SLAC-R-727

A Study of e+ e- -> pi+ pi- pi0 pi0 at 3.090 GeV Center of Mass Energy^{*}

John Francis McGowan III

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

SLAC-Report-727

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL

JOHN FRANCIS MCGOWAN III

B.S., California Institute of Technology, 1985 M.S., University of Illinois at Urbana-Champaign, 1986

٠

THESIS

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

DECEMBER 1992

WE HEREBY RECOMMEND THAT THE THESIS BY JOHN FRANCIS MCGOWAN III A STUDY OF $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ AT 3.090 GEV CENTER OF MASS ENTITLED_ **ENERGY** BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Chalen Director of Thesis Research Head of Department ommittee on Final Examination[†] Thaler Chairperson Fach Required for doctor's degree but not for master's.

1.517

A STUDY OF $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ AT 3.090 GEV CENTER OF MASS ENERGY

John Francis McGowan III, Ph.D. Department of Physics University of Illinois at Urbana-Champaign, 1993 Jon J. Thaler, Advisor

The process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ is studied at a center of mass energy of 3.090 GeV, the J/ψ center of mass energy, by the **Mark III** detector at SPEAR. The branching ratios for $\psi \rightarrow \pi^+\pi^-\pi^0\pi^0$ and several background process are measured: $\psi \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$, $\psi \rightarrow K^\pm K^\mp\pi^0\pi^0$, and $\psi \rightarrow K^\pm\pi^\mp\pi^0\pi^0$. Upper limits on $e^+e^- \rightarrow \rho^+\rho^$ are derived. Evidence is presented that the isobar model of low-energy hadronic interactions may not apply to $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$. Suggestions for further research are made.

Acknowledgements

I wish to acknowledge the assistance of the other members of the Illinois group at SLAC: my advisor, Jon J. Thaler, Gary Gladding, Bob Eisenstein, Joe Izen, Basil Tripsas, Tim Freese, and Walid Majid. I also wish to acknowledge a number of people with whom I worked on the SLD project who contributed to my education as a physicist in many ways: Ron Cassell, Sridhara Dasu, Nety Krishna, Gary Bower, Ray Cowan, and Terry Reeves. I want to thank Bill Lockman for his considerable advice regarding the analysis in this thesis. Several others provided valuable advice and discussion of the analysis: Bill Dunwoodie, Liang Peng Chen, Walter Toki, Larry Parrish, and Jon Labs. Ramon Berger provided invaluable assistance by keeping the **Mark III** software system operational on the IBM mainframes at SLAC. I also want to thank Michele Scarlatella, whom I never had the privilege to meet. Especially, thanks to my family for their support. Finally, I want to thank everyone who worked on the **Mark III** and SLD experiments at SLAC.

This research was supported in part by the U.S. Department of Energy, under contract DE-AC02-76ER01195 and contract DE-AC02-76ER40677.

iv

Contents

Chapte	r 1 In	troduction	1
1.1	Form	Factors	6
1.2	QCD	Predictions for Form Factors	11
	1.2.1	Brodsky and LePage Argument	17
	1.2.2	Predictions Based on LePage and Brodsky	19
	1.2.3	Chernyak and Zhitnitsky Calculations	19
1.3	Low-	Energy Strong Interaction Phenomenology	22
	1.3.1	Resonances	23
	1.3.2	The S Matrix	26
•	1.3.3	Partial Wave Analysis	27
	1.3.4	The Isobar Model	28
	1.3.5	Empirical Evidence for Isobar Model	32
	1.3.6	The <i>a</i> ₁ Resonance	35
1.4	Conc	clusion	40
Chapt	er2 F	Experimental Apparatus	41
2.1	Accel	lerator and Storage Ring	41
2.2	The	Mark III Detector	43
	2.2.1	Beam Pipe and Multiple Scattering	46

2.2.2	Inner Trigger Chamber (Layer 1)	46
<u> </u>	Central Drift Chamber	46
2.2.4	Time of Flight System	48
2:2.5	Shower Counters	49
2.2.6	Magnet	50
. 2.2.7	Muon Detection System	51/
. 2.2.8 🔨	Luminosity Monitoring	§ 52
, 2.2.9	Trigger	52
2.2.10	Data Acquisition	53
2.2.11	MarkIII Run History	54
2.3 Offlin	e Analysis,	54
2.3.1	Track Finding and Fitting	58
2.3.2	Kinematic Fitting	60 [\]
Chapter 3 E	vant Solection Backgrounds and Two Prong	
Branchir	ar Ratios	65
2.1 Infra	duction	65
37 The F		66
,3.2 Inel	Event Selection Criteria	68
	General Properties of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ Data	- 76
3.2.2	Efficiency Estimation	86
- 324	Systematic Errors on $\pi^+\pi^-\pi^0\pi^0$ Branching Ratio	90
3.2.4	Alternative Shower Counter Cuts	91
33 Back	ground Processes	93
331	Fake Pion Backgrounds	93
332	$\mathbf{e}^+ \mathbf{e}^{-*} \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0$	94
0.0.2		

