were essential for correctly matching the beam to the lattice.

Short time-scale variations in the beam properties were another source of

emittance growth. These were caused by a variety of sources such as collective

instabilities in the damping rings, mechanical vibration, or power supply regula-

tion. Over the years, techniques were developed to correlate these pulse-to-pulse

fluctuations throughout the machine and track them back to their sources. [70]

Wakefields were also a source of emittance growth. A wakefield is the field

created by the bunch as it passes through the beam pipe. The charges induced in

the wall of a beam pipe by the leading edge of the bunch have an effect (usually

bad) on the tail of the bunch. If the beam is centered, wakefields will cancel each

other by symmetry, but if the beam is closer to one wall, the tail will be attracted

to this wall resulting in a ‘banana’ shaped bunch.

A technique suggested by Balakin, Novokhatsky and Smirnov, called BNS

damping [79], was successfully used to reduce the sensitivity to wakefields at the

SLC. By running the bunch a little behind the peak in the RF phase, a longitudinal

energy spread was introduced into the beam at the beginning of the linac such that

the tail of the bunch had a lower energy than the head. The wakefield of the head

of an off-axis bunch, being asymmetrical, would produce a kick on the tail. But

because the tail had lower energy, it was overfocused by the lattice, counteracting

the effects of the wakefield kick and reducing trajectory oscilations. In addition,

without BNS damping, the long range wakefields from the leading positron bunch

could resonantly amplify the trajectory oscillations in the following electron bunch.

Even with BNS damping, pulse-to-pulse jitter remained a problem in the SLC. [70]
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4.6 Detector Backgrounds

The most serious backgrounds in the SLD appeared in the liquid argon

calorimeter (LAC), the central drift chamber (CDC), and the Compton polarime-

ter. Other subsystems had their own background problems – the Cherenkov Ring

Imaging Detector (CRID) for example – but if these first three had low background

levels, the rest were generally clean.

In terms of tuning backgrounds, it was important to first control the back-

grounds in the LAC since it figured prominently in the SLD trigger and thus

determined how many events per second were written to tape. The CDC usually

posed the toughest background tuning problem. Because of its sensitivity, the

CDC could be turned on only when the backgrounds were suffiently under control

already as determined by the north and south luminosity monitors (LUMs). If both

LUMs were relatively background free, the CDC high voltage could be ramped up

to 80%. Only when the backgrounds in the CDC at 80% voltage were brought

under control could the high voltage be raised to 100% and the final backgrounds

tuning be done.

Collimators – sometimes called “slits” – were installed at many locations

along the beam line to reduce the aperture. SLC collimators were either fixed or

had movable “jaws.” A betatron oscillation is the transverse oscillation of a beam.

The restoring force for the betatron oscillations is provided by the quadrupole

magnets which focus the beam in one plane and defocus it in the orthogonal plane.

There are therefore both horizontal and vertical betatron oscillations. Dispersion is

a correlation of transverse position with longitudinal momentum, and occurs when
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the beam is bent by a magnetic field: Charged particles with less energy bend

more and particles with more energy bend less. Therefore collimators placed at

the appropriate locations in betatron phase can be used to remove both geometric

beam tails and – thanks to dispersion – off-energy tails.

A high energy beam of electrons interacting with a collimator produces an

electromagnetic shower consisting of lots of electrons and positrons, not to mention

muons, all with a broad energy spectrum which can then propagate down the beam

line and cause all sorts of backgrounds. In other words, collimators can easily make

the backgrounds worse, not better.

Emittances and luminosity were optimized before attempting to reduce the

backgrounds with collimation. But once these were optimized, adjusting the mov-

able jaws was nominally the most significant part of background tuning. The pri-

mary source of backgrounds in the CDC were off-energy particles going through the

final focus triplets geometrically off-axis, creating a large amount of synchrotron

radiation which hit the M4 and M5 masks and sent electromagnetic showers into

the CDC, as illustrated in Figure 42. The objective was to use the collimators

to remove these off-energy particles. However, because high backgrounds in the

LAC were caused by muons created in the final focus – usually when a collimator

cut into the beam – the primary collimation was always done as far upstream as

possible – usually at the end of the linac. The final focus collimators were just used

to finish the clean up from the upstream collimation and catch the few remaining
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FIGURE 42. Backgrounds in the CDC were caused predominantly by off-axis par-
ticles going through the strong field regions of the final focus quadrupole magnets,
particularly QD2 and QF3, and generating synchrotron radiation which would go
on to hit the M4 and M5 masks, sending electromagnetic showers into the CDC. To
hit the beam pipe region in the detector where the M4 and M5 masks are located,
synchrotron radiation generated in QF3 at a radius of 10 mm must fall within an
angular region of between 5.9 and 6.7 mrad.
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off-energy particles that managed to slip through. Balancing the backgrounds in

the CDC and the LAC to minimize both was usually tricky.

Regardless of where a moveable jaw was located, it was important not to let

it cut into the beam too much as this would generally make the backgrounds worse,

not better. Ionization Chambers located near the moveable jaws in the final focus

were used for detecting the ionizing radiation caused by the beam hitting a jaw.

These ion chambers consisted of two high-voltage electrodes in a gas-filled chamber.

Current passing between these electrodes through the ionized gas was proportional

to the level of radiation. If backgrounds were bad and a hot ion chamber could be

found, many times the backgrounds would improve by backing the corresponding

jaw out slightly. A Panofsky long ion chamber (PLIC) is a particular type of ion

chamber consisting of a gas filled cable running along the beam line. The point

where the beam was lost was determined from the time of arrival of the ion shower

that the lost beam sprayed into the cable-chamber [80]. The PLIC was used during

backgrounds tuning to detect beams hitting the collimators in the end of the linac

or in the arcs. Scope traces from the PLIC are illustrated in Figure 43.

When tuning backgrounds, other important issues to watch for included

phase ramp, DALEC thresholds, LEM, angular divergences, and beam crossing

angles.

“Phase ramp” was used to change the phase of the arrival at the beginning

of the linac of the beam extracted from the damping rings by changing the phase

of the damping ring RF relative to that of the compressor and linac. It had the

effect of adjusting the beam spectrum and energy at the end of the linac, and as

such played an important role with respect to both luminosity and backgrounds.
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FIGURE 43. Scope traces from the Panofsky long ion chamber (PLIC) at the
end of the linac (end of sector 28, sector 29, and most of sector 30) Top: Good
PLIC. Bottom: Bad PLIC indicating too much beam is being lost either because
a collimator jaw is misplaced or more likely because the orbit trajectory of the
beam is mis-steared. The solid line is meant to represent the average position of
the scope trace, and the smaller lines are the wild fluctuations about the average
position.
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The current of a stored beam in the damping ring was easy to measure, and

could predict an energy problem down the line at the other end of the linac. If

something went wrong at the electron source and the beam current ended up being

low, there would not be enough beam loading and the energy of the pulse would be

too high by the end of the linac [81]. “DALEC,” which stood for “Dump All Low

Extracted Currents,” an homage to the British science fiction series “Dr. Who,”

was a system which sensed the current in the Damping Ring before extraction and

stopped the extracted beam in the Beam Switch Yard if the current was below a

specified threshold. This prevented most off-energy pulses from reaching the SLD

detector and showering particularly the CDC with high backgrounds. If CDC

trip-offs were frequent, raising the DALEC threshold could sometimes alleviate

the problem.

“Linac Energy Management” (LEM) was a procedure used to adjust the linac

quadrupole focusing strengths to match the beam energy profile if it had changed

slightly. The beam energy tended to vary slightly as klystrons tripped on or off

or their phases were changed. The computer would ascertain the beam energy at

each quadrupole from the phases of the klystrons to that point, and then adjust

the current in each quadrupole for that calculated energy.

Angular divergences were typically Θx = 450 µrad and Θy = 250 µrad.

However, from time to time, the angular divergences were increased in an effort to

increase the luminosity, usually at the expense of backgrounds, which tended to

dictate that the angular divergences be Θx < 500 µrad and Θy < 300 µrad.

It was important for backgrounds that the beam crossing angle through the

IP be nearly zero. A non-zero crossing angle meant that the beams were going
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through the final focus quadrupoles off axis and through the strong field regions,

and thus generating background-causing synchrotron radiation.

The source of backgrounds in the Compton Polarimeter was fundamentally

different from the sources of backgrounds in the rest of the SLD detector. The

attractive forces between small, intense, oppositely charged beams caused each

beam to be focused by the field of the other, and the outgoing bunches tended to

blow up as a result. Because the Compton polarimeter measured the polarization

of the electron beam on the way out of the IP, backgrounds were generally caused

by beam disruption. As such, the backgrounds in the polarimeter tended to de-

teriorate as luminosity increased. The collimator in the south final focus nearest

to the IP could sometimes be used to shield the Compton polarimeter to some

degree. But increases in luminosity go hand in hand with higher degrees of beam

disruption at a linear collider, and as the luminosity approached its maximum late

in the 1997-98 run, ultimately the only way to get an accurate measurement of the

polarization was to periodically dump the positron beam at the beam switch yard

and allow the Compton polarimeter to measure the polarization of the undisrupted

electron beam.
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CHAPTER V

INITIAL EVENT

CHARACTERISTICS

5.1 Event Selection

In order to make measurements of Rbs, Rb, and Rc, a sample of hadronic Z0

decays had to be isolated. The selection of events was done in several stages: First,

various “triggers” were employed by the SLD data acquisition system to initiate a

readout of the detector and write an event to tape. Second were a series of filters

which constituted a first pass through the raw data with a loose set of selection

criteria designed to select Z0 decay events with maximum efficiency while reducing

the number of background triggers passed to the reconstruction and analysis stages,

and to separate hadronic Z0 decays from leptonic decays and accelerator-induced

backgrounds. And finally, a hadronic event selection algorithm was employed to

select hadronic Z0 decay candidates with well measured tracks and well contained

within the fiducial volume of the detector.

At only 120 Hz, the SLC beam crossing rate made the design of the trigger to

decide if data should be recorded to tape fairly simple. The data acquisition at the

SLD assembled complete data events by combining the data from all the detector
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sub-systems, and all sub-systems were written out when a trigger occurred. The

three triggers which were used for identifying the hadronic events important for

this analysis were as follows [82]:

– Energy trigger: Required at least 8 GeV of total deposited energy in the

EM and/or HAD calorimeter towers in the LAC. Only EM towers above the

threshold of 246 MeV and HAD towers above the threshold of 1.298 GeV

contributed.

– Tracking trigger: Required at least two charged tracks, separated by at least

120◦, which passed through at least 9 superlayers of the CDC. In addition,

the pattern of CDC cells hit by each of those tracks had to match the con-

figuration of one of the pre-calculated CDC cell pattern maps which collec-

tively accounted for all possible trajectories of charged tracks with momen-

tum transverse to the beam direction above p⊥ > 250 MeV. A CDC cell hit

was recorded if at least 6 of the 8 sense wires recorded pulses above a certain

threshold.

– Hadron Trigger: Required at least 4 GeV of total deposited energy in the

EM and/or HAD calorimeter towers in the LAC, and at least one charged

track which passed through at least 9 superlayers of the CDC. Only EM

towers above the threshold of 246 MeV and HAD towers above the threshold

of 1.298 GeV contributed. The pattern of CDC cells hit by the track had to

match the configuration of one of the pre-calculated CDC cell pattern maps
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TABLE 2. SLD Filters

EIT Pass 1 NEM
high > 0 for both detector hemispheres

NEM
high ≥ 10

EEM
low + EHAD

low < 140 GeV
EEM

high + EHAD
high > 15 GeV

EEM
high + EHAD

high > 3
2
(EEM

low + EHAD
low − 70) GeV

Track Trigger ≥ 1 track with p > 1 GeV

which collectively accounted for all possible trajectories of charged tracks

with momentum transverse to the beam direction above p⊥ > 250 MeV.

The combination of these three hadronic triggers yielded an estimated 96% effi-

ciency for hadronic Z0 decays [83].

The second stage of event selection consisted of filters, evaluated offline,

to process the information from the calorimetry and tracking (LAC and CDC)

to reject beam-induced backgrounds, especially beam-gas events, and to remove

events with large numbers of muons generated upstream in the SLC final focus,

for example from beam-collimator interactions. The hadronic filters important for

this analysis were the energy imbalance trigger (EIT) [84] and the track trigger

(note that the term “trigger” here is perhaps misleading because these “filters”

happened offline), described in Table 2. Events had to pass either of these filters.

In Table 2, NEM
high is the number of EM towers above the high threshold of 246 MeV,

EEM
high is the energy sum of EM towers above the high threshold of 246 MeV, EEM

low

is the energy sum of EM towers above the low threshold of 32.8 MeV, EHAD
high is the

energy sum of HAD towers above the high threshold of 1.298 GeV, and EHAD
low is

the energy sum of HAD towers above the low threshold of 129.8 MeV.

The EIT Pass 1 filter rejected an estimated 97% of the background events

which were read out by the SLD trigger system and written to tape, and the



122

combination of the SLD triggers and the EIT Pass 1 filter yielded an estimated

92% efficiency for hadronic Z0 decays [83]. Events surviving the EIT Pass 1 filter

were then categorized by the EIT Pass 2 filter as either hadronic, µ-pair, or wide-

angle Bhabha candidates. These filtered events were then processed by the detector

reconstruction algorithm and written out to data summary tapes (DST) on which

physics analyses were run.

The hadronic event candidates which passed the filtering process above were

then evaluated by the hadronic event selection algorithm to select only events

contained within the fiducial volume of the detector and possessing well-measured

tracks. At least seven CDC tracks were required per event, where a well-measured

track had momentum transverse to the beam direction p⊥ > 0.2 GeV and passed

within 5 cm of the IP along the z axis at the point of closest approach to the

beam axis, i.e. |ztrack − zIP | < 5 cm. At least three CDC tracks with hits in

the vertex detector were required. This was done to facilitate the flavor-tagging

techniques applied later in the analysis. The total energy measured using CDC

tracks, ECDC , was required to exceed 18 GeV. This was calculated using the 3-

momentum measurement in the CDC with the IP taken as the origin and assuming

that each track’s mass was that of the charged pion, mπ± = 139.57 GeV:

ECDC =
∑

tracks

√
p2

i +m2
π± > 18 GeV (5.1)

Detector acceptance was considered by evaluating the event thrust axis, t̂, which

provided information about the direction of the energy flow of the event. The
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TABLE 3. Hadronic Event Selection

1. EIT pass 1 filter passed
2. Precisely determined IP
3. > 7 CDC tracks with p⊥ > 0.2 GeV and |ztrack − zIP | < 5 cm
4. > 3 CDC tracks each having > 2 associated VXD hits
5. ECDC > 18 GeV
6. | cos θthrust| < 0.71
7. ≥ 1 track in CDC layers 0 and 1

TABLE 4. Selected hadronic event samples for the 1996 and 1997-98 run periods.
Run Period Reconstruction Hadronic Events
1996 R17 Monte Carlo 154,724
1996 R17 Data 33,768
1997-98 R17 Monte Carlo 927,470
1997-98 R17 Data 213,508

thrust axis was determined by maximizing the quantity T , defined as

T =

∑
LAC Clusters |~pi · t̂|∑

LAC Clusters |~pi|
(5.2)

where the 3-momentum, ~p, of the energy cluster was calculated with the IP taken

as the origin and assuming mπ± for the mass of the particle causing the energy

deposition. The thrust axis polar angle θthrust was measured with respect to the

e+ beam direction, and the requirement | cos θthrust| < 0.71 was imposed to ensure

that the event was contained within the barrel portion of the SLD detector. To

remove CDC high voltage trips, events without tracks starting below rxy = 37.5

cm in the CDC – layers 0 and 1 – were eliminated. The hadronic event selection is

summarized in Table 3. Table 4 summarizes the selected hadronic events statistics

for the two run periods.
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5.2 Interaction Point Determination

A precise and accurate determination of the location of the the primary Z0

decay vertex was critical, most notably for heavy-quark identification which relied

on distinguishing secondary B- or D-meson decay vertices from this primary vertex

(PV). By 1998, the transverse dimensions of the beam spot had reached 1.5 µm

× 0.65 µm, and the beam feedback system used to keep the beams in collision

provided a stable beam spot to within less than 6 µm. If all the tracks in a single

hadronic event which were consistent with having come from the Z0 decay were

fitted to a common vertex in the plane transverse to the beam (xy plane), the fit

uncertainty ellipse was large by comparison – typically on the order of 100 µm ×

15 µm. Given the small and stable SLC interaction region, the best estimate of

the PV in the xy plane was the average SLC interaction point, 〈IP〉. A precise

estimate of 〈IP〉 was obtained by averaging over a set of 30 sequential hadronic

events: A trial IP location was chosen, and all tracks with VXD hits within 3σ

of the trial IP were fitted to a common vertex. This fitted vertex position was

taken as the new trial IP and the procedure was repeated until it converged. This

technique reduced biases from tracks associated with secondary displaced vertices

of heavy hadron decays (which can and do sometimes make it into the fit and don’t

in general point back to the IP) and removed any thrust axis dependencies.

The resolution of this method was checked in the data using Z0 decays into

muon pairs. Both muon tracks were extrapolated back to the IP: The width of

the distribution of the impact parameter with respect to the IP was 8.2 µm, as

shown in Figure 44. This uncertainty was the convolution of the IP uncertainty

with the impact parameter resolution, found to be 7.55 µm. The IP resolution
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FIGURE 44. Distribution of track impact parameters in µ+µ− events with respect
to the IP in the xy projection. Fitting a Gaussian to this distribution yields a
width of 8.2 µm.

in the xy projection could then be estimated as σIP =
√

8.22 − 7.552 = 3.2 µm.

