A Measurement of D+ and Ds Production in e+ e- Annihilation at $\sqrt{s}=29 \mathrm{GeV}$

Derrell Durrett
Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

SLAC-Report-725

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

[^0]
A Measurement of D^{+}and D_{s} Production in $e^{+} e^{-}$Annihilation at $\sqrt{s}=29 \mathrm{GeV}$

by

Derrell Durrett

B. S., Texas Tech University, 1986

A thesis submitted the Faculty of the Graduate School of the.

- University of Colorado
ill partial fulfillment of the requirements for the degree
Doctor of Philosophy
Department of Physics
1993

This thesis for the Doctor of Philosophy degree by

- Darrell Durrett
has been approved for the
Department of Physics
by
$\frac{\text { virean T. tad }}{\text { William T. Ford }}$

. Date April 26,1993

Durrett, Derrell (Ph.D., Physies)
A Measurement of D^{+}and D_{s} Production
in $c^{+}{ }^{-}$. Annihilation at $\sqrt{s}=29 \mathrm{GeV}$
Thesis directed by Professor William T. Ford

Measurements have been made of the production rates of D^{+}and ' D_{s} mesons via the channels $D^{+} \mathscr{F}_{K^{*}}^{* 0} \ell^{+} \nu_{\ell}$ and $D_{s} \rightarrow \phi \pi$ in $e^{+} e^{-}$annihilation at $\sqrt{s}=29 \mathrm{GcV}$ in $220 \mathrm{pb}^{-1}$ of data collected by the Mark II detector. The measurements assume the current branching ratios, measured predominantly at $\sqrt{s} \simeq 10 \mathrm{GeV}$ and by fixed target experiments. Measurements of the total production cross-sections times the appropriate branching ratios; which are independent of any other measurements, and an upper limitfor the ratio of branching ratios, $\Gamma\left(D_{s} \rightarrow \phi\left(\bar{\nu}_{\ell}\right) / \Gamma\left(D_{s} \rightarrow \phi \pi\right)<.74\right.$ at 90% confidence level are prosented.

It is found that the production cross-section of D^{+}mesons is $\sigma\left(e^{+} e^{-} \rightarrow\right.$ $\left.D^{+} X\right)=.24 \pm .06 \pm .04 \mathrm{nb}$ while the production cross-section for D_{s}. mesons is $\sigma\left(e^{+} e^{-} \rightarrow D_{s} X\right)=.10 \pm .04 \pm .03 \mathrm{nb}$. This corresponds to $.23 \pm .0\left(5 \pm .06 D^{+} /\right.$hadronic event and $.09 \pm .04 \pm .02 D_{s} /$ hadromic event.

Part III, "Permanent Waves"
.
Sicience, like Nature
Must also be tamed '.
With a view towards its preservation
Given the same state of integrity
It will surely serve us well

$$
<
$$

-.. N̈atural Science, by Neil Peart
from the LP Permanent Waves, by Rush (1980)

I can live with doubt and uncertainty, I think it. is much more interesting to live not knowing than to have answers which might be wrong. I don't feel frightened by not knowing things, by being lost in a mysterious. universe [that is] without any purpose, which is the way it really is, só far as I can tell. It doesn't frighten me.

- Richard P. Feynman 1918-1988

ACKNOWLEDGMENTS

This thesis, and many others, would not have been possible except for the combined efforts of many people. First, the Mark II Collaboration, which, in its many incarnations - built and operated the detector, wrote software, and pored over output. It is their work I . have built from, especially those who worked on lepton identification. Specifically, I would like to thank René Ong, Andrew Weir, Paul Weber, and Dean Hinshaw. I have never met René or Andrew, but they have been willing to help via E-mail even though they didn't know me from Adam. Paul and Dean were always, helpful; with everything from teaching me W. opertite the detector to helping me to understand the CUTHESIS macros to leading me through the maze of software. Tricia Rankin was a joy to work with despite the absurdity and drudgcry of spending six hours at a time on the phone with someone half a continent away to solve a problem: that turned out to be an extra piece of hardware. Spencer Klein deserves special mention for posing the problem of D_{s} decays when there were no obvious choices for a thesis, and not much hope for data from the SLC. He has been enormously helpful and demenstrated keen insight, many times helping me to understand and better define the prohlems I faced. Charlotte Hee has also helped in innumberable ways, even though she has never met me, in iracking down problems in the Mark Il software. My advisor, Bill Ford, deserves many thanks for taking me on as a student when he did. I've been a burden, being so late in finishing, and he certainly didn't have to take me on when I needed out of a really tight spot. And last, though hardly Yeast, I owe some debt of gratitude to the taxpayers of the United States and the state of Colorado, who, through the Department of Energy and Her University of Colorado, have financed my education as a physicist. Muchas gracias.

I Thatik Will Johns, Steve Culy, and John Cumalat of E-687 for many stimulating physics discussions, ofton giving me new insights into my own analysis. Also, I want to thank Tom decrand ind Jimmie lees, the best of the many fine teachers I have had over the years.

