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Abstract

The Standard Model of particle physics describes the fundamental building blocks

of the Universe and their basic interactions. The model naturally describes the time

evolution of the basic particles, of which lifetime and mixing are two examples. The

neutral B meson, consisting of a bottom quark and an oppositely charged down

quark, enjoys a lifetime of about 1.5 ps and the special property of mixing with its

antiparticle partner, the B0. That is, due to second order weak interactions, the B0

meson can change into a B0 meson and back again as it evolves through time. The

details of this behavior offer an opportunity to closely examine the Standard Model.

In this dissertation, I report on a measurement of the lifetime and mixing frequency

of the neutral B meson. Using the semileptonic decay channel B0 → D∗−`+ν`, we

select more than 68,000 signal and background candidates from about 23 million BB

pairs collected in 1999-2000 with the BABAR detector located at the Stanford Lin-

ear Accelerator Center. The other B in the event is reconstructed inclusively. By

constructing a master probability density function that describes the distribution of

decay time differences in the sample, we use a maximum likelihood technique to simul-

taneously extract the B0 lifetime and mixing parameters with precision comparable

to the year 2000 world average. The results are τB0 = (1.523+0.024
−0.023 ± 0.022) ps and

∆md = (0.492 ± 0.018 ± 0.013) ps−1. The statistical correlation coefficient between

τB0 and ∆md is −0.22.

I describe in detail several cutting-edge strategies this analysis uses to study these

phenomena, laying important groundwork for the future. I also discuss several exten-

sions of this work to include possible measurements of higher order parameters such

as ∆Γd.
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Foreword

Spokesperson Stewart Smith recently introduced the BABAR experiment before

the announcement of a new result with the words, “Our experiment has two prod-

ucts: new science, and highly trained people.” This is a fundamental statement. I

believe the field of physics has two purposes: discoveries about our Universe and the

relationships that govern it, and the rigorous training of individuals in the skills of

critical thinking, careful observation, and creative vision. This duality is not divisive;

rather it is inclusive – it asserts that there is more to the discipline of physics than

merely a derived understanding of the Universe. There is a practice, a paradigm, a

set of skills that can be developed in physics that has a greater value. It is this dual

character that first inspired me to join the field.

This dissertation is about my training in those areas, and it has been an education

filled with joy, challenge, and spirit.

Forget the world; the music is NOW. - DJ Zenith

vi



Acknowledgements

I am grateful for the many gifts in my life. Earning a Ph.D. in Physics at Stanford
is no exception, and I will take a moment here to pay my respects before I take the
next fork in the road. I am proud of my connection to these people, and shout out
my sincere thanks and praise with great enthusiasm.

Pat – As a mentor and advisor she has been a constant source of support and inspi-
ration, embodying the skills of creative vision and mindful observation. As a friend,
she’s been a model of balance, openness, and sincerity.

David K – Everyone needs a guide when embarking on something unknown, and
David has been that older brother, wiser colleague, and the slightly more sober drink-
ing partner. Compassionate, genuine, and dedicated!

Chris and Chih-Hsiang – My drinking buddies, especially when there wasn’t even any
alcohol around. Brilliant, talented, and good-natured.

Stanford crew – Fil & Nicci, Travis & Taska, John & Danna, Tali & Barbara, Phil
& Veronica, Aaron & Kelsey, Gary & Rosemary, Tarek, Aaron & Holly, Pablo &
Cathryn, Jason & Heather (& Zoe), and others; all have been the key ingredients in
my Bay Area community of family, intimacy, and joy.

The (Extended) Gomez Family – Axis and Allies, “That was a Murali-style hand
of cards,” and “Arun, you called it on what?!!” I tried to get away by moving to
California, but still they found me. And thank goodness they did, for my love and
respect for them all has only increased! (Although I’d swear I can still beat them in
euchre!)

The Crew at Emilia’s – Truly the greatest part of my experience here has been in
meeting these friends, and sharing in the quest for understanding what it means to
be human and under authority in this life. Especially Tim the Elder, who has been

vii



both father and friend, and who gave me the courage to seek my true intentions.

Tom – Clearly thinking, and thinking clearly. No one could be more honest, under-
standing, or insightful. A source of unwavering support and confidence, and especially
late-night advice. (And thanks to Janis for keeping him around!)

Todd and Jeff – Compadres from a bygone era, these two have always given me the
boost I needed to reach the cookie jar on the top shelf.

The Discoverers of Volleyball – Exhilaration, focus, and smacking something really
hard. All necessary parts of the happy graduate student existence.

Mom M, Mom & Dad H – A statement on origins: I couldn’t have made it here with-
out them. I treasure their encouragement, excitement, and their excellent examples
of being; and I thank them for sharing Allison and Emily with me!

BABAR, SLAC – “Crazy” Italians and all, I am indebted to all these wonderful per-
sons’ insight, good humor and advice. (Even while on shift!)

Stanford Physics Department – A tremendous environment that nurtured my per-
sonal and professional development, and which has always had its heart in the right
place.

Emily - My sweetpea, who knew it all was possible. Her deep love for heart, mind,
soul, and strength are my inspiration. She’s brought unconditional grace, love, and
beauty into my life, and her presence has been one of my greatest blessings.

and lastly, Mr. J – he taught me all about Source and Direction.

Finally, if there are some whom I’ve forgotten or neglected, do write me; the check
will be in the mail.

viii



Contents

Abstract v

Foreword vi

Acknowledgements vii

1 Executive Overview 1

2 Introduction and Motivation 5

2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . 6

2.1.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Comments on the Electroweak Interaction . . . . . . . . . . . 13

2.1.3 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Goals of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Methods of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Collisions at the Υ (4S) . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Decays of the Υ (4S) . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Time Dependent Analysis . . . . . . . . . . . . . . . . . . . . 32

3 Theory and Phenomenology 35

3.1 Time Evolution Formalism . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Mixing of Neutral B Mesons . . . . . . . . . . . . . . . . . . . 36

ix



3.1.2 Time Evolution of Neutral B Mesons . . . . . . . . . . . . . . 39

3.1.3 Time Evolution From Υ (4S) Decays . . . . . . . . . . . . . . . 41

3.2 Comments on τB0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Comments on ∆md . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 The Decay B0 → D∗−`+ν` . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Other Measurement Techniques 53

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Mixing Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Comparisons to This Measurement . . . . . . . . . . . . . . . . . . . 59

5 The BaBar Experiment 62

5.1 The PEP-II Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 The BABAR Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Silicon Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Detector of Internally Reflected Cherenkov Light . . . . . . . 72

5.2.4 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . 75

5.2.5 Instrumented Flux Return . . . . . . . . . . . . . . . . . . . . 76

5.2.6 Trigger and Data Acquisition . . . . . . . . . . . . . . . . . . 78

5.3 Performance and Data Samples . . . . . . . . . . . . . . . . . . . . . 79

5.4 Monte Carlo Data Samples . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Candidate Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . 86

6 Decay-time Measurement 90

6.1 Brec Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 The BD∗` refitting algorithm . . . . . . . . . . . . . . . . . . . 91

6.2 Btag Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Extracting the Decay-Time Difference . . . . . . . . . . . . . . . . . . 101

x



6.3.1 Boost Approximation . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Per-event error . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Nature of the Resolution Model . . . . . . . . . . . . . . . . . 111

6.4.2 Dependence on σ∆t . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.3 Choice of Resolution Model . . . . . . . . . . . . . . . . . . . 113

6.5 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Flavor Identification 122

7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Vertexing-Tagging Correlations . . . . . . . . . . . . . . . . . . . . . 128

8 Event Sample Selection 132

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.1 Daughter Reconstruction . . . . . . . . . . . . . . . . . . . . . 134

8.2.2 B0 → D∗−`+ν` Selection . . . . . . . . . . . . . . . . . . . . . 139

8.3 Final Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Analysis Strategy 147

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1.1 The Master Model . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1.2 Sharing or Splitting Parameters . . . . . . . . . . . . . . . . . 151

9.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3 Blinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10 Models for Per-event Probability 157

10.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2 Fitting the m(D∗) −m(D0) Shapes . . . . . . . . . . . . . . . . . . . 160

xi



10.3 Calculating Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.3.1 Combinatoric Background . . . . . . . . . . . . . . . . . . . . 164

10.3.2 Continuum Peaking Background . . . . . . . . . . . . . . . . . 165

10.3.3 Fake Lepton Peaking Background . . . . . . . . . . . . . . . . 165

10.3.4 Uncorrelated Lepton Peaking Background . . . . . . . . . . . 166

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11 Models for Time-Dependence 174

11.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11.2 Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

11.2.1 B0 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

11.2.2 B± Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2.3 Combined Signal Model . . . . . . . . . . . . . . . . . . . . . 182

11.3 Background Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.3.1 Combinatoric background . . . . . . . . . . . . . . . . . . . . 186

11.3.2 Continuum peaking background . . . . . . . . . . . . . . . . . 189

11.3.3 Fake-lepton peaking background . . . . . . . . . . . . . . . . . 192

11.3.4 Uncorrelated-lepton peaking background . . . . . . . . . . . . 193

12 Results 196

12.1 Comments on Implementation . . . . . . . . . . . . . . . . . . . . . . 197

12.1.1 Signal Outlier Model . . . . . . . . . . . . . . . . . . . . . . . 197

12.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12.2 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12.2.1 Final Parameter Values . . . . . . . . . . . . . . . . . . . . . . 200

12.2.2 Plots of ∆t Projections . . . . . . . . . . . . . . . . . . . . . . 201

12.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

13 Validation and Consistency Checks 215

13.1 Consistency of Subsamples . . . . . . . . . . . . . . . . . . . . . . . . 216

13.1.1 Flavor Subsamples . . . . . . . . . . . . . . . . . . . . . . . . 216

13.1.2 D0 Mode Subsamples . . . . . . . . . . . . . . . . . . . . . . . 217

xii



13.1.3 ∆t-selected Subsamples . . . . . . . . . . . . . . . . . . . . . . 218

13.1.4 Tagging Category Subsamples . . . . . . . . . . . . . . . . . . 219

13.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

13.2 Sensitivity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

13.2.1 Upper Limit on m(D∗) −m(D0) . . . . . . . . . . . . . . . . . 224

13.2.2 NT3 Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

13.2.3 ∆md From Shape or Counting Information . . . . . . . . . . . 225

13.3 Comparison with Simulation . . . . . . . . . . . . . . . . . . . . . . . 227

13.3.1 Signal MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13.3.2 Generic MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

13.3.3 Correction Based on Generic Monte Carlo Sample . . . . . . . 234

13.3.4 Toy MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

14 Systematic Studies 238

14.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

14.2 Uncertainty in Decay-Time Difference . . . . . . . . . . . . . . . . . . 239

14.3 Fixed B± Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

14.4 Background Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

14.5 Background Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

14.6 Signal Resolution Models . . . . . . . . . . . . . . . . . . . . . . . . . 253

14.7 Selection and Fit Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 254

14.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

15 Discussion and Outlook 257

15.1 Significance of This Result . . . . . . . . . . . . . . . . . . . . . . . . 258

15.2 Extracting Additional Performance . . . . . . . . . . . . . . . . . . . 259

15.3 Extracting Additional Physics . . . . . . . . . . . . . . . . . . . . . . 263

15.3.1 General Comments . . . . . . . . . . . . . . . . . . . . . . . . 263

15.3.2 A Specific Case: ∆Γ . . . . . . . . . . . . . . . . . . . . . . . 265

16 Closure 274

xiii



17 Afterword 279

18 Appendices 280

A Additional Plots of Event Sample 281

B Event Selection Criteria 289

C Comments on the BABAR Event Store 291

D Comments on Parameter Splitting 296

E SVT Radiation Monitoring and Protection 299

E.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

E.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

E.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

E.4 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

E.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

E.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

F Background Remediation Group 322

G High Luminosity Backgrounds Task Force 325

H Beam Abort Reduction Task Force 327

I Physics Impact of Beam Backgrounds Task Force 329

Bibliography 330

xiv



List of Tables

2.1 Transformations of Lorentz objects under C, P , or T . . . . . . . . . 12

5.1 Trigger cross-sections and rates . . . . . . . . . . . . . . . . . . . . . 79

6.1 Brec vertex algorithm selection rates . . . . . . . . . . . . . . . . . . 94

6.2 ztag- zD∗` correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Tagging performance on signal Monte Carlo . . . . . . . . . . . . . . 128

8.1 Summary of signal and control samples . . . . . . . . . . . . . . . . 144

10.1 Attributes used to subdivide the sample . . . . . . . . . . . . . . . . 161

10.2 Event yields in Data and overall background fractions . . . . . . . . 168

11.1 Performace of signal ∆t model on signal Monte Carlo . . . . . . . . . 178

11.2 Values of B+ to B0 ratios fixed in the fit to MC . . . . . . . . . . . . 182

11.3 Values of B+ to B0 ratios fixed in the fit to Data . . . . . . . . . . . 182

11.4 Full signal model fits to Monte Carlo . . . . . . . . . . . . . . . . . . 184

11.5 Development of Gcont ∆t model . . . . . . . . . . . . . . . . . . . . . 192

11.6 Composition by mixing status of uncorrelated lepton control sample 194

12.1 Signal model ∆t parameters from fit to Data . . . . . . . . . . . . . 201

12.2 Combinatoric ∆t model parameters from fit to Data . . . . . . . . . 202

12.3 Peaking background ∆t parameter from fit to Data . . . . . . . . . . 203

12.4 Global correlations between choice signal model parameters . . . . . 203

13.1 Fit results for flavor subsamples . . . . . . . . . . . . . . . . . . . . 217

xv



13.2 Fit results for Dmode subsamples . . . . . . . . . . . . . . . . . . . . 218

13.3 Fit results for tighter ∆t selection . . . . . . . . . . . . . . . . . . . 219

13.4 Fit results for tighter σ∆t selection . . . . . . . . . . . . . . . . . . . 220

13.5 Fit results by tagging category . . . . . . . . . . . . . . . . . . . . . 222

13.6 Fit results using only ∆t-shape information . . . . . . . . . . . . . . 227

13.7 Fit results using MC truth . . . . . . . . . . . . . . . . . . . . . . . 228

13.8 Comparison of fitted and true mistag rates . . . . . . . . . . . . . . 228

13.9 Fit results for ∆t model fit to signal MC . . . . . . . . . . . . . . . . 229

13.10 Fit results for generic MC compared to nominal . . . . . . . . . . . . 232

13.11 Fit results to generic MC with fixed fB+ . . . . . . . . . . . . . . . . 234

13.12 Correlation coefficients from fit to generic MC . . . . . . . . . . . . . 235

13.13 Fit results and biases for study of generic MC . . . . . . . . . . . . . 236

14.1 Fit results using shifted beamspot positions . . . . . . . . . . . . . . 242

14.2 Fit results using smeared beamspot positions . . . . . . . . . . . . . 243

14.3 Fit results using truth-tagging with perturbed beamspots positions . 243

14.4 z residuals for each B vertex under different beamspot perturbations 244

14.5 Number of D0 events per mode in 20 fb−1 signal MC . . . . . . . . . 244

14.6 Fit results using different SVT alignment scenarios . . . . . . . . . . 247

14.7 Fit results for SVT alignment subsamples . . . . . . . . . . . . . . . 248

14.8 Fit results with varied B± lifetime ratio . . . . . . . . . . . . . . . . 249

14.9 Fit results with varied B± mistag ratios . . . . . . . . . . . . . . . . 249

14.10 Spread of τB0 and ∆md from fits with perturbed background fractions 250

14.11 Summary of systematic uncertainties . . . . . . . . . . . . . . . . . . 256

E.1 List of SVTRAD references . . . . . . . . . . . . . . . . . . . . . . . 299

xvi



List of Figures

2.1 Fundamental particles of the Standard Model . . . . . . . . . . . . . 8

2.2 Fundamental interactions of the Standard Model . . . . . . . . . . . 9

2.3 The parity transformation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The time reversal operation . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The CKM triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 The box diagram for neutral meson mixing. . . . . . . . . . . . . . . 24

2.7 The Υ (4S) resonance in e+e− collisions . . . . . . . . . . . . . . . . 28

2.8 Feynman diagram for e+e− → BB . . . . . . . . . . . . . . . . . . . 29

2.9 Sketch of the Υ (4S) decay to two B mesons . . . . . . . . . . . . . . 30

2.10 Ideal ∆t distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Realistic ∆t distributions distorted by mistags and resolution . . . . 34

3.1 Dalitz distributions and projections for B0 → D∗−`+ν` . . . . . . . . 50

3.2 Momenta distribution for B0 → D∗−`+ν` . . . . . . . . . . . . . . . 51

5.1 Schematic of the PEP-II facility . . . . . . . . . . . . . . . . . . . . 64

5.2 Schematic of Interaction Region 2 at PEP-II . . . . . . . . . . . . . 65

5.3 The BABAR detector: end- and side-views . . . . . . . . . . . . . . . 66

5.4 Side- and end-views of the SVT . . . . . . . . . . . . . . . . . . . . . 69

5.5 Cartoon of SVT wafer operation . . . . . . . . . . . . . . . . . . . . 70

5.6 Single hit resolution for SVT Layer-1 . . . . . . . . . . . . . . . . . . 71

5.7 dE/dx measurements using the DCH . . . . . . . . . . . . . . . . . . 73

5.8 Sketch of the DIRC . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 Sketch of the EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvii



5.10 Sketch of the IFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 BABAR luminosity history . . . . . . . . . . . . . . . . . . . . . . . . 80

5.12 Muon PID efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 z residual distribution for BD∗` . . . . . . . . . . . . . . . . . . . . . 92

6.2 Improvement in m(D∗) −m(D0) resolution after refitting . . . . . . 96

6.3 Improvement in δm resolution per algorithm per cos θD∗,` slice . . . . 97

6.4 Improvement in δm resolution per algorithm per φ slice . . . . . . . 98

6.5 Distribution of σ∆t for different Brec vertex algorithms . . . . . . . . 99

6.6 ∆z residual distributions for different vertexing algorithms . . . . . . 100

6.7 z residuals for Btag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Mechanism for ztag bias . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 ∆ttrue vs ∆ttrue from ∆ztrue . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 Correlation between δ∆t and ∆ttrue . . . . . . . . . . . . . . . . . . 108

6.11 Signal MC fits to ∆ttrue and ∆ttrue from ∆ztrue . . . . . . . . . . . . 109

6.12 Distribution of σ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.13 ∆t pulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.14 Mean and RMS of δ∆t vs σ∆t . . . . . . . . . . . . . . . . . . . . . . 112

6.15 Mechanism for correlation between bias and σ∆t . . . . . . . . . . . 113

6.16 Evidence of charm content as source of bias . . . . . . . . . . . . . . 114

6.17 Resolution model parameters per σ∆t slice . . . . . . . . . . . . . . . 117

6.18 Sketch of the GExp resolution model . . . . . . . . . . . . . . . . . . 118

6.19 Characteristics of outliers from Monte Carlo . . . . . . . . . . . . . . 120

7.1 Fenyman graph showing primary, secondary leptons . . . . . . . . . 126

7.2 Distribution of flavor-tagging neural network output . . . . . . . . . 127

7.3 Mistag rates per σ∆t slice for each tagging category . . . . . . . . . . 129

7.4 Common dependence of σ∆t and mistag rate on
√
Σp2

t . . . . . . . . 130

7.5 Dependence of mistag rate on σ∆t after correction . . . . . . . . . . . 130

7.6
√∑

p2
t spectra for correctly and incorrectly tagged events . . . . . . 131

8.1 Dalitz distributions for D0 → K−π+π0 . . . . . . . . . . . . . . . . . 136

xviii



8.2 pT for π−
soft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Distribution of D∗ center-of-mass momentum . . . . . . . . . . . . . 137

8.4 Lepton center-of-mass momentum . . . . . . . . . . . . . . . . . . . 138

8.5 Distribution of angular variables for B0 → D∗−`+ν` . . . . . . . . . . 141

8.6 Comparison of cos θB,D∗` for signal and candidate control samples . . 143

8.7 Relationship between control samples . . . . . . . . . . . . . . . . . 145

10.1 δm spectrum for D∗µ events . . . . . . . . . . . . . . . . . . . . . . 159

10.2 Behavior of the combinatoric background model . . . . . . . . . . . . 162

10.3 Peak shape fit results projected onto δm . . . . . . . . . . . . . . . . 169

10.4 Peak and background fit results projected onto δm . . . . . . . . . . 170

10.5 Contribution to m(D∗) −m(D0) spectrum by class of event . . . . . 172

10.6 Histograms of per-event signal and background probabilities . . . . . 173

11.1 Splitting of signal ∆t model parameters . . . . . . . . . . . . . . . . 179

11.2 ∆t distributions and fit projections for signal MC . . . . . . . . . . . 180

11.3 Mixing asymmetry for combinatoric background events . . . . . . . . 187

11.4 Composition of combinatoric backgrounds by source . . . . . . . . . 188

11.5 Results for different splittings of combinatoric f osc parameter . . . . 190

11.6 Final results for splitting of combinatoric f osc parameter . . . . . . . 191

12.1 Log likelihood surface as a function of outlier shape parameters . . . 198

12.2 (∆md,τB0) for different outlier shape parameters . . . . . . . . . . . 199

12.3 Error ellipse for tauBz vs ∆md from fit results . . . . . . . . . . . . 202

12.4 ∆t projection of fit result on 80% pure signal sample . . . . . . . . . 204

12.5 Mixing asymmetry for 80% pure signal sample . . . . . . . . . . . . 205

12.6 Sources of τB0- ∆md statistical error and correlation . . . . . . . . . 206

12.7 Log-likelihood values along τB0-∆md error ellipse . . . . . . . . . . . 208

12.8 Graphical depiction of correlation matrix of fit result . . . . . . . . . 210

12.9 ∆t projections of Data and fit result for combinatoric backgrounds . 211

12.10 Mixing asymmetry and fit result for combinatoric backgrounds . . . 212

12.11 ∆t projections of Data and fit result for fake lepton backgrounds . . 213

xix



12.12 Mixing asymmetry and fit result for fake lepton backgrounds . . . . 214

13.1 Spread of ∆md from fits to various subsamples . . . . . . . . . . . . 221

13.2 Spread of τB0 from fits to various subsamples . . . . . . . . . . . . . 223

13.3 Log-likelihood surface for different outlier shape parameters . . . . . 231

13.4 Distribution of log-likelihood values . . . . . . . . . . . . . . . . . . 237

14.1 Spread of τB0 and ∆md from fits with perturbed background fractions 251

14.2 Scatter plot of (τB0 ,∆md) for perturbed sets of background fractions 252

15.1 Comparison of our results with other recent measurements. . . . . . 258

15.2 Projected luminosity accumulation . . . . . . . . . . . . . . . . . . . 263

15.3 Relations imposed by discrete symmetries . . . . . . . . . . . . . . . 264

15.4 B mixing box diagram contributions to ∆md, ∆Γ . . . . . . . . . . . 266

15.5 ∆t distributions with non-zero ∆Γ . . . . . . . . . . . . . . . . . . . 268

15.6 Statistical error on ∆Γ under different measurement scenarios. . . . . 272

16.1 World average of ∆md from the B factories. . . . . . . . . . . . . . . 276

16.2 World average of ∆md, summarized by experiment. . . . . . . . . . . 277

16.3 World average of τB0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.1 δm spectra for same-side samples . . . . . . . . . . . . . . . . . . . . 282

A.2 δm fit results for the (SVT x D0 → Kπ) sample . . . . . . . . . . . 283

A.3 δm fit results for the (DCH x D0 → Kπ) sample . . . . . . . . . . . 284

A.4 δm fit results for the (SVT x (D0 → Kπππ + D0 → K0
S
ππ) sample . 285

A.5 δm fit results for the (DCH x (D0 → Kπππ + D0 → K0
S
ππ) sample . 286

A.6 δm fit results for the (SVT x D0 → Kππ0) sample . . . . . . . . . . 287

A.7 δm fit results for the (DCH x D0 → Kππ0) sample . . . . . . . . . . 288

D.1 Fitting x with a single, common Gaussian . . . . . . . . . . . . . . . 297

D.2 Fitting x with two, distinct Gaussians . . . . . . . . . . . . . . . . . 297

D.3 Fitting x with a simultaneous Gaussian pdf . . . . . . . . . . . . . . 298

D.4 The “Narrow” and “Wide” x distributions revealed . . . . . . . . . . 298

xx



E.1 Schematic of the BABAR Radiation Protection System . . . . . . . . 304

E.2 Block diagram of the SVTRAD module . . . . . . . . . . . . . . . . 313

E.3 Sample EPICS screeenshots for the SVTRAD system . . . . . . . . . 320

E.4 History of radiation trips and doses . . . . . . . . . . . . . . . . . . . 321

xxi



xxii



Chapter 1

Executive Overview

This study examines the time evolution of neutral B mesons produced at a dedicated
collider-detector facility at the Stanford Linear Accelerator Center (SLAC). The collider
produces copious amount of e+e− annilihation events at the Υ (4S) resonance. These bound
states in turn decay predominantly to BB. Due to the difference in the beam energies in the
lab frame, the B mesons are boosted in the “forward” direction, and therefore travel about
250µm before decaying. We use the BABAR detector to record the life cycle of the B meson.