However, both of these numbers have a fair amount of statistical and systematic

uncertainty, and the quadrature difference of the two numbers likely has a signifi-

cant uncertainty as well: The IP resolution in the xy projection could easily be 4

µm [26].

The procedure mentioned above for finding the 〈IP〉 also minimized the effects

of large beam motions within each set of 30 events, but it was still possible that a set

could contain a few events which occured far from the 〈IP〉. The same distributions

which were used to measure σIP were examined for evidence of non-Gaussian tails.

The µ+µ− impact parameter distribution showed no evidence for non-Gaussian

tails, but because Γ(Z0 → µ+µ−) � Γ(Z0 → hadrons) (84 MeV vs. 1744 MeV
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[15]), this in itself could not conclusively rule out the presence of non-Gaussian tails

on 〈IP〉. In the far more numerous hadronic events, the quantity YT also contains

information on σIP : All the quality tracks in a two-jet event were fitted, using a χ2

fit, to a common vertex; YT was the component perpendicular to the event thrust

axis t̂ of the vector ~Y pointing from the fitted primary vertex (PV) to 〈IP〉 in the

xy-plane, as explained in Figure 45. In the case of the hemisphere YT , those tracks

with ~ptrack · t̂ > 0 were fitted to one vertex, and those tracks with ~ptrack · t̂ < 0 were

fitted to a second vertex. The sign was then determined by sign( ~YT ) = sign(~Y × ~J)

where ~J was the jet axis. In the positive thrust hemisphere, the jet axis was taken

as ~J = t̂, and in the negative thrust hemisphere, the jet axis was taken as ~J = −t̂.

The probability of the χ2 fit was required to have P > 0.0001 to eliminate events

with secondary vertices – particularly heavy quark decays – where

P =
∫ ∞

χ2
f(z, nd)dz, (5.3)

f(z, nd) is the χ2 distribution function, and nd = 2ntrack − 3 is the number of

degrees of freedom. The requirement that P > 0.0001 produced a purity of light

flavored (uds) events of 95%, with charm events constituting the overwhelming

majority of heavy flavor contamination (see Figure 47, right side plots).

In the past, the YT distribution for the data had shown evidence of non-

Gaussian tails on 〈IP〉. Based on an old study using VXD2 data from the 1992-93

run, these tails were conservatively represented by a second Gaussian IP spread

with a σ = 100 µm for 0.5% of the events.

In the most most recent study using the VXD3 1996 and 1997-98 data, the

quanitiy YT (+) + YT (−) was calculated, where YT (+) refered to YT in the positive
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FIGURE 45. Event YT (top) and signed hemisphere YT . YT is the component in
the xy-plane perpendicular to the event thrust axis of the vector pointing from the
fitted primary vertex (PV) to the 30 event averaged IP. In the event YT , all the
quality tracks in a 2-jet event were fitted, using a χ2 fit, to a common vertex, the
PV. In the case of the hemisphere YT , those tracks with ~ptrack · t̂ > 0 were fitted to
one vertex, and those tracks with ~ptrack · t̂ < 0 were fitted to a second vertex. The
sign was then determined by sign(YT ) = sign(~Y × ~J) where ~J was the jet axis. In

the positive thrust hemisphere, the jet axis was taken as ~J = t̂, and in the negative
thrust hemisphere, the jet axis was taken as ~J = −t̂.
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thrust hemisphere and YT (−) refered to YT in the negative thrust hemisphere. This

sum canceled out the position of the IP, analogous to the µ-pair miss distance, in

order to measure the YT resolution independent of any uncertainties associated

with the location of the IP. Figure 46 right side plots show that the resolution

of the Monte Carlo was slightly better than the resolution of the data, but that

on the whole agreement was reasonable. Furthermore, the width of the YT (+) +

YT (−) distribution was comparable to the width of the µ-pair impact parameter

distribution in Figure 44.

There was evidence of a non-Gaussian tail in the 1996 data (Figure 47, lower

left). As has been done in the past, the tail was represented by a second Gaussian

IP spread with a σ = 100 µm for 0.5% of the events. This was achieved by smearing

the 〈IP〉 of the entire Monte Carlo sample to a Gaussian with σ = 100 µm, and then

recombining this smeared sample with an event weight of 0.5% with the unsmeared

sample with an event weight of 99.5%. With IP smearing, the agreement between

data and Monte Carlo is clearly quite good (see Figure 47, lower left).

The 1997-98 data on the other hand showed virtually no evidence of any

non-Gaussian tails (Figure 47, upper left). Any deviation of the Monte Carlo

distribution from that of the data can easily be attibuted to the slightly lower

resolution of the data, as shown in the plots on the right side of Figure 46. This

absence of non-Gaussian tails can be attibuted to the enormous progress in the

performance of the SLC leading into the final 1997-98 run.

The longitudinal dimension of the SLC luminous region was larger than the

transverse dimension, and the z position of the IP had to be found event-by-

event. Tracks with hits in the vertex detector were extrapolated to their point of
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FIGURE 46. Hemisphere YT comparison of data with IP-smeared and IP-
unsmeared Monte Carlo for the 1997-98 and 1996 runs. In order to eliminate
events with secondary vertices – i.e. heavy flavor events – only 2-jet events with
a vertex fit probability P > 0.0001 were considered. The plots on the right add
the hemisphere YT for the positive and negative hemispheres in order to remove
any effects associated with the IP to better compare the vertex fitting resolution
of data and Monte Carlo. Note that the IP-smeared Monte Carlo completely dis-
appears under the IP-unsmeared Monte Carlo, confirming that all IP effects have
been completely removed. Not surprisingly, the Monte Carlo had a slightly better
resolution than the data, but on the whole, agreement was reasonable.
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FIGURE 47. Event YT comparison of data with IP-smeared and IP-unsmeared
Monte Carlo for the 1997-98 and 1996 runs. In order to eliminate events with
secondary vertices – i.e. heavy flavor events – only 2-jet events with a vertex fit
probability P > 0.0001 were considered. The histograms on the right show the
distribution of Monte Carlo event flavors which result from the P > 0.0001 cut.
Purity of light flavored (uds) events is 95%.
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closest approach to the transverse (xy) IP position, excluding tracks having impact

parameters > 500 µm or > 3σ from the transverse IP. The median z coordinate

of the positions of closest approach of the remaining tracks was taken as the z

position of the IP. The resolution of this method was estimated from the Monte

Carlo simulation to be approximately 10 µm for light flavor events, 11 µm for

charm events, and 17 µm for bottom events.

5.3 Track Efficiency Correction

Track efficiency is defined as the fraction of charged particles which are re-

constructed as tracks in the detector. A comparison of the track efficiency of the

actual detector with that in the Monte Carlo simulation was made by comparing

the fraction of CDC tracks which had associated VXD hits – called “linking effi-

ciency” – between data and Monte Carlo. The CDC tracks were required to point

back approximately towards the IP to reduce the number of K0
S and Λ decay prod-

ucts as well as detector interaction products, none of which should have had any

hits in the VXD. Comparing the linking efficiency avoided uncertainties associated

with the number of charged particles generated in the Monte Carlo simulation as

compared to the data, and was thus a test of the detector modeling alone.

For the 1997-98 run, the overall linking efficiency in the Monte Carlo simula-

tion was 1.5% higher than in the data. The linking efficiency was binned in cos θ,

φ, and transverse momentum pT , and a correction matched the simulation to the

data bin by bin by removing a few tracks from the simulation. For 1996, there was

actually a 1% discrepancy in favor of the data, so no correction was applied.
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5.4 Track Resolution Correction

The exact positions and orientations of each of the CCD ladders in the VXD

had been determined by the alignment procedure described in [47]. However,

residual misalignment remained and affected especially the track impact parameter

distributions.

The simulation was adjusted slightly in order to mimic this misalignment.

The positions of the tracks were shifted in space – in bins of φ and cos θ – to

reproduce the impact parameter distribution seen in the data.
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CHAPTER VI

METHOD

Because the mass of the Z0 is substantially greater than the mass of the

quarks it can decay into, events can be divided into two thrust hemispheres. The

philosophy adopted here is thus to divide each event into two hemispheres, and

then attempt to identify the flavor of the primary quark in each hemisphere. This

method for determining Rbs evolved from a method called the “double-tag mea-

surement” which has commonly been used to measure Rb and Rc. Consider the

example of measuring Rb: In the double-tag measurement, the number of hadronic

events Nhad is known, but the number of specific bb events, Nbb, is not. A method

of identifying the b quarks based on parameters measured with the detector is

devised. Each event is separated into two thrust hemispheres. The number of

identified b-hemispheres is Hb and the number of events with both b-hemispheres

identified is Ebb:

Hb = 2εbNbb +
∑
q 6=b

2µqbNqq (6.1)

Ebb = Cbbε
2
bNbb +

∑
q 6=b

µ2
qbNqq (6.2)

where εb is the tagging efficiency for b quarks, and µqb are the efficiencies to mistag

non-b quarks as b quarks. Cbb accounts for any correlations between the two hemi-

spheres in an event. Mistagged hemispheres were taken to be uncorrelated (i.e.
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Cqb,q 6=b = 1). Rb = Nbb/Nhad:

Hb

2Nhad

= εbRb +
∑
q 6=b

µqbRq (6.3)

Ebb

Nhad

= Cbbε
2
bRb +

∑
q 6=b

µ2
qbRq (6.4)

Neglecting backgrounds and correlations, i.e. εb � µqb and Cbb ≈ 1,

εb ≈ 2Ebb

Hb

(6.5)

Rb ≈ H2
b

4EbbNhad

(6.6)

The double tag method has the advantage that the tagging efficiency is measured

directly from the data thus reducing the systematic uncertainty in the measure-

ment. This method can be extended to make a joint measurement of Rb and Rc

by considering Hb, Hc, Ebb, and Ecc.

The present analysis takes this several steps further, and specifically allows

for events containing a primary b quark and a primary s quark. We took to heart

one of the canons of experimental particle physics: “When possible, use data rather

than Monte Carlo events to measure efficiencies and background levels” [85].

Thus the number of b-tagged hemispheres is

Hb = 2εbNbb + 2µcbNcc + 2µsbNss + 2µdbNdd + 2µubNuu + (εb + µsb)Nbs

Hb = 2Nhad

[
εb
Nbb

Nhad

+ µcb
Ncc

Nhad

+µsb
Nss

Nhad

+ µdb
Ndd

Nhad

+ µub
Nuu

Nhad

+
1

2
(εb + µsb)

Nbs

Nhad

]
.
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Now, Nhad = Nbb +Ncc +Nss +Ndd +Nuu +Nbs, and therefore Nuu = Nhad−Nbb−

Ncc −Nss −Ndd −Nbs.

Hb = 2Nhad

[
εb
Nbb

Nhad

+ µcb
Ncc

Nhad

+ µsb
Nss

Nhad

+ µdb
Ndd

Nhad

+µub
Nhad −Nbb −Ncc −Nss −Ndd −Nbs

Nhad

+
1

2
(εb + µsb)

Nbs

Nhad

]
.

The fraction of b-tagged hemispheres is

Fb = εbRb + µcbRc + µsbRs + µdbRd

+µub(1−Rb −Rc −Rs −Rd −Rbs) +
1

2
(εb + µsb)Rbs. (6.7)

The number of double b-tagged events is

Ebb = Cbbε
2
bNbb + µ2

cbNcc + µ2
sbNss + µ2

dbNdd + µ2
ubNuu + εbµsbNbs

Ebb = Nhad

[
Cbbε

2
b

Nbb

Nhad

+ µ2
cb

Ncc

Nhad

+

µ2
sb

Nss

Nhad

+ µ2
db

Ndd

Nhad

+ µ2
ub

Nuu

Nhad

+ εbµsb
Nbs

Nhad

]
.

Again, Nuu = Nhad −Nbb −Ncc −Nss −Ndd −Nbs.

Ebb = Nhad

[
Cbbε

2
b

Nbb

Nhad

+ µ2
cb

Ncc

Nhad

+ µ2
sb

Nss

Nhad

+ µ2
db

Nbb

Nhad

+

µ2
ub

Nhad −Nbb −Ncc −Nss −Ndd −Nbs

Nhad

+ εbµsb
Nbs

Nhad

]
.

The fraction of double b-tagged events is

Fbb = Cbbε
2
bRb + µ2

cbRc + µ2
sbRs + µ2

dbRd +
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µ2
ub(1−Rb −Rc −Rs −Rd −Rbs) + εbµsbRbs. (6.8)

In a similar fashion, the fraction of c-tagged hemispheres is

Fc = µbcRb + εcRc + µscRs + µdcRd +

µuc(1−Rb −Rc −Rs −Rd −Rbs) +
1

2
(µbc + µsc)Rbs. (6.9)

The fraction of double c-tagged events is

Fcc = µ2
bcRb + Cccε

2
cRc + µ2

scRs + µ2
dcRd +

µuc2(1−Rb −Rc −Rs −Rd −Rbs) + µbcµscRbs. (6.10)

The fraction of s-tagged hemispheres is

Fs = µbsRb + µcsRc + εsRs + µdsRd +

µus(1−Rb −Rc −Rs −Rd −Rbs) +
1

2
(µbs + εs)Rbs. (6.11)

The fraction of bs-tagged events is

Fbs = 2 [εbµbsRb + µcbµcsRc + εsµsbRs + µdsµdbRd+

µusµub(1−Rb −Rc −Rs −Rd −Rbs)] + (εbεs + µbsµsb)Rbs. (6.12)

The fraction of cs-tagged events is

Fcs = 2 [µbcµbsRb + εcµcsRc + µscεsRs + µdcµdsRd+

µucµus(1−Rb −Rc −Rs −Rd −Rbs)] + (µbcεs + µscµbs)Rbs. (6.13)
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The fraction of bc-tagged events is

Fbc = 2 [εbµbcRb + εcµcbRc + µsbµscRs + µdbµdcRd+

µubµuc(1−Rb −Rc −Rs −Rd −Rbs)] + (εbµsc + µbcµsb)Rbs. (6.14)

These equations are solved iteratively.

From these eight equations, we can determine eight unknowns: The tagging

efficiencies εb, εc, and εs; the mistag efficiencies µcs and µbc; and of course the ratios

of partial widths Rb, Rc, and finally Rbs. Other mistag efficiencies and correlations

are assumed to be the Monte Carlo values. Since Rb is a measured quantity, we

take

Rd = Rs =
ΓSM(Z0 → dd)

ΓSM(Z0 → bb)
Rb. (6.15)

At tree level, the three quarks d, s, and b corresponding to IW
3,22 = −1

2
all have the

same ratios of partial widths; Rd = Rs = Rb. However, because the top quark mass

is so large and |Vtb| ∼= 1, to estimate Rd and Rs from Rb, we scale Rb by the ratio

of partial widths calculated in the Standard Model [15]. The approximation that

Rd = Rs is reasonable since the radiative corrections to Rd and Rs are comparable.

Nominally, one might have hoped to determine the rate of b quarks mistagged

as s quarks, µbs, from the data as well by considering the fraction of double s-tagged

events, Fss. However, µbs is very small and therefore has a significant statistical

uncertainty relative to its size. The propagation of statistical uncertainties in a

large system of nonlinear equations is complicated [86]. Determining µbs from the

data turns out to be impractical and to greatly increase the statistical uncertainty
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of Rbs. We were ultimately to abandon measuring µbs in favor of determining its

value from the Monte Carlo, and come what may vis-a-vis systematic uncertainties.

It’s not easy to tease out the skein of thrust hemisphere flavor. The methods

used in this analysis for identifying primary b, c, and s quarks are detailed in the

following sections.
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CHAPTER VII

IDENTIFICATION OF HEAVY

QUARKS

7.1 A Brief Introduction to Neural Networks

In high energy physics, neural networks have for some years now been used

both in real-time and offline applications involving pattern classification. Most

applications to date have utilized feed-forward neural networks trained with the

standard back-propagation algorithm. Such neural nets are referred to as super-

vised networks, meaning they require a desired response to be trained: They learn

how to transform input data from a set of event descriptors into a desired response

in the form of a reduced set of output variables. They have been shown to ap-

proximate the performance of optimal statistical classifiers in difficult problems

[87].

The basic constituents of such a neural network are units and links: The units

are arranged in layers – an input layer Ii corresponding to the input variables, a

hidden layer Hj, and an output layer Ok corresponding to the reduced set of

variables upon which distinctions between signal and background may be defined,

as illustrated in Figure 48; the links with weights ωij feed information from the
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FIGURE 48. Schematic diagram for a typical feed-forward neural network of the
type used in this analysis.

units in the input layer Ii to the units in the hidden layer Hj, and the links with

weights ωjk feed information from the units in the hidden layer Hj to the units in

the output layer Ok.

A feed-forward network, as its name suggests, calculates the activation values

of the target units in a layer from the activation values of the source units in the

preceding layer. For classification problems, a sigmoid activation function is often

used. Thus, the activation values for the units in the hidden and output layers are
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calculated

Hj =
1

1 + e−
∑

i
ωijIi−θj

(7.1)

Ok =
1

1 + e−
∑

j
ωjkHj−θk

(7.2)

where θ is the bias corresponding to the unit in question and determines where

the activation function has its steepest ascent [88].

The supervised networks often found in HEP applications acquire knowl-

edge through a learning process that uses Monte Carlo data sets containing signal

and background events. The knowledge is stored in the interneuron connection

strengths or synaptic weights. To train a feed-forward neural network with the

standard back-propagation algorithm, an input pattern is presented to the net-

work which is fed forward in the usual manner to the output layer. The activation

value for the target unit of the output layer Ok is then compared with its desired

output or “teaching” value Tk (for example 1 corresponding to signal and 0 cor-

responding to background), and the difference is simply δk = Tk − Ok. When no

teaching values Tj exist, i.e. for the hidden layer, δ is calculated as δj =
∑

k δkωjk.

