On the Measurability of $\mathbf{B}^{0}_{s} \mathbf{B}$ -bar $^{0}_{s}$ Mixing

Terry W. Reeves

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

SLAC-Report-724

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

^{*}Ph.D. thesis, Vanderbilt University, Nashville, TN 37235

Order Number 9324467

On the measurability of $B^0_s \bar{B}^0_s$ mixing

Reeves, Terry W., Ph.D.

Vanderbilt University, 1993

ON THE MEASURABILITY OF $B^0_s \ \overline{B}^0_s$ MIXING

By

Terry W. Reeves

Dissertation

Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

· in

Physics

May, 1993 Nashville, Tennessee

Approved: 1 . (x)In for g Nilelas

Date:
4/1/13
4/
4/12/43
4/14/93

ACKNOWLEDGMENTS

As I reflect over the past eleven years that I have spent working towards the day when this dissertation would be finished, I realize that I have been truly blessed by God with people that wanted to help me and to see me succeed in my endeavors. There are also the institutions that have allowed me to do the work for this dissertation. I know at the outset that I will not remember all who have meant something to me or all who have aided me. I humbly ask for forgiveness from those whom I have forgotten.

I should first like to thank Vanderbilt University for the opportunity of studying physics for the last eleven years. I would also like to than the Stanford Linear Accelerator Center for providing me with the facilities necessary for my research. I should also thank the National Science Foundation and the Department of Energy for the financial support without which none of this would have been possible.

I owe a great debt of gratitude to my advisor Robert Panvini. Without his aid, friendship, and patience, I would never have finished this work. I would also like to thank my committee for their comments and suggestions. They improved my work immensly. I also owe special thanks to John Venutti. His advice over the last few years has been greatly appreciated.

I would also like to thank the Lord God Almighty for creating this wondrous universe, placing me in it, and then giving me the glorious priviledge of studying it. It is a priviledge of which no one, least of all myself, is truly worthy.

It has been said that no man is an island. That is most definitely true of me. My life has been wondrously enriched by friends and acquantances. The two friends who have meant the most to me are Larry Hudson and Ray Cowan. I want to especially thank Larry for discussions about the important issues of life

ii

that have consistently forced me to look beyond the simple answers and to more fully understand the real truth. I met Ray at *SLAC* over eight years ago. In that , time, he has become my closest friend. In him, I had a friend that I could depend upon for any need at any time. The hours that we spent together will always be remembered with fondness. The positive impact he has had on my life will be felt for many years to come. I would also like to thank my friends, the Friday-Night Adventurers plus a couple of others, with whom I spent many a Friday night or a Saturday in rest and relaxation. Those times of fun gave me the strength to go back to my work.

I also wish to thank all of the people that I have know through Palo Alto. Baptist Church. There are so many people there with such big hearts that I know I can never name them all. However, there are some that I feel deserve special recognition. I will never be able to forget Pastor Jack McDaniel. I have never know any other pastor as well as I know him. He will always serve as an example of faithful service. I will also remember his encouragement. I also want to thank Kim and Steve Lutz for their friendship. They have come to mean a great deal to me. I will also remember Ken and Cathy Yinger for their friendship and concern for my spiritual health. Dave and Chris Tuttle also deserve special mention. It was Dave Tuttle who first helped me to get involved in ministry activities outside the church. I also wish to thank the church choir. With them, I have had many enjoyable hours of music. They are more capable than they realize. I only wish I had been skilled enough to have coaxed even more music from them. There are still so many other people from church that I have known that have meant so much to me that I am afraid that I would need to name everyone on the church rolls. The people there make it a very special place that I will always hold very close to my heart.

I also want to thank the people of CIC Ministries for the priviledge of ministering to the inmates at Elmwood. I would also like to thank the inmates for allowing me to minister to them and for their ministering to me. Through them

iii

I have not only learned much about what life can do to people, but also how God is at work in His children making us into something most glorious. There are many times when I believe that I left the jail more blessed than the men I was supposedly ministering to.

