A Measurement of the Left-Right Cross Section Asymmetry in $\mathbf{Z}^{\mathbf{0}}$ Production with Polarized $\mathrm{e}^{+} \mathrm{e}^{+}$Collisions*

Hwanbae Park
Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

SLAC-Report-691
December 1993

Prepared for the Department of Energy
under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

[^0]
A MEASUREMENT OF THE LEFT-RIGHT CROSS SECTION ASYMMETRY IN Z° PRODUCTION WITH POLARIZED $e^{+} e^{-}$COLLISIONS

by
HWANBAE PARK

A DISSERTATION
Presented to the Department of Physics and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
December 1993
"A Measurement of the Left-Right Cross Section Asymmetry in Z° Production with Polarized $e^{+} e^{-}$Collisions," a dissertation prepared by Hwanbae Park in partaal fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Physics. This dissertation has been approved and accepted by:
$\frac{\text { December } 15,1993}{\text { Date }}$

Committee in charge:	Dr. Raymond E. Frey, Chair
	Dr. James E. Brau
	Dr. Nilendra G. Deshpande
	Dr. James N. Imamura
	Dr. Robert M. Mazo

Accepted by:

Vice Provost and Dean of the Graduate School

Hwanbae Park for the degree of Doctor of Philosophy
 in the Department of Physics
 to be taken
 December 1993
 Title: A MEASUREMENT OF THE LEFT-RIGHT CROSS SECTION
 ASYMMETRY IN Z° PRODUCTION WITH

POLARIZED $e^{+} e^{-}$COLLISIONS

Approved:

The Stanford Linear Collider at SLAC is an $e^{+} e^{-}$collider running at $\sqrt{s} \approx M_{Z}$ and has provided an electron beam with longitudinal polarization at the SLC interaction point. The 1992 polarized run data were taken with the SLD detector. We present here the measurement of the left-right cross section asymmetry ($A_{L R}$) for the 1992 run.

The polarized run began in May and ended in September of 1992 at a mean center-of-mass energy of 91.56 GeV . Tower hit information of the liquid argon calorimeter and endcap warm iron calorimeter pads were used for selecting hadronic Z^{0} or tau pair events. The SLD detector collected about 11,000 events during this run.

The magnitude of the longitudinal polarization of the electron beam was continuously measured by a polarimeter based on Compton scattering, and was monitored by a polarimeter based on Moller scattering. The luminosityweighted average longitudinal polarization during the 1992 run was measured as 22.4 ± 0.6 (syst.)\%.

From these data, the value of $A_{L R}$ has been measured to be $0.102 \pm$
$0: 044$ (stat.) ± 0.003 (syst.), corresponding to an effective electroweak mixing angle $\left(\sin ^{2} \theta_{w}^{\text {eff }}\right.$) of 0.2375 ± 0.0056 (stat.) ± 0.0004 (syst.). The error is dominated by the statistical error. This value of $\sin ^{2} \theta_{v}^{e f f}$ is in good agreement with existing measurements from other experiments. Studies of improvements in $\mathcal{A}_{L R}$ event selection for future high-statistics runs are also discussed.

NAME OF AUTHOR: Hwanbae Park
PLACE OF BIRTH: Kyungsangbuk-Do, Republic ofakorea
DATE OF BIRTH: December 15,1960
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Sogang University

DEGREES AWARDED:

Doctor of Philosophy, 1993, University of Oregon Master of Science, 1989, University of Oregon Bachelor of Arts, 1983, Sogang University

AREAS OF SPECIAL INTEREST:

Experimental High Energy Physics

PROFESSIONAL EXPERIENCE:

Research Assistant, Department of Physics, University of Oregon, Eugene, 1990-1993

Research Assistant, Department of Physics, Sogang University, Seoul, 1983-1985

Teaching Assistant, Department of Physics, Sogang University, Seoul, 1983-1984

PUBLICATIONS:

[1] K. Abe, et. al., Phys. Rev. Lett. 71 (1993) 2528.
[2] K. Abe, ct. al., Phys. Rev. Lett. 70 (1993) 2515.
[3] S. Berridge, et. al., IEEE Nuc. Sci. 39 (1992) 1242.

ACKNOWLEDGEMENTS

I am especially grateful to my advisor, Raymond Frey, for his guidance and invaluable advice. I also owe a tremendous debt of gratitude to James Brau who encouraged and supported my graduate studies over many years.

