SLAC-R-687

The First Measurement of the Left-Right Cross Section Asymmetry in Z Boson Production^{*}

Ram Jacob Ben-David

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

> SLAC-Report-687 May 1994

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

t

Ph.D. thesis, Yale University, New Haven, CT 06511

THE FIRST MEASUREMENT OF THE LEFT-RIGHT CROSS SECTION ASYMMETRY IN Z BOSON PRODUCTION

A Dissertation

Presented to the Faculty of the Graduate School of Yale University

in Candidacy for the Degree of Doctor of Philosophy

> By Ram Jacob Ben-David May 1994

ABSTRACT

THE FIRST MEASUREMENT OF THE LEFT-RIGHT CROSS SECTION ASYMMETRY IN Z BOSON PRODUCTION

Ram Jacob Ben-David Yale University May 1994

The first measurement of the left-right cross section asymmetry (A_{LR}) in Z° boson production has been made with the SLAC Large Detector (SLD) at the SLAC Linear Collider (SLC). The measurement was performed at a center-of-mass energy (E_{cm}) of 91.55 GeV with a longitudinally polarized electron beam. The average beam polarization was $(22.4 \pm 0.6)\%$. Using a sample of 10,224 Z° decays, A_{LR} is measured to be $0.102 \pm 0.044(\text{stat}) \pm 0.003(\text{syst})$, which determines the effective electroweak mixing angle to be $\sin^2 \theta_W^{eff} = 0.2375 \pm 0.0056(\text{stat}) \pm 0.0004(\text{syst})$.

Acknowledgements

At this juncture in my life, I would like to take the opportunity to philosophize a bit (after all, I will soon be a *certified* philosopher) and to thank the people who have played active roles in helping me get to where I am today.

First, I would like to thank the members of my thesis committee: Professors Charlie Baltay, Kurt Gibble, Dimitri Kusnezov, Jack Sandweiss and Michael Schmidt, whose critiques of the initial draft of this thesis have led to a final version that is clearer and more concise. In addition, I'd like to thank my outside reader, Dr. Michael Murtagh, for being a good sport and taking the time to read my thesis.

I would especially like to thank my advisor, Charlie Baltay, for all his advice and encouragement. It was truly a pleasure learning the tricks of the trade from a master craftsman.

I would like to thank Steve Manly who superbly played the roles of advisor, colleague, and most importantly, friend. I would also like to thank Jack Sandweiss for the many insightful discussions about physics and life in general.

Many thanks to my SLD buddies: Phil Burrows, Richard Dubois, Scott Geary, Saul González, Sarah Hedges, Andrea Higashi and John Yamartino, for making my countless trips to SLAC so much fun. I would like to thank Peter Rowson, Morris Swartz, Hwanbae Park (my scanning buddy), Rob Elia, Mike Fero, Bruce Schumm and the rest of the Electroweak study group for all their help in the many aspects of this measurement. A special thanks goes to Peter, who not only seemed to never tire from my incessant questions: "Wait a minute, what about ...?", but would always have some witty response. To the rest of my SLD collaborators, those I had the privilege of working with and those I never met, I thank for making this experiment

possible through their hard work.

To my good friends Karen Ohl, Frank Rotondo and George Triantaphyllou, your friendship through the formative years of my becoming a particle physicist has meant a lot to me. Thanks to my office mate, Jeff Snyder, my comrade in the struggle to figure out the SLD software, only to have it change on us the following day.

I would like to thank Peter Martin and his supporting cast: Mary Kraus, Jean Ahern, Melissa Wiegand, Carole Devore and Brenda Alexy-Kuhn, who not only made my dealings with the Yale management and the outside world as painless as possible, but did it with a smile! I would also like to thank Will Emmet, Rochelle Lauer and John Sinnott for their excellent technical support. My deepest gratitude goes to Sara Batter and Jean Belfonti who have kept the best interests of the graduate students their number one priority.

A very special thanks goes to Aurel Faibis, Dani and Mina Ben-David, Norman Gelfand, Drasko Jovanonvic and Dan Prober, whose presence at what in retrospect turned out to be the proverbial "fork(s) in the road" of my academic career, helped steer me down the path I eventually took.

To Arie Beck, my good friend from Tel Aviv University. I've always felt somewhat responsible for leading you down the path to high energy physics and then abandoning you to struggle on your own. I hope that in spite of that, you will find a niche where you will be happy.

