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Abstract 

We present a measurement of a(b6)/a(qq) in the annihilation process e+e- --+ qq -+ 
hadrons at f i  = 29 GeV. The analysis is based on 66 pb-' of data collected be- 
tween 1984 and 1986 with the TPC/2y detector at PEP. To identify bottom events, 
we use a neural network with inputs that are computed from the 3-momenta of all 
of the observed charged hadrons in each event. We also present a study of bias in 
techniques for measuring inclusive T*,  K*, and p/p production in the annihilation 
process e'e- b6 + hadrons at f i  = 29 GeV, using a neural network to identify 
bottom-quark jets. In this study, charged particles are identified by a simultaneous 
measurement of momentum and ionization energy loss (dE/dz). 
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Chapter 1 

Overview 

In the Standard Model of elementary particle physics, fermionic quarks and leptons 
interact through the exchange of force-mediating bosons. 

1. Photons mediate the electromagnetic interaction, which is described by 
Quantum Electrodynamics (QED). 

2. The W* and the Zo, which are unified with the photon in the Weinberg- 
Salam model, mediate the weak interaction responsible for radioactive de- 
cay. 

3. Gluons mediate the strong (color) interaction that binds quarks into had- 
rons. The theory of the color force is Quantum Chromodynamics, abbre- 
viated QCD. 

The Standard Model is very successful: it has survived many tests, made many 
successful predictions, and does not conflict with any experimental observations. 

We measure the ratio n(bE)/u(qq) in this dissertation, since this ratio is a fun- 
damental prediction of the Standard Model that has never been directly measured 
near 29 GeV. The analysis is based on 66 pb-l of data collected between 1984 and 
1986 with the TPC/2y detector at PEP. 

Past measurements of the propkrties of bottom events used standard methods 
for identifying, or tagging, bottom events. These methods collected fairly high- 
purity bottom event samples, but with low efficiency: most bottom events are 
excluded from the bottom sample. We take a new approach in order to use the 
data more efficiently: we use a neural network with inputs that are computed from 
the 3-momenta of all of the observed charged hadrons in each event. 

One of the few outstanding problems of the Standard Model is that, as of now, 
we have neither the theoretical nor the computational ability to make quantitative 
predictions with QCD for processes with momentum-transfers of the order of 1 
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GeV/c or less. One of these low-momentum-transfer processes is hadronization, in 
which colored quarks and gluons are confined within colorless hadrons. 

To point the way towards improving our understanding of hadronization, we 
also present a study of bias in techniques for measuring inclusive T*, K*, and p/ij 
production in the annihilation process e+e- --+ bb + hadrons at f i  = 29 GeV, 
using a neural network to identify the contribution of bottom-quark jets. 

Chapter 2 contains a review of the theory of hadronization in e+e- annihilation, 
a discussion of the previous measurements of hadronization for events produced 
by different kinds of quarks, and a review of the theory of e+e- annihilation that 
we use to determine the theoretical value of the ratio a(bb)/a(q$ to compare to 
our measurement of this ratio. In Chapter 3, we provide a brief description of that 
part of the TPC/Two-Gamma experiment which is relevant to this measurement, 
and in Chapter 4, we describe particle identification using the TPC. In Chapter 5, 
we describe the processing, selection, and simulation of the e+e- --+ hadrons data. 
Chapter 6 contains our description of the use of neural networks. In Chapter 7, 
we describe and discuss the measurement of the ratio a(bb)/u(qq). In Chapter 8, 
we present a study of bias in techniques for measuring inclusive T*, K*, and p/p 
production in bottom jets. In Chapter 9, we summarize the results. 
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Chapter 2 

The Theory of Hadron 
Production in &e- Annihilation 

In this chapter, we review the present understanding of the process ese- + qij 
-+ hadrons. We also discuss the implications of this understanding for the ratio 
a(bb)/a(qij) and for the differences between bottom and non-bottom events. Fi- 
nally, we review previous measurements of hadronization for events produced by 
different kinds of quarks. 

2.1 Quarks and Their Properties 

In order to understand the process ese- + qi j  + hadrons, we must first be familiar 
with some of the properties of quarks. 

Matter is known to be composed of two classes of spin-1/2 particles: leptons and 
quarks. The distinction between these classes of particles is that while the quarks 
carry color charge and feel the strong force, the leptons do not. In the Standard 
Model, the particles are arranged into doublets [I] as shown in Figure 2.1. As 
far as we can tell, quarks and leptons are fundamental point particles with no 
sub-structure [2]. , 

Some of the properties of the quarks are listed in Table 2.1. Quarks have never 
been observed in isolation and are apparently always confined within hadrons [4], 
so the masses of the quarks are not precisely known. The up, down, and strange 
quarks are referred to collectively as the light quarks, while the others are referred 
to collectively as the heavy quarks. The top quark is too heavy to be pair-produced 
at the center-of-mass energy of this experiment, 29 GeV, so when we refer to  heavy 
quarks in this dissertation, we mean the charm and bottom quarks. 

While it is conventional to refer to quarks only by their type, or flavor, each 
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Leptons Quarks 

Figure 2.1: The Standard Model fermions (From [3]). 

strange 
charm 
bottom 

abbreviation electric charge I mass 
-113 e 
+2/3 e 
-113 e 
+2/3 e 
-1/3 e 
+2/3 e 

9.9 k 1.1 MeV/? [5]  
5.6 3.1 1.1 MeV/? [5] 
199 f 33 MeV/c2 [5 ]  

11.35 f 0.05 GeV/c2 [5] 
-5 GeV/c2 [6] 

174 f 102;; GeV/c2 [7] 

Table 2.1: The properties of quarks. 
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quark listed in Table 2.1 actually represents three different quarks which are identi- 
cal except that each has a different color (red, green, or blue). Likewise, antiquarks 
have one of 3 anticolors (anti-red, anti-green, or anti-blue), and gluons one of the 8 
color-octet combinations of a color and an anticolor. Quantum Chromodynamics 
(QCD) is the theory of the color (or strong) force [8],  in which gluons mediate the 
interaction between particles that possess a color charge. It is widely believed, but 
not proven, that the confinement of quarks and gluons within colorless hadrons is 
a property of QCD. 

As far as we know, there are two ways of forming color-neutral hadrons from 
quarks. Mesons are made of a quark and an antiquark of the same color, such 
as red and anti-red. Examples of mesons are the rITS (charged pion), with quark 
content d a n d  mass 139.6 MeV/c2, and the KS (charged kaon), with quark content 
us and mass 493.7 MeV/c2. Baryons are a color-singlet combination of 3 quarks, 
each of which has a different color. The proton, with quark content uud and mass 
938.3 MeV/c2, is a baryon. Table 2.2 lists some of the most commonly produced 
hadrons containing heavy quarks. 

2.2 Production of qq in &e- Annihilation 

In the first step in the process e'e- --+ qtj + hadrons, an electron and a positron 
annihilate into a virtual photon, which couples into a final state consisting of a 
quark and its antiquark. Quarks are fundamental spin-l/2 fermions, therefore the 
first approximation to the cross-section for e+e- --f qq, for a quark Q with electric 
charge Qqe, has the usual cross-section for massless fermions in Quantum Electro- 
dynamics (QED), the quantum theory of the electromagnetic force mediated by 
the photon [12]. This cross-section is 

da CY2 

dR 4s 
--- - [I +cos2e] Q; , 

[13], where s is the square of the center-of-mass energy of the e+e- system and 
a = e2/hc  21 1/137 is the dimensionless coupling strength of QED. 

In this approximation, we compute 

a(b6) = 3 - 4ncu2 ( i)2 = 0.0344 nb, 

a(qq) = 3 - 4na2 [3 (i)' + 2 (:)2] = 0.3787 nb, 

3s 

3s 
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name 
D+ 
DO 
w 
D*+ 
D*O 
Df+ 
A,+ 
E,++ 
E: 
E: 
z+ 
-C 

=O 
-C 

BO 
B- 

quark content 
C d  

Ci i  

CS 

C a  

C i i  

CS 

cdu 
cuu 
cdu 
cdd 

csd 
ba 
bii 
bs 
ba 
bii 
bS 

bdu 

csu 

spin mass ( GeV/c2) 
1.869 
1.865 
1.969 
2.010 
2.007 
2.110 
2.285 
2.453 
2.453 
2.453 
2.466 
2.473 
5.279 
5.279 
5.375 
5.325 
5.325 
5.422 
5.64 

Table 2.2: Some hadrons containing heavy quarks [9, 10, 111. 
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and 
cT(b6)/a(qq) = 1/11 M 0.0909 . 

The overall factor of 3 in the cross-sections comes from the fact that each quark 
comes in 3 colors. 

This is the lowest order approximation for the cross-sections. A discussion of 
higher-order effects in the calculation of these cross-sections is given in Section 2.7. 

2.3 QCD in e+e- Annihilation 

The quark and antiquark produced in e+e- annihilation, being colored objects, 
can radiate gluons, just as electric charges radiate photons. In QCD, quarks and 
gluons interact with a strength parameterized by a dimensionless coupling constant 
as(m) that is a function of Q2 = -q2 ,  where qp is the gluon 4-momentum. a, is 
said to mn with m. The leading logarithm approximation to this dependence is 

127r 
a s  (e) = ( 33 - 2 N f )  ln(Q2/R2) ' 

where N f  is the number of quark flavors with mass less than m, and A is an 
experimentally measured constant' [MI. As decreases, a, (m) increases: 
a,(91 GeV) = .115 f .008 [15] and a,(34 GeV) = -14 Z!= .02 [16]. When is in 
the neighborhood of 1 GeV/c, a,(m) becomes of order 1. As long as a,(m) 
is much less than 1, perturbation theory can be used to calculate cross-sections. 

We now review the two approaches to perturbative QCD calculations: fixed 
order, and the leading logarithm approximation. 

2.3.1 Fixed Order Computations in QCD 

These computations are for final states composed of a small, definite number of 
partons (a parton is a quark, an antiquark, or a gluon). An example of a fixed 
order perturbative computation is the total cross-section for e+e- annihilation into 
a maximum of 5 partons at center-of-mass energy f i . This computation shows 
that 

'As f l  decreases, so does N f ,  but aYd(@) is a continuous function of @, so each 
and all the A(Nf)ls  are related by range of constant N f  actually has its own constant 

Equation 2.5 and the continuity of as(@). 
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for center-of-mass energy well above the b6 threshold and well below the Zo mass 
[17,18]. The 2' and the W* are the mediators of the weak force, which is described 
by the Weinberg-Salam model [ 191. 

Another example of a fixed order perturbative computation is the differential 
cross-section for e+e- annihilation into a quark with a fraction xq = Eq/Eb,am of 
the total energy, an antiquark with a fraction xcQ = Eq/Ebeam of the total energy, 
and a gluon with a fraction xg = E,/&,, of the total energy [20]. The cross- 
section is 

do 2a,(fi) xi + z; 
= a(e+e- + QQ) 

dxqdxq 3n (1 - x q ) ( l  -xq)  * 

This cross-section diverges for zero-energy gluons (xq = 1 and xcQ = l), for gluons 
colinear with the quark (2,  = l), and for gluons colinear with the antiquark 
( xg  = 1). These divergences (poles) cancel with the divergences in diagrams where 
a gluon is emitted and reabsorbed by the same quark or antiquark. 

2.3.2 The Leading Logarithm Approximation of QCD 

The other approach to perturbative QCD is leading logarithm QCD. This approach 
sums up, to all orders, the most divergent processes at each order in perturbation 
theory. The divergences are the colinear singularities of the type found in Equa- 
tion 2.7. 

Leading logarithm QCD allows us to model the perturbative evolution of an 
event as a series of the independent parton branchings q -+ qg ,  g + qij ,  and g 4 g g ,  
with the probability of each branching given by one of the Altarelli-Parisi splitting 
functions [21]. The partons produced in each branching have lower virtuality than 
the original parton; the branching is stopped when the parton masses approach 
the energy scale Qo where perturbation theory fails. The entire branching process, 
illustrated in Figure 2.6a, is called a parton shower. 

2.3.3 Where Perturbative QCD Fails 

As f l  decreases during the evolution of a hadronic event, a,(J&'i) increases ' 
until it becomes of order 1, at about 1 GeV/c. At this energy scale, perturbation 
theory fails. In this energy region, where confinement and hadronization occur, 
we must resort to other means for calculating amplitudes and cross-sections for 
hadron production. 

Lattice computations of QCD are first-principles computations of QCD, but 
require an enormous amount of computation, so only now are we beginning to 
obtain useful results on the simplest of lattice calculations [22, 231. Detailed lattice 
QCD results on hadronization are still years away because of their complexity. As 
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of yet, there are no other methods for computing from first-principles QCD at 
low momentum transfer. Instead, we resort to phenomenological models of the 
hadronization process. 

2.4 Models of Hadronization 

There are a number of models of hadronization. Their Monte Carlo implementa- 
tions all start with the production of a set of partons, either by fixed order QCD or 
by a parton shower. The hadronization model then transforms the parton config- 
uration into a set of hadrons. Finally, in the Monte Carlo implementation, those 
hadrons with relatively short lifetimes are decayed, producing a set of particles 
that live long enough to travel an observable distance. This set of particles is then 
compared to experimental data. 

In this analysis, hadronization models are used to compute acceptances, test the 
analysis method of Chapter 8 for bias (Sections 8.6 and 8.5), and train the neural 
networks we use to distinguish bottom events from non-bottom events (Section 7.1) 
and 8.3). 

The hadronization models we describe in this section have Monte Carlo im- 
plementations that we can use for all of these purposes. These models can be 
grouped into three classes: independent fragmentation, string fragmentation, and 
cluster fragmentation. We then discuss the Peterson fragmentation function that 
can be used in those models with a fragmentation function: independent and string 
fragmentation. 

2.4.1 Independent Fragmentation 

Historically, one of the first fragmentation models was the independent fragmen- 
tation model of Feynman and Field [24]. In this model, the original quark and 
antiquark each transform into a jet of hadrons, independently of each other. 

Figure 2.2 illustrates the creation of a jet by independent fragmentation from 
a quark QO created in the process e+e- + q&. First, a quark pair ql& is created 
from the vacuum. ij1 and qo combine to form a meson, leaving behind q l ,  which 
has less energy than qo did. Then another pair q 2 i j 2  is created, and q1 and & bind 
together to form another meson, leaving behind q2 with still less energy. This 
process repeats itself until the remaining quark has too little energy to form a 
meson. The same kind of iterative process produces a second jet from qo.  

It is assumed that the quarks and antiquarks created from the vacuum each have 
a transverse momentum that is distributed as a Gaussian with an experimentally 
determined width my. The total transverse momentum of each created pair is 
zero. Another experimentally measured parameter T determines the fraction of 

t 
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Figure 2.2: The independent fragmentation process into mesons for a jet initiated by 
the quark qo. ‘h(qn&)’ is a meson with quark content qnQn (Based on 1251). 
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mesons that are vector, the remainder being pseudoscalar. A third adjustable 
parameter, P ( s ) / P ( u ) ,  determines the probability that the created qq pairs are ss, 
the remaining pairs being half ue and half dd. 

Another feature of this model is a fragmentation function f (z) .  It is the prob- 
ability density, at each step in the fragmentation chain, that a fraction z of the 
momentum of quark qi goes into the meson formed by it and iji+l. The remaining 
momentum goes into qi+l.  Feynman and Field chose 

f (z )  = 1 - CL - 3 a ( l -  z ) ~  , 

where a is determined from experiment. 

Some of the hadrons created in this cascade (called primary hadrons) are un- 
stable and are decayed by the Monte Carlo implementation of the Feynman-Field 
model. The order in which these primary hadrons are created is called the rank 
the first primary hadron has rank 1, the second one has rank 2, etc. 

The original Feynman-Field model did not include baryon production and gluon 
jets. Meyer [26] proposed an extension of the model in which occasionally two 
quark-antiquark pairs, rather than one, are created from the vacuum with prob- 
ability P(qq) /P(q) .  The qq then combines with the adjacent quark, and the @ 
combines with the adjacent antiquark, forming a baryon-antibaryon pair. 

Hoyer [27] and Ali 1281 introduced gluon jets, which split into uG, dd; and 
S S  pairs with equal probability. The quark and antiquark then fragment inde- 
pendently. Different variations on independent fragmentation divide the gluon 
momentum between the quark and antiquark differently. Massive quarks must 
be handled differently from light quarks; it was in this context that the Peterson 
function was invented (Section 2.4.4). 

Even though independent fragmentation is basically a parameterization, rather 
than an attempt to model the fundamental dynamics of fragmentation, it is ef- 
fective in describing hadron production. This model simulates the jets in events 
independently of each other, so we use it in the studies in Section 8.6. 

It is not the model of choice, however. It fails to reproduce the string effect 
[29, 30, 311. Also, it has a number of serious theoretical problems. There is no 
natural way of handling the last (anti)quark in each jet; some variations on inde- 
pendent fragmentation simply throw them away. Neither energy nor momentum 
is conserved, unless the jets are rescaled in E and/or p in an ad hoc manner [32]. 
Finally, since the properties of the cascade depend upon the initial (anti)quark 
momentum in the laboratory frame of reference, independent fragmentation is not 
Lorentz covariant. 
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2.4.2 

Another , 
by Artru 

String Fragmentation 

more physical model of fragmentation is string fragmentation, proposed 
and Mennessier [33] and Andersson [34, 35, 361. In this model, the color 

field between a quark and an antiquark is a massless color flux tube, or string, 
that is uniform along its length. The popular implementation of this model is the 
Lund model [36]. Jetset is the name of the software package in which the Lund 
model is implemented. 

Several facts suggest that the color flux forms a uniform string. An electric 
dipole has the familiar configuration of Figure 2.3a that spreads out to infinity: as 
the charges separate, the field lines spread out, yielding a force that is the inverse 
square of the separation T between the charges. Photons do not carry charge, 
but gluons carry color since the strong force is non-Abelian, so it is plausible that 
color flux lines attract one another, constricting the dipole pattern and producing 
a force that falls off less rapidly than l /r2.  That the flux lines form a flux tube, 
as shown in Figure 2.3b, is suggested by the linearity of Regge trajectories [37], 
Lattice QCD 1381, and the long-distance behavior of QCD potential models [39]. 

The flux tube is uniform along its length; therefore it has constant energy per 
length IC, which is experimentally measured to be about 1 GeV/fm. The force 
between a quark and antiquark joined by such a string is independent of their 
separation. 

The string model of a meson of mass m at rest, composed of a massless quark 
and a massless antiquark, is illustrated in Figure 2.4. At time t = 0, the quark 
and antiquark are moving apart at the speed of light. As the quark and antiquark 
separate, their energy goes into the string until the string energy is equal to the 
mass of the meson and the quarks have no energy, at which point both quark and 
antiquark turn around and move toward each other and eventually past each other 
at the speed of light. The cycle repeats itself. Let us label the space-time points 
at which the quark and antiquark turn around be (zl,tl) and ( 2 2 , t 2 ) .  Then it is 
true that t 2  - tl = 0 and 2 2  - x 1  = ~ / I c .  Thus we obtain the expression 

(zz - zl)’ - c2(t2 - t 1 ) 2  = m 2 / K  2 . 
(2.9) 

This equation is Lorentz invariant. If the meson has transverse momentum, then 
m in the above expression is replaced by the transverse muss ml = d w .  
This is the so-called yo-yo model of a meson. 

Hadronization of a quark and an antiquark created in ece- annihilation at high 
energy, as described by the Lund model (Figure 2.5) ,  shares many features with 
the yo-yo meson model. The quark and antiquark are produced moving apart with 
a string connecting them. As the quark and antiquark separate, energy goes into 
the string and eventually it is energetically advantageous to break the string with 
the creation of quark-antiquark pairs from the vacuum; these pairs terminate the 
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Figure 2.3: Electric flux lines for a static electric dipole (a). Color flux lipes for a qfj 
pair (b) (Based on [25]). 
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T 

Figure 2.4: The yo-yo model of a meson in string fragmentation (Based on [ 2 5 ] ) .  

T 
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flux lines and thus break the string. The string will break a number of times until 
there is not enough energy to create new quark antiquark pairs, at which point 
the fragmentation of the system is complete, and each quark-antiquark pair along 
with the string that connects them forms a meson (the little yo-yos in Figure 2.5). 
Note that Equation 2.9 applies to the creation points of the qij pairs that break 
the string, since the mesons that are created in the process must be on-shell. 

The creation of a quark-antiquark pair at a point violates energy conservation 
if the quarks have mass or transverse momentum. Once the quark and antiquark 
have separated by a distance d = r n ~ / ~ ,  energy conservation is restored. Thus, 
the breaking of a string by a qij pair separated by a distance d is a tunneling event, 
which has a probability of occurring given in quantum mechanics by 

pxexp(*) . (2.10) 

As a consequence of this equation, the probability differs for creating different kinds 
of quark pairs in breaking the string. If we use K = 1 GeV/fm = 0.2 GeV2 and the 
quark masses mu = md = 0, m, = 250 MeV/c2 and m, = 1.5 GeV/c2, then the 
relative probabilities for the production of up, down, strange, and charmed quarks 
are approximately 1 : 1 : 0.37 : Thus, strange quark production is suppressed, 
and heavier quarks basically are not produced at all in breaking the string. In the 
Lund model, the strange quark production probability is left as a free parameter, 
as in independent fragmentation. Similarly, the probability to produce vector 
versus pseudoscalar mesons, as well as the probability to produce diquarks for the 
production of baryons, are left as free parameters to be determined experimentally. 
The transverse momenta of the quark and antiquark are also equal and opposite, 
and their distribution follows a Gaussian distribution with width oq. 

The longitudinal momenta, pl ,  of these hadrons are determined by a fragmen- 
tation function, as in independent fragmentation, but the string fragmentation 
function is a function of the light-cone variable E + pl instead of pl .  The first 
hadron created at the end of the string takes up a &action (1 of the total E + pl 

of the entire string: 

E + p l  of the next hadron created is another fraction c2 of the remaining available 
E + pl of the unfiagmented string system. This'procedure is repeated until a 
certain minimum E +pl  is reached. At this point the remaining string decays into 
two mesons according to two-body phase space. An important feature of the Lund 
model is the requirement that, on average, the fragmentation starting from one end 
of the string is the same as the fragmentation starting from the other end of the 
string. This determines the form of the Lund Symmetric fragmentation function 
1401: 

( E  + P1)l = cl(E + Pl)total - (2.11) 

L J  

(2.12) 

1 
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Figure 2.5: String fragmentation into mesons at high energy. The shaded areas are 
the regions where the flux tube exists, and the solid lines are the quark and antiquark 
trajectories (Based on [25]). 
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Another important feature of the Lund model is that gluons are accommodated 
as kinks in the string. In older versions of the Jetset package, these gluons were 
generated according to second order QCD. In more recent versions of Jetset (6.3 
or higher-numbered versions), it is also possible to generate gluons using a leading 
logarithm parton shower. The Lund model does not suffer from problems with 
Lorentz covariance and E-p conservation, but it has many parameters. The Lund 
model reproduces experimental data well [41], and we use it to train the neural 
networks we use to distinguish bottom events from non-bottom events (Sections 
7.1 and 8.3). 

2.4.3 Clu ter Fragment .tion 

The third class of fragmentation models used in high energy physics are the cluster 
fragmentation models. In this approach, a leading logarithm parton shower is 
generated and the evolution of the shower is terminated when the parton virtuality 
Q falls below a cutoff Qo. At this point all gluons are split into quark-antiquark 
pairs, and adjacent quarks and antiquarks are formed into colorless clusters [42] 
(Figure 2.6). These clusters then decay into pairs of hadrons according to two-body 
phase space [43]. 

The only other really fundamental parameter in cluster models besides QO is 
the QCD scale parameter A, which determines the strength of the strong force. 
Parameters for determining strange quark production, baryon production, and a 
transverse momentum distribution are all unnecessary in cluster models, since all 
these characteristics are taken care of by the shower cutoff scale. The strange 
quark and baryon production fractions are limited by available phase space, and 
transverse momentum is governed by the masses of the created clusters. The most 
popular cluster fragmentation model, the Webber model 1441, has a few additional 
parameters. One of these, M f ,  is used to  fission clusters that are very massive: 
these clusters are fissioned using a string mechanism. The Webber model also has 
parameters for quark masses. Up and down quark masses are fixed to  be Qo/2, 
and the other quarks are given their usual masses. 

Note that cluster fragmentation has no fragmentation function; the shapes of 
the hadron momentum spectra are determined by the shower and cluster processes. 
In spite of the far fewer parameters in. the Webber model, it reproduces data 
well [41]. We do not use it in this analysis, since the charm and bottom hadron 
momentum spectra can not be independently tuned to match experimental data. 
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Figure 2.6: Cluster fragmentation. (a) A leading logarithm parton shower, and (b) the 
color flow of this shower after gluons have split into qij pairs and color has been confined 
in clusters, which are represented by the ellipses (From [44]). 
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2.4.4 The Peterson Fragmentation Function 

The Field-Feynman function predicts heavy quark fragmentation that gives charm 
and bottom hadrons too little momentum [45], while the Lund Symmetric frag- 
mentation function can not get charm, bottom, and light-quark fragmentation all 
correct at the same time [46]. Left as is, this is a fatal flaw for any simulation of 
bottom quark event behavior. 

The Peterson function [47], a simple fragmentation function, allows tuning 
of the Monte Carlo charm and bottom momentum spectra to match the exper- 
imentally measured spectra. It describes accurately the shape of heavy hadron 
momentum spectra [48], has only one free parameter for each heavy quark (that 
must be experimentally measured), and has a simple derivation based upon the 
uncertainty principle and longitudinal phase space. The Peterson function is the 
standard in bottom event analyses because of these facts. 