In either case, δ is used together with the activation value of the source unit in the

previous layer to compute the necessary changes to the link’s weight ∆ω:

∆ωjk = ηHjδk (7.3)

∆ωij = ηIiδj (7.4)

where η is the learning rate – typically ∼ 0.1.
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In practice, networks with one hidden layer containing one more unit than

the input layer are sufficient for most classification problems [89, 87].

In this analysis, neural networks are applied to secondary vertex reconstruc-

tion, to the problem of sorting out which tracks go with which vertices – so called

vertex-track attachment, to separating c hemispheres from b hemispheres, and to

separating b hemispheres from s hemispheres.

7.2 Secondary Vertex Reconstruction

The identification of heavy flavor quarks is crucial for this analysis. For

Z0 → bb and Z0 → cc, events, a heavy hadron decay can be expected in each

hemisphere. These heavy hadrons tend to be created with significant momenta, and

coupled with their relatively long lifetimes, they often propagate several millimeters

before decaying: B mesons from Z0 decays usually travel approximately 3 mm

before decaying; D mesons go about half that far. Heavy hadron decays thus

result in vertices which are significantly displaced from the event interaction point

(IP).

The objective is then to identify these vertices and their corresponding tracks.

Topological vertexing [90] utilizes the vertex detector to search for vertices in 3D

coordinate space. This search is based on the function V (~r) which quantifies the

relative probability of there being a vertex at location ~r. The first step is to

obtain from the relevant trajectory parameters for each track i a function fi(~r)

representing a Gaussian probability density tube for the track with a width equal

to the uncertainty in the track position at ~r0, its position of closest approach to
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FIGURE 49. Construction of the Gaussian Probability Tube fi(~r) for each track
as viewed in the x′z plane and in the y′z plane.

the IP:

fi(~r) = e
− 1

2

[(
x′−x′0−κy′2

σT

)2

+

(
z−z0−y′ tan λ

σL

)2
]

(7.5)

where the x and y coordinates have been transformed to x′ and y′ for each track

such that the track momentum is parallel to the positive y′ axis in the xy plane at

~r0. The third dimension z of the track’s trajectory is taken into account via the

helix parameter λ. The quantity σT is the measurement error for the track in the

xy plane and σL the measurement error along z. See Figure 49.

V (~r) should be a smooth continuous function so that its maxima may be

found. Additionally, it is desired that V (~r) reflect the multiplicity and degree of

overlap of the track probability functions and thus measure the probability that

at least some of the tracks originate at ~r, therefore forming a vertex at that locale.

However, it is important for V (~r) ' 0 in regions where fi(~r) is significant for only
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FIGURE 50. Track (a) and vertex (b) functions projected onto the xy plane for
convenience.

one track. One functional form which meets these requirements is

V (~r) =
N∑

i=0

fi(~r)−
∑N

i=0 [fi(~r)]
2∑N

i=0 fi(~r)
(7.6)

where N is the number of tracks. The first term reflects the degree of overlap, and

the second ensures V (~r) is not dominated by a single track. The plots in Figure

50 show an example taken from a Monte Carlo Z0 → bb event of (a)
∑N

i=0 fi(~r)

and (b) V (~r). These plots were obtained by integrating the two functions over z

within the limits ±8 cm from the IP. The regions where vertices are probable can

be seen from the distribution of V (~r) in Figure 50(b). In this case the topological
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TABLE 5. Requirements for tracks used in secondary vertex reconstruction.

1. ≥ 3 VXD Hits
2. p⊥ > 0.250 GeV
3. 3D impact parameter b < 3 mm
4. Track not consistent with originating from γ, K0

S, or Λ

vertexing algorithm resolved two vertices, the primary vertex at x = y = 0, and a

secondary vertex to the right of the IP ∼ 0.15 cm.

The event is first divided into two hemispheres perpendicular to the thrust

axis. The tracks in each hemisphere, in order to be used in the secondary vertex

reconstruction, must pass a set of loose requirements, as summarized in Table 5.

The vertices identified to this point must lie within 2.3 cm of the center of the

beam pipe to remove false vertices associated with interactions of particles with

the detector hardware. The vertex invariant mass must also not be close to the

K0
S mass: |MV TX −MK0

S
| > 15 MeV. This helps to further remove K0

S decays that

survived the track cuts listed in Table 5.

Despite the above cuts, there are still a few vertices falsely attributed to

the decay of heavy quarks: The first of the many neural networks used throughout

this analysis enhances the rejection of vertices from sources other than heavy flavor

decays.

This neural network [89] is trained to separate vertices which contain only

tracks from heavy hadron decays from vertices having tracks originating from other

sources, including the IP or s hadron decays. It has three inputs: The distance

from the IP, D; the normalized distance from the IP, D/σD; and the angle between

the flight direction and vertex momentum, p − D angle. These quantities are
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FIGURE 51. Schematic illustration of the quantities used in the vertex selection
neural network.

illustrated schematically in Figure 51, and their distributions as well as the output

of the neural network are shown in Figure 52.

Only vertices with a neural network output NNvtx > 0.7 are retained, with

72.7% of b hemispheres, 28.2% of c hemispheres, and 0.41% of light flavor hemi-

spheres passing this cut. Approximately 16% of b hemispheres contain multiple

secondary vertices [89].

7.3 Vertex Track Attachment

The tracks in an event do not necessarily originate from the same vertex:

To accurately identify heavy hadron decays, it is critical to correctly assign –

“attach” – all the tracks in the event to the vertices they originate with. A second
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FIGURE 52. Distributions of vertex selection variables: (a) Distance from IP
D; (b) normalized distance from IP D/σD; (c) angle between flight direction and
vertex momentum, p − D angle; (d) neural network output NNvtx. In the plots,
the histogram represents the Monte Carlo and the dots represent the data. A good
vertex contains only heavy hadron decay tracks, and the region to the right of the
line, indicated by the arrow, is the accepted region.
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neural network is therefore used to attach tracks to their corresponding secondary

vertices. This neural network [89] is trained to separate tracks originating with

heavy hadron decays from tracks originating with other sources, including the IP

and s hadron decays.

The first four of the total of five inputs of this neural network are defined at

the point of closest approach of the track to the axis joining the secondary vertex

(SV) to the IP (the so-called vertex axis): The transverse distance from the track

to the vertex axis T , the distance from the IP along the vertex axis to the position

of closest approach L, that distance divided by the flight distance of the SV from

the IP L/D, and the angle of the track to the vertex axis α. The final input is the

3D impact parameter of the track to the IP normalized by its error b/σb. These

inputs are illustrated schematically in Figure 53, and their distributions as well as

the output of the neural network are shown in Figure 54.

Only tracks with a neural network output NNtrk > 0.6 are considered to

originate from a heavy hadron decay.

7.4 Separating b Quarks from c Quarks

At this point, for each hemisphere containing a secondary vertex, there is a

list of associated tracks. If no secondary vertex is found in the hemisphere, the list

is empty. From this list of tracks, several parameters can be calculated to separate

b quarks from c quarks and from light flavored quarks. The most important of these
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FIGURE 53. Schematic illustration of the quantities used in the track attachment
neural network. The first four inputs are defined at the point of closest approach
of the track to the vertex axis. They are the transverse distance from the track to
the vertex axis T , the distance from the IP along the vertex axis to the position
of closest approach L, that distance divided by the flight distance of the SV from
the IP L/D, and the angle of the track to the vertex axis α. The last input is the
3D impact parameter of the track to the IP normalized by its error b/σb.



150

FIGURE 54. Distributions of cascade track selection variables: (a) Transverse
distance from the track to the vertex axis T ; (b) distance from the IP to the
position of closest approach along the vertex axis L; (c) L divided by the flight
distance of the SV from the IP L/D; (d) angle of the track to the vertex axis at the
position of closet approach to the vertex axis α; and (e) 3D impact parameter of the
track to the IP normalized by its error b/σb. The final plot (f) is the output of the
track attachment neural network NNtrk. In the plots, the histogram represents the
Monte Carlo and the dots represent the data. A good track is one which originates
from a heavy hadron decay, and the region to the right of the line, indicated by
the arrow, is the accepted region.
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parameters is the invariant mass of the candidate heavy hadron decay vertex:

Mraw =

√√√√( ∑
tracks

Ei

)2

−
( ∑

tracks

~pi

)2

(7.7)

where Mraw is the invariant mass of the vertex considering only the charged tracks.

For the purposes of calculating the invariant vertex mass, each of the charged

tracks associated with the vertex is assumed to be a pion and assigned a mass of

mπ = 139.6 MeV.

Mraw =

√√√√( ∑
tracks

√
p2

i +m2
π

)2

−
( ∑

tracks

~pi

)2

(7.8)

In truth, the vertex is comprised of more than just the charged tracks; there

may also be some number of unseen neutral particles. The unknown contribution

to the mass from these neutral particles can be partially taken into account by

considering the alignment between the vertex momentum pV TX and the vertex

axis – the vector going from the interaction point to the vertex. The degree of

misalignment depends on the momentum pT transverse to the vertex axis (Figure

55). The problem is most easily considered by boosting to the frame of reference

where the momentum sum of the charged tracks parallel to the vertex axis pL

equals zero.

The charged tracks thus have collectively zero longitudinal momentum pL,

but presumably still some amount of transverse momentum pT . In order not

to violate the law of conservation of momentum, there must be an exactly equal

amount of transverse momentum associated with the unseen neutral particles – the

missing pT . In the case where the neutrals also have zero longitudinal momentum
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FIGURE 55. Vertex in the Lab Frame.

(the minimal assumption), the total vertex mass in this frame of reference is just

the sum of the energies of the charged and neutral particles

MV TX = Echarged + Eneutral (7.9)

In this reference frame, Echarged is simply

Echarged =
√
M2

raw + p2
T (7.10)

An assumption about the mass of the neutrals is required, and the minimal as-

sumption is that they all have negligible mass.

Eneutral =
√

0 + p2
T (7.11)
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FIGURE 56. pT Corrected Vertex Mass. In the plot, the histogram represents the
Monte Carlo and the dots represent the data.

The pT -corrected invariant vertex mass (really a lower limit on the actual vertex

mass) is thus

MV TX =
√
M2

raw + p2
T + |~pT | (7.12)

Figure 56 clearly shows that vertices with MV TX > 2 GeV come almost entirely

from b decays.

However, a third neural network is used to further enhance the discrimination

between b and c decays. To the pT corrected vertex mass MV TX described above we



154

FIGURE 57. Several signatures can be computed to discriminate between bot-
tom/charm/light event hemispheres. These are the corrected invariant mass of the
selected tracks Mhem, the total momentum sum of the selected tracks Phem, the
distance from the IP to the vertex obtained by fitting all of the selected tracks
Dhem, and the total number of selected tracks Nhem. These collectively are the c/b
selection neural net input parameters. In the plots, the histogram represents the
Monte Carlo and the dots represent the data.

add the total momentum sum of the selected tracks PV TX , the IP to vertex flight

distance DV TX , and the track multiplicity NV TX as inputs to this c/b selection

neural network. The distributions of these inputs are shown in Figure 57.

The c/b selection neural network is trained such that for c quarks, the neural

net output is near 0; for b quarks, the neural net output is near 1; and for light
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FIGURE 58. Output of c/b Selection Neural Net. In the plot, the histogram
represents the Monte Carlo and the dots represent the data. The spike in identified
b decays in Monte Carlo c and light flavor events located at 0.92 are due to gluon
splitting, g → bb.
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FIGURE 59. Bottom identification efficiency and purity vs. cut on c/b Selection
Neural Net output.

flavor quarks, the neural net output is near 0.5. Figure 58 shows the distribution

of the output of the c/b selection neural network.

Vertices with a c/b selection neural net output of > 0.75 are considered b

decays. Figure 59 shows the relation of b identification efficiency and purity to the

cut on the c/b selection neural net.

Vertices with a c/b selection neural net output of < 0.3 and a pT corrected

vertex mass MV TX > 0.6 GeV to eliminate light flavor events (see Figure 56) are

considered c decays. Figure 60 shows the relation of c identification efficiency and

purity to the cut on the c/b selection neural net.
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CHAPTER VIII

IDENTIFICATION OF

STRANGE QUARKS

One component of this analysis is a search for flavor changing neutral currents

in the form of a measurement of Rbs. This aspect of the analysis depends on

identifying primary s quarks originating from the decay of the Z0, as identified

by the presence of high momentum strange particles [91]. Based on previous SLD

experience [92], three species of strange particles can be identified: K±, Λ, and

K0
S. Identification of primary s quarks proceeds in three stages:

1. Intial rejection of heavy flavors.

2. Identification of high momentum K±, Λ, and K0
S particles; for those cases

where more than one strange particle is found in the same hemisphere, only

the highest momentum strange particle is considered as it is more likely to

contain the primary s quark.

3. Three neural networks – one for each species of strange particle – are used

to separate hemispheres containing primary s quarks from hemispheres con-

taining an unseen b quark and an s quark originating from another source

such as fragmentation or a heavy hadron decay.
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FIGURE 61. Comparison of hadronic Z0 decay topologies: (a) uu, dd, or ss
hemisphere; (b) cc hemisphere with a secondary D hadron decay; (c) bb hemisphere
with secondary B hadron decay and tertiary D hadron decay.

8.1 Rejection of Heavy Flavors

Heavy hadrons created in Z0 → bb and Z0 → cc events usually propagate

several millimeters before decaying. The displaced vertices associated with these

B and D meson decays – coupled with their decay kinematics – produce particles

with a significant impact parameter with respect to the IP. By contrast, hadrons

created in Z0 → uu, Z0 → dd, and Z0 → ss events tend to lack a displaced vertex,

with all tracks appearing to come directly from the IP. This is illustrated in Figure

61.

The charged tracks in each hemisphere which meet the requirements listed

in Table 6 are termed “quality tracks”. Because the tracking capabilities of the
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TABLE 6. Requirements of a Quality Track

1. ≥ 40 CDC Hits
2. CDC Fit Quality χ2

CDC/d.o.f. < 5
3. First CDC Hit ≤ 39 cm radially from IP
4. Extrapolate to within 1 cm of IP radially
5. Extrapolate to within 1.5 cm of IP longitudinally
6. ≥ 1 VXD Hit
7. CDC+VXD Fit Quality χ2

CDC+V XD/d.o.f. < 5
8. 2-dimensional impact parameter bxy < 3 mm
9. Uncertainty on impact parameter σb < 250 µm
10. Reject pairs of oppositely charged tracks associated

with candidate K0, Λ, and γ → e+e− vertices

SLD are best in the xy-plane, the 2-dimensional impact parameters – normalized

by their uncertainties – of the quality tracks are considered. An algebraic sign is

associated with the impact parameter of each quality track to further enhance the

effectiveness of separating light from heavy flavor hemispheres: Tracks which cross

the jet axis in front of the IP are assigned a positive impact parameter, and those

which cross behind are assigned a negative impact parameter. This convention is

illustrated in Figure 62.

The distribution of the signed, normalized 2-dimensional impact parameter is

plotted in Figure 63. A significant track is defined as a quality track with a signed,

normalized 2-dimensional impact parameter bxy/σb > 3. A high-purity sample of

light flavor hemispheres can be obtained by requiring that the hemispheres contain

zero significant tracks, as evidenced by Figure 64.

In addition, light flavor hemispheres are required to contain no b or c candi-

date vertices.
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FIGURE 62. The sign convention for the signed impact parameter. The jet axis
approximates the heavy-quark hadron flight direction.

8.2 K± Identification

K± can be separated from other charged tracks with the CRID over a wide

momentum range. However, the CRID efficiency matrix (see Figure 65 [54], center

plot) has a gap for K± with a momentum between 3 GeV < p < 9 GeV due to

the absence of overlap between the liquid and gas radiators [93, 94, 92]. Because

only the high-momentum particles are important to this analysis, the CRID gas

system is used to identify K± with a momentum above 9 GeV.

A charged track must be possessed of certain characteristics to be considered

a K± candidate, as listed in Table 7.

Particle identification with the CRID uses the method of maximum likeli-

hood. In broad strokes, the likelihood function L represents the joint probability

distribution function for the data, evaluated with the data obtained in the experi-
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TABLE 7. Requirements of K± Candidate Charged Tracks

1. Track must extrapolate through an active region of the CRID gas radiator
2. Track must extrapolate through a live TPC
3. Within the CRID acceptance of cos θ < 0.68
4. Distance of closest approach to the IP transverse to the beam < 1.0 mm
5. Distance of closest approach to the IP along the beam < 5.0 mm
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ment regarded as a function of whatever unknown parameters exist. The method

of maximum likelihood estimates the unknown parameters to be those values which

maximize the likelihood function L. For the purpose of particle identification, the

unknown parameters are the identities of the particles themselves. It is usually

easier to work with lnL, and both are maximized for the same values of the un-

known parameters. The set of hypothetical particle identities hk (corresponding to

the k observed charged tracks) which maximizes lnL is desired, and can be found

by solving the likelihood equations,

∂ lnL
∂hk

= 0. (8.1)

The CRID essentially generates photoelectrons when a charged particle passes

through it, and the observed density of these photoelectrons in the detector de-

pends on the type of the charged particle involved. The algorithm described here

is discussed in more detail in K. Abe, et al. [95]. The probability to observe n

photoelectrons if n are expected for a particular type of particle is given by Poisson

statistics:

P(n|n) =
nn

n!
e−n. (8.2)

The probability of finding a certain photoelectron in a differential volume dr3 is

P (r), and nP (r) is the expected number of photoelectrons in dr3. The overall

probability for there to be n photoelectrons, and for those photoelectrons to be

distributed as they were found is the likelihood function L′ which, taking into
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account all the permutations, may be written as

L′ = n!P(n|n)

n∏
i

P (ri) (8.3)

= nne−n
n∏

i=1

P (ri). (8.4)

The density of photoelectrons under the assumption of a given set of hy-

potheses for the tracks, plus an assumed background model, is ρ(r), such that

nP (r) = ρ(r)dr3. (8.5)

Since we are only interested in the likelihood ratios between L′ for different hy-

potheses, it is convenient to remove all the awkward factors of dr3:

L = e−n
n∏

i=1

ρ(ri) (8.6)

where the index i runs over all the observed photoelectrons.