I am truly indebted to my parents for making me what I am today. You have always tried to instill in me the principle that through hard work and determination I can achieve any goal I set for myself. I will be eternally grateful for your loving guidance throughout the years. I would also like to thank my family for all the love, support and patience you've had for me.

To Roni, my wife, your love, help, encouragement and ability to give so unselfishly of yourself over the years has played an essential role in my ability to achieve this goal. If it were not for your help in making many of the figures, typing in sections of text and proofreading this thesis, it would have taken me even longer to complete it. For all these reasons, I dedicate this thesis to you. I hope that someday, I will be able to return the favor. This work has been funded, in part by generous contributions from the RBD Fellowship Fund for Aspiring Husbands, contract K-061787.

Contents

Acknowledgements i				ii
Li	st of	Figur	es v	'iii
Li	st of	Table	5	xi
1	Intr	oducti	ion a	1
	1.1	Defini	tions	2
		1.1.1	Helicity States	2
		1.1.2	Motion in Electromagnetic Fields	5
	1.2	Theor	etical Background	6
		1.2.1	Electroweak Interactions	8
	1.3	Longi	tudinally Polarized Cross Section	11
	1.4	Electr	oweak Asymmetries	15
		1.4.1	Left-Right Asymmetry	15
		1.4.2	Forward-Backward Asymmetry	17
		1.4.3	Polarized Forward-Backward Asymmetry	18
		1.4.4	Discussion of A_{LR}	18
2	Exp	erime	ental Apparatus	23
	2.1	SLAC	CLinear Collider	23
		2.1.1	Polarized Electron Source	24
		2.1.2	Linear Accelerator	28
		2.1.3	Energy Spectrometer	32

	2.2	Polari	metery at SLAC	34
		2.2.1	Compton Polarimeter	34
	2.3	SLAC	Large Detector	52
		2.3.1	Vertex Detector	54
		2.3.2	Drift Chamber	55
		2.3.3	Cherenkov Ring Imaging Detector	57
		2.3.4	Lead Liquid Argon Calorimeter	60
		2.3.5	Warm Iron Calorimeter	65
		2.3.6	Luminosity Monitor	66
3	Eve	nt Sel	ection	69
	3.1	Trigge	τ	70
	3.2	Offlin	e Filter	72
		3.7.1	First Stage	74
		3.2.2	Second Stage	78
		3.2.3	Third Stage	79
		3.2.4	Fourth Stage	80
	3.3	Backg	rounds	81
		3.3.1	e^+e^- Interactions	82
		3.3.2	Beam-Related and Cosmic-Ray Backgrounds	86
		3.3.3	Background Estimation	88
4	Ana	alysis		93
	4.1	Exper	imental Systematic Uncertainties	93
		4.1.1	Luminosity-weighted Average Polarization	9.1
		4.1.2	Helicity Dependent Systematic Effects	95
		4.1.3	Dependence on $E_{\rm cm}$ and Final States, \ldots \ldots	99
	4.2	Theor	etical Uncertainties	102
		4.2.1	Inititial and Final State Radiative Corrections	102
		4.2.2	QCD Contributions	102
		4.2.3	Photon Vacuum Polarization Effects	103
	4.3	Statis	tical Uncertainty	103

1

,

 (a_1, \cdots, a_n)

	4.4	Result)3
5	Con	aclusions 10)5
	5.1	Comparison with LEP 10	07
	5.2	Comparison with Neutrino Measurements)9
	5.3	Comparison with Atomic Measurements)9
	5.4	Summary	10
	5.5	Future Prospects	10

7

1

۰.

r

ł

,

List of Figures

1.1	Fermion helicity states	3
1.2	Helicity decomposition of vector and axial-vector interactions.	4
1.3	Gauge boson helicity states	4
1.4	Weak-charged current interactions.	8
1.5	Neutral current interactions	10
1.6	Allowed neutral current s-channel helicity combinations.	12
1.7	Lowest order diagrams for $e^+e^- \rightarrow \mu^+\mu^-$	12
1.8	Z° decays in the forward and backward regions of the detector	17
1.9	Electroweak asymmetries versus $\sin^2_{\mathcal{U}^{1,1}}$	20
1.10	Electroweak radiative corrections.	21
2.1	Polarized electron source	24
2.2	GaAs conduction bands	26
2.3	Effect of cesium on the electron work function	27
2.4	Polarization of photoelectrons emitted from photocathodes	28
2.5	Schematic of the SLAC Linear Accelerator (SLC)	29
2.6	The SLC damping ring.	31
2.7	Schematic of the SLC beam-energy spectrometer.	33
2.8	Feynman diagrams for Compton scattering.	35
2.9	Back-scattered Compton interaction.	36
2.10	Angular momentum diagrams for Compton scattering.	37
2.11	Angular momentum conservation in Compton back-scattering	38
2.12	Compton interaction in the lab frame.	39
2.13	Overview of the SLD and the Compton polarimeter.	42