Our strategy is to reconstruct candidates in the decay mode B0 → D∗−`+ν`, and assign
the remaining particle tracks and energy in the event to the other B meson decay. By
measuring the vertex of each B, we estimate the decay distance difference that we convert
to the decay time difference ∆t using our knowledge of the boost between the Υ (4S) frame
and the lab. We also use charge correlations between the B meson decay daughters and the
parent candidate to determine the flavor of the constituent b quark at the time of decay.

The quality of the reconstructed D∗` candidate is estimated through a series of fits to
the m(D∗)−m(D0) spectrum (after grouping the events into similarly-behaved sub-groups)
and by the use of relative efficiencies in similarly selected background control samples. (For
instance, a sample of data recorded off the Υ (4S) peak is enriched in non-BB background
contributions.) A probability density function for the distribution of all classes of events
(signal and backgrounds) is constructed using the control subsamples and taking into account
the cross-contaminations, flavor misidentification rates, and decay time difference resolution
functions. The 72-parameter model is fit to about 68, 000 events from the 1999-2000 BABAR

dataset that match our selection criteria. The results include the physics parameters τB0

and ∆md. Consistency checks are performed to validate the technique, and variations of
the process are used to estimate the degree of systematic uncertainty.

1
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The phenomenon of particle-antiparticle oscillations or “mixing” has been ob-

served in neutral mesons containing a down quark and a strange quark (K mesons)

or a bottom quark (B mesons) [1], and more recently in the neutrino sector. [2] The

time evolution of B0 mesons is governed by both the overall decay rate 1/τB0 and

the B0-B0 oscillation frequency ∆md. In the Standard Model of particle physics,

this mixing is the result of second-order charged weak interactions involving box

diagrams containing virtual quarks with charge 2/3. In B mixing, the diagram con-

taining the top quark dominates. Therefore, the mixing frequency ∆md is sensitive

to the Cabibbo-Kobayashi-Maskawa quark-mixing matrix element Vtd [3], [4]. In the

neutral K meson system, mixing also has contributions from real intermediate states

accessible to both a K0 meson and a K0. These contributions are expected to be

small for B mixing and are neglected in most of this analysis.

We present a measurement of the B0 lifetime τB0 and the oscillation frequency

∆md based on a sample of approximately 14,000 exclusively reconstructed B0 →
D∗−`+ν` decays selected from a sample of 23 million BB events recorded during

1999-2000 at the Υ (4S) resonance with the BABAR detector at the Stanford Linear

Accelerator Center. In the experiment, 9 GeV electrons and 3.1 GeV positrons anni-

hilate to produce BB pairs moving along the electron beam direction (z axis) with a

known Lorentz boost of βγ = 0.55, which allows a measurement of the time between

the two B decays, ∆t.

The proper decay-time difference ∆t between two neutral B mesons produced in

a coherent P -wave state in an Υ (4S) event is governed by the following probabilities

to observe an unmixed event,

P (B0B0 → B0B0) ∝ e−|∆t|/τB0 (1 + cos ∆md∆t), (1.1)

or a mixed event,

P (B0B0 → B0B0 or B0B0) ∝ e−|∆t|/τB0 (1 − cos ∆md∆t). (1.2)

Therefore, if we measure ∆t and identify the b-quark flavor of each B meson when

it decays, we can extract the B0 lifetime τB0 and the mixing frequency ∆md. In this
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analysis, one B is reconstructed in the mode B0 → D∗−`+ν`, which has a measured

branching fraction of (4.60 ± 0.21)% [5]. Although the neutrino cannot be detected,

the requirement of a reconstructed D∗− → D0π− decay and a high-momentum lepton

satisfying kinematic constraints consistent with the decay B → D∗`ν` allows the

isolation of a signal sample with (65 - 89)% purity, depending on the D0 decay mode

and whether the lepton candidate is an electron or muon. The charges of the final-

state particles are used to identify the meson as a B0 or a B0. The remaining charged

particles in the event, which originate from the other B (referred to as Btag), are used

to identify, or “tag”, its flavor as a B0 or a B0. The time difference ∆t = tD∗`− ttag ≈
∆z/βγc is determined from the separation ∆z along the boost direction of the decay

vertices for the D∗` candidate and the tagging B. The average separation is 250µm.

The oscillation frequency ∆md and the average lifetime of the neutral B meson,

τB0 , are measured simultaneously with an unbinned maximum-likelihood fit to the

measured ∆t distributions of events that have been classified as mixed and unmixed.

This is in contrast to previous measurements in which only ∆md is measured with

τB0 fixed to the world average, or in which τB0 alone is measured. There are several

reasons to measure the lifetime and oscillation frequency simultaneously. Since sta-

tistical precision for both τB0 and ∆md is comparable to the uncertainty on the world

average, it is appropriate to measure both quantities rather than fixing the lifetime

to the world average. Secondly, since mixed and unmixed events have different ∆t

distributions, the mixing information for each event improves sensitivity to the ∆t

resolution function, and a smaller statistical uncertainty on τB0 results. Also, since

B0B0 and B+B− events have different mixing behavior, we can use the ∆t distribu-

tions for mixed and unmixed events to help discriminate between B0B0 signal events

and B+B− background events in the joint lifetime and mixing measurement.

There are three main experimental complications that affect the ∆t distributions

given in Eqs. 1.1 and 1.2. First, the tagging algorithm, which classifies events into

categories c depending on the source of the available tagging information, incorrectly

identifies the flavor of Btag with a probability wc with a consequent reduction of the

observed amplitude for the mixing oscillation by a factor (1 − 2wc). Second, the

resolution for ∆t is comparable to the lifetime and must be well understood. The
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probability density functions (PDF’s) for the unmixed (+) and mixed (−) signal

events can be expressed as the convolution of the underlying ∆ttrue distribution for

tagging category c,

e−|∆ttrue|/τB0

4τB0

[1 ± (1 − 2wc) cos∆md∆ttrue],

with a resolution function R(∆tmeas − ∆ttrue; ~qc) that depends on parameters ~qc. A

final complication is that the sample of selected B0 → D∗−`+ν` candidates is not

pure signal.

This study is described in this document with the following organization. The

theoretical framework forB0 time evolution is presented in Chapter 3, while Chapter 4

discusses other techniques for these measurements and summarizes the current state-

of-the-art. An overview of the experimental apparatus is described in Chapter 5.

The measurement of ∆z and the determination of ∆t and σ∆t for each event is

discussed in Chapter 6. The b-quark tagging algorithm is described in Chapter 7.

In addition to signal events, control samples of events enhanced in each type of

background are selected as described in Chapter 8. Chapter 9 details the general

strategy involving fits to the m(D∗) − m(D0) spectrum and the ∆t distributions.

The method of determining the signal and background probabilities for each event in

the signal and background control samples is discussed in Chapter 10. The physics

models and ∆t resolution functions used to describe the measured distribution for

signal and backgrounds are given in Chapter 11. The likelihood is maximized in

a simultaneous fit to the signal and background control samples to extract the B0

lifetime τB0 , the mixing frequency ∆md, the mistag probabilities wc, the signal ∆t

resolution parameters ~qc, the background ∆t model parameters, and the fraction of

B± → D∗0`±ν`X decays in the signal sample. The results of the fit are given in

Chapter 12. Cross-checks are described in Chapter 13 and systematic uncertainties

are summarized in Chapter 14. Finally, some future experimental challenges are

discussed in Chapter 15.



Chapter 2

Introduction and Motivation

Contemporary understanding of particle physics is encapsulated in the Standard Model,
a description of fundamental particles (leptons and quarks) and the relationships between
them (mediated by force-carrying bosons). One of these fundamental particles is the b quark,
the second most massive of the six quarks. Although only discovered in 1974 [6], we know a
lot about this quark by analogy to its partners, the s and d quarks and because it has been
the subject of intense scrutiny. The Standard Model treats matter and antimatter almost
identically (the difference is parameterized by CP violation); so the existence of antimatter
is almost unavoidable in this framework. The antiparticle of the b quark is the b, which
we expect to behave similarly to the b. Quarks do not manifest themselves freely in Nature;
they are bound into composite particles. The two-quark composite is called a meson, and
here we study the B meson, which contains a b quark and a complementary u or d quark
to make a B− or B0 meson. The motivation for the study described in this dissertation
is to precisely measure the life-cycle of the B0 meson in order to confirm (or reject) the
description provided by the Standard Model.

One prediction of the Standard Model is that B0 and B0 mesons can “mix” or transform
into each other and back again according to strict guidelines. Two parameters describing
the time evolution (i.e., life-cycle) of the B0 are its lifetime τB0 (how long it lives) and its
mixing frequency ∆md (the average rate at which B0 transforms in to B0 and vice versa).
This study uses a novel technique to measure both of these parameters in the same data
sample, which consists of a collection of events wherein which we try to identify the “birth”
and “death” of each B meson, produced at a special facility called PEP-II at the Stanford
Linear Accelerator Center. The BABAR experiment is used to record and analyze the B
meson data, which involves the work of more than 500 scientists. In this study, we seek to
identify and characterize a subset of the B mesons in the sample by identifying those which
decay in a particular way: the semileptonic decay B0 → D∗−`+ν`.

5
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2.1 The Standard Model of Particle Physics

The Standard Model

Current understanding of particle physics is described within the framework of the

Standard Model. This picture enumerates the essential sets of particles and describe

the forces that act between them. It is under this (somewhat) short list of rules that

most of the Universe operates today. However, the Standard Model isn’t complete; or

rather, it is not yet satisfying as a scientific theory. ∗ There are phenomena in Nature

that are not described in the Model (such as gravity), and furthermore, we suspect

that there are connections between phenomena that we have not yet elucidated. For

instance, one needs the physics of Standard Model and 18 parameters [7] in order

to cook up the Universe as we presently see it. The 18 independent parameters are

divided up between particle masses and strengths of their interactions (couplings);

most of these have been determined experimentally (i.e., measured in the lab for our

Universe), but not all. Depending on what we learn about the neutrino portion of

the Standard Model, we could even see the number of input parameters grow by as

much as 9.

The Particles

The Standard Model describes fundamental particles. In general, particles are dis-

tinguished from each other by quantum numbers, which are (by construction) those

properties of a particle which are conserved under certain interactions. The most

familiar quantum numbers include (electric) charge, color, spin, and flavor. Quantum

numbers are the key to “telling things apart,” and they are used to distinguish indi-

vidual particles and multi-particle systems (states). Noether’s Theorem in quantum

field theory [8] guarantees us a conserved quantity for each symmetry of a given sys-

tem, which can be labelled by the quantum number. Electric charge, for instance, is

just the quantum number for a system which corresponds to the conserved quantity

associated with a local gauge symmetry. [9].

∗This is an aesthetic impression, perhaps anthropomorphic, but it is widespread.
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The basic particles are divided into two groups depending on their spin: fermions

are those particles who spin is half-integer, and bosons are particles with integer

spin. The fermion or boson nature of a particle determines what “statistics” it obeys,

that is, the rules which must be followed when combining them into multi-particle

systems. For instance, fermions obey Fermi statistics, which results in the Pauli

Exclusion Principle [10], a statement that no two identical fermions can occupy the

same state at the same time. That is, no two identical fermions can have the same

quantum numbers. Bosons on the other hand, can occupy the same state, and in

fact, multiply occupied states are favored. Fig. 2.1 [11] shows the set of fermions and

bosons that are included in the Standard Model.

Matter is made up of the fermions, divided into leptons and quarks, in turn

grouped into three families or generations, while all of the force-carrying particles

are bosons. Each generation contains one “up-type” quark, one “down-type” quark,

a lepton, and a corresponding neutrino. “Up-type” quarks have charge +2/3 while

“down-type” quarks have charge −1/3. Each particle has an antimatter partner that

has opposite electric charge and flavor. Quarks can be combined into particles called

hadrons, identified as mesons (q1q2) and bayrons (q1q2q3).

The meson we study here is the B0 meson, a b quark paired with a d quark.

This particle is electrically neutral, and has a corresponding neutral antiparticle, B0,

composed of a b quark and a d quark. Another B meson considered in this analysis is

the B+ meson, which is the charged version, containing instead a u quark partnered

with the b.

The Interactions

The Standard Model describes four fundamental forces in the Universe: gravity,

electromagnetism, the weak force, and the strong force (in increasing order of rela-

tive strength). Each force is mediated by a set of particles, or rather, represented

in particle interactions, by force-carrying bosons. The four forces are depicted in

Fig. 2.2 [11].

A key aspect of the Standard Model is the notion of renormalization; this sophis-

ticated notion helps describe how to use the theory once we “place a cut to cancel
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Figure 2.1: Fundamental bosons and fermions defined in the Standard Model of
particle physics.

out the infinities” that arise in field theory calculations. But it is actually much more

about the observation that the forces can behave differently at different energy scales

because we generally work with an effective theory. In fact, the Standard Model sug-

gests that unification of the forces is possible at a very high energy scale: although

the four forces manifest themselves in an apparently unrelated fashion under ordinary

conditions , they can be viewed as different aspects of the same fundamental inter-

action (at a sufficiently high energy), and so become fundamentally connected at a

deep level. One might liken this situation to an ideal gas: at high temperature in the

gaseous phase, all of the particles behave identically. As one lowers the temperature,
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however (i.e., the average energy scale), different substances will begin to liquefy and

even solidify before others, taking on very different forms and behaviors. Although

this analogy is quite limited, it illustrates one point: in the Standard Model, the four

distinct forces (well, except for gravity) we observe now are actually the “frozen-out”

components of some higher-energy Grand Unified Force. For instance, we often refer

to the combination of the weak and electromagnetic forces above a certain energy

threshold (known as the electroweak symmetry breaking scale) as the “electroweak”

force.

Figure 2.2: Fundamental interactions defined in the Standard Model of particle
physics.

The interactions (forces) described by the Standard Model are elegantly summa-

rized in the Standard Model Lagrangian. A Lagrangian is a function that describes

the state of a dynamic system in terms of generalized coordinates and their time

derivatives. In this study, we are primarily interested in the electroweak portion of

the Lagrangrian, because it is responsible for the phenomenon of B0-B0 mixing.

2.1.1 Symmetries

We’ve already seen several examples of the important role that symmetries play

in physics. A particular interaction is often observed to obey many different con-

servations laws and so the mathematical description of the phenomena has to fulfill

stringent invariance requirements. (Conserved quantum numbers are associated with

operators that commute with the Hamiltonian.) There are several so-called discrete
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symmetries that, if true in the Universe, restrict the class of possible models. These

symmetries are C (charge conjugation), P (parity), and T (time reversal).† Let us

define these symmetries here, as we may revisit some of them in Chapter 15.

Quantum field theory, by construction, seeks to be relativistic, such that the

Minkowski interval t2−x2 is preserved under transformations both discrete and contin-

uous. The set of continuous transformations that preserve this norm are the Lorentz

transformations, including translation, rotations, and boosts. It can be shown that

with the addition of three discrete symmetry transformations to the Lorentz group of

operators and gauge transformations, one forms a complete basis of the Minkowski

interval preserving transformations [13]. These separate transformation can be per-

formed in sequence as well, and one could find that, for instance, while the electroweak

interaction violates CP symmetry, it preserves the more general CPT symmetry. CPT

has a rather special role in quantum field theory, as it’s conservation is guaranteed

solely from the reasonable assumptions of Lorentz invariance and locality. [8]

Parity

The parity transformation reverses the signs of the 3 spatial components of a four-

vector: (t, x) → (t,−x) and (E, ~p) → (E,−~p). That is, the effect is to reverse the

handedness of a particle, often likened to viewing the particle in a mirror. The effect

is to reverse the sign of a particle’s momentum while preserving it’s spin. The parity

operator is unitary, suggested by the property that a second application returns the

original state.

Parity was shown to be violated in weak decays in 1957 by Wu et al. [14] when

examining β decays of 60Co after aligning the cobalt nuclei with an external magnetic

field and analyzing the angular distribution of the emitted electron spectrum. This

is the classic example of parity violation: the absence of right-handed neutrinos, as

†One of the primary goals of the BABAR experiment is the study of CP -violation in the B0 meson
system. That study is parallel but separate from this analysis, so we choose to avoid that interesting
but distracting discussion. See Ref. [12] for more discussion.
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180-degree

rotation

mirror

Figure 2.3: Pictorial representation of the parity transformation.

in this decay rate and it’s parity-conjugated decay.:

Γ(π+ → µ+νL) 6= Γ(π+ → µ+νR) = 0.

Charge Conjugation

The charge conjugation transformation is defined to be the transformation of a

particle into its antiparticle without changing its momentum or spin (i.e., the particle-

antiparticle symmetry operation). Electrodynamics explicitly conserves charge con-

jugation: although the fields and potentials change their sign under the C symmetry

transformation, the Lorentz force incorporates the sign of the charge, and the final

physics is invariant. The only eigenstates of the C operator are neutral particles that

are their own antiparticle. Charge conjugation symmetry is violated in weak decays,

as indicated in this pair of decay rates (there are no left-handed anti-neutrinos):

Γ(π+ → µ+νL) 6= Γ(π− → µ−νL) = 0.

Time Reversal

The time reversal transformation reverses the momentum and spin of a particle

and reverses the sign of the time component (i.e., interchanging the forward and

backward light-cones). This is often likened to watching a film of the process in

reverse. If the CPT theorem is true for our Universe, we expect to see time reversal

violation in weak decays, since we’ve already seen that CP is not conserved. Because

the experiments are challenging, evidence for time reversal violation has only recently
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observed by CPLEAR. ‡ [15]

T

Figure 2.4: Pictorial representation of the time-reversal transformation.

C P T CP CPT
Scalar +1 +1 +1 +1 +1

Pseudoscalar +1 -1 -1 -1 +1

Vector −1




+1
−1
−1
−1







+1
−1
−1
−1







−1
+1
+1
+1


 −1

Pseudovector +1




−1
+1
+1
+1







+1
−1
−1
−1







−1
+1
+1
+1


 −1

Tensor −1




+1−1−1−1

−1+1+1+1

−1+1+1+1

−1+1+1+1







−1+1+1+1

+1−1−1−1

+1−1−1−1

+1−1−1−1







−1+1+1+1

+1−1−1−1

+1−1−1−1

+1−1−1−1


 +1

Derivative
Operator

+1




+1
−1
−1
−1







−1
+1
+1
+1







+1
−1
−1
−1


 −1

Table 2.1: Table of how the discrete symmetry operators, C, P , and T affect the
basic Lorentz objects: eigenvalues and transformed objects are shown as appropriate.