We now show a derivation of the form of the Peterson function. The transition 
amplitude from a heavy quark Q with momentum p to a hadron H (quark content 
Qq) with momentum z p  plus a light quark q with momentum (1 - z ) p  is given in 
first order perturbation theory by 

(2.13) 

where AE = EQ - EH - Ep and 7-i' is the perturbing Hamiltonian. The fragmen- 
tation function is then given by the square of the transition amplitude 

(2.14) 

where the factor of 1/z comes from longitudinal phase space. If the Q and q are 
moving rapidly, then we can approximate 

implying that 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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with EQ = (Mq/MQ)2 the so-called Peterson parameter. 

In Figure 2.7, we show the Peterson function as tuned in this analysis for charm 
(ec = 0.072) and bottom (Q = 0.039) hadrons in Jetset 7.2. The tuning process is 
described in Section 5.3.2. 

The interpretation of z varies. In this dissertation, we adopt the most common 
interpretation that z is ( E  + pII)hadron/(E + p)quark, where the parallel direction is 
with respect to the quark direction. z involves unobservable kinematic quantities 
of quarks, so z must be inferred from a fragmentation model, and E must be tuned 
individually for each Monte Carlo fragmentation model implementation. For Jet- 
set 5.2, it was found that E ,  = 0.06 and ~b = 0.006 [49]. The values of the Peterson 
parameters for Jetset 5.2 and 7.2 are very different because Jetset 5.2 uses a 2nd- 
order computation of QCD, while Jetset 7.2 uses a leading logarithm computation 
of QCD, and these two different computations produce different relationships be- 
tween ( E  + p1l)hadron and ( E  + P)quark. 
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Figure 2.7: The Peterson fragmentation function as tuned in this analysis for charm 
hadrons (dashed) and bottom hadrons (solid). 
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2.5 The Properties of Heavy Quark Events 

In Table 2.3, we show some properties of the charged particles in jets that originated 
from different types of qq pairs created at f i  = 29 GeV. The way in which these 
properties were measured is reviewed in Section 2.6. Within the errors on the 
measurements, light-quark and charm-quark jets have the same properties. Bottom 
quark jets, in contrast, have significantly higher charged multiplicity and lower 
average particle momenta, and are rounder, than other types of jets. However, 
the average tranverse momentum (pt or p l )  of charged tracks, with respect to the 
event axis, is the same in bottom and non-bottom events; the reason for this is 
discussed below. 

The large mass of the bottom quark, about 5 GeV/c2, is responsible for these 
differences. This large mass causes bottom hadrons to take up a large fraction of 
the energy of the primary b6 in bottom events at f i  = 29 GeV [50,51]. The energy 
fraction has been measured to be, on average, about 72% (Section 5.3.2). Of the 
remaining 28%, according to Monte Carlo, an average of 4% is lost to initial state 
radiation and an average of 24% goes into creating other hadrons. Eliminating 
ISR but keeping s the same, we assume that a fraction 72/(24 + 72) of the ISR 
photon’s energy goes into the bottom hadrons and the rest goes into creating 
other hadrons. On average, 6.0 other charged hadrons are created per event2. 
The measured average charged multiplicity of a 50-50 mix of B- and Bo meson 
decays is 5.4 [54, 551, and since bottom hadrons do not vary widely in mass (see 
Table 2.2), we assume that the average charged multiplicity of the mix of primary 
bottom hadrons created at 6 = 29 GeV is the same. Therefore, we predict that 
the average charged multiplicity of bottom jets is roughly 6.0/2 + 5.4 = 8.4, which 
is about 2 c above the measured average bottom jet multiplicity of 7.8 and much 
larger than the average event charged multiplicity of 6.2 (see Table 2.33). 

This larger average multiplicity causes the event energy to be shared among 
more particles. Therefore, the average momentum, parallel to the jet direction, of 
particles in bottom jets is smaller than in non-bottom jets. This effect is enhanced 
by the fact that bottom hadrons tend to share their decay energy equally among 
the larger number of its decay products, whereas in other events, particles are 
ordgred in rank and the primary hadron containing the quark that initiated the 
jet will generally be the fastest primary hadron. 

Bottom hadron masses are much greater than the masses of the charm hadrons 
they can decay into. Therefore, the decay of bottom hadrons releases a lot of 

2We use the parameterization that the dependence of the average charged multiplicity (n,h) 

on s is 3.24 - 0.341n(s) + 0.261n2(s) [52], and we make the common assumption that this pa- 
rameterization holds for the non-bottom-hadron portion of the event. This assumption appears 
to hold 1531. 

3The multiplicities in this table are for events with no ISR, which is why we have eliminated 
ISR in this estimate of the multiplicity. 
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energy, giving its decay products, as a group, a larger momentum transverse to 
the jet direction than is available in other events. As a result, bottom quark jets 
are fatter and rounder4. 

The average p, of particles in bottom jets is, within statistics, the same as 
for particles in non-bottom jets, since the greater net transverse momentum is 
distributed among more particles, and the two effects apparently cancel each other 
out. 

This cancellation does not happen for the leptons (electrons and muons) from 
the semi-leptonic decays of bottom hadrons, where the term semi-leptonic means 
the process b + c + W -  and W--+ I -  + fil, or the charge conjugate process, with 
! = e or p.  Leptons from the semi-leptonic decays of bottom hadrons often have 
a larger p ,  than those from other sources, since they carry, on average, half the p ,  
of the W ,  which in turn carries half the pt of the bottom decay products. Thus, 
the lepton p ,  spectrum scales with the decaying hadron's mass. This large p ,  is 
responsible for the usefulness of identifying, or tagging, bottom-quark events with 
hi-pt leptons. 

property average jet 
6.23f.09 

1.2935k.0015 
.380f.005 
.274f -001 

.1399f .0009 

.1059f.O003 

uds jet 
5.89f.24 
1.522.04 
.40f.01 
- 

.087f.007 

.092&.004 

c jet 
6.60f.25 
1.38f.06 
.39f.01 
- 

.094f.010 

.082f.005 

b jet  
7.84k.29 
1.06f.04 
- 

.31k.O3 

.26f.02 
.149&.009 

Table 2.3: Properties of jets of different flavors [53, 56, 57, 58, 591. 

2.6 Previously Used Heavy Quark Event Tags 

The measurements that produced the entries in Table 2.3 are listed in Table 2.4. 
All use tags in one hemisphere to  find the type of qtj that originated the event, 
and the tracks in the other hemisphere are used for the measurement. For various 
reasons, these tags yield high-purity samples, but with low efficiency. 

The high-p, lepton tag [57, 58, 591 yields high-purity bottom event samples 
because other sources of leptons (semi-leptonic decays of charm hadrons in charm 

43-jet events with an energetic gluon also have a lot of p t ,  but these events are distinctly 
planar, since momentum conservation requires that the qqg initial state lies in a plane. 
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events, electrons from photon conversions, and muons from pion and kaon decays) 
generally do not have large p, and large momentum. The physics of this tag was 
discussed in the last section. The efficiency of this tag is limited by several factors. 
The branching ratios for b --+ e + X  and for b t p + X  are only 10.5% [60]. A 
cut of 1 GeV/c on pt is needed to beat down the background from semi-leptonic 
decays of primary charm hadrons, primary meaning not from decays of bottom 
hadrons. Finally, experiments can not use low-momentum electrons and muons, 
because of acceptance and low-momentum backgrounds from photon conversions 
and from pion and kaon decays [61]. 

The low-pt lepton tag [58, 591 produces fairly pure samples of charm events 
because prompt leptons (i.e. electrons not from photon conversions and muons not 
from pion or kaon decays) are essentially always from the semi-leptonic decays of 
charm and bottom hadrons, because leptons from bottom hadrons tend to have 
larger p,, and because there are 4 times as many charm events as there are bottom 
events. Its efficiency is limited by the roughly 13% branching ratios for c + e + X 
and for c + p t X  [62], and by the typical inability of experiments to use low- 
momentum electrons and muons. 

The D** meson tag [53,56] yields a highly pure sample of charm events because 
charm quarks hadronize into D** 3/8ths of the time, and because few candidate 
D** mesons are not D**. D** mesons also come from bottom hadron decays, 
but these mesons have low momenta, whereas D** mesons from hadronization 
of charm have higher momenta. The chosen cut on XE = E(D**)/Ebe, for the 
TASSO measurement is 0.5 [53], and 0.4 and 0.5 for different parts of the HRS 
measurement [56]. The low efficiency of this tag is due to the fact that only a small 
fraction of the D*' mesons can be reconstructed. 

The high-zE charged kaon and pion tag [56], where XE is E p & i c l e / E b e m ,  pro- 
duces high purity light-quark event samples because these events have a leading 
particle (i.e. containing the original quark or antiquark) that can be stable. The 
leading primary hadron is usually the fastest particle in its jet. When a particle 
decays, its XE is shared among its decay products: decays feed down in XE. Charm 
and bottom hadrons always decay, and with relatively high multiplicity, so ch.arm 
and bottom events have very few particles with large xE. As discussed in the last 
section, this difference between light- and heavy-quark jets is enhanced by the fact 
that hadrons containing a heavy quark tend to share their decay energy equally 
among their decay products, whereas in other events, particles are ordered in rank 
and the primary hadron containing the quark that initiated the jet will generally 
be the fastest primary hadron. The low efficiency of this tag is caused by the high 
cut on XE (0.7 in the HRS analysis [56]) needed to eliminate tails from charm and 
bottom events and by the low probability for a hadron to have so much momentum. 

All of these tags have low efficiency, causing the statistical significance of all 
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I HRS 
1561 

DELCO [57] 
Mark I1 

1581 

1 experiment I tag method I quark tagged 

D*k C 

hi-ZE hadron u,d,s 
hi-pt lepton b 
hi-pt lepton b 
lo-pt lepton C 

1 TASSO 1531 1 D** I C 

TPC 
PI 

hi-p, lepton b 
lo-p, lepton C 

purity 1 efficiency I 
80% I 0.80% I 

6.4% 
4.1% 

Table 2.4: Previous hadronization measurements for different quark flavors. 

these measurements to suffer. In an attempt to obtain greater statistical sig- 
nificance, this analysis uses a number of hadronic variables computed from the 
3-momenta of all of the observed charged hadrons in the event or jet to statisti- 
cally separate bottom (b) and non-bottom (non-b) events or jets. Each of these 
hadronic variables is well-defined and carries information for all events/jets, so 
this method is intrinsically high-efficiency. The trade-off is that the b and non-b 
distributions overlap in the entire range of all hadronic variables, and that the 
distributions are fairly similar. This is why more than one variable is used: to 
provide more information for distinguishing the two types of events/jets. 

In this analysis, a neural network transforms all these hadronic variables into 
one variable that contains essentially all of the information in the hadronic vari- 
ables that distinguishes b and non-b eventsljets from each other [63]. This data 
compression makes the analysis considerably easier, since it is difficult to fit in a 
large number of variables. Neural networks are described in Chapter 6. 

2.7 Corrections to a(bb)/a(qg) 

The calculation of the theoretical value of the ratio o(b$)/o(qq), to compare to 
the measurement of this ratio presented in this dissertation, requires making a 
number of corrections to the lowest order approximation of this ratio that was 
made in Section 2.2. There is often initial state radiation (ISR), a photon radiated 
by either the electron or the positron before they annihilate. The masses of the 
initially created quarks were ignored. Gluon emission by the quarks also alters the 
cross-sections. Finally, the annihilation photon contains a small admixture of 2'. 
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It turns out that the heaviness of the bottom quark relative to the other pro- 
duced quarks affects the ratio a(b$)/a(qij). The differential cross-section for mas- 
sive fermions is 

d o  CY' 

dR 4s 
- = - p [ I +  cos2 e + (1 - p2) sin2 e] Q; , (2.19) 

where p = v/c ,  and TI is the quark's (and the antiquark's) speed in the center-of- 
mass (lab) frame [64]. The corresponding total cross-section is 

o = c p  (7) 3 - p2 Q ; ,  
3s 

(2.20) 

or p(3 - p2)/2 = 9 9 5  times the massless QED cross-section in Equation 2.2, for b 
and 6 each with 14.5 GeV of energy and assuming that the bottom quark mass is 
5 GeV/c2. Therefore, the direct effect of the bottom quark mass is negligible. 

In combination with initial state radiation, though, the bottom quark mass 
has a significant effect. Let ,,b be the center-of-mass energy of the electron and 
positron before the emission of the ISR photon (the conventional definition), and 
let JG be the center-of-mass energy of the electron and positron after the 
emission of the ISR photon. The cross-section for e'e- annihilation after ISR 
photon emission is a variation on Equation 2.20: 

(2.21) 

where j3e+e- is p of the quarks in the boosted e+e- center-of-mass frame of reference 
after the emission of the ISR photon. For events with energetic ISR, ,Be+,- for 
bottom quarks can be significantly less than 1. If ISR is energetic enough, d G  
is below the threshold to produce a bz pair, and the virtual annihilation photon 
instead decays into pairs of the lighter quarks. 

There is no analytic expression for the annihilation cross-section including the 
effects of initial state radiation. Instead, we use the Monte Carlo package described 
in Section 5.3.1, which contains a standard simulation of initial state radiation 
[65, 661 to calculate the total cross-section. We get 

g(b6) = 0.0413 nb 
g(qij) = 0.5014 nb, and 

a(bb)/c~(q$ = 0.0824, (2.22) 

a significant change in the ratio from the value of .0909 found with the lowest order 
approximation in Equation 2.4. 
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Including the effects of QCD in our Monte Carlo, in addition to ISR, gives us 

a(b6) = 0.0437 nb 
a(qg) = 0.5310 nb, and 

a(b&)/a(qg) = 0.0823 . (2.23) 

Even though the cross-sections change significantly, QCD affects bottom and non- 
bottom events the same way, so the ratio of the cross-sections does not change. 

The effect of the small admixture of Zo in the annihilation photon is quite 
minor. Added to the previous effects, we get 

a(b6) = 0.0438 nb 
o(q$ = 0.5317 nb, and 

cr(b&)/a(qij) = 0.0824. (2.24) 

This cross-section ratio is 90.6% of the ratio in Equation 2.4 that we started with. 

f 
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Chapter 3 

The TPC/Two=Gamma 
Experiment 

In this chapter, we describe the experimental apparatus that collected the data we 
use to make the measurement presented in this dissertation. 

This experimental apparatus, the TPC/2y detector, was located in Interaction 
Region 2 of the PEP e+e- storage ring. PEP collided counter-rotating triads of 
bunches of electrons and positrons in six interaction regions (Figure 3.1). The 
particles in each bunch had an energy of 14.5 GeV, so the center-of-mass energy 
of each collision was 29 GeV. 

The TPC/2y detector was placed on the PEP ring in January, 1982, and it 
collected three data sets before it was shut down in September 1990. The first 
data set of 77 pb-l was collected in 1982 and 1983; it is called the Low-Field 
data set because the detector had a conventional magnet that supplied a field of 
4.0 kG. The second data set of 66 pb-', collected between 1984 and 1986, is called 
the High-Field data set because the conventional magnet had been replaced by a 
superconducting magnet that produced a field of 13.25 kG. The last data set of 32 
pb-', collected in 1988 and 1990, is called the Vertex Chamber data set because 
of the Vertex Chamber that was used during this period. The Vertex Chamber 
replaced the Inner Drift Chamber that was previously part of the detector. 

We use only the High-Field data set for the analysis presented in this disserta-' 
tion, so we only describe the configuration of the detector during this period. 

3.1 The TPC/Two-Gamma Detector 

The TPC/2y detector [68], shown in Figures 3.2, 3.3, and 3.4, is a 47r detector 
designed to gather information about charged and neutral particles in a large as 
possible solid angle. Arranged concentrically around the beam pipe, going from 
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Figure 3.1: A schematic representation of the PEP storage ring. Electrons circulate in 
the clockwise direction, positrons counter-clockwise (F'rom [67]). 
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the inside out, are the Inner Drift Chamber (IDC) [69, 701, the Time Projection 
Chamber (TPC) [71, 721, the Outer Drift Chamber (ODC) [70], a superconducting 
magnet coil, the hexagonal electromagnetic calorimeter (HEX) [73, 741, and the 
barrel muon chambers [75]. On the ends of these detectors, moving outwards from 
the TPC, are located the Pole Tip Calorimeter (PTC) [76], the Muon Doors [75], 
and the PEP-9 (forward) detectors [77]. 

Figure 3.2: A schematic 3-D representation of the TPC/2y detector, including the 
forward detectors (From [67]). 

A standard coordinate system is used for defining positions. The x direction 
points horizontally outward from the center of the PEP ring, roughly east, and the 
y direction points upward. The z axis is the axis of the TPC, at the center of the 
beam pipe, and the positive z direction points along the electron beam direction, 
roughly south. The origin of this coordinate system is at the geometric center of 
the TPC. The interaction point where the electron and positron beams collide is 
approximately at the origin. The dip angle, A, is the angle from the plane defined 
by z = 0, the positive direction being in the positive z direction. 

This analysis only uses charged particle information from the TPC, so only this 
part of the detector is described here. 
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Figure 3.3: A schematic side view of the TPC/Zy detector (From [67] ) .  
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3.2 The Time Projection Chamber 

The Time Projection Chamber is a drift chamber 2 m long and 1 m in rahus, 
filled with a 80% argon/20% methane mixture at 8.5 atm and immersed in electric 
and magnetic fields both parallel to the common axis of the TPC and the entire 
detector. The 13.25 kG magnetic field is generated by the superconducting coil. 
The electric field is produced by a wire mesh, midway between the ends of the 
TPC at z = 0, held at a voltage of -50 kV or -55 kV with respect to the 
grounded ends of the TPC. The uniformity of the electric field is produced by 
metallic equipotential rings, joined by high precision resistors, in the G-10 walls of 
the TPC. 

Each end, or end cap, of the TPC is made of six multiwire proportional cham- 
bers, or sectors (Figure 3.5). Each sector has 183 sense wires spaced 4 mm apart 
and 4 mm above 15 rows of 7.0 mm by 7.5 mm cathode pads (Figure 3.6). The elec- 
tric field lines start on the midplane and end on the sense wires, near which there 
are large electric fields because of the convergence of the field lines. The sense wires 
are interleaved with field wires that shape the electric field near the sense wires 
(Figure 3.6) .  Located 4 mm above this plane of sense and field wires is a grounded 
grid of wires, which defines the ground seen by the high voltage midplane. At a 
distance of 8 mm above the grounded grid is another plane of wires, called the 
gating grid, which keeps positive ions created at the sense wires (discussed below) 
from reaching the TPC volume. The gating grid acts as an electronic door that 
is closed except during the brief periods when the trigger electronics [78, 79, 801 
have decided to record track information. 

As a charged particle traverses the TPC volume, it interacts electromagneti- 
cally with gas molecules along its trajectory. This interaction causes the traversing 
particle to lose energy to these molecules, ionizing them, and leaving an ioniza- 
tion trail, or truck, along the path that the particle took through the TPC. The 
ionization electrons drift along the electric field lines from the TPC volume to the 
sense wires, where they are accelerated so much that they ionize other molecules, 
creating an avalanche of electrons onto the sense wires, leaving behind positive 
ions. 

Knowing which cathode pads have an electric charge capacitatively induced 
from the sense wires above them gives information on the projection of a track 
onto the z-y plane. The z coordinate of a track segment is measured by the arrival 
time of the segment’s ionization electrons. Each pad row contributes one space 
point in 3 dimensions, for a maximum of 15 space points. These space points 
are used to reconstruct the trajectory of the particle that created the track. The 
sense wires are also used to record the amount of ionization per unit track length 
(dE/dz), which is used to estimate the velocities of the charged particles that 
created these tracks. 
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Each sense wire and pad in the TPC is connected to a channel in the TPC 
electronics. For each electronics channel, a preamplifier integrates the collected 
charge and produces a signal with a fast rise time and a 5 ,us decay time. This 
pulse goes to an amplifier in the electronics house, which generates a roughly 
Gaussian signal with a 250 ns width that is sampled at 100 ns intervals and stored 
in a CCD analog shift register. Each CCD bucket is digitized with 9 bit accuracy, 
and those buckets exceeding a software controlled threshold are read out into the 
Large Data Buffer and recorded by the VAX 11/782 online computer for data 
analysis. 

3.3 Calibration of the TPC 

In order to use dE/dz, the response of the sense wires to drifting electrons must be 
calibrated. Before the TPC was assembled, detailed maps were made of how wire 
gain varied across each sector. The gain was found to vary by about 3% because 
of non-uniformities in wire diameter and the distance from the wires to the pads. 
Variations of the gain with time were measured using 55Fe x-rays to produce pulses 
on the sense wires. Each sector has three "Fe source rods, at 0, -15, and +30 
degrees from the sector midline (Figure 3.5) .  

The dependence of gain upon the sense wire pulse amplitude was measured by 
pulsing the voltage on the shielding grid with 11 different amplitudes; this induces 
pulses on the sense wires. The coupling between the shielding grid and the sense 
wires is not known well enough to normalize the gain curve, so the 55Fe data and 
minimum ionizing pions were used to obtain a normalization. 
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Chapter 4 

Particle Identification Using the 
TPC 

In this chapter, we describe how particles are identified by the TPC using simulta- 
neous measurements of momentum and dE/ds. First, we show how momentum is 
measured using the TPC. Then, we describe the dependence of the mean of dE/dz 
of a charged particle upon the particle’s speed. Finally, we describe the resolution 
of dE/dz measurements, and the parameterization of this resolution. 

4.1 The Measurement of Momentum 

The momentum of a charged particle is obtained from the curvature of the particle’s 
reconstructed trajectory in the magnetic field [82]. If the radius of curvature 
of a particle trajectory is R, then the momentum of the particle in the plane 
perpendicular to the TPC axis is 

BR 
PI = - 3335 ’ 

where R is in cm, B is the magnetic field strength 
The reconstruction of the track provides the angle A, 
mom’entum 

Pl 
cos x p = - .  

The momentum has an average resolution of 

in kG, and p l  is in GeV/c. 
allowing us to find the track 

2 ( y )  = (0.015)2 + (0.007 p ) 2  , (4.3) 

where the average is over track length and A. This resolution is caused by mea- 
surement errors and Coulomb scattering of the track. 
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4.2 The Theory of dE/dx Energy Loss 

The deposited energy per unit trail length (dE/dzt.) is a function only of the parti- 
cle’s speed. Measuring dE/dz and momentum simultaneously therefore allows us 
to deduce a particle’s mass, thus identifying the particle. This ability to identify 
particles is a crucial part of the study presented in Chapter 8. 

dE/da: is reflected in the amount of charge collected on the sense wires. Each 
wire makes a measurement of dE/dz, since each wire collects a sample of dE/dz 
ionization electrons from a 4 mm thick slice of gas, which corresponds to an average 
of 5 mm of track length. 

Electrons are ionized from gas molecules in two ways, depending on the amount 
of energy transferred to the gas molecule. For small energy transfers, the ioniza- 
tion cross-section is peaked at the electron binding energy, and since small energy 
transfers are most probable, this is the most important mechanism for energy 
transfer. For large energy transfers, the gas electrons are basically free and the 
process is described by Rutherford scattering. Rutherford scattering is relatively 
rare, but contributes a lot of ionization energy through these rare scatters (the 
so-called Landau tail in Figure 4.1), so the total ionization has large statistical 
fluctuations. To reduce these statistical fluctuations, the average of the smallest 
65% of the individual wire dE/dz measurements is used as the measure of dE/dz. 
This is called the truncated mean, or the “dE/dz” of a track. 

The dependence of dE/dz on Py is shown in Figure 4.2 [83]. For slow-moving 
particles, dE/dz c( l/p2, and dE/dz drops sharply with increasing p. This behav- 
ior is due to the fact that when the particle moves slowly, it spends more time near 
gas atoms and is more likely to ionize them, and this effect diminishes in strength 
as ,O increases. dE/dz reaches a minimum at around ,Or = 3, which is called the 
minimum ionizing region. ,L3r between 3 and about l o3  is called the relativistic 
rise region, where relativity enhances the particle’s transverse electric field and its 
ability to ionize the medium, causing dE/dz to rise slowly with ,By. In the Fermi 
plateau region, above @-y M lo3,  the curve flattens out as the medium polarizes in 
response to the transverse field, cutting off any further increase in ionizing power 
[84, 851. 

,&y is not directly measured, however, momentum is. p = P-ym implies lo&) = 
log(py) + log(rn), so when dE/dz is plotted as a function of log@) for different 
particle species, the curves for different species are simple translations, with re- 
spect to log(p), of the same curve that traces how dE/da: depends upon log(P7). 
The theoretical dependence of dE/dz upon ,By in the TPC has been calculated 
elsewhere, and fitted to data [25] .  The fit is excellent. 

The measured mean dE/da: also varies with time, dip angle, and TPC sec- 
tor. These variations are corrected for by calculating how the average dE/da: for 
minimum ionizing pions depends on these quantities [25 ,  861. 
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4.3 dE/dx Resolution Parameterization 

Each track has only a finite number of dE/da: samples, therefore experimentally 
measured values of dE/da: have a fmite resolution and form bands about the theo- 
retical curves. Figure 4.3 shows that these bands sometimes are not well separated, 
particularly at high momentum and near the points where the theoretical curves 
cross. In these regions, tracks can not be unambiguously associated with only one 
dE/da: curve and can not be assigned a unique particle identification. We can 
still statistically determine the number of tracks with each particle identification, 
because we know the behavior of the dE/da: resolution, which we now describe. 

