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ABSTRACT OF THE DISSERTATION 

 

Plasma Wakefield Acceleration of an 

Intense Positron Beam 

 

by 

Brent Edward Blue 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2003 

Professor Chandrasekhar J. Joshi, Chair 

 

The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which 

possess a high acceleration gradient and a long interaction length for accelerating both 

electrons and positrons.  Although electron beam-plasma interactions have been 

extensively studied in connection with the PWFA, very little work has been done with 

respect to positron beam-plasma interactions.  This dissertation addresses three issues 

relating to a positron beam driven plasma wakefield accelerator.  These issues are a) 

the suitability of employing a positron drive bunch to excite a wake; b) the transverse 

stability of the drive bunch; and c) the acceleration of positrons by the plasma wake 

that is driven by a positron bunch.  These three issues are explored first through 

computer simulations and then through experiments.  First, a theory is developed on 



 xvi

the impulse response of plasma to a short drive beam which is valid for small 

perturbations to the plasma density.  This is followed up with several particle-in-cell 

(PIC) simulations which study the experimental parameter (bunch length, charge, 

radius, and plasma density) range.  Next, the experimental setup is described with an 

emphasis on the equipment used to measure the longitudinal energy variations of the 

positron beam.  Then, the transverse dynamics of a positron beam in a plasma are 

described.  Special attention is given to the way focusing, defocusing, and a tilted 

beam would appear to be energy variations as viewed on our diagnostics.  Finally, the 

energy dynamics imparted on a 730 µm long, 40 µm radius, 28.5 GeV positron beam 

with 1.2x1010 particles in a 1.4 meter long 0-2x1014 e-/cm3 plasma is described.  First 

the energy loss was measured as a function of plasma density and the measurements 

are compared to theory.  Then, an energy gain of 79±15 MeV is shown.  This is the 

first demonstration of energy gain of a positron beam in a plasma and it is in good 

agreement with the predictions made by the 3-D PIC code.  The work presented in this 

dissertation will show that plasma wakefield accelerators are an attractive technology 

for future particle accelerators. 
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1 Introduction 

 This chapter is an introduction to beam driven plasma wakefield accelerators.  

The fundamental concepts of the mechanisms inside the plasma wakefield accelerator 

will be covered in the first section.  The next section will describe how our experiment 

was conceived and what its goals were.  Next, this chapter will address the differences 

between electron and positron driven plasma wakefield accelerators.  Finally, this 

chapter will conclude with a review of previous work done on plasma wakefield 

accelerators.  

 

1.1 Plasma wakefield accelerator 

 Plasma wakefield accelerators utilize a relativistically propagating electron 

plasma wave to accelerate particles [1].  They are very attractive because they can 

sustain accelerating fields on the order of the non-relativistic wavebreaking field Eo 

[2].  This field is roughly that which would be generated by 100% sinusoidal 

modulation of the plasma electron density at the plasma wavelength. 

 [ ] 3
0 0/ 96E V m n cm−    (1.1) 

For instance, the accelerating gradient at a density of 16 310 cm− is approaching 

10 GeV/m.  This is significantly greater than the 25-100 MeV/m used in current RF 

accelerators [3].  Different methods exist for generating the plasma wave.  The three 

most common are the laser beatwave (PBWA) [4, 5, 6], laser wakefield (LWFA) [7, 8, 
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9], and particle beam driven wakefield (PBWA) [10, 11, 12].  The laser driven 

methods are very attractive since compact, table top size lasers can generate very high 

accelerating gradients (~100 GeV/m).  The setback is that the interaction length for 

acceleration is on the order of the Raleigh length of the laser beam (>1 mm).  On the 

other hand, particle beams can sustain the high accelerating gradients over meter scale 

distances since the Raleigh length of the beam can be 10’s of meters.  A major design 

requirement of accelerators is high energy which implies that both a high gradient and 

a long interaction length are needed.  This is a reason why beam driven plasma 

wakefield accelerators are very attractive as an advanced accelerator concept.  The 

physic’s issues of a positron beam driven plasma wakefield accelerator are the subject 

of this dissertation. 

 

1.2 Electron beam driven plasma wakefield accelerators 

 Conceptually, the plasma wakefield accelerator (PWFA) operating in the 

“blow-out” regime (beam density is greater than the plasma density) is a very simple 

device.  First, an electron beam is injected into a neutral plasma.  The space-charge 

field of the beam rapidly expels the plasma electrons.  The plasma ions, which are 

much more massive than the plasma electrons, remain stationary during the time scale 

of our bunch length.  Since the beam density is greater than the plasma density, an ion 

column is formed which is devoid of plasma electrons.  The expelled plasma electrons 

now witness the space-charge field of the ion column and are pulled back in towards 
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the beam axis.  Due to their momentum, the plasma electrons overshoot the axis.  

These plasma electrons now oscillate on axis with a frequency which is approximately 

the characteristic plasma frequency ωp.                                                

 
24 p

p
e

n e
m
π

ω =  (1.2) 

 
Here, me, e, and np are the electron mass, the elementary charge, and the plasma 

density respectively.  These oscillating plasma electrons form a density modulation as 

viewed on axis.  This density modulation gives rise to a very high electric field which 

is used to accelerate the beam electrons.  These dynamics are schematically shown in 

figure 1.1.1. 

 

  Figure 1.2.1  Wakefield generated by an electron beam 

 

1.3 Regimes of electron beam driven PWFAs 

 In general, the electron beam-plasma interaction can be characterized by four 

regimes of propagation [13].  These regimes are defined by the relative densities of the 
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plasma and the beam and the ratio of the plasma wavelength to the beam spot size.  

The four conditions are outlined in table 1.3.1. 

Regime Condition E162 Condition 

Unfocused 2/p bn n γ<  5 33.6 10 /pn e cm−< ×  

Ion-Focused p bn n<  15 31.1 10 /pn e cm−< ×  

Magnetically Self-Focused &p b r pn n σ λ> << & 2.4p b rn n mmσ> <<

Current Neutralization &p b r pn n σ λ> >  & 2.4p b rn n mmσ> >  

Table 1.3.1 Regimes of electron beam propagation 

 As seen in the table above, two regimes were not practically explored in our 

experiment.  They were the unfocused regime and the current neutralization regime.  

The unfocused regime is where the plasma density is very low compared to the beam 

density.  The plasma density is insufficient to significantly alter the in vacuum balance 

between the repulsive space charge electric field and the attractive self-generated 

magnetic field, and thus it has no effect on the beam propagation.  In practical terms, 

our observation of this regime was when we did not generate any plasma.  This 

“plasma off” case was observed to have no effect on the beam.  The current 

neutralization regime was not accessible since we could not generate an electron beam 

which had a radius greater than a plasma wavelength.  The characteristic feature of 

this regime is that the plasma return current, which is a reaction to the beam current, 

can only respond to features which are on the order of the plasma wavelength.  Since 
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the radius is larger than the plasma wavelength in this regime, the return current will 

flow through the beam and neutralize it.  The plasma density, since it is overdense, is 

sufficient to neutralize the beam’s space charge electric field.  The focusing magnetic 

field will be diminished due to the plasma currents flowing through the beam. 

 The remaining two regimes, ion-focused and magnetically self-focused, were 

accessible in our experiment.  The bulk of the beam propagated in the ion-focused 

regime.  In this regime, the beam’s radial electric field expels all plasma electrons 

from a volume.  The radius of this volume is approximated by the radius at which the 

beam’s electric field is exactly canceled by the electric field of a pure ion column with 

a density equal to the initial plasma density.  This radius is typically much larger than 

the radius of the beam.  When an electron beam is propagating in free space in 

equilibrium, the repulsive space-charge electric field is canceled by self-focusing 

magnetic field generated by the beam’s own current.  When the beam propagates 

through the ion column, the space charge field of ion column focuses down the beam 

electrons.  The magnetically self-focused regime is similar to the ion focused regime, 

except the beam density is not sufficient to expel all plasma electrons.  This results in 

a complete neutralization of the beam’s space charge field.  With the repulsive space 

charge field neutralized, the magnetic force dominates and pinches down the beam.  

One consequence of this regime is that the focusing force will be non-uniform due to 

radial variations in the ion/plasma density [13].  This regime is characteristically 

different from the current neutralization case in that the plasma return currents do not 
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flow through the beam, and thus they do not diminish the magnetic focusing force.  As 

seen in the above table, this regime is accessed when the beam density is less than the 

plasma density.  Although the peak beam density is greater than the plasma density, 

the beam densities at the head and tail of the beam are lower, and thus in this regime. 

  

1.4 Positron Beam Driven PWFAs 

 The response of a plasma to a dense beam of relativistic positrons is 

qualitatively different from that of a similar electron beam propagating through a 

plasma.  When an ultrarelativistic, highly focused (σr << c/ωp) positron beam enters an 

underdense plasma (nb>np), the in-vacuum balance between the beam’s space-charge 

defocusing field and self-magnetic focusing field is modified by the highly mobile 

plasma electrons that are pulled in neutralizing the excess space charge of the positron 

beam.  Here σr, c, ωp, nb, np are the beam radius, speed of light, plasma frequency, 

beam density, and plasma density respectively.  The degree of neutralization depends 

not only on the plasma density, but also on the longitudinal position along the positron 

bunch.  As plasma electrons from various radii arrive on the axis of the beam at 

various times and overshoot, they create a wakefield structure that has complex 

longitudinal and transverse electric field components [14].  If the r.m.s. bunch length 

σz is approximately πc/ωp, then the bulk of the positrons do work in pulling in the 

plasma electrons and therefore lose energy to the wakefield.  However, there are a 
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significant number of particles in the tail of the beam where the wakefield has changed 

sign and are therefore accelerated.   

 

1.4.1 Wakefield generated by a positron beam 

 

1.5 Regimes of positron beam driven PWFAs 

 The regimes of propagation for a positron beam are similar to the electron 

beam case except for a few key differences.  First, there is no analogy to the ion-

focused regime for the positron case.  This is because the positron beam pulls in 

plasma electrons, not expelling them as in the electron beam case.  If the beam density 

is greater than the plasma density, the positron beam pulls in plasma electrons from 

greater and greater radii until its field is neutralized.  The final difference between the 

electron and positron regimes is that the magnetically self focused and current 

neutralization regimes only depend on the beam radius in the positron case. 
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Regime Condition E162 Condition 

Unfocused 2/p bn n γ< 5 33.6 10 /pn e cm−< ×  

Magnetically Self-Focused r pσ λ<<  2.4r mmσ <<  

Current Neutralization r pσ λ>  2.4r mmσ >  

Table 1.5.1 Regimes of positron beam propagation 

 

As seen in the table, the positron beam propagated through the plasma in the 

magnetically self-self focused regime.  Two important features of this regime are as 

follows.   First, the transport of the beam can be theoretically approximated by a linear 

theory in which the beam is assumed to be point like ( ),r z pσ σ λ<<  and that the beam 

density is a perturbation to the plasma density.  This is because although the beam 

density is greater than the initial electron plasma density, the positron beam pulls in 

plasma electrons from large radii, thus increasing the electron plasma density on axis.  

The above theory and simulations will be discussed in the next chapter.  The second 

feature of this regime is the non-uniform focusing force imparted by the plasma on the 

beam.  The nonuniform focusing force was demonstrated by our collaboration in a 

paper by Hogan et al [14] and it will also be discussed in Chapter 5. 
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1.6 Review of previous PWFA work 

 The basic mechanisms behind beam driven plasma wakefield accelerators was 

developed by Chen et. al. in 1985 [16].  He proposed using a point like drive beam 

( )r pσ λ<< in the linear regime where the beam density is a small perturbation to the 

electron plasma density.  Here, rσ is the beam radius and pλ is the plasma wavelength.  

This work was then continued by considering finite radius, disk like beams [17].  Ruth 

et. al. [18] showed that in the linear regime, the transformer ratio (the ratio of the 

energy gain to the initial beam energy) must be less than 2.  Next, it was proposed to 

shape the drive bunch so that this transformer ratio limit could be exceeded [19].   

 Further advances were made when Rosenzweig proposed operating in the 

nonlinear regime where the beam density is greater than plasma density [20].  He 

showed that the transformer ratio in this regime could be higher than 2.  He went on to 

show that this “blowout” regime has several benefits in addition to its higher 

transformer ratio [21].   

 The first experimental work on PWFAs was reported by Berezin et. al. in 1994 

[12].  They demonstrated 250 keV/m acceleration in a 20-100 cm 11 310 /e cm− plasma 

in which the wakefield was excited by an 0.4 nC, 2 MeV electron bunch train.  This 

was followed up by work by Rosenzweig et. al.  They did a series of experiments with 

a 21 MeV, 7 ps, 4 nC drive beam in a 33cm 12 3(0.4 7) 10 /e cm−− × plasma in which 

both linear [22] and nonlinear [10] wakefields were observed.  A maximum energy 
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gain of 200 keV was observed and a maximum acceleration gradient of 5 MeV/m was 

witnessed.  Further work in Japan used a 500 MeV, 10 ps, 10 nC electron beam in a 1 

meter long 12 3(2 8) 10 /e cm−− × plasma.  Nakajima et al. [23] demonstrated a 30 

MeV/m acceleration gradient and Nakanishi et al. [24] used bunches from two 

identical linacs for the drive and trailing beams. 

 Recent work at the Stanford Linear Accelerator Center used 28.5 GeV, 3 nC, 2 

ps electron and positron beams in a 1.4 meter long 14 3(0 4) 10 /e cm−− × plasma.  

Several important results stemmed from this experiment which include: Electron beam 

focusing by Clayton et. al. [25], Dynamic focusing of an electron beam by O’Connell 

et. al. [26], Lack of the electron hosing instability by Blue [27], 150 MeV/m 

acceleration of an electron beam by Muggli et. al. [28], focusing of a positron beam by 

Hogan et. al. [15], and 56 MeV/m acceleration of a positron beam by Blue et. al. [29].  

The last result is the subject of this dissertation. 

 

1.7 Summary of the dissertation 

 This dissertation addresses three issues relating to a positron beam driven 

plasma wakefield accelerator.  These issues are a) the suitability of employing a 

positron drive bunch to excite a wake; b) the transverse stability of the drive bunch; 

and c) the acceleration of positrons by the plasma wake that is driven by a positron 



 11

bunch.  These three issues are explored first through computer simulations and then 

through experiments.   

Chapter 2 presents a theory on the impulse response of plasma to a short drive 

beam which is valid for small perturbations to the plasma density.  This is followed up 

with several particle-in-cell (PIC) simulations which study the experimental parameter 

(bunch length, charge, radius, and plasma density) range.  The theory and simulation 

chapter is concluded by a full 3-D OSIRIS simulation which uses nearly identical 

parameters to the E162 experiment.   

Chapter 3 describes the E162 experiment which took place at the Stanford 

Linear Accelerator Center.  The experimental setup is described with an emphasis on 

the equipment used to measure the longitudinal energy variations of the positron 

beam.  The equipment and diagnostics include the plasma source, the imaging 

spectrometer, the optical transition radiation detector, and the time-integrated and 

time-resolved Cherenkov diagnostic. 

In chapter 4 the transverse dynamics of a positron beam in a plasma are 

described.  Special attention is given to the way focusing, defocusing, and a tilted 

beam would appear to be energy variations as viewed on our diagnostics.   