‡Indeed, one prospect for BABAR is the observation of time reversal violation in b quark system.
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2.1.2 Comments on the Electroweak Interaction

The electroweak Lagrangian is based on the SU(2)×U(1) symmetry group con-

taining four bosons: a massless isovector triplet Wµ for the SU(2) of weak isospin,

and a massless isosinglet Bµ for the the U(1) of weak hypercharge. [16] Above the

spontaneous symmetry-breaking threshold, all four bosons (W±,W 0, B0) are massless

and the SU(2)×U(1) symmetry is unbroken. Below the symmetry-breaking threshold,

the charged bosons and one linear combination of the neutral bosons acquire mass

(W±, Z0) while the orthogonal combination of neutral bosons remains massless (the

photon). The SU(2)×U(1) symmetry is thus not completely broken. There remains

a U(1) symmetry which gives rise to electromagnetism and the photon.

Following the discussion in Ref. [17], we can write out the interaction term in

explicit form:

LEW = −i
[
gJµ ·Wµ +

g′

2
(JY )µBµ

]
. (2.1)

This is elegant and compact, but requires some explanation. Loosely speaking, we

define the components as

• Wµ is the isotriplet of massless Yang-Mills gauge fields (bosons) introduced to

preserve the SU(2) symmetry of the Lagrangian,

• Bµ is the isosinglet gauge field associated with the U(1) symmetry for weak

hypercharge Y ,

• Jµ is the weak isopin current, i.e., a combination of fermions fields§ that is

conserved due to the SU(2) symmetry of weak isospin ¶ (in fact, this symmetry

is only applied to left-handed fermion fields),

• JY is the weak hypercharge current, i.e., a combination of fermion fields that is

conserved due to the U(1) symmetry (operating on both left- and right-handed

fermion fields),

§In fact, if we impose Lorentz invariance upon our Lagrangian, we are restricted to a finite set
of ways in which we can combine fermion fields to form these currents!

¶There are three conserved charges, corresponding to the three isospin components of Jµ.
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• g is the coupling of the isotriplet of vector fields Wµ to the weak isospin current

Jµ,

• g′
2

is the coupling of the vector field Bµ to the weak hypercharge current, JY

This model assumes all the particles (both the fermions and bosons) are massless. To

observe the unification of electromagnetism and the weak interaction, we note that

the fields W 3
µ and Bµ are neutral fields, and can be linearly combined (mixed) to form

the physical fields Aµ and Zµ:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ)

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = −Bµ sin θW +W 3
µ cos θW .

(2.2)

Identifying g/g′ = tan θW and substituting back into the Lagrangian term with J±
µ ≡

J1
µ ± J2

µ, we arrive at:

L =
g√
2
(J−

µ W
+
µ + J+

µ W
−
µ ) +

g

cos θW
(J3

µ − sin2 θWJ
e.m.
µ )Zµ + g sin θWJ

e.m.
µ Aµ, (2.3)

where the first term can be associated with the weak charged current interaction,

the second with the weak neutral current, and the final one with the traditional

electromagnetic neutral current. To make the identification complete, we assign e =

g sin θW = g′ cos θW , where θW is called the weak mixing (or Weinberg) angle. [18]

The neutral fields Zµ and Aµ are distinct operators and correspond to the Z0 and

photon particles with definite mass, and the charged W±
µ fields correspond to the

charged W± bosons.

We summarize our discussion of the unbroken electroweak theory by showing the

interaction between the gauge bosons and the fermions. First, we explicitly write out
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the fermionic field components of the conserved currents: (here for leptons)

J−
µ = νLγµeL

J+
µ = eLγµνL

J3
µ =

1

2
νLγµνL − 1

2
eLγµeL

JY
µ = −2eRγµeR − eLγµeL − νLγµνL

(2.4)

We can then generalize to include quarks and write for the general Dirac spinor ψ,

J±
µ =

√
2ψγµT

±ψ

Zµ = ψγµ[T3 − sin2 θWQ]ψ

Je.m.
µ = ψγµQψ

(2.5)

where T is the weak isospin operator (vanishing on ψR and having representation

T = 1
2
τ with the Pauli matrices τ for the isodoublets ψL), and Q is the electric

charge. All the fermion fields, now, can interact with the gauge fields.

The gauge bosons are still massless in this description, however (as are the fermions).

We accommodate massive gauge bosons by introducing the Higgs field Φ, an SU(2)

doublet of scalar fields. We arrange for the potential to have a ground state with non-

vanishing expectation value in the physical vacuum state. Spontaneously breaking

this symmetry generates masses while maintaining renormalizibility, but leaves the

gauge symmetry of the Lagrangian hidden; we have introduced a preferred direction

in weak isospin-hypercharge space. Without going into details, the procedure is to

add a potential to the Lagrangian for the new Higgs field:

V = µ2|Φ|2 + λ|Φ|4 LΦ = |DµΦ|2 − V (|Φ|2) , (2.6)

where we have introduced the new weak isodoublet of fields

Φ =

(
Φ+

Φ0

)
. (2.7)



16 CHAPTER 2. INTRODUCTION AND MOTIVATION

We require λ > 0 to bound the potential as Φ → ∞, and consider the “interesting”

case where µ2 < 0. The potential V has a minimum along Φ†Φ = −µ2

2λ
, a locus of

points that is invariant under rotations in the SU(2) space. We study the particle

spectrum, which requires perturbation theory near the minimum. We must choose

a particular direction in which to expand, however. This spontaneously breaks the

SU(2) symmetry.

The original field Φ had four degrees of freedom, one for each Φi. The Standard

Model choice for Φ is Φ1 = Φ2 = Φ4 = 0,Φ2
3 ≡ v2, bringing us to

Φ(x) =
1√
2

(
0

v + h(x)

)
. (2.8)

We have eliminated three degrees of freedom by choosing the unitary gauge such that

three of the four fields have been absorbed. This is “legal” since the Lagrangian

is symmetric under local gauge transformations. However, these three degrees of

freedom will later emerge as mass terms for the gauge fields themselves.

The requirement of local gauge symmetry requires the introduction of a massless

vector field and associated covariant derivatives, and so with the addition of Φ, we

modify the Lagrangian appropriately. We obtain Higgs-Wµ and Higgs-Bµ interactions

from the covariant derivative, after substituting in the form of Φ as chosen above:

|DµΦ|2 ∼ |(−ig τ
2
· Wµ − i

g′

2
Bµ)Φ|2 (2.9)

=
1

8

∣∣∣∣∣
(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ

g(W 1
µ + iW 2

µ −gW 3
µ + g′Bµ

)(
0

v

)∣∣∣∣∣
2

. (2.10)

Working through the math and using the mixed fields Aµ and Zµ that we already

deduced in the electroweak unification, we arrive at the conclusions for the masses of
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the photon, Z0, and W±:

mA = 0 (2.11)

mZ =
1

2

√
g2 + g′2 (2.12)

mW =
1

2
vg (2.13)

mh =
√

−2µ2 (2.14)

The physical states with mass are the full set of final bosons: the charged particles,

W±, and the neutrals Z0 and Aµ (the photon), and of course, the Higgs. The result

of the Higgs mechanism is that vacuum everywhere can emit or absorb (colorless)

quanta of the Higgs field that carry weak isospin and hypercharge. The fermions,

W , and Z bosons which can couple to the quantum field effectively gain mass, but

particles such as the photon and gluon which do not interact with it remain massless.

In summary, the Lagrangian has remained gauge invariant, but the vacuum has not.

2.1.3 The CKM Matrix

Fermion masses can be generated in the spontaneous symmetry breaking mecha-

nism if we include Yukawa interactions between the physical states and Higgs field Φ

(using coupling parameters g and the conjugate isodoublet Φ̃) of the form

gij
d (ui, di)LΦ̃†djR + gij

u (ui, di)LΦ†ujR + h.c. , (2.15)

where we have just used the quark doublets (ui, di)L and i, j = {1..3} corresponding

to the three generations. However, the weak interactions actually operate on the

isospin doublets, (ui, d
′
i)L, which is, in general, a different set of basis vectors. We

are forced to introduce the unitary mixing matrix V , the so-called CKM matrix [4]

which rotates the quark mass eigenstates into the weak eigenstates. (In short, the
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mass eigenstates are not weak eigenstates.)




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d

s

b


 (2.16)

The modified form of the charged current, for instance, is

J+
Lµ = (u, c, t)LγµV



d

s

b




L

. (2.17)

Note that this mixing occurs only in the quark sector since we have assumed that the

neutrinos are massless; such mixing is therefore “invisible” in the lepton sector. By

convention, the mixing is assigned completely to the “down-type” quarks.

The CKM matrix V is a complex, unitary matrix. As such, it has at most 9

independent real parameters since the unitarity conditions offer 9 constraints on the

original set of 18 parameters.

V †V = VV † = 1 ⇒
∑

j

V ∗
jiVjk =

∑
j

VijV
∗
kj = δik (2.18)

Furthermore, we can absorb a relative phase in each left-handed field, eliminating 5

more degrees of freedom. This leaves us with 4 physically independent parameters

describing the CKM matrix ‖, and as such, can be envisioned as three Euler angle

rotations and one phase insertion. ∗∗

The charged current portion of the electroweak Lagrangian for the quark fields

‖In general, the CKM matrix for N generations has (N − 1)2 parameters.
∗∗Recall that the general N×N unitary matrix has N2 independent parameters. The fundamental

representation of SO(N) uses N × N orthogonal matrices which have (N2 − N)/2 independent
parameters, where each matrix represents a rotation around a real axis. Finally, we compare the
number of free parameters in the CKM matrix to the number of the SO(N) matrix: (N −1)2−(N2−
N)/2 = 1

2 (N − 1)(N − 2). This difference is the excess of parameters which cannot be associated
with rotations about any of N available axes. N > 2 is required to have a positive excess, and hence
to enjoy CP violation in the CKM matrix.
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becomes

Lcc
EW =

g√
2

{
ūL

i γ
µW+

µ Vijd
L
j + d̄L

i γ
µW−

µ V ∗
iju

L
j

}
(2.19)

with uL
i representing the vector of up-type quarks and dL

i representing the down-type

quarks. Applying the CP operator to the Lagrangian, one obtains:

CP (Lcc
EW) =

g√
2

{
d̄L

i γ
µW−

µ Viju
L
j + ūL

i γ
µW+

µ V ∗
ijd

L
j

}
(2.20)

which is identical to Eq. 2.19 for the complex conjugation of V if we reverse of order

of the summands. Thus, if we could find a basis for which the elements of V are real,

then CP is a good symmetry. Based on our parameter counting earlier, we saw that

in general, the CKM matrix will have a complex phase, which would generate CP

violation as described here if we can show it to be non-zero.

The unitarity conditions on the CKM matrix are often used to construct so-called

“triangles” in the complex plane. We list the six vanishing ones here for completeness

(the diagonal products yield unity):

VcdV
∗
ud + VcsV

∗
us + VcbV

∗
ub = 0 (2.21)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 (2.22)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (2.23)

V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0 (2.24)

V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0 (2.25)

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (2.26)

The last unitarity condition listed is traditionally the one used to construct the “Uni-

tarity Triangle,” a geometrical way of depicting the vanishing sum of three complex

numbers; see Fig. 2.5.

The relative sizes of the CKM elements are key to understanding electroweak in-

teraction rates. The most popular parameterization uses four values (λ,A, ρ, η) to
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Figure 2.5: The standard CKM triangle expresses the unitarity condition between
the first and third columns.

describe the matrix in the following way (known as the Wolfenstein parameteriza-

tion [19]):

VCKM =




1 − 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


 + O(λ4). (2.27)

We observe that the diagonal elements are indeed the largest, and furthermore that

some of the entries are very small (the ranges are the experimental bounds):

|V ij
CKM | =




0.9742 − 0.9757 0.219 − 0.226 0.002 − 0.005

0.219 − 0.225 0.9734 − 0.9749 0.037 − 0.043

0.004 − 0.014 0.035 − 0.043 0.9990 − 0.9993


 . (2.28)

Perspective

Where has this taken us? We have described the weak component of the Standard

Model Lagrangian, and as such we have understood that it can be responsible for
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flavor-changing charged current interactions. And because of the SU(2)L symmetry

of weak isospin, the “down-type” quarks can mix according to the charged current

prescription. In particular, we see that the the b quark can change flavor to a c quark

via a charged current interaction. Later we’ll see that it is possible for a b quark to

transition into a d quark, via second order processes (i.e., loops). Finally, we’ve seen

two examples of the idea of “mixing”: the mass eigenstates of the quarks are mixed to

form the weak eigenstates, and the two neutral components of the electoweak gauge

field were mixed to form the neutral and electromagnetic currents. The lesson is that

if there’s more than one interaction in a theory, the natural basis for one interaction

will not necessarily be the states distinguished by another, i.e., different dynamical

processes usually have distinct sets of eigenstates that will be linear combinations of

each other.

2.1.4 Lifetime

We next give meaning to the lifetime of a particle, since the measurement of the

lifetime of the B0 meson is one of the two goals of this study. By lifetime, we refer to

the length of time between the “birth” and “decay” of a particle. The decay of any

particular particle is a random process, but in an ensemble of many particles we can

describe the average evolution by observing that the ensemble population decreases

at a constant fractional rate. The decay process is stochastic or “memoryless,” which

means that the chance of decay for a particle is independent of how long it has

“lived” so far. These observations lead to the following mathematical description.

Introducing the decay rate Γ, we write the differential equation relating the fractional

decay rate to the population at time t:

dN

dt
= −Γ ·N(t) (2.29)

∴ N(t) = N(0) exp−Γt . (2.30)

The solution is the familiar negative exponential, and we define the lifetime τ ≡ 1/Γ

to be the time that it takes for (1−1/e) ∼ 64% of the population to decay. We call Γ
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the decay rate in general, and in particle physics in particular, we also call it the decay

width. At any point in time, a surviving particle has a 1/e chance of surviving for

another lifetime. Again, the lifetime for any particular particle is a random variable,

but in an ensemble we observe that the distribution of many particles’ lifetimes follows

a negative exponential law.

Most composite particles decay quickly. It is only in “rare” circumstances where

special symmetries are at work that composite particles have an extended lifetime.

Particles can decay via the strong, weak or electromagnetic forces, which operate on

characteristically different timescales. Typical lifetimes are generally determined by

the force mediating the decay, but the kinematics of the decay and various symmetries

can also greatly affect the result. The typical lifetime for particles decaying strongly

is 10−23 sec, electromagnetically 10−16 sec, and decaying weakly is about 10−8 sec.

The decay of any particle can be factorized into two parts: one part representing

the pure kinematics of the decay (the so-called phase space contribution) and the other

part the matrix element between the initial and final states. Note that the heavier

mesons will have larger phase space available for decays, making them generally

shorter-lived. The matrix element carries the information about the physics involved

in the particular decay.

For the decay X → 1 + 2 + ...+ n: [9], the differential decay rate is

dΓ =
1

2EX
|M|2 d3p1

(2π)32E1
...

d3pn

(2π)32En
(2π)4δ(4)(pX − p1 − ...− pn) (2.31)

where M = 〈f |H|i〉 is the matrix element sandwich about the interaction Hamil-

tonian, H. The matrix element represents the overlap between the initial and final

states, as described by the physics at work, and is really a measure of the connec-

tion between them. Angular dependence can be delivered by the matrix element M,

amongst other differential properties, which is why we write Eq. 2.31 as the differen-

tial decay rate. The net decay width to a specific final state i, after integrating over

all differentials is the partial decay width Γi. The total decay rate of a particle is the
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sum of all individual channels:

Γtotal =
∑

Γi . (2.32)

This in turn means that the lifetime of a particle is determined by the details of all its

available decay channels, both in number and in kind. This is a powerful statement:

we cannot speak of the “lifetime for the decay to a particular final state’,” although

the partial decay widths control the overall lifetime. ∗ For instance, the difference in

lifetimes for the B0-B0 system is controlled by the difference in available number of

decay modes. We’ll learn more about the B0 lifetime, τB0 , in Chapter 3.2.

2.1.5 Mixing

We now introduce the second parameter which this analysis measures, the mixing

frequency of the B0-B0 meson system, ∆md. We’ve already seen some examples of

mixing when we discussed the electroweak sector of the Standard Model. The key idea

is that mixing occurs because the flavor eigenstates are not equivalent to the mass

eigenstates; i.e., one cannot measure both the mass and the flavor of the particle

simultaneously. As such, time evolution (according to the Hamiltonian governing the

system) will rotate the flavor eigenstates as a function of time while it preserves the

mass eigenstates. In the Standard Model, the four pairs of neutral mesons that decay

weakly share the mixing diagrams shown in Fig. 2.1.5. Such a process is the result of

second-order charged current interactions involving box diagrams containing virtual

quarks.

The details of the mixing, of course, depend on the meson pair under consideration.

Because of the different CKM matrix elements in question (as mentioned before, these

mixing diagrams rely on the charged current interaction), mixing occurs at different

rates in each of the neutral meson conjugate pair systems. For instance, K0-K0

mixing relies on the CKM matrix elements Vis×Vid which is of order λ, but the matrix

elements of the B0-B0 system are instead of O(λ3) and significantly suppressed.

∗Quantum mechanics is also at work here: we don’t know how the particle will decay until we
actually see that it does.
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D0 : b, s, d
K0, B0, Bs : t, c, u

W+ W−

D0 : b̄, s̄, d̄
K0, B0, Bs : t̄, c̄, ū

q2

q̄1

q1

q̄2

W+

D0 : b, s, d
K0, B0, Bs : t, c, u

W−

D0 : b̄, s̄, d̄
K0, B0, Bs : t̄, c̄, ū

q2

q̄1

q1

q̄2

Figure 2.6: The two mixing diagrams for K0-K0, D0-D0, B0-B0 and Bs-Bs neutral
mesons systems. The upper Feynman graph depicts the W -exchange diagram, the
lower one the box diagram. At each vertex, we accumulate a factor of the correspond-
ing CKM matrix element.

The mass eigenstates of the full Hamiltonian are linear combinations of the flavor

eigenstates. LetX0 andX0 be the so-called flavor eigenstates of definite quark content

that are most useful in understanding particle production and decay, and let XH and

XL be the states of definite mass and lifetime which propagate through space in a

definite fashion. We then write the general superposition as:

|XH〉 = pH |X0〉 − qH |X0〉

|XL〉 = pL|X0〉 + qL|X0〉.
(2.33)



2.1. THE STANDARD MODEL OF PARTICLE PHYSICS 25

The two states XH and XL have different time evolution, so the flavor of the state

evolves in time as well. The mass splitting ∆m of XH and XL is dominated by virtual

(off-shell) transitions while real intermediate states (i.e., the imaginary parts of the

box diagram, here via real c and u quarks) contribute to the lifetime difference ∆Γ. †

In general, virtual transitions are suppressed by the GIM mechanism [9], but these

cancellations aren’t perfect due to differences in the various quark masses. In the B0

mixing system, for instance, the relevant products of CKM matrix elements are of

the same order, and the mass hierarchy of the quarks comes into play, making the t

quark dominant. In the K0 system, however, the t quark transitions are suppressed,

leaving the c quark dominant.

In preparation for later discussions, let us note that:

• CPT invariance would require that pH = pL and qH = qL

• T invariance would require that |qL/pL| = 1 and |qH/pL| = 1

• CP invariance (in mixing) would require pL = pH = p, qL = qH = q, and that

|p/q| = 1.

We’ll discuss the structure of the time evolution more formally in Chapter 3. From

the present discussion, however, we can already see that the time dependence of the

system will depend on both ∆m and ∆Γ. We call ∆m the mixing frequency when it

dominates. A useful figure-of-merit in this scenario is the ratio of the mixing frequency

to the average lifetime, which describes “how many times the meson can mix before

it decays.” For the B0 system, ∆m
Γ

∼ 0.7, while for the Bs system, ∆m
Γ

∼ 14.0. In the

K0 system, the lifetime difference is large, but the equivalent figure of merit might be

the mass splitting divided by the shorter K0
S lifetime component, yielding ∆m

Γ
∼ 0.6.

(These values have not yet been established for the D0 system.)

For these neutral mesons, a difference in lifetimes between the elements of the

pair can only arise from decay channels in common to both mesons. The best way

to think about this is in the case of CP conservation (|p| = |q|): only when the final

†Recall from ordinary quantum mechanics that degenerate states will undergo “splitting” when
an interaction Hamiltonia is introduced that couples them.
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state f is accessible to X0 and X0 (i.e., a CP eigenstate perhaps) will the different

admixture of X and X0 in XH and XL become apparent and the partial widths to f

will be different. ‡ For the heavier mesons, the lifetime difference is expected to be

smaller than the average lifetime since the branching ratios to the states accessible to

both of the pair is small, and therefore the “opportunity” for final states in common

is reduced. CKM factors come can come into play, however, to create additional

suppression. For instance, when comparing the expected width difference ∆Γ in the

Bs and Bd systems, note that such decays would involve b → ccq where q = d or

s. These decays are Cabibbo-suppressed if q = d and Cabibbo-allowed if q = s; we

therefore expect ∆Γ/Γ to be as much as 20% in the Bs system, but less than 1%

(λ2∆Γs/Γs) in the B0 system.

2.2 Goals of this Study

The goal of this study is to understand the life cycle of the B meson by measuring

the parameters ∆md and τB0 with high precision. In doing so, we will pioneer the

technique for measuring these parameters simultaneously, and will establish a deep

level of understanding of so-called “time dependent analyses” that will be critical for

many other measurements at BABAR and elsewhere.§

We motivate our study of B0-B0 lifetime by observing that the interesting part

of a particle’s decay rate comes from the contribution from the matrix element (see

Eq. 2.31) since this piece encapsulates the complex physics. There is much interest in

this term because the b quark is so much heavier than the d (and u and s) quark that

the phenomenologist typically assumes that the light quark’s flavor doesn’t matter.

The approximation that the dynamics of the meson are dominated by the heavy

quark is called the spectator model. [20] Empirically however, we know this model

isn’t very accurate in the D system. By studying the B0 lifetime, we seek to improve

‡If CP violation occurred, ∆Γ might even be exacerbated because, for example, both B0 and
B0 can decay to D+ D−, but if the particular rate for B0 → D+D− were to be greater than
B0 → D+D−, (CP violating) the B0 would decay more quickly due to the larger partial width.