The resolution has a Gaussian distribution out to at least 3 standard deviations 
[25]. For a sample of minimum ionizing pions from the High-Field data set with at 
least 120 wire hits, the resolution is 3.4%' [25]. The resolution varies with time, 
the number of wires with dE/da: samples ( N ) ,  and I sin XI. 

We now describe the method used previously to find the parameterization for 
how dE/da: depends on N and I sin XI [25]. To take into account time variation 
in the resolution, the time in which the TPC collected the High-Field data set 
was divided into 10 intervals2 in such a way that the samples of minimum ionizing 
pions within these intervals are approximately the same size. Each sample was 
analyzed separately. For each sample, the standard deviation g of the quantity 

measured Trmean(p,,,) 
expected Trmean (ptpc)  

R =  (4.4) 

was computed and histogrammed as a function of N (ptpc is the momentum in 
the TPC). It was found that the parameterization Jm, with A and B free 
parameters, fits this plot pretty well. On average, A is 0.105 and B is 3.6 x 4- is the dependence of ~7 on the number of measurements, while the B term 
could be an intrinsic resolution added in quadrature to d%. What was then 

done was to compute and histogram the standard deviation of ( R -  1)/4- 
as a function of 1 sin XI, in several histograms each with a different range of N .  It 
was found that each histogram was well fit by a line, but the y-intercept of the 
fitted line varied with N .  The end result was the parameterization 

a ( ~ ,  A >  = J A / N  + B (C + DN + E !  sin XI) . (4-5) 

C was found to be 1.17, D was found to be -7.2 x and E was found to be 
-0.28. 

'For the Vertex Chamber data set, which is not used in this analysis, the corresponding sample 
of pions has a dEldx resolution of 3.1% [25, 861, the improvement due to better monitoring of 
the TPC. 

2The Vertex Chamber data set was divided into 5 intervals. 

f 
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This previously used method of parameterization contains a subtle but im- 
portant oversight. The scatterplot of the High-Field data set pion tracks in the 
N-I sin A /  plane at large I sin XI (Figure 4.4) has a diagonal concentration of tracks3, 
therefore the distribution of tracks in N is not independent of the distribution of 
tracks in I sin XI. As a result, the standard deviation as a function of N only, with 
the dependence on I sin XI projected out, does not find how the resolution depends 
on N as desired. Instead, the standard deviation with its dependence on I sin XI 
projected out is influenced by the variation of the resolution along the concentra- 
tion of tracks at large I sin XI. The end result is that the best fit of a Gaussian to 
the distribution of ( R  - l)/a(N, A) for all pions with 40 or more wire hits has a 
width of 1.1053 k 0.0038, which is more than 27 standard deviations larger than 
the expected value of 1, so the particle ID x2 values are 10% too big, on average. 
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Figure 4.4: Scatter plot of N ,  the number of wire hits, as a function of [ sinXI for 
minimum ionizing pions. 

To fix this problem, the old parameterization of Equation 4.5 is fit in N and 

3This concentration is produced by the fact that for 1x1 greater than 4 2 O ,  tracks coming from 
the Interaction Point can not leave ionization electrons on all of the 183 sense wires, since the 
ionization of that portion of a track with /zI > 0.9 m is absorbed by the gating grid. As a result, 
these large-dip tracks can not deposit charge on all of the 183 wires, only a subset, but most 
tracks will deposit charge on most of the wires accessible to the ionization electrons. 



42 

I sin AI simultaneously. In this fit, N is restricted to be greater than or equal to  40, 
since the resolution of the data for N less than 40 is systematically lower than the 
fit. The N-I sinA( plane was divided into rectangular bins, and a(R) in each bin 
was obtained with a maximum likelihood fit of a Gaussian to the distribution of R 
in that bin. Then a ( N ,  A) was calculated at the “center of gravity” of the data in 
each bin and fit to the a(R)’s, using a x2 fit. The standard deviation of the o(R) in 
each bin is a(a(R))  = a(R)/&, where n is the number of tracks in the bin. This 
expression for a(a(R))  is biased, however, since a small value of a(R) makes the 
standard deviation of a(a(R))  small also. Instead, we use a(a(R))  = a(N ,  A)/&. 

When the fit of a(N,X) is done in this manner, B and D in Equation 4.5 are 
zero, within statistics, for both the High-Field data set and the unused Vertex 
Chamber data set. The fit is good. B and D were set to zero, and the fit redone 
with the resolution parameterized by 

C + El sin A (  
f i ’  

a(N,X) = 

which is much simpler than the original form. On average, C was found to be 
0.474 and E was found to be -0.146 for the High-Field data set4. 

The new parameterization we use does not suffer from the problems of the old 
parameterization: when ( R  - l ) / a ( N ,  A) is plotted for all pions with 40 or more 
wire hits, the best fit Gaussian has a width of 0.9989 i 0.0034 (Figure 4.5), which 
is statistically compatible with the expected value of 1. 

4For the Vertex Chamber data, on average, C was found to be 0.440 and E was found to be 
-0.100. 
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Chapter 5 

Event Reconstruction, Selection, 
and Simulation 

In this chapter, we describe the more basic tools we use to do this analysis on 
the collected data. First, we outline the processing of raw data into reconstructed 
events. Then, we describe the selection criteria for removing backgrounds to the 
signal process e+e- --$ qQ -+ hadrons. Finally, we describe the Monte Carlo package 
used to simulate the experimental data and the tuning of this package so that it 
properly simulates experimental data. 

5.1 Event Reconstruction 

The TPC electronics, described in Chapter 3, produce a large amount of raw data 
that must be reconstructed into the events that produced the raw data. The 
reconstruction of events is done by a set of programs 1871 that processes ADC 
counts into space points, associates space points and wire hits with charged particle 
tracks, calculates the dE/dz of tracks from wire hits, makes particle identification 
assignments, fits tracks to a common event vertex, and removes cosmic ray tracks 
from the data. The end product of the event reconstruction are Data Summary 
Tapes (DSTs) that list the fitted tracks and their characteristics. Raw data is 
excluded from the DSTs. 

5.2 Event Selection 

When electrons and positrons collide in the PEP ring, they interact in a variety 
of ways, including annihilation into p+p-, T+-T-, or qij pairs, Bhabha scattering 
(e+e- -+ e'e-), and 2-photon processes (e+e- -+ e+e-yy and yy -+ X, where X 
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= anything). This analysis is only concerned with the process ese- --+ qq, so we 
need to filter out, as much as is practical, events due to the other processes. 

The standard Good Hadronic Event Selection used in all TPC analyses of the 
process efe- --f qq is done by a program called LabelHadron-v2, which uses as 
its input the DSTs produced at the end of the data reconstruction. The selection 
criteria take advantage of the typical characteristics of hadronic events: large mul- 
tiplicities, large energies, and low boost of the final state’s center of mass. Only 
charged tracks are used in this selection, and they must have these characteristics: 

1. The dip angle 1x1 of the track must satisfy the constraint 1x1 < 60°, to 
ensure that the track enters the TPC fiducial volume. 

2. Either dC < 0.30 GeV-l or dC/C < 0.30, where C is the track’s measured 
curvature, and dC is the error on the measured curvature. This ensures 
that the track is well measured. 

3. The track momentum in the TPC volume must be > 100 MeV/c, and 
the track momentum extrapolated to  the interaction point must be > 120 
MeV/c. This ensures that the track has enough energy to have come from 
the event vertex. 

4. The track must come from within 6 cm of the nominal vertex in the x-y 
plane and from within 10 cm in z ,  where the nominal vertex is the average 
vertex position for a period of roughly a few hours. This rejects tracks 
coming from cosmic rays or from interactions of particles with atomic 
nuclei in the beampipe. 

Tracks that satisfy these criteria are called good tracks. 
To pass the Good Hadronic Event Selection, an event must satisfy these criteria: 

1. There must be five or more good tracks that are not electrons. The electron 
identification is done either by dE/da: or by an algorithm that identifies 
pairs of tracks as coming from photon conversions. This rejects showering 
Bhabha events and low multiplicity event?, including ~ 1 + 3  events’. 

2. The total energy of the good tracks, Echarged, must be > 7.25 GeV. This 
rejects 2-photon and beam-gas events. 

3. The reconstructed event vertex must be within 2 cm in the z-y plane and 
within 3.5 cm in z of the nominal vertex. This rejects beam-gas events. 

~ 

1“1+3” signifies that one r lepton decays into a final state with 1 charged particle and the 
other decays into a final state with 3 charged particles. 97.8% of i- events have 4 or fewer charged 
particles in the final state [SS]. 
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4. At least one hemisphere of the event, as defined by the plane perpendicular 
to the sphericity axis, must contain either 

(a) four or more good non-electron tracks or 

(b) good tracks with an invariant mass greater than 2 GeV/c2. 

This criterion rejects 714-3 events. 

5. To reject 2-photon, beam-gas, and energetic ISR events, all of which 
usually have a large momentum imbalance in the z direction, the sum 
of the z-component of the momentum for all tracks, Cpz ,  must satisfy 
I C pz I < 0 . 4 E c f i a r g e d -  

6. At least half of the tracks must be good tracks, to eliminate problematic 
events. 

Monte Carlo simulation of the process e4e- ---f qij (discussed in the next section) 
shows that this set of selection criteria rejects approximately 32% of the ese- + 

qij  events. For the High-Field data set, 25189 events satisfy these selection criteria. 

In this analysis, we use two additional selection criteria to ensure that the bulk 
of each event enters the fiducial volume of the TPC: 

1. The sphericity axis of the event must be more than 45” from the beam 
direction. 

2. The sphericity of the event must be less than 0.5, to ensure that the di- 
rection of the event axis is meaningful. 

19529 events satisfy these additional selection criteria, as well as the Good Hadronic 
Event Selection. 

Previous Monte Carlo studies have estimated that, of the events that pass the 
Good Hadronic Event Selection, (0.4&0.1)% are T events and (0.5fO.1)% are two- 
photon events [81]’. To remove these 7 and 2-photon events, we use the additional 
‘7-27’  selection on events containing fewer than 9 good hadrons: 

1. To remove r events, we discard events with an event thrust greater than 
0.97. 

2. To remove 2-photon events, we discard events with Echarged less than 9.5 
GeV. A study [89] shows that essentially all 27 events have charged energy 
less than 9.5 GeV. 
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The motivation for using these two additional selection criteria is discussed in 
Section 5.3.3.4. We estimate that these two criteria remove 94% of all T events 
and 11% of the hadronic events that pass the Good Hadronic Event Selection. We 
have no estimate of the fraction of the 2-photon events that pass the good hadronic 
selection and are cut by these two selection criteria. 17943 events pass all of the 
selection criteria discussed in this section. The effect of all of the selection criteria 
upon the measured bottom event fraction is discussed in Section 7.4.3. 

5.3 Event Simulation 

5.3.1 The Event Simulation Software Package 

In doing any analysis, it is important to simulate the physics processes that produce 
the observed events and the effects of the detector on the events collected. We use 
three programs for this simulation. Jetset 7.2 is used to generate simulated e'e- 
+ hadrons events, except that we use the spring 1992 version of the CLEO Monte 
Carlo (described below) to simulate the weak decays of charm hadrons and bottom 
mesons. 

Jetset 7.2 implements the Lund string fragmentation model, as described in 
Section 2.4.2, with parton showers. The Lund Symmetric Fragmentation Function 
(LSFF) does a fine job of reproducing the distributions of simple variables (such 
as sphericity, thrust major, charged multiplicity, and track momentum) for all 
hadronic events. However, the LSFF is unable to reproduce simultaneously the 
distributions of these variables, the average momentum of charm hadrons, and 
the average momentum of bottom hadrons [46]. This is unacceptable, since our 
analysis requires an accurate simulation of bottom, charm, and light quark events. 
Our solution is to use the LSFF only for light quark events, and to use the Peterson 
function, described in Section 2.4.4, for charm and bottom events. The Lund Monte 
Carlo uses a number of free parameters to determine how it hadronizes events, 
so these parameters must be tuned before Jetset is able to reproduce important 
characteristics of experimental data. The parameters that govern hadron flavor 
production, including production of bottom and charm hadrons, have already been 
tuned to data. Table 5.1 lists the valoes of those flavor parameters that are different 
from the default values [go]. The tuning of the parameters that govern event shape 
is discussed in Section 5.3.3. 

The portion of the CLEO Monte Carlo used to simulate the decays of charm 
and bottom hadrons is an up-to-date decay table, which is a list of exclusive and 
inclusive decay modes, along with their branching ratios and decay matrix ele- 
ments. This list instructs the CLEO Monte Carlo how to simulate charm and 
bottom hadron decays. The list contains all of the known exclusive decays, along 
with inclusive decay modes (e.g. b 4 cGd) that have been tuned so that the Monte 
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Tuned value 
0.089 
0.282 
0.74 
0.03 
0.9 

0.46 
0.46 
0.59 

Default value 
0.10 
0.30 
0.4 

0.05 
0.5 
0.5 
0.6 
0.75 

Table 5.1: Tuned values of the Lund flavor parameters in Jetset 7.2. 

Carlo reproduces experimentally measured properties of charm and bottom decays. 
The CLEO Monte Carlo has been used for a long time and is known to reproduce 
the properties of bottom meson decays. We have verified that the CLEO Monte 
Carlo reproduces experimentally measured multiplicities and momentum spectra 
for charged pions, kaons, and protons from bottom meson decays, while Jetset does 
not. 

TPCLUNDG, the standard fast TPC Monte Carlo, is used to simulate the TPC 
detector’s response to the events generated by Jetset 7.2 and the CLEO Monte 
Carlo. The output of these three programs are DSTs with the same format as 
experimental data. These output DSTs are subjected to  the same hadronic event 
selection as experimental data. TPCLUND has been used for many years and is 
known t o  accurately simulate TPC track measurements and the acceptance of the 
TPC’. 

5.3.2 Tuning the Peterson Parameterization 

As mentioned in Section 2.4.4, the Peterson function has one free parameter, E .  Let 
TE = E/Ebeam, where E is the energy of the charm or bottom hadron in question, 
and let ( z E ) ~  and ( z E ) ~  be the average ICE for primary bottom and primary charm 
hadrons, respectively. E for charm events, E , ,  must be adjusted so that the Monte 
Carlo generated ( x z . ~ ) ~  matches the experimentally observed ( S E ) ~ .  Likewise, E 

’The previous version of TPCLUND, version 5 ,  was mated to Jetset 5.3 and 6.3. The structure 
of the programming of Jetset, especially the common blocks, is substantially different from that of 
Jetset 7.2. Rather than restructure TPCLUND to follow this change, the mating of TPCLUND 
to Jetset 6.3 was retained and the features of Jetset 7.2 that differ from Jetset 6.3 were copied 
into our now custom version of Jetset 6.3. As a result, when we refer to specific locations in the 
Jetset common blocks, we use the Jetset 6.3 locations. 

.. . 
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Quantity 
(ZE) + 2 c ~  error 
(XE) central value 

for bottom events, Eb,  must be adjusted so that the Monte Carlo generated ( Z E ) b  

matches the experimentally observed ( 2 E ) b .  

Numerical values of ( z E ) ~  and ( z E ) ,  have been obtained from the plots in 
Reference [49] and are listed in Table 5.2. A 1-0 error of f0 .002  is assigned to 
these numbers from the uncertainty in the method used to read these values from 
the plots. We also assign an error of f0.03 [92] to these numbers to reflect the 
statistical and systematic uncertainties on ( Z E ) b  and ( z E ) ~  in Reference [49]. 

Charm Bottom 
0.586 0.775 
0.526 0.715 

1 ( X E )  - 20 error 1 0.466 I 0.655 I 
Table 5.2: ( Z E ) b  and (zE), from Reference [49]. 

Table 5.3: Eb and E, for Jetset 7.2. 

In Table 5.3 are listed the values of Eb and E, in Jetset 7.2 that reproduce these 
VdUeS Of ( Z E ) b  and ( I C E ) , .  

5.3.3 Tuning the Jetset Event Shape Parameters 

The Lund parameters to be tuned govern the shape and momentum structure of 
Monte Carlo-generated events. They are: 

3P(qq)/P(q) is the diquark to quark probability ratio in breaking the string. P(s) /P(u)  is 
the ratio of strange quark to up (or down) quark production. [P(su)/P(du)]/[P(s)/P(u)] is 
the probability of creating an su-diquark versus a du-diquark, relative to the ratio P(s) /P(u) .  
P(ud1) and P(ud0) are the probabilities for the creation of a spin-1 and a spin-0 diquark, 
respectively. P ( B M B ) / P ( B M B  + BB) is the 'popcorn' baryon production [91] probability, 
where the meson M is created between two baryons B in string fragmentation. P(vector)/P(aZE) 
is the fraction of mesons produced that are vector. 
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1. the a and b parameters in the Lund Symmetric Fragmentation Function 
(Section 2.4.2), 

2. AQcD, the QCD scale parameter described in Section 2.3, 

3. gg, the width of the Gaussian p ,  distribution (Section 2.4.2), and 

4. the parton shower virtuality cut-off QO described in Section 2.3.2. 

The vector to pseudoscalar ratio T also affects event shape, but it is fixed at the 
value determined by vector meson production measurements. 

The Peterson parameters tuned in the last section are weakly correlated with 
AQCD and Qo. This implies that the optimization of the 5 Eund parameters listed 
above throws off the optimization of the Peterson epsilons. In principle, therefore, 
it is necessary to tune the Lund parameters and the Peterson epsilons alternately 
until they all converge. It turns out that the tuning in this section changes ( z E ) ~  
and ( Z E ) ~  by much less than their errors, so the Peterson epsilons need not be 
retuned. 

The procedure used here for tuning the Lund model parameters in Jetset 7.2 
largely follows the procedure used to tune Jetset 5.2 [78], which produces distribu- 
tions of a set of variables in data aild in Monte Carlo and minimizes the differences 
between the two sets of distributions. We now describe the procedure used to tune 
Jetset 5.2. After that, we describe the procedure we used to tune Jetset 7.2. 

5.3.3.1 The Kinematic Variables Used for Tuning. 

We first describe the variables used to tune Jetset 5.2. These variables are listed 
in Table 5.4. Q1 and QZ are the smallest and next smallest eigenvalues of the 
sphericity tensor3. L1 and L2 are the thrust minor and thrust major, respectively4. 
( p l i , )  and   pi)^,, are the average momentum per event and the momentum per 

3The sphericity tensor is given by 

where pg is the a-component of the momentum for track i. 
'The thrust major and thrust minor are defined as follows. First, define 

where n' is a unit vector. The thrust L3 is the maximum of T ,  and the thrust axis is the vector 
n' = n'l that maximizes T. The thrust major axis n' = Z2 is the vector perpendicular to iil that 
maximizes T, and this maximum of T is the thrust major La. Finally, the thrust minor axis 8 3  

is perpendicular to 81 and 5 2 ,  and the corresponding value of T ,  L1, is the thrust minor. 
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XP 
Charged Multiplicity 

track in the event plane (as defined by the sphericity tensor) and perpendicular 
to the sphericity axis. (pout) and (pi)out are the average momentum per event 
and the momentum per track out of the event plane (as defined by the sphericity 
tensor). xp = p/pbeam, where p is the momentum of a track. is the difference 
between the squared masses of the the two jets in the event, as defined by the plane 
perpendicular to the sphericity axis. &is is the visible charged energy of the event. 

Q i  

L1 
( P l O U t )  

(pi)lout 

Set 1 Set 2 I Set 3 

Table 5.4: Variables used for tuning. 

The quantities in Set 1 are most sensitive to hard gluon radiation, so they are 
sensitive to A Q ~ D ,  which controls the rate of hard gluon radiation. The quantities 
in Set 2 reflect the hardness of the fragmentation, and thus are sensitive to the 
Lund a and b parameters. The tuned values of a and b are highly correlated, so b 
was fixed and a was tuned. The quantities in Set 3 measure the thickness of the 
event out of the event plane, and thus reflects oq. We use the same variables to 
tune Jetset 7.2. 

5.3.3.2 The Old Tuning Methods. 

The method for tuning Jetset 5.2 used two sets of histograms: one set was the 
distribution of the number of events or tracks as a function of these tuning variables 
for experimental data, and the other set the corresponding distributions for Monte 
Carlo. These two sets were compared to  each other using two different methods. 

In the first method, for coarse tuning, we calculate a x2 to compare the ex- 
perimental and Jetset/TPCLUND distributions. Let Dij be the number of exper- 
imental data entries in bin i of distribution j, and let Mij(p3 be the number of 
entries in bin i of distribution j from our Monte Carlo with parameter set 5. After 
normalizing the data and Monte Carlo histograms to the same number of entries, 

a(sys) is an estimated systematic error, set equal to a constant fraction, Fsys, 
of Mij. This fraction, which is 5% in the tuning of Jetset 5.2 and 2% in the tuning 
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of Jetset 7.2, is set so that the best tune’s X2/bin is approximately 1.0. Fsys is 
smaller for Jetset 7.2 because parton shower Monte Carlos such as Jetset 7.2 are 
better at reproducing experimental data than fixed order QCD Monte Carlos such 
as Jetset 5.2. 

We can calculate this x2 for a variety of Monte Carlo parameter settings. For 
instance, we can choose to vary only one parameter at a time in order to obtain a 
crude optimization of the Lund model parameter set. 

In this measurement, we tune in 5 parameters, and using this method to search 
for the minimum of x2 in this 5-dimensional parameter space, to several significant 
figures, would be time-consuming. Therefore, in order to obtain a fine tuning of the 
Lund model parameter set, along with an estimate of the associated systematic er- 
rors, a second method was used for comparing experiment to Monte Carlo. Instead 
of comparing experimental distributions to Jetset/TPCLUND distributions, this 
method unfolds the effect of detector acceptance on the experimental distributions 
and “fits” Jetset distributions (no TPCLUND) to these unfolded distributions, 
with bin entries Dij. 

The unfolding is accomplished by using a preliminary Lund parameter set, 
which we label $0, to generate a set of Jetset/TPCLUND distributions and a set 
of Jetset-only distributions. The ratio of the two distributions is used to unfold 
the experimental distributions. 

The “fitting” is done as follows. A second set of Jetset distributions is generated 
using the preliminary parameter set 9 0  (the so-called expansion point). In addition, 
one parameter at a time is varied to each side of that parameter’s preliminary 
value, and a set of distributions is generated at each of these points. Using these 
distributions, we can approximate the number of entries Mij in each bin in each 
distribution as a first order Taylor expansion in the parameter space p’: 

The spacing of the parameter sets around the expansion point must be fixed 
at values that are not too small. Otherwise, the difference in the contents of 
some bins becomes smaller than the error in this difference, creating large random 
variations in the coefficient of 9- $0 in the second term of Equation 5.4 that tend 
to exaggerate greatly the growth of Mij(p3 as 16- $01 increases. If this happens 
in many bins, then the minimum of x2 is forced to be artificially close to p’o, with 
unreasonably small errors on this minimum. 

We substitute Equation 5.4 into Equation 5.3 and solve for the parameter set 
that optimizes x2. Instead of summing over all 11 distributions, the old method 
summed over three distributions, one distribution chosen from each of the three sets 
of distributions in Table 5.4. Then x2 was computed 40 times, for the 40 = 5 x 2 x 4 

.. . 
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possible combinations of three distributions. The total x 2  per bin is a measure of 
the goodness of the fit, the average of the 40 parameter sets is the new parameter 
set selected by the fit, and the r~ of the 40 parameter sets is the systematic error 
of the parameter set. 

In general, this new parameter set is not equal to the expansion point’s param- 
eter set, so this fitting process must be iterated, substituting this new parameter 
set for the old parameter set. This process is repeated until the change in the 
parameter set from one iteration to the next is less than the systematic error on 
the parameter sets. 

5.3.3.3 Modifications to the Old Method. 

A difficulty with the old fine tuning method is that convergence in the average of 40 
parameter sets does not imply convergence in the individual parameter sets. The 
method used here combines all of the histograms in one of the 3 sets of histograms 
into a superhistogrum, for all 3 sets, and the sum in Equation 5.3 is done over the 3 
superhistograms. The tuning is then iterated until it is clear that the parameters 
are fixed, apart from statistical fluctuations whose size is estimated in the tuning. 
We consider the spread in the 40 parameter sets, as evaluated in the old method, 
a good estimate of the systematic error. 

The old method ignored g2(M;j) in Equation 5.3, thus making it possible to 
solve for the minimum in x 2  using a system of linear equations. The method used 
here does not ignore this contribution to the error. Taking this contribution into 
account sometimes causes the minimum of x2 to correspond to physically absurd 
parameter sets, due to statistical errors in Equation 5.4. This pathological behavior 
is cured by using the common trick of finding the minimum of x2  in a stepwise 
manner. In each step, x2  is minimized with a2(Mij)  fixed at the value calculated 
using the $determined in the previous step. For the first step, the expansion point 
$0 is used to calculate g 2 ( M ; j ) .  This process is repeated until @converges, typically 
after 4-6 steps. 

This method should give the same value of $ as the coarse tuning method 
discussed above if enough time were spent on the latter method. We do not 
attempt to do a fine tune using the coarse tuning method. 

5.3.3.4 Backgrounds. 

There is an additional pitfall in the tuning: backgrounds. The r and 27 back- 
grounds are estimated to be approximately 1% of the good hadronic event sample, 
so one might naively think that backgrounds can be ignored. They can not be 
ignored because they are concentrated in small regions of some of the tuning dis- 
tributions where there are not many hadronic events. r and 27 events have low 
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multiplicities, so those 7 and 2y events that pass the hadronic event selection clus- 
ter in the lowest bins in multiplicity. 7 events, because of the low 7 mass, are 
highly collimated and back-to-back, so they also cluster at large thrust, low thrust 
major, and low thrust minor. During the tuning procedure, before the 7-27 selec- 
tion was implemented to eliminate these backgrounds (described in Section 5.2), 
data clearly showed a statistically significant excess over Monte Carlo for multi- 
plicities of 5 and 6, and especially for the lowest bins in thrust minor where there 
are essentially no hadronic events. A less significant excess was seen at low thrust 
major. 