It is convenient to write ρ(r) explicitly as two terms,

ρ(r) = B(r) +
∑
k

ρk,hk
(r) (8.7)

whereB(r) is the expected background in the absence of Cherenkov photoelectrons,

and ρk,hk
(r) is the photoelectron density associated with track k and its assumed

hypothetical particle identity hk.

At present, L depends explicitly on the hypothetical identities of all the tracks

– a combinatorial disaster. A reasonable compromise is to allow the hypothesis



167

hk for track k to vary whilst keeping the hypotheses for the other tracks j 6= k

constant at hj. Thus

Lk,hk
= e−nk,hk

n∏
i=1

[Bk + ρk,hk
(ri)] (8.8)

where the background Bk is defined as the density of photoelectrons minus those

photoelectrons associated with track k under hypothetical identity hk. Bk includes

the photoelectrons from other tracks j 6= k:

Bk = B +
∑
j 6=k

ρj,hj
. (8.9)

Since we are only interested in the likelihood ratios, and since the Bk are indepen-

dent of the hypothetical particle identities hk, the likelihood can be written

Lk,hk
= e−nk,hk

n∏
i=1

[
1 +

ρk,hk
(ri)

Bk

]
(8.10)

and finally

lnLk,hk
= −nk,hk

n∑
i=1

ln

[
1 +

ρk,hk
(ri)

Bk

]
. (8.11)

In practice, the computation of lnLk,hk
is iterative since the Bk are dependent

on the hypothetical particle identities of the other tracks (the current best overall

hypothesis is used, defaulting to π±), but the procedure always converges quickly.

For K± identification, the lnLk,hk
of a charged track for the CRID gas radia-

tor is calculated for each charged hadron hypothesis; π±, K±, and p/p. A charged
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TABLE 8. Requirements of Λ and K0
S Candidate V 0s

1. Momentum transverse to the beam pxy > 150 MeV for both tracks
2. Both tracks within cos θ < 0.9
3. Both tracks have ≥ 30 CDC Hits
4. Both tracks have ≤ 1 VXD Hit
5. Distance of closest approach of the two tracks < 15 mm
6. χ2 fit probability of two tracks to a common vertex > 2%
7. pV 0 > 5 GeV

track is identified as a K± if the following two requirements are met:

lnLK± − lnLπ± > 3 (8.12)

lnLK± − lnLp/p > 3. (8.13)

Figure 66 shows the lnL separation between K± and π±, and between K± and

p/p, and Figure 67 shows the purity as a function of momentum of the identified

K± sample [92].

8.3 Λ and K0
S Identification

A pair of oppositely charged particles originating at a neutral decay vertex

is generically called a “V 0.” The charged decay modes of the Λ (B(Λ → pπ−) =

(63.9 ± 0.5)%) and the K0
S (B(K0

S → π+π−) = (68.60 ± 0.27)%) are of particu-

lar interest as several features of their decays can assist in their reconstruction:

Long flight distance; accuracy of pointing back to the IP; and the possibility of

reconstructing the vertex mass.

Once a Λ or K0
S candidate V 0 has met the criteria listed in Table 8, one more

cut is applied to reduce the combinatorial background: In the plane transverse to

the beam, the angle φxy between the vertex axis and the vertex momentum pxy
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must obey the following relation:

φxy < CV 0

(
2 mrad +

20 mrad GeV

pxy

+
5 mrad GeV2

p2
xy

)
(8.14)

where CΛ = 1.75 and CK0
S

= 2.50.

For the remaining Λ and K0
S candidate V 0s, the invariant vertex mass is

computed assuming three different hypotheses and corresponding masses for the

two tracks; γ → e+e−, Λ → pπ−, and K0
S → π+π−:

me+e− =

√(√
p2

1 +m2
e +

√
p2

2 +m2
e

)2

− (~p1 + ~p2)
2 (8.15)

mpπ =

√(√
p2

1 +m2
p +

√
p2

2 +m2
π

)2

− (~p1 + ~p2)
2 (8.16)

mππ =

√(√
p2

1 +m2
π +

√
p2

2 +m2
π

)2

− (~p1 + ~p2)
2. (8.17)

Figures 68 and 69 show the invariant vertex masses for mpπ and mππ respectively.

The Monte Carlo simulation predicted a surplus of low momentum Λ and

K0
S candidates, as shown in Figures 70 and 71 respectively. These discrepancies

were corrected in the simulation by applying a momentum independent correction

factor to the number of simulated true Λ candidates with p < 15 GeV and K0
S

candidates with p < 10 GeV which rejected a total of 12.5% of the simulated Λ

sample and 6.9% of the simulated K0
S sample within these momentum regions.

This procedure maintained the absolute background which is seen from the mpπ

and mππ sidebands (see Figures 68 and 69 respectively) to be well simulated [92].
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TABLE 9. Requirements for Λ identification

1. me+e− > 0.1 GeV
2. |mππ −mK0

S
| > 2σmππ where σmππ = 0.00063355× pV 0 + 0.0036430 GeV

3. |mpπ −mΛ| < 2σmpπ where σmpπ = 0.00024074× pV 0 + 0.00080625 GeV
4. V 0 normalized flight distance l/σl > 5 and lnLp/p − lnLπ± > 0

or V 0 normalized flight distance l/σl > 10 and no CRID information

For Λ identification, several conditions must be met: mpπ must be within

2σmpπ of mΛ = 1.11568 GeV where σmpπ is the width of the mpπ distribution and

is a linear function of momentum; to rule out γ → e+e−, me+e− must be greater

than 0.1 GeV, far from 2me = 0.001022 GeV; to rule out K0
Ss, mππ must be more

than 2σmππ away from mK0
S

= 0.49767 GeV where σmππ is the width of the mππ

distribution and is a linear function of momentum; if the proton can be identified

with the CRID – i.e. lnLp/p − lnLπ± > 0 – the normalized flight distance of the

V 0 from the IP l/σl must be greater than 5; if the proton cannot be identified

with the CRID, the normalized flight distance of the V 0 from the IP l/σl must be

greater than 10. These conditions are summarized in Table 9.

For K0
S identification, similar conditions must be met: mππ must be within

2σmππ of mK0
S

= 0.49767 GeV where σmππ is the width of the mππ distribution and

is a linear function of momentum; to rule out γ → e+e−, me+e− must be greater

than 0.1 GeV, far from 2me = 0.001022 GeV; and the normalized flight distance of

the V 0 from the IP l/σl must be greater than 5. These conditions are summarized

in Table 10.
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FIGURE 70. Momentum of Λ candidates before (top) and after (bottom) applying
a momentum-independent correction to the number of simulated true Λ with p <
15 GeV. The dots represent the data and the histogram represents the Monte Carlo
simulation. Fakes were reconstructed vertices which were not actually the result
of a decay.

TABLE 10. Requirements for K0
S identification

1. me+e− > 0.1 GeV
2. |mππ −mK0

S
| < 2σmππ where σmππ = 0.00063355× pV 0 + 0.0036430 GeV

3. V 0 normalized flight distance l/σl > 5
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TABLE 11. Initial requirements for bs event identification.

1. One hemisphere contains no significant tracks,
no b or c candidate vertices,
and has a K±, Λ, or K0

S

2. Opposite Hemisphere contains an identified b decay vertex

Figures 72 and 73 show the purities as a function of momentum of the iden-

tified Λ and K0
S samples respectively [92]. The present scheme for identifying Λ

and K0
S particles is discussed in greater detail by Stängle [92] and Baird [94].

8.4 Separating s Hemispheres from b Hemispheres

When searching for a small or nonexistent signal, as is the case with the Rbs

measurement, it is crucial to suppress backgrounds. The identification of flavor-

changing bs events begins with the requirements that one hemisphere must contain

no significant tracks and have no b or c candidate vertices. This hemisphere must

contain an identified s quark in the form of a K±, Λ, or K0
S. And the opposite

hemisphere must contain an identified b quark. These are summarized in Table

11. Figure 74 shows the effects of each of these requirements in turn on the differ-

ent Monte Carlo event flavors, including hypothetical bs events. The bar graphs

represents the fractions of events which meet the corresponding requirements.

Some of the backgrounds are clearly easier to suppress than others: Figure

74 illustrates that the requirement to identify a b quark in the opposite hemisphere

wipes out the vast majority of uu, dd, and ss events, as well as a significant portion

of the cc events. This is due to the high purity obtained with the b identification

scheme. But from the perspective of identifying bs events, the most insidious
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source of background is bb events in which a b quark is seen in one hemisphere

but missed in the other, and where an s quark is identified in the hemisphere

containing the unseen b quark. The s quarks which conspire with the unseen b

quarks have numerous sources: B meson decays are one problematic source, and

fragmentation is another. In the literature, branching ratios of B meson decays

into final states containing s quarks are specifically listed. All other sources are

accounted for in average multiplicites which include fragmentation and any other

process which results in a final state s quark [15]:

– B meson decays into final states containing s quarks:

◦ B(B → K±) = 74± 6%

◦ B(B → K0
s ) = 29± 2.9%

◦ B(B → Λ/Λ) = 5.9± 0.6%

– Multiplicites of final state s quarks in Z0 decays:

◦ 〈NK±〉 = 2.25± .05

◦ 〈NK0
s
〉 = 2.039± 0.025

◦ 〈NΛ〉 = 0.388± 0.009

In order to suppress the treacherous backgrounds from bb events masquerad-

ing as bs events, three neural networks are employed – one corresponding to each

species of strange particle identifiable in the detector. These neural networks are

trained specifically to separate hemispheres containing a primary s quark from

hemispheres containing both an unseen b quark and an identified s quark in the

form of a K±, Λ, or K0
S. The three neural networks employed here, hereafter re-

ferred to as “sNN” meaning “strange neural net”, all used an orthodox feed-forward

architecture with an input layer containing four units, one hidden layer containing
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K± Λ K0
S

ps ps ps

ntracks ntracks ntracks∑
tracks ~p

∑
tracks ~p

∑
tracks ~p

bxy

σb
θxy θxy

TABLE 12. Strange particle species and their corresponding neural network inputs.

five units, and an output layer containing two units, as previously discussed in

section 7.1 and illustrated in Figure 48.

Several parameters were identified which proved helpful in separating hemi-

spheres containing a primary s quark from hemispheres containing an unseen b

quark and a K±, Λ, or K0
S:

ps = Strange particle momentum

ntracks = Number of charged tracks in the hemisphere∑
tracks

~p = Momentum sum of charged tracks in the hemisphere

bxy

σb

= 2D normalized impact parameter

θxy = 2D angle between pK0
S ,Λ and the vertex axis.

Each neural network has four inputs. Table 12 details which parameters serve

as inputs for each of the neural networks corresponding to each s particle species.

The distributions for the input parameters are shown in Figures 75, 76, and 77.

The agreement between data and Monte Carlo is not as good as one might hope,

particularly for the hemisphere charged track momentum sum
∑

tracks ~p, the 2D

impact parameter bxy/σb for K±, and the 2D angle between the vertex axis and
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FIGURE 75. Input parameter distributions for the K± neural network. In the
plots, the histogram represents the Monte Carlo and the dots represent the data.

the momentum θxy for Λ and K0
S. The Monte Carlo is thus reweighted by the ratio

of data/Monte Carlo for both
∑

tracks ~p and the bxy/σb for K±, and by
∑

tracks ~p and

θxy for Λ and K0
S. Only events with a hemisphere meeting the first requirement

in Table 11 are reweighted. If the event contains two hemispheres which meet the

first requirement in Table 11, the event weight is the product of the two hemisphere

weights. The reweighted distributions with improved agreement between Monte

Carlo and data are shown in Figures 78, 79, and 80. All Monte Carlo derived

quantities are calculated from the reweighted Monte Carlo.
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FIGURE 76. Input parameter distributions for the Λ neural network. In the plots,
the histogram represents the Monte Carlo and the dots represent the data.
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FIGURE 77. Input parameter distributions for the K0
S neural network. In the

plots, the histogram represents the Monte Carlo and the dots represent the data.
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FIGURE 78. Monte Carlo reweighted input parameter distributions for the K±

neural network. In the plots, the histogram represents the Monte Carlo and the
dots represent the data.
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FIGURE 79. Monte Carlo reweighted input parameter distributions for the Λ
neural network. In the plots, the histogram represents the Monte Carlo and the
dots represent the data.
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FIGURE 80. Monte Carlo reweighted input parameter distributions for the K0
S

neural network. In the plots, the histogram represents the Monte Carlo and the
dots represent the data.
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K± neural network.
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FIGURE 82. Ratio of s to b input parameter distributions for the K± neural
network.
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FIGURE 84. Ratio of s to b input parameter distributions for the Λ neural network.
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S neural

network.
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The initial cuts are fairly successful in eliminating b hemispheres (see Figure

74), and it is difficult to make out the bb backgrounds in Figures 75 through 80.

Figures 81, 83, and 85 better illustrate the differences in the distributions of true

s and true b hemispheres. But to really illustrate the effectiveness of the input

parameters in separating s hemispheres from b hemispheres, the ratios of the s

and b distributions are plotted in Figures 82, 84, and 86: The larger the value of

the signal/background ratio, the more likely the hemisphere is to be s rather than

b.

The three sNN were naturally trained specifically to separate Monte Carlo

bb events from Monte Carlo bs events. The sNN output distributions are shown

in Figures 87, 88, and 89. The best results were obtained using a training set

that included roughly equal numbers of signal and background events randomly

distributed throughout the set. Only Monte Carlo bb and bs events which met all

the requirements listed in Table 11 were included. One neural net output unit was

set to 1 and the other to zero for bs (signal) events, and vice-versa (0, 1) for bb

(background) events. The second output unit turned out to be redundant, and the

unit which was set to 1 for signal and 0 for background was used in the end. A

separate validation set was used to test the performance of each neural network,

and training was stopped once the error development in the validation set had

leveled off. No examples of over-training were encountered.

The three neural networks were then tuned simultaneously, examining the

entire parameter space of all possible combinations of the three cuts to find that

unique set of optimum cuts which minimizes the limit we can set on Rbs assuming



196

s-Neural Net Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100

200

300

400

500

600

700

800

900

Charged Kaon sNN Output

Data
bb

cc

ss

_

_

_

dd

uu
_

_

FIGURE 87. Output distribution of the K± sNN. In the plots, the histogram
represents the Monte Carlo and the dots represent the data. Hemispheres with
sNN output closer to 1 are more likely to be s while hemispheres with sNN output
closer to 0 are more likely to be b.
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FIGURE 88. Output distribution of the Λ sNN. In the plots, the histogram rep-
resents the Monte Carlo and the dots represent the data. Hemispheres with sNN
output closer to 1 are more likely to be s while hemispheres with sNN output
closer to 0 are more likely to be b.
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FIGURE 89. Output distribution of the K0
S sNN. In the plots, the histogram

represents the Monte Carlo and the dots represent the data. Hemispheres with
sNN output closer to 1 are more likely to be s while hemispheres with sNN output
closer to 0 are more likely to be b.

zero signal events:

90% C.L. Limit on Rbs =
1.64σ

Nhad(εbεs + µbsµsb)
(8.18)

where

σ =
√
Nhadp(1− p) (8.19)

p = Rbεbµbs +Rsµsbεs +
∑

q 6=b,s

Rqµqbµqs. (8.20)

The cuts on the three neural networks are shown in Table 13.

It is interesting to note that the K0
S and Λ sNN have harder cuts than the K±

sNN. This is because leading s-particles found in ss events and bs events strongly
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FIGURE 90. Estimated 90% confidence limit (statistics only) on Rbs vs. K± sNN
Cut. Other cuts are held constant at their optimum values.
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FIGURE 91. Estimated 90% confidence limit (statistics only) on Rbs vs. Λ sNN
Cut. Other cuts are held constant at their optimum values.
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FIGURE 92. Estimated 90% confidence limit (statistics only) on Rbs vs. K0
S sNN

Cut. Other cuts are held constant at their optimum values.

Species sNN Output
K± > 0.43
Λ > 0.89
K0

S > 0.65

TABLE 13. sNN Cuts
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favor K± whilst the leading s-particles found in bb events strongly favor K0
S (See

Figure 94). Likewise, Λ are also found more often in true bb events than in ss and

bs events.

On the surface, this may appear non-intuitive as leading strange particles

from s-jets are equally likely to be charged or neutral. However, B-decays favor

K± over K0
S by approximately 74% to 29%.

This bias is to do with the momentum distributions of the various species

of s-particles for bb events compared to ss and bs events. The leading s-particles

found coming from bb events have a softer momentum spectrum than those coming

from ss and bs events. The s-quark identification scheme tags K± down to 9 GeV

and K0
S and Λ down to 5 GeV. Softer K± from B decays therefore aren’t seen by

the detector, while softer K0
S and Λ are. Above 9 GeV, the identification efficiency

for K± is higher than for K0
S and Λ. This accounts for the bias.

Ultimately, the Monte Carlo predicts that the effect of the sNN on s hemi-

sphere identification efficiency and the rate to mis-identify a b as an s, independent

of any opposite hemisphere b tag, is as follows:

– sNN effect on s hemisphere identification efficiency εs : 18.0% → 10.7%.