I also thank the members of the University of Oregon Luminosity Group: Jennifer Huber, Matthew Langston, Kevin Pitts, Cary Zeitlin äd Jingchen Zhou, as well as the members of the University of Tennessee Luminosily Group:

William Bugg, Robert Kroeger, Achim Weidemann and Sharon White.
Many thanks to the Electroweak Group and all the members of the SLD Collaboration.

My appreciation also goes to the following people for their help, encouragement and friendship: Ram Ben-David, Philip Burrows, Richard Dubois, Robert Elia, Saul González, Sarah Hedges, Andrea Higashi, Amitabh Lath, Peter Rowson and John Yamartino

This work was only made possible with the support and love of my family "ąnd parents. I especially want, wo thank my wife, Hyunju Ku , for her support and patience.

TABLE OF CONTENTS

Chapter Page
I. LEFT-RIGE'T CROSS SECTION ASYMMETRY 1
Introduction 1
Theory 6
Summary of Physics Motivation 17
II. EXPERIMENTAL APPARATUS 18
Polarization at SLC 18
Polarimetry 28
Energy Spectrometer 39
Polarization Data Acquisition 40
Overview of the SLD 40
The Trigger and Data Acquisition 59
III EVENT SELECTION 61
Introduction 61
Event Selection Procedure 64
Background Estimation 87
Combined Efficiency of Triggering and Event Selection 92
IV POLARIZATION MEASUREMENT 96
Introduction 96
Measurement of the Compton Laser Polarization 98
Measurement of the Electron Beam Polarization 102
V ANALYSIS AND RESULT 114
Introduction 114
The $A_{L R}$ Measurement 116
Corrections to $A_{L R}$ 117
Total Systematic Error 122
Extraction of the Electroweak Mixing Parameter 122
Summary of Results 124
VI. DISCUSSION 130
Introduction 130
$1993 A_{L R}$ Event Selection 130
Modification of 1992 Event Selection 136
Tracking Assisted Event Selection 145
REFERENCES 151

LIST OF TABLES

Table Page
1.1 The Properties of the Gauge Bosons in the Standard Model 2
1.2 The Electroweak Properties of Fermions 5
3.1 Statistics Summary of Cuts for the Four Sample Runs:
(1) is the Number of the LAC Tower Hits Cut. (2) is the Sum of the Total Tower Hit Energies Cut. (3) is the Sum of the Endcap WIC Pads Tower Energies Cut Along with the Total LAC Energy of Non-Isolated Tower Hits,
(4) is the Energy Imblance Cut,
(5) is the Sphericity Cut Along with the Energy Imblance Cut . i:
3.2 Statistics Summary of the Three. Filters for the 1992 Polarized Run: Numbers in the Second Column are the Number of Events which Passed the Filter at Each Stage 85
3.3 Double-Scanning Results 89
3.4 Results of the Maximum-Likelihood Method 90
3.5 Run Blocks for Hadronic Z° and Small-Angle Bhabha Events 93
3.6 Numerical Values Used for the Combined Efficiency 94
4.1 The Lead-in Calculated Analyzing Powers and the Average Measured Raw Asymmetries 110
4.2 Systematic Cncertainties from Polarization Measurement 111
5.1 Total Systematic Uncertainties in the $A_{L R}$ Measurement 122
5.2 Corrections to the $A_{L R}$ Measurement from Secondary Sources 125
6.1 Scan Results of Two Scanners 135