We did not try to simulate these backgrounds for two reasons. First, the sim- 
ulation of 27 events is difficult. Second, according to TPCLUND6, approximately 
half of the r events that passed the Good Hadronic Event Selection have nuclear 
interactions, and the TPCLUND nuclear interaction simulation is not considered 
very reliable. 

The alternative to simulating these backgrounds is to cut them. To avoid losing 
information for the fitting, we did not remove from the fit those bins where the 
backgrounds are important. Instead, we decided to eliminate the backgrounds 
by designing selection criteria in variables designed especially to remove these 
backgrounds. The resdt is the 7-27 selection of Section 5.2. 

TPCLUNDG estimates that the 7-27 selection removes 94% of all r events that 
pass the good hadronic selection, 37% of the passing hadronic events with 8 or less 
good hadrons, and 11% of all the passing hadronic events. 

The 7-27 selection removes or makes statistically insignificant the previously 
mentioned differences. Figure 5.1 shows the differences, in standard deviations, 
between tuned Monte Carlo and Experiment 14-18 data before and after the 7-27 
selection was implemented. The tuned parameters did not change a large amount 
after the 7-27 selection was implemented, which is not surprising, since few bins 
were affected. However, the X2/bin, with the systematic error floor Fsys = 2%, 
dropped from about 1.2 to about 11.0. 

5.3.3.5 Results of the Tuning. 

For the tuning of Jetset 7.2, b was fixed by tuning it so that Jetset reproduced 
the TPC D* momentum spectrum. The D* spectrum is now controlled by E , ,  so 
we can and do tune both a and b. In fact, we have simultaneously tuned AQCD, 
Qa, a, b, and cq with two different values of the systematic error floor Fsys: 2% 
and 0%. The results are in Table 5.5, 
and histograms of the number of events or tracks as a function of the the tuning 
variables for experimental data and for Monte Carlo with Fsys = 2% are in Figures 
5.2 through 5.4. The tune with Fsys = 2% is our best tune of the Monte Carlo. 
We use the tune with Fsys = 0% for estimating systematic errors. 

The optimizations were well-behaved. 

1 
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Figure 5.1: Absolute value of the discrepancy, in standard deviations, between Monte 
Carlo and Experiment 14-18 data without (solid) and with (crosses) the 7-27 selection 
for multiplicity N (a), thrust minor L1 (b), and thrust major Lz (c). 
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Fsys Parameter 
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Figure 5.2: Experimental data (points) and tuned Monte Carlo (solid) histograms of 
the number of events as a function of the aplanarity 1.5Q1 (a), 1.5Q2 (b), the thrust 
minor L1 (c), and the thrust major L2 (d). 
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Figure 5.3: Experimental data (points) and tuned Monte Carlo (solid) histograms of 
the number of events as a function of AM$t/I?:i, (a), Charged Multiplicity (b), ( p l i n )  
(4, and h m t >  (4- 

.. . 



58 

10 ‘ 
0.0 0.4 0.8 1.2 1.6 2.0 2.4 

10 
0.0 0.2 0.4 0.6 0.8 1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

P / Pbearn 

Figure 5.4: Experimental data (points) and tuned Monte Carlo (solid) histograms of 
the number of tracks as a function of (pi)i in (a), ( p i ) l m t  (b), and xp (c). 
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The big difference between the 2 sets of parameters is that Lund a and b are 
higher for the tuning with the 0% systematic error floor than for the tuning with 
the 2% systematic error floor. The reason this happens is that the track momentum 
spectrum for xp > .14 is best fit by small values of a and b, while xp < .14 is best 
fit by larger values of a and b. 

The momentum is binned in equal intervals in xp, thus most of the bins have 
xp > .14, but these bins contain only 19% of the tracks, as shown in Figure 5 .4~ .  
The higher statistics for bins with xp < .I4 favor these bins, while the greater 
number of bins for xp > .14 favors these bins. Tuning with a 2% systematic error 
floor dilutes the weighting of the high statistics for xp < .14, so the 2% tune fits 
xp > .14 better than xp < .14, resulting in small a and b. Tuning with a 0% 
systematic error floor does not dilute xp < .14, resulting in larger a and b. 
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Chapter 6 

Feed-Forward Neural Networks 

In this chapter, we describe the design, training, and use of feed-forward neural 
networks'. We also describe some relevant prior applications of feed-forward neural 
networks to high energy physics. In Chapter 7, we describe our use of a neural 
network to measure u(b6)/u(@), and in Chapter 8 we describe our use of a neural 
network in a study of bias in measurements of charged hadron production in bottom 
jets, where neural networks are used to tag the bottom-quark jets. 

6.1 Neural Network Architecture 

A feed-forward neural network is pictured as a layered array of nodes with a con- 
nection between each pair of nodes in adjacent layers, as shown in Figure 6.1. We 
shall use as a general example a network with three layers: an input layer (the 
bottom row of nodes in Figure 6.1), an output layer (the top row), and one hidden 
layer (the middle row). A network can have any number of hidden layers, including 
zero. It has been shown that there is nothing to be gained from having more than 
two hidden layers, and that one hidden layer is often sufficient [94, 951. 

Each node represents a number: zk for node k in the input layer, hj for node 
j in the hidden layer, and y; for node i in the output layer. For a general, type 
of analysis, where one wishes to classify an N-dimensional vector as belonging to 
one of L classes based upon differences in how the classes are distributed in the 
N-dimensional space of all vectors, one has N nodes in the input layer, each node 
representing one of the components of the vector. Each input N-tuple is called a 
pattern. 

'Reference [93] is a recent review of neural networks, accessible to readers without previous 
knowledge of neural networks, along with an extensive bibliography and a guide to the neural 
network literature. 
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Figure 6.1: A one hidden layer feed-forward neural network architecture (nom [ S S ] ) .  

The M output nodes are used to classify the input pattern. For a one output 
network, the value of the output is a simple yes (1) or no (0) if the classification of 
the input pattern is certain, and in between 0 and 1 if the classification is uncertain. 
For more than one output node, each output node's value can encode one bit of 
information in an M-bit binary word representing the network's classification of 
the input pattern, and the network can make 2M classifications. Alternatively, 
each node can represent one of M classifications: the output node representing 
the assigned classification is 1 and all of the other nodes are 0. In any case, 
each classification of the input pattern has a corresponding target output M-tuple 

We now describe how the values of the numbers represented by each node are 
set. The values of the numbers in the input nodes are set equal to the values of 
the corresponding components of the pattern being presented to the network. In 
the other layers, the number in each node in a particular layer is a function of 
the numbers in all of the nodes in the previous layer. For the output layer, this 
function is 

(Yl, " ' 7  YM) = (tl, " ' 7  t M ) .  

r - 

while for the hidden layer, the function is 

where T is the network temperature (an inverse gain), w i j  (wjk) is the weight (or 
strength) of the connection between nodes i (j) and j ( I C ) ,  Oi (ej) is the threshold for 

.. . 
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node i ( j ) ,  and g(a)  is a non-linear transfer function. Typically, transfer functions 
asymptotically approach a fixed value for argument a + 03 and another fixed value 
for a --+ - m, a common choice is g(a) = tanh(a). In this fashion, numbers are 
propagated forward through the network from the input layer to the output layer, 
hence the name of this type of network: feed-forward. 

In Equations 6.1 and 6.2, the argument of g is a linear function of the values 
of the nodes in the previous layer. When this argument, Oj + Ckujkzk,  is set 
equal to a constant, it defines a hyperplane in the space of vectors defined by 
Z = (zl, . . . , zk , . . .) . Therefore, a O-hidden-layer neural network maps regions of 
the input space bounded by hyperplanes to small regions of the space of outputs, 
and such networks are functionally identical to a linear discriminant. The non- 
linearity of g enables networks with at least one hidden layer to map regions of the 
input space with curved boundaries to small regions of the output space. Thus, 
neural networks are often more powerful than linear discriminants or other multi- 
dimensional classifiers [97]. 

6.2 The Training of a Neural Network 

A neural network does not automatically classify the input patterns. The param- 
eters (weights and thresholds) of the network must be set to values that enable 
the network to perform this task. The process in which these parameters are set 
is called training. 

The most common method for training uses the back-propagation algorithm 
[98], which is used in this analysis. Training a network requires a training set of L 
equal-sized samples of patterns, one sample from each classification. Equal-sized 
samples are used so that the network does not favor one class over the others. 

In the original off-line use of the back-propagation algorithm, the entire training 
set is presented to the 
an epoch. At the end 
to reduce the error 

where &'I and -&) are 
P -  

network repeatedly, each complete presentation being called 
of each epoch, the weights and thresholds are incremented 

the calculated and target output values in node i for pattern 

Suppose that there are n weights. The current value of these weights can 
be organized into an ordered n-tuple that is a point P in the real r-dimensional 
Euclidean space R" of all possible n-tuples. Then the rule for incrementing the 
weights is for the point P to move opposite the direction of the gradient of E in 

1 
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the space of weights: 

and 

where 17 is the learning rate. The partial derivatives are easily calculated using the 
chain rule: 

and 

Similar formulae exist for the thresholds. The initial values of the weights and 
thresholds must be randomly chosen; otherwise, the training may have difficulty 
breaking the symmetry of the initialization (e.g. all parameters zero). Typically, 
these initial values are randomly generated uniformly in an interval [ - -wo,  wo]. 

The weights and thresholds are repeatedly incremented in this way in a stepwise 
search for the minimum of E in the space of weights and thresholds, until E no 
longer decreases. There are ways of avoiding local minima [96]. In minimizing E ,  
the actual network output M-tuple (91, ..., y ~ )  for each class of patterns is forced 
to be as close as possible to that class's target output M-tuple, and the different 
classes of patterns are separated from each other as much as possible. This is how 
the network gains its ability to  distinguish the classes of inputs from each other. 

In practice, on-Zine training is used. Instead of updating the weights and thresh- 
olds at the end of each epoch, small groups of patterns composed of equal-sized 
sets of randomly selected events from each class of patterns are presented to the 
network, and the network parameters updated after each group has been input. In 
addition, the updating formulae are changed to 

and 

to damp out oscillations. The new second term in these equations is a momentum 
term proportional to the increment of w in the previous update; t is the update 
number and CY should be between 0 and 1. On-line back-propagation better avoids 
local minima and is often faster than off-line back-propagation. 

The decision about when to terminate training requires a test set, which is like 
the training set in that it also consists of L equal-sized samples of patterns, one 
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sample from each classification, but the patterns in the training and tests sets are 
different. What is important is not the network’s ability to classify the training 
set patterns, but rather the network’s ability to generalize what it learned from 
the training set to the task of classifying an independent test set’s patterns. 

It often happens that the error E evaluated for a test set will decrease to a 
minimum and then actually starts to increase. This happens because, at first, 
the network is learning the general characteristics that distinguish the patterns in 
each classification from each other, but past a certain point the network learns the 
statistically random peculiarities that distinguish the training set’s classifications 
from each other. This is called overtraining. Overtraining is handled by increasing 
the size of the training set, thereby reducing statistical fluctuations and increasing 
the network’s performance on the test set. Increasing the size of the training set 
also decreases the performance on the training set towards the performance on the 
test set, since the network can not learn the training set’s peculiarities as readily. 
If the size of the training set becomes too small, then the network memorizes 
‘individual patterns and the network’s ability to generalize plunges. 

On the other hand, if the ratio of the number of training set patterns to the 
number of network parameters is too big, the probability of getting stuck in a local 
minimum during training increases. A good compromise between these competing 
demands is for this ratio to be on the order of 100 [99]. 

The issue of the choice of the number of nodes in each hidden layer can now 
be handled in several ways. There exist a variety of algorithms designed to be 
used to eliminate unnecessary nodes. A class of such algorithms are pruning al- 
gorithms, [96] which simultaneously train the network and set to zero the weights 
connected to unneeded nodes. Our experience shows that the number of nodes the 
algorithm decides to prune is not directly enough related to the pruned network’s 
performance. Instead, we take a direct approach: we see how the performance 
of the network varies as a function of the number of hidden nodes. Typically, 
the performance is seen to rise rapidly with increasing number of hidden nodes 
when this number is small (see Section 7.2). The performance then asymptotically 
approaches a limiting value as the number of nodes becomes larger. Measures of 
network performance besides E are discussed in the next section. 

The traditional approach in High Energy Physics of doing analyses with a 
sequence of selections is equivalent to a structured decision tree, where decisions are 
made sequentially. In contrast, a neural network is a form of parallel computing. 
Each node in a network “votes” on the network’s decision. As a result, neural 
networks have two desirable properties that decision trees do not have 1991: 

1. Robustness: a few bad inputs can be tolerated in decision-making. 

2. Generalizability: networks respond to previously unseen patterns by gen- 
eralizing from what the network learned during the training process. 
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These properties, and the power and general applicability of neural networks, are 
the reason for the interest in neural networks in the field of High Energy Physics. 
On the other hand, the voting of the nodes means that individual nodes do not 
have specific functions. A network’s decision-making is spread among all of the 
nodes. 

6.3 Measuring Network Performance 

What we mean by a network’s performance is its ability to distinguish patterns 
from different classes. The usual measure of performance is the error E ,  but there 
exist other measures of performance. For example, with a one output network, 
it is common to calculate the efficiency and purity, as a function of a cut on the 
network output, for the signal patterns in the sample of patterns with outputs 
above the cut. We have chosen to use a compact measure of performance for a 
one output network that directly quantifies the statistical separation of the classes 

This method, for the case of two classes ( L  = 2 in the notation of Section 6.1), 
uses a set of signal patterns, a set of background patterns, and a data set composed 
of signal and background only. As an example, the signal is composed of bottom 
events, the background is composed of non-bottom events, and data is composed 
of a mixture of the two. We start out by producing neural network output distri- 
butions for these three sets of patterns. Then, a fit is done of a linear combination 
of the signal distribution and the background distribution to the data distribution, 
yielding the error on the fraction of the data that is fitted to be signal. Our mea- 
sure of network performance is the dependence of this error on the overlap of the 
two distributions, with the dependence of the error on the finite size of the signal 
and background samples removed. 

We work out what our measure of performance is mathematically. Binning the 
network output and labelling the bins i, let si, b;, and di be the fraction of the 
signal, background, and data (respectively) in bin i, let N be the number of data 
patterns, and let LY be the fraction of the data that is actually composed of signal. 
Then the x2 of the fit of a linear combination of signal and the background to the 
data is 

[loo, 1011. 

(as; + (1 - LY)bj - dJ2 x2 = N E  
i c2 (4) 

(as2 + (1 - a)bz - di)2 
= N E  

a di 
(6.10) 
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The value of Q that minimizes x2 is 

(6.11) 

with 

where we have defined 

I 

(si - bi)2 F = d ( l - & ) C  rl 

(6.12) 

(6.13) 

(6.14) 
i Ui 

In Monte Carlo studies, we make the substitutions d = a and di = &si + (1 - d)bi. 
F is our measure of network performance. If we could achieve perfect separation 

of signal and background (that is, each bin i has either si = 0 or bi = 0), then 
F = 1. If si = bi for all i, then F = 0. Otherwise, 0 < F < 1. 

The generalization to more than two classes of patterns ( L  > 2) is derived in 
Appendix B. 

An example of an application of F is in Reference [loll ,  which compares the 
performance of networks with different types of inputs. One approach is to use, as 
inputs, ‘raw’ quantities such as particle 4-momenta, 3-momenta, or energy deposits 
in a calorimeter [99, 101, 102, 1031. The motivation for using ‘raw’ quantities is to 
provide the network with as much information as possible and to have the network 
extract the useful information. 

Another approach is to use, as inputs, constructed shape variables that describe 
the event shape (e.g. thrust, sphericity, and thrust minor) that have different dis- 
tributions for b and non-b events. The preprocessing of the information into these 
shape variables ought to make it easier for the network to extract the informa- 
tion useful for distinguishing b and non-b events. There are a large number of 
possible shape variables that can be used as inputs, so we can pick a small set of 
variables such that the network output distributions for b and non-b events are as 
well separated as possible [99, 101, 104, 105, 106, 1071. 

The raw input approach keeps information that might otherwise be thrown 
away in the preprocessing approach. As a result, one might expect that networks 
with raw inputs perform better, but with the trade-off that raw input networks 
take much longer to train. For the examples studied in Reference [loll, these 
expectations are fulfilled. In this reference, the preprocessed 25-input network has 
F = 0.258 and the raw 23-input network has F = 0.312; both networks have one 
hidden layer containing 5 nodes. 
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6.4 Previous Uses of Neural Networks in High 
Energy Physics 

Neural networks are increasingly being used in high energy physics [108, 109, 1101. 
Previous applications of back-propagation neural networks to high energy physics 
can be roughly divided into two groups: data compression for fitting in a network 
output, and classification. 

6.4.1 Classification Using Neural Networks 

In an example of this application, calorimeter information is used for inputs to a 
neural network, which attempts to determine what kind of particle generated the 
calorimeter information [lll, 112, 1131. There is one output for all of these net- 
works. A cut is made on this output and all patterns that produce an output above 
this cut are classified as being produced by one kind of particle, while all other 
patterns are classified as being produced by another particle. Figure 6.2 shows the 
network output distributions for electrons and for hadrons for a network designed 
to distinguish these two classifications of particles [ 1111. These two distributions 
are well separated; for this sort of application the two output distributions must 
have little or no overlap. 

6.4.2 Fitting in a Neural Network Output 

Analyses in which the b6 width of the Zo is measured are the archetype of this 
approach. Here, a linear combination of the neural network output distributions for 
Monte Carlo b events and for Monte Carlo non-b events is fitted to the network 
output distribution for experimental data [114, 1151. Figure 6.3 shows the L3 
Collaboration's fit and the distributions for b events and for non-b events. Both 
Monte Carlo distributions fill the entire range of network outputs, from 0 to 1, 
which is what happens when the network inputs do not carry enough information 
to distinguish unambiguously the two types of events. It may even happen that 
the output distributions do not cover the entire range from 0 to 1. This is the 
method used in this analysis to measure the fraction of hadronic events that are 
bottom events. 

An inherent disadvantage of this type of analysis is the reliance upon Monte 
Carlo for training the networks. This reliance is necessary because there are no 
unbiased samples of b or non-b events available on which to train a network. 

It is also possible to do this kind of analysis with three or more classes of 
patterns. The DELPHI Collaboration [116] has measured the bottom, charm, and 
light (up, down, and strange) quark widths of the 2' using a 3-output network. 
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Figure 6.2: Neural network output distributions for electrons (a) and for hadrons (b) 
for the DO neural network designed to distinguish the two (From [ill]). 
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Figure 6.3: L3 fit of a linear combination of the neural network output distributions 
for Monte Carlo b and Monte Carlo non-b events to the network output distribution for 
experimental data (From [115]). 
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Dalitz-type scatterplots of the output distributions are shown in Figure 6.4, with 
the sum of the three outputs normalized to 1. As discussed in Section 6.1, only two 
independent outputs are needed for this analysis. It is possible to use a 1-output 
network and fit a linear combination of three distributions, but it would not be 
possible to train the network to recognize the three classes of events. Instead the 
network would be trained on sets of b and non-b events and it would respond 
differently to charm and light quark events. 
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Chapter 7 

A Measurement of the Bottom 
Event Production Fraction 

The ratio a(b6)/a(q$ has never been measured in the continuum. Normally, the 
value of a(b$)/u(qq) is deduced from the discontinuity in R = u(qq)/a(p+p-) at 
the b6 threshold. In this chapter, we present a first measurement of the ratio 
a(bz)/a(qij) in the continuum. This measurement is based on 66 pb-' of TPC/2r 
data collected between 1984 and 1986, and it uses a neural network with inputs 
that are computed from charged hadron 3-momenta to distinguish b and non-b 
events. 

In this chapter, we first describe the network's inputs and architecture, and how 
they were designed. Next, we show how the network was trained. We then describe 
and implement a method for fitting the bottom event fraction in the experimental 
data. We describe how the fitted bottom event fraction depends upon the Monte 
Carlo bottom event fraction, and we use a new method to extract a consistent 
bottom event fraction. Finally, we discuss our measurement of a(bE)/a(qij) and 
compare it to previous measurements of IT(Zo+ G). 

7.1 The Choice of Neural Network Inputs and 
Architecture 

For the event-tagging neural network we constructed to identify bottom events, 
we chose the preprocessed input approach discussed in Section 6.3, for the sake of 
simplicity. We compiled a list of candidate inputs and for each of them computed F 
(described in Section 6.3) ,  which quantifies how well the b and non-b distributions 
are separated. We selected 7 variables', uses a with relatively large values of F 

IN = 7 in the notation of Section 6.1 
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that are fairly independent of each other. The selected variables, computed using 
the tracks and events that pass the selections described in Section 5.2, are: 

I. N Ecm/Ewis, the scaled event charged multiplicity, where N is the number 
of charged tracks in the event and Euis is the event visible energy. 

2. Cpf;"tEcm/Eu;s, the scaled sum, over all tracks, of the component of the 
track momenta perpendicular to the event plane, the plane defined by 
the thrust axis and the thrust major axis (these axes are defined in Sec- 
tion 5.3.3.1). 

3. Cp;i" Ecm/E,,is, the scaled sum, over all tracks, of the component of the 
track momenta in the event plane and perpendicular to the event (thrust) 
axis. 

4. Cpll Ecm/Ewjs, the scaled sum, over all tracks, of the component of the 
track momenta parallel to the event axis. 

(1) (2) 5. M( l )  Ad2) E,2,/[4Ewis Ewis],  the product of the scaled invariant masses of 
both hemispheres, where the hemispheres are divided by the plane per- 
pendicular to thrust axis, M(;)  is the invariant mass of hemisphere i, and 
E$? is the visible energy of hemisphere i. 

6. 

7. The boosted sphericity product S1 x S2, where Si is the sphericity of hemi- 
sphere i calculated in the frame of reference boosted by p = .47 along the 
event axis, in the direction of hemisphere i. p = .47 was chosen because 
it maximizes F for this variable. 

x pil",', where p:;? is pll for the leading track in hemisphere i. 

The distributions of these variables for b and non-b Monte Carlo events that pass 
the analysis selections are shown in Figures 7.1 and 7.2, and the values of F for 
the 7 inputs are listed in Table 7.1. Note that these variables take advantage of 
the differences between bottom and non-bottom events discussed in Section 2.5. 

To help distinguish bottom events from 3-jet non-bottom events, we use as 
inputs p;i" Ecm/Ew;s and CpY' Ecm/Ev;s, since the latter is considerably smaller 
than the former for 3-jet events, which have a distinctly flat shape, whereas bottom 
events are more isotropic in the plane perpendicular to the event axis. 

The boosted sphericity product, SI x Sz, also distinguishs bottom events from 
3-jet non-bottom events. Bottom events have large SI x S,, since the tracks in 
each of the two hemispheres are largely produced by the roughly isotropic decay 
of a bottom hadron with a boost in the neighborhood of p = .47, giving S1 and 
S2 large values. In contrast, 3-jet non-bottom events often have one hemisphere 
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Input: 1 
F :  0.080 

2 3 4 5 6 7 
0.100 0.155 0.120 0.130 0.058 0.129 

with large S, since that hemisphere contains 2 jets, while the other hemisphere has 
small S, since it contains one non-bottom jet. 

The inputs we use are these 7 variables after they have been linearly scaled so 
that the range of values for each input is 0 to I. If we do not scale the inputs, the 
neural network inputs can have significantly different ranges of values, and this can 
reduce the network’s performance. This reduction happens because the network 
parameters are normally initialized, before training has started, so that they are 
randomly distributed in a fixed interval, and if the ranges of the inputs are very 
different, training will favor some of the inputs [103]. 

To distinguish two classes of events from each other, the event-tagging network 
has one output. The target output value is 1 for bottom events and 0 for non- 
bottom events. The network has one hidden layer with 4 nodes. How the number 
of nodes in the hidden layer was picked is discussed in Section 7.2. 

7.2 Training the Event-Tagging Neural Network 

As first discussed in Section 6.2, a network’s weights and thresholds (parameters) 
must be determined through training in order to make the network output distin- 
guish bottom and non-bottom events, and to do so most effectively. 

We use Jetnet 2.0 [96] as the software implementation for our neural network. 
The following Jetnet 2.0 default settings were chosen: the learning rate 77 was set to 
0.01, the momentum term coefficient a was set to 0.5, the temperature T was 1.0, 
the transfer function g(a)  was chosen to be 1/[1+exp(-2a)], and the initial values 
of the weights and thresholds were randomly chosen in the interval [-0.1,0.1]. 