– sNN effect on the rate of b hemispheres mis-identified as s, µbs : 1.01% →

0.137%.

The overall efficiency to identify bs events went from 11.8% → 6.56%.
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CHAPTER IX

RESULTS

9.1 Summary of Results

The measurements for Rbs, Rb, and Rc are summarized in Tables 16, 19, and

22 respectively. These tables include the raw and corrected measurements, the

corrections, and the statistical and systematic uncertainties.

These measurements of Rbs, Rb, and Rc require some inputs from simulated

events. These inputs include two hemisphere correlation coefficients, Ccc and Cbb,

about which much more will be said in section 9.9. The inputs from simulated

events also include a number of mistag rates, µqq′ , which is the rate to mistag

a quark of flavor q as a quark of flavor q′. All of these inputs, along with their

statistical uncertainties, are detailed in Table 14.

The tags for b, c, and s flavored quarks are all self calibrating in that their

efficiencies εq are measured using the data. The data was also used to measure

two mistag rates. These efficiencies and mistag rates, along with their statistical

uncertainties, which were measured in the data are listed in Table 15.

The quantities derived from simulation are affected by uncertainties related

to the limited knowledge of the physics processes that are simulated. These sources

of uncertainty are common to all electroweak measurements and, in order to pro-
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duce consistent averages, the input physics parameters and models used in the

simulation must be the same for all analyses in all experiments. To that end, the

LEP/SLD Heavy Flavor Working Group has produced a set of input parameters

[96], [97] that are used for all heavy flavor electroweak measurements. The sys-

tematic uncertainties in the measurements of Rbs, Rb, and Rc which are associated

with this set of input parameters from the LEP/SLD Heavy Flavor Working Group

are shown in Tables 17, 20, and 23 respectively.

Uncertainties associated with the modeling of the detector response produce

attendant uncertainties in the measurements of Rbs, Rb, and Rc as well. These

detector related systematic uncertainties along with other uncertainties unique to

this analysis are summarized in Tables 18, 21, and 24. The Monte Carlo statistical

uncertainty is included here as well.

Detailed discussions of each uncertainty in turn follow in the succeeding sec-

tions.

9.2 Calculating the Statistical Uncertainties

Suppose y(~x) is a function of some set of n random variables ~x = (x1 · · ·xn),

that all the mean values µi for each of the variables xi are known, and that the

covariance matrix Vij is either known or has at least been estimated. The expec-

tation values of y can be approximated by expanding the function y(~x) about the

mean values µi of the variables xi [98],

y(~x) ≈ y(~µ) +
n∑

i=1

[
∂y

∂xi

]
~x=~µ

(xi − µi). (9.1)
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TABLE 14. Input parameters and their statistical uncertainties determined from
the Monte Carlo simulation for the 1996 and 1997-98 run periods.

1996 1997-98

Ccc 1.06374± 0.04883 1.01292± 0.01637
Cbb 0.99970± 0.01071 1.00278± 0.00394
µus 0.04015± 0.00089 0.04252± 0.00037
µuc 0.00053± 0.00010 0.00038± 0.00004
µub 0.00083± 0.00013 0.00075± 0.00005
µds 0.03365± 0.00072 0.03572± 0.00030
µdc 0.00047± 0.00009 0.00032± 0.00003
µdb 0.00069± 0.00011 0.00082± 0.00005
εs 0.10150± 0.00122 0.10899± 0.00051
µsc 0.00077± 0.00011 0.00036± 0.00003
µsb 0.00065± 0.00010 0.00073± 0.00004
µcs 0.02965± 0.00077 0.03061± 0.00032
εc 0.15191± 0.00163 0.18165± 0.00072
µcb 0.01170± 0.00049 0.01119± 0.00020
µbs 0.00277± 0.00021 0.00219± 0.00008
µbc 0.02078± 0.00057 0.02380± 0.00025
εb 0.56996± 0.00198 0.61543± 0.00080

TABLE 15. Tagging efficiencies and mistag rates and their statistical uncertainties
measured using the data for the 1996 and 1997-98 run periods.

1996 1997-98

εb 0.57514± 0.00769 0.61586± 0.00265
εc 0.14593± 0.01149 0.17937± 0.00469
εs 0.10842± 0.00493 0.11570± 0.00179
µcs 0.02931± 0.00427 0.02778± 0.00151
µbc 0.02382± 0.00189 0.02550± 0.00073

TABLE 16. Rbs results, corrections, and statistical and systematic uncertainties
for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

Raw Rbs 0.00513 0.00005

δRbs(g → bb) −0.00025 −0.00022
δRbs(g → cc) −0.00024 −0.00039
Corrected Rbs 0.00464 −0.00056 −0.00017
σstat

Rbs
0.00316 0.00090 0.00087

σsys
Rbs

(Total) 0.00098 0.00049 0.00048
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TABLE 17. LEP/SLD Heavy Flavor Working Group systematics associated with
the Rbs measurement for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rbs

(xb ± 0.008) 0.00004 < 0.00001 0.00001
σsys

Rbs
(xc ± 0.008) 0.00005 0.00006 0.00006

σsys
Rbs

(g → bb± 0.00051) 0.00012 0.00010 0.00011
σsys

Rbs
(g → cc± 0.0038) 0.00006 0.00010 0.00009

σsys
Rbs

(〈nch
b 〉 ± 0.062) 0.00013 0.00015 0.00015

σsys
Rbs

(〈nch
D0〉) 0.00003 0.00002 0.00002

σsys
Rbs

(〈nch
D±〉) 0.00003 0.00002 0.00002

σsys
Rbs

(〈nch
Ds
〉) 0.00008 0.00007 0.00007

σsys
Rbs

(B(D± → K0)± 7.0%) 0.00006 0.00003 0.00003
σsys

Rbs
(B(D0 → K0)± 5.0%) 0.00007 0.00003 0.00003

σsys
Rbs

(B(Ds → K0)± 28%) < 0.00001 0.00007 0.00006
σsys

Rbs
(B(D± → π0)± 10%) 0.00002 0.00002 0.00002

σsys
Rbs

(B(D0 → π0)± 10%) 0.00007 0.00003 0.00004
σsys

Rbs
(B(Ds → π0)± 10%) 0.00001 < 0.00001 < 0.00001

σsys
Rbs

(τb ± 0.05 ps) 0.00022 0.00016 0.00017
σsys

Rbs
(τD0 ± 0.004 ps) 0.00001 0.00001 0.00001

σsys
Rbs

(τD± ± 0.015 ps) 0.00001 0.00001 0.00001
σsys

Rbs
(τDs ± 0.017 ps) 0.00001 0.00001 0.00001

σsys
Rbs

(τΛc ± 0.012 ps) < 0.00001 < 0.00001 < 0.00001
σsys

Rbs
(Charm Hadron Production) 0.00007 0.00008 0.00008

σsys
Rbs

(b Hemisphere Correlation) 0.00001 < 0.00001 < 0.00001
σsys

Rbs
(c Hemisphere Correlation) 0.00006 0.00001 0.00001
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TABLE 18. Detector and other systematics associated with the Rbs measurement
for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rbs

(B(B → K±)± 6.0%) 0.00014 0.00009 0.00010
σsys

Rbs
(B(B → Λ)± 0.6%) 0.00002 0.00001 0.00002

σsys
Rbs

(B(B → K0
S)± 2.9%) 0.00017 0.00004 0.00006

σsys
Rbs

(〈NK±〉 ± 5.0%) 0.00006 0.00009 0.00008
σsys

Rbs
(〈NΛ〉 ± 0.9%) 0.00005 0.00002 0.00002

σsys
Rbs

(〈NK0
S
〉 ± 2.5%) 0.00002 0.00003 0.00003

σsys
Rbs

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rbs
(Rs) < 0.00001 < 0.00001 < 0.00001

σsys
Rbs

(Tracking Efficiency Correction) 0 0.00021 0.00018
σsys

Rbs
(Track Resolution Correction) 0.00039 0.00003 0.00008

σsys
Rbs

(〈IP 〉 Tail) 0.00003 0 < 0.00001
σsys

Rbs
(sNN Input Reweighting) 0.00003 0.00002 0.00002

σsys
Rbs

(Monte Carlo Statistics) 0.00083 0.00030 0.00028

TABLE 19. Rb results, corrections, and statistical and systematic uncertainties for
the 1996 and 1997-98 run periods.

1996 1997-98 Combined

Raw Rb 0.21014 0.21952

δRb(g → bb) −0.00032 −0.00029
δRb(g → cc) −0.00063 −0.00043
δRb(Event Selection Bias) −0.00151 −0.00188
δRb(Running b-mass) 0.00035 0.00024
δRb(Photon Exchange) 0.00020 0.00020
Corrected Rb 0.20823 0.21736 0.21645
σstat

Rb
0.00413 0.00138 0.00131

σsys
Rb

(Total) 0.00185 0.00107 0.00111
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TABLE 20. LEP/SLD Heavy Flavor Working Group systematics associated with
the Rb measurement for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rb

(xb ± 0.008) 0.00019 0.00011 0.00012
σsys

Rb
(xc ± 0.008) 0.00015 0.00012 0.00013

σsys
Rb

(g → bb± 0.00051) 0.00015 0.00013 0.00014
σsys

Rb
(g → cc± 0.0038) 0.00015 0.00011 0.00011

σsys
Rb

(〈nch
b 〉 ± 0.062) 0.00010 0.00018 0.00017

σsys
Rb

(〈nch
D0〉) 0.00007 0.00007 0.00007

σsys
Rb

(〈nch
D±〉) 0.00007 0.00007 0.00007

σsys
Rb

(〈nch
Ds
〉) 0.00022 0.00023 0.00023

σsys
Rb

(B(D± → K0)± 7.0%) 0.00015 0.00007 0.00008
σsys

Rb
(B(D0 → K0)± 5.0%) 0.00020 0.00007 0.00008

σsys
Rb

(B(Ds → K0)± 28%) 0.00005 0.00020 0.00018
σsys

Rb
(B(D± → π0)± 10%) 0.00005 0.00005 0.00005

σsys
Rb

(B(D0 → π0)± 10%) 0.00015 0.00009 0.00010
σsys

Rb
(B(Ds → π0)± 10%) 0.00002 0.00001 0.00001

σsys
Rb

(τb ± 0.05 ps) 0.00028 0.00020 0.00021
σsys

Rb
(τD0 ± 0.004 ps) 0.00003 0.00002 0.00002

σsys
Rb

(τD± ± 0.015 ps) 0.00003 0.00002 0.00002
σsys

Rb
(τDs ± 0.017 ps) 0.00002 0.00003 0.00003

σsys
Rb

(τΛc ± 0.012 ps) < 0.00001 < 0.00001 < 0.00001
σsys

Rb
(Charm Hadron Production) 0.00017 0.00018 0.00018

σsys
Rb

(b Hemisphere Correlation) 0.00038 0.00005 0.00009
σsys

Rb
(c Hemisphere Correlation) 0.00013 0.00002 0.00004
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TABLE 21. Detector and other systematics associated with the Rb measurement
for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rb

(B(B → K±)± 6.0%) 0.00009 0.00010 0.00010
σsys

Rb
(B(B → Λ)± 0.6%) 0.00005 0.00020 0.00017

σsys
Rb

(B(B → K0
S)± 2.9%) 0.00005 0.00035 0.00031

σsys
Rb

(〈NK±〉 ± 5.0%) 0.00013 0.00002 0.00004
σsys

Rb
(〈NΛ〉 ± 0.9%) 0.00005 0.00008 0.00008

σsys
Rb

(〈NK0
S
〉 ± 2.5%) 0.00005 0.00009 0.00008

σsys
Rb

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rb
(Rs) < 0.00001 < 0.00001 < 0.00001

σsys
Rb

(Event Selection Bias) 0.00136 0.00056 0.00067
σsys

Rb
(Running b-quark mass) 0.00034 0.00024 0.00025

σsys
Rb

(Tracking Efficiency Correction) 0 0.00041 0.00035
σsys

Rb
(Track Resolution Correction) 0.00094 0.00003 0.00016

σsys
Rb

(〈IP 〉 Tail) 0.00022 0 0.00003
σsys

Rb
(sNN Input Reweighting) 0.00004 0.00002 0.00003

σsys
Rb

(Monte Carlo Statistics) 0.00101 0.00035 0.00033

TABLE 22. Rc results, corrections, and statistical and systematic uncertainties
for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

Raw Rc 0.18689 0.17649

δRc(g → bb) 0.00026 0.00027
δRc(g → cc) −0.00073 −0.00172
δRc(Event Selection Bias) 0.00042 0.00001
δRc(Photon Exchange) −0.00020 −0.00020
Corrected Rc 0.18664 0.17484 0.17588
σstat

Rc
0.01462 0.00452 0.00432

σsys
Rc

(Total) 0.00943 0.00306 0.00352
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TABLE 23. LEP/SLD Heavy Flavor Working Group systematics associated with
the Rc measurement for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rc

(xb ± 0.008) 0.00007 0.00003 0.00003
σsys

Rc
(xc ± 0.008) 0.00033 0.00002 0.00006

σsys
Rc

(g → bb± 0.00051) 0.00012 0.00013 0.00013
σsys

Rc
(g → cc± 0.0038) 0.00018 0.00042 0.00039

σsys
Rc

(〈nch
b 〉 ± 0.062) 0.00001 0.00001 0.00001

σsys
Rc

(〈nch
D0〉) 0.00081 0.00013 0.00023

σsys
Rc

(〈nch
D±〉) 0.00013 0.00015 0.00015

σsys
Rc

(〈nch
Ds
〉) 0.00337 0.00074 0.00111

σsys
Rc

(B(D± → K0)± 7.0%) 0.00071 0.00001 0.00011
σsys

Rc
(B(D0 → K0)± 5.0%) 0.00080 0.00036 0.00042

σsys
Rc

(B(Ds → K0)± 28%) 0.00268 0.00183 0.00195
σsys

Rc
(B(D± → π0)± 10%) 0.00037 0.00005 0.00009

σsys
Rc

(B(D0 → π0)± 10%) 0.00086 0.00023 0.00032
σsys

Rc
(B(Ds → π0)± 10%) 0.00064 0.00009 0.00017

σsys
Rc

(τb ± 0.05 ps) 0.00002 0.00001 0.00001
σsys

Rc
(τD0 ± 0.004 ps) 0.00011 0.00004 0.00005

σsys
Rc

(τD± ± 0.015 ps) 0.00014 0.00002 0.00003
σsys

Rc
(τDs ± 0.017 ps) 0.00019 0.00004 0.00006

σsys
Rc

(τΛc ± 0.012 ps) 0.00006 0.00003 0.00003
σsys

Rc
(Charm Hadron Production) 0.00064 0.00048 0.00050

σsys
Rc

(b Hemisphere Correlation) 0.00012 0.00001 0.00003
σsys

Rc
(c Hemisphere Correlation) 0.00496 0.00079 0.00139
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TABLE 24. Detector and other systematics associated with the Rc measurement
for the 1996 and 1997-98 run periods.

1996 1997-98 Combined

σsys
Rc

(B(B → K±)± 6.0%) 0.00008 0.00003 0.00003
σsys

Rc
(B(B → Λ)± 0.6%) 0.00001 0.00005 0.00004

σsys
Rc

(B(B → K0
S)± 2.9%) 0.00003 0.00010 0.00009

σsys
Rc

(〈NK±〉 ± 5.0%) 0.00016 0.00009 0.00010
σsys

Rc
(〈NΛ〉 ± 0.9%) 0.00014 0.00008 0.00009

σsys
Rc

(〈NK0
S
〉 ± 2.5%) 0.00051 0.00010 0.00016

σsys
Rc

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rc
(Rs) < 0.00001 < 0.00001 < 0.00001

σsys
Rc

(Event Selection Bias) 0.00123 0.00051 0.00061
σsys

Rc
(Tracking Efficiency Correction 0 0.00014 0.00012

σsys
Rc

(Track Resolution Correction 0.00119 0.00033 0.00045
σsys

Rc
(〈IP 〉Tail) 0.00026 0 0.00004

σsys
Rc

(sNN Input Reweighting) 0.00046 0.00002 0.00008
σsys

Rc
(Monte Carlo Statistics) 0.00620 0.00209 0.00198

To first order, the expectation value of y is

〈y(~x)〉 ≈ y(~µ). (9.2)

since 〈xi − µi〉 = 0. The expectation value of y2 is

〈y2(~x)〉 ≈ y2(~µ) + 2y(~µ) ·
n∑

i=1

[
∂y

∂xi

]
~x=~µ

〈xi − µi〉

+

〈 n∑
i=1

[
∂y

∂xi

]
~x=~µ

(xi − µi)

 n∑
j=1

[
∂y

∂xj

]
~x=~µ

(xj − µj)

〉

≈ y2(~µ) +
n∑

i,j=1

[
∂y

∂xi

∂y

∂xj

]
~x=~µ

Vij. (9.3)

The variance of y, V [y] = σ2
y is then

σ2
y ≈

n∑
i,j=1

[
∂y

∂xi

∂y

∂xj

]
~x=~µ

Vij. (9.4)
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For the case where the xi are not correlated, i.e. Vii = σ2
i and Vij = 0 for

i 6= j, equation 9.4 becomes

σ2
y ≈

n∑
i=1

[
∂y

∂xi

]2

~x=~µ

σ2
i . (9.5)

This analysis rests on the following variables:

Hb = number of b-tagged hemispheres

Ebb = number of double b-tagged events

Hc = number of c-tagged hemispheres

Ecc = number of double c-tagged events

Hs = number of s-tagged hemispheres

Ecs = number of cs-tagged events

Ebs = number of bs-tagged events

Ebc = number of bc-tagged events

Nhad = number of hadronic events.

