Search for Color Transparency in A (E, E-Prime P) at High Momentum Transfer^{*}

Thomas G. O'Neill

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

> SLAC-Report-695 February 1994

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Ph.D. thesis, California Institute of Technology, Pasadena, CA 91125

Search for Color Transparency in A(e, e'p) at High

Momentum Transfer

Thesis by

Thomas G. O'Neill

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1994

(Submitted February 21, 1994)

Ţ

To my family

. 1

ii -

and

Alice

ACKNOWLEDGEMENTS

I would like to thank the members of the NE-18 collaboration for their contributions to making the experiment a success. Special thanks go to Eric Belz, Rolf Ent, Wolfgang Lorenzon, and Naomi Makins for their work in the set up and analysis of the experiment. I also acknowledge the good work of Carl Hudspeth, Bob Eisle, the beam operators, and other SLAC staff members.

I am especially grateful to my adviser Brad Filippone. Brad has provided me with countless hours of guidance and discussion, and I have profitted greatly from his suggestions and also from observing his methods. My graduate tenure was made much easier by the knowledge that my adviser had my best interests in mind.

Finally I would like to thank all of the friends who have offered support throughout my graduate studies. I am particularly indebted to my family, who helped me get here, and to Alice Householder, who put up with me once I did.

iii

Abstract

Rates for $A(\epsilon, \epsilon'p)$ on the nuclei ²H, C, Fe, and Au have been measured at momentum transfers $Q^2 = 1, 3, 5$, and $6.8 (\text{GeV}/c)^2$. We extract ' the nuclear transparency T, a measure of the importance of final state interactions (FSI) between the outgoing proton and the recoil nucleus. Some calculations based on perturbative QCD predict an increase in Twith momentum transfer, a phenomenon known as Color Transparency. No statistically significant rise is seen in the present experiment.

Contents

I	Int	roduction	1
•	A	The $A(\epsilon, \epsilon' p)$ Reaction	;}
•	•	1 The Plane Wave Impulse Approximation	6
		2 Previous $A(\epsilon, \epsilon' p)$ Data	12
	В	Color Transparency	17
		1 Selection of Point Like Configuration	17
		2 Color Screening	21
		3 Lifetime of Point Like Configuration	24
		4 Color Transparency Experiments	27
	С	Overview of the Experiment	30
II	Ex	perimental Apparatus	33
	Α	Electron Beam	33
	В	Targets	34
	С	The Magnetic Spectrometers	35
		1 1.6 GeV/c Spectrometer	37
		2 8GeV/c Spectrometer	41
	Ð	Trigger Electronics	48
III	Ar	alysis	53
\$	A	Particle Identification	54
	В	Track Identification	5(
	\mathbf{C}	3-Momentum Reconstruction	60
	D	Coincidence Identification	6
	E	Reconstruction of E_m and p_m	68
		I Ionization Energy Loss	68

· · · ·

۰.» ۲

			00
		2 Coulomb Acceleration	
	F	Kinematic Settings	' 71
	G	Efficiency Corrections	76
		1 Absorption of Protons in Target and 8 GeV/c Materials	76
		2 Summary	78
IV	Th	• e Plane Wave Impulse Approximation Calculation	83
	А	Overview of the Calculation	84
	В	The Born-Level Plane Wave Impulse Approximation Cross Section	85
	С	Kinematics and Luminosity	86
	D	External Radiation	87
	E	Internal Radiation	91
	ŕ	Multiple Scattering, Energy Loss, and Coulomb Acceleration	95
	G	Spectrometer Acceptance Monte Carlos	99
v	Re	sults	103
V	Re A	Sults Extraction of $S(E_m, p_m)$	10 3 104
V	Re A B	Extraction of $S(E_m, p_m)$	103 104 121
V	Re A B. C	Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors	103 104 121 130
V	Re A B. C D	Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors Comparison of $T(Q^2)$ with Theory	103 104 121 130 134
V	Re A B. C D	Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors Comparison of $T(Q^2)$ with Theory 1 The Glauber Predictions	103 104 121 130 134 134
V	Re A B. C D	Sults Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors Comparison of $T(Q^2)$ with Theory 1 The Glauber Predictions 2 The Color Transparency Predictions	103 104 121 130 134 134 142
V VI	Re A B C D	Extraction of $S(E_m, p_m)$	 103 104 121 130 134 134 142 150
V VI APF	Re A B C D	Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors Comparison of $T(Q^2)$ with Theory 1 The Glauber Predictions 2 The Color Transparency Predictions binclusions DIXES	 103 104 121 130 134 134 142 150 153
V VI APH A	Re A B C D	sults Extraction of $S(E_m, p_m)$ Measurement of $T(Q^2)$ Systematic Errors Comparison of $T(Q^2)$ with Theory 1 The Glauber Predictions 2 The Color Transparency Predictions onclusions	 103 104 121 130 134 134 142 150 153 153

vi •

•

×

.)