§Other time-dependent analyses include those measuring the CKM angles sin2β, sin2α, and sin2γ
(see Fig. 2.5).
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our understanding of the relationship between the light companion quark and the

much heavier b quark.

Our study of the B0 mixing frequency is motivated by two goals: (1) the loops

in the box diagrams may be sensitive to the introduction of new physics, and (2)

because ∆md depends on Vtd, a relatively poorly measured element of the CKM

matrix, we can improve our estimate of Vtd. By precisely comparing the measured

value of ∆md with that predicted by the Standard Model, we can, with a certain

degree of confidence, exclude the presence of new physics in the loop processes.

We are also interested in B0-B0 time evolution from a larger perspective. Because

the system includes neutral meson mixing and decay, it is an excellent environment

for testing the symmetries of the Standard Model.

2.3 Methods of this Study

Exploring the B system and its potential impact on the Standard Model requires

copious production of B mesons, accurate measurement of the B flight path and

flavor, and reasonably low backgrounds for reconstruction. This section introduces

the key experimental principle used to achieve this. Note that we use the term flavor

to label the flavor of the b quark within the B meson.

2.3.1 Collisions at the Υ (4S)

In e+e− interactions, there is a resonant state Υ (4S) near Ecm = 10.58 GeV that

decays almost exclusively to b-b pairs. As the b quarks hadronize, lighter quarks are

pulled from the vacuum, creating two B mesons that separate. Depending on the

flavor of the spontaneously generated light quarks, the B mesons are either charged

or neutral. By isospin symmetries, this implies 50% B+B− and 50% B0B0 pairs. The

b production cross-section near the Υ (4S) peak (see Fig. 2.7) is about 1 nb, which is

about one-third as much as other continuum processes, and comparable to the µ+µ−,

τ+τ− pair production rates as well. The dominant physics, of course, is e+e− Bhabha

scattering.
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Figure 2.7: Left: Plot of the Υ resonances as a function of the e+e− center of mass
energy. The Υ (4S) is right above the threshold for b quark production, and is a short-
lived bound-state resonance. Right: Closeup of the Υ (4S) peak where the radiative
tail is clear. The two arrows mark the Ecm energies where we collect collision data,
“on” and “off” the resonant peak.

An ideal production mechanism forBB pairs is to create Υ (4S) particles and study

their decay products which are essentially exclusively B (see Fig. 2.8). However, the

energy release in the Υ (4S) decay is so small that the B decay products are nearly

at rest in Υ (4S) frame. In short, the b quark mass is mb = 5.28 GeV, which is almost

exactly half the mass of the Υ (4S) resonance leaving little extra for kinetic energy.

This makes the observer’s job difficult: the B mesons don’t travel very far in the lab

since they have such little momentum; in this case, it becomes extremely difficult to

separate the B production point and its decay point. The technique proposed by Pier

Odonne [21] is to produce the Υ (4S) so that it is traveling at moderate velocity in

the lab frame. ¶ If the boost of the Υ (4S) is chosen wisely, modern particle detectors

can then resolve the B production and decay vertices.

As described in detail later, we collide electron and positrons together at the PEP-

II facility at SLAC ‖. The novelty of the PEP-II design is the asymmetric energies of

the circulating beams: the electrons are accelerated to 9.0 GeV and the positrons to

3.1 GeV. The center-of-mass is therefore boosted in the lab, travelling in the direction

of the e− beam with a boost of γβ ∼ 0.55. The center-of-mass energy is slightly more

¶The boost in the lab frame also provides a small time dilation, but it is only a 10% effect.
‖Stanford Linear Accelerator Center, Menlo Park, California, USA
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Figure 2.8: Feynman diagram for the BB production mechaniasm at the Υ (4S)
resonance via a virtual photon.

than 10.5 GeV, near the production threshold of the Υ (4S) resonance. The Υ (4S)

decay products (the BB pairs) “fly” in the lab, travelling hundreds of µm before

their decay.

An additional benefit of working with the Υ (4S) decay is the correlated time

evolution of the daughter B0-B0 mesons. Akin to the EPR paradox with correlated

photons, when the Υ (4S) decays and produces the B0-B0 pair, we don’t know which

B is the B0 and which B the B0; and because of their mixing, either can be either

at any time. However, since the Υ (4S) is a vector, and the B mesons pseudoscalar

bosons (i.e., spin 0), we know that the B-B state must have L = 1 to conserve the

angular momentum of the Υ (4S). This means that the B and B are in antisymmetric

p-wave state. Because of mixing between the neutral B mesons, we might expect

to occasionally have B0-B0 or B0-B0; this is forbidden however because that would

leave us with identical bosons in an antisymmetric state, violating Bose statistics.

We conclude therefore, that after the Υ (4S) decay, there can be at most one meson

of each flavor.

2.3.2 Decays of the Υ (4S)

We now have the ingredients for a time-dependent analysis. As shown in Fig. 2.9,

the e− and e+ collide and form the resonant Υ (4S) state which immediately decays

into a BB pair, either B+B− or B0B0 (about half and half). If neutral, the pair

time-evolves in a correlated fashion. At time t1, one of the B’s decays, which “starts

the clock.” At that exact instant, the surviving B must be of the opposite flavor,
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Figure 2.9: An artist’s conception of the experiment. The Υ (4S) decays to two B
mesons which later decay themselves. The decay products can be used to identify the
vertex and flavor of each B at decay.

as explained above; it subsequently decays at some later time t2. Because mixing

is periodic and lifetime stochastic, the same physics governs B2 between t1 and t2

as between its true origin (at the decay of the Υ (4S)) and its final decay at t2. We

can use the decay products of each B to determine its decay vertex, and its flavor at

decay. Because the B mesons are boosted in the lab frame along the z-axis, we can

assume that most of their travel is along that axis (i.e., the B mesons travel single

file and along ẑ).

Our study of B0 lifetime and mixing analyzes a large set of these BB pair events.

We look for events in which we can exclusively reconstruct one B meson’s decay in the

semileptonic channel B0 → D∗−`+ν` channel. ∗∗ As in Fig. 2.9, the reconstructed B

is denoted Brec, and we claim to understand it very well. The other B is called Btag,

because it “tags” the flavor and location of our Brec at the time t1. To repeat: we

know when and into what Brec decayed because we have fully reconstructed it from its

decay products; and we use the more inclusive information from Btag to get “another

data point” on the life-cycle (trajectory) of Brec. (Keep in mind that while the figure

suggests that Brec decays after Btag, this ordering is arbitrary – the argument still

holds.)

∗∗We imply charge conjugate modes wherever possible to reduce the notation, unless explicitly
stated otherwise.
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• We call a BB event mixed if Brec has the opposite flavor at decay as it had

at the tagging point. Consequently, Btag will be measured as having the same

flavor as Brec at decay because it’s the opposite of the opposite.

• Likewise, we call an event unmixed if Brec is found to have the same flavor at

decay and at the tagging point. (And so Btag will be measured to have the

opposite flavor.)

By measuring the separation in z between the two decay vertices, and using our

knowledge of the boost in the lab frame, we can estimate ∆t, the time between the

two decays by using the relation:

∆t =
∆z

〈βzγ〉c
(2.34)

This study accumulates measurements of mixing status (via flavor iden-

tification) and ∆t for events with reconstructed B0 → D∗−`+ν` decays, ana-

lyzes them to characterize and remove backgrounds (where possible), and

then uses an unbinned maximum-likelihood fit to extract the time evolu-

tion parameters of the B0 meson.

The Brec is reconstructed in the decay chain, B0 → D∗−`+ν`, D
∗− → D0π−, and

D0 → K−π+, K−π+π0, K−π+π−π+, or K0
S
π+π− (summing to about 25% of the total

D0 branching fraction). Although the neutrino cannot be detected, the requirement of

a reconstructed D∗− → D0π− and an identified high-momentum lepton that satisfies

the kinematic constraints consistent with a B0 → D∗−`+ν` decay allows the isolation

of a signal sample with (65 – 89)% purity, depending on the D0 decay mode and

whether the lepton candidate is an electron or a muon.

We reconstruct the D∗ in the mode D∗− → D0π−, which has a branching fraction

of 68%; because of the small mass difference, the momentum transfer is only 39 MeV.

The emitted pion is therefore slow-moving in the D∗ frame, and is often called the

soft or slow pion. Due to the small energy release, accurate reconstruction of the soft

pion is an experimental challenge.
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2.3.3 Time Dependent Analysis

We are now ready to examine B0-B0 time evolution as it might appear in BABAR.

The strategy is to describe the ∆tmeas distributions with a probability density func-

tion, build a full likelihood for the entire dataset, and then use an unbinned maximum

likelihood fit to determine the parameters which best fit the data. Before describing

the technique in subsequent chapters, we consider the realistic smearings and un-

certainties that complicate that ∆t distributions. In this study, we will model and

parameterize these effects with coefficients extracted from the Data simultaneously

with the physics parameters τB0 and ∆md.

Based on the mixed and unmixed ∆t distributions, we define the mixing asymmetry

to be

A(∆t) =
Nunmixed(∆t) −Nmixed(∆t)

Nunmixed(∆t) +Nmixed(∆t)
, (2.35)

The ∆ttrue distributions for events are shown in Fig 2.10. Note the complete absence

of mixed events at ∆ttrue = 0 because no time has elapsed for the B0 to mix to

B0. Also note that mixed distribution dominates in the intermediate range of ∆ttrue.

Finally, the mixing asymmetry has unit amplitude and a period of 2π/∆md.

The flavor identification algorithms at BABAR are not perfect, however, and we

typically incorporate a mistag rate which parameterizes the rate at which we assign

the B0B0 event the wrong mixing status. (In the final analysis, we even allow the

mistag rates for B0 and B0 mesons to be different.) In this situation, we start trading

events between the two curves in ∆tmeas space, and we arrive at the distributions

described in Fig. 2.11. Note that the mixing asymmetry amplitude has been diluted

to 1 − 2ω where ω is the mistag probability. Ideally, one could extract the mistag

rate by measuring the amplitude of the mixing asymmetry at ∆tmeas = 0.

The final complication in imaging ∆ttrue in the experiment is due to finite resolu-

tion effects of the detector. ∆tmeas will, in general, be a biased and smeared estimate

of ∆ttrue, which can have dramatic effects on the measured ∆t distributions as de-

picted in Fig. 2.11. To accommodate this, we include a resolution function in our

model which maps the physics in ∆ttrue space into the real world of ∆tmeas.
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Figure 2.10: Upper: The distributions in ∆ttrue for mixed and unmixed B0B0 events.
Lower: The time dependent mixing asymmetry as defined in Eq. 2.35.

As we have suggested, the key principle in this time-dependent analysis is care-

ful characterization of the Data while maximizing the statistical power of the event

sample itself. That is, we try to minimize assumptions and external inputs in the

analysis by adding components to the model (i.e., mistag probabilities, background

fractions, and resolution parameters) which will be determined simultaneously with

the physics results in the final fit.
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Figure 2.11: Upper Left: The distributions in ∆tmeas for mixed and unmixed B0B0

events with a mistag probability of 20%. Lower Left: The time dependent mixing
asymmetry. Upper Right: The distributions in ∆tmeas for mixed and unmixed B0B0

events with an exaggerated resolution. Lower Right: The time dependent mixing
asymmetry.



Chapter 3

Theory and Phenomenology

The framework for describing B meson time evolution is analogous to that of a 2-level
system in quantum mechanics. Because the weak eigenstates are not identical to the physical
eigenstates, a generic state has time-varying components of both B0 and B0. The physical
eigenstates have a mass splitting ∆md and a lifetime difference ∆Γ, where the latter is
expected to be small in the Standard Model. Theoretical predictions for the mixing frequency
∆md and the average lifetime τB0 still inherit significant uncertainties compared to the
experimental precision.

The semileptonic decay mode B0 → D∗−`+ν` is a three-body decay whose neutrino we
do not reconstruct. We approximate the B center of mass frame as that of the Υ (4S), and
construct angular variables which measure the consistency with the D∗−`+ν` decay.

35
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3.1 Time Evolution Formalism

Neutral B mesons are produced in states of definite flavor, i.e., flavor eigenstates.

As suggested in Section 2.1.5, these states are not eigenstates of the weak interaction;

we therefore expect the flavor to change under action of the electroweak Hamiltonian.

We will first consider the form of an effective Hamiltonian to describe this process, find

the new eigenstates and eigenvalues, and then consider their general time evolution.

3.1.1 Mixing of Neutral B Mesons

We borrow the formalism from that of a quantum mechanical two-level system

where transitions are introduced by an interaction Hamiltonian, H. The general state

|Ψ〉 can be written as a linear combination of the flavor eigenstates, as they form a

set of basis vectors in this subspace.

|B0〉 =

(
1

0

)
|B0〉 =

(
0

1

)

|Ψ〉 = a|B0〉 + b|B0〉

=

(
a

b

) (3.1)

We can decompose H in the flavor basis as:

H = M − i

2
Γ

=

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)
(3.2)

where M is the “dispersive” term representing virtual intermediate states and Γ is the

“absorptive” term representing real intermediate states. Conservation of probability

(i.e., unitarity) requires H to be unitary, which forces M and Γ to be Hermitian

matrices (the diagonal elements must be real, and the off-diagonal elements complex

conjugates of each other, e.g., M12 = M∗
21).
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For the moment, we will also impose CPT symmetry, which requires that M11 ≡
M22 = M and Γ11 = Γ22 ≡ Γ. Using the Wigner-Weisskopf approximation that

the weak interaction Hamiltonian does not couple the final states to each other, [22]

we write the time-independent Schrödinger equation, and wish to find the (energy)

eigenvalues and eigenstates:

H|Ψ〉 = λ|Ψ〉(
M − i

2
Γ M12 − i

2
Γ12

M∗
12 − i

2
Γ∗

12 M − i
2
Γ

)(
a

b

)
= λ

(
a

b

)
(3.3)

where we assume |Ψ〉 is an energy eigenstate. Solving the equation det[M− i
2
Γ−λ] = 0

yields a quadratic equation with two roots, the energy eigenvalues λ+ and λ−:

λ± = M − i

2
Γ ±

√
(M12 −

i

2
Γ12) (M∗

12 −
i

2
Γ∗

12) . (3.4)

Substituting back in, we arrive at the rather cryptic forms for the new eigenstates:

|B1,2〉 =

(√
(M12 −

i

2
Γ12) (M∗

12 −
i

2
Γ∗

12) |B0〉 ± (M∗
12 −

i

2
Γ12) |B0〉

)
, (3.5)

where we have not included the normalization factors. By comparing the real and

imaginary parts of the two eigenvalues, we realize that the two energy eigenstates

have different masses (m1,2 = Re λ±) and different lifetimes (Γ1,2 = −2 Im λ±); we

associate the differences with the so-called mass and (decay) width splittings: ∗

∆md = m1 −m2 = Re (λ+ − λ−)

∆Γ = Γ2 − Γ1 = 2 Im (λ+ − λ−) .
(3.6)

∗Note that we are using mixed notation here: τB0 for the Bd average lifetime, ∆md for the
mass splitting, and ∆Γ for the lifetime different. Apologies...the correctly labelled set of parameters
should probably be ∆md, ∆Γd, and τBd

.
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and deduce the following relationships

(∆md)
2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2

∆md ∆Γ = −4 Re (M∗
12 Γ12) .

(3.7)

Let us now update our notation so that we can easily discuss the new states, but

still requiring CPT symmetry:

p =

√
(M12 −

i

2
Γ12)(M

∗
12 −

i

2
Γ∗

12)

q = M∗
12 −

i

2
Γ∗

12

q

p
=

√
M∗

12 − i
2
Γ∗

12√
M12 − i

2
Γ12

λ± = (M − i

2
Γ) ± q

p
(M12 −

i

2
Γ12) .

(3.8)

This allows us to write the energy eigenstates as

|BL〉 = p|B0〉 + q|B0〉

|BH〉 = p|B0〉 − q|B0〉

∆md = mH −mL = −2Re (
q

p
(M12 −

i

2
Γ12))

∆Γ = ΓL − ΓH = −4Im (
q

p
(M12 −

i

2
Γ12)) .

(3.9)

(We use the convention that CP |B0〉 = +|B0〉 and that the real part of q/p is positive.)

As an interesting sidenote, we introduce δ as the complex CP -violating parameter (in

mixing):

δ ≡ 〈BL|BH〉 = |p|2 − |q|2 =
−2 Im (M∗

12Γ12)

(∆md)2 + |Γ12|2
, (3.10)

which measures the amount to which the energy eigenstates are equally composed

of B0 and B0. (We also note that in the presence of CP violation, then, the energy

eigenstates are not orthogonal.) We can explicitly observe the effect of CP -violation
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in mixing as modifications to ∆md and ∆Γ:

(∆md)
2 =

4 |M12|2 − δ2 |Γ12|2
1 + δ2

(∆Γ)2 =
4 |Γ12|2 − 16 δ2 |M12|2

1 + δ2
.

(3.11)

In the limit of exact CP invariance (δ = 0) the mass eigenstates coincide with the

CP eigenstates, CP |BH〉 = −|BH〉 and CP |BL〉 = +|BL〉 and the mass difference and

width difference are given by ∆md = 2|M12|,∆Γ = 2|Γ12|. Thus, as stated earlier, the

lifetime and mass differences of the physical eigenstates in B0-B0 system can (and

will) manifest themselves without CP violation.

3.1.2 Time Evolution of Neutral B Mesons

We now invoke the time-dependent Schrödinger equation to study the time evolu-

tion of the again-generic state |ψ(t)〉:

i
∂

∂t

(
a(t)

b(t)

)
= (M − i

2
Γ )

(
a(t)

b(t)

)
. (3.12)

The time-dependent generic state can just be written in terms of an admixture of the

energy eigenstates with time-evolving amplitudes for each component (with appro-

priate choices for aH,L(0) to match the initial conditions):

|ψ(t)〉 = aH(t) |BH〉 + aL(t) |BL〉

= aH(0) e−λ+ t |BH〉 + aL(0) e−λ− t |BL〉 . (3.13)

We can then substitute in the expressions for |BH〉 and |BL〉 in terms of the flavor

eigenstates. We can construct a state |B0
phys(t)〉 which is created at time t = 0 as

purely B0, and likewise for B0 as |B0
phys(t)〉. The general time evolution is summarized
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as:

|B0
phys(t)〉 = f+(t) |B0〉 +

q

p
f−(t) |B0〉

|B0
phys(t)〉 = f+(t) |B0〉 +

p

q
f−(t |B0〉 ,

(3.14)

where the notation f± is simply

f± =
e−iλ+ t ± e−iλ− t

2
=

1

2
e(−im1+Γ1/2) t

[
1 ± e(−i∆md+∆Γ/2) t

]
. (3.15)

We can find the transition probability, or oscillation rate, for the physical states to

oscillate from one flavor to the other by computing the projection of the |B0
phys〉 onto

the flavor eigenstates |〈B0|B0
phys〉|2 and |〈B0|B0

phys〉|2. Using the fact that the flavor

eigenstates are orthogonal, and after some algebra of complex numbers, † we arrive

at

|〈B0|B0
phys〉|2 = |〈B0|f+|B0〉 + 〈B0|q

p
f−|B0〉|2

= |f+|2 =
e−Γt

2

[
cosh(

∆Γ

2
t) + cos(∆md t)

]

|〈B0|B0
phys〉|2 = |f−|2 =

e−Γt

2

[
cosh(

∆Γ

2
t) − cos(∆md t)

]
,

(3.16)

At time t = 0 there is zero probability for finding the mixed state, where the |B0
phys〉

has oscillated into a |B0〉, but afterwards, the probability exhibits a cosine time depen-

dence with a frequency governed by ∆md.
‡ This time-dependent mixing probability

directly expresses the fact that since the flavor eigenstates are not the eigenstates

of the interaction Hamiltonian, a generic state’s projection on the flavor-space basis

vectors will in general evolve in time. This phenomenon is called mixing.

In the B0 system, we note that ∆Γ � Γ because of the small number of final

states accessible to both B0 and B0 (see Section 2.1.5). Additionally, experimental

measurements report that xd = ∆md

Γ
= 0.73 ± 0.05. [23] Together these suggest that

†Pardon this sentence construction, but we wouldn’t want to suggest that algebra itself is complex!
‡Note that these probabilities are bounded in time because ∆Γ is, by definition, bounded by

2 × Γ.
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∆md � ∆Γ so we can reasonably collapse the cosh term to unity. In the study

described here, we will assume the ∆Γ = 0, but please see Section 15.3.2 for some

comments about relaxing this assumption.

3.1.3 Time Evolution From Υ (4S) Decays

One important lesson from quantum mechanics is that multi-particle systems must

be treated collectively, in order to properly account for their potentially interfering

amplitudes. The observer can really only make observations about the state of the

system. At the Υ (4S), B mesons are produced in pairs, and they evolve coherently in

an Einstein-Podolsky-Rosen correlated fashion; in particular, when they are neutral,

they oscillate in phase. As such, then, we comment here on the so-called coherent

formalism used to describe the time evolution of the BB system and its eventual

decay to a set of final states f1, f2.

Following the description in Ref. [24], we write the general state containing two

B mesons in the mass eigenstate basis as

|BB〉 = c1|BLBH〉 + c2|BHBL〉 (3.17)

where c1, c2 are in general complex numbers satisfying the normalization condition

|c1|2+ |c2|2 = 1. This state time-evolves just as the combination of the isolated states,

|BB〉 = |(BB)phys(t1, t2)〉 = c1 e
−iλ+t1e−iλ−t2 |BLBH〉 + c2 e

−iλ−t1e−iλ+t2 |BHBL〉 ,
(3.18)

where λ± are the energy eigenvalues as before. We can use two arguments, as listed

below, to derive constraints on the coefficients c1, c2.

Argument 1

The Υ (4S) is a vector meson, with J = 1, and C×P eigenvalue of −1×−1 = +1.

