SLAC-R-697 UC-414

Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3^{*}

James A. Dunne

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

> SLAC-Report-697 1995

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

^{*} Ph.D. thesis, American University, Washington DC, 20016

MEASUREMENT OF THE SPIN STRUCTURE FUNCTION OF THE NEUTRON g," FROM DEEP INELASTIC SCATTERING OF POLARIZED ELECTRONS FROM

POLARIZED NEUTRONS IN ³He

by

James A. Dunne

submitted to the Faculty of the College of Arts and Sciences

of the American University

in Partial Fulfillment of

the Requirements for the Degree

of

Doctor of Philosophy

in

Physics

Signatures of Committ Chair.

he College

Da

1995 The American University Wahington, D C 20016

7755

THE AMERICAN UNIVERSITY LIBRARY

MEASUREMENT OF THE SPIN STRUCTURE FUNCTION OF THE NEUTRON g₁" FROM DEEP INELASTIC SCATTERING OF POLARIZED ELECTRONS FROM "^t POLARIZED NEUTRONS IN ³He

James A. Dunne

bv

ABSTRACT

Polarized electrons of energies 19 42, 22 67, and 25 5 GeV were scattered off a polarized ³He target at SLAC's End Station A to measure the spin asymmetry of the neutron From this asymmetry, the spin dependent structure function $g_1^n(x)$ was determined over, a range in x from 0.03 to 0.6 with an average Q^2 of 2 (GeV/C)². The value of the integral of g_1^n over x is $\int_{0}^{1} g_1^n(x) dx = -0.036 \pm 0.009$. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

u.

ACKNOWLEDGMENTS

• I would like to thank all the members of the E-142 collaboration and the SLAC technicians for making this experiment possible. They are a talented group of people. I would especially like to thank Zein-Eddine Meziani, Charlie Young, Jim Johnson, Henry Band, and Emlyn Hughes for taking the time to answer questions, give guidance, and for just being there to talk. It was also a pleasure working with my fellow graduate students, Michael Spengos, David Kawall, Yves Roblin, James Xu, and Hunter Middleton.

٢

A great deal of credit is due to my advisors, Ray Arnold, Peter Bosted, Steve Rock, and Zen Szalata from the American University. I learned a tremendous amount from each of them. They answered all of my many questions during my tenure at SLAC I truly benefitted from the collaborative analysis meetings we had. They hold a seemingly limitless knowledge of physics and computers. I believe I now possess a sound background in physics and that is attributed primarily to them.

I would like to extend my thanks to the professors at the American University for teaching me the fundamentals of physics and math. I genuinely enjoyed my time back at AU. Special thanks is owed to Dr. Segnan, Dr. Reiss, Dr. Kay, Dr. Schot, Dr. Casey, and Dr. Bruce Flanders. Looking back on my first year, I guess I have come a long way since my first exam in Intro to Quantum

I have made a lot of lasting friendships during the last few years My social sanity is

due to people like Jim Talamonti, Mervyn Naidoo, Jeff Fellbaum, Thia Keppel, Barry Hellman, Rolf Ent, Rad Antonov, Dave Reyna, and Robin Erbacher. But most of all to Michael and Effie Spengos. They are great people and great neighbors. I am indebted for life to Effie and her cooking (especially her fish). They made life in California truly enjoyable. I worked very closely with Michael and I have tremendous respect for him, his family and his physics. Thanks for everything.

A huge amount of thanks is due to my family for the support given during my many years as a student. But the most gratitude is due to my wife who had to put up with me during the writing of this document. She has helped me in countless ways and probably now knows (against her will) more about spin physics than most. We have spent some very long days and nights trying to produce this final document and that alone deems her worthy of all my gratitude. But it goes beyond that; she is my best friend, she is my life. And for those reasons, I dedicate this thesis to her, Demi.

TABLE OF CONTENTS

i.