There are two additional choices for the network that were optimized: the 
number of nodes in the hidden layer, and the ratio of the number of patterns 
to the number of network parameters. To determine the number of hidden layer 
nodes, we trained a number of networks, each with a different number of hidden 
nodes (Figure 7.3); the training process is described below. The chosen number is 
4, which maximizes F .  We also trained a number of networks, each with a different 
ratio of the total number of training patterns to the number of network parameters 
(Figure 7.4) and found the best ratio to be 200. These two choices are independent 
of each other. 
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Figure 7.1: The distributions of b events (solid) and non-b events (dotted) for the 
inputs to the event-tagging neural network: scaled N (a), scaled Cpyt (b), scaled CpT 
(c), scaled Cpll (d). The area under each curve is 1. 
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The network was trained on patterns (sets of inputs) calculated from Monte 
Carlo events. Training was done using 7400 training patterns, half bottom and 
half non-bottom, following the Jetnet 2.0 default: the network was presented with 
a randomly selected set of 10 patterns, 5 from b events and 5 from non-b events, 
and the network parameters were updated after each of these sets of 10 patterns 
were presented. An epoch was defined to be the presentation of a set of training 
patterns equal in size to the entire set of training patterns. After each epoch, an 
independent set of 20000 test patterns made up of 50% b patterns and 50% non-b 
patterns was presented to the network to evaluate F.  We show in Figure 7.5 how 
F for the training and test sets varied as a function of the epoch number during 
the training of the network used for the analysis presented in this chapter. During 
training, a running average of F for the current epoch and the previous nine epochs 
was calculated. Training was terminated at epoch number 4737, when this running 
average reached a maximum. 
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Figure 7.3: F as a function of the number of hidden nodes for the Event-Tagging Neural 
Network. The arrow marks the chosen number of hidden nodes (4). 
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Figure, 7.5: F as a function of epoch number for the Event-Tagging Neural Network. 
Inset: F for the test set for the first 20 epochs. 
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7.3 The Method for Fitting the Bottom Event 
Fraction 

We use the trained network to create a histogram of the number of events as a 
function of the network output for Experiment 14-18 events that pass the analysis 
selections (Figure 7.6). We also use the trained network to create two histograms 
of the number of events as a function of the network output for an independent set 
of Monte Carlo events that pass the analysis selections, one histogram for bottom 
events and one for non-bottom events (Figure 7.7). 
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Figure 7.6: The event-tagging neural network output distributions for Experiment 
14118 data. The errors are statistical only. 

We then fit a linear combination of the two Monte Carlo histograms to the 
histogram of experimental data. The fact that the contents of all the bins in all 
three histograms are subject to Poisson statistical fluctuations complicates the 
fit. We use a fit method, described below, that takes into account the Poisson 

T 
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Figure 7.7: The event-tagging neural network output distributions for Monte Carlo b 
and non-b events. The area under each curve is 1. 
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statistical fluctuations in the two Monte Carlo histograms and in the experimental 
data histogram. 

7.3.1 The Extended Maximum Likelihood Method 

The fit method we use is an application of the Extended Maximum Likelihood 
Method, which we now review. Suppose we measure some properties 2 of N 
independent events to be Z k ,  labeling the events by the index k = 1,2 ,  ... N .  If the 
normalized probability density distribution of an event having a result Z is P(2, Z), 
where a' are a set of unknown parameters to be determined, then the likelihood of 
measuring $k is 

N 

The 
It is 

k = l  

most likely values of the unknown parameters a' are those that maximize L. 
equivalent to maximize the log likelihood 

N 

since the logarithm is a monotonic function. 
Now suppose we let the observed number of events N itself be a random vari- 

able. We have assumed that the events are independent of each other, so N is 
Poisson distributed, with expectation value 4. Then the extended likelihood for 
measuring N events with their measured properties is 

The N! is commonly dropped, since it is fixed and can not influence the maximum 
of L E .  

7.3.2 The Event Fraction Likelihood Function 

In our application of the Extended Maximum Likelihood Method [117], we let nj 

be the number of entries in bin j of the data distribution being fit to, and let 
the expectation value of nj be X j .  Also, let the number of entries in bin j of 
Monte Carlo distribution i be mij, with expectation value fii .  In fitting a linear 
combination of the Monte Carlo distributions to a data distribution, we make the 
identification 

.. . 
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for a l l  bins j ,  where the non-negative numbers ai quantify how much process i 
contributes to the data. 

We can find the precise meaning of ai. Letting Fij be the fraction of entries in 
bin j that were produced by process i, and dividing Equation 7.4 through by X j ,  
we get 

implying that 

1 3.. - - 
zJ - X j  ' '3 

The extended likelihood for the fit of a linear combination of the Monte Carlo 
distributions to a data distribution is the product of the Poisson probabilities to 
find the observed number of entries in each bin in all the histograms: 

Dropping the constants nj! and mij!, the log likelihood is 

This can be rewritten as 

with 

We call this likelihood the event fraction likelihood function. 
Notice that the log likelihood is the sum over j of a function of f i j  and X j -  

This means the bins are independent of each other, as long as the ai are held fixed. 
Therefore, the maximization of eE can be greatly simplified. Instead of having 
to  maximize l~ with respect to all parameters ai, f;j, and X j  all at once, we can 
maximize with respect to only the ai using MINUIT [118], and at each step in the 
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values of the ai we can exploit the independence of each bin from all other bins and 
break into the sum over j of ( l , ) j  and optimize each bin’s ( l E ) j  with respect 
to the f i j  and X j  in that same bin. 

Define u i j  to be 

(7.11) 

At the maximum of ( l , ) j ,  for a single value of j ,  either u i j  = 0, or f i j  must be 
at the edge of the physical region defined by f i j  2 0. If f i j  = 0,  then u i j  < 0 is 
required. The optimization of ( l ~ ) j  must be broken into a number of cases. We 
derive the optimization of ( l , ) j  here for only the most common case. For the other 
cases, we only show the values of the f i j  and X j  that optimize (e,),, and give the 
proof that these values optimize ( l ~ ) j  in Appendix A. 

mij + 0 for all i: In this case, if f i j  = 0 for any i, then Equation 7.10 implies 
( l , ) j  = -GO. This is clearly not a maximum, so f i j  # 0 and u i j  = 0 for all 
i. Setting u i j  = 0 in Equation 7.11 and solving for f i j ,  

mi j f . .  = =3 l - a i ( ’ - ~ )  ’ (7.12) 

Note that in order for rnij and f ; j  to be both positive, Equation 7.12 
requires that 

(7.13) 
1 - -  I% I < - .  

4 ai 

Multiplying Equation 7.12 through by ai and summing over i, we get 

(7.14) 

which is one equation with the one unknown X j .  Once X j  is solved for, we 
can use it and Equation 7.12 to solve for f i j .  An efficient way of solving 
for X j  is described elsewhere [117]. 

Some but not all m i j  = 0: In this case, a trial solution is formed. Assume that 
f i j  = 0 for those values of i for which m i j  = 0, use Equation 7.14 to 
produce an equation for X j ,  solve for X j  using the method described in 
Reference [117], and use Equation 7.12 to solve for the other f i j .  Let a M t  

be the largest of the ai’s. If 

(7.15) 1 - -  nj I < -  
X j  UM’ 
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is true, then the trial solution is the actual solution. Otherwise, the solu- 
tion is obtained by letting 

using Equation 7.12 to solve for fii for i # M',  and setting 

rnij = 0 for all i: The solution is all f ; j  are zero, except for i = M' where 

and 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

7.4 The Bottom Event Praction 

7.4.1 The Fit of the Bottom Event Fraction 

We apply this method to the histograms in Figures 7.7 and 7.6. The fit shows 
that the fraction of events that pass the event selections that are b events is 
10.99 f 0.70%. The error is statistical only. The fit is excellent, the x2 of the fit is 
37.0 with 47 degrees of freedom. Figure 7.8 shows the fitted linear combination of 
the two Monte Carlo histograms superimposed on the experimental data histogram, 
along with the fitted b and non-b components. Figure 7.9 shows the bottom event 
efficiency and purity for the sample of events above a cut on the neural network 
output. The efficiencies and purities are calculated using the fitted Monte Carlo b 
and non-b components of the experimental data shown in Figure 7.8. 

7.4.2 Correcting for Backgrounds 

The fitted b event fraction must be corrected for the presence of background events 
in the experimental data set being fitted to. 

Our Monte Carlo estimates that 0.021010, or 3.8, of the events that pass the 
event selections are 7 events. We assign a conservative systematic error of 100%. 

We do not simulate 27  events, but we can estimate what fraction of the events 
that pass our event selections are 2y events from the information used in Sec- 
tion 5.3.3.4. Before the 7-27 selection was used, the excess of events in data over 
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Figure 7.8: The fitted event-tagging neural network output distributions for Monte 
Carlo b and non-b events, their sum, and the output dis'tribution for Experiment 14-18 
events. 
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Monte Carlo for charged multiplicities 5 and 6 was 142 f 30 of the 25191 events in 
Figure 5.la; after the 7-27 selection was introduced this excess of 7 and 27  events 
becomes -1 f 15 out of the 17943 events used in the analysis. Of course, we can 
not have a negative number of events, so we say that this excess contains 0 f 15 
events. 

According to Monte Carlo, this excess for charged multiplicities 5 and 6 contains 
81% of the T events that pass the 7-27 event selection, the remainder having larger 
multiplicity. 2 7  events also have small charged multiplicities, but we have not 
simulated 27 events, so we can not be more specific. In light of our knowledge and 
our ignorance, we assume that four r and 2 7  events pass the 7-27 selection, and 
we assume that the uncertainty on this number is 30, double the size of the error 
of the excess in Figure 5.la. 4 f 30 events is 0.02 f 0.17% of the events used in 
the fit of the bottom event fraction. 

A previous study [25] gave a 68% confidence level upper limit of 0.01% on 
the fraction of Bhabha events in the events that pass the Good Hadronic Event 
selection. Another previous study [89] set 90% confidence level upper limits on the 
contribution, to the sample of events that pass the Good Hadronic Event selection, 
of 0.02% on e+e- 3 yy(y) events, 0.05% on e+e- t e+e- e+e-events, and 0.1% 
on beam gas events. The contribution of e+e- --+ ese- T+T- events was estimated 
to be 0.02 f 0.01%. Considering the efficiency with which our additional 7-27 
selection remove 7 and 27 events that pass the Good Hadronic Event selection, it 
is safe to assume that none of these backgrounds are present in the events used in 
this analysis. 

The T and 27 events that pass the event selections are all at small values of 
the neural network output, so the fit will lump them with non-bottom events. 
Therefore, of all the events that we fit, 10.99 f 0.70% are bottom, 0.02 f 0.17% 
are background, and 100% - (10.99 f 0.70%) - (0.02 f 0.17%) = 88.99 f 0.72% are 
non-bottom qij events. We conclude that (10.99 f 0.70%)/(100 - 0.02 f 0.17) = 
11.01 * 0.72% of the qtj events are bottom events. 

7.4.3 Acceptance and Physics Corrections 

We now correct the fitted b event fraction for the acceptance of the TPC and 
the event selections. We also correct for all of the physics effects discussed in 
Section 2.7, and we report the ratio u(bb)/a(pq) in QED with zero-mass quarks 
(which we call massless QED). 

Let N I t  and N F  be the number of bottom and non-bottom events that we 
find in the fit. Also, let NZED and NLQED be the corresponding number of bottom 
and non-bottom events in massless QED. Define C, = NZED/Nct  and Ct = 
N2ED/NLfil. We fit the bottom event fraction f f i t  = N p / ( N c t  + NL”), then the 
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corresponding fraction in massless QED that we measure is 

We estimate, from Monte Carlo, that CL/Cg = 1.166 Ifr 0.008. Equation 7.20 then 
implies that f::: = 9.58 f 0.62%. 

It is important to note that this value of fzgf is obtained using a Monte Carlo 
that assumes that the bottom quark event production fraction, before physics 
corrections, is 1/11 = 9.09%. Therefore, we shall use the notation fzzf(9.09) = 
9.58 f 0.62%. We shall deal with this dependence of f::: upon the Monte Carlo 
bottom quark event production fraction in Section 7.6. 

7.5 The Evaluation of Systematic Errors 

In our measurement, we have relied upon a Monte Carlo simulation of the TPC 
detector and of the process e+e- + qij ---t hadrons. To take into account this 
reliance, we assign a systematic error to the b event fraction that we measure. 
This error, which we evaluate in this section, quantifies the possible variation in 
the measured b event fraction due to reasonable modifications of the Monte Carlo. 

There are two types of sources of systematic error. Uncertainties in the simu- 
lation of e+e- -+ qij + hadrons that produce systematic errors are: 

1. The uncertainties in the values of eb and E , ,  as listed in Table 5.3. 

2. The simulation of the decays of charm and bottom hadrons, as described 
in Section 5.3.1. 

3. The tuning of the Lund event shape parameters a,  b,  AQGD, uq, and Qo, 
described in Section 5.3.3. 

4. The uncertainty in the mass of the bottom quark. 

-. . 
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5 .  The tuning of the Lund flavor parameters listed in Table 5.1. 

Uncertainties in the detector simulation that produce systematic errors are: 

1. The uncertainty in the number of radiation lengths in front of the TPC 
(f15%). 

2. The uncertainty in the simulation of nuclear interactions of particles in the 
detector material in front of the TPC. 

3. The uncertainty in the tracking pattern recognition efficiency (The effi- 
ciency is 97% f 2%). 

In order to find a particular systematic error, we make a variation in the Monte 
Carlo that reflects the estimated uncertainty in the Monte Carlo. Using this new 
Monte Carlo set-up, we then repeat the entire process of extracting the bottom 
event fraction from the experimental data, as discussed prior to this section: 

1. When necessary, we retune the Jetset event shape parameters as described 
in Section 5.3.3. We dicuss below how we decide that retuning is necessary. 

2. We train a neural network, as described in Section 7.2, on patterns calcu- 
lated from Monte Carlo events that were generated using the new Monte 
Carlo set-up. 

3. We use this new neural network to produce three new histograms of the 
number of events as a function of the neural network output, one for Ex- 
periment 14-18 events, one for an independent set of Monte Carlo bottom 
events, and one for an independent set of non-bottom events. 

4. We fit a linear combination of the two new Monte Carlo histograms to the 
new Experiment 14-18 histogram, using the method of Section 7.3.1. 

5. We correct the new fitted fraction of bottom events for backgrounds (Sec- 
tion 7.4.2), and for detector acceptance and physics (Section 7.4.3), ob- 
taining the bottom fraction in QED with massless fermions (f?::). 

The systematic error is the absolute value of the difference between this new value 
of fz:? and 9.58%, the value of fzzt(9.09) mentioned at the end of the last 
section. Note that since we repeat the entire process of measuring the bottom 
event fraction, finding a new acceptance in the process, we do not estimate a 
separate systematic error on the acceptance of the event selections. 

In evaluating systematic errors, there are one or two steps omitted in extracting 
the bottom event fraction from the experimental data. One step we always omit 
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is the optimization of the number of hidden nodes and the number of training 
patterns per network parameter, since the change in network performance is small. 
We also omit the tuning of the Lund event shape parameters, but if the resulting 
systematic error is large, this means that the variation made in the Monte Carlo 
has significantly spoiled the original tuning of the shape parameters, so we redo 
the tuning and re-evaluate the systematic error. A retune of the Monte Carlo 
was done to obtain the systematic errors on q,, E , ,  and the flavor parameter tune. 
The estimate of a systematic error is larger with a retune of the event shape 
parameters than the estimate without a retune. Therefore skipping the retune 
leads to a overestimate of the systematic error. The overestimate of the total 
systematic error is at most 35%. All of the tunes of the shape parameters we use 
in this analysis are listed in Table 7.2. 

When the variation in the Monte Carlo is in one parameter, that parameter 
is varied by 2 standard deviations, in order to be conservative. Each variation in 
the Monte Carlo is in one direction, not both, and we assume that the systematic 
errors are symmetric. The systematic errors we discuss in this section are listed in 
Table 7.3. We now go on to discuss the individual systematic errors. 

, 

7.5.1 Systematic Errors in the Simulation of e+e- -+ qa 

The b and c hadron decay simulation was discussed in Section 5.3.1. We estimate 
the systematic error due to the dependence on this simulation by changing the 
bottom hadron semileptonic decay branching ratio by 2g, from 20.2% to 22.2%. 
We estimate the systematic error this way because this is the single change in 
the bottom decay tables that has the largest effect on the multiplicity of bottom 
hadron decays. The systematic error due to the uncertainty in the b and c hadron 
decay simulation is 0.06%. 

The tuning of the Lund flavor parameters was also discussed in Section 5.3.1. 
The systematic error due to this source is obtained by redoing the analysis with 
the default Lund flavor parameters, listed in Table 5.1, substituted for the tuned 
flavor parameters. The systematic error due to the uncertainty in the Lund flavor 
parameter tune is 0.45%. 

The systematic error due to the’tuning of the Lund event shape parameters is 
estimated by doing the analysis with 3 other tunes, and adding the changes in the 
measured b event fraction in quadrature. Two of these tunes are simply different 
tunes with a 2% error floor, the first being a tune done using the coarse tuning 
method of Section 5.3.3.2 with Qo fixed at 1.0, and the second a tune using the 
fine tuning method with Qo fixed at 1.0. The third tune is the tune in Table 5.5 
with a 0% error floor. The event shape parameters for these three tunes are listed 
in Table 7.2. The systematic error due to the uncertainty in the event shape 
parameter tune is 0.30%. 



92 

The 2~7 uncertainties in the values of E b  and E ,  are listed in Table 5.3. To 
evaluate the systematic error due to E b ,  we change E b  by 20, from 0.039 to 0.15, 
giving a systematic error of 0.46%) the largest systematic error in this analysis. To 
evaluate the systematic error due to E , ,  we change E ,  by 2a) from 0.072 to 0.26, 
giving a systematic error of 0.09%. 

To evaluate the systematic error due to the uncertainty in the b quark mass, we 
change this mass in the Monte Carlo from 5.0 GeV/c2 to 5.5 GeV/c2. This change 
does not effect the masses of the bottom hadrons in the Monte Carlo, which we 
hold constant since they are fixed by experiment, but this change of mb does effect 
the hadronization of bottom events. The systematic error due to the uncertainty 
in the bottom quark mass is 0.43%. 

Monte Carlo Change 

No Change 
Coarse tune 

Fine tune, QO = 1 
fb = 0.15 
E ,  = 0.26 

Lund flavor parameters 
f$:D = 0.0330 
f$:D = 0.0724 f$zD = 0.0909, No Change f$zD = 0.1088 
f$5D = 0.1424 

AQCD 
0.364 
0.400 
0.382 
0.364 
0.354 
0.339 
0.411 
0.377 
0.364 
0.331 
0.296 

Parameter 
Qo 

1.360 
1.000 
1.000 
1.360 
1.116 
1.257 
1.466 
1.355 
1.360 
1.201 
1.088 

a 
0.053 
0.400 
0.071 
0.053 
0.073 
0.052 
0.100 
0.031 
0.053 
0.042 
0.000 

b 
0.497 
1.100 
0.642 
0.497 
0.698 
0.496 
0.526 
0.450 
0.497 
0.484 
0.483 

flq 

0.320 
0.330 
0.320 
0.320 
0.318 
0.330 
0.322 
0.321 
0.320 
0.319 
0.318 

x2 / bin 

0.94 
1.40 
1.16 
0.99 
1.04 
1.04 
1.02 
1.01 
0.94 
1.02 
1.07 

Table 7.2: Tune of the Lund event shape parameters in Jetset 7.2. 

7.5.2 Systematic Errors due to the Detector Simulation 

The detector systematic errors are calculated the same way the physics simulation 
systematics were: vary the Monte Carlo and see how much the measured bottom 
event fraction changes. 

We estimate that the uncertainty in the nuclear interaction cross-sections is 
30%. The systematic error due to this uncertainty is obtained by turning off the 
nuclear interaction simulation in the Monte Carlo, measuring the resulting bottom 
event fraction, and multiplying the change in the measured bottom event fraction 
by 0.3. The nuclear interaction systematic error is 0.32%. 
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b and c hadron decay simulation 
Pattern recognition efficiency 

Nuclear interactions 

Error source I Systematic error 

0.06% 
0.35% 
0.32% 

cb 

Lund flavor parameter tune 
Bottom quark mass 

Lund event shape parameter tune 
EC 

Number of radiation lengths 
All systematics, added in quadrature 

0.46% 
0.45% 
0.43% 
0.30% 
0.09% 

0.15% 
0.97% 

Table 7.3: The systematic errors in the Monte Carlo. 
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The uncertainty in the number of radiation lengths in front of the TPC is taken 
to be 15%. The resulting systematic error is broken into two contributions: that 
part due to the change in the dE/dz energy loss, and the part due to photon 
conversions. Each contribution is determined in the same way the nuclear interac- 
tion error was determined: turn off the interaction and multiply the change in the 
measured bottom fraction by 15%. The 100% correlation between the two contri- 
butions is taken into account when they are combined. When photon conversions 
were turned off, the measured bottom event fraction grew by a factor of 1.76. The 
enormous size of this change is due to an oversight in the analysis: we do not cut 
tracks that a pairfinder identifies as coming from a conversion pair. We remedy 
this by redoing the analysis with this pairfinder selection included, with the photon 
conversions turned on and off, and multiplying the change in the measured bottom 
fraction by 15%. The resulting difference in the measured fraction, which we use 
in this analysis, is much smaller: 0.15%. 

The pattern recogition efficiency is 97 f 2%. The corresponding systematic 
error is found by turning off the pattern recognition simulation in Monte Carlo so 
that all tracks are accepted and the efficiency becomes loo%, then multiplying the 
change in the measured bottom event fraction by 2/(100 - 97). This systematic 
error is 0.35%. 

7.6 The Monte Carlo Bottom Event Fraction 

This analysis is complicated by the fact that our Monte Carlo simulation of eie- -+ 

QB --t hadrons assumes a particular value of the bottom event fraction in massless 
QED (QED with zero-mass quarks), which we call fszD. Therefore, the measured 
bottom event fraction is a function of fz:D, and we make this explicit by using 

the Standard Model value of fz :D = 1/11 z 0.0909; this is the reason we used 
the notation fZ::(9.09) in that section. 

to know what value of fzzD to use so we can report a definite value of f::: as 
the bottom event fraction. The bottom event fraction is a physical quantity and 
can not have one value in the experimental data and another in the Monte Carlo, 
leading us to conclude that the physical bottom event fraction is the point where 

quantity is accessible only in the limit of infinite statistics, so we use f::: as the 
estimator of its expectation value. 

the notation f,,,, QED ( f M c  Q E D  ). For the measurement presented in Section 7.4, we used 

Unless f,,,, QED (fMc QED ) is independent of f M c  QED (in this analysis, it is not), we need 

the expectation value of f,Qg: is equal to f M c  Q E D  . The expectation value of any 

To 'find where is equal to fMc QED , the measurement of f::! must be 
repeated a number of times, each time using a different value of f M c  QED , as discussed 
in Sections 7.2 through 7.4.3: tuning the Monte Carlo, training the neural network, 
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f2:D 
0.0330 
0.0724 
0.0909 
0.1088 
0.1424 

producing histograms of the number of events as a function of the network output 
for experimental data and for b and non-b Monte Carlo, fitting the Monte Carlo 
histograms to the experimental data histogram, and correcting for backgrounds 
and acceptance. The network need not be re-optimized. A curve is then fit to the 
variation off::: as a function of f$zD, and the point on this curve that intersects 
the diagonal in the f,,,, QED- fMc QED plane, where f,,,, QED = f z E D ,  is the value of the 
bottom event fraction we report in this measurement. We refer to the reported 
value of the bottom event fraction as f Q E D .  

We repeat the measurement of f::: four times, each time using a different 
value of f $ z D .  The resulting five ordered pairs (fzzD, f:,",4(f$zD)) are listed in 
Table 7.4, and plotted in Figure 7.10. 

QED 

0.0688 f 0.0061 
0.0842 f 0.0063 
0.0958 f 0.0060 
0.1040 f 0.0062 
0.1276 f 0.0064 

f m e a s  

Table 7.4: fzg: for five different values of f M c  QED 

In Figure 7.10, we also plot the best fit of a parabola to these five points and 
the 1-a statistical error contours of this fit. The parameters of the parabola are 
listed in Table 7.5. The fit of the parabola takes into account the high correlation 
of the errors on the five points being fit to. This correlation is the result of each 
point being a fit to the same set of experimental data, and it is why the scatter 
in the points about the best-fit parabola is so small compared to size of the error 
bars. The correlation is estimated from Monte Carlo by generating 18 sets of 
events that have the same number of events as the experimental data, fitting the 
b-fraction in each set of events for each of the five values of fMc , and computing 
the'correlation between each pair of values of f:::. The resulting correlation 
matrix is in Table 7.6. 

The x2 of the fit is 3.6 for 2 degrees of freedom, and has a confidence level of 
IS%, so a parabola is a good representation of how f::: varies as a function of 
fs:D, at least in this range of fgD. The fit of a line to the five points has a x2 
of 63 for 3 degrees of freedom, clearly a poor fit. 

The best-fit parabola intersects the diagonal twice. One solution is for f QED = 
10.2%, in the interval explored in this measurement. The other solution is at 

QED 
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Figure 7.10: Measured b-event fraction, f$g$) (points with errors) as a function of the 
Monte Carlo b-event fraction, fz :D.  The best fit parabola and the diagonal (f::: = 

QED fMC ) are solid. The statistical error l-a contours are the dashed curves, the systematic 
error l-a contours are the dotted curves, and the total error l-a contours are the dot-dash 
curves. 