Chapter 5 details the energy dynamics imparted on a 730 µm long, 40 µm 

radius, 28.5 GeV positron beam with 1.2x1010 particles in a 1.4 meter long 0-2x1014 e-

/cm3 plasma.  First the energy loss was measured as a function of plasma density and 

the measurements are compared to theory.  Then, an energy gain of 79±15 MeV is 
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shown.  This is the first demonstration of energy gain of a positron beam in a plasma 

and it is in good agreement with the predictions made by the 3-D PIC code.   

 The work presented in this dissertation will show that plasma wakefield 

accelerators are an attractive technology for future particle accelerators. 
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2 Theory and Simulations 

 This chapter gives an introduction to the theory of a positron beam in a plasma.  

First, an analytical expression is derived for the impulse response of a plasma.  This is 

expanded into the response of a plasma to a Gaussian pulse.  Finally, experimental 

predictions and scaling laws will be explored through particle-in-cell (PIC) 

simulations. 

 

2.1 Plasma impulse response (linear theory) 

 Although the interaction of a dense (nb > np), short (σz ~ λp) positron beam with 

a plasma is inherently nonlinear, we can use the linear theory (Katsouleas et al., 1987) 

which predicts the plasma response to either a short electron or positron beam as a 

guide to interpret the PIC code results.  Here nb, np, σz, and λp are the beam density, 

plasma density, beam longitudinal characteristic length, and the wavelength of the 

plasma response respectively.  Here the beam induces a small perturbation in the 

plasma whose response can be calculated if we assume that the beam is infinitely 

short.   

The starting point for any electromagnetic problem is to begin with Maxwell’s 

equations. 

 4E πρ∇ =
G
i  (2.1) 

 0B∇ =
G
i  (2.2) 
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 1 BE
c t
∂

∇× = −
∂

GG
 (2.3) 

 4 1 EB J
c c t
π ∂

∇× = +
∂

GG G
 (2.4) 

Since we are dealing with charged particles which have a mass, we add the equation of 

motion for electrons. 

 eF m a qE= =
G GG  (2.5) 

 
e

eEa
t m
ν∂

= = −
∂

GGG  (2.6) 

Finally, we add the continuity equation which states that the change in density in a 

volume is equal to the flow of particles into or out of the volume. 

 0dn n
dt

ν+∇ =
Gi  (2.7) 

Additionally, the current of the plasma is given by 

 J qnν=
G G  (2.8) 

The above equations are exact in the limit of nonrelativistic motion.  Due to the 

complexity of plasmas, a rigorous analytic solution cannot be made.  Therefore, we 

make viable approximations in order to gain insight.  First we approximate the drive 

beam as a delta function.  This will allow us to calculate the impulse response of the 

plasma. 

 ( )Beam
q zr t
c c

ρ δ δ  = − 
 

 (2.9) 
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Next, we linearize the equations where the first order terms are small corrections, or 

perturbations, to the initial values. 

 0 1n n n= +  (2.10) 

 0 1 1 0 0ν ν ν ν ν= + = =
G G G G G  (2.11) 

 0 1 1 0 0E E E E E= + = =
G G G G G

 (2.12) 

 0 1 1 0 0B B B B B= + = =
G G G G G

 (2.13) 

We now insert the linear quantities 2.10-2.13 into equations 2.1-2.8 and solve for the 

first order terms. 

 1 14 4BeamE enπρ π∇ = −
G
i  (2.14) 

 1 0B∇ =
G
i  (2.15) 

 1
1

1 BE
c t
∂

∇× = −
∂

GG
 (2.16) 

 1
1 1

4 1 EB J
c c t
π ∂

∇× = +
∂

GG G
 (2.17) 

 1 1

e

eE
t m
ν∂

= −
∂

GG
 (2.18) 

 1
0 1 0dn n

dt
ν+ ∇ =
Gi  (2.19) 

 1 0 1J qn ν=
G G  (2.20) 
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The first goal is to solve for the density perturbation as a function of the impulse 

response.  We take the time derivative of the linearized continuity equation 2.19. 

 
2

1 1
02 0n dn

t dt
ν∂

+ ∇ =
∂

G
i  (2.21) 

The acceleration is given by the linearized equation of motion 2.18. 

 
2

01
12 0

e

enn E
t m

∂
− ∇ =

∂

G
i  (2.22) 

The divergence of the electric field is known from equation 2.14.  

 ( )
2

01
12 4 4 0Beam

e

enn en
t m

πρ π∂
− − =

∂
 (2.23) 

This equation is simplified by combining terms into a parameter known as the plasma 

frequency. 

 
2

04
p

e

n e
m
πω =  (2.24) 

 
2

2 21
12 ( )p p

n q zn r t
t ec c

ω ω δ δ∂  + = − ∂  
 (2.25) 

We can solve this differential equation by using the Laplace transform of a system 

which is initially at rest. 

 { } { }2 2 2
1 1 1 1(0) (0) ( )p p

qs n sn n n r
ec

ω ω δ′− − + =L L  (2.26) 

 1 1(0) (0) 0n n′= =  (2.27) 

Solve for the density and take the inverse Laplace transform. 
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 { }
2

1 2 2( ) p

p

qn r
ec s

ω
δ

ω
=

+
L  (2.28) 

 
2

-1
1 2 2( ) p

p

qn r
ec s

ω
δ

ω
  =  +  

L  (2.29) 

 1 ( )sinp p
q z zn r t U t
ec c c

ω δ ω    = − −        
 (2.30) 

This equation gives us the density as it is perturbed by the beam.  The function U(t) is 

Heavyside function which means that the plasma is not perturbed until after the beam 

passes.  We now solve for the electric field as a function of the perturbed density.  

Take the curl of equation 2.16. 

 1 1
1E B
c t
δ
δ

∇×∇× = − ∇×
G G

 (2.31) 

Apply the vector identity for the curl of a curl of a vector and insert equation 3.17 for 

the curl of the magnetic field. 

 ( )
2

2 1 1
1 1 2 2 2

4 1J EE E
c t c t

δπ
δ

∂
∇ ∇ −∇ = − −

∂

G GG G
i  (2.32) 

Take the time derivative of the linearized current equation 2.20. 

 
2

01 1
0 1

e

e nJ en E
t t m

δ δν
δ δ

= − =
G G G

 (2.33) 

Insert equations 2.33, 2.14, and 2.9 into equation 2.32 and rearrange terms. 

 ( )
22

2 2 20
1 1 12

4 4 4Beam
e

e nc E E c en
t m

π πρ π
 ∂

− ∇ = − − ∇ − ∂ 

G G
 (2.34) 
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2

2 2 2
12 4 ( ) sinp p p

z zc E cq r U t t
t c c

ω π ω δ ω
    ∂    − ∇ + = − − ∇ −       ∂        

G
 (2.35) 

 
2

2 2 2 2
12 4 ( ) cos

pp p
z zc E q r U t t

t c c
ω π ω δ ω

   ∂    − ∇ + = − − −      ∂      

G
 (2.36) 

We are interested in zE , the longitudinal accelerating and decelerating field.  To do 

this, we break the gradient term in its longitudinal and transverse components. 

 
2

2 2
2z⊥

∂
∇ = ∇ +

∂
 (2.37) 

Because we are interested in relativistic drive particle beams, the velocity is 

approximately the speed of light.  Therefore, the time derivative can be replaced with 

a special derivative. 

 
2 2

2
2 2c

t z
∂ ∂

=
∂ ∂

 (2.38) 

A further quantity is the plasma wave number. 

 
2

2
2
p

pk
c
ω

≡  (2.39) 

This results in the modified Helmholtz equation for the electric field driven by an 

impulse. 

 ( )2 2 2
1 4 ( ) cos

pp p
z zk E qk r U t t
c c

π δ ω⊥

    ∇ − = − −        

G
 (2.40) 
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This equation has still has a delta function in it which relates to the strength of the 

field off axis.  To solve for this, we use the Green’s function response of the 

Helmholtz equation. 

 ( )2 2 ( , ) ( )r pk G r r rδ′∇ − =  (2.41) 

We use a cylindrical geometry due to the symmetry of our system. 

 
2 2

2
2 2 2

1 1
z

φ φ φφ ρ
ρ ρ ρ ρ ϕ

 ∂ ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ ∂ 

 (2.42) 

Expanding equation 2.41 with equation 2.42 and using the delta function response in 

cylindrical geometry with no angular or longitudinal dependence.   

 21 ( ) 1( ) ( )
2p

d dG k G
d d

ρρ ρ δ ρ
ρ ρ ρ πρ

 
− = 

 
 (2.43) 

Solutions to equation 2.43 will be of the form of solutions to the homogeneous 

equation. 

 21 ( ) ( ) 0p
d dG k G

d d
ρρ ρ

ρ ρ ρ
 

− = 
 

 (2.44) 

Solutions to the modified Bessel differential equation take the form of a summation of 

modified Bessel functions. 

 1 2( ) ( ) ( )n p n p
n

G c I k c K kρ ρ ρ
+∞

=−∞

= +∑  (2.45) 

Multiply equation 2.43 by ρ to put it in this form of Sturm-Liouville differential 

equation. 



 20

 
2

2
2

1 ( )
2p

G G k G
d

ρ δ ρ
ρ ρ π
∂ ∂

+ − =
∂

 (2.46) 

This type of differential equation has known solutions. 

 
2

2( ) ( ) ( )d y dp dyp x q x y f x
dx dx dx

+ − =  (2.47) 

 ( )p ρ ρ=  (2.48) 

These solutions will take the form of 

 1 1( ) ( ) 0G A yρ ρ ρ ρ′= ≤ <  (2.49) 

 2 2( ) ( )G A yρ ρ ρ ρ′= < < ∞  (2.50) 

 2
1

( )( ) ( ) 0
( ) ( )

yG y
p W

ρρ ρ ρ ρ
ρ ρ

′
′= ≤ <

′ ′
 (2.51) 

 1
2

( )( ) ( )
( ) ( )

yG y
p W

ρρ ρ ρ ρ
ρ ρ

′
′= < < ∞

′ ′
 (2.52) 

W(x) is the called the Wronskian and it is given by 

 1 2 2 1( ) ( ) ( ) ( ) ( )W y y y yρ ρ ρ ρ ρ′ ′ ′ ′ ′ ′ ′= −  (2.53) 

Boundary conditions are that the field is finite at the origin and zero at infinity 

 (0) ( ) 0G finite G= ∞ =  (2.54) 

Apply these boundary conditions to the general equation of the solutions 2.45. 

 1 ( )m p
m

y I k ρ
+∞

=−∞

= ∑  (2.55) 

 2 ( )m p
m

y K k ρ
+∞

=−∞

= ∑  (2.56) 
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The Wronskian of a Bessel function is 

 2( ) ( ) ( ) ( )n n n nJ Y Y Jαρ αρ αρ αρ
παρ

′ ′− =  (2.57) 

To find the Wronskian of the modified Bessel functions we expand the modified 

Bessel functions of the first and second type into their form in terms of normal Bessel 

functions. 

 [ ]1( ) ( ) ( )
2

m
m m mK j J j jY jπαρ αρ αρ−= − − −  (2.58) 

 ( ) ( )m
m mI j Jαρ αρ=  (2.59) 

The modified Wronskian is now 

 ( ) ( ) ( ) ( ) ( )m m m m mW I K K Iαρ αρ αρ αρ αρ′ ′= −  (2.60) 

Expanding the modified Bessel functions gives 

 
[ ( )

( ) ]

2 1 ( ) ( ) ( )
2

( ) ( ) ( )

m
m m m

m m m

j J j J j jY j

J j jY j J j

π α αρ αρ αρ

αρ αρ αρ

− ′ ′− − − −

′− − − − −
 (2.61) 

Canceling similar terms and inserting the solution for the Wronskian of a Bessel 

function. 

 [ ]2 ( ) ( ) ( ) ( )
2

m
m m m mj J j Y j Y j J jπ α αρ αρ αρ αρ− ′ ′− − − − −  (2.62) 

 2 2
2

mj
j

π α
π αρ

−  (2.63) 



 22

 ( )
2 1m

m p
jW k ρ
ρ

−

= −  (2.64) 

Insert 2.64, 2.55, 2.56, and 2.48 into equation 2.51.  

 2 2 1

1( ) ( ) ( )m p m pm
m

G I k K k
j

ρ ρ ρ
π

+∞

−
=−∞

− ′= ∑  (2.65) 

Again we break the modified Bessel functions down into their normal Bessel function 

components. 

 ( )1( ) ( ) ( ) ( )
2 m p m p m p

m
G J jk J jk jY jkρ ρ ρ ρ

π

+∞

=−∞

′= − − − − −∑  (2.66) 

The following two identities for the infinite sums of Bessel functions are used to 

reduce equation 2.66. 

 0( ) ( ) ( )m p m p p
m

J k J k J kρ ρ ρ ρ
+∞

=−∞

′ ′= −∑  (2.67) 

 0( ) ( ) ( )m p m p p
m

J k Y k Y kρ ρ ρ ρ
+∞

=−∞

′ ′= −∑  (2.68) 

This results in the 2-D Green’s function response of the scalar Helmholtz equation in 

cylindrical geometry. 

 ( )0 0 0
1 1( ) ( ) ( ) ( )

2 2p p pG J jk jY jk K kρ ρ ρ ρ
π π

= − − − − = −  (2.69) 

Substituting equation 2.69 into equation 2.40 give the longitudinal electric field which 

results from a beam approximated by a delta function. 
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 2
02 ( ) cos

pZ p p
z zE qk K k r U t t
c c

ω    = − − −        
 (2.70) 

The response of the plasma various bunch distributions can be found by integrating the 

Green’s function response over the charge distribution. 

 ( ) ( )
2

2
0

0 0

, , 2 , , ( ) cosZ p Beam p pE r k r r K k r k
ζ π

θ ζ ζ θ ρ θ ζ ζ
∞

∞

′ ′ ′ ′ ′ ′ ′ ′= − ∂ ∂ ∂∫ ∫ ∫  (2.71) 

The peak accelerating field which results from a Gaussian distribution is given by  

 
2 2 / 2

2 2

2
sin ( ) ( / )11

p Zk
p zb

Z p p
p

p r

k eneE n k z ct eV cm
n

k

σπ σ

σ

−

= −
+

 (2.72) 

Several important scaling laws can be extrapolated from this equation.  First, the 

wakefield excited by the bunch oscillates sinusoidally with a frequency determined by 

the plasma density and it’s phase velocity travels at the speed of light.  Second, the 

accelerating gradient increases linearly with increasing charge.  This is because the 

increased charge increases the strength of the beam space charge field which in turn 

drives the plasma wave harder.  Third, the fields excited by electrons and positron 

beams are equal in magnitude but opposite in phase.  Finally, the field will be 

maximized for a value of 2p zk σ = .  This is because the equation for the field is of 

the form of  

 
2

2( )
x

f x xe
−

=  (2.73) 
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To find the maxima and minima of this function, we take its derivative and set it equal 

to zero. 

 ( )
2

2 2( ) 1 0
x

f x x e
−

′ = − =  (2.74) 

This has solutions of 2x =  and x = ∞ .  To find whether these solutions are maxima 

or minima, we calculate the value of the second derivative with the above solutions. 