C

ABSTRACT	ů,
ACKNOWLEDGMENTS	iii
LIST OF TABLES	x
LIST OF ILLUSTRATIONS	ciii '
CHAPTER 1: INTRODUCTION	l
Structure Functions	2
Unpolarized Structure functions	2
Polarized Structure Functions	7
Asymmetries	11
Lepton-Nucleon Asymmetry	11
Wirtual Photon-Nucleon Asymmetry	11
Quark Parton Model	12
Sum Rules	17
Björken Sum Rule	17
The Ellis-Jaffe Sum Rules	19
The Burkhart-Cottingham Sum Rule	20
Motivation	21

v

1

CHAPTER 2: EXPERIMENTAL SETUP	. 25
Beam transport and monitoring	25
The Polarized Targe!	36
Spectrometers	41
Detectors	44
Čerenkov	44
Shower Counter	45
Hodoscope	. 48
Trigger Electronics	52
Shower Signals	53
Ćerenkov Signals	55
Hodoscope Signals	56
Lucite Signals	56
Main Trigger	57
Efficiency Triggers	58
Trigger OR	60
Hodogate	61
Beam Gate	61
Data Acquisition	62
The Run Plan	64

đ

.....

vi

t

СНАР	TER 3 DATA ANALYSIS	65
	Shower Analysis	65
	Clustering Algorithm	65
	Shower Calibration	66
	-2 Shower Cuts	7 0
	Ghost Cut	7 0
	Dead Block Cut	71
	Overlap cut	71
:	Neural Network Cut	72
; ,	Efficiency **	73
	Beam Analysis	76
	Beam cuts	76
	Beam Polarization Cuts	77
	Beam Polarization measurement	79
	Tracking Analysis	81
т.	Tracking Algorithm	81
	Efficiency	83
	Ĉerenkov Analysis	85
	Target Polarization	86
	Event Selection	87
	Main Cut Definition	88
	Binning	88

r

۱

vii

Pion Analysis	88
Positron Analysis	92
Dead-time Correction	. 95
Radiative Corrections	99
Internal Corrections	100
External Radiative Corrections	104
Models	107
Dilution Factor	110
Method 1	111
Method II	113
f_2 Term	115
Resolution Correction	116
CHAPTER 4: RESULTS AND CONCLUSIONS	119
Systematic Uncertainties	119
False Asymmetries	124
Raw Asymmetries	126
Electron-nucleon asymmetries: A_{\parallel} and A_{\perp}	127
The longitudinal and transverse electron-nucleon asymmetries of the neutro	n 134
The virtual photon- ³ He asymmetries A_1^{3He} and A_2^{3He}	140
The virtual photon-neutron asymmetries A_1^n and A_2^n	143
Q^2 dependence of A_1^n and g_1/F_1	147
The g_1^n structure function	153

~4

viii

Extrapolations 159
Low x extrapolation 159
High x extrapolation 161
Summary of g_1^n Results 164
Implications 164
Bjorken sum rule comparison with E-143
Bjorken sum rule comparison with SMC 168
Conclusion 169
APPENDIX A
Introduction 171
New Analysis
New Corrections and Factors
Comparison of Fall94 and Quick Analysis
Low x point 185
Options 187
APPENDIX B
Resonance Region Asymmetries
REFERENCES 210

ix

t

1

LIST OF TABLES

. 1.	Forward Compton Helicity Amplitudes	9
2.	E-142 Target Cells	39
3.	Hodoscope Information	49
4.	Beam Cuts -	77
5.	Pion Asymmetries $A^{\pi} = A_{raw} / (Pol_{beam} \cdot Pol_{rarge1} \cdot f_1)$	90
6.	Ratio of e to e for all energies and both spectrometers	93
7.	Average Additive Dead-time Correction	. 98
8.	Target Model for External Radiative Corrections	105
9.	Estimation of Systematic Error on Total Additive Radiative Correction	108
10.	f_1 Term of the Dilution Factor (Method I)	113
11.	f_1 Term (Method II)	115
12.	Bin boundaries for the eight x bins	129
13.	A_{\parallel}^{3He} for all energies and spectrometers.	130
14.	A_{\perp}^{3He} for all energies and spectrometers	132
15.	A_{\parallel}^{n} for all energies and spectrometers	136
16.	A ⁿ for all energies and spectrometers	138
17.	A_1^{He} versus x	140
18.	A_{1}^{He} versus x	142