At last, I come to my family. It is impossible to properly thank my parents for their efforts and their care. They have been behind me all of the way. They have never faltered in their support. I owe them a debt of love and gratitude I never can repay. I would also like to thank my sister Dawn for her love and support. Finally, I would like to remember my grandparents. Although they both died early in my second year of graduate school, I still remember the pride they had for both of their grandchildren and the love that was impossible to mask. It is to them that I would like to dedicate this dissertation.

Millard Brewer Florine Brewer January 18, 1906 — August 24, 1983 March 7, 1907 — November 12, 1983

iv

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	
LIST OF TABLES	. vii
LIST OF ILLUSTRATIONS	$\ldots x$
Chapter	8 - L
I. INTRODUCTION	1
1.1 A Brief Overview of the Standard Model	2
1.2 The Charged Weak Force	3
1.3 Mixing Oscillations in Neutral B Mesons	7
1.4 Measurements of Mixing	11
II. DETECTOR DESCRIPTION	15
2.1 SLC	15
2.2 Overview of SLD	17
2.2.1 Vertex Detector	17
2.2.2 LUM	21
2.2.3 Drift Chambers	22
2.2.4 CRID	. 28
2.2.5 LAC	32
2.2.6 WIC	34
2.3 Detector Performance	37
2.3.1 Charged Particle Tracking	37
2.3.2 Particle Identification	40
III. GENERIC MONTE CARLO	43
3.1 Data Generation	45
3.2 Fitting Technique	48
3.3 Method of Study	53
3.4 Results from Fits	53
3.5 Summary of Results	54

· .		
,		
IV.	DETAILED SIMULATIONS	6
	4.1 Strategies for Event Selection	7
	4.2 SLD Monte Carlo and Analysis Programs	; <i>9</i>
	4.2.1 Physics Event Generators	0
	4.2.2 Detector Simulation	50
	4.2.3 Geometrical Vertex Finding	12
-	4.3 Description of Datasets	53
	4.4 Inclusive (3-prong, 3-prong) B_s Meson Tag	54
	4.4.1 Event Selection Criteria	55
,	4.4.2 Characteristics of Data Samples Produced	59
	4.5 Semi-inclusive (3-prong, 3-prong) B _s Meson Tag	30
	4.5.1 Event Selection Criteria	30
	4.5.2 Characteristics of Data Samples Produced	32
	4.6 Exclusive (3-prong, 3-prong) B_s Meson Tag	33
	4.6.1 Event Selection Criteria	<i>70</i>
	4.6.2 Characteristics of Data Samples Produced	95
	4.7 Fitting Studies '	96
	4.7.1 Modifications to the Fitting Technique	20
•	4.7.2 Data Samples for Inclusive and Semi-inclusive Fits 10	91
	4.7.3 Fitting Studies for the Inclusive and Semi-Inclusive Tags . 10	97
	4.7.4 Data Samples for Exclusive Fits	16
•	4.7.5 Fitting Studies for the Exclusive Tag	24
•	4.8 Testing the SLD Vertex Finder	25
	4.9 Testing the Initial Quark Content Tag	36
* 7		
v :	SUMMARY AND DISCUSSION	41
Ap	pendix	
А.	SUMMARY OF FIT RESULTS FROM CHAPTER 4 1	46
RF	FERENCES	66
		-
Ĭ.		

· vi

LIST OF TABLES

Table	Page
[1.1] A Summary of the Fundamental Particles of the Minimal Standard Model.	. 4
[2.1] A Summary of the VXD Geometry	. 19
[2.2] The Geometry of the CDC .	. 25
[2.3] The Expected Performance of the <i>CDC</i> from the <i>SLD</i> Design Report	. 38
[2.4] The Estimated Performance of the CDC Combined with the VXD Assuming a Perfect Position Measurement at a Radius of 3.15 cm and the Angular Resolutions from Table 2.3.	. 41
[2.5] The Expected Performance of the CRID	. 42
[3.1] The Maximum Value of x_s for Which the Fit Values of x_s in at Least Nine of the Ten Samples of an Ensemble Were Within 20% of the Input Value of x_s .	. 54
[4.1] A Summary of the $b\bar{b}$ Datasets	. 64
[4.2] The Number of B_s Mesons Found in the Generic $b\bar{b}$ Dataset for Various Choices of the Minimum Momentum and Flight	- ,
Path Cuts.	. 67
[4.3] The Effect of the Selection Criteria of the Inclusive Tag upon the Datasets.	68
[4.4] A Summary of Table 4.3.	. 68
[4.5] The Effect of the Selection Criteria of the Inclusive Tag upon the Datasets with Item 7 Removed from the Selection Pro-	
cess	69
[4.6] Contents of the Data Sample Obtained by Applying the Selection Criteria for the Inclusive (3,3) Tag to Generic bb Dataset.	71
[4.7] Resolution Parameters for (3,3) Signal Events From Each Dataset for the Inclusive Tag.	72
[4.8] The Effect of the Selection Criteria of the Semi-inclusive Tag	81