 ( )
2

2 2( ) 3
x

f x x x e
−

′′ = −  (2.75) 

We see that ( )2 0f < which means that that point is a maximum, and ( ) 0f ∞ >  

which mean that that point is a minimum.  This is why the field is maximized when 

2p zk σ = .  These scaling laws were derived used approximations in the linear 

regime.  For a more complete analysis, we turn to particle-in-cell simulations. 

 

2.2 Scaling laws explored through PIC simulations for a positron beam 

 Although the scaling laws inferred from Eqn. 2.72 in the previous section are 

useful, the approximations made are often not entirely valid as in the current 

experiments that are being carried out at the Stanford Linear Accelerator Center 

(SLAC).  For instance, while the linear theory assumes that the density perturbation 

induced by the beam is typically small, the beam density can exceed the plasma 

density over most of the length of the bunch in current experiments and therefore 

linear theory can break down.  The dynamics of the plasma electrons that are being 



 25

perturbed by the space charge field of the positron beam are extremely complicated.  

As plasma electrons from different radii outside of the bunch are pulled in by the 

space charge field of the positron beam they arrive at different times at different 

longitudinal locations within the beam.  This mandates the use of PIC simulations in 

order to gain insight beyond that which was obtained from linear theory.  The beam 

and plasma parameters used in the simulations will be the nominal parameters used in 

the SLAC E162  experiment (Joshi et al., 2002) which are listed in Table 1. 

 

Nominal Experimental Parameter Value 

Positron Beam Energy 28.5 GeV 

Number of Beam Particles 101.2 10 e+×  

Beam R.M.S. Radius rσ  40 mµ  

Beam R.M.S Length zσ  730 mµ  

Plasma Density pn  14 31.8 10 /e cm−×  

 
Table 2.2.1 Nominal Beam Parameters 

 

 The PIC code OOPIC (Bruhwiler et al., 2001) was used to obtain the fields 

generated by the positron beam.  Unless otherwise stated, the parametric study 

reported in this paper was carried out by changing only one parameter in Table 1 

while holding other parameters constant.  OOPIC is a fully-explicit, 2-D cylindrical 
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geometry code.  Typical simulation parameters were radial and longitudinal grid 

sizes 20r z mµ∆ = ∆ = , time step 14t fs∆ = , and a simulation box 1mm wide and 8mm 

long.  The wakefield was measured after the beam fully propagated into the plasma 

(~10 σz).  At this point in the plasma, the wakefields are more or less fully excited and 

do not change shape or magnitude (in the beam frame) as the drive beam propagates 

further into the plasma although parts of the beam itself can dramatically focus and 

defocus in the transverse direction in response to the wakefields (Hogan et al., 2003).  

In the longitudinal direction, there is energy gain or loss by positrons located at 

different phases of the beam, but at an initial energy of 28.5 GeV, the beam is “stiff” 

and the positrons do not physically move in the longitudinal direction.  As the plasma 

electrons are attracted and pulled into the beam, the peak electron density within the 

bunch can exceed the beam density even though nb > np, thus neutralizing the beam’s 

space charge and setting up strong transverse and longitudinal wakefields.  As 

mentioned in the introduction, we will discuss the scaling of the longitudinal field only 

in this paper as a function of different beam and plasma parameters.  As can be seen in 

Fig. 2.2.1, for these beam parameters, approximately the front half of the beam sees a 

retarding or decelerating field E- whereas the back half of the beam sees an 

accelerating field E+.  Consequently the peak voltage transformer ratio R=E+/E- is 

approximately one as the front half of the beam losses energy to the wakefield and the 

back half of the beam extracts energy from the wakefield.  The energy extraction 

efficiency can be quite high as seen from the second accelerating peak that is left 
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behind the drive bunch.  This peak has half the amplitude of the first peak which in 1-

D would mean that approximately 75% of the energy has been extracted from the 

wake by the accelerating particles. As mentioned earlier, wakefields produced after the 

beam has propagated 1 cm (dotted line) and 14 cm (solid line) are almost identical. 
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Fig. 2.2.1.  Longitudinal wakefield excited on axis by a positron beam (dashed line) 
propagating from right to left after 1 cm (dotted line) and 14 cm (solid line) in a 
plasma.  The notations used in the following figures 2-10 are depicted in the above 
figure.   
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Fig. 2.2.2. Peak decelerating field (triangles) and its temporal location in the bunch 
(squares) vs. charge.   

 
Figure 2.2.2 shows how the peak decelerating field E- (triangles) varies with charge of 

the positron beam as the number of positrons, charge/q, is varied between 1x109 and 

3x1010.  The field increases monotonically with increasing charge.  This is close to the 

prediction of the linear theory where the field strength would increase linearly with 

charge.  In addition, the temporal location of the peak field is shown (squares).  The 

location moves towards the head of the bunch again monotonically with increasing 

charge.  As the charge is increased, the ratio of beam density to plasma density is 

increased.  The subsequent increase in the space-charge field of the positron beam 

causes the plasma electrons to be pulled into the bunch sooner, thus leading to the 

location of the peak decelerating field moving forward. 
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Fig. 2.2.3. Peak accelerating field (triangles) and its temporal location in the bunch 
(squares) vs. charge.  The linear theory prediction for the peak accelerating field is 
shown as a solid line.  

 

Figure 2.2.3 shows how the peak accelerating field E+ (triangles) varies with charge.  

As before, the number of positrons is varied between 1x109 and 3x1010.  Consistent 

with the decelerating field, the peak accelerating field is also seen to increase with 

increasing charge; however, the field strength increases linearly up to a charge/q of 

1x1010, but then it begins to saturate with increasing charge.  Whereas linear theory 

(solid line) predicted a linear growth of the field strength, it did not predict the 

saturation predicted by the PIC code.  This saturation is due to the phase mixing of the 

plasma electrons pulled in by the beam as they oscillate about the beam axis.  

Furthermore, linear theory underestimates the field strength because of the greater role 
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of the radial fields of the beam.  The temporal location of the peak accelerating field 

(squares) changes less than ±0.5 ps with increasing charge in contrast to E- which 

moves forward in the beam as mentioned earlier.  It is important to note that for an 

electron beam driver, as one transitions from the linear ( )b pn n�  to the highly 

nonlinear ( )b pn n�  regime, the accelerating field rapidly increases as the beam 

density (or the drive beam charge for a given spot size) is increased because the 

plasma electrons which are blown out by the beam head return within a narrow range 

of arrival times which forms a density (and therefore electric field) spike on axis 

(Joshi et al., 2002).  In contrast there is a broad range of arrival times of the plasma 

electrons pulled in by the positron beam and therefore, there is no sharp spike in the 

peak accelerating field E+ as seen in Fig. 2.2.1. 
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Fig. 2.2.4. Peak decelerating field (triangles) and its temporal location in the bunch 
(squares) vs. plasma density.   

 

Figure 2.2.4 shows how the peak decelerating field E- (triangles) varies with 

increasing plasma density.  The strength of the field increases rapidly up until a peak 

value of -86 MV/m at a density of 1.1x1014 cm-3.  This density satisfies the 

2p zk σ = condition from linear theory for peak field.  As the density is further 

increased, the strength of the field slowly decreases as predicted from equation 5.  The 

temporal location of the field (squares) moves from the back of the bunch towards the 

head of the bunch as the density in increased.  This latter behavior is expected since 

the plasma wavelength is decreasing as the plasma density is increasing. 
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Fig. 2.2.5. Peak accelerating field (triangles) and its temporal location in the bunch 
(squares) vs. plasma density.  The linear theory prediction for the peak accelerating 
field is shown as a solid line.  

 

Figure 2.2.5 depicts the peak accelerating field E+ (triangles) as a function of plasma 

density.  The strength of the field rapidly increases up to a peak value of 103 MV/m at 

a density of 9x1013 cm-3.  This value of density is close to that which is predicted by 

linear theory (solid line).  Although the functional dependence of the peak accelerating 

field on plasma density predicted by linear theory is similar to the results obtained 

using PIC simulations, it underestimates the strength of the field.  As the density is 

further increased beyond the optimal value, the peak field decreases as predicted by 

equation 2.72.  The temporal location (squares) of this peak field moves from the back 
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of the pulse towards the head of the bunch as the density is increased since the plasma 

wavelength is decreasing. 
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Fig. 2.2.6. Accelerating bucket width (circles) vs. plasma density.  The linear theory 
prediction of half a plasma wavelength as a solid line.  

 

Figure 6 shows the width of the accelerating bucket (circles) vs plasma density.  The 

accelerating bucket is defined as the length of the field where the sign of the field is 

positive.  According to linear theory developed in the previous section, the wake has a 

wavelength of /p pc fλ = .  Since the plasma wavelength scales as 1
n

, it will 

decrease with increasing plasma density.  The accelerating bucket would then have a 

width given by / 2pλ .  The half wavelength is shown as the solid line in the plot.  The 

simulations show that at low densities, the wavelength is close to the value which is 
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predicted by linear theory, however, at higher plasma densities the accelerating 

buckets are longer than that predicted by linear theory. 
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Fig. 2.2.7. Peak accelerating field (triangles) and accelerated charge in the 1 ps peak 
field bin (squares) vs. plasma density.   

 

Figure 2.2.7 shows how the number of accelerated particles increases as plasma 

density is increased.  As was shown in figure 5, the temporal location of the peak field 

moves from the tail towards the centroid of the bunch as the plasma density is 

increased.  Therefore, since the pulse shape is Gaussian, more and more particles will 

be accelerated (squares).  The number of accelerated particles is calculated by taking 

the number of particles in a 1 ps bin centered at the temporal location of the peak field.  

For instance, 5 times more particles are accelerated at a density of 2x1014 cm-3 than at 

9x1013 cm-3 with only a 10% reduction in the peak field.  At the optimum density of 
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9x1013 cm-3, almost 3% of the total number of particles are within a picosecond wide 

slice situated about the peak accelerated field.  In experiments where a single bunch is 

used to both excite and witness the plasma wakefield, this number of accelerated 

particles is important.  This is due to the need to have sufficient signal strength 

(accelerated positrons) in order the overcome the noise in the diagnostics (usually 

photoelectrons on a streak camera) (Blue et al., 2003).    
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Fig. 2.2.8. Peak accelerating (squares) and decelerating (triangles) fields vs. bunch 
radius.  The linear theory prediction for the peak accelerating field is shown as a solid 
line. 

 

Figure 2.2.8 shows how the peak decelerating field E- (triangles) changes as the radius 

of the beam is varied.  As seen in the figure, the field decreases as the radius is 

increased.  For instance, when the radius is increased from 40 µm (the typical value in 
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the experiment) by a factor of 4 to 160 µm, the field is decreased by a factor of 2.  

According to linear theory, as long as the bunch radius is much less than the 

collisionless skin depth, the decelerating field within the bunch should be independent 

of the beam radius.  Since the radii used in the simulations are much less than 

/ 400pc mω µ= , this decrease is due to the changes in the beam charge density which 

in turn affects the radial distribution of the plasma electrons pulled in by the beam and 

therefore the work the beam does on the these electrons.  Also shown in Fig. 2.2.8 is 

how the peak accelerating field (squares) changes as the bunch radius is varied.  As 

expected from the behavior of the decelerating field, as the radius is increased, the 

accelerating field strength is also decreased.  As discussed earlier, the change in the 

field magnitude is due to both a change in the beam charge density and to the 

dynamics of the plasma electrons being pulled in from different radii.  
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Fig. 2.2.9. Peak accelerating (squares) and decelerating (triangles) fields vs. bunch 
length.  The linear theory prediction for the peak accelerating field (a) is shown as a 
solid line.  The inverse quadratic dependence for the peak accelerating field (b) and 
the peak decelerating field (c) are shown as solid lines 
. 
Figure 2.2.9 shows the dependence of the peak decelerating field (triangles) on the 

bunch length.  The field strength increases as the bunch length is decreased.  

According to the linear theory discussed in the preceding section, the field strength 

increases as 21/ zσ .  The data was fitted with a 21/ zσ  dependence by taking the field at 

σz = 1000 µm point as a reference point (solid line c).  As inferred from the plot, the 

field strength does have an inverse quadratic dependence up to a bunch length of 300 

µm.  For bunches shorter than this, the peak decelerating field seen in the simulations 

increases much more rapidly than what was predicted by linear theory. 



 38

Figure 2.2.9 also shows the dependence of the peak accelerating field (squares) 

on the bunch length.  The field strength increases as the bunch length is decreased.  

According to the linear theory (solid line a) developed in the preceding section, the 

field strength E+ seen in the simulations also increases as 21/ zσ  (solid line b), but its 

magnitude is larger than that predicted by the linear theory.  Note that for bunch 

lengths shorter than 300 µm, while the decelerating field actually increases faster 

than 21/ zσ , the accelerating field saturates. 

In the preceding section, scaling laws were developed in which a single beam 

or plasma parameter was varied while the others were held constant.  Two important 

results were that the accelerating field increased quadratically as the bunch length was 

decreased (Fig. 2.2.9) and that each bunch length had a corresponding plasma density 

which maximized the accelerating field (Fig. 2.2.5).  Therefore, we have tried a two 

parameter optimization of the peak accelerating field by simultaneously reducing the 

bunch length and increasing the plasma density using the linear theory 

relationship 2p zk σ = .  The results for the peak accelerating field (triangles) are 

shown in Fig. 2.2.10(a).  The solid curve shows the optimized plasma density from the 

linear theory.  Now for σz = 50 µm long bunches, peak accelerating fields of 2.7 

GeV/m can be obtained from a 40 µm round beam with 1.2x1010 positrons in a 2x1016 

cm-3 plasma.  The longitudinal wakefield at this density is relatively sinusoidal as 

opposed to the electron beam case where it is highly nonlinear (Lee et al., 2000).  In 



 39

Fig. 2.2.10(b), we plot the peak decelerating field (circles) which accompanied the 

accelerating field as well as the transformer ratio R=E+/E- for different values of bunch 

lengths used in Fig 2.2.10(a).  At the bunch length is shortened, the transformer ratio 

increases from 1 (energy loss equals energy gain) to a value of 1.6 with a 50 µm long 

bunch.  This means as bunch length is decreased, one benefits from both an increased 

acceleration field as well as a higher energy gain to energy loss ratio. 
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Fig. 2.2.10 Peak accelerating field (triangles), decelerating field (circles), and 
transformer ratio (squares) vs. bunch length.  The matched plasma density for the peak 
accelerating field is shown as a solid line.  
 
 Further increase in the accelerating field can result from propagating the 

positron beam in a hollow channel as has been shown in other PIC simulations (Lee et 
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al., 2001), and higher transformer ratios could result from using tailored shapes for the 

drive beam instead of a symmetric Gaussian pulse.  These issues are currently being 

explored.  The stability of the drive beam against transverse beam-break up 

instabilities, such as the transverse two-stream instability, is also a critical issue that 

needs further work. 