2

X

19.	A_2^n versus x	144
20.	Systematic error on A_1^n determined from A_1 and A_1	145
21.	A_1^n and g_1/F_1 versus x.	146
22.	Bjorken x range for each data set	148
23.	A_1^n versus Q^2	149
24.	g_1/F_1 versus Q^2	-151
25.	$g_1^n(x,Q^2)$ versus x at the measured Q^2 determined from A_{\parallel} and A_{\perp}	153
26.	Systematic error on g_1^n determined from A_1^n and g_2^{WW} at $Q^2 = 2 (GeV/c)^2$	155
2 7.	g_1^n evaluated from A_1^n and g_2^{WW} at $Q^2 = \{2, 3 \text{ and } 10 (\text{GeV/c})^2\}$	156
28.	Value of the integral of g_1^n in the measured region (from A_1^n and g_2^{WW})	1'56
29.	g_1^n evaluated from g_1/F_1 at $Q^2 = \{2, 3, and 10 (GeV/c)^2\}$	157
30.	Value of the integral of g_1^n in the measured region (from g_1/F_1).	157
31.	Low x integral of $g_1^{n}(A_1^{n}, g_2^{WW})$	161
32.	High x extrapolation using $A_1^n = 0.75 \pm 0.25$ as $x = 1$.	162
33.	High x extrapolation with final error determination	163
34.	Latest published results of recent spin structure experiments.	165
35.	Summary of E-142 results	169
36.	Beam Cuts	175
37.	Target Model for External Radiative Corrections	176
38.	Comparison of cut 18 with cuts which affect the event selectior/statistics.	183
39.	Comparison of cut 18 and cut 48 with the new correction factors	184
40.	Information on Low x point ($x = [0.03 - 0.04]$) for various cuts	186

3

Ş

xi

....

41.	Options for final results of Fall94 analysis	188
42.	PRL and Cut 18 w/ Quick Corr. Factors	189
43.	Same as previous w/ just 2/2	190
44.	Same as previous w/ Cell Clustering	190
45.	Same as previous w/ new Beam Cuts (Spring94)	191
4ó.	Same as previous w/ Neural cut	191
47.	Same as previous w/ Ghost cut	192
48.	Same as previous w/ new Beam and target polarizations	192
49.	Same as previous w/ new Radiative Corrections	193
<u>.</u> 50	Same as previous w/ new Dilution factor	193
51.	Same as previous w/ new dead time	194
52.	Same as previous w/ E-143 proton correction	194
53.	Same as previous w/ new contamination correction	196
54.	Cut 48 with all new factors and all data (recovered runs)	196
55.	Cut 48 with and without resolution correction	197
56.	Cut 46 with and without resolution correction	198
57.	Combinations of Cuts used in Analysis	203

LIST OF ILLUSTRATIONS

Figure 1 Feynman diagram for deep inelastic e-N scattering	l
Figure 2 Early data on F_2 versus Q^2 for $x = 0.25$. 6
Figure 3 F_2 scaling violation	7
Figure 4 A_1^p for SLAC and EMC experiments	22
Figure 5 A-Bend beam line at SLAC	26
Figure 6 Elements of the A-Line in ESA	. 28
Figure 7 Polarization precession angle versus beam energy	31
Figure 8 Polarized Light Source for E-142	31
Figure 9 Band Structure for AlGaAs	33
Figure 10 Schematic of Photocathode	34
Figure 11 Top view of Møller polarimeter setúp	36
Figure 12 ³ He in S state	37
Figure 13 E-142 target setup. (Only one of five Ti Sapphire lasers shown)	38
Figure 14 E-142 Target Cell	38
Figure 15 E-142 Spectrometers	41
Figure 16 "S" Bend configuration of magnets	42
Figure 17 Solid angle versus momentum	42
Figure 18 Ray traces for the 4.5° and 7° spectrometers	43