Because the Υ (4S) decays via the strong interaction to the BB meson system, we

expect CP to be conserved. Therefore, the daughter B B system’s wavefunction must

also have CP = +1. Consider the wavefunction as ΨflavorΨspace. The BB system
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must have one unit of orbital angular momentum, L = 1, since the B mesons are

pseudoscalar bosons (i.e., spin-0) and we need to conserve the angular momentum

J = L + S of the Υ (4S). The space part of the wavefunction Ψspace is therefore

negative under CP . To obtain an overall CP eigenvalue of +1, we are forced to choose

the antisymmetric combination of the B and B to form the flavor part: Ψflavor =

|BB〉 − |BB〉 which also has CP = −1.

Argument 2

We can reach a similar conclusion by invoking Bose symmetry on the general BB

mass eigenstate formalism. If both B mesons, in the L = 1 antisymmetric p-wave,

were to decay simultaneously to identical bosonic final states f , then we would have

two identical bosons in an antisymmetric state. This violates the requirements of

Bose statistics. This has an immediate consequence for the coefficients c1, c2:

|BB〉 = c1|BLBH〉 + c2|BHBL〉

〈ff |BB〉 = 0

c1〈ff |BLBH〉 + c2〈ff |BHBL〉 = 0

c1〈ff |BLBH〉 = −c2〈ff |BHBL〉

but 〈ff |BLBH〉 = 〈ff |BHBL〉

∴ c1 = −c2

(3.19)

Recall the normalization condition |c1|2 + |c2|2 = 1, so we see that up to an overall

phase, we can set c1 = 1, c2 = −1. This conclusion that the two-meson state is

antisymmetric in the mass eigenstate basis is equivalent to a statement about the

system in the flavor eigenstate basis.

We therefore conclude that the |BB〉 meson state is antisymmetric in flavor, which

means that the projection on the set of states with two B0 or two B0 mesons is

vanishing; this is why we write the state as |BB〉.
In the experimental program as outlined in Section 2.3.3, we noted that the time-

evolution is recorded in terms of the variable ∆t, the decay time difference, ∆t ≡
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t2 − t1. We can change variables in Eq. 3.18 to achieve:

t ≡ t1 + t2
2

, ∆t ≡ t2 − t1 (3.20)

|BB(t,∆t)〉 = e−i2λt
{
e+i∆λ∆t|BLBH〉 − e−i∆λ∆t|BHBL〉

}
(3.21)

where we have introduced more notation,

λ ≡ λ+ + λ−
2

= M − i

2
Γ , ∆λ ≡ λ+ − λ−

2
=

1

2

(
∆md −

i

2
∆Γ

)
. (3.22)

We’ll examine the case where one B decays to f1 and the other to f2 to make one

observation which will complete our discussion. Taking the first B decay to f1, we

can write the partially projected state (borrowing again from Ref. [24]) as

〈f1|BB(t,∆t)〉 = e−i2λt
{
e+i∆λ∆t〈f1|BL〉 · |BH〉 − e−i∆λ∆t〈f1|BH〉 · |BL〉

}
. (3.23)

We next write the matrix elements in terms of the flavor eigenstates (the basis in

which the physics of the actual decay is most easily described), introducing Ai as the

quantum mechanical transition amplitude to a state i:

〈f1|BL〉 = p〈f1|B0〉 + q〈f1|B0〉 = pA1 + qA1

〈f2|BH〉 = p〈f2|B0〉 − q〈f2|B0〉 = pA2 − qA2 .
(3.24)

Combining this notation with that of the |B0
phys〉, we can write the state after decay

to f1 at t1:

〈f1|BB(t1,∆t)〉 = e−2iλt1
[
|B0

phys(∆t)〉 · A1 − |B0
phys(∆t)〉 ·A1

]
. (3.25)

The exponential factor out front is representative of the lifetime associated with

the decay probability. If we choose the state f1 to be accessible only to B0, (e.g.,

B0 → D∗−`+ν`), then we have A1 = 1, A1 = 0, which identifies the decay as that of

a B0. (The state actually collapses to the time evolution for an isolated B0 meson

after t1.) If the other B decays to a state f2 at time t2, we can write the full decay
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amplitude as

〈f1f2|BB(t1,∆t)〉 = e−2iλt1
[
〈f2|B0

phys(∆t)〉 · A1 − 〈f2|B0
phys(∆t)〉 ·A1

]
, (3.26)

which we can use to compute the corresponding rate by taking the modulus-squared.

Because of the B0-B0 correlation, an interference term is introduced,

∣∣〈f1f2|BB(t1,∆t)〉
∣∣2 ∝

e−2Γt1 ·
{∣∣〈f2|B0

phys(∆t)〉
∣∣2 · ∣∣A1

∣∣2 +
∣∣〈f2|B0

phys(∆t)〉
∣∣2 · |A1|2

− 2Re
(
〈f2|B0

phys(∆t)〉〈f2|B0
phys(∆t)〉∗ · A1A

∗
1

)}
. (3.27)

The interference term is only non-zero for states f2 to which both B0 and B0 can

couple, and is a direct consequence of the correlated time-evolution.

Finally, let us make a comment on the general structure of the decay rate when

we substitute back in the ∆md-∆Γ form of the energy eigenvalues. The algebra is

beyond the scope of this document, so we quote from Ref. [24]:

∣∣〈f1f2|BB(t,∆t)〉
∣∣2 ∝

e−2Γt

[
c1 cosh(

∆Γ∆t

2
) + c2 cos(∆md∆t) + c3 sinh(

∆Γ∆t

2
) + c4 sin(∆md∆t)

]
,

(3.28)

where the coefficients ci obey a normalization condition and depend on the decay

amplitudes A1, A2, their conjugates and the symmetries required of the theory. § If

we assume ∆Γ ≡ 0, the sinh term vanishes and the cosh term collapses to unity.

3.2 Comments on τB0

One goal of this analysis is the measurement of τB0 , the average lifetime of the

neutralB meson, often referenced as 1/Γ. We comment here on some of the theoretical

§Note that (a) we can integrate out the t dependence at fixed ∆t to achieve the overall decay
time difference distribution and that (b) I have hidden some of the relationships between the ci.
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framework for Standard Model predictions of the lifetime.

Calculation of the average B lifetime can be estimated to first order through use

of the spectator model, in which we assume the the lighter quark in the meson(here,

the d) is not involved in the decay dynamics. In fact, a spectator model would predict

that the heavy b quark dictates the entire decay process, and in fact, would predict

the B+ and B0 lifetimes to be identical, as governed by the primitive equation below.

The B meson decay width is dominated by b → c (λ2) transitions, bringing in Vcb,

and b→ u contributions are suppressed by Vub (λ3) which we can neglect: [25]

Γ =
1

τ
∼ G2

F m5
b

192π3
· |Vcb|2 × ρ(E,~k) , (3.29)

where ρ(E,~k) is the appropriate set of phase-space factors. Experiments have mea-

sured that τB+/τB0 = 1.062± 0.029 [26], which indicates a significant deviation from

the naive expectations of the spectator model. This is understood to be due to com-

plications such as W -exchange or weak annihilation and Pauli interference diagrams.

Applying the optical theorem, the inclusive decay width of a hadron Hb containing

a b quark can be written as the forward matrix element of the imaginary part of

the transition operator and a few Wilson coefficients which take into account QCD

corrections. Since the energy release in the decay of b quark is relatively large, its

possible to construct an Operator Product Expansion (OPE) for the decay rate. The

forward matrix elements in the OPE are expanded in inverse powers of the b-quark

mass, following the prescriptions of heavy-quark effective theory (HQET). [27] These

calculations predict differences from unity in the lifetime ratio of up to 10%, consistent

with the observed value. ¶ Measurement of the B lifetime can be an important test

for models of spectator quark effects, and can be used to extract the semileptonic

decay constant, fBd
, discussed in the next section.

The lifetime τB0 is a critical input to the extraction of other parameters of the

Standard Model, such as measuring Vcb using semi-leptonic decays. τB0 is also needed

¶The b quark is the heaviest quark with which we can test these heavy flavor models, as the top
quark is so heavy it decays weakly before it even hadronizes.
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in the study of CP -asymmetries since it is used to characterize the signal in time-

dependent analyses.

3.3 Comments on ∆md

Study of the mixing frequency ∆md is motivated by two reasons:

• Measurements of ∆md can be used to extract the CKM matrix element Vtd and

thus determine the length of one of the sides of the unitarity triangle.

• In principle, since neutral meson mixing involves loop contributions, ∆md is sen-

sitive to new physics because interactions at higher scales can produce changes

in the local operators at lower scales.

The mixing frequency ∆md corresponds to the off-diagonal element M12 of the

Hamiltonian H which we discussed above, and is related to the dispersive part of the

transition amplitude between B0 and B0. ‖ The important corrections from QCD

are implemented with the help of the operator product expansion. [5] The top-quark

contribution dominates and we can describe M12 by the so-called “local ∆B = 2”

Hamiltonian below the electroweak symmetry breaking scale as [28]

∆md =
G2

F

8π2
M2

W |VtdV
∗
tb|2 ηBS0(xt)CB(µ)

|〈Bd|O∆B=2
d (µ)|Bd〉|
2MBd

, (3.30)

where xt = m2
t/M

2
W , S0(xt) ' 0.784 x0.76

t (to better than 1%) is the relevant Inami-

Lim function [29], µ the renormalization scale, O∆B=2
d the four-quark operator, ∗∗

and ηB = 0.55 and CB(µ) are short-distance coefficients. The renormalization-scale

dependence of CB(µ) and the hadronic matrix element cancel at the level of pertur-

bative analysis. Typically, we are after |VtdV
∗
tb|2, and calculate S0(xt), ηB and bB

perturbatively. Because Vtb is known to be close to unity to good accuracy, Eq. 3.30

enables extraction of Vtd. The precision is limited at present by the precision of lattice

‖Ironically, although M12 is the real part of the amplitude from the box diagram, it describes
virtual transitions.

∗∗[bγµ(1 − γ5)d
] [

bγµ(1 − γ5)d
]
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QCD efforts to compute the hadronic matrix element. That matrix element is often

parameterized as

〈Bd|O∆B=2
q (µ)|Bd〉 =

8

3
M2

Bd
f 2

Bd
BBd

(µ) , (3.31)

where fBd
is the meson decay constant and BBd

the so-called bag parameter. This

matrix element is the subject of much debate, as different theoretical estimates using

lattice QCD techniques give different results, although all agree that fBd

√
BBd

∼
200 MeV. It becomes easier to consider the ratio of mixing frequencies for Bd and Bs

in which many of the uncertainties cancel ††:

δms

∆md
=
mBs

mBd

ζ2

∣∣∣∣Vts

Vtd

∣∣∣∣ , (3.32)

where ζ = (fBd

√
BBd

) ((fBs

√
BBs) ∼ 1 as estimated from lattice QCD at the level

of 5-6%, significantly reducing the hadronic uncertainties. [26] It is in this direction

that current efforts are focused. However, ∆ms hasn’t been measured experimentally

yet, so the utility of this technique is still limited.

The phenomenological and theoretical interest in ∆md is high, and when combined

with expected results in the Bs system, offers a significant battery of tests for the

Standard Model.

3.4 The Decay B0 → D∗−`+ν`

As suggested earlier, we need to unmistakably reconstruct a B candidate in the

event to make it useful. Ideally, we would make a list of techniques and algorithms

and use them to process every event, maximizing our chances of reconstructing every

possible B-decay mode known today. This would certainly be the most efficient way

to find Brec candidates, but as Wm. McDonough has observed, “We must seek to be

effective, not just highly efficient.” [30] By maximizing our efficiency, we inevitably

sacrifice our purity; that is, we include candidates in our sample that are not true B

decays. It becomes difficult to understand the backgrounds (mistakes) in our sample

††Assuming unitarity, of course
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when we strive to include as much signal as possible.

It is for these reasons that our analysis focuses on one set of Brec decay modes.

We look for semileptonic decays of the B, which are distinguished experimentally by

a high momentum lepton and a missing neutrino: B0 → D∗−`+ν`. The branching

fraction for this decay channel is relatively high, about 4.6% [5]. This means that for

every 100 decays of the B, about 5 of them will involve a D∗ and an e, and another

about 5 will yield a D∗ and a µ. We discard all other events with other types of

B0 decay. However, the semileptonic features of the decay allow the collection of a

sample with high efficiency and purity, as this decay has the largest branching fraction

of any other exclusive B decay mode.

We define the signal for this analysis to be events in which at least one B decays

into a final state:

• which contains a D∗± and either an electron or a muon of the opposite charge

produced by W± decay,

• where the D∗ and ` originate from a common vertex, within the detector reso-

lution,

• and which has the same time-dependent decay structure as the mode B0 →
D∗−`+ν`.

Under this definition, the D∗ and ` must either be direct decay products of a parent

B0 via B0 → D∗−`+ν`, or else be secondary decay products of short-lived resonances.

The known resonances which we expect could contribute are radially and orbitally

excited D states, [31] Yc = D+
1 , D

′+
1 , D

∗+
2 :

B0 → Yc e
+e− (X) , Yc → D∗+ X ′ .

By requiring the D∗ and lepton to originate from a common vertex within the detector

resolution, we exclude leptons from intermediate τ or D0 resonances. We require

the lepton to be produced by W± decay, which excludes short-lived electromagnetic

decays, such as B0 → D∗−ωπ+, ω → π0e−e+.
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Due to imperfections in our event selection, we also select some D∗`ν decays which

have charged B parents, via the reaction:

B± → D∗0`±ν`X.

These decays, due to detector resolution, can appear consistent with the signal B0

decay kinematics and can thus contaminate our sample. We remedy this situation

in the final analysis by incorporating their expected ∆t structure into the model and

explicitly measuring the contamination fraction.

The D∗−`+ν` decay is a three-body decay which means that the angular structure

of the decay products is not uniquely specified by the kinematics. The variables Ê`

(the lepton energy in the B center of mass frame) and Q̂2 (the W± invariant mass

equal tom2
X−2mB0ÊD∗ , where ÊD∗ is the hadron energy in the B frame) parameterize

the phase space of the decay

dΦ
(
B0 → D∗−`+ν`

)
∝ dÊ` dQ̂

2 ,

and so are useful for disentangling the effects of phase space and dynamics. Fig. 3.1

compares the distribution of decays in the plane of these two variables ‡‡ for three-

body phase space and B0 → D∗−`+ν` decays.

The variables p̂D∗ (magnitude of the hadronic momentum in the B frame) and

cos θ̂D∗,` (angle between the directions of the lepton and the D∗ in the B frame) are

completely correlated with the Dalitz variables Q̂2 and ÊL:

p̂X =
1

2mB

√(
m2

B − (Q̂+mD∗)2
) (

m2
B − (Q̂−mD∗)2

)

cos θ̂D∗,` =
Q̂2 +m2

` − Ê`(m
2
B +m2

D∗ − Q̂2)/mB

2p̂D∗p̂`

.

Because they are also not independent, cuts applied to more than two of these four

variables are not independent (Q̂2, Ê`, p̂D∗ , cos θ̂D∗,`). Figure 3.2 shows the distribu-

tion of these variables. Figure 3.2(a) shows that the hadronic momentum has a sharp

‡‡Yes, a Dalitz plot!
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Figure 3.1: Dalitz distribution of B0 → D∗−`+ν` using (a) the form factors and
angular-momentum correlations, or (b) three-body phase space. The lower plots
show the normalized projections of these variables: (c) Q̂2, and (d) ÊL.

edge at the upper kinematic limit, although the spectrum is significantly softened by

the form factors and angular-momentum constraints (because of the V −A structure

of the weak interaction). Figure 3.2(b) shows that the D∗ and lepton tend to be



3.4. THE DECAY B0 → D∗−`+ν` 51

back-to-back in the B0 decay frame, and that this effect is mostly due to phase space

considerations.
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Figure 3.2: Normalized distributions of (a) the hadronic momentum, p̂D∗ , and (b)
the angle between the hadronic and lepton momenta, cos θ̂D∗,`, measured in the B0

decay frame. The plots compare the distributions calculated using either three-body
phase space, or else including the full decay dynamics.

Reconstruction of exclusive semileptonic decays is often more difficult than those

which terminate in hadronic final states because of the undetected neutrino. Because

of that deficit, there is no quantitative prescription for combining reconstructed D∗

candidates with a lepton candidate to form a signal D∗`. (That is, we cannot build

a B candidate because we don’t have the daughter neutrino with which to apply the

usual kinematic constraints.) At the Υ (4S), however, we can constrain the energy

of the BD∗` candidate because we know the beam energy to high precision, so that

EB = Ebeam. By comparing the sum of the four-vectors of the D∗ and ` candidates

with this constraint, one can test for consistency of the reconstructed D∗ and ` system

with a single missing neutrino (assumed to be massless). We can examine the missing
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invariant mass:

pD∗` = p∗D + p`

p2
miss = p2

ν = (pB − pD∗`)
2

= m2
B +m2

D∗` − 2EBED∗` + 2|pB||pD∗`| cos θB,D∗` .

(3.33)

If the kinematics of the measured D∗ and ` are really consistent with a missing neu-

trino, we expect the missing mass as expressed above to vanish. While this quantity is

a Lorentz invariant, we note that it depends on pB (magnitude and relative direction

with respect to the D∗`) which, because of our lack of complete knowledge of the final

state, is unknown. At the Υ (4S), |pB| = 330 MeV which suggests that we could sim-

ply neglect the third term in the equation, effectively smearing the p2
miss distribution

by the magnitude of the cross-term (about 0.5 GeV2). Another option is to assume

the hypothesis is correct by setting p2
miss = 0, isolating the angular cross-term, and

requiring that cos θB,D∗` be in the physical range −1 to +1 to preferentially select

candidates consistent with the hypothesis. This is the approach we use in this study.

Finally, we note that since the B momentum in the Υ (4S) frame is small, the

two rest-frames are nearly co-moving. Assuming we know the beam energy and

momentum very well, we often replace quantities in the B rest frame with quantities

measured in the Υ (4S) frame because of the improved precision (and knowledge) in

the Υ (4S) rest frame.



Chapter 4

Other Measurement Techniques

The study of the B meson lifetime and mixing frequnecy is not new; it’s been a business
for about two decades now. Dozens of other measurements of the B0 lifetime τB0 and the
mixing frequency ∆md have been made. The large variety of techniques extract the same
physics, but they differ in the strategies used to (a) produce and identify candidate B decays,
(b) measure the flight length of the B, and (c) as needed for mixing, identify the b quark
flavor. Additionally, most previous efforts have concentrated on measuring only one aspect
of the time evolution. Time-dependent analyses, which use measurements of the decay time
of each B candidate, have emerged as the preferred method for achieving high precision
results.

53
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4.1 Overview

In approaching the general task of studying B meson time dependence, it is impor-

tant to understand the restrictions imposed by the “production” method: B physics

can be studied at e+e− or hadron-hadron colliders, at threshold for B production or

far above it. The three major groupings are

• hadron-hadron collisions: Experiments such as CDF and D0 ∗ at the Teva-

tron rely on this mechanism in which protons and anti-protons are collided to

produce bb quark pairs form parton-parton interactions. Hadronization yields

uncorrelated B mesons, typically at high momentum and surrounded by a jet

of other hadrons.

• e+e− interactions at the Z0 pole or some other “higher” energy (30 – 90 GeV):

Experiments at LEP, SLC, and PEP used this technique to create bb quark

pairs from virtual Z0 or γ interactions. The resulting B mesons are, again,

heavily boosted in the lab frame, but the production vertex is known with

good accuracy because of the small beamspot. However, the B mesons are still

typically embedded in hadronic jets.

• e+e− interaction at threshold, the Υ (4S): As described earlier, the Υ (4S) reso-

nance is just above the kinematic threshold for bb quark pair production, which

provides a correlated pair of B mesons nearly at rest in the center-of-mass sys-

tem. The subsequent decay of the B meson is relatively isolated, and “clean.”

CLEO uses this mechanism. The B production point is less well-known, how-

ever. A variation on this technique is the asymmetric B factory, which boosts

the center-of-mass system in the lab frame. Both BABAR and Belle employ the

asymmetric technique at the Υ (4S) resonance.

∗And UA1
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4.2 Lifetime

The general strategy for measuring particle lifetimes is to produce the particle di-

rectly and then reconstruct its decay length and momentum to extract the decay time.

The decay time distribution is described with a negative exponential (lifetime) distri-

bution, often convolved with some smearing or resolution function, usually Gaussian

in nature. The analysis relies on correctly identifying events that contain B mesons,

and cleanly measuring the production and decay points. One then needs an accu-

rate model for converting measured flight distances to decay times — a momentum

distribution resolution model. As such, lifetime measurements are inherently time-

dependent analyses. Typically, the B meson system is boosted in the lab frame,

increasing the flight path enough for imaging by precision tracking detectors. (This

is the main reason that CLEO does not have a B lifetime measurement; the B decay

vertex is too close to the production point for separation and distinction. They have,

however, made some contributions by extracting the lifetime ratio from measurements

of the B+ to B0 semileptonic branching ratios. [32])

The first measurements of the B0 lifetime were reported in 1983 by the collabora-

tions MAC [33] and MARK II [34] at the PEP facility. Their technique took advantage

of the relatively large B semileptonic branching fraction by inclusively identifying b

and c events with high momentum leptons from e+e− collisions at 30 GeV. The im-

pact parameter of the lepton with respect to the interaction point was computed, and

distribution was fit to find the average decay length of the B meson. Interestingly,

the Mark II measurement included both leptons from charm and leptons from bottom

as two separate samples in their analysis, and simultaneously estimated the c-quark

meson and the b-quark meson lifetimes. † Note, however, that these measurements

did not distinguish the type of B hadron produced, and so the results are actually

average B hadron lifetime measurements. ‡

†This use foreshadows the simultaneous technique using background control samples that is a
key feature of this analysis.