 
2.3 3-D Particle in Cell Simulations 

 The above results looked at the fields generated by the positron beam in a 

plasma.  These fields were calculated just as the bunch entered the plasma.  In the 

experiment, the bunch was propagated through 1.4 meters of plasma.  The strong 

fields generated will affect the beam, which in turn will affect the fields.  To predict 

the outcome of the experiment, full 3-D PIC simulations were run using the code 

OSIRIS. This code allowed us to incorporate all beam-plasma dynamics and measure 

the energy changes of the particles at the exit of 1.4 meters of plasma. 
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Figure 2.3.1 Beam energy at the exit of the plasma cell 

Figure 2.3.1 shows the energy changes imparted on the beam by a plasma of density 

1.8E14 cm-3.  The code predicts that the head of the bunch will lose energy driving 

the plasma wave and that the tail of the bunch will extract energy from the plasma 

wave and be accelerated.  The simulation parameters consisted of grid sizes  ∆x = ∆y 

= ∆z = 50 µm, 8 plasma particles per cell, 12 beam particles per cell, and a moving 

simulation window of 3.2 cm x  3.2 cm x 6.4 cm in x, y, and z respectively.  The 

energy of the beam is referenced to 28.5 GeV.  With a similar appearance to the fields 

plot, the front part of the bunch is seen to lose energy while the back part of the beam 

is accelerated by the wakefield.  An energy loss of 56 MeV and an energy gain of 74 

MeV were predicted by the PIC code.  In Section 6, the results of the OSIRIS 

simulations will be compared to the experiment. 
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3 Experimental Setup and Diagnostics 

E162 was an experiment to study acceleration of 30 GeV electrons and 

positrons over 1.4 meters in a plasma wakefield accelerator [15].  The experiment was 

run at the Stanford Linear Accelerator (SLAC.)  It was carried out by a collaboration 

of scientists from the University of California – Los Angeles (UCLA), the University 

of Southern California (USC), and Stanford University.  The goal of the experiment 

was to explore and develop techniques needed to implement a high-gradient PWFA in 

a large-scale accelerator.  With respect to the electron and positron beams, the goals 

were to study the longitudinal effects (acceleration of the tail and deceleration of the 

beam centroid) and the transverse effects (betatron oscillations, emission of betatron 

radiation, and hosing). 

The basic idea of the E162 experiment is to use a single electron or positron 

bunch where the front of the beam excites a plasma wave and the tail of the beam 

witnesses the resulting accelerating field.  The nominal beam parameters were 2x1010, 

28.5 GeV electrons or positrons, a bunch length of 0.7mm, and a transverse spot size 

of 30 µm.  This beam was propagated through a 1.4m long Lithium plasma of a 

density up to 4x1014 e-/cm-3.  The plasma source is positioned at interaction point 0 in 

the Final Focus Test Beam (FFTB) at SLAC.  The FFTB is placed in a straight line 

path at the end of the 3km long SLAC accelerator and was designed to investigate the 

factors that limit the size and stability of the beam at the collision point of a linear 
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collider.  The beam optics and diagnostics are capable of delivering a high quality, 

well diagnosed beam to our experiment.  In addition to the beam diagnostics built into 

the FFTP (beam position monitors, current measuring torroids, and wire scanners), the 

experiment required single shot beam profile measurements before and after the 

plasma and time resolved measurements after an energy dispersive bend magnet.  

These diagnostics allowed the E162 collaboration to study the transverse and 

longitudinal dynamics of a high peak current (>100A), ultra-relativistic electron bunch 

in a 1.4m of 0-4x1014 cm-3 underdense plasma. 

This chapter describes how the facilities and the diagnostics were brought 

together to perform the complicated set of experiments known as E162.  The 

following sections will detail the diagnostics, the experimental calibrations and 

measurements for those diagnostics, and the theoretical justifications of the 

performance of our diagnostics and equipment.  The principle components of the 

experimental apparatus are the Lithium plasma source [30], the imaging spectrometer, 

the optical transition radiators [31, 32], the beam position monitors [33], and a time-

integrated and time-resolved aerogel Cherenkov radiator [34].  A brief description of 

each component will now be given.  For a more detailed view of any specific 

component, refer to the references given above. 
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Figure 3.0.1 Schematic of experimental setup.  The positron beam travels left to right 
in the diagram.  The transverse profile of the beam is measured before and after the 
plasma cell using OTR radiators.  Upon exiting the plasma, the beam is imaged from 
the plasma exit onto the Cherenkov radiator with a magnetic imaging spectrometer.  
Plasma induced energy variations along the positron bunch are measured with a streak 
camera. 
 

3.1 Lithium plasma source 

 The two main components of the Li plasma source are the heat pipe oven and 

the ionizing laser.  The heat pipe oven consists of a stainless steel tube wrapped in 

heater tapes.  The inside is lined with a wire mesh and is partially filled with solid (at 

room temperature) Lithium.  Water jackets are placed at each end of the oven.  A 

helium buffer gas is used to constrain the Li vapor.  The oven is heated to ~750ºC and 

a Li vapor is formed.  The vapor flows from the center of the oven (where it is the 

hottest) to the water jackets (where it is the coolest).  The mesh acts as a wick and 

transports the Li back towards the center of the oven.  The Helium gas, in conjunction 

with the water jackets, constrains the Li vapor into a uniform column with sharp 

boundaries.   The end product of this heat pipe is a 1.4m long, uniform column of Li 

vapor at a density of ~2x1015 cm-3. 
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 An argon-fluoride excimer laser provides an ultraviolet pulse (193nm, 6.45eV) 

to ionize the Li vapor via single photon absorption.  The first ionization energy of Li is 

5.392eV with an ionization cross section of 1.8x10-18 cm-2.  A 10-20ns laser pulse is 

focused down the vapor column so that laser fluence is constant (photon absorption is 

counteracted by reduced spot size).  Because the laser fluence determines the plasma 

density, simply changing the output pulse energy on the laser can vary the oven’s 

plasma density.  This results in a 1.4m long plasma column of with a variable density 

up to 4x1014 cm-3 as the laser energy is varied from 0-40 mJ. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 Diagram of Lithium Oven Setup and Depiction of Lithium Column.  The 
cold helium buffer gas (blue) contains the hot Lithium vapor (red).  The resultant 
Lithium vapor column has a uniform vapor density profile with sharp edges a the 
boundary.  
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3.2 Measurement of plasma density 

 One critical parameter in out experiment was the plasma density.  The unique 

setup of our experiment and the plasma properties precluded us from using traditional 

techniques for density measurements such as Langmuir probes and interferometry.  

Since the plasma was produced through single photon ionization, we could determine 

the plasma density by knowing the laser fluence and the Lithium vapor density. 

 The vapor density was known by measuring the Lithium temperature profile 

inside of the oven.  Four thermocouples located inside the oven were continuously 

monitored by a LabView program during the experiment.  The formula for calculating 

Lithium vapor density from temperature is  

 ( )
802318 5.0559.66 10 760 10 KT

Vapor K
K

n T
T

 
− 

 ×
= ⋅ ×  (3.1) 

The following figure shows the measured temperature as recorded on December 16, 

2001.  The significance of this date is that the data set I use in my analysis was taken 

on this day. 
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Figure 3.2.1  Temperature (blue) and vapor density (magenta) profile inside heat pipe 
oven as measured on December 16, 2001. 
 
 The fluence of a laser is the pulse energy per unit area.  In order to calculate 

the laser fluence, one must know the laser energy and the area of the laser beam.  It 

was required to know the laser energy inside of the Lithium vapor in order to calculate 

the density.  This was not practical, but it could be inferred by knowing the energy just 

before the oven entrance and by knowing how the laser energy is absorbed inside of 

the Lithium vapor.  The energy of the laser pulse was known on a shot by shot basis 

through the use of two laser pulse energy meters.  The first energy meter was located 

near the output of the laser and it recorded the laser pulse energy on every shot.  Due 

to a slow degradation of UV optics, the energy in the oven would decrease over time.  

In order to account for the optics degradation, a second energy meter could be inserted 
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in the beam line near the entrance of the oven.  Since the second energy meter was 

after all of the optics, the energy it measured represented the energy at the entrance of 

the oven.  Therefore, by calibrating the first energy meter with the second, the energy 

at the entrance of the plasma was known by measuring the energy at the exit of the 

laser. 

With the energy at the entrance of the oven now known, we must also know 

how the laser is attenuated inside of the Lithium vapor.  The absorption of the laser 

energy inside the oven is given by  

 0( ) vapor cn zE z E e σ−=  (3.2) 

Here, Eo, nvapor, σc, and z are the incident laser pulse energy, the Lithium vapor 

density, the absorption cross section, and the distance into the vapor respectively. 

 Since our goal was to produce a uniform plasma column, we need to maintain 

a uniform fluence down the length of the Lithium vapor column.  As you can see by 

from the absorption equation, the laser pulse energy will decrease down the length of 

the oven as it is absorbed and creating plasma.  To counter this absorption, we focused 

the laser beam down the length of the oven.  The following figures show the laser 

beam’s spot size as it was focused down the oven. 
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Figure 3.2.2 Focusing of laser in x (left) and y (right) through oven 

 

Figure 3.2.3 Area of laser pulse as it propagates through the oven 

 

With the energy of the laser pulse and the spot size of the laser pulse known inside of 

the Lithium vapor, the plasma density could now be calculated.  The formula is given 

by 
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 ( )( )
( )

vapor c
e

n E zn z
h A z
σ

ν
=  (3.3) 

 
Here hυ is the 193nm photon energy and A(z) is the area of the laser beam along the 

oven.  If 3 mJ is the laser pulse energy at the entrance of the oven, the plasma density 

along the oven is shown in the following figure.  Although there appears from the 

figure to be a large variation on the plasma density, by looking at the scale, you will 

see that the density variation along the length of the oven is less than 5%.  This was a 

significant improvement on the design requirement of less than 10%. 

 

Figure 3.2.4 Plasma density profile with an initial pulse energy of 3 mJ. The plasma 
density is calculated using equation 4.3.  The laser beam energy E(z) is given by 
equation 3.2 where 3 mJ is the incident energy.  The area of the laser beam A(z) was 
calculated from a polynomial fit to the data points in figure 3.2.3. 
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3.3 Plasma Decay 

 The above plasma density was the initial density at time equal to zero.  Due to 

jitter of the laser (~2-5ns), jitter of the positron beam (~10 ns), and our launching the 

positron beam into a plasma after a 300 ns delay time, we needed to know how the 

plasma evolved (i.e. decayed) on these time scales.  As a first step, the theoretical 

work by Bates [35] was used to try and predict the behavior of our plasma.  This was 

done by numerically solving the first order differential equation given by equation 3.4.   

 ( ) 2p
Bates p p

dn
n n

dt
α= − ⋅  (3.4) 

 
This first step was very disconcerting because it predicted that the plasma would decay 

very rapidly on the time scale of 200-300 ns.  The following figure shows how a 

plasma will decay in t = 200 and 300 ns according to Bates. 
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Figure 3.3.1 Theoretically predicted plasma density decay after a 200 ns delay (red) 
and after a 300 ns delay (blue).  A plasma with an initial density of 15 31 10 cm−×  would 
apparently decay to a density of 13 37(9) 10 cm−×  after 300 (200) ns. 
  
This was problematic since it predicted that we could never reach the required density 

of 2x1014 cm-3 needed in our experiment.  This prediction would explain some of the 

behaviors that we saw in the experiment.  On some data sets, when the plasma was 

turned on, the positron beam focused down to a constant spot size even as the initial 

(t=0) plasma density was varied.   
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Figure 3.3.2 Focusing of positron beam vs initial plasma density. 

This could be explained by the Bates analysis since the plasma decayed to a constant 

value after 300 ns even though the t=0 plasma density was varied.  Fortunately, we 

knew that this could not be correct since betatron analysis of the electron beam proved 

that we had obtained densities as high as 6x1014 cm-3 [27].  Therefore the above figure 

shows the positron beam propagating through a plasma in which the beam divergence 

is matched by the plasma focusing force (the “match beam” case).  The following 

figure is of an electron beam entering a nearly matched plasma.  Part a is the 

experimentally measured curve of the electron beam’s spot size versus plasma density 

and b is the theoretically predicted spot size for a plasma which does not decay (blue) 

and a plasma which decays according to Bates (red). 
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Figure 3.3.3 Electron betatron oscillations from a experiment and b theory.  The 
experimental data shows the beam pinching down and undergoing small oscillations as 
the plasma density is increased.  The figure on the right side shows the electron beam 
size at the downstream OTR which is modeled using the envelope equation for beam 
propagation.  The blue curve represents the predicted spot size with a plasma which 
did not decay.  The red curve represents the predicted spot size with a plasma which 
decayed 200 ns according to Bates.  The experimental data agrees more with the 
plasma which did not decay. 

 

Of note here is that the data shows oscillations at the highest density.  It is not 

smoothed out as predicted by Bates.  During discussions on plasma density, it was 

noted that historically there has been a disagreement between theory and experiment 

on plasma decay.  I modified αBates by a constant to see if I could get the theoretical 

model to agree with experiment.  The following figure shows the betatron oscillation 

fit to our data with and without decaying the plasma density.  The plasma was decayed 

with   αeff = αBates/100. 
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Figure 3.3.4 Betatron oscillations a with no plasma decay and b with decay.  The data 
points (blue) are the same for both figures except for the plasma density calibration.  
The figure on the left used a plasma which did not decay.  Disagreement is seen 
between the predicted density of the fourth pinch and the experimentally measured 
point.  If the plasma is allowed to decay with an αeff = αBates/100, excellent agreement 
is observed between our model and the experiment. 

 

The above data was taken with a delay of 2535 ns.  By using the αeff, the plasma does 

not significantly decay on the time scale of 200-300 ns.   

As a caveat to the following analysis, everyone who has tried to seriously 

analyze data in our experiment has attempted to tackle the problem of plasma decay.  

A final answer to this problem has not been reached since the plasma decay is a 

function of density and temperature, but all answers have come to the same conclusion 

that the plasma does not significantly decay for the densities and time scales used in 

my experiment.  
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3.4 Imaging Spectrometer 

An imaging spectrometer was used to analyze the longitudinal dynamics of the 

beam in the E162 experiment.  Significant knowledge was gained from the earlier 

E157 experiment and earlier in the E162 experiment on the dynamics of an 

electron/positron beam as it exited the plasma when no imaging spectrometer was 

used.  These dynamics included betatron oscillations [25], hosing instabilities [27], 

dynamic focusing [26], and positron transverse dynamics [15].  These effects, while 

scientifically interesting, masked the energy gain/loss signature on our detectors.  In 

order to remove (or minimize) these effects, we removed the drift space after the 

plasma and replaced it with an imaging spectrometer.  The beam was imaged from the 

plasma exit onto the aerogel using quadrupole magnets and a dipole magnet added 291 

MeV/mm dispersion in the y-direction or the vertical plane at the Cherenkov radiator. 

   

3.5 Proof the imaging spectrometer was imaging 

 An imaging condition is reached when the spot size at an image plane is solely 

the function of the spot size at the object plane. 