These nine variables, however, are not statistically independent, and the covariance

matrix Vij is not known. But with the addition of the variable Ess for double s-

tagged events, these variables can be exchanged for a set of new variables which

are statistically independent, making the covariance matrix simply Vii = σ2
i and

Vij = 0 for i 6= j. The new variables are then:

Eb = number of single b-tagged events
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Ebb = number of double b-tagged events

Ec = number of single c-tagged events

Ecc = number of double c-tagged events

Es = number of single s-tagged events

Ess = number of double s-tagged events

Ecs = number of cs-tagged events

Ebs = number of bs-tagged events

Ebc = number of bc-tagged events

E0 = number of un-tagged events.

Note that with the new variables Eq, there is no overlap with Eqq – an event is

either tagged once or twice, but not both. With Hq on the other hand, a double

tagged event for example would contribute to both Hq and Eqq. With the new

set of variables, each variable counts an independent subset of the data. The new

variables can be calculated as follows:

Eb = Hb − 2Ebb − Ebs − Ebc (9.6)

Ec = Hc − 2Ecc − Ecs − Ebc (9.7)

Es = Hc − 2Ess − Ecs − Ebs (9.8)

E0 = Nhad − Eb − Ebb − Ec − Ecc − Es − Ess − Ecs − Ebs − Ebc. (9.9)

Because an event either increments a given variable (“success”) or it doesn’t

(“failure”), the statistical uncertainties on these variables come from binomial
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TABLE 25. Statistical uncertainties for Rbs, Rb, and Rc.

1996 1997-98 Combined

σstat
Rbs

0.00316 0.00090 0.00087

σstat
Rb

0.00413 0.00138 0.00131

σstat
Rc

0.01462 0.00452 0.00432

statistics and are simply

σi =

√
Ei

(
1− Ei

Nhad

)
. (9.10)

From equation 9.5, the statistical uncertainty on the unknown y can then be

estimated by varying each of these new variables by ±1σ in turn, and summing

differences in quadrature, as follows:

σ2
y ≈

10∑
i=1

[
y(Ei + σi)− y(Ei − σi)

2

]2

. (9.11)

The statistical uncertainties are shown in Table 25

The Monte Carlo statistical uncertainty is estimated in an analogous way,

except that there is a set of ten Ei for each Monte Carlo event flavor: Thus, Euu
i ,

Edd
i , Ess

i , Ecc
i , and Ebb

i . All of these Eqq
i must be varied by ±1σ in turn, and the

differences summed in quadrature, as above.

σ2
y ≈

∑
qq

10∑
i=1

[
y(Eqq

i + σqq
i )− y(Eqq

i − σqq
i )

2

]2

. (9.12)

The Monte Carlo statistical uncertainties are shown in Table 26.
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TABLE 26. Monte Carlo Statistical uncertainties for Rbs, Rb, and Rc.

1996 1997-98 Combined

σsys
Rbs

(Monte Carlo Statistics) 0.00083 0.00030 0.00028

σsys
Rb

(Monte Carlo Statistics) 0.00101 0.00035 0.00033

σsys
Rc

(Monte Carlo Statistics) 0.00620 0.00209 0.00198

9.3 Heavy Quark Fragmentation

The process of hadronization is modelled as the convolution of a perturbative

part – hard gluon radiation, and a non-perturbative part, called fragmentation,

which is described by phenomenological models. In the JETSET simulation, the

fragmentation model by Peterson et al. is used. The model contains one free

parameter, εq, which varies the cut-off for the transition between the perturbative

and the non-perturbative parts, although εq cannot be given an absolute meaning

beyond this. In any case, εq is tuned to reproduce the observed value of the mean

energy of the heavy hadrons. The energy spectrum of the heavy hadrons is more

conveniently expressed in terms of the variable xq, defined as the energy of the

heavy hadron normalized to the beam energy.

The LEP/SLD Heavy Flavor Working Group provides values for the mean

energies of b and c hadrons [96]:

〈xb〉 = 0.702± 0.008 (9.13)

〈xc〉 = 0.484± 0.008. (9.14)
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To vary 〈xb〉 and 〈xc〉 within their uncertainties, events in the Monte Carlo

data sample are reweighted in the following way. Begin with the definitions below:

∫
n(xq)dxq = N (9.15)∫

n(xq)w(xq)dxq = N (9.16)∫
xqn(xq)dxq = xqN (9.17)∫

xqn(xq)w(xq)dxq = x′qN (9.18)

where n(xq) is the number of events having xq between xq and xq + dxq, N is the

total number of events, and w(xq) is the weighting factor used to tweak xq to x′q.

Let w(xq) = (xq − xq)w0 + w1. Substituting into the above equations yields

∫
n(xq)[(xq − xq)w0 + w1]dxq = N (9.19)

w0

∫
xqn(xq)dxq + w0xq

∫
n(xq)dxq + w1

∫
n(xq)dxq = N (9.20)

w0xqN − w0xqN + w1N = N (9.21)

w1 = 1 (9.22)∫
xqn(xq)[(xq − xq)w0 + 1]dxq = x′qN (9.23)

w0

∫
x2

qn(xq)dxq − w0xq

∫
xqn(xq)dxq +

∫
xqn(xq)dxq = x′qN (9.24)

w0N(x2
q − xq

2) + xqN = x′qN (9.25)

w0 =
x′q − xq

x2
q − xq

2
. (9.26)

Finally, w(xq) becomes

w(xq) = (xq − xq)
x′q − xq

x2
q − xq

2
+ 1 (9.27)
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TABLE 27. Uncertainties associated with heavy quark fragmentation.

1996 1997-98 Combined

σsys
Rbs

(xb ± 0.008) 0.00004 < 0.00001 0.00001
σsys

Rbs
(xc ± 0.008) 0.00005 0.00006 0.00006

σsys
Rb

(xb ± 0.008) 0.00019 0.00011 0.00012
σsys

Rb
(xc ± 0.008) 0.00015 0.00012 0.00013

σsys
Rc

(xb ± 0.008) 0.00007 0.00003 0.00003
σsys

Rc
(xc ± 0.008) 0.00033 0.00002 0.00006

and is computed event by event to determine how the event in question should be

weighted. The uncertainties associated with xb and xc are listed in Table 27.

9.4 Adjusting Branching Ratios and Multiplicities

Implicit in the Monte Carlo are assumptions about the values for many differ-

ent branching ratios, multiplicities, and so on that are, fundamentally, determined

by averaging integers, i.e. the number of a certain particle coming from the decay

of another certain particle in a given event, for example. Such assumptions may

affect other assumptions about the levels of backgrounds, identification efficiencies,

mis-identification rates, and so on. For the purposes of establishing systematic un-

certainties, it will be important to reweight the Monte Carlo data event by event

in order to alter certain average values and determine the effect the changes have

on the final values of Rbs, Rb, and Rc.

Consider as an example the case of the branching ratio B(B → K±). A B

meson decay can produce 0, 1, 2, ... K±. The branching ratio can be calculated by

B(B → K±) =
∑
n

nP (n) (9.28)
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where n is the number of K±s originating from a particular B meson, and P (n) is

the probability that a particular B meson contained n K±s.

For the purpose of determining its systematic effect, the branching ratio

(multiplicity, or whatever) must be varied by an amount ±∆ to cover the range of

possible values encompassed by its uncertainty. The new value for the branching

ratio may be expressed thus

B(B → K±) + ∆ =
∑
n

nP ′(n) (9.29)

where P ′(n) is the adjusted probability distribution. P ′(n) may be determined

from P (n) by

P ′(n) = f1P (n) + f2P (n− 1). (9.30)

A fraction 1− f1 of the B mesons containing n K±s are in effect being given one

extra K±, as are a fraction f2 of the B mesons containing n − 1 K±s. The new

branching ratio becomes

B(B → K±) + ∆ =
∑
n

n [f1P (n) + f2P (n− 1)] (9.31)

= f1B(B → K±) + f2

∑
n

nP (n− 1) (9.32)

= f1B(B → K±) + f2

∑
n

(n+ 1)P (n) (9.33)

= f1B(B → K±) + f2

∑
n

[nP (n) + P (n)] (9.34)

= f1B(B → K±) + f2B(B → K±) + f2

∑
n

P (n). (9.35)



219

It is not desired to change the overall number of events, so

f1 + f2 = 1 (9.36)

and

∑
n

P (n) = 1. (9.37)

The fractions f1 and f2 can be solved for as follows:

f1 = 1−∆ (9.38)

f2 = ∆. (9.39)

The weight for a particular B meson decay is then

w(n) =
P ′(n)

P (n)
(9.40)

and the overall weight for the entire event is the product of the weights associated

with each B meson decay in the event.
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9.5 Heavy Quarks from Gluon Splitting

Hard gluons can occasionally split into heavy quark pairs, and this contri-

bution must be subtracted. The rates gbb and gcc are defined thus, with average

published result compiled by the LEP/SLD Heavy Flavor Working Group [96]:

gbb =
Γ(Z0 → g → bb)

Γ(Z0 → hadrons)
= 0.00254± 0.00051 (9.41)

gcc =
Γ(Z0 → g → cc)

Γ(Z0 → hadrons)
= 0.0296± 0.0038. (9.42)

The value for gbb in the Monte Carlo generator is calculated by considering

the number of non-bb events which contain b quarks, plus bb events containing

more than the orthodox two b quarks, divided by the total number of hadronic

events. Similarly, the value for gcc is calculated by considering the number of

non-cc events which contain c quarks, excluding c quarks coming from B meson

decays, plus cc events containing more than the orthodox two c quarks, divided by

the total number of hadronic events. The Monte Carlo generator produces values

of

gMC
bb

= 0.00145 (9.43)

gMC
cc = 0.0141. (9.44)

Since the Monte Carlo generator’s values for gbb and gcc do not agree with

the latest average values compiled by the LEP/SLD Heavy Flavor Working Group,

corrections to Rbs, Rb and Rc must be applied.
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The Monte Carlo events are first reweighted, using the method detailed in

section 9.4, such that gbb and gcc in the Monte Carlo are increased by 100%, ef-

fectively doubling the number of gluon splitting events. Rbs, Rb and Rc are then

computed on this basis. The corrections are evaluated by scaling the gbb + 100%

and gcc + 100% changes in Rbs, Rb and Rc as follows:

δRbs(gbb) =
[
Rbs(g

MC
bb

+ 100%)−Rbs(g
MC
bb

)
] gbb − gMC

bb

gMC
bb

(9.45)

δRbs(gcc) =
[
Rbs(g

MC
cc + 100%)−Rbs(g

MC
cc )

] gcc − gMC
cc

gMC
cc

(9.46)

δRb(gbb) =
[
Rb(g

MC
bb

+ 100%)−Rb(g
MC
bb

)
] gbb − gMC

bb

gMC
bb

(9.47)

δRb(gcc) =
[
Rb(g

MC
cc + 100%)−Rb(g

MC
cc )

] gcc − gMC
cc

gMC
cc

(9.48)

δRc(gbb) =
[
Rc(g

MC
bb

+ 100%)−Rc(g
MC
bb

)
] gbb − gMC

bb

gMC
bb

(9.49)

δRc(gcc) =
[
Rc(g

MC
cc + 100%)−Rc(g

MC
cc )

] gcc − gMC
cc

gMC
cc

. (9.50)

The systematic uncertainties are calculated the same way by further scaling

the gbb + 100% and gcc + 100% changes in Rbs, Rb and Rc to account for the

uncertainties in gbb and gcc. The corrections and uncertainties associated with

gluon splitting are listed in Table 28.

9.6 Multiplicities in Heavy Flavor Decays

Heavy flavor quarks are identified based on the presence in a jet or hemisphere

of charged tracks with significant impact parameter from the primary vertex. In

this analysis, the b and c identification efficiencies as well as the rate to mis-tag
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TABLE 28. Corrections and systematic uncertainties associated with gluons split-
ting into heavy flavors.

1996 1997-98 Combined

δRbs(g → bb) −0.00025 −0.00022
δRbs(g → cc) −0.00024 −0.00039

σsys
Rbs

(g → bb± 0.00051) 0.00012 0.00010 0.00011
σsys

Rbs
(g → cc± 0.0038) 0.00006 0.00010 0.00009

δRb(g → bb) −0.00032 −0.00029
δRb(g → cc) −0.00063 −0.00043

σsys
Rb

(g → bb± 0.00051) 0.00015 0.00013 0.00014
σsys

Rb
(g → cc± 0.0038) 0.00015 0.00011 0.00011

δRc(g → bb) 0.00026 0.00027
δRc(g → cc) −0.00073 −0.00172

σsys
Rc

(g → bb± 0.00051) 0.00012 0.00013 0.00013
σsys

Rc
(g → cc± 0.0038) 0.00018 0.00042 0.00039

b as c are all measured directly in the data using the fraction of double b and c

tagged events and the fraction of bc mixed-tag events, respectively. However, the

rate to mis-tag c as b is taken from the Monte Carlo simulation, and it is there-

fore important to propagate the uncertainties associated with the multiplicities of

charged particles in the decays of heavy hadrons. These uncertainties also enter

the analysis through the hemisphere correlation coefficients Ccc and Cbb.

The LEP/SLD Heavy Flavor Working Group has obtained for the mean B-

hadron charged multiplicity [96]

〈nch
b 〉 = 4.955± 0.062. (9.51)

This value is adjusted in the Monte Carlo within its uncertainty using the method

described in section 9.4.
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TABLE 29. Topological rates for the different charm-meson species, with estimated
errors and correlation coefficients. The subscripts indicate the number of charged
particles produced.

f0 = 0.054 f2 = 0.634 f4 = 0.293 f6 = 0.019
D0 σ0 = 0.011 σ4 = 0.023 σ6 = 0.009

C04 = 0.07 C46 = −0.46 C06 = 0
f1 = 0.384 f3 = 0.541 f5 = 0.075

D± σ1 = 0.023 σ5 = 0.015
C15 = −0.33
f1 = 0.37 f3 = 0.42 f5 = 0.21

Ds σ1 = 0.10 σ5 = 0.11
C15 = −0.02

The different charmed hadron species are each done separately due to the

significant differences in their lifetimes. Varying the individual D-hadron multi-

plicities is somewhat more complex than for B-hadrons. For each species, D0, D±,

and Ds, each channel (i.e. 0, 1, 2... charged particles) is varied within its uncer-

tainty, except for the channel with the highest rate, which is used to compensate

the variation [96]. This is again accomplished by reweighting the Monte Carlo

events using the method described in section 9.4. The resulting uncertainties are

combined using the corresponding correlation coefficients. For each species of D

hadron, the fractions decaying into i charged particles fi, the corresponding un-

certainties σi, and the associated correlation coefficients Cij, are given in Table 29

[96]. (No uncertainty is listed for the channel with the highest rate as it is used to

compensate the other variations.)

The identification efficiencies and mis-tag rates also depend on the number

of neutral particles accompanying the charged particles in a given topological de-

cay channel. The uncertainties associated with neutral particle production are
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TABLE 30. Rbs systematic uncertainties associated with multiplicities in heavy
flavor decays.

1996 1997-98 Combined

σsys
Rbs

(〈nch
b 〉 ± 0.062) 0.00013 0.00015 0.00015

σsys
Rbs

(〈nch
D0〉) 0.00003 0.00002 0.00002

σsys
Rbs

(〈nch
D±〉) 0.00003 0.00002 0.00002

σsys
Rbs

(〈nch
Ds
〉) 0.00008 0.00007 0.00007

σsys
Rbs

(B(D± → K0)± 7.0%) 0.00006 0.00003 0.00003
σsys

Rbs
(B(D0 → K0)± 5.0%) 0.00007 0.00003 0.00003

σsys
Rbs

(B(Ds → K0)± 28%) < 0.00001 0.00007 0.00006
σsys

Rbs
(B(D± → π0)± 10%) 0.00002 0.00002 0.00002

σsys
Rbs

(B(D0 → π0)± 10%) 0.00007 0.00003 0.00004
σsys

Rbs
(B(Ds → π0)± 10%) 0.00001 < 0.00001 < 0.00001

TABLE 31. Rb systematic uncertainties associated with multiplicities in heavy
flavor decays.

1996 1997-98 Combined

σsys
Rb

(〈nch
b 〉 ± 0.062) 0.00010 0.00018 0.00017

σsys
Rb

(〈nch
D0〉) 0.00007 0.00007 0.00007

σsys
Rb

(〈nch
D±〉) 0.00007 0.00007 0.00007

σsys
Rb

(〈nch
Ds
〉) 0.00022 0.00023 0.00023

σsys
Rb

(B(D± → K0)± 7.0%) 0.00015 0.00007 0.00008
σsys

Rb
(B(D0 → K0)± 5.0%) 0.00020 0.00007 0.00008

σsys
Rb

(B(Ds → K0)± 28%) 0.00005 0.00020 0.00018
σsys

Rb
(B(D± → π0)± 10%) 0.00005 0.00005 0.00005

σsys
Rb

(B(D0 → π0)± 10%) 0.00015 0.00009 0.00010
σsys

Rb
(B(Ds → π0)± 10%) 0.00002 0.00001 0.00001

evaluated by varying the K0 and π0 production rates in charmed hadron decays:

B(D± → K0), B(D0 → K0), and B(Ds → K0) are varied within their uncertain-

ties as listed in the Review of Particle Physics; the branching ratios B(D± → π0),

B(D0 → π0), B(Ds → π0) are varied by a conservative ±10%. The uncertainties

associated with multiplicities in heavy flavor decays are listed in tables 30, 31, and

32.
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TABLE 32. Rc systematic uncertainties associated with multiplicities in heavy
flavor decays.