‡At that time, B mesons were expected to have roughly identical lifetimes as dictated by the
spectator quark model.
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Measurements of τB0 have not changed significantly since these first efforts. Mod-

ern techniques use decay time measurements rather than projected impact parameters

due to the advent of larger data samples that permit the “luxury” of exclusive re-

construction, and the development of silicon detectors for precise secondary vertex

determination. Candidate reconstructions takes advantage of sophisticated particle

identification technology to more efficiently select a purer sample of B decay candi-

dates. Three different approaches are popular today, each having to do with how the

B sample is collected, with tradeoffs between sample size and measurement precision.

• Full Reconstruction: Reconstructing the full decay chain of the B meson, typ-

ically using hadronic final states. This provides a good determination of the

decay vertex and the boost, and incorporates little dependence on simulation.

However, reconstruction efficiencies are low, typically 0.1%, so the statistical

power is limited by small sample sizes. Both CDF and the asymmetric B-

factories have capitalized on this technique.

• Limited/Partial Reconstruction: This approach uses the semileptonic decay

mode of the B meson to identify candidates, either by identifying exclusive

modes such as B0 → D∗−`+ν` (but misses the neutrino), or by identifying

the D∗− → D0π− portion of the decay. This method is more efficient at B

finding, and still allows for good decay vertex determination, but the incom-

plete knowledge of the event (even if only of just the neutrino) degrades the

boost/momentum determination. There is a somewhat larger dependence on

simulation, especially in the partially reconstructed case, where one needs to un-

derstand backgrounds in the selected sample. Almost every modern experiment

has used this technique with some variations.

• Inclusive Reconstruction: The final approach is to inclusively identify B mesons,

using minimal information about the details of the event. The cost of high sig-

nal efficiency is significantly larger backgrounds. At the B-factories, this is

implemented as an inclusive dilepton analysis in which two high momentum

leptons are used to identify candidate events and their distance of closest ap-

proach to the beamspot is used to estimate the decay length. At the higher
√
s
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experiments, inclusive reconstruction can take advantage of topological vertex

reconstruction, which Delphi has used with great success. Topological recon-

struction of the vertex tries to assign all tracks in an identified b jet to either

the primary or secondary vertex. The charge of the B is simply the sum of the

charges of the tracks assigned to the secondary vertex. These methods (except

at the B-factories where the higher mass B hadrons are not produced) suffer

from contamination by Bs and ΛB, however.

As of 2002, the most precise measurements come from the B-factories, closely

followed by results from OPAL and SLD using the inclusive strategies. The industry

of measuring τB0 will probably become secondary in the future, taking a back seat in

the race to measure more sophisticated properties of B time evolution, i.e., τB0 will

be continue to be updated, but only as the byproduct of other analyses for which

it is yet another floating parameter in the fit. However, if lattice QCD calculation

converge on a precise prediction, interest in τB0 for its own sake might flare up.

4.3 Mixing Frequency

Strategies for measuring the neutral B mixing frequency come in two flavors §, so-

called “time-integrated” and “time-dependent” analyses. Time-integrated techniques

seek to measure the mixing probability χd, where time-dependent analyses actually

map out the oscillations of the B0 mesons by recording the initial and final state flavor

of the B0 at the decay time. These techniques are used at all types of experiments,

The parameter χd is the integral of the B0 → B0 mixing probability (akin to

Eq. 1.2), and if we assume CP invariance (and ∆Γ equiv0),:

χd ≡
∫

Γ

2
e−Γt(1 − cos(∆mdt))

=
1

2

[
(∆md/Γ)2

1 + (∆md/Γ)2

]

=
Nmixed

Nunmixed +Nmixed

(4.1)

§Pun intended!
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The time-integrated technique, then, relies only on detecting and accurately counting

the number of mixed and unmixed B0 events (assuming the efficiencies and misidenti-

fication probabilities for mixed and unmixed events are understood). With knowledge

of the lifetime, one can immediately extract ∆md. The earliest technique employed

for identifying mixed and unmixed B0 events uses the charge correlations of the lepton

from B0 semileptonic decays. The sign of the lepton’s charge indicates the charge of

the W , which in turn labels the flavor of the initial quark as b or b. The key element

counting the number of like-sign BB decays to measure the number of mixed events.

B0 − B0 mixing was first reported in 1987 by ARGUS [1] (generally credited

with the discovery) and UA1 [35]. ARGUS operated at the Υ (4S) resonance at the

DORIS e+e− storage ring, and observed mixing in three different ways: by completely

reconstructing one mixed event, by reconstructing B mesons in a set of hadronic and

semileptonic final states and identifying the flavor of the recoiling B using a high mo-

mentum lepton, and by measuring the fraction of like-sign leptonBB decays. All three

observations gave convincing evidence that B0 was mixing into B0. CLEO has also

reported precision measurements of χd, using similar time integrated techniques [36].

They expand upon the ARGUS technique by requiring only partial reconstruction of

one B. The time-integrated technique is in principle the easiest, and perhaps most

direct method, but it suffers from systematic uncertainties. Both CLEO and AR-

GUS ran at the Υ (4S) resonance where semileptonic decays of B±, cc, and B0B0

daughters can dilute the sample. As of Summer 2002, the combined time-integrated

measurement of the B0 −B0 mixing frequency has an overall precision of 6.5%. [5]

The alternative to measuring the mixing probability is to observe the mixing

dynamically, using a time-dependent analysis where better sensitivity is obtained. In

this approach, the flavor of the candidate B meson is measured at two specific points

in time. (Typically, this is the production and decay times. ¶) The task reduces to

the identification of signal B0 candidates, flavor-tagging the initial and final states,

and measuring the proper decay time. Flavor-tagging is the process of identifying

the flavor of the b quark, often using charge correlations with the B decay daughters.

Because most experiments produce bb pairs, such as Υ (4S) → bb or Z0 → bb, the

¶But no at the B factories.
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flavor of the B decaying on one side of the event is correlated with the flavor of the B

on the other side. This is often used to provide the mixing status information. The

proper time is estimated from the distance between the production point (usually the

beamspot) and the B decay vertex (often relying on the precision tracking capabilities

of silicon vertex detectors) and the B momentum. The decay time distributions are

then used in a fit to extract the mixing frequency.

Different analyses employ different techniques to reconstruct the B meson whose

decay time they measure. Exclusive reconstruction of final states is difficult in the

higher energy experiments because of the multi-track jetty environments, so partial

and inclusive reconstruction techniques have been preferred. An interesting note is

that the LEP and Tevatron experiments use time evolution of uncorrelated B mesons;

since the b and b quarks hadronize independently, one B meson can be charged and

the other neutral. Different analyses also employ different techniques to measure the

initial and final state flavors of the B. The algorithms can become quite elaborate,

ranging from the use of high-momentum leptons, jet charge, reconstructed D∗ charge,

so-called charge dipole separation, and even the polar angle of the B candidate at

SLD where the colliding beams were polarized.

The asymmetric B-factories follow this same time-dependent approach, but as

described in Section 2.3.2, the decay time difference measurement is used, where the

initial measurement of the B is not made at the production time, but rather at the

time of the decay of the (correlated) other B. Time-dependent studies of B0 mixing

are typically limited by sample contamination, knowledge of the b-hadron lifetimes,

and flavor-identification mistakes known as mistags. Before the B-factories, the world

average on ∆md using time-dependent techniques had an overall precision of about

2.6%, [5] significantly better than the time-integrated extractions discussed above.

4.4 Comparisons to This Measurement

As mentioned, this study is a time-dependent analysis, meaning that we directly

observe the B meson’s life-cycle. A novel feature of this study is the use of the

asymmetric B Factory, which, by virtue of the asymmetric-energy head-on collisions,
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produces the B mesons at a moderate velocity along a single direction in the lab

frame. The important advantage of this technique is that the B mesons travel a

significantly longer distance in the lab (on average) before decaying, as compared

to symmetric energy collisions at the Υ (4S). The decay distance difference becomes

great enough to be resolved with modern particle detectors.

A key difference between the measurement reported here and those described

above is the simultaneous extraction of ∆md and τB0 using the same analysis on the

same data sample. To date, there is only one other measurement of this (simultane-

ous) type in the B system, by OPAL at LEP, published in 2000 [37]. The OPAL result

also uses the B0 → D∗−`+ν` decay channel, where the Z0 is approximated as a two-

body decay: Z0 → bb and the D0 decay is inclusively reconstructed amidst the b-jet.

The proper time is reconstructed by measuring the energy of the B0 and the decay

length (separation of the e+e− beamspot and the combined lepton and π−
soft tracks).

They include energy resolution effects and a triple-Gaussian resolution function for

the estimated proper decay time. The decay flavor of the B0 candidate is determined

by the sign of the lepton’s charge, and the flavor at production is measured by study-

ing the properties of the other b hadron. ‖ The event is divided into two hemispheres

by a plane perpendicular to the thrust axis, one containing the candidate b jet, and

the other opposite it. By considering the net charge of the other jet, reconstructed

secondary vertices, and high momentum leptons in the the opposite hemisphere, an

estimate of the other b flavor is made. The final fit uses the ∆t distributions, reso-

lution functions, m(D∗) −m(D0) spectra, and four different background models to

simultaneously measure ∆md and τB0 from a sample of about 80, 000 events with an

overall precision better than 7% and 3% respectively. They also observe a statistical

correlation between τB0 and ∆md of −14%.

There are several reasons why we choose to fit the B0 lifetime and oscillation

frequency simultaneously. Traditionally, they have been studied separately, and the

reasoning has been that (a) the lifetime is better measured without using the fla-

vor identification information since biases and inefficiencies can be introduced by the

‖In the case where the other b hadronizes as a B0, there will be some dilution due to its own
mixing.
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flavor-tagging algorithms, (b) at the true physics level, the lifetime and mixing param-

eters are completely uncorrelated, and (c) the world average value for the observable

τB0 was typically far better than could be achieved in a single measurement. Our

reasoning to the contrary is listed here:

1. The expected precision for both τB0 and ∆md in this analysis is comparable

to that of the year 2000 world average (an overall precision of 2% and 4%,

respectively). Therefore, there is no benefit from fixating on the world average

measurement of either. Depending on other measurements for parameter input

(such as τB0) introduces systematic uncertainties as well. The resolution on ∆t

leads to a correlation between τB0 and ∆md. We can study the correlations

between τB0 and ∆md.

2. Mixing information improves the measurement of τB0 in two distinct ways:

(a) Since mixed and unmixed events have different ∆t distributions, the mixing

information for each event gives greater sensitivity to the ∆t resolution

function and a smaller statistical uncertainty on τB0 by about 15%.

(b) Since B0B0 and B+B− events have different mixing behavior, we can use

the ∆t distributions for mixed and unmixed events to help discriminate

between B0B0 signal events and peaking B+B− background events.

3. The use of untagged events (actually, “poorly tagged events”) even for the

mixing measurement increases our sensitivity to the resolution function. As

will be described later, we use the tagging information from all events in the fit

for lifetime and mixing.

4. Future measurements (see Chapter 15) which could extract ∆Γ and study the

C, P , and T properties of B time evolution will need to re-evaluate the av-

erage values τB0 and ∆md in the event that these additional parameters are

found. (For instance, τB0 is measured assuming that ∆Γ is zero. If ∆Γ is non-

zero (as expected), it will become more important as the precision of the τB0

measurement increases.)



Chapter 5

The BaBar Experiment

This study uses data collected with the BABAR detector at the PEP-II asymmetric-energy
B-factory at SLAC, the Stanford Linear Accelerator Center in Menlo Park, California. The
PEP-II accelerator collides 9.0 GeV electrons and 3.1 GeV positrons to produce BB pairs
which decay quickly into sets of charged and neutral particles. These decay products in
turn pass out of the beampipe collision volume into the BABAR detector, which consists
of a series of concentric cylindrical detectors, each of which focuses on certain types of
measurements. The momenta of charged particles are measured with a combination of a 40-
layer drift chamber (DCH) and a five-layer silicon vertex tracker (SVT) in a 1.5-T solenoidal
magnetic field. A detector of internally-reflected Cherenkov radiation (DIRC) is used for
charged hadron identification. Kaons are identified with a neural network based on the
likelihood ratios calculated from dE/dx measurements in the SVT and DCH, and from the
observed pattern of Cherenkov light in the DIRC. A finely-segmented CsI(Tl) electromagnetic
calorimeter (EMC) is used to detect photons and neutral hadrons and to identify electrons.
Electron candidates are required to have a ratio of EMC energy to track momentum, an
EMC cluster shape, DCH dE/dx, and DIRC Cherenkov angle all consistent with the electron
hypothesis. The instrumented flux return (IFR) contains resistive plate chambers for muon
and neutral hadron identification. Muon candidates are required to have IFR hits located
along the extrapolated DCH track, a suitable IFR penetration length, and an energy deposit
in the EMC consistent with the muon hypothesis.

62
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The overarching goal of the BABAR-PEP-II facility is to study physics processes at

the Υ (4S) resonance with high precision, including B, c, and τ physics. The primary

focus is on decays of the neutral B meson, however. As suggested in Chapter 6,the

B meson has a lifetime of only 1.5 ps, and at the Υ (4S) resonance, this corresponds

to flight path in the lab too short to measure. By “boosting” the decay in the lab

frame, we achieve better spatial separation of the decay and its products so that we

can examine the physics more closely.

5.1 The PEP-II Facility

The PEP-II storage ring is the main engine of the experiment. PEP stands for

Positron Electron Project, highlighting the fact that the system collides electrons

and their antiparticles, positrons. The PEP-II facility is an upgraded version of the

original PEP complex from around 1980. Both detector and accelerator personnel

worked long and hard to bring all parts of the project online on-schedule and on-

budget in May, 1999.

We list several important features of PEP-II here.

• PEP-II stores and maintains the energy of circulating 9.0 GeV electrons and

3.1 GeV positrons in two stacked storage rings. The asymmetric beam energies

are necessary to produce center-of-mass collisions at the Υ (4S) resonance of

10.58 GeV, and boost the the Υ (4S) in the lab frame with βγ = 0.55. We refer

to the higher-energy electron beam direction as the forward direction.

• The high beam currents and strong focusing of PEP-II are necessary to achieve

the high luminosity required, in excess of 3 × 1033/ cm2 s. The PEP-II design

was aggressive in its magnitude and scale, and it has performed above and

beyond expectations. To provide final focusing as the beams come into collision,

several accelerator components are actually inside the BABAR detector. The

SLAC Linear Accelerator provides a high rate injector for the storage rings.

Compared to other e+e− colliders, PEP-II has significantly higher beam currents

due to the hundreds of so-called “bunches,” the buckets of concentrated charge
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in the ring.

• The large data samples needed to achieve the physics goals of BABAR depend

not only on the instantaneous luminosity of the accelerator, but also the up-

time; that is, the fraction of each day that stable collisions are delivered. The

BABAR-PEP-II team focuses on minimizing downtime in order to maximize the

integrated luminosity.

Fig. 5.1 depicts the PEP-II rings and their relationship to the SLAC Linear Ac-

celerator. For details of the PEP-II design parameters please see Ref. [38].

Figure 5.1: Schematic of the the PEP-II facility and SLAC. The 2 mile long Linear
Accelerator provides intense beams of electrons and positrons which are injected into
the PEP-II storage rings and come into collision at region IR-2.

The interaction region which includes the final focusing elements and the BABAR

detector is a technical feat of modern engineering. We include an illustration of the

final approach of the two beams in Fig. 5.2. The storage ring is, of course, not 100%

efficient, as there are small losses around the ring where circulating charge is ejected

from the nominal orbit. Primarily because of the high beam currents, these losses

can sum to substantial radiation backgrounds in the BABAR detecotr, degrading not

only instantaneous response (due to the presence of extra tracks, triggers, and noise)

but also long-term performance through radiation damage. We refer the reader to

the Appendices for several notes on these matters.
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Figure 5.2: Plan view of the PEP-II interaction region, showing the focusing of the two
beams in the magnetic elements. The beams collide head-on and are then separated.
The strong focusing is achieved by the final doublets of quadropole magnets, Q1,
Q2 and Q3, Q4. The internal B1 dipole magnets are permanent ferromagnets and
perform the final bends to place the beams in (and out of) collision. (Diagram
courtesy Ref. [39].)

5.2 The BABAR Detector

The BABAR detector is designed to quickly and accurately image the BB decay

products as they travel outward from the interaction point. It is roughly a series of
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concentric cylinders surrounding the near-IR beamline. Fig. 5.3 shows a side- and

end-view of the detector, illustrating its symmetries. In this Section, we’ll touch upon

each of the sub-systems of the detector, each of which consists of a separate cylindrical

layer specialized in some functionality with specific types of instruments.
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Figure 5.3: Side- and end-views of BABAR, illustrating the set of cylindrical layers that
comprise the detector. The e+e− interaction takes place inside the innermost volume,
an evacuated beampipe through which the beams travel. Each collision typically has
enough transverse momentum to spray the particles outward and forward (due to the
boost) into the detector volumes.

To achieve its physics goals, the following design attributes were required for

BABAR:
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• Maximum possible acceptance in the center of mass system

• Excellent vertex resolution (this requires not only good track momentum and

angle measurements, but also an inner tracking system as close to the interaction

point as reasonably achievable)

• Optimal tracking over a wide range of momenta

• Efficient neutral particle reconstruction

• Excellent particle identification over a wide kinematic range.

These requirements are met through the combination of six specialized systems, lay-

ered in increasing radius:

1. The Silicon Vertex Tracker (SVT)

2. The Drift Chamber (DCH)

3. The Detector of Internally Reflected Cherenkov Light (DIRC)

4. The Eletromagnetic Calorimeter

5. A superconducting solenoid magnet to immerse the tracking volumes in a uni-

form 1.5T magnetic field

6. The Instrumented Flux Return (IFR).

These systems are each complex and fine-tuned, but they also collaborate seamlessly,

as particles must travel through all the inner detectors before reaching the next outer

one. The goal is, then, to make each sub-detector nearly “invisible” to the particles

in all aspects except the one mechanism used to detect their passage.

The BABAR coordinate system places +z in the forward, e− beam direction, and

uses cylindrical coordinates to specify a polar angle θ measuring from the horizontal

and the azimuthal angle φ.
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5.2.1 Silicon Vertex Tracker

The innermost BABAR subsystem is the Silicon Vertex Tracker, known as the

SVT. The SVT consists of 5 cylindrical layers of double-sided silicon wafers arranged

around the beampipe. The inner radius is about 3.2 mm from the beamline; the SVT

extends outward to about 144 mm. Fig. 5.4 shows a side- and end-view of the SVT

to illustrate its geometry. Note that it is asymmetric between the fore and aft; this

is because of the asymmetric energies: the substantial boost forces decay products

to be flung forward, such that soft (low transverse momentum to be precise) tracks

will be at a low polar angle. The design of the SVT accommodates this by placing

all the cooling and readout components in the backward direction where they will

not occlude the detector. The bend in the arch modules increases the solid angle

coverage and avoids very large track incidence angles. The design of the SVT was

heavily constrained by the accelerator components in the interaction region, including

the aforementioned B1 dipole magnets.

We note several key features of the SVT here:

• The principle of operation is the creation of electron-hole pairs caused by the

passage of charged particles through the silicon semiconductor substrate. The

e − h pairs flow under the influence of an applied electric field, and the im-

age charge’s movement is noted at AC-couple charge-integrating contacts. (See

Fig. 5.5.) Since dE/dx is about 3.8 MeV/cm for a minimum ionizing parti-

cle, and the average energy to create an e − h pair in silicon is 3.6 eV, the

300µm thick wafers are capable of producing about 24, 000 electron-hole pairs

per minimum ionizing track.

• Each side of the silicon wafer-sensor is divided into strips, and the two sides

of each sensor have strips running in perpendicular directions. Strips that run

parallel to the beam axis integrate along their length and measure the φ position

of incident tracks, while strips running circumferentially around the detector

measured the z-position. The SVT sensors sum to almost a square meter of

silicon, and provide about 150, 000 channels of information to BABAR.
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Figure 5.4: Side- and end-views of the SVT. In the longitudinal view, the lower half of
the detector has been suppressed for clarity. Note the arch-shape of the outer layers,
as referenced in the text.

• The SVT dominates the measurement of the decay time difference, while the

other subsystems contribute to reconstruction and particle identification. As

such, it’s hit resolution is critical, but limited by multiple scattering, which

is of order 10-15µm in the inner layers. Taking just the readout pitch into

consideration, for an inner layer, the best single resolution possible is about

10µm, so the SVT design is well-balanced. As indicated in Fig. 5.6, the single
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hit resolution of the SVT in Layer-1 is better than 20µm in φ and 40µm in z. ∗

Figure 5.5: A simplified portrayal of an inner layer SVT wafer showing the readout
strips which sense the movement of charge in the active volume. The implants serve
to isolate the channels.

5.2.2 Drift Chamber

Traveling outward in radius, the next detector is the precision tracking chamber,

the Drift Chamber or DCH. The DCH provides up to 40 coordinate measurements

per charged track for particles with momenta greater than approximately 100 MeV.

In order to minimize multiple scattering losses, the DCH has been constructed of

low mass materials. It, too, is fore/aft asymmetric, as all the readout and control

electronics are on the rear bulkhead, outside of which there are no external sub-

detectors. It is 280 cm long and extends from 23.6 cm in radius out to 80.9 cm. †

The Drift Chamber is perhaps the most “conventional” particle detector employed in

BABAR.

We mention a few keys aspect of the DCH here.

∗The hit resolution is calculated in Data by measuring the distance between the single hit and
the reconstructed track without using that hit.

†Between the DCH and the SVT is the Support Tube, a mechanical component which suspends
the SVT and gimbals it off the magnet rafts which support the B1 dipole magnets.
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SVT Hit Resolution vs. Incident Track Angle
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Figure 5.6: Single hit resolution for Layer-1 of the SVT in Data and and Monte Carlo
as a function of incident track angle.