 Cherenkov PlasmaExitMσ σ= ⋅  (3.5) 

To make this measurement, the spot size at the Cherenkov is measured while the spot 

size at the plasma exit is varied.  The spot size at the Cherenkov is measured with the 

time integrated Cherenkov detector.  To measure the spot size at the plasma exit, first 



 58  

the oven is removed from the beam line.  Then a spool piece is used which has an 

OTR detector at the location of the plasma exit.  The incoming beam is focused at the 

plasma exit and its size can be varied by changing the focusing strength of magnets 

upstream of the plasma.  The following two figures show the spot size in the x-plane at 

the plasma exit (figure 3.5.1, 9 µm/pixel) and at the Cherenkov (figure 3.5.2, 16 

µm/pixel) as the focusing strength is varied.  As can be seen, the two spot sizes track 

each other and only differ by a magnification factor of ~3. 
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Figure 3.5.1 Spot size at plasma exit vs focusing strength 

 

Figure 3.5.2 Spot size at Cherenkov vs focusing strength 
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3.6 Optical Transition Radiators (OTR) 

 Two OTR diagnostics were employed in the E157/E162 experiments, one ~1 

m before the plasma and one ~1m after the plasma.  These diagnostics gave us a single 

shot time-integrated picture of the beam that allow us to measure the beam’s spot size 

in both the x and y planes.  The setup consists of a thin titanium foil placed at a 45º 

angle in the beam line.  An AF Micro-Nikkor, 105mm, f/2.8D lens is used to image 

the OTR from the foil on to a 12-bit Photometrics Sensys CCD camera.  The CCD has 

a pixel size of 9µm x 9µm with an array size of 768 x 512.  The spatial resolution of 

the setup is approximately 20 µm.  A computer is used to read out the images and it 

can acquire data at 1 Hz. 

 OTR is one mechanism by which a charged particle can emit radiation.  The 

radiation is emitted when a charged particle passes from one medium into another.  

For our case, the electron beam is propagating in a vacuum and then it enters a 

titanium foil.  When the beam is in vacuum it has certain field characteristics, and 

when it is inside the titanium foil it has different field characteristics.  As the beam 

makes the transition into the foil, the fields must reorganize themselves.  In the 

process of reorganization, some of the field is “shed” off.  Optical transition radiation 

is this “shed” field [36]. 

 OTR has been used extensively on low energy (MeV) beams, but it was 

thought that it would not be a viable diagnostic for high energy (GeV) beams.  The 

OTR has a peak at angles θ=1/γ, which is small for 30 GeV beams (γ=60000).  
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Because diffraction limited resolution goes as λ/θ, the assumption was that high 

energy beams could not be resolved.  The misconception was that θ is the numerical 

aperture of the lens, not the radiation source, and that there is significant radiation in 

the wings of the OTR distribution profile.  The E157/E162 collaboration has proved 

this to be correct by measuring spot sizes on the order of 30 µm using OTR.  Figures 

3.6.1 and 3.6.2 show typical OTR images 1 meter upstream and 1 meter downstream 

of the plasma.  The graininess of the downstream OTR image is not from the beam, 

rather it results from the grain structure of the titanium foil.  Figure 3.9.3 shows how 

the image analysis routines in Matlab extract spot size information from the images. 
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Figure 3.6.1 Sample upstream OTR image 

 

 

        

 

 

 

 

 

Figure 3.6.2 Sample Downstream OTR Image 
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Figure 3.6.3 Image analysis of upstream and downstream OTR images.  The white 
dashed line is the background level.  The red line is a Gaussian fit to the background 
level.  The dashed yellow line is either a summation of the columns (for the vertical 
plane) or a summation of the rows (for the horizontal plane).  The green lines are 
Gaussian fits to the summation.  The upstream image has a vertical spot size of 33.3 
µm (3.7 pixels) and a horizontal spot size of 18 µm (2 pixels).  The downstream image 
has a vertical spot size of 37.8 µm (4.2 pixels) and a horizontal spot size of  55.8 µm 
(6.2 pixels). 

Upstream OTR Image 

Downstream OTR Image 
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3.7 Proof of OTR Resolution 

 The optical transition radiation detector diagnostics placed before and after the 

plasma gave us the ability to monitor the time-integrated profiles of the positron beam 

on a shot-by-shot basis.  This diagnostics allowed us to measure the r.m.s. spot size in 

both the horizontal and vertical planes.  Additionally, we could detect the presence of 

beam tails and other asymmetries in the beam profile.  Crucial to these measurements 

was an accurate measurement of the detectors resolution.  This was preformed using a 

resolution target with line pair widths less than the predicted resolution of 9 µm, the 

camera’s pixel size.  This was accomplished using the Air Force 1951 resolution target 

which consists of line pair widths ranging from 4 mm to 4 µm as shown in figure 

3.7.1. 

 

Figure 3.7.1 USAF 1951 Resolution target 
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Utilizing a commercial lens from Nikon in a 1-to-1 imaging mode, the following 

image was acquired of the resolution target.   

 

Figure 3.7.2 Acquired image of resolution target through our OTR optical setup 

 

Based on line outs of the resolution target image for different line pairs.  The depth of 

modulation falls below the 50% level for lines pairs less than 9 µm indicating that the 

our OTR optical system can resolve features down to  9 µm.   

 One tradeoff in obtaining the high resolution is a corresponding decrease in the 

depth of field (or depth of focus).  This would not be an issue if we were resolving a 

plane perpendicular to the optical axis, but we are imaging a plane which is tilted at an 

angle of 45 degrees with respect to the optical axis.  Based on experience of aligning 

and focusing the camera, we knew that the depth of field for the imaging system was 
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less than the field of view of ~4mm (9 µm/pixel x 450 pixels).  Fortunately, the OTR 

radiator was not an ideal optical surface.  It was a thin foil which contained rolling 

marks (from manufacturing) and small pits and crevices.  These imperfections gave us 

a target to focus on and allowed us to measure the depth of field.  At the highest 

magnifications one can see that the depth of field is now less than the field of view.  

The “strip of focus” was then aligned to the location of the beam so that images of the 

beam were in focus. 

 

Figure 3.7.3 Strip of Focus.  Only the region between the arrows is in focus because 
the foil is tilted at an angle of 45 degrees and the depth of focus is less than the field of 
view. 
 
 
 
 
 
 
 

Strip of
Focus 



 67  

3.8 Beam Position Monitors (BPMs) 

 BPMs measure the beam’s position by coupling to the beams electromagnetic 

field.  They use four stripline antennas mounted in quadrature inside the beam pipe as 

shown in figure 3.8.1. 

 

 

 

 

 

 

The most common measurement is called the “difference over sum” method.  In this 

method, the radio frequency signal is peak rectified and stretched.  The output is then 

fed into circuitry that calculates positions from 
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In addition to calculating position, the BPMs can also be used to measure the beam 

current. 

 BPMs are positioned all along the beam line in the FFTB.  Several are 

upstream of the plasma chamber and are used to align the beam with quadrupole 

magnets and our plasma chamber.  BPMs located downstream of the plasma chamber 

are used to measure the trajectory of the beam as it exists the plasma. 

 

3.9 Aerogel Cherenkov Radiator 

 Cherenkov radiation is emitted whenever charged particles pass through a 

medium with a velocity that exceeds the velocity of light in that medium. 

 /tv v c n> =  (3.9) 

where v is the particle’s velocity (in our case v=c), vt is the threshold velocity, and n is 

the index of refraction of the medium.  One can see that Cherenkov radiation will be 

emitted anytime a relativistic beam passes through any medium (n>1).  The light is 

emitted at a constant angle with respect to the particle’s trajectory. 

 1 1cos( ) ( )tv c for v c
v vn n n

δ
β

= = = = =  (3.10) 

This emission is similar to the bow shock created during supersonic flight. 

 In our experiment, we use the Cherenkov light as part of our energy gain 

diagnostic.  The electron beam exits the plasma and is imaged onto a piece of aerogel 

( )1.008n =  through an energy dispersive magnet.  As the beam passes through the 



 69  

aerogel it emits Cherenkov radiation in the visible spectrum at a cone angle given by 

equation 3.10.  The light is transported approximately 15m to an optical table outside 

of the FFTB.  The light passes through a beam splitter and a small fraction of the light 

is sent to a CCD camera for time-integrated images of the beam.  A typical example of 

the time-integrated Cherenkov image is shown in figure 3.9.1 (similar to the OTR 

images).  The remaining light passes through a beam splitter (50% transmitted and 

50% reflected) again and one arm is rotated 90 degrees.  The two paths are 

recombined and sent to the streak camera.  The 90 degree rotation allows us to streak 

both the energy dispersive plane (y-axis) and the non-dispersive plane (x-axis) 

simultaneously figure 3.9.2.   Figure 3.9.3 shows the layout of the optical table.  The 

streak camera has a temporal resolution of approximately one picosecond and a spatial 

resolution of ~100 µm.   
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  Figure 3.9.1  Time Integrated Cherenkov Image depicting the 
      parts of the beam seen by the horizontal and vertical  
      slits on the streak camera 
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Figure 3.9.2  Typical Streak Camera image showing both the 
    horizontal and vertical streaks 
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Figure 3.9.3 Diagram of Cherenkov radiation detector setup.  The light radiated from 
the aerogel enters the setup at .  It is reflected off of a mirror towards beam splitter 

.  Part of the light is sent to the image rotator  via path  while the other part is 
directed towards beam splitter .  Part of light off of beam splitter  is sent to a CCD 
camera  for time integrated Cherenkov images while the rest is directed towards 
beam splitter  via path .  The image on path  passes through an image rotator  
where it is rotated 90 degrees (the unrotated path is shown in light blue while the 
rotated image path is shown in purple).  Both the unrotated and rotated images are 
combined at beam splitter .  The combined images (slightly delayed in time from 
each other) are then sent to the streak camera  for time-resolved analysis. 
 

3.10 Time-Integrated Cherenkov Calibration 

 The time-integrated Cherenkov image provided vital information to our 

experiment.  The first piece of information was the overall transverse spatial profile of 

the bunch.  The second piece was the overall energy spread of the beam.  The final 

piece was the determination of which parts of the beam were sampled by the streak 
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camera.  The methods of calibration are similar to the methods used with the OTR 

detectors.  The main differences were that due to the larger beam size, a custom target 

was used for µm/pixel calculation and that since the Cherenkov radiator was 

perpendicular to the optical axis, depth of field was not an issue.  From the line pair 

separation of 1 mm as seen in Figure 3.10.1, a calibration of 16 µm/pixel is calculated. 

With the dispersion of 291 MeV/mm in the vertical plane, each pixel also corresponds 

to 5 MeV of energy. 

 

Figure 3.10.1 Resolution target image on integrated Cherenkov.  The units of the 
acquired image are pixels.  The line spacing on the resolution target is 1mm.  This 
allows us to know the number of pixels per mm, or conversely, microns per pixel. 
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Figure 3.10.2 Line out of resolution target for pixel calibration.  The peaks on the line 
out correspond to the 1 mm separated lines on the resolution target.  By knowing the 
number of pixels per mm, we can calibrate microns per pixel. 
 

3.11 Streak Camera Calibration 

 The time-resolved Cherenkov radiation was the main diagnostic of the 

experiment since it permitted energy changes as a function of time within the positron 

bunch to be measured.  While the temporal resolution was limited to 1 ps by the streak 

camera, the pixel size needed to be calibrated in terms of spot size and energy.   The 

calibration follows the exact same methods used to calibrate the time-integrated 

Cherenkov diagnostic.  As can be seen in the following figures, the streak camera has 

a calibration of 16 µm/pixel and this corresponds to 4.56 MeV/pixel in the vertically 

dispersed image. 
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Figure 3.11.1 Resolution target for streak camera calibration.  The calibration is done 
by using the distances labeled above in the figure.  Since the target is tilted with 
respect to the axis of dispersion (the vertical axis), the distance A must be calculated 
from the know distances B, C, and D. 
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3.12 Measurement of Bunch Length 

 The bunch length is an important quantity in our experiment.  It was a straight 

forward measurement using the streak camera to obtain the temporal (i.e. longitudinal 

or length) profile of the beam.  Care was taken to make sure that the streak camera’s 

slit sampled the entire beam so that the bunch length measurement was accurate.  In 

addition, several measurements were taken while varying the streak camera 

attenuation so that space-charge effects did not factor into our measurement.  The next 

figure shows a typical streak camera image along with its corresponding integrated 

Cherenkov image which shows which part of the beam was sampled by the slit of the 

streak camera. 

 

Figure 3.12.1 Time Integrated (left) and Time Resolved (right) images for the same 
shot.  The white lines represent the slit of the streak camera so that we know which 
part of the beam was sampled by the streak camera slit.  The right hand image shows 
the time resolved streak camera data.  Time on the streak camera image increases from 
left to right.  The vertical streak is at an earlier time than the horizontal streak since a 
delay was added to the horizontal streak camera optical path. 
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The next figure shows the longitudinal profile of the beam as derived from the streak 

camera image.  Superimposed on the image is a Gaussian fit to the data.  The fit shows 

a r.m.s. bunch length of 0.73 mm. 

 

Figure 3.12.2 Gaussian fit of bunch length.  A temporal lineout from streak camera 
data (blue) is fitted to a Gaussian profile (red).  The Gaussian fit gives an r.m.s. bunch 
length of 0.73 mm.  The graininess of the data is due to photoelectrons in the streak 
camera’s micro-channel plate. 
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4 Transverse Dynamics of the Positron Beam 

 In this chapter the transverse dynamics of a positron beam in a plasma will be 

discussed.  As the positron beam traverses the plasma column, the space charge field 

of the beam attracts the highly mobile plasma electrons.  These plasma electrons 

disrupt the in-vacuum balance between the repulsive space charge field and the 

attractive self magnetic field.  The transverse dynamics associated with this disruption 

will be presented in this chapter.  First, the primary result of focusing and defocusing 

of the beam will be discussed.  Next, the effect of a tilted beam will be analyzed with 

the implications of a hosing instability.  Third, the effect of impact ionization will be 

looked at.  Finally, the implications of these transverse dynamics will be discussed as 

they relate to the measurement of energy gain and loss on our diagnostics. 

 

4.1 Focusing and Defocusing 

 The focusing mechanism for bunched relativistic beams, of either charge, is the 

collective reaction of the plasma electrons to the relativistically foreshortened 

electromagnetic field of the bunch. Even on the time scale of a few picoseconds, 

plasma electrons are able to move and disrupt the balance between the beam’s space 

charge field and self magnetic field. The primary effect is a partial neutralization of 

the defocusing electric field of the bunch leading to a net focusing force on the beam.   
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 In the case of an electron beam, the beam’s space charge field expels the 

plasma electrons leaving behind a uniform ion column.  The electric field of the ion 

column partially neutralizes the beam’s space charge field.  Since the majority of the 

electron beam “sees” this uniform ion column, the net result is a collective focusing 

and defocusing of the entire bunch.  On the other hand, the positron beam’s space 

charge field is neutralized by the highly mobile plasma electrons that are attracted 

towards the beam from different transverse positions from the beam.  As a result they 

arrive within the beam at different times and then result in a phase mixing where each 

slice of the beam “sees” a different electron density, and thus a different neutralizing 

electric field.  This phase mixing results in a highly dynamic transverse profile as the 

beam exits the plasma.  For instance, figure 4.1.1 shows the radius of the beam as a 

function of longitudinal position in the bunch of a positron beam 1 meter after it exited 

1.4 meters of plasma as predicted by the 3-D OSIRIS PIC code using the nominal 

experimental parameters as given in chapter 3.  As seen in the figure, the beam has a 

complex longitudinal-radial profile as is exits the plasma.  The transverse momentum 

of each beam vocel, is a function of both its longitudinal position and its radial 

position.  The imaging spectrometer was needed to remove these transverse 

momentums from our energy gain measurement. 
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Figure 4.1.1 PIC Simulation of Positron Beam’s Transverse Profile for the nominal 
experimental parameters.  The beam is traveling from right to left in the figure.  
Several regions of focusing and defocusing appear simultaneously in the same bunch 
as it exits a plasma column.  The transverse momentum of each beam vocel, is a 
function of both its longitudinal position and its radial position.  The imaging 
spectrometer was needed to remove these transverse momentums from our energy 
gain measurement   

 

The results of the simulation show that the temporal-radial dynamics are very 

complicated at higher densities ( )p zλ σ∼ .  At much lower densities, the plasma 

wavelength is long enough so that the entire beam “sees” a uniform electron density.  