Onfis lime in graduate school is certainly not all work, though, and I definitely owe a debt of gratitude to so many people who've made my time in Boulder and California not just bearable but fim, not just worthwhile, but exciting. In Boulder: Matt Kohler *
and Bill llowingh, for their friendship and seemingly endless and stimulating discussions about. Well. everything; Susan Hoffmeister for her friendship, support (especially when I

- thought I was getting tossed out), and a fabulous summer exploring the Bay Area; Steve C'uly. for (re)introducing me to TaeKwon-Do, the CU TaeKwon-Do Club and still more \checkmark hours of cussing and discussing, despite his frightfully accurate prophecy concerning me; Ray Ladbury, Janice Enàgonio; and Rich Loft, for fobbing off the mantle of HEP graduate students on me (l wonder who I can dump it on?); Mark Eickhoff for several 14ers; Will Johns for many more hours of talking, especially about our fates; and the many; many people who play Ulimate here in Boulder. In California: my D\&D buddies, Anthony Szumilo (who also wrote a fahulous editor), Terry Reeves, ahd Steve and Sheila Meyer (;Viva la California!); Alice lBean and Jenny Huber, who, besides being good friends, turned SLAC, and me, on to Ultimate, and the rest of the \$LAC Glimate crowd; Tony Johnson for his legendary partics, including a special one where I met my wife (did it have to be on Tax Day?): Ray (:owan. for his TyX genius, without whom this thesis would be ugly, not just dull; and Jan Latuber, who saved me by moving to California-just as I thought I might go insane and axr murder my housemates, giving me a really good excuse to move out (did you ever tell ('hristin' and Udo'l was joking?). Several other people deserve mention just on general principles, including Margrét, Sherri, Keith,' Ray, Kerry, Heather \& Dave, Michelle, Angela, Don (the Juan), Rob (Grrr! Yeah? Yeah!), Mike, and Shep. Also thanks to the Dallas Cowboys (finally another Super Bowl!), Chicago Cubs, Colorado Buffaloes (1990 NCAA (College Foothall Champs!), Texas Tech Red Raiders (nevermind football, how boun the Womm's biskebball tham? National Champs in 1993!), and, believe it or not, the Menlo ('olloge lighling Oaks (who provided live football at a time when I really needed diversion) for making ne hoarse on many an afternoon (nevermind either that my cats are afraid of me and my wifers hearing is shot) and thanks to Asparagus Nightmares, Small Dog Warning, KFMC: KTCO, KBCO, and KFMX for many weird nights. My (once) 1982 Schwinn LéTour, which is now more a hodgepodge of bike parts than a well-thoughtout bicycle, deserves credit for many hours of ajoyable though exhausting bill-climbing and the resulting few minutes wh thrills coming down, ven if the frame may not take too many more of those. At least we
mak it lo the beach.

It. is imperative that I thank my parents, Bob and Carolyn, who have always encouraged. 'and supported me, often when they fidn't have a ctue what I was talking about, and sometimes even when they did. Just for that they deserve recognition.

Finally, I, want to thank my wife, Teresa, for all of her love, support, and homemade beor. Maybe I could have done this without her, but I don't even want to think about baving 1 ricd. The last four years have been unbelievably wonderful. Now that the spectre of graduate sehool no longer hangs over my head, perhaps i can really enjoy her company, and finally start cooking her dinner again.

Wiataminnit. J-l one more thing: I seem to be the last Mark II graduate student to graduate, ${ }^{\text {Having squeczed out what little blood I found left in the turnip. Ça alors, I guess }}$ sumeone has to turn out the lights...
(click!)
Prace, yatl.

CONTENTS

CHAPTER

1. INTRODUCTION 1
1.1 The discovery of leptons 2
1.2 QED as the model for physical theories 3
1.2.1 QED as a gauge field theory 4
1.2.2 The weak nuclear force as a gauge theory and electroweak1.2.3 Leptons and the electroweak theory7
1.3 The quark model for hadrons 8
1.1 Quark mixing in the electroweak Sector 12
1.5 Hadron production in $\bar{e}^{+} e^{-}$collisions 14
1.5.1 Heavy quark fragmentation 15
1.6 The tool of semi-leptonic decays 16
1.6.1 An example of semi-leptonic decay theory 20
2. TIIE MARK II DETECTOR AT PEP 26
2.1 The PEP Storage Ring 26
2:2 Mark 11 detector 28
2.2.1 'The Vertex Chamber 30
2.2.2 The Drift Chamber 31
 33
2.2.4 The Lead-Liquid Argon Calorimeter 35
2.2.5 The Muon System 37
2.2 .6 Other systems 39
2.3 The Upgrade Detector 40
2.3.1 The Upgrade Vertex Detector 40
2.3.2 The Central Drift Chamber 11
2.3.3 The Solenoid Coil 12
2.3.4 Other New Upgrade systems 43
2.4 Trigger and Data Acquisition 44
2.4.1 Trigger 44
2.4.2 Data Ac̣quisistion and Control 46
3. 5 Event Reconstruction 46
2.5.1 Charged Particle Tracking 47
:2.7.2 Particle Energy Deposition 48
2.6 Monte Carlo Method Applied to Event Simulation 49
2.6,1 Event Generation 49
2.6.2 Deteçtor Sirnulation 52
4. LEPTON IDENTIFICATION 53
3.1 Electron ldentification 54
3.2 Muon Identification 56
3.3. Mis-identification and efficiencies 58
*. D_{S} AND D+ PRODÚCTION 59
1.1 Event selection 59
$1.2)^{\prime} \rightarrow{\overline{R^{*}}}^{* 0} \ell^{+} \nu_{\ell}$ analysis 61
4.2.1 Signal extraction 62
-1.2.2 Barkground estimation 65
A.3 $\quad D_{s} \rightarrow \phi \bar{\ell}_{\ell}$ analysis 68
a 4.3.1 Signal limit. 68
5. $1 D_{s} \rightarrow \phi \pi$ analysis 7
1.1.1 Signal extraction 71
1.1.2 Background estimation 72