• The principle of operation for a drift chamber is the ionization of gas due to

energy deposited by a charged particle traversing the detector. An array of high

voltage wires strung the length of the cylindrical chamber causes the ionized

electrons to drift and then avalanche. Nearby sense wires detect the move-

ment of charge and are connected to the readout electronics. So-called time-

to-distance relations relate the arrival time of the charge pulses to the initial

distance from the wire of the particle’s energy deposition.

• The 40 “layers” are organized into 10 superlayers, some of which are purely

axial (the wires run parallel to the axis of the chamber) and some are slightly

rotated, meaning that they connect to points on the front and back endplates

of different (r, φ). ‡ The stereo layers alternate in positive and negative stereo

‡This, in fact, is what limits the amount of stereo angle: the effective “waistening” in the chamber
center must be small enough to prevent the wires from one layer from touching the wires of another.
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angles, and the “intersection” helps provide information about the z-coordinate

of tracks. Each layer is organized into cells, which consist of a single sense wire

surrounded by six field shaping wires (∼ 1900V ). There are a total of 7, 104

cells.

• A particle must have a minimum transverse momentum of about 50 MeV to

reach the DCH, but accurate track reconstruction requires more than one hit;

the quality cutoff is typically around 120 MeV.

• Information from the DCH is used for particle identification. Fig. 5.7 shows

the energy loss per unit distance (dE/dx) for different particles of the same

momentum. DCH dE/dx is most useful at lower momenta.

• At full design voltage, the average tracking efficiency is better than 98%. The

momentum resolution is parameterized as fractionally sensitive to the transverse

momentum of the charged track:

σpT

pT

= (0.13 ± 0.01)%pT + (0.45 ± 0.03)% (5.1)

5.2.3 Detector of Internally Reflected Cherenkov Light

BABAR uses a novel ring-imagine Cherenkov light detector for particle identifica-

tion, the Detector of Internally Reflected Cherenkov Light, known as the DIRC. The

DIRC consists of a thin layer of highly polished quartz bars arranged regularly around

the outside of the DCH, as shown in Fig. 5.8.

As a charged particle passes through matter, the surrounding atoms polarize and

subsequently depolarize, and a weak electromagnetic wave spreads out from the in-

stantaneous position of the particle. For a particle traveling more slowly than the

local speed of light, wave-fronts originating at different times can never meet, and no

interference is possible. For a particle travelling faster than light, the wave-fronts do

overlap, and constructive interference is possible, leading to a significant, observable

signal. This constructive interference produces light known as Cherenkov radiation,
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Figure 5.7: Measurement of dE/dx in the DCH as a function of track momentum.
The Data includes beam background triggers to enrich the sample in protons. The
curves are the Bethe-Bloch predictions for the different particle masses.

and the effect is velocity dependent. If the momentum of the particle is known, as

perhaps provided by the DCH, one can use the DIRC information to extract the mass

and therefore identify the particle species.

The DIRC is specially constructed so Cherenkov photons are emitted in the quartz

bars; the highly polished sides have excellent internal reflectivity so that the photons

bounce back and forth as they travel down the length of the bar and into the water-

filled detection volume. The Cherenkov photons produce a ring of light on the back

wall, which is instrumented with phototubes. A measurement of the diameter of the

ring identifies the original Cherenkov photon angle, when the incident track parame-

ters are also known.

We note here a few features associated with the DIRC. [40]
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Figure 5.8: Sketch of the DIRC subsystem, including the strong support tube which
holds the large water-detection volume carpeted with phototubes. Note again that
we make use of the asymmetry at BABAR: the detection volume is mounted off the
rear. The right-hand figure shows the principle of DIRC operation: total internal
reflection, and then “expansion” of the Cherenkov ring onto the imaging rear face of
the water-volume.

• Good K±/π± separation is achieved with the SVT and DCH dE/dx measure-

ments up to momenta of about 0.7 GeV. The DIRC offers K±-π± separation of

about 4-σ at 3 GeV.

• The error on the Cherenkov angle is controlled by the photon counting statistics.

There are about 28 Cherenkov photoelectrons detected per β = 1 normally

incident particle. The average resolution on the Cherenkov angle for a single

track is 2.5 mrad.

• The particle’s mass can be related to the Cherenkov angle and momentum by

m = p
√
n2

quartz cos2 θC − 1 (5.2)

where nquartz is 1.473, the index of refraction for quartz.

• The DIRC has excellent timing resolution, as it must be able to separate photons
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from different beam crossing interactions, and all of the “internals” operate at

the speed of light (as opposed to drift velocities, etc.).

• The reflection coefficients of the quartz bars must be better than 0.9992, because

photons can bounce as many as 365 times down the length of the bar.

5.2.4 Electromagnetic Calorimeter

So far all the subsystems discussed are sensitive only to the passage of charged

particles. The Electromagnetic Calorimeter (or EMC for short) is the first detector

which is sensitive to neutral particles (the photon being one of the most important)

and, in fact, is used to detect photons and separate electrons and positrons from

charged hadrons. Because half of the photon energies from generic B decay are below

200 MeV, the EMC is designed to reconstruct low energy photons with high efficiency

and excellent resolution.

The (roughly) cylindrically symmetric EMC is shown in Fig. 5.9. The EMC

consists of 6, 580 crystals, the majority of which are arranged in rings of φ to form

the barrel part of the calorimeter. The remaining 12% are distributed in a forward

endcap, where again we take advantage of the preferred boost direction do not even

instrument the backward direction. The crystals are Cesium-Iodide, doped lightly

with Thalium. In comparison with other scintillating crystals commonly used, CsI(Tl)

has high density, excellent light output and long decay constant (the latter being a

drawback).

We note here several aspects of the EMC. [40]

• Again, to minimize material in front of the subdetector, all services and elec-

tronics are located behind the crystals.

• Charged particles produce scintillation in the crystals, and the photons are

detected by redundant photodiodes on the backs of crystal. Phototubes are

inappropriate due to the ambient 1.5T magnetic field. The average light yield

is 7, 300 photoelectrons/ MeV.
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Figure 5.9: Plan drawing of the assembly of CsI(Tl) crystals that form the’ active
regions of the EMC subdetector.

• The EMC is more than 96% efficient for photons with energy greater than

20 MeV, where this threshold is set by beam backgrounds and material in front of

the crystals. The energy resolution for photons is measured (from a combination

of radioactive source calibrations and Bhabha scattering) to follow:

σ(E)

E
=

(2.32 ± 0.30)%

E1/4
⊕ (1.85 ± 0.12)% / (5.3)

The first term measures the primarily photon counting statistics; the second

term (dominant at E > 1 GeV arises from non-uniformities in light collection

and uncertainties in calibration. The angular resolution is determined by the

transverse crystal size and the average distance to the interaction point, and

has been measured from an analysis of π0 and η0 decays to two photons to be

σφ = σθ =
(3.87 ± 0.07)√

E( GeV)
⊕ (0.00 ± 0.04) mrad . (5.4)

5.2.5 Instrumented Flux Return

A superconducting solenoidal magnet surrounds the EMC and provides a uniform

1.5T field throughout its interior. The provided field is uniform in the tracking
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chamber (the DCH) to within 2%. Final focusing of the PEP-II beams in the domain

of the solenoidal field is tricky, since it can couple some of the beam modes. Sextupoles

on either side of the interaction region, when finely tuned, remedy this effect.

The significant flux of the magnet is returned through a hexagonal, instrumented

detector of iron, the Instrumented Flux Return (IFR). The iron acts as a yoke, and

is segmented into sandwiches of active detector volume and iron plates, as shown in

Fig. 5.10. This sequence of absorber-detector-absorber serves as a long-lived neutral

hadron and muon detector. Each sandwich is designed as a resistive plate chamber

with high voltage Bakelite cathodes coated with graphite strips separated by a 2 mm

gap. Muons with sufficient momenta (greater then 1 GeV) pass through the chamber

and cause an ionization discharge across the gap, losing energy each time in the

iron regions. Long-lived neutral hadrons such as K0
L pass through the IFR chambers

and, due to interactions in the iron, cause small “showers” of charged daughters

that traverse the gaps and cause the quenched discharge. A key difference is that

the charged muon candidates will have an associated track leading up to the IFR

chambers, whereas the K0
L (or others) will be “invisible” until forced to interact with

the very dense iron and steel. Additionally, the expected number of interactions for

muons and K0
L is different.

Barrel
342 RPC
Modules

432 RPC
Modules
End Doors

19 Layers

18 Layers
BW

FW

3200

3200

920

1250
1940

4-2001
8583A3

Figure 5.10: Two different views of the IFR detector, showing the hexagonal shaped
barrel region and the two endplates. All are instrumented with the resistive plate
chamber sandwiches described in the text.

Unfortunately, the resistive plate chambers suffer from efficiency problems which
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are apparently aggravated by temperature and humidity. As a result, the BABAR

muon identification has been steadily decreasing as the quality of the chambers has

been degrading. During the 1999-2000 run, over 75% of the chambers were better

than 90% efficient.

5.2.6 Trigger and Data Acquisition

Beam crossings occur at several hundred MHz, depending on the pattern of collid-

ing bunches in the PEP-II rings. Not every collision results in an interesting interac-

tion of course, and as mentioned earlier, not every collision containsB physics. BABAR

uses a two level trigger system to filter out machine background events, Bhabha scat-

terings, and other unwanted physical processes. The trigger is designed to gather

categorical and global event information to quickly identify the structure of an event,

and then to make a decision about whether information gathered in the entire detec-

tor should be stored. At design luminosity, the bb production cross-section leads to

about 3 BB pairs produced per second, which is “plenty of time” for modern electron-

ics and the physical processes at work inside each subdetector to achieve equilibrium

and/or deposit signal. As such, BABAR often refers to itself as a nearly deadtime-less

detector, as relatively little (fractional) time is spent reading out the entire detector.

The key purpose of the filter, then, is reject events associated with the e+e− inter-

action that are unwanted, and to preferentially retain those events that are consistent

with interesting physics. The tricky part is making the accept/reject algorithm un-

biased. BABAR accomplishes this is by making the trigger relatively loose. Table 5.1

shows the performance of the first stage of the trigger (the so-called Level 1 decision)

for several different physics processes. The Level 1 decision is made using charged

track candidates in the DCH, showers in the EMC, and tracks detected in the IFR.

Because of the need for minimum latency, the Level 1 algorithms are implemented in

hardware.

Events accepted by Level 1 are then passed to Level 3 which is designed to accept

events at a maximum rate of around 100 Hz. Level 3 performs additional selection

and filtering to help reduce backgrounds, and runs in software. Once an event is
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Event Cross Production Level 1
type section Rate (Hz) Trigger

( nb) Rate (Hz)

bb 1.1 3.2 3.2
other qq 3.4 10.2 10.1
e+e− ∼53 159 156
µ+µ− 1.2 3.5 3.1
τ+τ− 0.9 2.8 2.4

Table 5.1: Cross sections, production and trigger rates for the principal physics pro-
cesses at 10.58 GeV for a luminosity of 3×1033 cm−2s−1. The e+e− cross section refers
to events with either the e+, e−, or both inside the EMC detection volume. (This
tabulation courtesy Ref. [40].)

accepted by Level 3, the detector freezes. Each subsystem stores sets of recent event

information in a pipeline memory which buffers the events for later readout. A Level 3

accept causes the online data flow software to take over which slowly pulls information

from each subsystem and passes it the event processing routines. The event processing

is handled by a many-node computer farm which organizes and collates the Data for

permanent storage on the local filesystem.

For more information on the BABAR event store, particularly its implementation,

please see Appendix C.

5.3 Performance and Data Samples

The BABAR experiment has been running successfully since May, 1999. As of July

2002, the experiment has recorded more than 90 fb−1 of Data, and maintained an

average efficiency of more than 90%. Fig. 5.11 shows the phenomenal success of the

BABAR-PEP-II team effort. The BABAR shift crew consisted of 4 people on duty 24-

hours a day: the Shift Leader, the Data Quality Shifter, the Data Acquisition Shifter,

and the BABAR-PEP-II Liaison.

The analysis described in this study uses the 1999-2000 dataset which includes
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Figure 5.11: These publicity plots highlight the tremendous startup of the BABAR-
PEP-II facility. Design capacity was achieved early on by reaching the goal of 120
p pb−1 er day.

20.6 fb−1 of on-resonance data and 2.6 fb−1 of off-resonance data. §

5.4 Monte Carlo Data Samples

A key toolset in successfully extracting physics from the BABAR data is the com-

plementary simulated data samples, the so-called Monte Carlo data. “Monte Carlo”

refers to the core technique for generating the simulated data — given probability

distributions and analytic constraints, the Monte Carlo method is used to quickly

generate a random set of events that are distributed according to the input prob-

ability density functions. The simulated data is computer-generated, and can only

exhibit patterns or relationships inasmuch we have parameterized and modeled them.

In short, the output events are only as realistic as the input physics. These simulated

datasets are powerful tools, since they provide the physicist with two features.

§This particular dataset has been “re-processed” since then (improving calibrations and track-
finding algorithms), although we elected not to start over by switching to the new version of the
sample.
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1. An alternative dataset that is sufficiently complex and general enough to provide

an analysis strategy test and development environment, and

2. A dataset whose “truth” can be revealed, since the original information about

what events were generated is also stored in the file.

In this study, we do not rely on simulated data to make our final measurements ¶

but we do use it in order to convince ourselves that our techniques are extracting the

information we expect.

MC event simulation begins with the generation of a selected B decay (parented

by the Υ (4S)), including event kinematics and decay chains. The algorithm then

tracks the BB meson pair and their decay products as they traverse the detector

volume, depositing simulated energy in simulated front-end detector elements. This

map of the simulated tracks of the particles from the original BB pair is stored in

a format nearly identical to that of the real data provided by the true detector. In

this way, the offline candidate reconstruction software can process either simulated

data or real data, yielding the best estimate about what physics was in the event,

independent of “where” the data really came from.

The trickiest part of creating a simulated data sample is ensuring that it is sys-

tematically consistent with (and even faithful to) actual event data. ‖ There have

been four significant cycles of centrally-produced simulated data for BABAR (so far);

the set set of Simulation Production data used in this analysis is called SP3. The

simulated data is produced centrally so that collaborators can study and benchmark

to the same set of standards. There are two broad classes of simulated data: “signal

Monte Carlo data” (signal MC) and “generic Monte Carlo data” (generic MC). A

signal MC dataset is one that was specifically generated for one or two specific decay

modes of the original B meson, in our case, this is B0 → D∗−`+ν`. By generating

only events of this type, and passing them through the reconstruction software, we

can focus specifically on what happens to true signal events in the presence of detec-

tor reconstruction effects, event selection effects, and other inefficiencies. The other

¶Unlike, perhaps, current students at the LHC.
‖Of course, it won’t be exactly like the Data, since if we knew how to precisely reproduce real

Data, we wouldn’t need to do the experiment to measure the true physics.
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class of MC data is generic Monte Carlo, where the generated B meson pairs are

allowed to decay to any of many different final states. In this way, we simulate the

true conditions in the Data — we must search through an entire dataset of many

different processes to identify the events that specifically contain B0 → D∗−`+ν` sig-

nal candidates. Generic Monte Carlo data is used, therefore, to examine how natural

(and understood) competing physics processes can influence the analysis; i.e., generic

MC allows us to study backgrounds in the sample.

The key to understanding Monte Carlo data is that although it is “man-made”

and computer-generated, it is also an elegant technique to produce realistic responses

from very complex systems, whose internal dynamics are driven by random processes.

We can often learn from a proper physics-based Monte Carlo about effects which were

not explicitly encoded in the inputs. (That is, a good Monte Carlo simulation can

expose correlations between measured quantities.)

For this study, we use all available SP3 B0B0, B+B−, cc, and B0 → D∗−`+ν`

signal Monte Carlo samples generated and reconstructed with Release 8.8.x. ∗∗ The

generic Monte Carlo samples each correspond to about 15 fb−1 equivalent luminosity

for the B0B0 and B+B− samples, and about 7.6 fb−1 for the cc.

In order to increase the size of our generic Monte Carlo sample, an additional

sample of “filtered generics” was produced. In this “filtered” sample, a true lepton

with center-of-mass momentum greater than 1 GeV/c is required at the generator

level. These samples provide an additional 10.4 fb−1 B0B0 and 16.4 fb−1 B+B−

equivalent luminosity. [41]

The signal Monte Carlo samples correspond to events in which one B decays to

D∗− `+ ν` with D∗+ → D0π+. Separate samples are created for the four different

D0 decay modes under study. The samples consist of 424k Kπ (161.3 fb−1), 436k

Kπππ (84.9 fb−1), 654k Kππ0 (68.7 fb−1) and 102k K0
S
ππ (55.2 fb−1). Since the

effective luminosities for the Monte Carlo samples are different for each D0 decay

mode, we must re-weight them in any combined study in order to realistically model

the contributions from each in real Data.

∗∗“SP3” and “Release 8.8.x” are labels for specific versions of the software used to produce the
dataset. These versions correspond to the releases used in the real Data processing as well.
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The value generated in the Monte Carlo across all samples for τB0 is 1.548 ps and

for ∆md is 0.472 ps−1. In generic Monte Carlo, the ratio of mixed to unmixed events

(parameterized by χd) is consistent with these values of τB0 and ∆md. However, signal

Monte Carlo samples were generated with a value of χd = 0.160, which is inconsistent

with the value of χd = 0.174 that corresponds to the generated values of τB0 and

∆md.
†† We have corrected this effect for all studies described in this document by

rejecting a precise fraction (9.5785%) of the unmixed events‡‡.

We rely on Monte Carlo “truth-matching” in some proof-of-principle studies for

this analysis. Truth-matching refers to looking at the event’s generated characteristics

and identifying which reconstructed objects most likely correspond to the underlying

true candidates. This matching process is often hampered by the processes where

particles interact in the detector volume (in simulation as in reality) and change

form. We often refer to the “correctly reconstructed signal MC sample” which is the

set of signal MC events whose B0 → D∗−`+ν` signal candidates pass the Monte Carlo

truth matching test. This sample therefore has realistic tagging-side performance

characteristics, but the best possible resolution on the reconstructed side.

5.5 Candidate Reconstruction

The reconstruction stage of event processing is the final one performed centrally

at BABAR. Online Prompt Reconstruction processes each run and builds so-called

“candidate lists” in the event and stores tagbits which record (typically) binary infor-

mation about what types of candidates were found in the event. Again, the dataflow

model at BABAR is that the general user has access to the entire Data sample, but each

event has already been examined by a variety of “loose selectors” that have recorded

whether or not basic particle candidates were found (such as K0
S
, or D0 → K−π,

etc.). The analyst then needs only to “assemble” the basic composite candidates

to fit their particular decay sequence, and retain those events in which candidates

††i.e., There was a typo in the decay file. χd, ∆md, and Γ are related by χd = (∆md/Γ)2

2((∆md/Γ)2+1) .
‡‡A special perl script (asciiChi d.pl) was prepared to remove these candidates randomly from

the signal Monte Carlo datasets.
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are successfully built. In this section we’ll touch briefly on some of elements of that

process.

5.5.1 Track Reconstruction

Track measurements are important for the extrapolation to the DIRC, EMC,

and IFR. Most critical are the angles at the DIRC, because the uncertainties in the

charged particle track parameters add to the uncertainty in the measurement of the

Cherenkov angle. At lower momenta the DCH measurements are more important,

while at higher momenta the SVT measurements dominate.

Charged particle tracks are reconstructed using information from both the DCH

and the SVT. Tracks are found by fitting the expected charged-particle-in-a-magnetic-

field helices to the sequences of hits. Once a track is successfully seeded, hits will be

added if they consistent with the track. Tracks are parameterized by five parameters,

(d0, z0, φ0, ω, tanλ). These parameters are measured at the point of closest approach

to the z-axis; d0 and z0 are the distances of this point from the origin of the coordinate

system in the x–y plane and along the z-axis, respectively. The angle φ0 is the azimuth

of the track, λ the dip angle relative to the transverse plane, and ω = 1/pT is its

curvature. d0 and ω are signed variables depending on the charge of the track. The

track finding and the fitting procedures make use of a Kalman filter algorithm [42]

that takes into account the detailed distribution of material in the detector and the

full map of the magnetic field.

The particles that are actually observed in the detector are only pions, elec-

trons, muons, kaons, protons and photons. All other particles are reconstructed

from these basic building blocks, as they have typically decayed in flight leaving just

the longer-lived daughters. The candidates (neutral clusters and charged tracks) are

grouped into the following lists depending on the quality and characteristics of the

track/cluster [31].

• ChargedTracks: All reconstructed tracks from DCH or SVT. The pion mass

hypothesis is the default.

• GoodTracksVeryLoose: subset of ChargedTracks, must pass:



5.5. CANDIDATE RECONSTRUCTION 85

1. a distance of closest approach to the per-event beam spot of |∆z| < 10 cm,

and
√

∆x2 + ∆y2 < 1.5 cm

2. a maximum track momentum measured in the lab frame of 10 Gev

3. a minimum number of DCH + SVT track hits ≥ 5

• GoodTracksLoose: subset of GoodTracksVeryLoose, must pass:

1. a minimum transverse momentum of 100 MeV

2. a minimum number of 12 track hits recorded in the DCH

• GoodTracksTight : subset of GoodTracksLoose, must pass:

1. a distance of closest approach to the per-event beam spot of |∆z| < 3 cm,

and
√

∆x2 + ∆y2 < 1 cm

2. a minimum number of 20 track hits recorded in the DCH

• GoodPhotonLoose

1. a minimum calorimeter energy of 30 MeV

2. a minimum number of EMC crystals hit > 0

3. LAT (an energy deposit shape variable) < 0.8

• GoodNeutralLoose

1. a minimum calorimeter energy of 30 MeV

2. a minimum number of EMC crystals hit > 0

3. no LAT cut

These lists serve as a pool of candidates for creating composite particles such as

the K0
S or D0, especially when combined with particle identification information.
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5.5.2 Particle Identification

One of the most powerful tools in BABAR reconstruction is “particle identifica-

tion.” This refers to the ability to identify the species of a particle in addition to

its momentum, which can be provided by the tracking system. Aside from muons

which are a somewhat special case, particle identification typically exploits physical

processes whose rate varies with the particle’s velocity, thereby providing access to

its identity. As expected, then, particles whose masses are near each other are of-

ten difficult to distinguish (provided they are similarly charged, etc.) Bear in mind

that one can also deduce a particle’s mass by separately measuring its energy and

momentum. BABAR uses the following techniques to identify charged particles.