[4.9]	A Summary of Table 4.8.	81
[4.10]	Contents of the Data Sample Obtained by Applying the Selec- tion Criteria for the Semi-inclusive $(3,3)$ Tag to the Generic $b\ddot{b}$ Dataset.	83
[4.11]*	Resolution Parameters for $(3,3)$ Signal Events From Each Dataset for the Semi-inclusive Tag $\ldots \neq \ldots \ldots$	83
[4.12]	The Effect of the Selection Criteria of the Exclusive Tag upon the Datasets.	94
[4.13]	A Summary of Table 4.12	95
[4.14]	Resolution Parameters/for (3,3) Signal Events From Each Dataset for the Exclusive Tag.	96
[4.15]	Resolution Parameters for $(3,3)$ Signal Events From Each Dataset with Associated K^{\pm} Tag Removed from Selection Cri- teria for the Inclusive Tag	02
[4,16]	Fit Parameters for the Example Fits for the Inclusive and Semi-inclusive Tags Shown in Figures 4.12 through 4.15	108
[4.17]	Resolution Parameters for (3,3) Signal Events From Each Dataset for the Exclusive Tag	120
[4.18]	Fit Parameters for the Example Fits Shown in Figures 4.23 through 4.26.	125
[4.19]	The Number of B_s Mesons Found in the Generic $b\bar{b}$ Dataset for Various Choices of the Minimum Momentum, Minimum Flight Path, Beam Pipe Size, and Radii of First Measuring Plane Using the Simple Tracking and Vertex Finding Simula-	,
	tion	137
[4.20]	A Test of the Initial Quark Content Tag Used by a Compar- ison of the Results When Used With Both LUND 6.3 and HERWIG 5.4 Physics Event Generators.	138
[4.21]	Results of Initial Quark Content Tag Applied to Physics Event Generator Output of Subsets of Datasets Used in Analysis.	139
[5.1]	Tagging Efficiencies for Inclusive and Semi-inclusive Tags.	142
[5.2]	Tagging Efficiencies for Exclusive Tag.	143
[5.3]	Overall Performance of the Tags	143
[5.4]	The Number of Z^0 Decays Needed for a Signal Event for Each of the Three Tags	1//
	We the filled fage,	144

,

.

	provements.	•••	•.••••	• • • •	· · · ,		• • • •	• • • •		144
A.1]	A Summary	of the	Inclusive	and S	emi-in	clusive	Fits.			147
[A.2]	A Summary	of the	Exclusive	e Fits.	•	· · · · · · · · · · · ·	• • • • •	· · · · ·	 ,	158
•	•	•							٨	
	Ŧ	I								
						•		Ø		
		•				,				

· · ·

、 、 、

•

.

.