Figure 19 Detectors (Top View, not to scale)	44
Figure 20 Ĉerenkov detector	45
Figure 21 Shower counter	47
Figure 22 Lead glass block	48
Figure 23 Hodoscope fingers (2/3 overlap)	50
Figure 24 Lucite planes	51
Figure 25 Trigger schematic legend	53
Figure 26 Saclay splitter	54
Figure 27 Shower counter schematic	55
Figure 28 Ĉerenkov trigger schematic	56
Figure 29 Lucite coincidence and Pion trigger	57
Figure 30 Main trigger	58
Figure 31 Efficiency triggers	59
Figure 32 Trigger OR and the Saclay Trigger Divider	60
Figure 33 Hodogate	61
Figure 34 Beam Gate schematic	62
Figure 35 Data Acquisition schematic	63
Figure 36 Cluster block numbering around central block	67
Figure 37 Fractional energy distribution in a non-edge cluster	69
Figure 38 Neural network output for pions and electrons	73
Figure 39 Neural network (NN 0 95) effect on E/P	73
Figure 40 Neural Network efficiency versus energy for the 4.5° at 19 GeV	74

ţ

Figure 41 Neural Network efficiency versus energy for the 7° at 19 GeV	74
Figure 42 Neural Network efficiency versus energy for the 4.5° at 22 GeV	75
Figure 43 Neural Network efficiency versus energy for the 7° at 22 GeV	75
Figure 44 Neural Network efficiency versus energy for the 4.5° at 25 GeV	75
Figure 45 Neural Network efficiency versus energy for the 7° at 25 GeV	75
Figure 46 Neural Network efficiency versus Trigger OR rate for the 4 5° at 22 GeV	76
Figure 47 Neural Network efficiency versus Trigger OR rate for the 7° at 22 GeV	76
Figure 48 Gate widths where polarization bits are valid	78
Figure 49 4 5° Trigger OR distribution for 2/2 case and 2/2 but not 3/3	79
Figure 50 7° Trigger OR distribution for 2/2 case and 2/2 but not 3/3	79
Figure 51 Measured Møller asymmetry and background	80
Figure 52 Beam polarization versus run number	81
Figure 53 Tracking algorithm flow chart	83
Figure 54 4.5° tracking efficiency versus E'	84
Figure 55 7° tracking efficiency versus E'	84
Figure 56 4.5° tracking efficiency versus Trigger Or Rate	85
Figure 57 7° tracking efficiency versus Trigger Or Rate	85
Figure 58 ADC spectra for channels > 25 from the Ĉerenkov detectors	8 6
Figure 59 ³ He and water NMR signals for the polarization measurement	87
Figure 60 Pion asymmetries $A^{\pi} = A_{raw} / (Pol_{heam} Pol_{target}; f_1)$	91
Figure 61 Ratio of e to e for all energies in each spectrometer as a function of x	94
Figure 62 Measured trigger OR dead-time	98

~

£'

•

xv

-41

]

.