-

С	De	ad-Time Corrections	160
D	Co	incidence Identification	164
	1	Scintillator Timing Corrections	170
-	2	Scintillator Timing Parameters	173
	3	1.6 GeV/c Scintillator ADC Malfunctions	177
E	Th	e Model Spectral Function	178
F	Ra	diation in the PWIA Calculation	185
	1	Effect of External Radiation on Count Rate	185
	2	Effect of Internal Radiation on Count Rate	187
~	3	Internal Radiation in the One-Photon Limit	188
	4	Description of the Modified Equivalent Radiator Approximation	191
	5	Internal Radiation and Kinematics	193

٩,

vii

List of Figures

• .

4

,

•

·ɔ

1	Farrar <i>et al.</i> Color Transparency prediction for $A(e, e'p)$	2
2	Differential cross section for ${}^{3}\text{He}(e,e')_{1}$ at $E = 3.3-14.7 \text{ GeV}$. 4
3	Born-Level ${}^{1}\mathrm{H}(e,e'p)$	6
4	$A(e, e'p)$ in the Born-level PWIA \ldots	8
5	Schematic $A(e, e'p)$ showing proton initial 3-momentum	9
6	E_m spectra from ${ m ^{12}C}(e,e'p)$ at Saclay $\ldots \ldots \ldots \ldots \ldots \ldots$	13
7	1s and 1p p_m distributions from ${}^{12}C(e,e'p)$ at Saclay	14
8	$A(e, e'p)$ results for the spectroscopic sum rule $\ldots \ldots \ldots$	15
9	Schematic ¹ $H(e,e'p)$ and $A(e,e'p)$	17
10	Lowest-order elastic scattering	18
11	The Feynman mechanism for elastic scattering	19
12	The $A + B \rightarrow C + D$ exclusive reaction	20
13	Constituent scaling in hadron form factors	22
14	Total hadron-proton cross section vs. elastic slope parameter	23
15	T measured in $A(p,2p)$	28
16	Correlation of T and $d\sigma/dt$ in $A(p,2p)$	29
17	Plan view of End Station A	30
18	Schematic of experiment NE-18	31
19	Exterior view of the 1.6 GeV/c spectrometer	38
20	1.6 GeV/c spectrometer detector hut	39
21	Side views of the 1.6 GeV/c detector hut	40
22	Exterior side view of 8 GeV/c spectrometer	42
23	Magnetic optics of $8{ m GeV/c}$ spectrometer in the vertical plane \ldots .	43
24	Magnetic optics of $8{ m GeV/c}$ spectrometer in the horizontal plane	44
25	The 8 GeV/c Detector Stack	45

T

-

viii

26	8 GeV/c scintillators	46
27	8 GeV/c wire chambers	48
-28	1.6 GeV/c trigger electronics	• 50°
29	8 GeV/c scintillator electronics	51
30	8 GeV/c trigger electronics	52
31	Typical track in the 1.6 GeV/c spectrometer	57
32	Typical track in the 8 GeV/c spectrometer	59
33	Effect of timing corrections for ¹⁹⁷ Au at $Q^2 = 7 (\text{GeV/c})^2$	641
34	Δt_{p-e} for ¹² C at $Q^2 = 1 (\text{GeV}/c)^2$	65
35	Histogram of Δt_{p-e} for $(E_m, p_m) \in \mathcal{R}$	66 '
36	Histogram of Δt_{p-e} for $(E_m, p_m) \in \mathcal{F}$	67
37	Central p_m for a given θ_8	72
38	Coverage of (E_m, p_m) at $Q^2 = 1 (\text{GeV/c})^2$	74
39	Coverage of (E_m, p_m) at $Q^2 = 6.8 (\text{GeV}/c)^2$	75
40.	Proton absorption efficiency for hydrogen	79
41	One-photon external radiation in ${}^{1}\mathrm{H}(c,c')$	88
42	One-photon internal virtual radiation in ${}^{1}H(e, e')$	92
43	One-photon internal bremsstrahlung in ${}^{1}H(c,c')$	92
44.	E_m distribution of ¹ H($e, e'p$) at $Q^2 = 1 (\text{GeV}/e)^2$	95
45	1.6 GeV/c focal plane distributions	100
46	8 GeV/c focal plane distributions	101
47	² H p_{n_i} distribution at $Q^2 = 1.7 (\text{GeV}/\text{c})^2$	107
48	² H E_m distribution at $Q^2 = 1.7 (\text{GeV/c})^2 \dots \dots \dots$	108
49	¹² C E_m distribution at $Q^2 = 1 (\text{GeV}/c)^2$	110
50	¹² C E_m counts at $Q^2 = 1 (\text{GeV/c})^2$ and $\theta_8 = 43.4^\circ$	111
51	¹² C E_m distribution at $Q^2 = 1-7 (\text{GeV}/\text{c})^2$	112
52	E_m distribution of ¹² C model spectral function	113