•

•

 $\mathbf{i}\mathbf{N}$

LIST OF ILLUSTRATIONS

Figur	e Page	
[1.1]	Typical Spectator Diagram for Semileptonic B Decay	
[1.2a]	Probability Density Function for the Process $ B^0(t=0)\rangle \rightarrow B^0(t)\rangle \rightarrow X$ with $x = 5$. 9	
[1.2b]	Probability Density Function for the Process $ B^0(t=0)\rangle \rightarrow \bar{B}^0(t)\rangle \rightarrow X$ with $x = 5, \ldots, 3$	
[1.3 <i>a</i>]	Feynman Box Diagram for Neutral B Meson Mixing	
[1.3b]	Feynman Box Diagram for Neutral B Meson Mixing	
[1.4]	Plot of $\chi = x^2/(2+2x^2)$ vs x	
[1.5]	Plot of the Number of B_s Decays with No Background De- cays Needed to Measure x_s with a Given Relative Error as a Function of x_s	
[2.1]	A Schematic of the SLC	
[2.2]	A Schematic of the SLD	
[2.3]	A Cutaway View of the VXD	. 18 5
[2.4]	A Slice of the VXD-Showing the Ladder Geometry	
[2.5]	A Ladder from the VXD	
[2.6]	The geometry of the LUM and MASC	
[2.7]	A Blowup of the LUM	
[2.8]	A CDC Drift Cell	
[2.9]	Electron Drift Paths in Previous Design of CDC Drift Cell 26	
[2.10]	The Superlayers in the $\dot{C}DC$	
[2.11]	A Blowup View of an Endcap Drift Chamber	
[2.12]	An EDC Drift Cell	
[2.13]	A Quadrant View of the CRID and ECRID	
[2.14]	A $CRID$ Drift Box	
[2.15]	A View of the LAC and $\tilde{E}LAC$	

.

[2.16]	Electromagnetic and Hadronic Modules for the Barrel LAC . 34,
[2.17]	A Section of the $ELAC$
[2.18]	A Schematic of a Barrel Octant of the WIC
[2.19]	A WIC Streamer Tube
[2.20]	The Current Drift Distance Resolution for the CDC as a Function of Drift Distance
[2.21]	A Picture of a Three Jet Event in the CDC
[2.22]	A Close Up of One of the Three Jets Shown in Figure 2.21
[3.1]	Flow Diagram Showing Generic Monte Carlo Technique
[3.2]	Flow Diagram Showing a More Detailed Monte Carlo Tech- nique for SLD Software
[3.3]	$\gamma\beta$ Spectrum Used as Input for Generating Decay Times
[3.4 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 1000 B_s Decays, 750 B_d Decays, and 250 B_u Decays
[3.4b]	Histogram of Proper Decay Times of Mixed Part of Data Sample Consisting of 1000 B_s Decays, 750 B_d Decays, and 250 B_u Decays
[3.5]	Plot of Fit Function versus x_3 for Data Sample Used in Figures 3.4
[4.1 <i>a</i>]	Measured Decay Length Spectrum for the Generic <i>bb</i> Dataset for the Inclusive Tag
[4.1 <i>b</i>]	Decay Length-Resolution for the Generic $b\bar{b}$ Dataset for the Inclusive Tag
[4.1c]	Measured $\gamma\beta$ Spectrum for the Generic $b\bar{b}$ Dataset for the Inclusive Tag
[4.1 <i>d</i>]	$\gamma\beta$ Length Resolution for the Generic $b\bar{b}$ Dataset for the Inclusive Tag
[4.1e]	Measured Proper Decay Time Spectrum for the Generic bb Dataset for the Inclusive Tag
[4:1f]	Proper Decay Time Resolution for the Generic bb Dataset for the Inclusive Tag
[4.2 <i>a</i>]	Measured Decay Length Spectrum for the Signal Event Dataset for the Inclusive Tag
	N NI

`•

ť

[4.2b]	Decay Length Resolution for the Signal Event Dataset for the Inclusive Tag	、 76
[4.2c]	Measured $\gamma\beta$ Spectrum for the Signal Event Dataset for the Inclusive Tag	77
[4.2d]	$\gamma\beta$ Length Resolution for the Signal Event Dataset for the Inclusive Tag	77
[4.2e]	Measured Proper Decay Time Spectrum for the Signal Event Dataset for the Inclusive Tag	78
[4.2 <i>f</i>]	Proper Decay Time Resolution for the Signal Event Dataset for the Inclusive Tag	78
[4.3a]	Proper Decay Time Resolution as a Function of Decay Length for the Generic $b\bar{b}$ Dataset for the Inclusive Tag	79
[4.3 <i>b</i>]	Proper Decay Time Resolution as a Function of Decay Length for the Signal Event Dataset for the Inclusive Tag	79
[4.4 <i>a</i>]	Measured Decay Length Spectrum for the Generic $b\bar{b}$ Dataset for the Semi-inclusive Tag	84
[4.4b]	Decay Length Resolution for the Generic $b\bar{b}$ Dataset for the Semi-inclusive Tag	84
[4.4c]	Measured $\gamma\beta$ Spectrum for the Generic $b\bar{b}$ Dataset for the Semi-inclusive Tag	85
[4.4d]	$\gamma\beta$ Length Resolution for the Generic $b\bar{b}$ Dataset for the Semi- inclusive Tag	85
[4.4e]	Measured Proper Decay Time Spectrum for the Generic bb Dataset for the Semi-inclusive Tag	86
[4.4f]	Proper Decay Time Resolution for the Generic $b\bar{b}$ Dataset for the Semi–inclusive Tag	86
[4.5a]	Measured Decay Length Spectrum for the Signal Event Dataset for the Semi-inclusive Tag	87
[4.5b]	Decay Length Resolution for the Signal Event Dataset for the Semi	87
[4.5c]	Measured $\gamma\beta$ Spectrum for the Signal Event Dataset for the Semi-inclusive Tag	88
[4.5d]	$\gamma \beta$ Length Resolution for the Signal Event Dataset for the Semi inclusive Tag	88