LIST OF FIGURES

Figure Page
1.1 The Feynman Diag:ams of Photon and Z° Exchange in $\varepsilon^{+} e^{-} \rightarrow f f$ at Tree-Level 7
1.2 The Cross Section of $e^{+} e^{-} \rightarrow f \tilde{f}$ versus the Center-of-Mass Energy for 22% Longitudinally Polarized Electron Bearn with 150 GeV Top Quark Mass and 100 GeV Higgs Mass: the Solid Curve is the Cross Section for Unpolarized Beam, the Dotted Curve is the Cross Section for -22% and the Dashed Curve is the Cross Section for $+22 \%$ Polarized ElectronBeam9
1.3 The Feynman Diagzams of Photon and Z° Exchange in $e^{+} e^{-} \rightarrow e^{+} e^{-}$at Tree-Level: (a) and (b) are the Contributions from s and t Channels, Respectively 10
1.4 The $A_{L R}$ versus the Center-of-Mass Energy 11
1.5 Final State Gluon Radiation in $e^{+} e^{-} \rightarrow q \bar{q}$ 12
1.6 The Electroweak Corrections such as the Oblique, Vertex, Box Corrections, and Bremsstrahlung Amplitudes:
(a) involves γ and Z°, (b) and (c) involve γ, $W^{ \pm}$, and Z° and (d) involves γ 13
1.7 $A_{L R}$ versus the Top Quark Mass with Different Higgs Masses: the Solid Curve is for 100 GeV , the Dotted Curve is for 450 GeV , and the Dashed Curve is for 1000 GeV Higgs Mass 14
2.1 A Schematic Layout of the SLAC Polarized Linear Collider:
the Direction of the Electron Spin Vector is Shown when the Electron Beam is Deliveredr from the Polarized Electron Source to the SLC Interaction Point 19
2.2 (A) is the Band Structure of GaAs. (b) Shows Energy Levels of the State: Solid and Dashed Arrows Show the Allowed Transitions after Absorbing Right- and Left-handed Circularly Polarized Photons, Respectively 22
2.3 A Negative Work Function is Accomplished by Deposition of a Cesium-Fhorine Monolayer on the Bulk GaAs Photocathode Surface:
(a) is for Pure GaAs and (b) isfor the GaAs with the Cesiated Surface22
2.4 The Polarized Light Source and Electron Source System 23
2.5 A Schematic Layout of the North Damping Ring: the Arrow Shown is the Electron Spin Direction 27
2.6 The Electron Beam Polarization Measurement with Compton Polarimeter as a Function of the Electron Feam Energy 29
2.7 The Betatron Effect on the Beam Polarization in the Arc due to the SLC Achromats 29
2.8 The Moller and Compton Polarimeters are Located at the End of the Linac and near the SLC Interaction Point, Respectively 30
2.9 A Schematic of the Moller Polarimeter 32
2.10 A Schematic of the Compton Light Source 34
2.11 A Schematic of the Compton Polarimeter 34
2.12 The Cerenkov Detector and the Proportional Tube Detector 36
2.13 The Compton Cross Section for Two Different Helicity Combinations of the Electron and Compton Laser Polarizations: the Degree of the Electron and Photon Polarization are Assumed to be 22.4% and 93%, Respectively 36
2.14 A Schematic of the Energy Spectrometer for Measurement of the Center-of-Mass Energy at the SLC 39
2.15 A Quarter of the Overall Layout of the SLD Detector 42
2.16 The Charged Coupled Device Vertex Detector in the Transverse Plane 43
2.17 The Luminosity Monitor System which Consisted of a Pair of the Luminosity Monitor and Small Angle Tagger (LMSAT) Detectors and the Medium Angle Silicon Calorimeters (MASC) 4.
2.18 Well-Segmented Tower Geometry of the LMSAT for Providing Good Angular Resolution 44
2.19 The Layout of Wires in a Cell:
the Field, Guard and Sense Wires are Represented by the Diagonal Crosses, Diamonds, and Circles, Respectively 46
2.20 Schematic of the Cerenkov Ring Imaging Detector Barrel Section which Shows Cerenkov Photons. There are Two Radiator Devices: Ona is a Liquid Radiator which is a Proximity Focusing Device and Other is a Gas Radiator which is a Ring Imaging Device with Gas 49
2.21 An Exploded View of the Barrel Section of the LAC 51
2.22 A Schematic of the Endcap Section of the LAC 52