This is the so called plasma lens case.  Figure 4.1.2 shows both the integrated spot size 

1 meter downstream of the plasma cell as measured on the downstream optical 

transition radiation diagnostic (green) and the integrated spot size 12 meters 
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downstream as measured on the integrated Cherenkov diagnostic for densities on the 

order of 1E12 cm-3 (blue). 

 

 

Figure 4.1.2 Integrated spot size after the plasma vs plasma density.  Focusing of the 
positron beam is observed 1 meter downstream of the plasma (green) and 12 meters 
downstream of the plasma (blue).  Sample images are provided of both the Cherenkov 
data (left) and OTR data (right).  Note this data was taken at a charge of 2E10.  
Although acquired at a higher charge, the physics of the plasma lens is unchanged. 

 

As seen in figure 4.1.2, as the density is increased from 0 to ~2E14 cm-3, the plasma 

acts as a lens and focuses the beam 12 meters away (at the Cherenkov diagnostic).  As 

the density is further increased, and thus the focal strength of the lens is increased, the 

beam spot size begins to diverge at the Cherenkov as the focus is pulled towards the 

downstream OTR diagnostic.  As the density is further increased, Hogan et. al.[15] 
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have shown dynamic focusing within a single positron bunch as seen on the time-

resolved streak camera diagnostic. 

 

4.2 Is there evidence of a hosing instability? 

 In the electron beam case, if the beam has a r-z tilt, the beam will oscillate 

transversely in the ion channel that is created by the beam itself.  Under certain 

conditions, this oscillation can go unstable [41].  This instability is known as the 

electron hose instability.  The instability arises from the interaction between the tilted 

beam and the walls of the ion channel.  One question for our experiment was the 

existence (or nonexistence) of a similar instability for the positron drive beam since in 

this case the analogy of an ion column does not exist. 

 To analyze the transverse r-z dependence of the beam, a 3-D beam 

reconstruction analysis was developed.  At the expense of losing a single shot 

diagnostic, a 3-D profile of the beam was developed by sampling different x-z slices 

(horizontal slit of streak camera) of the beam while varying y.  Figures 4.2.1-3 depict 

how the 3-D data was generated.  4.2.1 shows an integrated Cherenkov image with the 

slit locations of the streak camera superimposed on the image.  The method for 

generating the y-data is depicted in figure 4.2.2.  During a run of 200 shots where the 

beam conditions were not changed, the beam was scanned up and down over the 

horizontal slit of the streak camera.  The blue circles in the plot are the mean vertical 

positions of each shot during the run.  Figure 4.2.3 shows how the x and z data were 
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generated.  The horizontal streak camera measures the horizontal dynamics versus 

time (or longitudinal position).  Due to jitter in the timing system and the streak 

camera, the horizontal streak camera image needed an absolute timing reference.  The 

vertical streak camera image sampled the same part of the beam on every shot, so it 

was used as a timing reference as depicted in the figure.  Now that x,y, and z are 

known, a 3-D beam reconstruction can be made. 

 

 

Figure 4.2.1 Slit location of beam sample 
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Figure 4.2.2 3-D y-data extraction from Cherenkov data 

 

Figure 4.2.3 3-D x,z data extraction from Streak Camera data 
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The importance of the 3-D analysis is that it allows us to temporally resolve the 

dynamics of the beam without worrying which part of the beam was sampled by the 

slit of the streak camera since we are sampling all cross-sections of the beam.  Since 

we are using several shots to reconstruct the beam profile, we were not able to use this 

reconstruction on a single shot basis. 

 The following figures show the results of the 3-D analysis in the dispersion 

free plane for a beam with 1.2E10 positrons at two different plasma densities.  The 

figures 4.2.4 and 4.2.5 show the beam’s tilt (red), and spot size (blue) and charge 

distribution (black).  The plasma density of figure 4.2.4 was 3E13 cm-3 and the plasma 

density of figure 4.2.5 was 1.8E14 cm-3.  The change in mean position (red point) 

versus longitudinal position in the bunch is defined as the tilt of the beam.  We can see 

that the beam has a tilt at both densities ( )~ 10 / zmµ σ .  What is important is that the 

magnitude and direction of the tilt is approximately the same at both densities.  

Figures 4.2.6 shows how the longitudinal beam slices evolve with increasing plasma 

density.  The slices do not undergo any significant oscillations as their offset from the 

front part of the beam is nearly constant as the plasma density is increased.  These 

measurements of the transverse dynamics in the dispersion-free plane show no 

evidence of hosing in our measurements, thus confirming that the measurements of 

energy gain and loss were due to energy changes imparted on the beam by the plasma. 
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Figure 4.2.4 3-D beam analysis at a plasma density of 3E13 cm-3 

 

 

Figure 4.2.5 3-D beam analysis at a plasma density of 1.8E14 cm-3 
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Figure 4.2.6 Oscillations of beam slices vs plasma density.  The offset of the slice 3 ps 
in front of the centroid is labeled by blue circles.  The offset of the centroid is labeled 
by black circles.  The offset of the slice 3 ps after of the centroid is labeled by blue 
diamonds.  The offset of the slice 5 ps after the centroid is labeled by red diamonds.  
The magnitude of the offset of each beam temporal slice is nearly constant and each 
slice does not oscillate around the -4 ps slice.  Although each slice has slight 
fluctuations as the plasma density is increased, the slices do not gain the large offsets 
which would correspond to an instability.  
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4.3 Effects of transverse dynamics on the energy gain diagnostic 

 To understand how the transverse dynamics will effect our energy gain 

measurement, we must first understand how the imaging spectrometer (IS) will 

propagate the beam from the exit of the plasma to the Cherenkov radiator.  First, the 

IS maps the position of the particles exiting the plasma onto the aerogel Cherenkov 

radiator.  The IS does not permit any perpendicular momentum the particles have 

when they exit the plasma from being mapped into a position change at the aerogel.  A 

simplified schematic of the IS is shown in figure 4.3.1. 

 

Figure 4.3.1 Imaging Spectrometer Schematic.  A test particle which is initially 
displaced from the axis by a distance x1 will be imaged by the spectrometer to a point 
where the displacement from the axis x2 will be a function of the spectrometer 
magnification and of the spectrometer dispersion. 
 
The position measured at the aerogel (x2) is a function of the position at the exit of the 

plasma (x1), the magnification of the spectrometer M, the dispersion of the 

spectrometer ( E∆ ), and the initial energy E. 
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As a first approximation, we will look at how the spot size and mean position of a 

beam exiting the plasma are mapped onto the aerogel with no energy spread. 

 

Figure 4.3.2 Gaussian propagation through the spectrometer with no energy change 

The mapping of particles 1x  and 1x′  is given by 

 2 1x Mx=  (4.2) 
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The spot size is given by the distance between the two particles 
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The mean position is given by the average position of the two particles. 
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 2 1 0x x= =  (4.7) 

It follows that a beam which is centered on axis, remains on axis.  The next step is to 

look at how the spot size and mean position are mapped when the beam has an energy 

change.   

 

Figure 4.3.3 Gaussian propagation through the spectrometer with energy change (red) 
 

The positions of the particles mapped through the spectrometer are 

 2 1
Ex Mx
E

η ∆
= +  (4.8) 

 ' '
2 1

Ex Mx
E

η ∆
= +  (4.9) 

The spot size is given by 
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E Ex x Mx Mx
E E

η η∆ ∆
− = + − −  (4.10) 

 ( )'2 1 1 1M x x Mσ σ= − =  (4.11) 

As with no energy spread, the spot size is only affected by the magnification of the 

spectrometer.  The change in mean position is  

 
'
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E

η
η

∆
= ⇒ ∆ =  (4.14) 

As expected, the change in energy is mapped into a change in position.  Finally we 

look at how a beam which is off axis is mapped onto the aerogel.  This is analogous to 

a tilted beam where the head defines the axis and the tail is offset from the axis. 
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Figure 4.3.4 Gaussian propagation with an energy change and offset 

The mapping of the particles is the same as equations 4.8 and 4.9 and the spot size 

calculation is the same as the case in which a beam is on axis.  The calculation for the 

mean position as measured at the aerogel is  
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 2 Tilt
Ex Mx
E

η ∆
= +  (4.17) 

 ( )2 Tilt
EE x Mx
η

∆ = −  (4.18) 

From equation 4.18 we see that the apparent energy change will be altered by an initial 

tilt on the beam.  Therefore the observed energy change will be due to the tilt, the 

initial energy spread, and the tilt on the beam. 

 T
observed plasma Initial

Mx EE E E
η

∆ = ∆ + ∆ +  (4.19) 

 2
Initial Plasma

T Plasma On
E Ex Mx
E E

η η∆ ∆
= + +  (4.20) 

The goal of our experiment is to measure the energy change induced by the plasma.  

To do this we must remove the initial energy spread and contribution of the tilt from 

our measurements.  We do this by looking at the plasma off case where the measured 

position is given by 

 2
Initial

np Tnp
Ex Mx
E

η ∆
= +  (4.21) 

Since the beam does not hose to any measurable extent, the ratio of the plasma on to 

plasma off tilts is given by the ratio of the respective spot sizes. 

 T np xnp

T p x p

x
x

σ
σ

=  (4.22) 

Now solving for the mean plasma off position in terms of the plasma on tilt. 
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Substituting equation 4.24 into 4.20 yields the measured plasma position at the aerogel 

in terms of the plasma off case, the energy spread, and the change induced by the 

plasma. 

 2
2 1np x p x p Initial Plasma

xnp xnp

x E Ex
M E E

σ σ
η η

σ σ
  ∆ ∆

= + − +  
 

 (4.25) 

From this equation, we can interpret how a shift in position on the aerogel corresponds 

to a change in beam energy.  The first term is due to the tilt on the beam.  The second 

term is due to the initial energy spread.  The final term is due to the plasma induced 

energy change.  Since we measure the change in position, we needed to reduce the 

beam tilt and the energy spread.  The majority of time spent on our experiment was 

spent minimizing these parameters so that an accurate measurement of energy gain 

and loss could be made. 

 Another consequence of positron focusing is how a focused beam can appear 

to have a change in energy on our streak camera diagnostic.  Figure 4.3.5 shows a x-y 

slice of the beam.  The slit of the streak camera is superimposed on the image. 
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Figure 4.3.5 Unfocused tilted offset beam on streak camera slit.  The measured mean 
position on the streak camera slit (space between the blue vertical lines), was -11.7 
(the units are arbitrary). 
 
Three conditions are placed on the beam.  First it is asymmetric.  That means that one 

axis has a much greater width than the other axis.  Second, the beam is tilted.  In the 

above figure, the beam has a tilt of 45 degrees.  The third condition is that the centroid 

of the beam is offset from the center of the slit.  As seen in the above figure, the 

measured centroid mean position on the slit of the streak camera is -11.7.  Figure 4.3.6 

shows the same beam as it is focused.  The measured mean position on the streak 

camera is -15.4.  This analysis shows how simple focusing of the beam could appear 

to be energy gain on our streak camera diagnostic and thus the importance of 

alignment for accurate analysis of the energy gain results.   
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Figure 4.3.6 Focused, tilted offset beam on streak camera slit.  The mean position as 
measured on the streak camera slit (the space between the light blue vertical lines) was 
-15.4.  The shift in mean position between the focus and unfocused beams was 3.7 
units.  Energy changes imparted on the beam by the plasma will change the mean 
position of the beam on the streak camera diagnostic.  This analysis has shown how 
simple focusing of the beam would shift the mean position and thus giving the 
appearance of an energy change.  To negate this effect, the center of the beam must be 
aligned to the center of the streak camera slit. 

1 2

1 2

5 10

10 20

45
15.4

x x

SC

x x

y

σ σ

θ

′ ′= =

′ ′= − = −

=
= −

○



 96

5  Longitudinal Dynamics of the Positron Beam in a 
  Meter Long Plasma Column 
 
 In this chapter we present the analysis of the longitudinal dynamics of the 

positron beam.  Two significant experimental results will be presented.  First, results 

on energy loss of the bulk of the beam will be presented.  Secondly, and more 

importantly, energy gain of the particles in the back of the beam will be presented. 

 

5.1 Energy loss 

 A primary indicator that the positron beam is driving, and thus transferring 

energy to, a plasma wakefield is the observation of energy loss of the bulk of the 

beam.  The energy loss of the beam was measured after the plasma by dividing the 

entire energy-dispersed streak camera image into 1 ps slices (the temporal resolution 

of the streak camera), fitting a Gaussian profile to the data of each slice, and tracking 

the relative position of each Gaussian’s mean.  The plasma density was varied 

between 0-2x1014 cm-3 over a series of 200 shots.  The ionizing laser was not fired 

every fourth shot to provide a baseline measurement of incoming beam parameters 

and to provide the data for zero plasma density.  The measured mean positions were 

binned by plasma density.  Figure 5.1.1 shows the energy loss as measured on the 

streak camera.  The error bars represent the standard deviation of the mean of the 

energy (vertical error bars) and plasma density (horizontal error bars) for each density 

bin. 
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Figure 5.1.1 Energy Loss vs. Plasma Density Measured on the Streak Camera 

 

The above figure shows that the beam loses energy with increasing plasma density.  

The data shows some structure where the beam loses less energy at 8x1013 cm-3 than it 

did at 3x1013 cm-3.  This is not consistent with our intuition or with the simulations.  