Figure 63 Feynman diagrams of higher order radiative processes	100
Figure 64 Additive Internal Radiative Correction to A_{\parallel}^{3He} for the 4.5° spectrometer	103
Figure 65 Additive Internal Radiative Correction to A_{\parallel}^{3Hc} for the 7° spectrometer	103
Figure 66 Elastic and quasi-elastic radiative tail contribution to A_{\parallel}^{3He} for the 4.5°	103
Figure 67 Elastic and quasi-elastic radiative tail contribution to A_{\parallel}^{31e} for the 7°	103
Figure 68 Schematic of ³ He target with NMR pickup coils (not to scale)	106
Figure 69 Additive Internal +External Radiative Correction to A_{\parallel}^{3He} for the 4 5°)	106
Figure 70 Additive Internal + External Radiative Correction to A_{\parallel}^{3He} for the 7°	106
Figure 71 Smearing of the momentum spectrum.	117
Figure 72 Resolution corrections for 4.5° and 7° data versus E'	118
Figure 73 Comparison of F_2 from the F2NMC parameterization versus data.	123
Figure 74 A_2^n averaged over E' and θ vs. x with positivity constraint, \sqrt{R} and A_2^{WW}	124
Figure 75 Left / right beam pulse position and size differences for all A_{\parallel} runs.	125
Figure 76 Electron rate binned versus beam position and size at the target	126
Figure 77 A_{\parallel}^{3He} for each energy and spectrometer	131
Figure 78 A_{1}^{3He} for each energy and spectrometer	133
Figure 79 A_{\parallel}^{n} for each energy and spectrometer	137
Figure 80 A_1^n for each energy and spectrometer	139
Figure 81 A_1^{3He} virtual photon- ³ He asymmetry versus x at the measured average Q^2	141
Figure 82 A_2^{3He} versus x at the measured average Q^2	142
Figure 83 A_1^n versus x at the measured average Q^2	146
Figure 84 g_1/F_1 versus x at the measured average Q^2	147

Figure 85 A_1 versus Q^2	150
Figure 86 g_1/F_1 versus Q^2 (statistical errors only)	152
Figure 87 g_1^n determined from the measured A_{\parallel} and A_{\perp} at the measured average Q^2	154
Figure 88 g_1^n from A_1^n and g_2^{WW} at $Q^2 = 2 (\text{GeV/c})^2$	15,8
Figure 89 g_1^n from g_1/F_1 at $Q^2 = 2$ (GeV/c) ²	158
Figure 90 Fit to A_1^n used in high x extrapolation	163
Figure 91 Radiative Correction Comparison (rough approximation of errors)	177
Figure 92 Rel. Difference between method 1 and method 2	179
Figure 93 Comparison of dilution factors for the 4.5 [°] used in the Quick and Fall94.	179
Figure 94 Gate widths where polarization bits are valid	180
Figure 95 4 5° Trigger OR distribution for 2/2 case and 2/2 but not 3/3	181
Figure 96 7° Trigger OR distribution for 2/2 case and 2/2 but not 3/3	181
Figure 97 PRL with Cut 18 w/ Quick Corr. Factors	189
Figure 98 Same as previous w/ 2/2 pol	190
Figure 99 Same as previous w/ ('ell. Clustering	190
Figure 100 Same as previous w/ new Beam Cuts (Spring94)	191
Figure 101 Same as previous w/ Neural cut	191
Figure 102 Same as previous w/ Ghost cut	192
Figure 103 Same as previous w/ new Beam and Target polarizations	192
Figure 104 Same as previous w/ new Radiative Corrections	193
Figure 105 Same as previous w/ new Dilution factor	193
Figure 106 Same as previous w/ new dead time	194

xvii

Figure 107 Same as previous w/ E-143 proton correction	194
Figure 108 Same as previous w/ new contamination correction	
Figure 109 Cut 18 w/ Quick corrections & Cut 48 w/ all new factors and all d	ata 195
Figure 110 A_1^n at $x = 0.035$ for various cuts.	196
Figure 111 Integral of g_1 of various cuts (measured region).	196
Figure 112 Cut 48 with and without resolution correction	197
Figure 113 Cut 46 versus Cut 48 (both without resolution correction)	198
Figure 114 4 5° 19 GeV Neural Network efficiency	199
Figure 115 4.5° 22 GeV Neural Network efficiency	199
Figure 116 4.5° 25 GeV Neural Network efficiency	200
Figure 117 7° 19 GeV Neural Network efficiency	200
Figure 118 7° 22 GeV Neural Network efficiency	201
Figure 119 7° 25 GeV Neural Network efficiency	
Figure 120 Smearing of momentum spectrum by using the shower energy reso	olution 202

è