viii

2.14 Sch	ematic of the Compton polarimeter	42
2.15 Con	mpton electron detectors.	44
2.16 Co	mpton analyzing powers	51
2.17 Me	asured Compton asymmetry in the Cherenkov detector.	53
2.18 Qu	adrant view of the SLD	54
2.19 Cer	ntral drift chamber cell.	56
2.20 Sch	nematic of the barrel CRID	59
2.21 Sch	nematic of the barrel CRID drift box	60
2.22 Spe	ectrum of measured Cherenkov angles in hadronic Z^{lpha} decays	61
2.23 Th	e structure of a LAC cell.	62
2.24 Fey	nman diagram for the <i>t</i> -channel photon process	67
2.25 Cel	ll layout in the first LUM layer	67
3.1 Ex	ample of hadronic Z° decay	73
3.2 Ex	ample of a $ au^+ au^-$ final state	74
3.3 Ex	ample of a e^+e^- final state	75
3.4 Dis	tributions of variables used in the first filter stage	77
3.5 Sca	atter plot of E_{tot} versus E_{imb}	78
3.6 Sca	atter plot of S_3 versus Θ_{max} for all events passing the first stage.	79
3.7 Sca	atter plot of $\operatorname{Min}(M_1,M_2)$ versus $E_{mb},\ldots\ldots\ldots\ldots\ldots$	80
$3.8 - E_{tr}$, for the final event sample. \cdot	81
3.9 Ex	ample of an $e^+e^- \rightarrow e^+e^-\gamma$ event	82
3.10 En	dcap WAB event with leakage into the HAD layers.	/83
3.11 WA	AB event in the barrel-endcap overlap region	84
3.12 Fey	ynman diagrams for (a) 2γ process and (b) $\gamma\gamma$ process	85
3.13 Dif	fferential cross section for $e^+e^- \rightarrow \gamma\gamma$.	86
3.14 Hig	gh multiplicity SLC muon event.	87
3.15 Be	am-gas/beam-wall event	89
3.16 Co	smic-ray event	90
4.1 Ele	ectron beam polarization for the final event sample	94
4.2 Po	larized Z° decays.	97

			*	N [']	
	4.3	Energy dependence of A_{LR} for leptons and quarks	100		
	4.4	Energy dependence of A_{LR} for hadrons and taus	161		
	5.1	Comparison of A, with LEP results	108		
	5.2	Comparison of $\sin^2 \theta_W^{eff}$ with LEP results	108		
	5.3	$\sin^2 \theta_W^{rff}$ (and M_W) versus m_t	111		
	5.4	$\sin^2 heta_W^{eff}$ (and M_W) versus M_H	112	*	
· .	5.5	$\sin^2 \theta_W^{eff}$ (and M_W) versus Γ_{ee} .	113		

x

\$

1

· **9**

•

×

List of Tables

1.1	Standard model observables
1.2	Weak quantum numbers
1.3	Vector and axial-vector coupling constants
1.4	m_t and M_H contributions to the radiative corrections of $\sin^2 \theta_{W}^{(ff)}$. 22
2.1	The SLC beam parameters measured during the 1992 run
2.2	Systematic errors of the Compton polarimeter
2.3	Vertex detector parameters
2.4	Barrel CRID parameters
2.5	Thickness of the LAC unit cells
2.6	Readout structure of LAC layers
2.7	Geometry of LAC barrel tiles
3.1	The SLD trigger conditions
3.2	Results of the background scan. *
3.3	Results of the background analysis
3.4	Summary of all types of background events
4.1	Helicity dependent corrections to A_{LR}
4.2	Experimental uncertainties in the measurement of A_{LR} ,, 104
4.3	Theoretical uncertainties in calculating A_{LR} ,, 104
5.1	Corrections to A_{LR}

ż