1996 1997-98 Combined

σsys
Rc

(〈nch
b 〉 ± 0.062) 0.00001 0.00001 0.00001

σsys
Rc

(〈nch
D0〉) 0.00081 0.00013 0.00023

σsys
Rc

(〈nch
D±〉) 0.00013 0.00015 0.00015

σsys
Rc

(〈nch
Ds
〉) 0.00337 0.00074 0.00111

σsys
Rc

(B(D± → K0)± 7.0%) 0.00071 0.00001 0.00011
σsys

Rc
(B(D0 → K0)± 5.0%) 0.00080 0.00036 0.00042

σsys
Rc

(B(Ds → K0)± 28%) 0.00268 0.00183 0.00195
σsys

Rc
(B(D± → π0)± 10%) 0.00037 0.00005 0.00009

σsys
Rc

(B(D0 → π0)± 10%) 0.00086 0.00023 0.00032
σsys

Rc
(B(Ds → π0)± 10%) 0.00064 0.00009 0.00017

9.7 Heavy Flavor Lifetimes

The lifetimes of heavy hadrons are relevant to this analysis because the fur-

ther from the primary vertex the heavy hadron is when it decays, the easier the

secondary vertex is to resolve, which in turn affects the identification efficiency.

For Rb, the lifetimes of charm hadrons affect the degree of charm contamination

whereas bottom lifetimes only enter through the hemisphere correlations because

the b identification efficiency is measured in the data with the double b-tagged

events. For Rc, the charm and bottom lifetimes enter only through the hemisphere

correlations because both the c identification efficiency and the rate to mis-tag b

as c are measured in the data.

The LEP/SLD Heavy Flavor Working Group takes the average lifetime of b

hadrons to be [96]

τb = 1.576± 0.016 ps. (9.52)
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The lifetime difference between the various b species has been found in general

to have very little impact and is considered as a source of uncertainty in the Rb

analyses by enlarging the error to 0.05 ps.

The lifetimes of the various charm hadron species are considered as individual

sources of uncertainties. The values and errors are [96]

τD0 = 0.415± 0.004 ps (9.53)

τD± = 1.057± 0.015 ps (9.54)

τDs = 0.467± 0.017 ps (9.55)

τΛc = 0.206± 0.012 ps. (9.56)

The Monte Carlo events are reweighted in order to adjust the average life-

times of the various heavy flavor hadrons by their corresponding uncertainties.

Recall that the number N(t) of particles having lifetime τ remaining after time t

is

N(t) = N0e
− t

τ . (9.57)

The weight that a particular hadron having lifetime t should be given to make

the average lifetime change by an amount δτ (i.e. lifetime τ → τ + δτ) can be

calculated as

dN(t) =
N0

τ
e−

t
τ dt (9.58)

dN ′(t) =
N0

τ + δτ
e−

t
τ+δτ dt (9.59)
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TABLE 33. Systematic uncertainties associated with the lifetimes of heavy
hadrons.

1996 1997-98 Combined

σsys
Rbs

(τb ± 0.05 ps) 0.00022 0.00016 0.00017
σsys

Rbs
(τD0 ± 0.004 ps) 0.00001 0.00001 0.00001

σsys
Rbs

(τD± ± 0.015 ps) 0.00001 0.00001 0.00001
σsys

Rbs
(τDs ± 0.017 ps) 0.00001 0.00001 0.00001

σsys
Rbs

(τΛc ± 0.012 ps) < 0.00001 < 0.00001 < 0.00001

σsys
Rb

(τb ± 0.05 ps) 0.00028 0.00020 0.00021
σsys

Rb
(τD0 ± 0.004 ps) 0.00003 0.00002 0.00002

σsys
Rb

(τD± ± 0.015 ps) 0.00003 0.00002 0.00002
σsys

Rb
(τDs ± 0.017 ps) 0.00002 0.00003 0.00003

σsys
Rb

(τΛc ± 0.012 ps) < 0.00001 < 0.00001 < 0.00001

σsys
Rc

(τb ± 0.05 ps) 0.00002 0.00001 0.00001
σsys

Rc
(τD0 ± 0.004 ps) 0.00011 0.00004 0.00005

σsys
Rc

(τD± ± 0.015 ps) 0.00014 0.00002 0.00003
σsys

Rc
(τDs ± 0.017 ps) 0.00019 0.00004 0.00006

σsys
Rc

(τΛc ± 0.012 ps) 0.00006 0.00003 0.00003

w(t) =
dN ′(t)

dN(t)
(9.60)

=
τe−

t
τ+δτ

(τ + δτ)e−
t
τ

. (9.61)

The systematic uncertainties associated with the lifetimes of heavy hadrons

are given in Table 33

9.8 Charm Hadron Production

Because of the differences in the lifetimes between the various species of

charmed hadrons, their individual identification efficiencies and mis-tag rates tend

to be substantially different, and therefore their relative abundances in Z0 → cc
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TABLE 34. Charm hadron production fractions.

Species Value Uncertainty

fD0 0.600
fD± 0.233 ±0.028
fDs 0.102 ±0.037
fΛc 0.065 ±0.029

events affects the overall charm identification efficiency and the various mis-tag

rates.

In order to estimate the systematic uncertainty, the D0 fraction is written

as fD0 = 1 − fD± − fDs − fΛc . The errors on the last three parameters and their

correlation matrix are used to evaluate the uncertainty. The values of fD0 , fD± ,

fDs , and fΛc along with their uncertainties are listed in Table 34 [97]. When

varying the charm production fractions in the Monte Carlo, the variation of each

of the three fractions fD± , fDs , and fΛc is always compensated by the fraction fD0 ,

so no uncertainty is listed for fD0 .

The correlation matrix used to combine the uncertainties for each charm

species is [97]

C =


CD±,D± CD±,Ds CD±,Λc

CDs,D± CDs,Ds CDs,Λc

CΛc,D± CΛc,Ds CΛc,Λc

 =


1 −0.36 −0.24

−0.36 1 −0.14

−0.24 −0.14 1

 . (9.62)

The systematic uncertainties associated with production rates for different

charm species are listed in Table 35.
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TABLE 35. Systematic uncertainties associated with production rates for different
charm species.

1996 1997-98 Combined

σsys
Rbs

(Charm Hadron Production) 0.00007 0.00008 0.00008

σsys
Rb

(Charm Hadron Production) 0.00017 0.00018 0.00018

σsys
Rc

(Charm Hadron Production) 0.00064 0.00048 0.00050

9.9 Hemisphere Correlations

In this analysis, the fractions of double b- and c-tagged events are used to de-

termine the bottom and charm quark identification efficiencies, respectively. The

efficiency to double-tag an event is taken to be the square of the hemisphere tag

efficiency times a correlation coefficient. The bottom and charm hemisphere cor-

relation coefficients are defined as

Cbb =
εbb
ε2b

(9.63)

Ccc =
εcc
ε2c

(9.64)

where εqq is the efficiency to identify a quark in both hemispheres of a qq event.

These correlation coefficients must be estimated from the Monte Carlo simulation.

To evaluate the systematic uncertainty on this quantity, we consider three

effects which can give rise to correlations: (1) detector inhomogeneities, (2) the

common primary vertex, and (3) kinematic correlations from final state gluon

radiation.

In general, correlations arise when the identification efficiency εq depends on

some variable x which is correlated between the two hemispheres of the event. The
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resulting hemisphere correlation can be estimated as

Cx
qq =

〈εq(x1)εq(x2)〉
〈εq(x1)〉〈εq(x2)〉

(9.65)

where x1,2 are the values of x in the two hemispheres of the event and the average

is taken over all the qq events in the Monte Carlo data sample. The efficiencies are

evaluated in small bins of x.

The two heavy quarks tend to be produced back to back, and as a result,

their decay products tend to go into geometrically opposite regions of the detector.

The thrust axis is taken as an estimator of the heavy quark direction of flight. The

cylindrical geometry of the detector causes the identification efficiency for heavy

quarks to be directionally nonuniform and to depend on the polar angle θ. As cos θ

of the thrust axis approaches 1 or −1, decay products must travel through more

intervening material, and multiple scattering degrades the tracking resolution and

thus the identification efficiency. The correlation due to detector inhomogeneities

is evaluated as

Ccos θ
qq =

〈εHem 1
q (cos θ)εHem 2

q (cos θ)〉
〈εHem 1

q (cos θ)〉〈εHem 2
q (cos θ)〉

. (9.66)

The identification of heavy flavors is dependent on knowledge of the location

of the primary vertex. The further a secondary vertex is from the primary vertex,

the easier it is to resolve. Also, the vertex decay vector is determined from the

locations of both the primary vertex and the secondary decay vertex, and is impor-

tant for calculating the pT corrected vertex mass. Because information regarding

the primary vertex is common to both hemispheres in an event, it is important to
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consider this as a source of correlation. The correlation due to imprecise knowl-

edge of the primary vertex is evaluated by simply taking the difference between

the correlation determined using the ordinary primary vertex, and the correlation

determined using the true Monte Carlo location of the primary vertex.

Heavy flavor identification efficiencies depend on the momenta of the as-

sociated heavy hadrons: High momentum particles tend to travel further before

decaying, making the secondary vertex easier to resolve from the primary vertex;

and the tracks associated with the heavy flavor decays are of higher momentum,

and can thus be measured with better resolution. Final state gluon radiation re-

duces the momentum of both heavy quarks in the event. Because of conservation

of momentum, the momentum of the heavy hadron in one hemisphere is to a degree

correlated with the momentum of the heavy hadron in the opposite hemisphere.

As a result, the heavy flavor identification efficiencies are to a degree correlated

between the two hemispheres. This kinematic correlation is evaluated by

Cp1,p2
qq =

〈εq(p1)εq(p2)〉
〈εq(p1)〉〈εq(p2)〉

. (9.67)

All of the component correlations are given in Table 36.

The uncertainties associated with the hemisphere correlations are evaluated

by letting the each correlation coefficient assume the value of its component sum

and running the analysis. The uncertainties were then taken as half the difference

of the measurements using the component sum and using the overall direct Monte

Carlo correlation coefficient. These uncertainties are given in Table 37.
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TABLE 36. Component Correlations, the component sum, and the overall direct
Monte Carlo correlation coefficient values.

1996 1997-98

Ccos θ
bb − 1 −0.0002 0.0005

CIP
bb − 1 0.0026 0.0008

Cp1,p2

bb − 1 0.0009 0.0019
1 + (CIP

bb − 1) + (Cp1,p2

bb − 1) + (Ccos θ
bb − 1) 1.0033 1.0032

Monte Carlo Cbb 0.9997 1.0028

Ccos θ
cc − 1 0.0040 0.0020

CIP
cc − 1 −0.0391 −0.0074

Cp1,p2
cc − 1 0.0432 0.0093

1 + (CIP
cc − 1) + (Cp1,p2

cc − 1) + (Ccos θ
cc − 1) 1.0080 1.0039

Monte Carlo Ccc 1.0637 1.0129

TABLE 37. Systematic uncertainties associated with hemisphere correlations.

1996 1997-98 Combined

σsys
Rbs

(b Hemisphere Correlation) 0.00001 < 0.00001 < 0.00001
σsys

Rbs
(c Hemisphere Correlation) 0.00006 0.00001 0.00001

σsys
Rb

(b Hemisphere Correlation) 0.00038 0.00005 0.00009
σsys

Rb
(c Hemisphere Correlation) 0.00013 0.00002 0.00004

σsys
Rc

(b Hemisphere Correlation) 0.00012 0.00001 0.00003
σsys

Rc
(c Hemisphere Correlation) 0.00496 0.00079 0.00139
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9.10 γ − Z0 Interference

Rb and Rc actually measure the ratio of production cross sections Rq =

σqq/σHadronic. To obtain the ratios of partial widths R0
q = Γqq/ΓHadronic, small

corrections for photon exchange and γ−Z0-interference have to be applied. These

corrections are typically +0.0002 for Rb and −0.0002 for Rc [96].

9.11 Strange Quark Final States

Events with final states containing strange particles are an important back-

ground for Z0 → bs events, particularly bb events containing a final state K±,

K0
S, or Λ particle. If such a final state strange particle in a bb event has sufficient

momentum to be identified, and if it happens to reside in the same hemisphere as

a B meson that failed to be identified, the event will have the same signature as a

true Z0 → bs event. There are two important sources of these particles; B mesons

can decay to them, or they can be produced in the fragmentation process.

In order to estimate systematic uncertainties, the branching ratios B(B →

K±), B(B → Λ), and B(B → K0
S) and the average multiplicities in Z0 decays

〈NK±〉, 〈NΛ〉, and 〈NK0
S
〉 are varied within their uncertainties using the method

detailed in section 9.4.

The uncertainties associated with final state K±, K0
S, and Λ particles are

listed in Table 38.
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TABLE 38. Systematic uncertainties associated with final state K±, K0
S, and Λ

particles.
1996 1997-98 Combined

σsys
Rbs

(B(B → K±)± 6.0%) 0.00014 0.00009 0.00010
σsys

Rbs
(B(B → Λ)± 0.6%) 0.00002 0.00001 0.00002

σsys
Rbs

(B(B → K0
S)± 2.9%) 0.00017 0.00004 0.00006

σsys
Rbs

(〈NK±〉 ± 5.0%) 0.00006 0.00009 0.00008
σsys

Rbs
(〈NΛ〉 ± 0.9%) 0.00005 0.00002 0.00002

σsys
Rbs

(〈NK0
S
〉 ± 2.5%) 0.00002 0.00003 0.00003

σsys
Rb

(B(B → K±)± 6.0%) 0.00009 0.00010 0.00010
σsys

Rb
(B(B → Λ)± 0.6%) 0.00005 0.00020 0.00017

σsys
Rb

(B(B → K0
S)± 2.9%) 0.00005 0.00035 0.00031

σsys
Rb

(〈NK±〉 ± 5.0%) 0.00013 0.00002 0.00004
σsys

Rb
(〈NΛ〉 ± 0.9%) 0.00005 0.00008 0.00008

σsys
Rb

(〈NK0
S
〉 ± 2.5%) 0.00005 0.00009 0.00008

σsys
Rc

(B(B → K±)± 6.0%) 0.00008 0.00003 0.00003
σsys

Rc
(B(B → Λ)± 0.6%) 0.00001 0.00005 0.00004

σsys
Rc

(B(B → K0
S)± 2.9%) 0.00003 0.00010 0.00009

σsys
Rc

(〈NK±〉 ± 5.0%) 0.00016 0.00009 0.00010
σsys

Rc
(〈NΛ〉 ± 0.9%) 0.00014 0.00008 0.00009

σsys
Rc

(〈NK0
S
〉 ± 2.5%) 0.00051 0.00010 0.00016
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9.12 Uncertainties associated with Rd and Rs

The values for Rd and Rs used in this analysis are taken to be

Rd = Rs =
ΓSM

dd

ΓSM
bb

Rb (9.68)

where

ΓSM
dd

= 383.1± 0.2 MeV (9.69)

ΓSM
bb

= 375.9± 0, 1 MeV. (9.70)

ΓSM
dd

and ΓSM
bb

are each varied within their uncertainties as follows

R+
d = R+

s =
ΓSM

dd
+ σΓSM

dd

ΓSM
bb

− σΓSM

bb

Rb =
383.3

375.8
Rb (9.71)

R−
d = R−

s =
ΓSM

dd
− σΓSM

dd

ΓSM
bb

+ σΓSM

bb

Rb =
382.9

376.0
Rb. (9.72)

The uncertainties on the measurements are then evaluated by taking

σsys
Rbs

(Rd) =
|Rbs(R

+
d )−Rbs(R

−
d )|

2
(9.73)

σsys
Rbs

(Rs) =
|Rbs(R

+
s )−Rbs(R

−
s )|

2
(9.74)

σsys
Rb

(Rd) =
|Rb(R

+
d )−Rb(R

−
d )|

2
(9.75)

σsys
Rb

(Rs) =
|Rb(R

+
s )−Rb(R

−
s )|

2
(9.76)

σsys
Rc

(Rd) =
|Rc(R

+
d )−Rc(R

−
d )|

2
(9.77)

σsys
Rc

(Rs) =
|Rc(R

+
s )−Rc(R

−
s )|

2
. (9.78)
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TABLE 39. Uncertainties associated with Rd and Rs.

1996 1997-98 Combined

σsys
Rbs

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rbs
(Rs) < 0.00001 < 0.00001 < 0.00001

σsys
Rb

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rb
(Rs) < 0.00001 < 0.00001 < 0.00001

σsys
Rc

(Rd) < 0.00001 < 0.00001 < 0.00001
σsys

Rc
(Rs) < 0.00001 < 0.00001 < 0.00001

The uncertainties associated with Rd and Rs are given in Table 39.

9.13 Event Selection Bias and the Running b-mass Effect

The hadronic event selection scheme was designed to accept all flavors of

hadronic Z0 decays equally. In practice however, bb events and to a lesser degree

cc events are slightly favored over the other flavors. To avoid contamination from

leptonic events, we must live with this bias. As such, corrections to Rb and Rc

are estimated by subtracting the values for Rb and Rc calculated from the events

in the Monte Carlo generator from the values obtained after the hadronic event

selection scheme and the < 4-jet cut:

δRb(Event Selection Bias) = RGenerator
b −RH.E.S., <4 Jets

b (9.79)

δRc(Event Selection Bias) = RGenerator
c −RH.E.S., <4 Jets

c (9.80)

where RGenerator
q is the value of Rq at the generator level and RH.E.S., <4 Jets

q is the

value of Rq after the the hadronic event selection scheme and the < 4-jet cut.

The uncertainties associated with the two event selection biases are simply the
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statistical uncertainties from bionomial statistics on RGenerator
q and RH.E.S., <4 Jets

q

added in quadrature. See Table 42.

