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ABSTRACT

Measurement of time-dependent

BS — B, mixing at SLD

Ming Xiong Liu
Yale University
December 1997

The time dependence of BS — B, mixing has been observed in events containing
high-P; leptons using a highly inclusive vertexing method to determine the B decay
length and boost. The initial state B hadron flavour is determined using the large
froward-backward asymmetry provided by the highly polarized electron beams of SLC
in combination with a jet charge technique. From a sample of 150,000 hadronic Z°
decays observed in the SLD detector at the SLC between 1993 and 1995, the mass
difference between the two Bj mass eigenstates has been measured to be Am,; =

0.486 + 0.065(stat) + 0.035(syst) ps~*
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