¥.

ix

Į

	4		i	
	R.		х	
	53	¹² C 1p and 1s p_m distributions at $Q^2 = 1 (\text{GeV/c})^2$	114	•
	54,	¹² C p_m distribution at $Q^2 = 1-7 (\text{GeV/c})^2$	11,5	
*	55	⁵⁶ Fe E_m distribution at $Q^2 = 1-7 (\text{GeV/c})^2$	116	
,	56	¹⁹⁷ Au E_m distribution at $Q^2 = 1-7 (\text{GeV/c})^2$	117	
	57	$^{-56}$ Fe p_m distribution at $Q^2 = 1-7 (\text{GeV/c})^2$	118	
`	58	¹⁹⁷ Au p_m distribution at $Q^2 = 1-7 (\text{GeV/c})^2$	119	·
	, 59	Nuclear transparency $T(\hat{Q}^2, \theta_8)$ measured in ${}^2\mathrm{H}(e, e'p)$	124	
	60	Nuclear transparency $T(Q^2, \theta_8)$ measured in ${}^{12}\mathrm{C}(e, e'p)$	125	
	61	Nuclear transparency $T(Q^2, \theta_8)$ measured in ${}^{56}\mathrm{Fe}(e, e'p)$	126	
	62	Nuclear transparency $T(Q^2, \theta_8)$ measured in ¹⁹⁷ Au $(e, e'p)$	127	
	63	Nuclear transparency $T(Q^2)$ measured in experiment NE-18	128	
	64	Nucleon-nucleon total and elastic cross sections	135	
	65	Standard T predictions for ${}^{12}C$	137	
	66	Standard T predictions for ⁵⁶ Fe	138	
	67	Standard T predictions for 197 Au	139	
9	68	Farrar et al. C, Aú T predictions	144	
	69	Jennings and Miller 1992 C, Au T predictions	145	
	70	Benhar et al. C, Au T predictions	146	
	• 71	Frånkfurt. Strikman, and Zhalov C, Fe, Au T predictions	147	
,	72	Plan view of experiment NE-18	153	
	73	Formation of 1.6 GeV/c \mathcal{M}_{cab} and \mathcal{T}_{cab}	161	
	74	Formation of 8 GeV/c $\mathcal{T}_{2/3}$ and $\mathcal{T}_{2/3,only}$	162	, •
. ,	75	Coincidence TDC non-linearities	165	
	76	1.6 GeV/c coincidence TDC	167	
	77	8 GeV/c coincidence TDC	168	
	78	Coincidence identification	169	
	79	p_m distribution from ⁵⁸ Ni $(e, e'p)$ at Saclay	184	

	X I
80	Single-photon $\Upsilon(\theta_{\omega}, \phi_{\omega})$ at $Q^2 = 1 (\text{GeV/c})^2 \dots \dots \dots \dots \dots \dots 189$
81	Single-photon $\Upsilon(\theta_{\omega}, \phi_{\omega})$ at $Q^2 = 1, 7 ({\rm GeV/c})^2$
82	Angular distribution of radiation at $Q^2 = 1 (\text{GeV/c})^2$
`83	Recoil ratio R at $Q^2 = 1 (\text{GeV}/\text{c})^2 \dots \dots$

•

. .

List of Tables

· 1	Approximate NE-18 Kinematics	31
2^{+}	Width of energy defining slits	33
3	Target characteristics	35
'4	Target-related materials	36
5	Nuclear radii and average Coulomb accelerations	70
6	Detailed NE-18 kinematics	71
7	Proton absorption in liquid target materials	78
8	Proton absorption in solid targets	80
9	Proton absorption in 8 GeV/c spectrometer	81
10	Tracking efficiency and proton absorption corrections	82
11	The (E_m, p_m) range \mathcal{R}	122
12	Correlation tail correction to the PWIA calculation	126
13	Nuclear transparency T measured in experiment NE-18	129
14	Uncertainties in the PWIA calculation	131
15	Experimental systematic errors	132
16	, Total systematic errors	132
17	Laboratory coordinates	154
18	Spectrometer (Transport) coordinates	154
19	Focal plane (hut) coordinates	155
20	1.6 GeV/c track purges	157
21	8 GeV/c track purges	158
22	Timing conventions	164
23	Scintillator timing parameters	171
24	Shell-independent parameters of IPSM $S(E_s, \mathbf{p})$	180
25	Shell dependent parameters of IPSM $S(E_s, \mathbf{p})$	181

xii ,

		€	xiii
	26	Equivalent radiator thicknesses λ	193
•			

,

٦

.

• , •

• . . .

-- 14