I parameter I value 1 
0.0584 f 0.0074 

0.255 f 0.033 
1.69 f 0.22 

0.063 -0.93 

Table 7.5: The values of the parameters (left), and their correlation matrix (right), for 
the best-fit parabola f$E$? = a0 + ulf2Zt + u~(f$E$?)~. 
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0.0330 
0.0724 
0.0909 
0.1088 
0.1424 

I I 0.0330 0.0724 0.0909 0.1088 0.1424 I 
1 0.987 0.994 0.976 0.971 

0.987 1 0.984 0.978 0.981 
0.994 0.984 1 0.983 0.978 
0.976 0.978 0.983 1 0.981 
0.971 0.981 0.978 0.981 1 

f Q E D  = 34.0%, well above the range of fszR explored in this measurement. How- 
ever, Table 7.2 shows that the tuning of the shape parameters for fz:D in the 
neighborhood of 0.1424 and above pins the Lund a parameter at a = 0 (we do not 
allow a to be negative). Therefore, we expect that how f:$: varies as a function 
of f$:D changes near f QED - 0.1424, and we assume that the appropriate best-fit 
curve for all values of f:. intersects the diagonal only once, at f Q E D  = 10.2%. 

The 1-0 statistical error interval on f Q E D  = 10.2% is the portion of the diagonal 
fnaeas QED = fzzD that falls between the 1-a statistical error contours of the best- 
fit parabola; we obtain f Q E R  = 10.2?q:!%. Note that this error supersedes the 
statistical error of &0.62% on each value of fzzf reported in Section 7.4.3. The 
absolute value of (fzg: - fMc QED )/ustat( fzg:) is plotted as a function of f$:D in 

Figure 7.11. 
We need to translate the systematic and total errors on f::: into errors on 

f Q E D ,  in the same way we have just done for the statistical error. First, we must 
know how the total systematic error varies as a function of f::f; the systematic 
error of &0.97% we found in Section 7.5 was on f:Ef(9.09). We have re-evaluated, 
for fs$D = 14.24%, the systematic errors due to the uncertainties in ??zb and the 
pattern recognition efficiency. Both of these systematics are independent of f:;:, 
so we can safely assume that the total systematic error is also independent of fz::. The portion of the diagonal between the 1-u systematic error contours 
gives us the systematic error on f Q E D ,  giving us f Q E D  = 10.2?;::?;::%; the first 
error is statistical and the second systematic. The absolute value of (f,:: - 
f M c  QED )/asyst( f:::) is also plotted as a function of f $ z D  in Figure 7.11. 

The portion of the diagonal between the 1-a total error contours gives us the 
total error on f Q E D :  f Q E D  = 10.2$:::%. Note that the positive total error is not 
the statistical and systematic positive errors added in quadrature (3.4%). This is 
the result of the fact that f:,"! is not a linear function of f$ED. The absolute value 

As a check on the method, we have generated five 160k event Monte Carlo data 

of (f::: - f M c  QED )/atot( f:::) is also plotted as a function of f z g D  in Figure 7.11. 



98 

I 
v) 

(Y 

E 

E 
u-c 

0.050 0.075 0.100 0.125 0.150 0.175 0.200 

f QEDMC 

Figure 7.11: The absolute value of the difference between the measured and Monte 
Carlo b-event fiactions, in standard deviations, as a function of the Monte Carlo b-event 
fraction. The dashed curve is computed using the statistical error only, the dotted curve 
using the systematic error only, and the dot-dash curve using the total error. 
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sets, each set with one of the values of f $ z D  used in this section. We find f::: 
in each of these sets, for each set using the neural network and the Monte Carlo 
bottom and non-bottom event-tagging network output distributions created using 
the same value of f $ z D .  We expect f$Ef = fgzD, within statistics, for each of 
the five points, and this is what we find. 

7.7 Discussion of the Results 

This measurement of f QED = 10.2?q::?::;% = 10.2?::!% is statistically compatible 
with the Standard Model prediction that f Q E D  = 1/11 = 9.1%. The systematic 
error on this measurement is somewhat larger than the statistical error. 

Three large systematic errors in Table 7.3 are overestimates, since the event 
shape parameters were not retuned. These systematic errors are due to the un- 
certainties in the bottom quark mass (0.43%)) the pattern recognition efficiency 
(0.35%), and the nuclear interaction simulation (0.32%). The size of these three 
systematics could be significantly reduced by evaluating these systematic errors 
doing the retune, but even if all three errors turned out to be zero, the net system- 
atic error would shrink only 25%, and the total error on f Q E D  would shrink only 
16%. 

7.7.1 How o(fQED) Depends Upon o(f,&g:) 

Each point on the best-fit parabola has a statistical uncertainty of k0.75% on 
f$::. Yet the average of the positive and negative statistical errors on f Q E D  
we report is &1.9%. This magnification of the statistical error, as well as the 
magnification of the systematic and total errors, is produced by the non-zero slope 

We use Figure 7.12 for a geometrical derivation of this magnification factor for 

Let the vertical distance between the 1-a contours be 2W, where W is the error on 
the ordinate of each point of the tangent. W is independent of m. The hypotenuse 
of the triangle in Figure 7.12 has a length equal to that portion of the diagonal 
in Figure 7.10 between the 1-a contours. The projection of the hypotenuse onto 
the horizontal axis, 2E, is twice the error on f Q E D .  2E is also the length of 
each leg of the triangle in Figure 7.12. Let 2E = 2W + L,  then it is true that 
L/(2E) = tan0 = m, and 2W = 2E-L = 2E(l-m).  Therefore, E = W/( l -m) ,  
whch is the relation that we seek. 

This relation is singular for m = 1, but the expression is not valid for m near 1, 
since this situation implies that the best-fit parabola is approximately tangent to 
the diagonal, and that the 1-0 contour is entirely above the diagonal. Since the 1-CT 

of the parabola at the point where f::: = fMc QED . 

any type of error. We approximate the parabola with its tangent at f:;: = f M c  QED . 
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contour dips significantly below the diagonal in this analysis, we do not consider 
the case where rn is near 1. In this analysis, m = 0.60 f 0.02. For the statistical 
error, we predict E to be 0.75%/(1 - 0.60) = 1.9%) which is the average of the 
positive and negative statistical errors on this measurement. For the systematic 
error, we predict E to be 0.97%/(1 - 0.60) = 2.4%) which is the average of the 
positive and negative systematic errors on this measurement. For the total error, 
we predict E to be 1.23%/(1 - 0.60) = 3.1%) which is a little less than 3.2%) 
the average of the positive and negative total errors on this measurement; the 
difference is the result of the large size of the error coupled with the non-linearity 
of the dependence of f::: upon fMc QED . 

Figure 7.12: Geometrical picture of how the error is magnified. 

If the variation of fg:: as a function of fzzD is not taken into account, as has 
been done here, the error on fQED can be significantly underestimated. Also, the 
value of f::: reported can be biased if rn is large enough, and if it is significantly 
different, statistically speaking, horn the value of f M c  QED . 

7.7.2 

There are three published measurements, using a neural network in a manner 
similar to the method used here, of the fraction of hadronic events that are bottom 
events. All of these are measurements of I'(Zo--. b6) at LEP [114, 115, 1161. All 
three fit linear combinations of histograms of the number of events as a function 
of the neural network output(s) for Monte Carlo events of different flavors to a 
histogram of the number of events as a function of the neural network output(s) for 
experimental data events, as described in Section 6.4.2 and References [114, 1151. 

In Table 7.7, we list the results of our measurement and of the three LEP 

Comparison to LEP Measurements of r(Zo+ b6) 
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measurements. The errors for our measurement is significantly larger than that on 
the LEP measurements. 

Each of the LEP experiments has of the order of 100 times as much data as the 
TPC/2y experiment. Therefore, in the absence of other factors, we would expect 
the statistical error on our measurement to be 10 times the average of the statistical 
errors for the three LEP measurements. Table 7.7 shows that the difference is a 
factor of 4. The change from 10 to 4 is caused by the greater differences between 
the properties of bottom and non-bottom events at 29 GeV compared to 92 GeV, 

measurement. 
and by the magnification of the errors by the variation off::: with f M c  Q E D  in this 

I Experiment I Bottom event fraction I - I 

+ 2 . 0 + 2 . 7 ~  TPC/2y I 10-2-1.8-2.2 0 

22.2 z.t 0.3 f 0.7 % 
22.8 f 0.5 z.t 0.5 % 
23.2 iz 0.5 f 1.7 % 

ALEPH 
DELPHI 

Table 7.7: All measurements of the bottom event fraction using a neural network. The 
first error is statistical, the second systematic. Our measurement of the bottom event 
fraction in the continuum (first row) is expected to be very different from the bottom 
event fraction at the Zo (other three rows); the purpose of this table is to compare the 
errors on these measured fractions, not the fractions themselves. 

The central feature of this measurement is the care with which the depen- 
dence of f2:, upon f $ z D  was takenqnto account. There is no mention in Refer- 
ence [115] (Section 6.4.2) that the L3 measurement took into account the variation 
of r(Z0+ bb),,,, as a function of r(Z0+ b&)MC. The value of r(Z0-+ bb),,,, 
found by the ALEPH measurement [114] is reported to be insensitive to large 
changes in r(Z0-+ b b ) ~ ~ ,  which is surprising because of the sharp contrast with 
what we found in this measurement. It would be very interesting to know just how 
r(Zo-+ bb),,,, depends upon I'(Zo-+ ~ & ) M C ,  and to understand why the depen- 
dence of the measured bottom event fraction upon the Monte Carlo bottom event 
fraction is so different in the two measurements. 

The DELPHI measurement [116] (Section 6.4.2) used a method of taking into 
account the variation of r(Z0-+ bb),,,, as a function of r(Zo-+ b 6 ) ~ ~  that is very 
different from the method used in this measurement. The DELPHI best tune was 
found by varying the Monte Carlo parameters to  minimize the x2 of the difference 
between the distributions of data and Monte Carlo in rapidity and aplanarity. 
In the evaluation of systematic errors, the range of each Monte Carlo parameter 
was found by finding the extreme values of that parameter that make the x2 
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equal to XL tune + 16, allowing the values of r(2O-t b6)MC and r(ZO-1 C Z ) ~ ~  
to float to minimize the x2 for a fixed value of the parameter in question. This 
approach magnifies the systematic error, rather than the total error, in order to 
take into account the variation of l ? ( Z o j  b6),,,, as a function of I'(Zo+ b 6 ) ~ ~ .  
This approach has an understandable logic to it, and perhaps it produces results 
similar to the approach used in this analysis. We believe that this approach has 
two disadvantages compared to the approach used here: 

1. The DELPHI method does not show how F(Zo--, @meas varies as a func- 
tion of r(zo+ b 6 ) M c .  

2. The correlations between Monte Carlo parameters were not taken into ac- 
count in the DELPHI measurement, and this can lead to an underestimate 
of the range of the Monte Carlo parameters, which in turn will cause the 
systematic errors to be underestimated. 
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Chapter 8 

A Study of Bias in Techniques to 
Measure Charged Hadron 
Production in Bottom Quark 
Jets 

Up until now, neural networks have only been used in High Energy Physics, either 
for measurements where something is being counted, such as the number of bottom 
quark events in a sample, or for lower level classification problems. Both uses are 
described in Section 6.4. 

It is highly desireable to use a neural network to do tagging measurements, 
especially measurements involving bottom hadrons. Measurements at LEP where 
identifying bottom jets with a neural network might be useful include measure- 
ments of the bottom hadron lifetime and b-mixing measurements, the latter using 
a network that can identify the bottom quark charge. At higher-energy colliders, 
tagging bottom jets is useful for identifying particles that decay predominantly 
into one or more bottom quarks, such as the top quark or lower-mass higgses. 

In this chapter, we describe a study of bias in techniques to measure the T*, 
K*, and p/p (charged hadron) momentum spectra for bottom jets, using a neural 
network to identify the bottom jets. We begin this chapter with a description of 
our neural network for tagging bottom jets. We then show that bias is present 
in any measurement of charged hadron production in bottom jets, where a neural 
network tags the bottom quark jets. Finally, we describe an investigation of the 
sources of this bias. 
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8.1 Introduction 

In any measurement technique, it is important to avoid bias as much as is practical. 
In some measurements, avoiding bias is impossible and a bias correction is made, 
but efforts are still made to design the measurement so that the bias is as small 
as practical. Avoiding bias is particularly important in measurements that use a 
neural network to tag bottom jets, since we depend heavily upon Monte Carlo to 
train our neural network. Avoiding bias is a factor in many of the choices made in 
constructing the study presented here. 

One of these choices was to divide each event into two halves. The tracks in 
one half of the event are used for computing inputs to the neural network we use 
for distinguishing bottom and non-bottom events, and the tracks in the other half 
of the event are used to measure charged hadron production. This approach avoids 
using the same track to compute both the neural network inputs and the charged 
hadron production. To avoid bias, we also chose to use the plane perpendicular to 
the event thrust axis to divide the event in half, since the thrust axis tends to not 
have tracks close to the plane perpendicular to it [119]. We often refer to each half 
of an event as a jet, since we only use 2-jet events in this study (see Section 8.2), 
and since the tracks in each half of the event mostly come from one QCD jet. 

8.2 Track and Event Selections 

The track selection used in this study is the good track selection described in 
Section 5.2. 

The event selection used are the selections described in Section 5.2, plus these 
additional criteria: 

1. Events must be 2-jet (selected by LUCLUS with djoin = 2.5), thus elim- 
inating obvious 3-jet events, where the gluon jet might correlate the two 
halves of the event and cause information to flow between the two halves 
of the event. 

2. Events must have at least 7 charged tracks, since LUCLUS automatically 
classifies events with 6 or less tracks as 2-jet. 

3. Events with a jet axis with dip 1x1 > 45" are cut to eliminate events with 
a significant number of tracks that do not enter the TPC fiducial volume. 
The axis of each jet is the sum of the momenta of the tracks in the jet. 

4. Events where the angle between the axes of the two jets is less than 140" 
are cut to eliminate events with an energetic third jet that is not seen. 
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15091 events satisfy all of these selection criteria. 
For the tracks in the tagged jet, which are used to obtain the charged hadron 

momentum spectra, we must apply selection criteria that are more restrictive than 
the good track selection described in Section 5.2: 

1. Tracks must have a dip [ A I  < 60") since the track acceptance declines with 
increasing dip starting near 60". 

2. Tracks must have a distance of closest approach to the interaction point 
less than 3 cm in the x-y plane, and less than 5 cm in z, so that the track 
is consistent with coming from the event vertex. This criterion eliminates 
tracks that come from nuclear interactions or cosmic rays. 

3. Either dC < 0.15 GeV-l or dC/C < 0.15, where C is the curvature, and 
dC is the curvature error. This ensures that the track momentum is well 
measured. 

4. There must be at least 40 wires associated with each track, since the 
behavior of the dE/dz resolution is not well understood for tracks with 
less than 40 wires. 

5. Positively charged tracks with xp = p/pb,-  < 0.25 are not used, in order 
to exclude nuclear interaction products. The remainder of the positive 
tracks and all negative tracks are used in this study. 

8.3 The Jet-Tagging Neural Network 

Since the jet-tagging neural network's inputs contain information from only one 
half of each event, this network will not distinguish b from non-b as well as the 
event-tagging neural network described in Section 7.1. In an attempt to have good 
network performance, the inputs for this study's network are designed using the 
raw input approach described in Section 6.3. 

The 15 inputs for each jet are defined as follows. A coordinate sytem is con- 
structed as defined below, and the tracks in each jet are ordered in rapidity y 
(= f log [ z] , we assume the charged pion mass): track number 1 is the track 
with the largest y, track number 2 is the track with the second largest y, etc. 
Inputs 1-3 are p , ,  p , ,  and p ,  (respectively) for track 1, inputs 4-6 are p, ,  p , ,  and 
p ,  (respectively) for track 2, and so on for the 4 leading tracks in the jet, giving 12 
inputs. Inputs 13-15 are lp,l, Ip,\, and C lp,l (respectively), where the sum 
is over all but the 4 leading tracks. 

We define the coordinate system two ways. The simplest way, the uniteruted 
method, is illustrated in Figure 8.1. The z axis in each jet is defined to  be parallel 
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to the thrust axis and points away from the plane that divides the event in half. 
The x axis is defined to be perpendicular to the event plane, which contains the 
thrust axis and the thrust major axis. The sign ambiguity in the choice of the 
perpendicular direction is handled by randomly choosing the sign. The y axis 
is set equal to i x 2. The x axes for the two jets are defined to point in the 
same direction, requiring that the y axes be in opposite directions. The coordinate 
systems in the two jets are fixed relative to each other, so we expect that this 
definition of the coordinate systems carries information between the. two halves of 
the event. We use this definition of the coordinate system only in our study of the 
bias of techniques to measure charged hadron production in bottom quark jets. 

The other way we define the coordinate system, the iterated method, is de- 
signed so that the coordinate systems for the two halves of the event are relatively 
independent of each other. However, any method dividing the event in half must 
use information from the entire event, so it is impossible for the coordinate sys- 
tems in the two jets to be completely independent of each other. This method is 
illustrated in Figure 8.2. We use the LUCLUS cluster-finder to divide each jet into 
two subjets. is equal to the sum of the momenta of the tracks in the subjet with 
the largest momentum, and & is equal to the sum of the momenta of the tracks 
in the other subjet. The z axis is defined to be parallel to the vector sum of the 
momenta of all the tracks in the jet. The z axis is 2 = (21 x i2)/lil x 2 2 1 .  The 
y axis is defined to be $ = i x 2. In the iterated definition of the axes, the plane 
that divides the event in half generally does not contain the x and y axes, and the 
event plane generally does not contain AI and Z2. 

We use the iterated definition in our study of the bias, and we would use 
it in a measurement of charged hadron production in bottom events. Figures 
8.3 through 8.6 show the distributions of Monte Carlo bottom and non-bottom 
jets for the 15 inputs computed using the iterated definition of the axes. The 
distributions of the pz  and p y  inputs are asymmetric in these figures as a result of 
our way of defining the x and y axes. Note that many, but not all, of the inputs 
have different distributions for non-bottom and bottom jets. The discussion in 
Section 2.5 provides an explanation for the gross features of the input distributions. 
The p ,  for the four leading tracks is smaller for bottom jets than for non-bottom 
jets, in agreement with the observation that hadrons in bottom jets have less 
momentum than hadrons in non-bottom jets. p ,  and p ,  for the four leading tracks 
are equal for bottom and non-bottom jets, in agreement with the observation that 
p l  is the same, for individual tracks, for non-bottom and bottom jets. However, 
inputs 13 and 14 are larger for bottom jets than for non-bottom jets, since bottom 
jets have a larger average multiplicity, and more tracks in the sum over all but 
four tracks, than non-bottom jets. Input 15 is larger for bottom jets than for non- 
bottom jets presumably because of the larger charged multiplicity for bottom jets 
versus non-bottom jets. 
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Figure 8.1: The uniterated coordinate system. 
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Figure 8.2: The iterated coordinate system. il is the sum of the momenta of the 
tracks in the subjet with the largest momentum, and & is the sum of the momenta of 
the tracks in the other subjet. 
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Figures 8.4 and 8.5 show that pz and p y  for the four leading tracks have essen- 
tially identical distributions for bottom and non-bottom jets. These inputs do carry 
a substantial amount of information, for when these 8 inputs are eliminated and a 
network using the other 7 inputs is trained the same way the 15-input network is 
trained (described below), the network F (described in Section 6.3) declines from 
0.157 to 0.109. The p ,  and p ,  inputs carry information that allows the reconstruc- 
tion of the invariant masses of all subsets of the four leading tracks. In addition, 
a comparison of the relative spread of momenta in p ,  versus p ,  distinguishes jets 
in planar 3-jet events from rounder bottom events, and both from more pencil-like 
jets in 2-jet non-bottom events. This illustrates the ability of neural networks to 
distinguish the distributions of bottom and non-bottom jets from each other in the 
15-dimension space of inputs, even though the projections of these distributions 
onto one of the inputs are sometimes identical. 

A neural network with one node for each of the fifteen inputs, one hidden 
layer, and one output node was trained on Monte Carlo events that pass the 
event selections, in the same manner that the event-tagging network was trained 
(Section 7.2). Jets with four or fewer tracks do not have network inputs calculated, 
since some of the inputs would not be defined, but neither are they discarded. 
These low-multiplicity jets are placed in their own bin in the histograms of network 
outputs at y = 1.05 (and F is calculated taking into account this extra bin). 
Strictly speaking, these low-multiplicity jets do not possess a network output, and 
it is not possible for the network output to be 1.05, but we refer to these low- 
multiplicity jets as having a network output of 1.05. 

The network was trained with a variety of number of hidden nodes, so that we 
could pick the number of hidden nodes at the lower end of the range in which the 
performance F levels off (Figure 8.7). The chosen number is 15, though 12 would 
have worked just as well. The number of patterns per network parameter was set to 
200, as was done for the event-tagging network (Section 7.2). Figure 8.8 shows how 
F for the training and test sets varied as a function of the epoch number during 
the training. Figure 8.9 shows the network output distribution for Experiments 
14-18, along with the extra bin at 1.05. Figure 8.10 shows the network output 
distributions for Monte Carlo bottom and non-bottom jets, along with the extra 
bin at J.05. 

We have done a fit of a linear combination of the network output distribu- 
tions for Monte Carlo bottom and non-bottom jets to the output distribution for 
Experiment 14-18 jets, in the same way that the fit of the bottom event fraction 
was done in Section 7.4.1. The fitted fraction of bottom jets is 0.0747 f 0.0079. 
Figure 8.11 shows the fitted linear combination of the two Monte Carlo histograms 
of Figure 8.10 superimposed on the experimental data histogram, along with the 
fitted b and non-b components. Figure 8.12 shows the bottom jet efficiency for 
the sample of jets above a cut on the neural network output. Also shown are the 
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Figure 8.3: Jet-Tagging Neural Network inputs 3 (a), 6 (b), 9 (c), and 12 (d), which 
are the p ,  for tracks 1, 2, 3, and 4, respectively. Solid is bottom, dotted is non-bottom. 
The area under each curve is 1. 



110 

0.00 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

,J, ;i__ 
'. - 

0.07 

0.06 

0.07 i 1 

- a 

px track #3, GeV/c 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

b 

px track #2, GeV/c 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 .... 

-0.8 -0.4 0.0 0.4 0.8 

px track #4, GeV/c 

Figure 8.4: Jet-Tagging Neural Network inputs 1 (a), 4 (b), 7 (c), and 10 (d), which 
are the p z  for tracks 1, 2, 3, and 4, respectively. Solid is bottom, dotted is non-bottom. 
The  area under each curve is 1. 
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Figure 8.5: Jet-Tagging Neural Network inputs 2 (a), 5 (b), 8 (c), and 11 (d), which 
are the p ,  for tracks 1, 2, 3, and 4, respectively. Solid is bottom, dotted is non-bottom. 
The area under each curve is 1. 
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purities of the samples above and below the cut. The efficiencies and purities are 
calculated using the fitted Monte Carlo b and non-b components of the experi- 
mental data shown in Figure 8.11. The bin at 1.05 is ignored in the computation 
of the efficiency and purity: it can be considered a separate sample of jets. 

We apply corrections, to the fitted fraction of 0.0747 f 0.0079, for backgrounds 
(see Section 7.4.2), for acceptance, and for all of the physics effects discussed in 
Section 2.7. We find the fraction of bottom jets in qij events in QED with zero- 
mass quarks to be 0.0732 f 0.0078, which is 2.30 below the expected fraction of 
1/11. We do not find the point where f::: = fMc , as was done in Section 7.6, 
and we do not compute systematic errors. 
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Figure 8.7: F as a function of the number of hidden nodes for the Jet-Tagging Neural 
Network. The arrow marks the chosen number of hidden nodes (15). 

8.4 Techniques for Measuring Charged Hadron 
Production in Bottom Quark Jets 

A conceptually simple approach was used to find the charged hadron momentum 
spectra for most of the previous analyses described in Section 2.6. The first step 
in this approach was to use a quark flavor tags to form two samples of tagged 
jets, each sample having a high purity of one type of quark. The remainder of 
the entire hadronic data set was used as a third set of jets. Then the charged 
hadron momentum spectra was found in each of these three samples, and each 
spectrum corrected for bias and acceptance. Finally, the Monte Carlo-estimated 
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Figure 8.8: F as a function of epoch number for the Jet-Tagging Neural Network. 
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quark content of these three samples was used to extract, from the momentum 
spectra of these samples, the charged hadron momentum spectra for bottom jets, 
for charm jets, and for light-quark jets. 

This approach is ideal for the tagging methods described in Section 2.6 because 
each of these tags produce one sample of tagged jets, each sample highly enriched 
in one quark type. In contrast, a neural network output offers no obvious samples, 
and Figure 8.12 shows that the sample of jets above any cut on the network output 
does not have a high bottom jet purity. 

We attempted to develop a likelihood function to extract the hadron momentum 
spectra. There are two motivations for taking this approach. The first motivation 
is that using two cuts on the neural network output to divide the tagged jets 
into three samples throws away information present in the distribution of network 
outputs1, whereas a likelihood fit does not throw away this information. The second 
motivation is that a likelihood fit makes use of the information in the differences 
between the hadron momentum spectra in fitting the quark fractions and hadron 
momentum spectra, whereas extracting the hadron momentum spectra from three 
samples of tagged jets only uses the quark contents of the three samples. 

One disadvantage of using a likelihood function is that it requires a model for 
track-track correlations in the tagged jet. We made the approximation that there 
are no track-track correlations, and we excluded positively charged tracks from the 
hadron momentum spectra to remove short-range’ charge and flavor correlations 
(Bose-Einstein correlations are not removed). This assumption and selection were 
inadequate, resulting in bias of the fitted hadron momentum spectra in a fit to a 
Monte Carlo sample. The other disadvantage of using a likelihood function is that 
bias and acceptance corrections can only made on the fitted hadron momentum 
spectra, not on the input to the fit. In contrast, it is simple to apply bias and 
acceptance corrections to the hadron momentum spectra for the three samples 
before the extraction of the hadron momentum spectra for the different types of 
quark jets. 