- 2.23 A Logical Layout of the Barrel LAC Electronics 53.
2.24 The Layout and Numbering of the Boards within the Barrel Tophat:
The Solid Lines are for the Daughter Boards, Dotted Lines are for the Cryogenics Board and Dashed Lines are for the Controller and A/D Board 55
2.25 The Layout and Numbering of the Boards within the South Endcap Tophat: tne Solid Lines are for the Daughter Boards, Dotted Lines are for the Cryogenics Board and Dashed Lines are for the Controller and A/D Board 55
2.26 A Diagram of the Tophat Signal Processing 56
2.27 A Schematic Diagram of the LAC Fastbus System 57
2.28 A Schematic of a Collection Point 58
3.1 Typical Hadronic Z° Event with LAC Tower Hits and Vectored Hits in the Central Drift Chamber 63
3.2 Typical Tau Pair Event 63
3.3 ADC Distributions of Tower Hits of Identified SLC Muons for Four LAC Layers:
(a)-(d) are EM1, EM2, HAD1, and HAD2 Layers, Respectively 65
3.4 Typical SLC Muon Event which has Barrel LAC Tower Hits Parallel to the Beamline 68
3.5 The Distributions of $N_{L A C}, E_{L A C}, E_{W I C}^{\text {end }}, E_{I M B}$ and SPHE of Monte Carlo Hadronic Z° Events 70
3.6 (A) is the Number of Tower Hits,(b) is the Total Energy of the LAC Tower Hits in the FourLAC Layers for All Triggered Events of the Four Sample Runs,(c) is the Total LAC Energy Distribution for the Eventswhich Passed the $N_{L A C}$ Cut2
3.7 (A) is the Distribution of the Total LAC Energy and the Endcap WIC:
Energy for the Events which Passed the $N_{L A C}$ Cut
for the Four Sample Runs.
(b) is the Same Distribution as (a) and, (c) is the Energy Imbalance Distribution for the Events which Passed the $N_{L A C}$ and ETOT Cuts, (d) is the Same Distribution as (c)
except Applying One More Cut (3) 74
3.8 (A) is the Distribution of the Energy Imbalance and Sphericity for . the Events which Passed Cuts (1), (2), and (3) for the Four Sample Runs,
(b) is the Same Distribution of (a) after Cuts
(1), (2), (3), and (4), and
(c) is the Total LAC Energy Distribution of Non-Isolated Tower Hits after All Cuts Applied 75
3.9 The Distribution of $N_{L A C}, E_{L A C}, E_{W I C}^{e n d}$,
$E_{I M B}$, and SPHE of Events which Passed the First Filter for the All Triggered Events of the 1992 Polarized Rune 76
3.10 The Distribution of Total LAC Energy versus the Energy Imbalance for the Eyents which Passed the Eirst Filter 78
3.11 The Distribution of the Sum of Four Maximum Electromagnetic Tower Energies versus Theta (binned in electromagnetic towers) for the Events which Passed the First Filter 78
3.12 Typical Wide-Angle Bhabha Event in the
Endcap Liquid Argon.Calorimeter 80
3.13 Suspicious Event (Presumably a Wide-Angle Bhabha) which has
Lots of Energy Leakage in the Hadronic
Layers at $T_{M A X}>44$ 80
3.14 (A) is the Distribution of the Total LAC Energyand the Energy Imbalance,(b) is the Total LAC Energy Distribution, and(c) and (d) are the Total Energy Distributions inRegions (I) and (II), Respectively, for theEvents which are Identified as Wide-Angle Bhabha \&l
3.15 (A) is the Distribution of the Total LAC Energyand the Energy Imbalance,(b) is the Distribution of the Minimum Energy out of two MaximumElectromagnetic Tower Energies and the Energy Imbalance,(c) is the Distribution of the Total LAC Energy and the MinimumTower Energy out of Two Maximum Electromagnetic TowerEnergies for the Events which Passed the First Filterand were not Identified as Wide-Angle Bhabha83
3.16 (A) is the Distribution of the $E_{T O T}$ and the $E_{I M B}$ after Cut (3), (b) is the Distribution of the $M I N(M 1, M 2)$ and the $E_{I M B}$ after Cut (1),
(c) is the Distribution of the $E_{T O T}$ and the $M I N(M 1, M 2)$ after Cut (2), for the Events which Passed the First Filter and were not Identified as Wide-Angle Bhabha 84
3.17 (A) is the Distribution of the Total LAC Energy and the $\Theta_{\text {bin }}$ of the Tower having the Maximum EM1 Energy, (b) is Total LAC Energy Distribution,
(c) is the Energy Imbalance Distribution, (d) is the Distribution of the Minimum Tower Energy out of Two Maximum Electromagnetic Tower Energies for the Final Selected Events 86
3.18 Total Number of Background Events in the Final Data Sample Based on the Maximum-Likelihood Method 90
3.19 Uncorrected Angular Distribution of the Final Sample Events 95
3.20 Efficiency Distribution of the LAC 95
4.1 A Schematic Diagram of the Compton Laser Polarization Monitor on the Compton Laser Bench 99