vi

	3.3.3 Systematic Errors on $\psi \to \pi^+ \pi^- \pi^0 \pi^0 \pi^0$ Branching Ratio	97
· ·	3.3.4 $\psi \rightarrow \gamma \eta_{c}$	97
	$3.3.5 \qquad \psi \to \gamma \rho \rho \qquad \dots \qquad \dots$	99
	3.3.6 The $\psi \to \mathbf{K}^{\pm} \mathbf{K}^{\mp} \pi^{0} \pi^{0}$ Background Process	99
	3.3.7 Systematic Errors on the $K^{\pm}K^{\mp}\pi^{0}\pi^{0}$ Branching Ratio.	102
	3.3.8 $\psi \rightarrow \mathbf{K}^{\pm} \pi^{\mp} \pi^{0} \pi^{0}$.	103
	3.3.9 Systematic Errors on $K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$ Branching Ratios	106
	3.3.10 Contribution of $K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$ to $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ Events	108
3.4	Conclusion	109 -
Chart	ar 4. The Dhusies Models	
Chapte		111
4.1	Four Pion Phase Space	112
4.2	The Lund Model	113
4.3	Channel Likelihood Models	115
	4.3.1 Introduction	115
	4.3.2 A Simple Channel Likelihood Model	1,17
4.4	Fully Interfering Models	119
4.5	Extended Likelihood	121
4.6	Lorentz Invariant Amplitude Formalism	123
	4.6.1 Mass Dependent Widths	129
	4.6.2 Very Simple Case $S \rightarrow SS$	130
	4.6.3 Simple Case $V \rightarrow PP$	130
-	4.6.4 $e^+e^- \rightarrow \gamma^* \rightarrow \pi^+\pi^-$	130
	$4.6.5 e^+e^- \to \rho\pi' \dots \dots \dots \dots \ddots \dots \ddots \dots \dots \dots$	131
4.7	Rho Rho Mode	132
	4.7.1 Incorporating Rho Decay in Amplitudes	134

vii

1

	4.7.2	Simplification of $\rho^+ \rho^-$ Amplitudes	135
4.8	$a_1\pi$ M	ode	137
4.9	Rho P	i Pi Modes	139
4.10	Omega	a Pi Mode	140
4.11	Summ	ary of Chapter	143
Chapte	er5 F	it Results and Discussion	144
5.1	Introd	luction ,	144
5.2	Phase	Space	144
. (5.2.1	Comparison of Data and Phase Space	145
	5.2.2	Mass Distributions	146
	5.2.3	Cosine of Angle Between Decay Planes	150
	5.2.4	Cosine of DiPion Angle	153
	5.2.5	Cosine of Pion Angle with DiPion Boost	156
	5.2.6	Comparison of Phase Space and Phase Space	159
	5.2	Mass Distributions	159
	5.2.8	Cosine of Angle Between Decay Planes	163
	5.2.9	Cosine of DiPion Angle	166
	5.2.10	Cosine of Pion Angle with DiPion Boost	169
5.3	Lund	JETSET 6.3 Monte Carlo	172
	5.3.1	Comparison of Lund and Data	173
	5.3.2	Cosine of Angle Between Decay Planes	176
	5.3.3	Cosine of DiPion Angle	179
	5.3.4	Cosine of Pion Angle with DiPion Boost	182
	5.3.5	Comparison of Lund to Lund	185
	5.3.6	Mass Distributions	185

1-2

1

viii

		•
	5.3.7 Cosine of Angle Between Decay Planes	189
. •	5.3.8 Cosine of DiPion Angle	192
	5.3.9 Cosine of Pion Angle with DiPion Boost	194)
	5.3.10 Physics in Lund	197
5.4	Simple Channel Likelihood Models	198
	5.4.1 Simple Rho Model	199
	5.4.2 Verification of the Fit Procedure for Simple Rho Model	203
	5.4.3 Simple a_1 Model	211-
	5.4.4 Verification of Fit Procedure for Simple a1 Model	216
5.5	Simple Fully Interfering Lorentz Invariant Amplitude Model	223
5.6	Conclusions	229
	5.6.1 Possible Explanations for Fitting Difficulty	229
	5.6.2 Suggestions for Future Analysis	230
Chapt	er 6 Upper Limit on Rho Form Factors	232_
6.1	Introduction	232
6.2	The $\rho^+ \rho^-$ Models	233
	6.2.1 Introduction	233
*	6.2.2 Comparison of Data and $\rho^+\rho^-$ Models	233
	6.2.3 High Mass Bump In $\rho^+ \rho^-$ Distributions	243
6.3	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ Phase Space	246
6.4	$\rho\pi\pi$ Model	246
6.5	Lund Model	250
6.6	Naive Upper Limit	253
6.7	Upper limits with Interference	258
	6.7.1 Determining an Upper Limit With Interference	258

ix

6.7.2 Upper Limits Summary	262
Chapter 7 Conclusion	264
7.1 Definite Results	264
7.2 Speculations	265 .
7.3 Suggestions for Future Research	266
Appendix A	269
Appendix B	276
References	295 -
Vita	306

1.

х