A large fraction of the overall event selection bias is due to the requirement

that considered events have less than four jets, and this part is defined as

δRb(< 4 Jet Cut) = RH.E.S.
b −RH.E.S., <4 Jets

b . (9.81)

It turns out that the four jet rate for bb events is affected by the b quark mass,

which has been measured by SLD [99] among others at mb(MZ) ≈ 3± 1 GeV.

The jet algorithms JADE, E0, Durham, and Geneva are iterative clustering

algorithms which begin with a set of final-state particles (partons in QCD calcu-

lations, charged tracks at the detector level) and cluster the pair of particles (i, j)

with the smallest value of a dimensionless measure yij into a single “protojet.” The

procedure is repeated until all the yij exceed the value of the jet resolution param-

eter ycut, at which point the protojets are declared to be jets. The algorithms differ

in the measure yij used and/or in the rule for recombining two clustered momenta.

Several studies were done where the mass of the b quark was varied in the

Monte Carlo generator JETSET, and the four jet rate for bb events was calculated.

These results were then compared with LO calculations of the four jet rate for bb

events as a function of b quark mass mb done by Arnd Brandenburg [100]. The

leading order calculation is known to differ from both the data and the next-to-

leading-order calculation by as much as 100%. The comparison is none-the-less

valid as it is the relative change in the four-jet rate as a function of mb – i.e. the
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TABLE 40. 4-Jet rate for bb events, ycut = 0.02.

Source Jet Algorithm mb f b
4

fb
4 (0)−fb

4 (mb)

fb
4 (0)

LO calculation E0 Parton 0 4.27% 0
LO calculation E0 Parton 3 GeV 4.03% 5.6%
LO calculation E0 Parton 5 GeV 3.65% 14.5%

JETSET JADE Parton 0 8.882± 0.028% 0
JETSET JADE Parton 3 GeV 8.492± 0.028% 4.4%
JETSET JADE Parton 5 GeV 7.415± 0.026% 16.5%
JETSET JADE Track 0 7.711± 0.027% 0
JETSET JADE Track 3 GeV 7.441± 0.026% 3.5%
JETSET JADE Track 5 GeV 7.369± 0.026% 4.4%

TABLE 41. 4-Jet rate for bb events with mb = 0 compared to uds events, ycut =
0.02.

Source Jet Algorithm fuds
4 f b

4
fuds
4 −fb

4 (0)

fb
4 (0)

JETSET JADE Parton 8.110± 0.035% 7.711± 0.027% 5.18%

last column in Table 40 – that we are interested in rather than the absolute value

of the four-jet rate.

Judging from the last column of Table 40, it appears that at the parton level

the dependence of the four jet rate for bb events on b quark mass mb in JETSET is

approximately correct and suggests that JETSET is mimicking the effect of the b

mass in the leading order calculation rather nicely. The effect is diluted somewhat

at the track level.

There is a B hadron phase space effect even when mb = 0 which causes the

four jet rate f b
4(mb = 0) and fuds

4 to be different. To compute a correction, we

wish only to scale that part of the < 4 jet event selection bias, δRb(< 4 Jet Cut),

which is due to the b-mass effect.
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The correction can be estimated by scaling the change in Rb from the < 4

jet cut:

δRb(b-mass effect) = δRb(< 4 Jet Cut)× Scale Factor (9.82)

Scale Factor =
b Phase Space Effect + Corrected b-mass Effect

b Phase Space Effect + b-mass Effect
(9.83)

where

b Phase Space Effect =
fuds

4 − f b
4(0)

f b
4(0)

= 5.18% (9.84)

b-mass Effect =
f b

4(0)− f b
4(5 GeV)

f b
4(0)

= 4.4%. (9.85)

The corrected b-mass effect is calcuated in two different ways. The first is to scale

the b-mass effect by the four-jet rate difference assuming mb = 3 GeV from the

LO calculation,

Corrected b-mass Effect = b-mass Effect


(

fb
4 (0)−fb

4 (3 GeV)

fb
4 (0)

)
(

fb
4 (0)−fb

4 (5 GeV)

fb
4 (0)

)


LO Calculation

(9.86)

= 4.4%

[
5.6%

14.5%

]
= 1.7% (9.87)

or directly using the Monte Carlo track level four-jet rate

Corrected b-mass Effect =

[
f b

4(0)− f b
4(3 GeV)

f b
4(0)

]
= 3.5%. (9.88)
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TABLE 42. Corrections and systematic uncertainties associated with the event
selection bias and the running b-mass effect.

1996 1997-98 Combined

δRb(Event Selection Bias) −0.00151 −0.00188
δRb(Running b-mass) 0.00035 0.00024
σsys

Rb
(Event Selection Bias) 0.00136 0.00056 0.00067

σsys
Rb

(Running b-quark mass) 0.00034 0.00024 0.00025

δRc(Event Selection Bias) 0.00042 0.00001
σsys

Rc
(Event Selection Bias) 0.00123 0.00051 0.00061

The correction is taken as the average of the two, and the uncertainty as half the

difference:

Scale Factor =
b Phase Space Effect + Corrected b-mass Effect

b Phase Space Effect + b-mass Effect
(9.89)

=
5.18% + (2.6%± 0.9%)

5.18 + 4.4%
= 81%± 9%. (9.90)

9.14 Corrections to the Monte Carlo Simulation

The corrections to the tracking efficiency and track resolution were discussed

in their respective sections in Chapter V. The analysis was run with and without

these corrections applied, and the uncertainty was taken as half the difference.

σsys
Rbs

(Tracking Efficiency Correction) =
|Rbs −Rbs(Correction off)|

2
(9.91)

σsys
Rb

(Tracking Efficiency Correction) =
|Rb −Rb(Correction off)|

2
(9.92)

σsys
Rc

(Tracking Efficiency Correction) =
|Rc −Rc(Correction off)|

2
. (9.93)
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σsys
Rbs

(Track Resolution Correction) =
|Rbs −Rbs(Correction off)|

2
(9.94)

σsys
Rb

(Track Resolution Correction) =
|Rb −Rb(Correction off)|

2
(9.95)

σsys
Rc

(Track Resolution Correction) =
|Rc −Rc(Correction off)|

2
. (9.96)

Because no track efficiency correction is made to the 1996 Monte Carlo, the sys-

tematic uncertainty is taken as zero.

The Monte Carlo distributions of the input parameters for the three strange

neural networks, the sNN, did not match the data exactly, and so the Monte Carlo

distributions were reweighted in order to match the data. The systematic uncer-

tainties were evaluated by running the analysis without reweighting the Monte

Carlo sNN input distributions, and were taken as half the difference of the mea-

surements with and without the sNN input reweighting. Table 43 shows these

uncertainties.

σsys
Rbs

(sNN Input Reweighting) =
|Rbs −Rbs(Reweighting off)|

2
(9.97)

σsys
Rb

(sNN Input Reweighting) =
|Rb −Rb(Reweighting off)|

2
(9.98)

σsys
Rc

(sNN Input Reweighting) =
|Rc −Rc(Reweighting off)|

2
. (9.99)
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TABLE 43. Systematic uncertainties associated with tracking efficiency and track
resolution.

1996 1997-98 Combined

σsys
Rbs

(Tracking Efficiency Correction) 0 0.00021 0.00018
σsys

Rbs
(Track Resolution Correction) 0.00039 0.00003 0.00008

σsys
Rbs

(sNN Input Reweighting) 0.00003 0.00002 0.00002

σsys
Rb

(Tracking Efficiency Correction) 0 0.00041 0.00035
σsys

Rb
(Track Resolution Correction) 0.00094 0.00003 0.00016

σsys
Rb

(sNN Input Reweighting) 0.00004 0.00002 0.00003

σsys
Rc

(Tracking Efficiency Correction 0 0.00014 0.00012
σsys

Rc
(Track Resolution Correction 0.00119 0.00033 0.00045

σsys
Rc

(sNN Input Reweighting) 0.00046 0.00002 0.00008

9.15 Uncertainties associated with the IP

For purposes of assigning a systematic uncertainty, the event YT is evaluated.

There is evidence of a non-Gaussian tail in the 1996 data (Figure 47, lower left).

As has been done in the past, this tail is represented by a second Gaussian IP

spread with a σ = 100 µm for 0.5% of the events. The systematic uncertainty is

estimated by smearing the entire Monte Carlo sample to a Gaussian with σ = 100

µm, and then recombining this smeared sample, using a weight of 0.5% with the

unsmeared sample, using an event weight of 99.5%. The uncertainty is taken as

half the difference:

σsys
Rbs

(〈IP〉 Tail) =
|Rbs −Rbs(0.5%, 100µm IP smear)|

2
(9.100)

σsys
Rb

(〈IP〉 Tail) =
|Rb −Rb(0.5%, 100µm IP smear)|

2
(9.101)

σsys
Rc

(〈IP〉 Tail) =
|Rc −Rc(0.5%, 100µm IP smear)|

2
. (9.102)
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TABLE 44. Systematic uncertainties associated with 〈IP 〉 tail.

1996 1997-98 Combined

σsys
Rbs

(〈IP 〉 Tail) 0.00003 0 < 0.00001

σsys
Rb

(〈IP 〉 Tail) 0.00022 0 0.00003

σsys
Rc

(〈IP 〉Tail) 0.00026 0 0.00004

As this is considered a conservative estimate, no correction is made to the Monte

Carlo.

The 1997-98 data on the other hand shows virtually no evidence of a non-

Gaussian tail (Figure 47, upper left). Therefore, no systematic uncertainty is taken

for the 1997-98 data. These uncertainties are given in Table 44.
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CHAPTER X

CONCLUSIONS

The defining characteristic of the scientific method is the principle that ob-

servation is the sole arbiter of whether something is so or not. Richard Feynman

says that “if there is an exception to any rule, and if it can be proved by ob-

servation, that rule is wrong” [101]. The rules which collectively constitute the

Standard Model make precise predictions for numerous Z0 pole observables, and

this analysis has precisely tested three of those predictions. The relevant Standard

Model predictions may be summarized as follows

RSM
bs = 5.8× 10−8 (10.1)

RSM
b = 0.21569± 0.00016 (10.2)

RSM
c = 0.17230± 0.00007. (10.3)

The results presented in this analysis, summarized for comparison, are as follows:

Rbs = −0.00017± 0.00087± 0.00048 (10.4)

Rb = 0.21645± 0.00131± 0.00111 (10.5)

Rc = 0.17588± 0.00432± 0.00352. (10.6)

Agreement with the Standard Model is clearly quite good.
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It is desirable at this point to make a statement about the range of values

of Rbs that likely include the true value, but because the true value cannot be

negative, this innocently conceived objective is fraught with subtleties. Problems

arise because Rbs is small and the uncertainty on the measurement is large by

comparison. As is the case here, the result of a given experiment will often be

negative – that is a necessary and natural consequence of statistical fluctuations.

We can set an upper limit by excluding the region above µ + δ where µ is the

measured value and t is the true value. For an uncertainty σ, the confidence level

(or probability) that the true value t will fall below µ+ δ is determined as follows:

Because the true value of Rbs is non-negative, the physical region P and unphysical

region U are defined as

P =
1√
2πσ

∫ ∞

0
e−

(t−µ)2

2σ2 dt (10.7)

U =
1√
2πσ

∫ 0

−∞
e−

(t−µ)2

2σ2 dt = 1− P. (10.8)

We wish to scale the physical region P by the desired confidence level (see illus-

tration in Figure 95), and then determine the corresponding δ:

Confidence Level× P + U =
1√
2πσ

∫ µ+δ

−∞
e−

(t−µ)2

2σ2 dt. (10.9)

There are tables based on equation 10.9 for looking up the corresponding value

of δ (see for example the CRC Standard Mathematical Tables [102]). Adding the

statistical and systematic uncertainties in quadrature, the measurement presented

here is Rbs = −0.171σ and corresponds to a physical region P = 0.4325. A 90%

confidence limit corresponds to δ = 1.71σ; a 95% confidence level limit corresponds
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t

FIGURE 95. Illustration of a Gaussian showing the physical and unphysical regions
P and U respectively. Only the physical region is scaled by the desired confidence
level, C.L., in the determination of δ in the upper limit µ+ δ.

to δ = 2.02σ. Upper limits on Rbs at the 90% and 95% confidence levels are

90% Confidence Level Upper Limit: Rbs < 0.00153 (10.10)

95% Confidence Level Upper Limit: Rbs < 0.00184. (10.11)

An upper limit on Rbs may also be determined using the method suggested by

Feldman and Cousins [103] for Gaussian errors with a bounded physical region

and yields for the upper limits at the 90% and 95% confidence levels

90% Confidence Level Upper Limit: Rbs < 0.00147 (10.12)

95% Confidence Level Upper Limit: Rbs < 0.00179. (10.13)

The limits resulting from the two different methods are negligibly different, and in

any case are consistent with the Standard Model.
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To this author’s knowledge, this is the only existing measurement of Rbs at

the Z0 resonance. However, two of the LEP experiments, DELPHI and L3, have

made measurements of Rbq where q = d, s at the Z0 [104]:

DELPHI: Rbq = 0.00013± 0.00061± 0.00055 (10.14)

L3: Rbq = −0.0008± 0.0015± 0.0032. (10.15)

A combined upper limit for these measurements, as reported at DPF ’99 [104], is

Combined LEP 90% Confidence Level Upper Limit: Rbq < 0.00240.

(10.16)

The results of this analysis are compared graphically with the results from the two

LEP measurements in Figure 96.

The present state of Rb and Rc shows agreement between theory and exper-

iment that goes well beyond just this analysis. Figures 97 and 98 summarize the

latest results as reported by the LEP Electroweak Working Group (LEPEWWG).

The results from this analysis have been added at the bottom of each plot for

comparison.

The SLD experiment finished taking data in 1998, and with LEP and its

four experiments having been disassembled to make room for the LHC, it seems

likely that these measurements will be the last of their kind on the Z0 resonance

for some time to come. But as we reach the denouement, the Standard Model still

appears to be doing just fine.
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FCNC Measurements
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FIGURE 96. Measurements of Rbq and corresponding 90% confidence upper limits
from LEP compared with the measurement of Rbs and corresponding 90% confi-
dence upper limit from this analysis.
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FIGURE 97. The latest measurements of Rb.
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[67] Torbjörn Sjöstrand. Special thanks for his valuable assistance.

[68] W. K. H. Panofsky and M. Breidenbach. Accelerators and detectors. Rev.
Mod. Phys., 71(2):S121–S132, March 1999.



259

[69] M. Tigner. Possible apparatus for electron clashing beam experiments. Il
Nuovo Cimento, 37(3):1228–1231, June 1965.

[70] Nan Phinney. Lessons learned from the SLC. In Proceedings of the
Symposium on Electron Linear Accelerators in Honor of Richard B. Neals
80th Birthday, 1997. SLAC-R-526.

[71] Roger Erickson, editor. SLC Design Handbook, Stanford, CA, December 1984.
Stanford Linear Accelerator Center.

[72] J. Kent et al. Precision measurement of the SLC beam energy. In IEEE
Particle Accelerator Conference, Chicago, IL, 20-23 March 1989. IEEE.
SLAC-PUB-4922.

[73] P. C. Rowson et al. Calibration of the WISRD spectrometer with a Z peak
scan. SLD Note 264, Stanford Linear Accelerator Center, Stanford, CA, 6
July 2000.

[74] D. C. Carey. The Optics of Charged Particle Beams, volume 6 of Accelerators
and Storage Rings. Harwood Academic Publishers GmbH, Chur,
Switzerland, 1992.

[75] P. Raimondi et al. New techniques for emittance tuning in the SLC. In XIX
International Linear Accelerator Conference, Chicago, IL, 23-28 August
1998.

[76] P. Raimondi et al. Luminosity upgrades for the SLC. In Particle Accelerator
Conference (PAC99), New York, 29 Mar - 2 Apr 1999. IEEE.
SLAC-PUB-8042.

[77] Draft version of the damping ring chapter of the entire SLC performance
summary, 1 May 1999.
http://www.slac.stanford.edu/grp/ad/addr/home.html.

[78] R. Assmann et al. SLC – the end game. In Seventh European Particle
Accelerator Conference, EPAC 2000, Austria Center Vienna (AVC),
Vienna, Austria, 26 to 30 June 2000. Institute of High Energy Physics of
the Austrian Academy of Sciences.

[79] V. Balakin, A. Novakhatsky, and V. Smirnov. Transverse beam dynamics. In
Proceedings of the 12th International Conference of High-Energy
Accelerators (HEAC83), Batavia, IL, 1983. Fermilab.

[80] SLACspeak: Glossary of SLAC-related and HEP-related acronyms and terms.
http://www.slac.stanford.edu/spires/slacspeak/.



260

[81] Nan Phinney. Private communication.

[82] J. J. Russell. Private communication.

[83] P. N. Burrows, H. Park, K. T. Pitts, and J. M. Yamartino. Estimate of
combined triggering and selection efficiency for hadronic events. SLD Note
229, Stanford Linear Accelerator Center, Stanford, CA, 13 January 1993.

[84] J. M. Yamartino. Hadronic event selection using the lac. SLD Physics
Note 14, Stanford Linear Accelerator Center, Stanford, CA, 11 April 1992.

[85] Jeffrey D. Richman. Heavy quark physics and CP violation. In R. Gupta,
A Morel, E. de Rafael, and F. David, editors, Probing the Standard Model
of Particle Interactions, Les Houches, Session LXVIII, New York, 1997.
Elsevier.

[86] E. Presley. Private communication.

[87] B. Denby. Neural networks in high energy physics: A ten year perspective.
Comput. Phys. Commun., 119:219–231, 1999.

[88] Andreas Zell, , et al. SNNS, Stuttgart Neural Network Simulator User
Manual, Version 4.2. University of Stuttgart Institute for Parallel and
Distributed High Performance Systems and University of Tübingen
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