TABLES

Table

1. Predictions by WSB for partial semi-leptenic D-decays. 23
\because Detection efficiencies for $D_{s} \rightarrow \phi \pi$ and $D^{+} \rightarrow \bar{K}^{*} \ell^{+} \nu_{\rho}$ 78°
2. Detection efficiencies for $D_{s} \rightarrow \phi \ell \bar{\nu}_{\ell}$ 79
3. L.mminosity corrections according to run period. so
4. Laminosity corrections according to analysis. 80
5. ('orrections to the mumber of events measured. 81
6. The ratio $R\left(D_{t}\right)$, as calculated from $\int \mathcal{E} d t$ and $N_{\text {corr }}$. 81
7. Systematic crrors in the $D^{+} \rightarrow \bar{K}^{* 0} \ell^{+} \nu_{\ell}$ and $D_{s} \rightarrow \phi \pi$ analyses $8: 3$
8. LUND ratios for total charm pseudoscalar meson production. 87
9. C'omparison' of results with previous work 89

FIGURES

Fign＂．
1．An Adler－I3cthe－Jackiw anamoly． 11
2．Diagrams showing the GIM mechanism in $K_{L}^{0} \rightarrow \mu^{+} \mu^{-}$． 13
3．The Wradiative，or spectator，diagram 17
1．D－meson decay diagrams． 18
7．（）werhead vew of SLAC site and PEP storage ring 27
（i． 1 h M MRKII PEPS detector 28
7．The PEPS vertex detector 31
\therefore The PliPs（routral Drift Chamber 33
リ．Ihe PlP＇：（＇entral Drift（hamber Wire Layout 33
10．The Lead－Liquid Argon Calorimeter Module． 36
11．The Lead－Liquid Argon Calorimeter Ganging Layer Scheme． 37
12．The PIPS muon chamber proportional tubes 38
13．（＇ros－sertional view of Upgrade Vertex Chamber 10
11．（ill arrangement for Upgrade Central Drift，Chambior 4
1．）．（＇ell wire pattern for Upgrade Central Drift Chamber 12
iti．Nia intariant mass cut distributions． 63
17．N $\bar{\pi}$ invarianil mass for $D^{+} \rightarrow \bar{K}^{\bullet 0} \ell^{+} \nu_{\ell}$ analysis． 6.1
（is．$N \pi$ invariant mass for $D^{+} \rightarrow \bar{K}^{\circ} \ell^{+} \ell_{\ell}$ analysis（simulated data）． （6．）．
1！．Kir vimulated background and wrong－sign data． 67
20． 1 ＇K invarjan mass for the D ）\rightarrow of $\bar{\nu}$ analysis（simulated data）． 69
 70
2！．$K^{+} ん^{\prime \prime}$ imvariant mass cut distributions． 72
23．$ハ^{+} K^{-}$invariant mass for the $D_{s} \rightarrow \phi \pi$ analysis（data）． 72
?1. $\mu^{+} \mu^{-\pi} \pi$ invariani mass for ϕ and sidebands. 72
25). $M^{+} M^{-}$invariant mass for the $D_{s} \rightarrow \phi \pi$ analysis (simulated data). 7.5
$26 . V_{\text {corr }}$ and $\left.R(D)_{s}\right)$ plots showing $90 \% \mathrm{c} .1$. 81
27 . $\Gamma\left(D_{,} \rightarrow \phi\left(\bar{\nu}_{\ell}\right) / \Gamma\left(D_{s} \rightarrow \phi \pi\right)\right.$ plot showing 90% c.l. 86
2s. $\quad \sigma\left(i^{+} c^{-} \rightarrow D_{s} X\right) \cdot \operatorname{Br}\left(D_{s} \rightarrow \phi\left(\bar{\nu}_{\ell}\right) 90 \%\right.$.c.l. upper limit. 91
1 *

[^0]: *Ph.D. thesis, University of Colorado, Boulder, CO 80309

