Potential to Measure CP Violation in the Mode $B(0) \rightarrow D^*+D^*+$ with the BaBar Detector*

G. J. Peter Elmer

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

> SLAC-Report-681 December 1998

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

^{*} Ph.D. thesis, University of Wisconsin-Madison, Madison WI, 53706.

POTENTIAL TO MEASURE CP VIOLATION IN THE MODE $B^0 \to D^{*+}D^{*-}$ WITH THE BABAR DETECTOR

BY

G.J. PETER ELMER

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
(PHYSICS)

AT THE

UNIVERSITY OF WISCONSIN-MADISON 1998

POTENTIAL TO MEASURE CP VIOLATION IN THE MODE $B^0 \rightarrow D^{*+}D^{*-}$ WITH THE BABAR DETECTOR

G.J. Peter Elmer

Under the supervision of Professor Sau Lan Wu At the University of Wisconsin-Madison

A study of the potential of the BaBar detector at PEP II to measure CP violation using the vector-vector channel $B^0 \to D^{*+}D^{*-}$ is presented. The decay mode, although not a CP eigenstate, is sensitive to the angle β of the unitarity triangle, a fundamental measure of CP violation in the neutral B system. The decay mode $B^0 \to D^{*+}D^{*-}$ is reconstructed in a variety of channels and a study of the separation of the CP eigenstate contributions and extraction of the angle β is presented. The contribution of this channel is compared with other similar channels, and the overall prospects for measuring the angle β in the first years of BaBar running is summarized.

Contents

Al	bstrac	:t		i
Ĺ	Phe	omen	ology of CP violation	1
	1.1	Introdu	ection	1
		1.1.1	Discrete symmetries: C, P, and T	2
		1.1.2	Standard model and CP violation	3
	1.2	CP vio	lation in decays of B mesons	5
		1.2.1	Mixing	б
		1.2.2	Types of CP violation	8
		1.2.3	B Decay Channels and CP Angles	12
		1.2.4	Measuring CP violation parameters	13
		1.2.5	Vector-Vector Decay Modes	14
	1.3	Measu	rement of CP violation with the channel $B^0 \to D^{*+}D^{*-}$	15
		1.3.1	General Comments	15
		1.3.2	Angular Analysis	16
		1.3.3	Penguin contributions	19
2	The	BaBar	Detector at PEP II	21
	2 \$	Tha Di	CD II ata storage ring	21

				iü
	2.2	The B	aBar Detector	22
		2.2.1	General description	22
		2.2.2	Silicon Vertex Tracker	25
		2.2.3	Drift Chamber	27
		2.2.4	DIRC	30
		2.2.5	Electromagnetic Calorimeter	32
		2.2.6	Superconducting Magnet	36
		2.2.7	Instrumented Flux Return	36
		2.2.8	Trigger	38
	2.3	Softwa	ue	39
		2.3.1	Event Generator	39
		2.3.2	Event Simulation	40
		2.3.3	Event Reconstruction	40
		2.3.4	Aslund	41
3	Rec	onstru	action of events with $B^0 \rightarrow D^{*+}D^{*-}$	43
	3.1	Introd	luction	43
	3.2	$B^0 \rightarrow$	D*+D*- reconstruction	45
		3.2.I	Charged kaon and pion selection	46
		3.2.2	Vertex Reconstruction	46
		3.2.3	$K_{\bf S}^0$ selection	47
		3.2.4	$\pi^{\mathfrak{p}}$ selection ,	47
		3.2.5	D^{θ} selection	49
		3.2.6	D*± selection	53
		3.2.7	B ⁰ selection	54
	3.3	Backg	rounds	60

			ìv											
	3.4	Reconstruction of the tagging B	64											
		3.4.1 flavor tagging	65											
		3.4.2 z-position of the decay of the tagging B	70											
4	Ext	raction of $\sin 2\beta$	71											
	4.1	Error on sin 23 - simple CP fit												
	4.2	Angular analysis of $B^0 \to D^{*+}D^{*-}$	75											
		4.2.1 Simplified angular analysis - Transversity analysis	77											
		4.2.2 Full angular analysis	78											
	4.3	Potential for measuring angle eta	82											
	4.4	Conclusion	83											
A	Pro	totypes and design of SVT	87											
	A.1	Detailed description of the final design	87											
		A.1.1 Sîlicon detectors	89											
		A.1.2 Half Modules	90											
		A.1.3 Electronics	92											
	A.2	Prototypes and simulation	96											
		A.2.1 First Testbeam - Aug. 1995	96											
		A.2.2 Simulation and Design of BaBar detectors	97											
		A.2.3 Radiation damage	04											
		A.2.4 Second Testbeam - Aug. 1997	108											
В	SV:	T Software: SvtElectronics and SvtHitReco 1	20											
	B .1	Introduction	20											
	B.2	Statement of the problem	21											
	B.3		22											

B.3.1	SvtEnv		ı		•		v			ı				•				,	,	,	,	•	-	•	-				122
B.3.2	SvtGeom	-							,		¥	,	a	y	*	r				4		,	•	•			k	*	123
B.3.3	SytElectronics	-		•			¥					*				٠				•	,	٠,		-	•	-			124
B.3.4	SvtSim	-			-	-					1	•	L ,	¥	¥	r	•		,	•		,	٠	•	,	-			130
B.3.5	SvtHitReco .	-		-				٥		٠				٠	4		,	,	,	•	*	•	•	٠	•			•	131
B.3.6	Track Finding	-		-			4			٠	<u>u</u>	4		ν	•	ĸ	•		,	٠.		•	•	•	*	•	k		134
B.3.7	Performance .										٠	,		٠	,			,											135