One assumption in the above figure is that the incoming beam energy was constant 

over the 200 shots.  We verify this assumption by looking at a beam position monitor 

(BPM) in a dispersive section of the beamline upstream of the plasma.  This BPM 

measures the changes in the incident beam energy.  These variations are plotted in 

figure 6.1.2 and the error bars have the same meaning as before. 
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Figure 5.1.2 Variations in the Incident Beam Energy 

The above figure shows that our assumption for constant incoming energy was not 

valid.  The energy is seen to very by up to 20 MeV.  This is a small fraction of the 

28.5 GeV, but it is significant for our measurements.  Therefore, to get the actual 

energy loss induced by the plasma on the beam, we subtract the incident energy from 

the energy measured after the plasma (at the streak camera).  This result is shown in 

figure 6.1.3. 
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Figure 5.1.3 Peak energy loss after propagating through 1.4 meters of plasma 

 

 Energy loss measurements over a wide range of plasma densities are presented in 

Figure 6.1.3 (blue circles).  Figure 5.1.3 also shows the energy loss predictions from 3-

D PIC simulations (red triangles).  As can be seen in Figure 5.1.3, simulations predict 

and experimental data confirm that the beam losses energy in the plasma.  The energy 

loss gradually increases with increasing plasma density with a maximum measured 

energy loss of 68 ± 8 MeV at a plasma density of 1.8x1014 cm-3.  This is in good 

agreement with 3-D OSIRIS simulations which predicted a peak energy loss of 64 

MeV at the same plasma density. 
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5.2 Energy Gain 

 Since the plasma wakefield is an energy transformer, the energy loss data 

strongly suggests that the particles in the beam’s tail should gain energy in this 

experiment as the beam length approaches / pcπ ω or half the plasma wakefield 

wavelength.  As opposed to the energy loss of the beam, which can be measured at 

plasma densities as low as 3x1013 cm-3, the energy gain of the “tail particles” can only 

be observed for densities greater than ~1.5x1014 cm-3.  For densities less than 1.5x1014 

cm-3, the plasma wakefield wavelength is too long for the wake to accelerate enough 

beam charge to be measured with the limited dynamic range of the streak camera.  

Temporal resolution of the beam was only possible between the -4 ps slice and the 5 

ps slice due to the signal-to-noise ratio (i.e. limited dynamic range) in the streak 

camera. Figure 5.2.1 shows the amplitude of the slices up to 10 ps away from the 

centroid.  The red box represents the region in which the amplitude of slice was 

insufficient to extract a meaningful signal.  Therefore, the first and last slices 

measured on the streak camera are not the true head and tail of the beam.  Rather, they 

represent slices which lie ~2 σz before and after the centroid.  Figures 5.2.2-3 depict 

the -6 ps slice to give an example of a slice which has an insufficient signal.  Figure 

5.2.2 is the raw data with the -6 ps region bounded by the two lines.  Figure 5.2.3 

shows the analysis of that data.  The blue curve is the raw data, the green curve is 

Gaussian smoothed data, the dashed red line is the Gaussian fit approximation, and the 
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solid red curve is the Gaussian fit to the green smoothed data.  As seen in the figure, 

the streak camera raw data consists of just a few photoelectrons.  The signal consists 

of two spikes and the total count level is very low.  In addition, the Gaussian fit to the 

signal is poor.  These are the reasons why we say that this data is categorized as being 

below the signal-to-noise ratio threshold.  Figures 5.2.4-5 show an example of data 

which is just above the signal-to-noise threshold.  Figure 5.2.4 shows the raw data for 

the 5 ps slice and figure 5.2.5 shows the analyzed slice data where the different 

colored lines have the same meaning as figure 5.2.3.  In this case, you can see that the 

peak counts are much higher than the previous case and that there is significantly more 

signal.  In addition, the Gaussian fits the data well.   

 

Figure 5.2.1 Amplitude of Slice Data From the Streak Camera 
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Figure 5.2.2  Raw data of -6 ps slice 

 

Figure 5.2.3 Slice Analysis of -6 ps slice 
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Figure 5.2.4 Raw Data of 5 ps Slice 

 

Figure 5.2.5 Slice Analysis of 5 ps slice 
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The above analysis showed which slices of the streak camera data were not usable.  

Now we will concentrate on the part of the data that we can use.  The first step was to 

find data which did not have a tail, was not tilted, and had a small energy spread.  A 

200 shot run which took place on December 16, 2001 fit the above criterion.  This run, 

12161cx, was used for this analysis.   

 

Figure 5.2.6 Time Slice Analysis of the Energy Dynamics with a Positron Bunch 

 

Figure 5.2.6 shows the relative energy of each time slice along the bunch of the 

positron beam when the plasma is off (blue circles) and when the plasma turned on 
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(red squares) with a density of 1.8x1014 cm-3.  The energy variation in time for each 

shot was obtained by dividing the energy-dispersed streak camera images into 1 ps 

slices and tracking the mean positions (energy) of each slice.  The vertical error bars 

represent the standard deviation of the mean for each temporal bin.  The raw images 

that comprise Figure 5.2.6 are all documented in Appendix B.  The black line is the 

charge distribution of the bunch which is moving from right to left in the figure.  Since 

the change in energy is important, not the absolute energy, energy changes were 

measured with respect to the -4 ps plasma off slice.  The plasma off case shows that 

the beam has a head-to-tail energy chirp of ~20 MeV.  With the plasma on, energy 

loss is observed for the bulk of the beam out to about one σz behind the centroid.  The 

positrons behind this point have gained energy.  The data show that ~5x108 positrons 

in a 1 ps slice 1.6 σz after the centroid were accelerated by 79 ± 15 MeV in 1.4 m (~56 

MeV/m gradient).  These results are in good agreement with 3-D PIC simulations 

which predicted a peak energy gain of 78 MeV.  The maximum energy loss in the 

simulations occurred at about -1.5 ps whereas in the experiment the 0 ps slice (i.e. the 

beam’s center slice) shows the greatest loss.  This is thought to be due to small 

differences between the actual beam current profile and the fitted Gaussian current 

profile that was used in the simulations and also due to space charge broadening 

effects in the streak camera. 
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6 Conclusions 

In summary, this dissertation demonstrates the first acceleration of positrons by 

a plasma wakefield.  Excellent agreement was found between the experimental results 

and those from 3D PIC simulations for both energy gain and loss.  Energy loss of the 

centroid was found to increase with increasing plasma density up to a value of ≈68 

MeV at a plasma density of 1.8x1014 cm-3.  At this density, energy gain of positrons in 

a plasma of 79 MeV was measured.  The acceleration gradient of 56 MeV/m measured 

in this proof-of-principal experiment can be increased to the GeV/m level in future 

experiments by a combination of an increase in the drive beam charge, a decrease in 

the drive beam pulsewidth (with a corresponding increase in the plasma density), and 

by employing a plasma channel rather than a uniform plasma.  Furthermore, in a real 

application of such a plasma wakefield accelerator, the drive positron bunch will be 

followed by an optimally placed trailing witness bunch with a sufficient current to 

both realize high gradient acceleration and a reasonable beam load and narrow energy 

spread.  These scalings have been explored through PIC simulations.  These results 

and future experiments will be the basis of work to design a plasma-based linear 

collider which will either utilize multiple plasma wakefield accelerator sections or an 

extremely high-gradient single stage plasma wakefield “afterburner” at the end of an 

existing linac to double the energy of the electron and positron beams.  
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Appendix A: Experimental Facilities 

A.1 Stanford Linear Accelerator (SLAC) 

 Before a description of the E157/E162 experimental components is given, a 

brief introduction to SLAC is necessitated.  SLAC is operated under contract from the 

United States Department of Energy (DOE) as a national basic research laboratory.  Its 

function is to probe the structure of matter at the atomic scale with x-rays and at much 

smaller scales with electron and positron beams.  The major facilities at SLAC are the 

linac, End Station A, SPEAR and SSRL, PEP II, SLC, and the FFTB.  The linac is a 

three kilometer long accelerator capable of producing electron and positron beams 

with energies up to 50 GeV.  End Station A is for fixed target experiments.  Early 

work in End Station A showed that the constituents of the atomic nucleus, the proton 

and neutron, are themselves composed of smaller, more fundamental objects called 

quarks.  The Stanford Synchrotron Radiation Laboratory (SSRL) uses the SPEAR 

storage ring to produce intense x-ray and ultraviolet beams for probing matter on the 

atomic scale.  PEP II is a storage ring for a B meson factory in which an experiment, 

BaBar, is seeking to answer why the universe is made of matter and not anti-matter.  

The Stanford Linear Collider (SLC) in conjunction with the Stanford Large Detector 

(SLD), analyzed collisions of 50 GeV electrons on 50 GeV positrons in order to 

determine the mass and other properties of the Z0 particle, which is a carrier of the 

weak force of subatomic physics.  The Final Focus Test Beam (FFTB) is a facility for 
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research on future accelerator design.  The E162 experiment was located inside the 

FFTB. 

 

A.2 Linac Beam Transport 

 The function of the linac was to deliver short high-charge 28.5 GeV bunches of 

positrons and electrons to our experiment.  Precise tuning of the beams orbit is needed 

in order to transport the bunch with good beam quality.  One deleterious effect which 

tuning minimizes is wakefields.  Wakefields act as the feedback mechanism in the 

linac in which the beam undergoes transverse deflections due to its own space charge 

field.  The strength of this wakefield scales as the bunch charge squared which means 

that it is increasingly more difficult to transport a higher charge bunch with good beam 

quality.  The linear accelerator is capable of transporting bunches which contain 

4x1010 particles, but it requires continuous tuning in order to maintain that charge. 

 Our experiment was designed for a bunch which contained 2x1010 positrons.  

Since the effect of the plasma on the beam is a strong function of the beam’s incoming 

parameters, an extremely high quality beam was needed to make the precise energy 

gain measurements.  The charge was lowered from the design of 2x1010 down to 

1.2x1010 and with a significant tuning effort by SLAC’s Main Control, a high quality 

bunch was delivered to our experiment in the FFTB.  The following four figures show 

the differences between the high and low charge beams with and without a plasma.  
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As you can see, the low charge beam has very little energy spread, it is round, and it 

“behaves” nicely when it is propagated through the plasma. 
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Figure A.2.1 Improved beam quality at lower charge.  These four images are time 
integrated Cherenkov images.  There is energy dispersion in the vertical axis of these 
images.  a and b show the beam with a low charge ( 101.2 10 e+× ) without a plasma and 
b with a 14 32 10 /e cm−× plasma.  As you can see, the beam is well behaved and is not 
degraded by the plasma.  c and d show the beam at a high charge ( 102.0 10 e+× ) 
without c plasma and d with a 14 32 10 /e cm−×  plasma.  As you can see the beam has 
an initial large energy spread, and is severely degraded when it propagates through the 
plasma. 
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A.3 Final Focus Test Beam (FFTB) 

 The FFTB was designed to be a facility to be used for the development and 

study of optical systems, instrumentation, and techniques needed to produce the small 

beam spot sizes required for future electron-positron colliders.  The design consists of 

five key sections.  The first part is a matching section to match the beam that appears 

at the end of the linac to the lattice of the FFTB beamline.  This matching section also 

has a lens to match the betatron space of the beam to the second section, the chromatic 

correction section.  The second, third, and fourth sections are used to correct 

chromatic and geometric aberrations on the beam.  The final section is a telescope that 

focuses the beam down to a small spot size. 

 The optics of the FFTB consist of dipoles, quadruples, and sextuples.  In order 

to focus the beam down to nanometer spot sizes, the optics needed to be aligned to an 

accuracy on the order of a micron.  The optics were mounted on 3-axis positioners that 

allowed the optics to be moved ±1mm with 300nm resolution.  To complement these 

optics, diagnostics were needed to determine the spot size and position of the beam 

along the beamline.  These include torroids (to measure the beam’s charge), wire 

scanners (to measure spot size), a dispersive section to measure the incoming beam 

energy, and BPMs (to measure the beam’s position, Sec. 4.11). 
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Appendix B: Compendium of Analyzed Images 

 In this appendix, raw data images are presented.  The 9 shots chosen represent 

the shots used for the energy gain analysis in Chapter 6.  Six images are displayed for 

each shot.  The key to each figure is given in figure B.0.   

The first image (top left) is from the upstream OTR diagnostic.  This records 

the incoming beam profile 1 meter before the plasma cell.  The units of each axis are 

pixels and each pixel represents 9µm.  The y-axis is the beam line y-axis and the x-

axis is the inverse of the beam line x-axis.  The lines represent the horizontal and 

vertical profiles of the beam.   

The second image (top right) is from the downstream OTR diagnostic.  This 

records the beam profile 1 meter after the plasma cell.  The units of each axis are 

pixels and each pixel represents 9µm.  The y-axis is the beam line y-axis and the x-

axis is the beam line x-axis.  The lines represent the horizontal and vertical profiles of 

the beam.   

The third image (the middle left image) is the integrated Cherenkov diagnostic.  

The units of each axis are pixels and each pixel represents 16µm.  The vertical axis is 

the beam line y-axis which is energy dispersive (each pixel represents 5 MeV of 

energy change).  The x-axis is the beam line x-axis.  Superimposed on the image are 

two line pairs.  The area in between each line pair represents the area of the image 

which is sampled by the streak camera slit.   
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The fourth image (the middle right image) is the raw streak camera data.  The 

units of each axis are pixels and each pixel represents 16µm.  The x-axis of the image 

is time which increases from left to right.  The left image is the vertical or energy 

dispersive image while the right image is the time resolved dispersion free image.  The 

boxes drawn around each image are the close ups presented in the next two figures.  

Superimposed on the image is the shot number and the plasma density for that shot. 

The fifth image (bottom left) is the close up view of the energy dispersed 

streak camera image.  The head of the beam is on the left and the tail is on the right.  

Superimposed on the image are the mean positions of Gaussian fits to 1 ps bins 

(circles) and a line in which each point is the center of mass calculation for each data 

column.   

The sixth image (bottom right) is the close up view of the dispersion free 

streak camera image.  The head of the beam is on the left and the tail is on the right.  

Superimposed on the image are the mean positions of Gaussian fits to 1 ps bins 

(circles) and a line in which each point is the center of mass calculation for each data 

column. 

 This data was acquired on December 16, 2001.  The run code was 12161cx.  

The run consisted of 200 shots where the plasma density was varied between 0 and 

14 32 10 /e cm−× .  The ionizing laser was not fired every fourth shot so that the plasma 

free beam parameters could be recorded.  This appendix shows the raw data which 



 114

was used to construct the energy gain figure in Chapter 6.  The plasma off parameters 

consist of the average measurements made from shots 185, 189, and 193.  The plasma 

on parameters consist of the average measurements made from shots 186, 187, 188, 

190, 191, and 192.  

 

 

Figure B.0 Image locations in the following figures. 
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Figure B.1 Shot 185 – No Plasma – Raw Images. 
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Figure B.2 Shot 186 – Plasma Density 14 31.8 10 /e cm−×  – Raw Images. 
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Figure B.3 Shot 187 – Plasma Density 14 31.88 10 /e cm−×  – Raw Images. 
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Figure B.4 Shot 188 – Plasma Density 14 31.69 10 /e cm−×  – Raw Images. 
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Figure B.5 Shot 189 – No Plasma – Raw Images. 
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Figure B.6 Shot 190 – Plasma Density 14 31.65 10 /e cm−×  – Raw Images. 
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Figure B.7 Shot 191 – Plasma Density 14 31.92 10 /e cm−×  – Raw Images. 
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Figure B.8 Shot 192 – Plasma Density 14 31.76 10 /e cm−×  – Raw Images. 
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Figure B.9 Shot 193 – No Plasma – Raw Images. 
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Appendix C  Design for an Advanced Accelerator 
Driven by a Proton (or Ion) Beam 

 
This chapter presents the design for an advanced TeV electron-positron 

accelerator concept based on current technology and existing accelerator hardware.  

The first section will present the introduction to the concept.  This will be followed up 

by simulations of different operating conditions.  Finally, a couple of concepts will be 

explored on how to produce short proton pulses. 