We do not pursue the alternative approach of using two cuts on’the neural 
network output to divide the tagged jets into three samples, though there is no 
reason it can not be done. 

‘This can be seen by coarsening the binning in Figure 8.10 so that there are only three bins. 
2Short-range in rapidity. 
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8.5 A Test for Bias in Measurements of Charged 
Hadron Production in Bottom Quark Jets 

In this section, we test for bias in techniques to measure charged hadron production 
in bottom quark jets by determining if the hadron momentum spectra in Monte 
Carlo for the tagged jet is independent of the value of the jet-tagging neural network 
output for the tagging jet. Our test of independence works as follows. We divide 
the range of the neural network output from 0.0 to 1.0 into 10 bins with width 
0.1, place the jets with network output 1.05 into an eleventh bin, and compute 
the hadron momentum spectra in each of these 11 bins separately for the tracks in 
bottom, charm, and light-quark (up, down, and strange) Monte Carlo tagged jets 
that pass all the selections described in Section 8.2. For pions, we use 12 bins in 
momentum with boundaries .006, .015, .030, -045, .060, -075, .090, -12, .15, 2, .3, 
. 5 ,  and .9 in the scaled momentum xp = p/pb,,. For kaons and protons, we use 4 
bins in momentum (because fewer of these particles are produced) with boundaries 
.006, .045, .090, .2, and .9 in xp. 

For this test, we use 49096 light-quark, 35592 charm, and 74800 bottom jets 
that pass the selections described in Section 8.2 (Approximately 6.3, 6.3, and 46, 
respectively, times the number of jets in the Experiment 14-18 data set that pass 
the same selections.). Once we obtain the hadron momentum spectra in each of 
the 11 network output bins, we scale the spectra so that each network output bin 
contains the same total number of hadrons. Finally, we compute the confidence 
level, in each momentum bin, for the scaled cross-section to be the same in all 11 
bins in the neural network output. We compute this confidence level separately 
for each of the three types of quarks and for each hadron. 

We show these confidence levels in Figures 8.13 through 8.15, with light-quark 
and charm-quark jets separate and combined. The confidence levels for the pion 
spectra are essentially zero in some momentum bins. The confidence levels for the 
kaon and proton spectra are larger than for the pion spectra because fewer kaons 
and protons are produced, but in some momentum bins these kaon and proton 
confidence levels are about 1% or less. The hadron momentum spectra in the 
tagged jet obviously depend upon the network output of the tagging jet. Unless 
there is a miraculous cancellation ih the contribution of this dependence to the 
bottom-jet hadron momentum spectra in each momentum bin, these spectra will 
be biased3. The statement that the spectra are biased applies to any technique of 
measuring charged hadron production in bottom quark jets that uses our neural 
network to tag the bottom jets. Since we have taken pains to define the neural 

3That the confidence levels in Figures 8.13d, 8.14d, and 8.15d, with charm and light-quark 
jets combined, are sometimes far smaller than the confidence levels for charm and light-quark 
jets treated separately confirms that the hadron momentum spectra should be found separately 
for charm-quark and light-quark jets. 
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network inputs so that bias is minimized, any technique using any neural network 
will be biased. 

There are two ways of correcting for this bias. The simplest way is to make 
bias corrections. The other way is to try to modify the technique so that the bias 
corrections are smaller (or so that the confidence levels in Figures 8.13 through 
8.15 are closer to l), and then make the necessary bias corrections. 

One possible way of modifying the technique to reduce bias is to exclude the 
jets with network output 1.05 from the hadron momentum spectra. When these 
jets are excluded, Figures 8.13 through 8.15 show that the confidence levels for 
the momentum spectra being independent of the network output improve, in some 
momentum bins, far beyond the amount expected from the decrease in the statis- 
tics. The fact that the improvement mostly takes place in the highest momentum 
bins of the uds-quark histograms (Figures 8.13a, 8.14a, and 8.15a), where improve- 
ment always occurs, suggests that the improvement is produced by the long-range 
correlation due to the common flavor of the leading quark in each jet. 

In the next section, we present a systematic investigation of the possible sources 
of bias in techniques of measuring charged hadron production in bottom quark jets. 

8.6 An Investigation of the Sources of Bias 

In Section 8.5, we demonstrated that the hadron momentum spectra of the tagged 
jets depend upon the network output of the tagging jet. In this section, we present 
our investigation of the causes of this dependence. 

8.6.1 Using Correlations Between Jets in Each Event to 
Measure Bias 

We need an easy-to-compute measure of bias for our investigation of the sources 
of bias. The easiest, albeit indirect, way to determine how much bias there is for 
one quark flavor is to see if the neural network inputs in the 2 jets in each event 
are statistically independent, since this does not require that a neural network be 
trained. The advantage of this approach is that the inputs can be treated sepa- 
rately, and their behavior compared. This method does not provide an absolute 
measure of bias. 

A necessary, but not sufficient, condition for two variables to be statistically 
independent is for the correlation to be statistically consistent with being zero. 
Therefore, we compute the correlation coefficient [120] of the same neural network 
input in the two jets. In the statistical literature, there are more sophisticated 
measures of independence than the correlation coefficient, but it is not necessary 
to use them here. 
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Figure 8.13: The bin-by-bin confidence levels for the scaled pion cross-section to be 
independent of the network output for Monte Carlo uds-jets (a ) ,  charm jets (b), bottom 
jets (c), and udsc-jets (d). The empty-looking bins really have entries below The 
solid histogram includes jets with network output 1.05, the dashed histogram excludes 
jets with network output 1.05. 
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Figure 8.14: The bin-by-bin confidence levels for the scaled kaon cross-section to be 
independent of the network output for Monte Carlo uds-jets (a), charm jets (b), bottom 
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The common quark flavor of the two jets, in combination with the differing 
neural network input distributions for different quark flavors, will introduce a cor- 
relation. This is illustrated in Figure 8.16, where three circular (and therefore 
independent) distributions in y as a function of x are superposed; the sum of the 
three distributions has a positive correlation in y as a function of x, since the 
average of y is a function of x. We are only interested in the correlation due to 
information other than quark flavor crossing the boundary between the two jets, 
so we compute separately the correlations for uds, charm, and bottom. 

X 

Figure 8.16: Each of the three independent distributions (circles) is independent, but 
the sum of the distributions is not independent in y as a function of x. 

We now have a profusion of correlation coefficients p. For the p ,  inputs, we 
have 3 flavors x 5 inputs = 15 correlation coefficients. We have the same number 
of coefficients for p , ,  p , ,  and y. We deal with this by combining this information 
into three numbers for p,, three for p, ,  three for p , ,  and three for y: 

1. We average p over the 3 quark flavors and the 4 leading tracks (12 terms 
in the average). We also compute the standard deviation of this average. 

2. We compute a x2 that the same 12 p’s (12 degrees of freedom) are all con- 
sistent ;with being zero: x2 = E( -&)2. We also compute the corresponding 
confidence level. 

3. We need some function of only the p’s to quantify their spread, so we 
compute lpl for the same 12 p’s. 

We use these three quantities to measure how much correlation there is. All of 
these quantities are computed assuming that the correlations for different tracks in 
the same jet are uncorrelated with each other. This assumption is not necessarily 
true, it is certainly not true for y when we order the tracks in y. 
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We order the tracks in y, therefore the x2 C.L. for y is unreliable for deciding 
whether a correlation exists in y, and we do not consider y correlated unless the 
x2 C.L. is less than 0.5% and unless (E IpI)/u(C p )  and p / c ( p )  are both larger than 
roughly 3. For p,, p , ,  and p, ,  we use the same criteria in order to be conservative. 

These criteria are admittedly somewhat arbitrary, but this is not important, 
since many effects clearly produce large correlations. 

Our first task in investigating the sources of correlations is to enumerate all 
possible sources of correlations, which we do in the next section. After that, we 
remove all of these correlations from the Monte Carlo and verify that there is no 
remaining correlation. We then evaluate the correlation that results when each 
potential source of correlations is present alone (with the other potential sources 
not present) in the Monte Carlo. 

8.6.2 All Possible Sources of Correlations 

1. Initial state radiation (ISR) 

2. Gluon radiation. All events consist of back-to-back qtj pairs in the absence 
of ISR and gluon radiation. 

3. Fkagmentation/4-momentum-conservation. In order to shut off correla- 
tions due to fragmentation, we use independent fragmentation in place 
of the usual string fragmentation. There are numerous 4-momentum- 
conservation schemes for independent fragmentation, and we have pur- 
posely chosen none of them, so that energy-momentum conservation does 
not induce correlations. As a result, the total 4-momentum is not con- 
served, and the total event energy has a mean of 29.0 GeV and a sigma of 
about 0.6 GeV. 

4. All detector effects can introduce correlations, since they are dip-angle de- 
pendent and the two jets have a similar dip. Therefore, we have turned 
off all processes that occur in the material of the TPC/2y experiment: 
dE/dz energy loss, bremsstrahlung, pair conversion, and nuclear interac- 
tions. Some tracks enter the TPC volume more than once, since their 
paths curl up in the TPC magnetic field, so we ignore all but the first 
passage of these tracks through the TPC volume. 

5. Using a measured quantity, such as the thrust axis, to define a plane for 
dividing events in half will introduce correlations, since the finding of any 
such axis uses information from the entire event. Instead, we use the quark 
axis, which is the quark’s direction. We also need a direction perpendicular 
to the quark axis: we pick a perpendicular direction randomly. 
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6 .  We remove all particles that go into the half of the event opposite to the 
parton it originated from. Only in independent fragmentation can one say 
unambiguously which parton a hadron originated from. 

7. It is common to label as jet number 1 the jet with the largest value of 
some quantity, such as I CpzI, the z-direction being the direction parallel 
to the quark axis. The other jet is jet number 2, and so the correlation of 
jet 1 with jet 2 is evaluated. This ordering introduces a correlation. In an 
actual measurement, we would randomly assign the label jet 1. If we use 
the quark axis, jet 1 is the quark jet and jet 2 is the antiquark jet. 

8. AlI event selections are capable of creating correlations: 

(a) The Good Hadronic Event Selection. 

(b) The 7-27 event selection. 

(c) The selection of only %jet events. 

(d) The cut on the angle between the axes for the two jets in each event. 

(e) All cuts on particle momentum, dip, etc. 

(f) All cuts on event axis dip angle. 

8.6.3 Which Sources of Correlation Contribute 

In our investigation of the sources of correlation, 120k Monte Carlo events are used 
(except as stated), whereas the good hadron DSTs for experiments 14-18 contain 
about 39k events. 

8.6.3.1 The Baseline for this Investigation 

To start with, we need to compute the measures of correlation in the neural network 
inputs, with all possible sources of correlations removed, as a baseline against which 
to compare all variations in the Monte Carlo and in the computing of the network 
inputs. We do this in the first row of Table 8.1. 

Row number two of Table 8.1 shows that, at the level of statistical significance 
being explored here, introducing backwards-moving tracks does not produce corre- 
lations. Removing backwards-moving particles is clearly impossible to do in exper- 
imental data, and it is sometimes unwise to do so, as described in Sections 8.6.3.4 
and 8.6.3.5. Therefore, in evaluating all correlations, we use backwards-moving 
particles, and we use the second row of Table 8.1 as the baseline against which we 
compare all variations of the Monte Carlo and in the computing of the network in- 
puts. We call it “Baseline 1”. We have also evaluated (but do not show) the other 
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quantity 

c IPI, 4 2  PI  
x2, C.L. 

r? 
u(a> 

c lPl, 4CP) 
x2, C.L. 

P 
4ij> 

1 variation 

backwards 
particles 

backwards 
particles 

Pz 

*073, -023 
15.7, 0.21 

.0003 

.0016 
e0657 -023 

19.0, 0.088 
.0002 
-0015 

Pz  

.059, .024 
13.8, 0.31 

.0004 

.0016 
.065, .023 
16.2, 0.18 

.0014 

.0015 

PY 
.053, .024 
10.9, 0.54 

.0016 
- .0032 

Y 
.092, .023 

24.0, 0.020 
.0010 
-0016 

.084, .023 
16.3, 0.18 

.0047 

.0015 

.063, .024 
16.1, 0.19 

.0015 
- .002? 

Table 8.1: The baseline for the investigation of the sources of correlation. 

correlations excluding backwards-moving particles, the change in the correlations 
is never significant. 

We go on evaluate the correlation that results when each potential source of 
correlations is present alone (with the other potential sources not present) in the 
Monte Carlo. We arrange the sources of correlations in groups. The baseline will 
be the first row in every comparison table below, and in all tables all conditions 
that apply in the first row of this table will also apply, except as otherwise stated. 

8.6.3.2 The Contribution of Fragmentation Physics 

Any realistic model of fragmentation has information flowing from one jet to the 
other, whether the model is independent fragmentation with whole-event energy- 
momentum conservation, string fragmentation, etc. (Table 8.2). The E-@ conser- 
vation scheme used for the independent fragmentation in this table is where the 
momentum imbalance is shared among the particles according to the particles’ 
energy (MST(6) = 1). This table shows that fragmentation induces measurable 
correlations in p z  and y. 

8.6.3.3 The Contribution of Radiation 

Initial state photon radiation and final state gluon radiation also cause correlations. 

Here, the usual definition for quark axis is problematic, since the initial quark 
and antiquark are not back-to-back except by accident. Any definition of the quark 
axis will carry information about the direction and possibly also momentum of the 
quark jet into the anti-quark jet, and vice versa. There are two simpIe schemes for 
defining the quark axis. 

*’ 
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Pz 

.065, .023 
19.0, 0.088 

.0002 

.0015 
.110, .023 

124, 0 
.0067 
.0015 

I fragmentation 
Baseline 1 

(indep. hag. 

conservation) 
independent 

fragmentation 
with E-@ 

conservation 
string 

fragment ation 

without E-@ 

PY P z  
.063, .024 .065, -023 
16.1, 0.19 16.2, 0.18 

-.0027 .0014 
.0015 .0015 

.123, .023 .172, .024 
143, 0 88, 0 
- .0096 .0132 
.0015 -0015 

quantity 

.068, .023 
15.8, 0.20 

-.0042 
.0015 

.085, -023 .099, .024 
25.8, 0.012 61, 0 

.0035 .0101 

.0015 .0015 

Table 8.2: Correlations from fragmentation physics. 

Y 
.084, .023 
16.3, 0.18 

.0047 

.0015 
.245, .023 

206, 0 
.0197 
.0015 

.243, .023 
198, 0 
.0192 
.0015 

The one we use here defines the quark axis to be the normalized vector in the 
same direction as the quark momentum minus the anti-quark momentum; this 
definition explicitly carries momentum information. 

The other scheme defines the quark axis to be the normalized vector in the same 
direction as the unit vector in the quark direction minus the unit vector in the anti- 
quark direction. This definition does not explicitly carry momentum information, 
but the directions of these partons are related to their momenta, and thus this 
definition indirectly carries momentum information. This second definition gives 
correlations that are slightly larger than the scheme that we show here (Table 8.3). 

In an attempt to eliminate the correlations in Table 8.3, we “iterate” the co- 
ordinate axes in Table 8.4. “Iterating” the axes (Le. using the iterated coordinate 
system) gets rid of the correlations in p, ,  and reduces somewhat the correlations 

In both Table 8.3 and Table 8.4, the correlations with ISR and gluon radiation 
together (row 4) are definitely not the sum of the correlations for ISR alone (row 
2) and for gluon radiation alone (row 3). 

in P, ,  P,, and Y. 

8.6.3.4 The Contribution of Event S hape/Direct ion Measurements 

So far, we have used the perpendicular to the quark axis to divide the event in half. 
Any method of dividing the event in half in a real measurement uses information 
from the entire event, and necessarily introduces correlations. Also, when we do 

“. . 
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.395, .024 
898, 0 
.0389 
.0016 

radiation 

4.731, .025 
119901, 0 

.4679 

.0014 

Baseline 1 

radiation) 
(no 

.659, .023 
2480, 0 
.0581 
-0015 

.620, .024 
1887, 0 
.0561 
.0015 

ISR 

3.926, .023 
77704, 0 

.3614 
-0013 

4.776, .022 
121494, 0 

.4295 

.0013 

parton 
showers 

ISR and 
parton 
showers 

Px 
.065, .023 
19.0, 0.088 

.0002 

.0015 
.046, .025 
6.4, 0.90 

.0016 
- .0007 

.155, .024 
117, 0 

-0015 
- .On7 

.151, .025 
123, 0 
-.0138 
.0016 

PY 
.063, .024 
16.1, 0.19 

-.0027 
-0015 

.456, .030 
997, 0 
.0551 
.0020 

.222, .026 
178, 0 
-.0171 
.0019 

.414, .026 
779, 0 
.0429 
.0016 

.0047 
.0015 .0015 

Table 8.3: Correlations due to  ISR and gluon radiation. 
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ISR lpl, a(Cp)  .060, .024 
x2, C.L. 11.9, 0.45 

P .0014 
4 3  .0015 

parton lpl, a ( C p )  .051, .023 
showers x2, C.L. 14.2, 0.29 

P -.0001 
.0015 

ISR and / p i ,  a(Cp)  .044, .024 
parton x2, C.L. 6.8 , 0.87 

showers P -.0007 
.0015 

i a ( d  

radiation I quantity 

x2, C.L. 
radiation) - .0012 

.0015 
.472, .023 

1219, 0 
.0087 
.0015 

1.298, -022 
6343, 0 
.1003 
.0013 

.060, .023 .062, .023 .072, .023 
10.9, 0.54 12.7, 0.39 13.3, 0.35 

.0010 .0025 .0043 i .0015 .0015 .0015 

.420, .023 
759, 0 
.0360 
.0015 

.372, .023 
568, 0 
.0221 
,0014 

.120, .019 
804, 0 
-.0192 
.0009 

1.861, .023 
11373, 0 

.1523 

.0014 
1.483, .023 

5960, 0 
.1000 
.0014 

.154, .023 
129, 0 
.0134 
.0015 

.163, .021 
617, 0 
-.0130 
.0011 

Table 8.4: Correlations due to ISR and gluon radiation, axes “iterated”. 

.. . 



not “iterate”, we use event the axis to define the coordinate system with respect to 
which we compute the neural network inputs, and this also introduces correlations 
(Table 8.5). This is one occasion where removing backwards moving particles is 
unwise, since doing so would alter the thrust axis direction. 

Using a thrust axis that is computed from all of the final-state particles gener- 
ated by the Monte Carlo definitely induces correlations in p ,  and p ,  that can be 
erased by iterating the axes. Correlations from using a thrust axis that is com- 
puted from the tracks simulated in TPCLUND as recorded by the TPC are much 
larger, and they can not be entirely erased in p ,  and y by iterating. 

One must be careful that in using an algorithm that finds the thrust axis, the 
jets in an event are not ordered by any kinematic criteria, because this ordering 
will induce correlations. 

8.6.3.5 The Contribution of Detector Acceptance 

Detector acceptance results in loss of tracks out the ends of the detector. This will 
cause the observed characteristics of a jet to vary with the dip of the jet, resulting 
in correlations (Table 8.6). 

In Table 8.6, the quark axis is always used. This is another occasion where 
removing backwards moving particles is unwise, since the acceptance for backwards 
tracks is not the same as it is for forwards tracks. We have turned off the simulation 
of interactions in the TPC. 

In Table 8.6, the “standard dip and p cuts” are: 

1. Track dip 1x1 < 60” 

2. Dip of the event sphericity axis 1x1 < 45”. 

3. For tracks in the track block, the momentum extrapolated to the event 
vertex must be at least 120 MeV/c, and the momentum in the TPC must 
be at least 100 MeV/c. For particles in the Monte Carlo block, we require 
p > 120 MeV/c. 

Re-entries of tracks into the TPC do not induce correlations (row 2). Limi$ing 
ourselves to charged particles in computing the network inputs, in conjunction 
with not cutting backwards tracks, does induce y-correlations (row 3). 

]Furthermore, rows 4 and 6 are compatible with being identical, thus correlations 
from using tracks from the track block that enter the TPC fiducial volume are 
reproduced by the charged tracks in the Monte Carlo block that pass the dip and 
p cuts. 

The large y correlation in row 5 probably comes from the edges of the TPC’s 
fiducial volume, where the event acceptance as a function of the dip of the event 
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p ,  
.063, .024 
16.1, 0.19 

-.0027 
.0015 

.060, .023 
10.9, 0.54 

.0010 

.0015 
.198, .023 

442, 0 
.0164 
.0015 

.075, .023 
13.5, 0.33 

.0012 

.0015 

variation P Z  

.065, .023 
16.2, 0.18 

.0014 

.0015 
.062, .023 
12.7, 0.39 

.0025 

.0015 
.047, .023 
7.0, 0.85 

-0022 
.0015 

.070, .024 
12.8, 0.38 

.0026 
,0015 

.284, .030 
121, 0 
-.0135 
,0024 

.107, .031 
14.6, 0.27 

.0018 

.0024 
.065, .031 
6.8, 0.87 

.0023 

.0024 

.119, .031 
20.6, 0.057 

.0060 

.0024 
2.404, -031 

8223, 0 
.1967 
.0024 

.143, .025 
58, 0 
.0121 
.0018 

.850, ,024 
4740, 0 
.0884 
.0016 

.067, .024 
16.5, 0.17 

,0026 
.0016 

P X  

.065, .023 
19.8, 0.088 

.0002 

.0015 

Y 
.084, .023 
16.3, 0.18 

.0047 

.0015 

Baseline P 
(quark axis) 

quark axis, 
“iterated” 

.046, .023 
6.7, 0.88 
-.0012 
.0015 

.072, .023 
13.3, 0.35 

.0043 

.0015 
thrust axis .P57, .024 

142, 0 

.0015 
-.0127 

.092, .023 
23.3, 0.025 

.0062 

.0015 
thrust axis, 
“iterated” 

.050, .024 
7.0, 0.86 
-.0008 
.0015 

.076, .023 
14.4, 0.27 

.0045 

.0015 
thrust axis, 

e-p-7r-K-p only 
.480, .031 

285, 0 
.0390 
.0025 

.332, .031 
200, 0 
-0300 
.0024 

thrust axis, 
e-p-n--K-p only, 

“iterated” 

.164, .031 
50, 1.4E-6 
.0141 
.0024 

.074, .031 
9.8, 0.64 

.0003 

.0024 
2.752, .034 

8615, 0 
-.2212 
.0026 

.026, .024 
2.5, 0.998 

-.0011 
.0016 

thrust axis, 
calculated 
from track 

block 

5.785, .025 
168384, 0 

.5672 

.0014 
thrust axis, 
from track 

block, 
“iterated” 

.398, .026 
337, 0 
.0301 
.0017 

Table 8.5: Correlations from event shape/direction measurements. 
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quantity 

c lPl, 4CP) 
x2, C.L. 

P 
43 

2 2 ,  C.L. 
P 

4 P >  
c IPI, 4 C  PI 

2 2 ,  C.L. 
P 

4 P )  
c IPI, 4 C  P> 

x2, C.L. 

di3 

c lPl, 4CP) 

P 

variation P X  

-065, -023 
19.0, 0.088 

.0002 

.0015 
-066, -023 
14.9, 0.25 

.0002 

.0015 
-052, -030 
4.7, 0.967 

.0009 

.0024 
J96, -039 
10.1, 0.61 

.0031 
-.8017 

Baseline 1 
(Monte Carlo 

block, all 
particles) 

MC block, all 
particles plus 

tracks that 
re-enter TPC 
Monte Carlo 

block, 
e-p-T-K-p only 

P Z  

.065, -023 
16.2, 0.18 

.0014 

.0015 
.065, .023 
16.4, 0.17 

.0013 

.0015 
.093, .031 
11.0, 0.53 

.0044 

.0024 
-134, .041 
14.3, 0.28 

.0083 

.0031 

MC block, 
e-p-7r-K-p only, 

standard dip 
and p cuts 

Y 
.084, .023 
16.3, 0.18 

.0047 

.0015 
.083, .023 
15.5, 0.21 

.0046 

.0015 
.143, .031 

40, 0.00006 
.0126 
.0024 

.170, .040 
34.8, 0.0005 

.0111 

.0031 
track block c IPI, 4CP)  

x2, C.L. 

d b )  
P 

track block, 
standard dip 
and p cuts 

-142, -034 
26.2, 0.010 

.0026 
-.0106 

.162, ,032 
38, 0.00014 

.0065 

.0019 

.776, ,037 
470, 0 
.0605 
.0030 

c lPl, 4 C  P> -090, SO38 
x2, C.L. 12.7, 0.39 i 4 P )  .0027 

-.0012 

PY 

.063, .024 
16.1, 0.19 

-.0027 
.0015 

.049, .024 
11.9, 0.45 

-.0026 
.0015 

.log, .031 
18.3, 0.11 

.0029 

.0024 
.128, .040 
12.8, 0.39 

.0013 

.0031 
.087, .033 
10.0, 0.61 

-0007 
.0023 

.138, .040 
17.3, 0.14 

,0029 
-.0018 

Table 8.6: Correlations due to detector acceptance. 
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sphericity axis drops off quickly, the track acceptance in p is a function of dip and 
p ,  and the track acceptance in dip also is a function of dip and p .  

8.6.3.6 The Contribution of Event Selections 

In any analysis, various selections must be made to eliminate backgrounds to the 
desired process QQ 3 hadrons, and to ensure that the bulk of the event enters the 
fiducial volume of the detector. Any cut that is made on a quantity defined by the 
entire event, such as charged energy, will introduce correlations (Table 8.7). 