[4.5 <i>e</i>]	Measured Proper Decay Time Spectrum for the Signal Event Dataset for the Semi-inclusive Tag $\ldots \ldots \overset{gg}{sg}$
[4.5 <i>f</i>]	Proper Decay Time Resolution for the Signal Event Dataset for the Semi-inclusive Tag
[4.6a]	Measured Invariant Mass of Fully Reconstructed D_s Decays for Signal Events from Signal Event Dataset
[4.6 <i>b</i>]	Measured Invariant Mass of Fully Reconstructed B_s Decays for Signal Events from Signal Event Dataset
[4.7 <i>a</i>]	Measured Decay Length of B_s Decay Vertex Divided by Es- timated Error of Decay Length for Signal Events from Signal Event Dataset
[4.7b]	Measured Decay Length of Candidate B_s Decay Vertex Di- vided by Estimated Error of Decay Length for Noise Events from Signal Event Dataset
[4.8a]	Measured Decay Length Spectrum for the Signal Event Dataset for the Exclusive Tag
[4.8b]	Decay Length Resolution for the Signal Event Dataset for the Exclusive Tag
[4.8 <i>c</i>]	Measured $\gamma\beta$ Spectrum for the Signal Event Dataset for the Exclusive Tag $\dots \dots \dots$
[4.8d]	$\gamma\beta$ Length Resolution for the Signal Event Dataset for the Exclusive Tag
[4.8e]	Measured Proper Decay Time Spectrum for the Signal Event Dataset for the Exclusive Tag
4.8 <i>f</i>]	Proper Decay Time Resolution for the Signal Event Dataset for the Exclusive Tag
[4.9]	Proper Decay Time Resolution as a Function of Decay Length for the Signal Event Dataset for the Exclusive Tag
.10a]	Measured Decay Length Spectrum for the Signal Event. Dataset with Associated K^{\pm} Tag Removed from Selection Cri- teria for the Inclusive Tag
.10b]	Decay Length Resolution for the Signal event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Inclusive Tag

· xiii

[4.10 <i>c</i>]	Measured $\gamma\beta$ Spectrum for the Signal Event Dataset with Associated K^{\pm} Tag.Removed from Selection Criteria for the Inclusive Tag.	104
[4.10 <i>d</i>]	$\gamma\beta$ Length Resolution for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Inclusive Tag $\ldots \ldots \ldots$	104
[4.10e]	Measured Proper Decay Time Spectrum for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Cri- teria for the Inclusive Tag	105
[4.10 <i>f</i>]	Proper Decay Time Resolution for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Inclusive Tag	105
[4.11]	Flow Diagram Showing Hybrid Monte Carlo Technique Used to Generate Data Samples for the Inclusive and Semi-inclusive Fits	107
[4.12 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Elataset and x_s set to 5.0 and No Background Events.	109
[4.12 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and No Background Events.	109
[4.13 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and 1000 Background Events.	110
[4.13 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 1000 (3,3) Inclusive B_s Decays from the Sig- nal Event Dataset and x_s set to 5.0 and 1000 Background Events.	110
[4.14a]	Histogram of Proper Decay Time's of Unmixed Part of Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and $\dot{x_s}$ set to 5.0 and 2000 Background Events.	111
[4.14 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 1000 (3,3) Inclusive B_s Decays from the Sig-	