4.2 The Distribution of the Compton Laser Polarization on the Compton Laser Bench 99
4.3 A Schematic Diagram of the Pockels Cell Setup on the Compton Laser Bench 101
4.4 A Schematic Diagram of the Fresnel Prisms Setup on the Compton Laser Bench 101
4.5 The Dependence of the Unpolarized Compton Cross Section and Compton Asymmetry on the Distance (cm) from the Beamline in the Transverse Direction 103
4.6 Results of an Endpoint Scan for Channel 6:the Position Shown is the Detector Position from Nominal in cm Unit.Open Circles and Filled Circles arefor EGS Simulation and Data, Respectively 104
4.7 A_{C} Measurement of the Polarimeter Runs for Monitoring the Time Dependence of the Position of the Zero-Asymmetry Point 105
4.8 Ratio of Signals of Detector Channel 7 to Channel 2 for Monitoring the Time Dependence of the Detector Calibration 106
4.9 The Measured Relative Asymmetry as a Function of the Phototube Pulse Heights for Channel 6 108
4.10 The Measured Relative Asymmetry as a Function of the Phototube Pulse Heights for Channel 7 108
4.11 The Measured Relative Asymmetry as a Function of the Phototube Pulse Heights for Channel 6 in the Well-Defined Unsaturated Region 109
4.12 The Measured Relative Asymmetry as a Function of the Phototube Pulse Heights for Channel 7 in the Well-Defined Unsaturated Region 109
4.13 Average Measured Compton Asymmetry over the Data Sample in the Detector for Seven Cerenkov Channels versus the Distance from the Beamline in the Transverse Direction (cm): the Compton Asymmetry Function is Fit to Data Using the Normalization Factor $\mathcal{P}_{\gamma} \mathcal{P}_{\boldsymbol{e}}$ 112
5.1 The Distribution of the Electron Beam Polarization of the Final Data Sample 115
5.2 The Time Dependence of the Electron Beam Polarization Measurement: The Solid Line Shown is the Luminosity Weighted Average Polarization Value 115
5.3 The Polarization Distribution (\%) of the Left-Handed and Right-Handed Polarized Electron Beam 118
5.4 Beamstrahlung Asymmetry for Left-and Right-Handed Polarized Beam 121
5.5 Center-of-Mass Energy Distribution of the Final Data Set 123
5.6 Comparision of the Asymmetry Measurements with LEP Experiments 127
5.7 The Curve Gives the $A_{L R}$ Dependence on the Top Quark Mass in the Minimal Standard Model for $M_{H}=200 \mathrm{GeV}$: The $1992 A_{L R}$ Measuroment is Given as Dotted and Dashed Bands for 68.3% and 95% Confidence Levels, Respectively. the Solid Band Gives the Errors Expected for the $1993 A_{L R}$ Measurement 128
5.8 T versus S_{Z} Plot for $\Gamma_{Z}, \Gamma_{e e}$ and the $1992 A_{L R}$ Measurement:
Each Circle and Cross Pair Represents the Standard Model Prediction for a Given Top Quark Mase, the Pair at Smallest T is for $M_{T}=100 \mathrm{GeV}$, and the Next Pairs for $M_{i}=150,200$, and 250 GeV . The Circles and Crosses are for a Higgs Mass of 200 and 1000 GeV , Respectively 128
6.1 The Distribution of the Number of the Electromagnetic Tower Hits after Applying 60 ADC Counts Tower Threshold Cuts on the Electromagnetic Layers 131
6.2 Sum of Tower Hits Energy on the Four LAC Layers after Applying High ($E_{H I}$) and Low Tower ($E_{L O}$) Threshold Cuts on the Four LAG Layers 131
6.3 The Scatter Plot of the Total Energy Deposition of the Four LAC Layers versus the Energy Imbalance of the Events which Passed the Offline Hadron "Trigger" 134
6.4 (A): The Scatter Plot of the Number of Good Clusters for the LAC and the $|\cos \theta|$ Value of the Thrust Axis, (b) and (c) are the Distributions of the Number of Good Clusters for $|\cos \theta|<0.8$ and $|\cos \theta| \geq 0.8$, Respectively. The Lines are the Applied Number of Clusters Cuts Depending on $|\cos \theta|$ 134
6.5 The Distribution of the Total LAC Tower Hits Divided by the Total LAC Energy versus $|\cos \theta|$ of the Thrust Axis 137
6.6 The Scatter Plot of the Energy-Weighted Hits (EWH) versus the Hit-Weighted Energies (HWE) for the $1992 A_{L R}$ Data Sample for $|\cos \theta|<0.95$ 138
6.7 The Scatter Plot of the Energy-Weighted Hits (EWH) versus the Hit-Weighted Energies (HWE) for the Events which Passed the KZOFLT Filter for $|\cos \theta|<0.95$ 138
6.8 The Scatter Plot of the Energy-Weighted Hits (EWH) versus the Hit-Weighted Energies (HWE) for the $1992 A_{L R}$ Data Sample for $|\cos \theta| \geq 0.95$ 139

[^0]: *Ph.D. thesis, University of Oregon, Eugene, OR 97403