One might consider replacing a cut on an event-defined quantity with a cut 
on each of the event’s two jets, for example on the minimum of the total charged 
energies of the two jets, but the process of dividing the event in half might introduce 
correlations through the cut, though the correlations might be drastically reduced 
by using this alternative. 

However, altering the selections is not necessary. The x2 C.L. indicates that 
the 2-jet event selection and the jet-jet angle cut induce small correlations. The 
7.-27 event selection numbers look interesting, but meet none of the criteria we use 
for deciding that there are significant correlations. With all selections combined, 
there is no evidence for correlations. 

8.6.3.7 The Contribution of Interactions in Detector Material 

Interactions with the material of the TPCI2-y detector are dip dependent. Tracks 
will be ranged out in the material in front of the TPC, multiple scattering will alter 
track direction, energy loss will change track momentum, and conversions, nuclear 
interactions, conversions, and bremsstrahlung (in conjunction with conversions) 
will add tracks to events. This will cause the observed characteristics of a jet to 
vary with the dip of the jet, causing the correlations in Table 8.8. 

Conversions, nuclear interactions, and bremsstrahlung each satisfy 2 of the 3 
criteria for deciding there are significant correlations in y, so we consider these to 
be borderline cases. dE/dz energy loss definitely causes correlations in y, as does 
the combination of all interactions. 

8.6.4 The Relative Importance of the Sources of Corre- 
lation 

We now compare the size of correlations. The numbers in these tables indicate that 
the following effects are the sources of correlations, ranked in IpI from largest to 
smallest: 

1. ISR and gluon radiation. 
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quantity 

lpl, o(C p )  
x2, C.L. 

5, 
44 

selections P x  PY Pz Y 
.065, .023 ,063, .024 .065, .023 .084, .023 

19.0, 0.088 16.1, 0.19 16.2, 0.18 16.3, 0.18 
.0002 -.0027 .0014 .0047 
.0015 .0015 .0015 .0015 

Baseline 1 

selections) 
(no 

/pi, a(C p) 
x2, C.L. 

5, 
4i4 

lpl, o(C p )  
x2, C.L. 

P 
.(A 

IpI, o(C p )  
x=, C.L. 

P 
4 4  

lpI, a(Cp) 
x2, C.L. 

ij 
43 

Ip ( ,  o(x p )  
x2, C.L. 

P 
4 d  

IpI, a(C p )  
x2, C.L. 

P 
4) 

The 
r-2y 
event 

selection 
The Good 
Hadronic 

Event 
Select ion 

2-jet event 
selection 

,090, .028 .057, .029 .097, .028 .091,.028 
17.9, 0.12 6.8, 0.87 27.0, 0.0077 16.2, 0.18 

.0029 - .0022 -.0058 .0006 
-0021 .0021 .0021 .0021 

.073, .026 .069, .027 .075, .027 .076, .026 
13.4, 0.34 12.3, 0.42 17.0, 0.15 12.2, 0.43 

.0015 -.0026 -.0021 .0017 

.0019 .8019 ,0019 .0018 
.052, .025 .052, .026 .093, .026 .086, .025 
9.1, 0.70 9.1, 0.69 41.5, 0.00004 16.5, 0.17 

.0021 -.0013 -.0049 -.0001 

.0018 ,0018 .0018 .0018 
.088, -044 .1P4, -041 .093, .041 .208, .040 
6.7, 0.87 10.0, 0.61 8.9, 0.71 40.6, 0.00006 
-.0018 -.0033 .0040 .0191 
-0034 .0032 -0032 .0033 

.104, -044 .098, -045 .108, .045 SO8, .044 
9.4, 0.67 6.0, 0.92 10.2, 0.59 10.7, 0.55 

.0016 -.0016 .0017 .0056 

.0035 AI036 .0036 .0035 
.092, .047 -132, .044 .154, .046 .148, .044 
6.8, 0.87 ’11.1, 0.52 17.6, 0.13 14.6, 0.26 
-.0009 -.0025 .0038 -0037 
,0037 .0036 .0036 .0036 

“it era t ed” 
axes, cut 
on jet-jet 

angle 

cut of [dip1 
< 60” for 

sphericity, 
jet axes 

all 
selections 
together 

1 
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J p ] ,  a(c p )  
x2, C.L. 

ii 
4 P )  

lpl, a(c p )  
x2, C.L. 

ii 
a(al 

interactions 

Baseline 1 
(no 

interactions) 

.056, -023 -059, .023 .073, .023 
10.8, 0.54 14.9, 0.25 20.1, 0.066 

-.0021 -.0017 .0017 
.0015 .0015 .0015 

-048, .023 -053, -023 .080, .023 
7.4, 0.83 9.1, 0.69 17.0, 0.15 
-.0017 -.0010 .0021 
.0015 .0015 .0015 

conversions 

Ip(,  a(C p )  
x 2 ,  C.L. 

P 
4 P )  

Ip1, a(Cp)  
x2, C.L. 

zi 

a(C p )  
x2, C.L. 

P 

nuclear 
interactions 

.052, .023 .069, .023 .041, .023 
6.6, 0.88 20.4, 0.060 6.4, 0.89 

.oooo .0023 .0010 

.0015 .0015 .0015 
.081, .023 .064, .023 .053, .023 
16.8, 0.16 15.7, 0.21 13.2, 0.36 
- .0008 -.0001 .0025 
.0015 .0015 .0015 

.054, .020 .067, .020 .063, .020 
16.8, 0.16 16.6, 0.16 20.0, 0.067 

-.0004 .0022 -0024 
.0013 .0013 .0013 

brems- 
strahlung 

multiple 
scattering 

dE/dx 
energy loss 

all 
interactions 
turned on 

(179k events) 

.0002 -.0027 -0014 

.0015 .0015 
849, .023 .048, -023 .070, ,023 
5.4, 0.94 7.6, 0.82 12.7, 0.39 
-.0006 - .0005 .0016 
.0015 .0015 .0015 

Y 
.084, .023 
16.3, 0.18 

.0047 

.0015 
.086, .024 

36.4, 0.00028 
.0031 
.0015 

.084, .024 
33.7, 0.00074 

.0029 

.0015 
.081, .024 

29.5, 0.0033 
.0023 
.0015 

.056, .023 
8.6, 0.74 

.0020 

.0015 
.079, .023 

39.8, 0.00008 
.0063 
.0015 

.085, .020 
38.7, 0.0001 

.0059 

.0013 

Table 8.8: Correlations caused by interactions in the detector material. 

1 
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2. Use of the thrust axis, when only charged tracks are used. 

3. Ragmentation physics. 

4. Detector acceptance, the jet-jet angle event cut. 

5. The 2-jet event selection. 

6. dE/dz energy loss, conversions, nuclear interactions, and bremsstrahlung. 

Note that the first and third largest sources of correlations are from physics, not 
from the method used to compute the network inputs, and can not be eliminated. 
The second-largest source is from the method used to compute the network inputs, 
but this source can not be eliminated since events must be divided in half. 

Factors that do not measurably contribute are: 

1. The other event selections:. the Good Hadronic Event Selection, the 7-27 
selection, and the cut on the \dip\ of the event axis. 

2. Multiple scattering. 

3. Tracks entering the TPC volume more than once. 

This summary is not absolute, since what we have done is to have only one 
potential source of correlations present at a time. Correlations do not add linearly: 
some contributions no doubt cancel and others reinforce each other. It may be that 
some contributions that are minor or negligible in this ranking make large contri- 
butions when combined with other sources of correlations. Or it may happen that 
some sources of correlations, when combined, do not have measurable correlations, 
such as when all event selections are combined. 

This can be checked by evaluating correlations with all of our supposedly non- 
contributing candidate sources of correlations present: track re-entries into the 
TPC, multiple scattering, and the Good Hadronic Event Selection, the 7-27 event 
selection, and the cut on the \dip[ of the event axis. We call this combination 
“Baseline 2”. In Table 8.9, we evaluate the correlations in Baseline 2, alone and 
combined with othei interactions and event selections. The axes are iterated. 

There are no correlations, either in Baseline 2 alone or when all interactions and 
all event selections are included. Therefore, we use Baseline 2 plus all interactions 
and‘ all event selections as a new baseline. We call this “Baseline 3”. 

We can add on to Baseline 3 the contributing sources of correlations, one at a 
time, and see if the previous ranking still holds (Table 8.10). 

When contributing,sources of correlations are combined, one at a time, with all 
non-contributing potential sources of correlations, their size and ranking change 

-. . 



139 

sources 

Baseline 1 
(no sources) 

Baseline 2 

Baseline 2 
plus other 

event 
selections 
Baseline 2 
plus other 

interactions 
(179k events) 

Baseline 2 + other 
interactions and 
event selections 

(179k events) 

quantity Pz 

.065, .023 
19.0, 0.088 

.0002 

.0015 

PY 
.063, .024 
16.1, 0.19 

-.0027 
.0015 

.150, .044 .104, .044 
15.3, 0.23 9.2, 0.69 
- .0028 .0016 
.0036 -0035 

.155, .045 .107, .044 
16.0, 0.19 9.9, 0.63 

-.0029 .0018 
.0036 .0035 

-098, .033 .076, .034 
10.5, 0.57 9.6, 0.65 

.0006 .0001 

.0026 .0026 

.0005 

Pz Y 

.065, .023 .084, .023 
16.2, 0.18 16.3, 0.18 

.0014 .0047 

.0015 .0015 
.141, .044 .137, .044 
12.3, 0.42 20.1, 0.065 

.0027 .0116 
-0035 .0036 

.135, .044 .138, .044 
11.9, 0.45 20.0, 0.068 

.0024 .0117 

.0035 .0036 
.058, .033 ,118, -033 
5.4, 0.94 20.1, 0.065 
-.0013 .0056 
.0026 -0026 

-.0013 .0052 

Table 8.9: Correlations relative to “Baseline 2”. 
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quantity 

c lPl, 4CP) 
x2, C.L. 

P 
.(a 

x2, C.L. 

P 
a> 

x2, C.L. 
P 

a m  

c lPl, 4CP) 

c IPI, 4CP) 

sources Px 

-134, eo41 
18.5, 0.10 

-0018 
.0030 

-116, A47 
8.2, 0.?7 

-0025 
.0029 

-130, eo39 
13.8, 0.032 

.0008 

.0025 

Baseline 3, 

detect or 
acceD t ance 

plus 

P Z  

.170, -040 
44, 0.000018 

.0030 
.171, .045 

29.8, 0.0030 
-.0050 
.0028 

- .0132 

Baseline 3, 

thrust axis 
plus 

Baseline 3, 
plus LUND 

fragmen- 
tation 

Y 
-247, .040 

85, 0 

.0030 
.129, .046 
15.1, 0.24 

.0004 

.0028 

-.0213 

Baseline 3, 
plus ISR 

.171, .039 
35, 0.0004 
- .0008 
.0025 

Baseline 3, 
plus gluon 
radiation 

.136, .039 
27.6, 0.0063 

.0097 

.0025 

c lPl, 4CP) 
x2, C.L. 

ii 
a m  

-106, -048 
10.8, 0.54 
- .0004 
.0029 

.208, .048 
31.8, 0.0015 

.0014 

.0029 

PY 

.101, .041 
9.6, 67.65 

.0012 

.0030 
.085, .046 
5.1, 0.95 
-.0011 
.OQ28 

.146, .048 
32.2, 0.0013 

.0016 

.0029 

.149, .038 
20.0, 0.066 

-.0016 
.0025 

c IPI, 0) 
x2, C.L. 

ii 
4 3  

.115, -049 
10.2, 0.60 

.0029 
-.0038 

*I387 -049 
15.6, 0.21 

.0047 

.0029 

-165, .052 
20.4, 0.059 

.0022 

.0029 

.177, .051 
48, 3E-6 
- .0136 
.0029 

.267, .049 
69, 0 
.0056 
.0029 

Table 8.10: Correlations relative to “Baseline 3”. 
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uniterated 

iterated 

drastically. Specifically, the size of the ISR and gluon radiation correlations shrink 
a lot, the detector acceptance correlation is much bigger, and the thrust axis 
correlation is larger in p ,  and smaller in y. The new ranking, from largest to 
smallest, is as follows. 

quantity Pz PY P z  Y 
IpJ, a(C p) .654, .041 1.098, .038 .286, .038 1.560, .039 
x2, C.L. 347, 0 1426, 0 98, 0 2994, 0 

P .0544 -.lo20 .0171 -1449 

4 P )  .0030 .0028 .0022 .0027 

IpI, .(E p )  .096, .040 0.127, .040 -227, .038 0.792, -040 
x2, C.L. 9.9, 0.62 16.8, 0.16 82, 0 723, 0 

P -0023 .0033 .0136 .0720 
.0029 .0029 , .0022 .0029 

1. Gluon radiation. 

2. Detector acceptance. 

3. ISR. 

4. Use of the thrust axis, with all particles, may not induce significant corre- 
lations. 

The first and third largest sources of correlations are from physics, and can not 
be eliminated. The second largest source of correlations is from detector accep- 
tance, which is intrinsic to any experiment and can not be eliminated. We use this 
last ranking as the ranking of the relative importance of the potential sources of 
correlations. 

8.6.5 Comparing Monte Carlo Correlations to Experi- 
mental Data Correlations 

We can compute the correlations we see in the Monte Carlo we use for simulating 
the experimental data, with the network inputs computed exactly as we would in 
a measurement using experimental data. The resulting correlations are listed in 
Table 8.11. 

Table 8.11: The effect of axis “iterating” on correlations. 

T 
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~ 

uniterated 
Monte Carlo 

uniterated 
Expt 14-18 

iterated 
Monte Carlo 

iterated 
Expt 14-18 

There are obvious correlations in all 4 variables with the axes uniterated. Iter- 
ating the axes helps reduce correlations, as it usually does, but does not eliminate 
correlations in pz and y. 

One would like to compare input correlations for experimental data to the 
correlations for Monte Carlo. This is not possible with the usual methods used, 
since they look at the correlations for individual flavors. What can be used for 
comparison are the correlations for all flavors combined, since this is the only way 
experimental data comes. Therefore, we compute the analogs of the comparison 
quantities, with all flavors combined (Table 8.12). These correlations can not be 
compared to the other correlations listed elsewhere, because they are computed 
differently: these x2's are for 4 degrees of freedom. 

quantity 

lpl, a(C p )  
x2, C.L. 

P 
4a 

C IpI, a(C p )  
x 2 ,  C.L. 

r? 
4a 

C lpl, a(C P> 
x2, C.L. 

P 
4 P )  

C IpI, 4 C  P> 
x2, C.L. 

P 

Pz 

.217, .012 
335, 0 
.0543 
.0030 

.273, .02P 
171, 0 
.0688 
.0053 

.013, .012 
2.3, 0.68 

.0025 

.0029 
.028, .021 
3.8, 0.43 

.0071 

.0052 

PY 
.411, .011 

1363, 0 

.0028 
.423, .020 

443, 0 

-0050 
.025, .012 
7.1, 0.13 

.0036 

.0029 
.032, .020 
3.0, 0.56 

.0060 

.0051 

-.I025 

-.lo46 

Pz 
.113, .011 

121, 0 
.0239 
.0026 

.141, .024 
42, 0 
.0319 
-0055 

.101, .010 
108, 0 
.0204 
.0025 

.136, .021 
42, 0 
.0329 
-0053 

Y 
.651, .011 
3684, 0 . 

.1638 

.0027 
.677, .019 

1270, 0 
.1704 
.0049 

.380, .011 
1125, 0 
-0953 
.0029 

.379, .021 
343, 0 
-0947 
.0052 

Table 8.12: Correlations in the Jet-Tagging Network Inputs, for Monte Carlo and for 
experimental data. 

For both iterated and uniterated axes, the correlations in experimental data 
and Monte Carlo are compatible with being the same, using lpl, with estimated 
error a(C p ) ,  and p ,  with estimated error ~ ( f i ) ,  to do the comparison. In reading 
this table, remember that the sizes of the data and Monte Carlo samples are quite 
different, so the errors on the quantities in this table have different sizes. 
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data set 
Exp t 14- 18 

udscb Monte Carlo 

We can also test for bias by computing the correlation between the network out- 
puts for the two jets in each event. Networks have been trained with and without 
iterating, with the usual 15 inputs, one hidden layer with 15 nodes, and 1 output 
node that is trained to separate b-jets from non-b jets. The resulting correlations, 
for separated and for combined quark flavors, are listed in Table 8.13. One can 
see that iterating achieves a statistically si@cant reduction in the correlations 
for all quark flavors combined and for uds, c separately. Also, the correlations for 
b-jets are significantly smaller than for the other flavors. 

uniterated p iterated p 

.180 f .010 

.195 i .005 
.139 f .010 
.160 f ,006 

uds Monte Carlo 
c Monte Carlo 
b Monte Carlo 

.130 f .008 

.I51 f .009 

.035 f .008 

.088 f .008 

.117 f .009 

.028 f .009 

Correlations definitely exist, and the correlations for experimental data and for 
Monte Carlo agree within statistics. 

8.7 Summary 

The study we present in this chapter of bias in techniques to measure inclusive Ti, 
K*, and p/ij production in bottom jets provides a number of results that should 
be useful for future attempts to tag bottom quark jets using a neural network. 

1. 

2. 

We describe a neural network with 15 inputs that we calculate from the 3- 
momenta of the observed charged hadrons in the tagging jet. We describe a 
coordinate system, for each jet, for computing the momentum components 
of the tracks. This coordinate system minimizes correlations between the 
tagging and tagged jets in each event. 

We demonstrate that the hadron momentum spectra, in Monte Carlo, for 
the tracks in tagged jets from different quarks depends upon the value of 
the network output of the tagging jet. This indicates that bias exists in 
the measurement of the hadron momentum spectra for tagged bottom jets, 
where the network output is used to identify bottom jets. 
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3. We show that the dependence of the tagged jet’s hadron momentum spec- 
tra upon the value of the tagging jet network output is caused by cor- 
relations between the two jets in each event (we only use 2-jet events). 
These correlations exist between the network outputs for the two jets, and 
between the same network input in each of the two jets. 

4. We show that the Monte Carlo simulation described in Section 5.3.1 suc- 
cessfully reproduces the magnitude of the correlations observed in experi- 
mental data for the network inputs and output. 

5 .  We have compiled a list of all possible sources of correlations, and we have 
carried out a systematic study of the relative importance of these sources 
of correlation. We show that the largest contributors to the correlations 
are, in decreasing order of importance, 

(a) Gluon radiation. 

(b) Detector acceptance. 

(c) Initial state photon radiation. 

These three sources of correlation are intrinsic to any measurement and 
can not be eliminated. 
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Chapter 9 

Conclusions 

We have presented a measurement of the bottom event fraction c(b6) /0(@) in 
the annihilation process e+e- --+ b8 --+ hadrons at 4 = 29 GeV, corrected for all 
physics that change this fraction from its value in QED with massless fermions. 
The fraction we measure is P0.2?:::?22:27% (the first error statistical and the second 
systematic) = 10.2?;:!%, which is consistent with the value of 1/11 predicted by 
the Standard Model. The analysis is based on 66 pb-l of data collected between 
1984 and 1986 with the TPC/2? detector at PEP. To identify bottom events, we 
use a neural network with inputs that are computed from the 3-momenta of all of 
the observed charged hadrons in each event. We have shown that the measured 
fraction depends upon the value of this fraction in Monte Carlo. We obtain the 
value of the bottom event fraction we report by noting that since the bottom event 
fraction is a physical observable, the fraction in Monte Carlo must be the same as 
the expectation value of the fraction measured in experimental data. 

We also presented a study of bias in techniques for measuring inclusive 7r*, 
K*, and p/p production in the annihilation process e+e- --+ b6 --+ hadrons at 
& = 29 GeV, using a neural network to identify bottom-quark jets. We described 
a neural network with 15 inputs, computed from the 3-momenta of all of the 
observed charged hadrons in each jet, that was designed to minimize correlations 
between the tagging and tagged jets in each event. We demonstrate that the hadron 
momentum spectra, in Monte Carlo, for the tracks in the tagged jet depend upon 
the value of the network output of the tagging jet: an indication of bias. We 
show that the dependence of the tagged jet’s hadron momentum spectra upon the 
value of the tagging jet network output is caused by correlations between the two 
jets in each event, and we demonstrate that Monte Carlo successfully reproduces 
the magnitude of the correlations observed in experimental data in the network 
inputs and output. Finally, we have carried out a systematic study of the relative 
importance of all possible sources of correlation, and we show that the largest 
contributors to the correlations are, in decreasing order of importance, 
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1. Gluon radiation. 

2. Detector acceptance. 

3. Initial state photon radiation. 

These three sources of correlation are intrinsic to any measurement and can not 
be eliminated. 
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Appendix A 

Remainder of the Proof of the 
Event Fraction Likelihood 
Function Optimization Method 

A.1 The Case some but not all rnij = 0 

In this case, for those values of i for which mij = 0, Equation 7.11 implies 

It is now possible for f i j  to be zero, for values of i where mij = 0, at the maximum 
of ( l E ) j -  In order for f;j to be zero, u;j < 0 is necessary. Note that u;j < 0 implies 
Equation 7.13, so this equation always holds whether or not mij = 0. 

To find the solution, assume that fij = 0 for those values of i for which mij = 0, 
use Equation 7.14 to produce an equation for X j ,  solve for X j  using the method 
described in Reference [117], and use Equation 7.12 to solve for the other f i j .  There 
are two subcases. 

1 
aM' 

A.l . l  The Subcase - 1 < - 

In this case, the f i j  and X j  we have obtained maximize 
follows. Equation A . l  and ai 2 0 imply 

The proof goes as 

for those values of i for whch mij = 0. fij = 0 is thus required. However, 
Equation 7.12 tells us that mij = 0 implies f i j  = 0. Therefore, the solution 
method for the case mij # 0 for all i can be applied in this subcase. 

.. . 
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A.l.2 The Subcase 2 5 - P 
aM' 

In this case, Equation 7.13 is violated for i = M', Since we have restricted mij 
and fi j  SO that they do not have opposite signs, this means that m M ' j  = 0 and 

Therefore, ( t E ) j  can be made larger by making fMtj > 0. The solution can be 
obtained by setting 

and using Equation 7.12 to solve for fij for i # M 9 .  Finally, from the definition 
X j  = Ci aifij' 

This definition of Xj ,  when inserted into Equation A.1, implies that U M I ~  = 0. For 
all other i's with m;j = 0, we get the required condition that f;j = 0 and U;j  is 
negative, since 

For all other i's with mij # 0, the corresponding values of f;j were obtained using 
Equation 7.12, which is equivalent to u;j in Equation 7.11 set equal to zero. The 
proof that fMlj is positive is complicated and is left to Reference [117]. 

A.2 The Case mij = 0 for all i 
The solution is that all f;j are zero, except for i = M' where 

This is so because nj > 0 requires that Xj  > 0, which in turn implies that least 
one fij be larger than zero. For these non-zero f i j ,  uij is zero, implying 

( A 4  
n .  P 
X j  ai 
3 - 1 = - .  

This equation can hold for only one value of i, for the other values of i Equation 7.13 
holds. This one value of i is M', since l / i  < 1/M' for i # M', implying that 
Equation 7.13 must hold for i # M'. Then Equation A.8 and X j  = ~ ~ t f ~ t j  imply 
Equation A.7. Of course, if all of the mij and nj are zero, then all of the fij and 
X j  are zero, and Equation A.7 still holds. 
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Appendix B 

F for Any Number of Classes 

This case is not addressed in References [loo] and [loll .  

class index. a, are the corresponding fractions, so CCac = 1. 
Suppose we have K normalized distributions s,,i, where c = 1 ,2 , .  . . , K is the 

Neglecting the Monte Carlo statistical error, our x2 is now 

Rather than explicitly put the constraint Ccac = 1 into the expression for x2 ,  
eliminate one variable, and ruin the symmetry of x2  in the index c, we choose to 
use Lagrange multipliers as follows. 

First, we create a new variable 2 = x2 + A(C, a, - 1). Then we set to zero 
the derivatives of 2 with respect to A and with respect to the cy,, and solve for the 
optimized a, and A. Then, we create the matrix M of f the 2nd derivatives of 2 
with respect to a, and A, evaluated at the optimized values of a, and A. Finally, 
we invert M .  The submatrix of M-l, composed of those elements (M-')ij such 
that M ,  = aac1aac2 , is the covariance matrix V of the cy, [121]. 

Evaluating M, 

1 022 
2 ( 3 x 2  

M ( A , A )  = - - - - 0 .  

As one can see, M is independent of the a, and A. The algebraic inversion 
of M in the general case is very complicated except for K = 2, where we get 

t 
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M ( a ,  a )  = M(l -a ,  1 -a)  = a2(a), and a(a) takes on the value in Equation 6.10, 
as expected. It turns out that we only need to algebraically invert M for the case 
that follows. 

B.1 K Event Classes with Complete Separation 

For the case where there is only one class of events in each bin, 

5 2  . 
Let l/Qc = xi $, then 

Most of the non-diagonal elements are zero, therefore it is not hard to invert 
M for any K .  Doing so yields the covariance matrix 

B.2 Computing the F’s 

For practical cases, it is not hard to compute the values of the sc,i, and then 
the elements of M. There exist canned routines that we can use to calculate the 
elements of the inverse of M. We can then pick out those elements of M-’ that 
are the covariance matrix V, and use the sigmas (the square roots of the diagonal 
elements) to calculate the significances ac/a(ac). 

We know that the diagonal elements of V are *Qc(l - Q,) for the case of com- 
plete separation, therefore we know that our calculated elements are &Qc(l - Qc), 
and we know what 5 Q c ( l -  Qc) is, so we can easily obtain m. 
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