 

C.1 3rd generation plasma wakefield accelerators 

 In its purest sense, the plasma wakefield accelerator is an energy transformer.  

The energy of a drive beam is transferred to a witness beam via the plasma wakefield.  

Except when shaped bunches are used, the transformer ratio is limited to about 2.  This 

implies that if a drive and a witness beam start with the same energy, the drive beam 

could lose all of its energy, and the witness beam would double its energy.  For 

instance, the afterburner idea [37] would double the 50 GeV energy of the SLAC 

electron and positron beams to 100 GeV just before the interaction point (IP).  In one 

sense, this is very attractive because the collision energy at the SLAC IP could be 

doubled without building additional accelerator infrastructure.  The downside is that a 

significant existing infrastructure is needed to generate the drive beam.  An ideal case 

would be to generate a high energy drive beam in a small space and use it to drive the 
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plasma wakefield accelerator while injecting a witness beam which would be 

accelerated to the high drive beam energy. 

 Before the advanced concept is presented, it is necessary to understand the two 

main types of high energy accelerators: linear and circular.  High energy electron-

positron colliders use linear accelerators because these particles lose unacceptably 

high amounts of energy from synchrotron radiation when they are centripetally 

accelerated.  This is because the energy dissipated by synchrotron radiation scales as 

4γ and electron and positrons, due to their small mass, have a high Lorentz factor.  The 

highest energies achieved in a linear collider were the 50 GeV ( )510γ ∼ electrons and 

positrons generated at SLAC.  On the other hand, circular accelerators can bring 

massive particles (protons, antiprotons, ions, etc.) up to TeV energies since their 

Lorentz factor is lower.  Currently, 1 TeV protons ( )310γ ∼ are generated in the 

Tevatron at Fermilab.  What is readily apparent is that circular colliders can generate 

much higher energy particles than their linear counterparts.  The shortcoming is that 

while electrons and positrons are fundamental particles, protons and antiprotons are 

not.  Whereas e e− +− collisions utilize all of the particles energy in annihilation, p p−  

collisions utilize only part of the total energy because one is actually colliding quarks 

and antiquarks that make up the protons and antiprotons. 

 My proposal is to drive plasma wakefields with high energy proton or ion 

beams and witness the wakefield with electrons or positrons.  This scheme utilizes the 
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benefits of both types of accelerators.  A high energy proton beam would be 

accelerated to the TeV energy range in a circular machine.  The beam would then be 

extracted and sent into a plasma wakefield accelerator cell.  Behind the proton bunch, 

a low energy (~1 GeV) electron or positron beam would be injected into the wakefield 

and accelerated.  If we assume that the energy loss of the drive beam is equal to the 

energy gain of the witness beam, it is conceivable that a 500 GeV or greater electron 

or positrons beam could be generated. 

 In addition to their high drive beam energy, protons are also attractive since 

their high mass will diminish transverse dynamics (as compared to the 

electron/positron drive beam) and aid in the suppression of instabilities.  A central 

parameter associated with transverse dynamics is the beam wave number bk . 

 
21 4b b

b
q Nk

c c m
ω π

γ
= =  (C.1) 

The period of transverse oscillations of a beam in a plasma channel scales as 1
bk
− , so as 

mγ  (the relativistic mass of the particle) is increased, the period increases.  For 

instance a centroid which has an initial offset 0y  in the plasma channel will evolve 

according to equation C.2. 

 0( ) cos( )by z y k z=  (C.2) 

It is this increase in transverse “stiffness” which increases in oscillatory period and 

will aid in suppression of beam instabilities. 
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 This method of plasma wakefield acceleration can be considered to be the third 

generation of PWFAs.  The first generation used a PWFA driven in the linear regime.  

The second generation improved on the idea by operating in the nonlinear regime.  

This third regime advances the PWFA into a true energy transformer.  A compact, 

high energy drive beam source is used to accelerate a beam of fundamental particles to 

a very high energy. 

 

C.2 Simulations of proton driven PWFAs 

 The parameters for these following simulations are based on the use of 

advanced proton and ion sources [38, 39].  These sources provide the high 

charge ( )1010bN > , short pulse ( )1z mmσ <  needed to drive the high ( )1 /zE GV m>  

accelerating gradient PWFAs.  As a first proof-of-principle simulation, we look at the 

wake generated by a short proton bunch injected into a high plasma density plasma 

cell.  The parameters for the simulation are given in table C.2.1. 
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Parameter Value 

Proton Beam Energy 1 TeV  

Number of Protons bN  104 10 p×  

Bunch Length zσ  40 mµ  

Bunch Radius rσ  40 mµ  

Plasma Density pn  17 31 10 /e cm−×  

Simulation Cell Size r z∆ ×∆  4 4m mµ µ×  

Simulation Window R Z×  1200 480m mµ µ×  

Table C.2.1 Proton PWFA simulation parameters 

The on-axis longitudinal electric field (red) is shown in the following figure with the 

charge distribution shown in black.  As seen in the figure, the front half of the beam 

witnesses a decelerating field and the back half of the bunch witnesses an accelerating 

field.  Although the decelerating wake is sinusoidal (as we would expect from linear 

theory), the accelerating field has a complex structure.  This is because the bunch 

length is greater than the plasma wavelength ( )27p mλ µ= .  As the plasma electrons 

are pulled in from different radii, their field constructively and destructively interfere 

which gives rise to the complex accelerating field.  Although complex, the magnitude 

of the accelerating field is much higher than the fields currently used in high energy 
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particle accelerators.  The peak accelerating field is greater than 3 GV/m and the peak 

decelerating field is close to 4 GV/m.   

The interpretation of accelerating and decelerating fields is reversed if we are 

considering the acceleration of electrons in the wakefield of a proton beam.  The 

decelerating field in the front half of the drive beam is an accelerating field for 

electrons.  This is because the proton and electron have a charge which is equal in 

magnitude, but opposite in sign.  Because of this, the transformer ratio is exactly one 

since the decelerating field is the accelerating field.  If this field could be utilized over 

150 meters for the acceleration of electrons, the resultant beam energy of 600 GeV 

would be greater than the initial design energy of future linear colliders (which are ~ 

30,000 meters long).  Over the same distance, the drive beam would loss 600 GeV.  A 

proton beam with an energy of 1 TeV has more than enough energy to drive this 150 

meter PWFA. 
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. 

Figure C.2.1 Wakefield field induced in a plasma by a proton beam 

In practice, producing a meter-scale uniform plasma column with a 17 310 /e cm− can be 

difficult.  One idea is to use the beam’s own electric field to ionize the neutral gas.  

The following figure shows the wakefield induced by a proton beam in a neutral gas.  

The parameters are the same as in table C.2.1, except the initial plasma is replace by a 

10 torr Lithium vapor. 
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Figure C.2.2 Wakefield induced by a proton beam in a Li vapor 

Two features of the wakefield are readily apparent.  First, the field varies sinusoidally 

with a period ( )45
zE

mλ µ= which is much shorter than the preionized plasma case.  

The period of the field corresponds to the beam density ( )16 33 10 /bn p cm= × .  Second, 

the magnitude of the peak accelerating field is on the order of 10 GV/m and the 

magnitude of the peak decelerating field is 13 GV/m.  As in the preionized plasma 

case, a decelerating field for the proton beam ( )0zE <  is an accelerating field for the 

electron beam and vice versa.  These two features of the wakefield are due to the finite 

radius of the plasma column as shown in figure C.2.3. The figure depicts the neutral 

gas density in blue and the radial profile of the proton beam in red.  The beam fully 

ionizes the gas out to a radius of ~ / 2rσ  and the full channel width extends out to 
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3 rσ∼ .  The physics and theory developed for PWFAs has concentrated on the beam 

dynamics inside an infinite (plasma radius >> beam radius) preionized plasma.  The 

dynamics of a beam in a narrow channel (plasma radius ~ beam radius) will be the 

topic of new research since high density, beam ionized plasmas are needed for future 

PWFAs.   

 

Figure C.2.3 Tunnel ionized channel width 

Now that we have a feeling for the extraordinarily high fields which are generated by 

the proton beam, we look at how a witness electron beam will be affected by the 

wakefield, and how the electron beam might in turn effect the wakefield.  The 

parameters for the simulation are identical to the tunnel ionized case, except now an 

electron beam is injected which has the same spatial extent as the drive beam and 

1/10th the charge. 
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Figure C.2.4 Evolution of the proton drive beam (blue) and witness electron beam 

(red).  The horizontal axis is the longitudinal profile of the beam in the beam’s rest 

frame.  The vertical axis is the radial profile of the beam with zero being the centerline 

of the beam.  Each point above represents a macroparticle in the simulation.  The 

snapshots of the beams are taken after the beam has traversed 500 µm (left hand side) 

and 6.2 mm (right hand side) of Lithium vapor.  The beams are traveling from left to 

right in the frames.  The drive beam does not significantly evolve due to its high rest 

mass.  The electron beam is significantly affected by the radial forces generated in the 

plasma.  Some particles are trapped near the axis, while others are strongly defocused.  

This was expected since the placement of the witness beam in the accelerating field 

was not optimized in this simulation. 
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Figure C.2.5 Energy evolution of the proton drive beam (blue) and witness electron 
beam (red).  The horizontal axis is the longitudinal profile of the beam in the beam’s 
rest frame.  The vertical axis is the energy of each beam macroparticles (each point).  
The snapshots of the beams are taken after the beam has traversed 500 µm (left hand 
side) and 6.2 mm (right hand side) of Lithium vapor.  The beams are traveling from 
left to right in the frames.  The proton beam has which started at 1 TeV has negligible 
energy changes at 500 µm, but by 6.2 mm its energy is modulated by the wakefield 
with energy gains and losses on the order of 750 MeV. At 500 µm, the electron beam 
energy, which was initially 1 GeV, is starting to be modulated by the proton driven 
plasma wakefield.  After 6.2 mm, the electron beam has a maximum energy gain of 
over 600 MeV.  This corresponds to an accelerating gradient of ~10 GeV/m. 
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 The phase velocity of the plasma wakefield is equal to the phase velocity of the 

proton beam.  Although it is nearly traveling at the speed of light, it is not exactly.  

Furthermore, as the proton beam losses energy, it’s velocity will decrease.  On the 

other hand, as the electron beam is accelerated, it’s velocity will increase.  One limit 

on the interaction length of the PWFA is the distance the accelerating electron beam 

can travel while still inside the accelerating field of the decelerating proton wakefield.  

As an example we consider the separation between a electron beam which has an 

initial energy of 1 GeV and a wakefield which is propagating at the velocity of a 1 

TeV proton beam. The proton beam will lose energy at the rate of 10 GeV/m and the 

electron beam will gain energy at the same rate.  Figure C.2.6 shows the separation 

between the electron bunch and the proton wakefield versus distance traveled. 
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Figure C.2.6 Relative separation between an accelerating electron bunch and a 
decelerating proton bunch in a 10 GeV/m PWFA.  The bunches, which initially start a 
the same longitudinal position, propagate at different velocities due to their different, 
and changing, Lorentz factors.  We set a limit of /10Wλ to be the maximum acceptable 
separation (where Wλ  is the wakefield wavelength) so that the injected electron bunch 
would stay near the peak of the accelerating field.  In the tunnel ionized plasma case, 
the wakefield wavelength is 45 µm, so the maximum accelerator section length is 10 
meters.  This implies that 5 PWFA sections would need to be staged together to reach 
the 500 GeV design goal of the next generation linear colliders.  If we assume a drive 
beam energy of 7 TeV (the Large Hadron Collider (LHC) energy at CERN), phase slip 
is not an issue for 100’s of meters of propagation.  These assumptions on the velocity 
of the wakefield assumed that the drive beam did not significantly evolve.  Further 
studies are needed to address this concern.    
 

C.3 Methods of generating short ( )100 zmµ σ< proton pulses 

 One hurdle which needs to be overcome, is the generation of short proton 

pulses.  Our definition of short is bunches which are less than 100 µm long.  For 

comparison, current and future circular accelerators use bunches which are several 

centimeters in length.  For instance the bunch length in the Tevatron is 28 cm, and the 
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proposed bunch length in the LHC is 7 cm.  The reason the bunch lengths are long is 

that collider designers strive for a higher luminosity which scales as the beam charge.  

One limiting factor is a limit on beam current which scales as the charge divided by 

the bunch length.  So in order to have a higher luminosity, collider designers use a 

long bunch with high charge.  Since short proton bunches have not previously been 

needed, little to no research has been done on the generation of these bunches.  On the 

other hand, electron/position linear accelerators have been driven towards short pulse 

lengths since high frequency accelerating structures, which have a higher accelerating 

gradient, require short bunches.  Our goal here is not to provide a final solution to the 

problem, rather to explore methods which show that it is feasible to generate short 

proton bunches using extensions of current technology. 

 One method for generating a short proton bunch is where a powerful, short 

pulse laser strikes a thin foil [38, 39].  When the laser hits the target, it forms a plasma, 

and in turn accelerates the plasma electrons through the foil.  As the electrons leave 

the backside of the foil, their space charge “drags” the protons out of the foil.  The 

ejected proton bunch has a high charge ( )1310 p> , (expected to have) a short pulse 

length (~300 µm), and is at a moderate energy (~20 MeV) with a large energy spread.   

Since the energy is much less than the proton rest mass, the bunch is not relativistic 

and space charge will broaden the pulse length.  Experimental evidence has shown 

that the proton energy scales as the laser intensity.  If we assume that the proton pulse 
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would need to have an energy greater than a few GeV in order to minimize 

longitudinal space charge broadening, we would need a laser intensity of 

21 22 210 10 /W cm− (following 2Iλ scaling [40]).  Although such a laser system does not 

currently exist, it is foreseeable it will be built in the not too distant future. 

 Another possible technique is too velocity modulate a long, low energy, 

relativistic proton bunch with a high frequency plasma wakefield.  A high current, 

short electron pulse could be injected into a neutral gas in order to generate a 

wakefield.  This is the same case as last section, except now we are using an electron 

beam to tunnel ionize the gas and drive a wakefield.  Figure C.3.1 shows the wakefield 

generated in a tunnel ionized Lithium plasma by a high current electron beam which is 

injected into the temporal center of a long proton bunch. 
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Figure C.3.1 Wakefield (red) generated by a electron beam (blue) in a tunnel ionized 
10 torr plasma.  A 20 GeV, 100 µm long, 40 µm wide electron bunch with 4x1010 
particles is injected in the temporal middle of a 10 GeV, 1 cm long, 40 µm wide 
proton bunch (not shown) with 1x1012 particles.  The wakefield has a magnitude of ~8 
GV/m and a period Wλ  of 76 µm.  Protons which witness an accelerating field will 
stay in their curetn accelerating bucket, while those which are decelerated will fall into 
a trailing bucket.  This will cause the beam to break up into a series of micropulses 
whose pulse widths will be less than / 2Wλ .  For instance, if the beam passed through a 
1 mm long gas jet and allowed to drift 3 meters, the protons at the peak of the field 
would accelerate forward in the bunch to meet the protons which were decelerated 
from the preceding peak decelerating field.  A pulse train would emerge with ~40 µm 
long microbunches which would contain ~4x109 protons.  The jitter in the wake and 
charge distribution is numerical noise in the simulation. 
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