xiv

-	nal Event Dataset and x_s set to 5.0 and 2000 Background Events.	111
[4.15 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and 3000 Background Events.	112
[4.15 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 1000 (3,3) Inclusive B_s Decays from the Sig- nal Event Dataset and x_s set to 5.0 and 3000 Background Events.	112
[4.16]	Plot of Fit Function versus x_s for Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event \sim Dataset and x_s set to 5.0 and No Background Events	114
[4.17]	Plot of Fit Function versus x_s for Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and 1000 Background Events	114
[4.18]	Plot of Fit Function versus x_s for Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and 2000 Background Events.	115
[4.19]	Plot of Fit Function versus x_s for Data Sample Consisting of 1000 (3,3) Inclusive B_s Decays from the Signal Event Dataset and x_s set to 5.0 and 3000 Background Events	115
[4.20]	Difference in Fit Function For Best and Second Best Maxima Versus Difference in x_s Value from Input x_s Value for Best Maxima for Inclusive and Semi-Inclusive Fits.	116
[4.21 <i>a</i>]	The Number of Good Fits Out of 1 Fit Performed for the Inclusive and Semi-inclusive Fits with 5000 B_s Measurements.	117
[4.21 <i>b</i>]	The Number of Good Fits Out of 2 Fits Performed for the Inclusive and Semi-inclusive Fits with 2500 B_s Measurements.	117
[4.21 <i>c</i>]	The Number of Good Fits Out of 5 Fits Performed for the Inclusive and Semi-inclusive Fits with 1000 B_s Measurements.	118
[4.21d]	The Number of Good Fits Out of 11 Fit Performed for the Inclusive and Semi-inclusive Fits with 500 B_s Measurements	, 118

xv

[4.21e]	The Number of Good Fits Out of 22 Fit Performed for the Inclusive and Semi-inclusive Fits with 250 B_s Measurements	9
[4.22 <i>a</i>]	Measured Decay Length Spectrum for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Cri- teria for the Exclusive Tag	1
[4.22b]	Decay Length Resolution for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Exclusive Tag	1
[4.22c]	Measured $\gamma\beta$ Spectrum for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Exclusive Tag	2
[4.22d]	$\gamma\beta$ Length Resolution for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Exclusive Tag	2
[4.22 <i>e</i>]	Measured Proper Decay Time Spectrum for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Cri- teria for the Exclusive Tag	3
[4.22f]	Proper Decay Time Resolution for the Signal Event Dataset with Associated K^{\pm} Tag Removed from Selection Criteria for the Exclusive Tag :	29
[4.23 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and No Background Events	26
[4.23 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and No Background Events	26
[4.24 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 10 Background Events	27
[4.24b]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 10 Background Events	27
[4.25 <i>a</i>]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 20 Background Events	<i>28</i>

xvi

1

[4.25 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 20 Background Events
[4.26a]	Histogram of Proper Decay Times of Unmixed Part of Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 50 Background Events
[4.26 <i>b</i>]	Histogram of Proper Decay Times of Mixed Part of Data Sam- ple Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 50 Background Events
[4.27]	Plot of Fit Function versus x_s for Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and No Background Events.
[4.28]	Plot of Fit Function versus x_s for Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 10 Background Events
[4.29]	Plot of Fit Function versus x_s for Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 20 Background Events
[4.30]	Plot of Fit Function versus x_s for Data Sample Consisting of 100 (3,3) Exclusive B_s Decays with x_s set to 5.0 and 50 Background Events
[4.31]	Difference in Fit Function For Best and Second Best Maxima Versus Difference in x_s Value from Input x_s Value for Best Maxima for the Exclusive Fits
[4.32a]	The Number of Good Fits Out of 10 Fit Performed for the Exclusive Fits with 200 B_s Measurements
[4.32b]	The Number of Good Fits Out of 10 Fit Performed for the Exclusive Fits with 100 B_s Measurements.
[4.32c]	The Number of Good Fits Out of 10 Fit Performed for the Exclusive Fits with 50 B_s Measurements

.

. xvii

ngi) Nga s