1. Momentum-dependent rate/angle of Cherenkov radiation for particles passing

through specific radiator materials,

2. Mass-dependent rate of energy loss when passing through material (so-called

“dE/dx” measurements,

3. Lateral shower shape of energy deposition in the EMC .

Particle identification is used in this analysis to identify the kaon used when recon-

structing D0 mesons, to identify the lepton candidates for the ` in D∗`, and in the

inclusive determination of the Btag flavor.

Without going into too many details, we discuss some of the primary methods of

particle identification. Each class of particle type in BABAR has a set of associated

selectors which will select candidate tracks from any of the aforementioned track lists

in the event. Selected tracks are consistent with the particle identification hypothesis.

The kaon selector is based on forming combined likelihood ratios using quantities

from three BABAR subdetectors: SVT, DCH, and DIRC. For low momenta, the dis-

criminating quantity is the ionization loss, dE/dx, from the SVT and the DCH. For

higher momenta, the Cherenkov angle θC and the number of photons, Nγ, detected

by the DIRC are added. The calculated probability for dE/dx from the SVT and

DCH, and for the DIRC Cherenkov angle θC , is Gaussian. For the number of ob-

served photons in the DIRC, Nγ, the probability includes a Poisson term. The total
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likelihood L for a given particle type is a product of the likelihoods from all three

subdetectors. The average efficiency is 82% for the very tight selector and the average

pion mis-identification rate is 2%. Pion identification is performed in the veto mode:

pions are only required to not be identified by the tight kaon selector as kaons.

The variables used for electron identification are [43]:

1. The ratio of the energy E deposited in the EMC to the track momentum p,

E/p. An ideal calorimeter will have E/p = 1 for an electron.

2. The ionization loss dE/dx .

3. A lateral energy distribution variable, LAT, defined as

LAT =

∑n
i=3Eir

2
i∑n

i=3Eir2
i + E1r2

0 + E2r2
0

, E1 ≥ E2 ≥ ... ≥ En, (5.5)

where n is the number of crystals in a shower, r0 is the average distance between

two crystal front faces (≈ 5 cm), Ei is the energy deposited in the ith crystal, and

ri is the distance between the ith crystal and the shower center. Electromagnetic

showers are typically confined to only one or two crystals, so the corresponding

LAT is smaller than that for hadronic showers.

4. The Zernike moment, A42 which measures the shower irregularities, which is

akin to an expansion in angular moments, defined as

A42 =
4∑

ri≤R0

Ei

E
· f42

(
ri

R0

)
· e−2iφi , (5.6)

where R0 = 15 cm, and

f42

(
ρi ≡

ri

R0

)
= 4ρ4

i − 3ρ2
i , (5.7)

with ri as the distance from the crystal to the shower center. This variable

is useful because the electromagnetic showers tend to be more regular than

hadronic ones.
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5. The measured DIRC Cherenkov angle, θC, of the e+ or e− candidate, which is

compared to the expected Cherenkov angle, θexp
C calculated assuming an electron

hypothesis.

The efficiency plateau for the very tight selector is 88.1% for tracks with momenta

0.5 < p < 2.0 GeV/c, and the pion fake rate is 0.15%.

The following quantities are combined for muon identification: [44]

1. The energy deposited in the EMC, E, when available.

2. The number of IFR layers in a cluster matched to the muon candidate.

3. The measured and expected interaction lengths, λ and λexp, respectively, tra-

versed by the track in the entire detector. The expected interaction length is

calculated assuming the muon hypothesis. ∗

4. The variable χ2
trk, which measures how closely the hit IFR strips in a cluster

match the track extrapolation. It is computed using the coordinates of each

hit in an IFR layer and the coordinates of the intersection point of the track

extrapolated to the same layer. χ2
fit is the χ2 of a fit of all the hits in a given

cluster to a 3rd order polynomial. The discriminating power of both χ2
trk and

χ2
fit comes from the fact that a pion or a kaon can interact in the material and

produce a hadronic shower, leading to a more spread out distribution of hits,

while a muon is expected to match the track extrapolation reasonably well.

5. The average multiplicity of hit strips per layer, m, and its standard deviation,

σm.

6. Tc describes the continuity of the track in the IFR, i.e., the fraction of layers

with recorded hits between the first and last observed interaction. This variable

peaks at 1 for continuous tracks in an ideal detector (with a 100% detector

efficiency and geometric acceptance).

∗An “interaction length” is defined as the mean free path of a particle before undergoing inelastic
collisions. This pair of variables (measured and expected interaction lengths) is really comparing
the penetrating power of muons versus the stoppage of pions. For muons, we expect the expected
number of interaction lengths to be nearly identical.
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7. Very tight muons are required not to be selected by the tight kaon selector.

The plateau efficiency is 70.2%, with the average pion (kaon) mis-identification

rate 2.3% (0.7%). The efficiency has been determined using Data control samples

with µµee and µµγ final states, and the mis-identification rate has been determined

using pions from three-prong τ decays and K0
S → π+π−. (See Fig. 5.12.) Decays in

flight constitute ∼ 2% of the pion mis-identification rate.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

p (GeV/c)

M
uo

n 
ef

fic
ie

nc
y

p (GeV/c)

P
io

n 
m

is
-id

 r
at

e

0

0.02

0.04

0 0.5 1 1.5 2 2.5 3

Figure 5.12: Upper: Muon identification efficiency as a function of lab momentum.
Lower: Pion mis-identification rate as a function of lab momentum.



Chapter 6

Decay-time Measurement

The decay-time difference ∆t between B decays is determined from the measured sep-
aration ∆z = zD∗` − ztag along the z axis between the D∗` vertex position (zD∗`) and the
flavor-tagging decay Btag vertex position (ztag). This measured ∆z is converted into ∆t
according to the relation ∆t = ∆z/(βγc) with the use of the known Υ (4S) boost, determined
for each run.

90
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In this section, we describe the method used to determine the decay-time difference

∆t and its uncertainty σ∆t for each event. We define ∆t as the difference between

the decay time of the fully reconstructed B → D∗`ν` candidate and the decay time

of the inclusively-reconstructed tagging B:

∆t = trec − ttag = tD∗` − ttag.

For reference, we also define the residual as δ∆t = ∆tmeas −∆ttrue, a signed quantity

that compares the measured ∆t to the true value. (This quantity is only explicitly

available in the Monte Carlo datasets where the “truth” is known, of course.)

6.1 Brec Vertex

The momentum and position vectors of the D0, the soft π− from D∗− → D0π−,

and ` candidates, and the run-averaged position of the e+e− interaction point (called

the beam spot) in the plane transverse to the beam are used in a constrained fit to

determine the best-fit position of the D∗` vertex. The beam-spot constraint is of

order 100µm in the horizontal direction and 30µm in the vertical direction, corre-

sponding to the RMS size of the beam in the horizontal direction and the approximate

transverse flight path of the B in the vertical direction. The constrained fit improves

the resolution on zD∗` by about 30%. The RMS spread on the difference between the

measured and true position of the D∗` vertex as measured in Monte Carlo is about

80µm (0.5 ps).

6.1.1 The BD∗` refitting algorithm

The BD∗` refitting algorithm deserves further comment. It uses a constrained

vertex fitting technique that combines information from the `, beamspot, and the D∗

together with its daughters simultaneously to find the best vertex. The algorithm

explicitly incorporates a flight distance of the daughter D0, correctly considers the

correlated errors in the fit, and provides an improved estimate of m(D∗)−m(D0) and
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Figure 6.1: The difference between the reconstructed z position and the true z position
BD∗` vertex, in µm, as measured in correctly reconstructed signal Monte Carlo. The
overlaid curve is the fit resultfor a double Gaussian, yielding a resolution of 77µm.
(Recall the conversion 166 µm/ps.)

the D∗` vertex of the B.∗ In short, when using this algorithm, the m(D∗) −m(D0)

resolution improves by 40%, and the zD∗` vertex resolution improves by about 30%.

The soft π− candidate is poorly measured, especially when only SVT-hits are

available. Our knowledge of the soft π− (particularly the polar angle) is also highly

correlated with the D0 momentum and D0 decay length. Only by fitting for the

D0 vertex and D∗ vertex simultaneously can the correlations be taken properly into

account. Second, the D0 vertex serves as a new data point for determining the

momentum of the soft pion, which helps improve the entire fit. The result is the

B0 → D∗−`+ν` vertex with improved results for the D∗ vertex, D0 vertex, and slow

pion momentum which, in turn, provides a better measure of m(D∗) −m(D0).

∗The source code for this strategy is primarily located in the VtxFit-
ter/VtxB0 DstarlnuAlgorithm class. As initially prepared, the algorithm did not support the
triply-constrained fit of the B vertex; we provided this extension and conclusively demonstrated
the benefits. See [45] for further details.
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We show next that including the beamspot constraint in the simultaneous fit

improves the average vertex resolution, and directly contributes to an improvement

in the ∆t residuals, while introducing negligible correlations between the reco- and

tag-side vertex estimates. For this study, we use D0 → K−π signal Monte Carlo and

four different reco-side vertexing algorithms.

• (raw) - The basic vertexing of the D∗ and ` candidates as used in the default

composition sequence. † No explicit treatment of the daughter D0 flight length.

• (D∗, `) - Employs the VtxB0 DstarlnuAlgorithm which forces a separation

between the (D∗,`) and the D0 decay vertex in the simultaneous refitting of the

entire D∗ tree and the `.

• (D∗, bs) - Same as above, except that the lepton is not used in the vertex fit;

rather the beamspot is applied as constraint on the D∗ decay vertex.

• (D∗, `, bs) - Same as above, except the lepton candidate is also considered in

the vertex fit.

Näively, we expect the most constrained refitting, the (D0, `, bs), to perform the best

on average. Because these algorithms adjust the D∗ 4-momentum and position, we

also might expect to see a dependence of the the δm = m(D∗)−m(D0) resolution on

the choice of algorithm.

The technical implementation of this study involved producing new ntuples from

the SP3 D0 → K−π signal Monte Carlo kanga files which contained four different

estimates (corresponding to the four different reco-side vertexing algorithms) of each

candidate’s refitted δm, zD∗` and their corresponding error estimates. To maintain

the integrity of the study, we only compare candidates that pass the final selection

with all four algorithms. This is because of the slight difference observed in selection

efficiency as shown in Table 6.1. (It is primarily the σ∆t cut and convergence of the

refitting algorithm that causes this difference.)

The expected correlation between the δm resolution, the reco-side vertex algo-

rithm, and angular features of the candidates is not supported in the dataset due to

†This is implemented by the GeoKin vertexing operator as used in CompositionTools.
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Vtx Algorithm Candidates Selected % Change

raw 84780 0.0
(D∗, `) 83347 -1.7
(D∗, bs) 81810 -3.5
(D∗, `, bs) 85433 +0.8

Table 6.1: Crude comparison of the efficiency of the different reco-side vertexing
algorithms for signal MC events

other challenging correlations. (We define the the resolution of δm for an algorithm

to be the combined width of a double gaussian fit to the peak of the mass difference

distribution.) For instance, one might expect the power of the (D∗, bs) algorithm to

depend on the azimuthal angle of the soft pion (from the D∗ decay) so that when the

soft pion is in the azimuthally “horizontal direction” it will be most affected by the

tight y-constraint imposed by the beamspot. Alternatively, we might think that the

resolution (improvement with respect to the (raw) algorithm) of the (D∗, `) algorithm

might depend on the lab opening angle between the D∗ and ` candidates. Due to a

variety of correlations, however, these expectations are not borne out in data. For

instance, the momentum of the soft pion appears to be empirically correlated with

the center-of-mass opening angle of the candidate due to shared kinematics.

We conclude that the three refitting algorithms improve the resolution of the

δm estimate, but that based on this alone, we cannot distinguish between them.

Figures 6.3- 6.6 illustrate our results.

We ultimately wish to choose the the Brec vertexing algorithm that optimizes our

∆t resolution, and in that dimension, we can draw distinctions between the three

refitting algorithms. For instance, the distribution of per-event estimates for this

sample is different for each of the algorithms (see Figure 6.5). We now focus only

on correctly reconstructed signal candidates in this Monte Carlo sample, and again

the (D∗, `, bs) algorithm is most efficient. We compare the measured z-position of

the reco-side vertex to that from Monte Carlo truth association to form a z-residual

on just the reco-side. This distribution ultimately describes the ∆t performance

of the different algorithms. Figure 6.6 shows these residual distributions, and the



6.1. Brec VERTEX 95

combined (D∗, `, bs) algorithm is singled out as the most accurate and precise estimate

of the z-position of the D∗` candidate. The pull distribution supports this conclusion,

although are harder to use to distinguish the algorithms because each algorithm

returns a very good estimate of its own error.

An important consideration is whether the application of the beamspot constraint

separately to the Brec vertex introduces an undesirable correlation with the tag-side

vertex (which also uses the beamspot in the inclusive vertex fit). To evaluate this,

we measure the correlation coefficient between measured zD∗` and ztag and compute

the combined σ∆z including the individual vertex resolutions. For the sample in

question, we obtain the results shown in Table 6.2, which indicate that the change in

correlation between the two vertices is negligible compared to the improvement in ∆z

resolution. (In this sample, we measure the average resolution of the ztag estimate to

be 130.9µm.)

Reco Vtx Algorithm ρ(zD∗`, ztag) RMS σ∆z [µm ]

raw 0.00276 155.4
(D∗, `) 0.00211 155.5
(D∗, bs) -0.00341 192.4
(D∗, `, bs) -0.00449 147.3

Table 6.2: Comparison of correlation between ztag and zD∗` for the different reco-side
vertexing algorithms, and resulting RMS of σ∆z using signal MC candidates.

A final cross-check uses the residual distribution in a fit to determine a triple gaus-

sian resolution function. As expected, the (D∗, `, bs) algorithm returns the best RMS

resolution on ∆t of 0.746 ps, a 33% improvement over the (raw) algorithm. In con-

clusion, we select the multiply constrained simultaneous refitting algorithm (D∗, `, bs)

for B0 → D∗−`+ν` candidates since it (a) offers the best zD∗` vertex resolution with

negligible change in the correlation between the tag- and reco-side vertices, and (b)

measurably improves the δm resolution.
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Figure 6.2: This pair of plots shows the improvement in δm resolution when the
constrained refitting algorithm is used. The effective rms of the peak (where the
signal is concentrated) is improved by more than 40%.
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Figure 6.3: Each of these three figures shows the improvement in δm resolution for
the reco-side vertexing algorithm shown in the upper right corner as compared to the
(raw) algorithm. (The sample of candidates in each plot is identical, except for the
reco-side vertex quantities, and is drawn from signal MC.) The x-axis indexes the slice
in angular region of the lab quantity, cos θD∗,`: {[-1,-0.5],(-0.5,0.5],(0.5,1],}. If indeed
the resolution of the (D∗, `) vertexing algorithm were dependent on the lab opening
angle of the D∗-` candidate, the upper plot would show the largest improvement in
the center bin, while the other two plots would exhibit little structure.
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Figure 6.4: Each of these three figures shows the improvement in δm resolution for
the reco-side vertexing algorithm shown in the upper right corner as compared to the
(raw) algorithm. (The sample of candidates in each plot is identical, except for the
reco-side vertex quantities, and is drawn from signal MC.) The x-axis indexes the slice
in angular region of the lab quantity, φπsoft

: {[−π/2,π/2),[π/2,3π/2),[3π/2,−3π/2),
[−3π/2,−π/2)} or more simply {right, up, left, down}. If indeed the resolution of
the (D∗, bs) vertexing algorithm were dependent on the azimuthal angle of the D∗-`
candidate’s soft pion, the middle plot would show the largest improvement in the first
and third bins, while the other two plots would exhibit little structure.
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Figure 6.5: Distribution of σ∆t for the signal Monte Carlo sample described in the
text. The blue curve (upper) corresponds to the distribution as reported by (D∗, `, bs)
algorithm, the black (middle) to the (D∗, `), and the red curve (lower) to the (D∗, bs)
algorithm.
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Figure 6.6: Residual distributions for the z-position of correctly reconstructed B0 →
D∗−`+ν` candidates in the signal Monte Carlo sample described in the text. Each of
the four plots corresponds to a different reco-side vertexing algorithm used to estimate
the z-vertex. The bias reported on each plot is the mean of the distribution, and the
error is computed from the RMS of the distribution.



6.2. Btag VERTEX 101

6.2 Btag Vertex

To maintain high efficiency, we inclusively determine the vertex of the other B,

Btag. We determine the position of the Btag vertex from all charged tracks in the

event except the daughters of the D∗` candidate, using K0
S

and Λ candidates in place

of their daughter tracks, and excluding tracks that are consistent with being due to

photon conversions. The same beam-spot constraint applied to the BD∗` vertex is also

applied to the Btag vertex. To reduce the influence of charm decay products, which

bias the determination of the vertex position, tracks with a large contribution to the

χ2 of the vertex fit are iteratively removed until those remaining have a reasonable fit

probability or only one track remains. The RMS spread on the difference between the

measured and true position of the Btag vertex is about 160µm (1.0 ps) as measured

in signal Monte Carlo. For implementation details of the Btag vertex fit, please see

Ref. [46] ‡.

In Fig. 6.7 we show the residual distribution from signal Monte Carlo events for the

Btag z vertex. We observe a positive bias in the residual of 34 µm, which corresponds

to a systematic overestimate of ztag. This is because the vertex-finding algorithm is

easily biased by Btag daughters which leave behind slightly detached decay vertices.

(See the cartoon in Fig. 6.8.) These daughters are typically D mesons or other charm-

containing particles, which have significant lifetimes in the lab, on the order of 1 ps.

Because ∆t is linearly dependent on ∆z, the overall ∆t resolution will be dominated

by the poorer z resolution of the tag vertex position.

6.3 Extracting the Decay-Time Difference

The two B’s are boosted in the z direction because of the asymmetric collision

with βzγ ≈ 0.55. The momentum in the boost direction (6 GeV/c) is much larger

than the motion of the B0 in the Υ (4S) rest frame (p∗B = 1
2

√
s− 4m2

B0 ' 320 MeV/c).

‡We use the algorithm VtxTagBtaSelFit described in that document.
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Figure 6.7: The difference between the reconstructed z position and the true z position
of the Btag vertex, in µm, as measured in correctly reconstructed signal Monte Carlo.
(Recall the conversion 166 µm/ps.) The overlaid curve is the fit result for a double
gaussian. (Refer to Fig. 6.6 for the corresponding figure for Brec.) Note the significant
bias and width of this residual distribution.

∆t is defined as the (proper) decay time difference of the two B mesons:

∆t = t1 − t2 = mB

(
z1
pz

1

− z2
pz

2

)
. (6.1)

To a good approximation, though, the two B’s are traveling purely in the z direction

with a lab-velocity determined by the boost. The time difference between the two

decays is then given by

∆z = zrec − ztag

∆t = ∆z/cβzγ
(6.2)

where γ is the boost factor for the Υ (4S) in the lab frame and βz its velocity projected

on the z-axis of the detector.
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Figure 6.8: Cartoon description of the mechanism which biases the estimated ztag
vertex position high. The daughters of the Btag have tracks which point back to a
detached decay vertex; the vertex-fitting algorithm can mistakenly combine tracks
from these vertices when estimating the Btag vertex. (This cartoon is exaggerated, of
course.)

The average separation between the two B’s is given by the average lifetime times

velocity:

〈∆z〉 = 〈βγcτB0〉 ≈ 250µm (6.3)

The boost from the center-of-mass to the lab frame due to the asymmetric-energy

collision is important, because without it, the B’s would be travelling in the lab frame

with only their momentum from the Υ (4S) decay:

βγ =
pBEB

m2
B

=
EB

√
E2

B −m2
B

m2
B

≈ 0.0647 (6.4)

In this case, each B would travel ≈ 30µm, for a total separation of only 60µm. The

experimental resolution is about 130µm so the asymmetric boost is critical to the

detector’s ability to resolve the time difference between the B decays. The ability

to accurately measure ∆t depends critically on how well the separate Btag and Brec
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decay vertices can be determined.

6.3.1 Boost Approximation

Equation 6.2 ignores three effects. The most important is the finite momentum

of the B meson in the Υ (4S) rest frame, mentioned previously and quantified below.

Secondly, the Υ (4S) momentum is smeared due to the momentum spread of the col-

liding beams. This smearing is about 6 MeV/c, which corresponds to 0.1% smearing

of βγ. The factor of βz accounts for the third observation, the fact that the direction

of the colliding beams is tilted by θ ≈ 20 mrad with respect to the detector z-axis.

The boost along the z-axis is reduced by 1.2 MeV (0.02%) due to this effect. There

is also an effective boost of about 118 MeV/c in the x direction, which generates

an azimuthal asymmetry, but has no direct impact on the estimation of decay time

difference.

For a B meson that decays with polar angle θ∗ with respect to the boost direction

in the Υ (4S) frame, the distance ∆z can be written as [46]

∆z = cγβγ∗(t1 − t2) + cγγ∗β∗ cos θ∗(t1 + t2) , (6.5)

where γ∗β∗ is the boost of the B meson in the Υ (4S) frame. If the acceptance does

not depend on θ∗, the transformation Eq. 6.2 is only biased by a factor γ∗, which is

approximately 1.002, since 〈cos θ∗〉 = 0.

In general we don’t know t1 + t2 on an event-by-event, but if the B decay angle θ∗

is known (as is the case for fully reconstructed B’s), the estimate of event-by-event

∆t can be improved using the expectation value of t1 + t2. Since both t1 and t2 are

positive, the minimum value of t1 + t2 is |∆t|. By integrating t1 + t2 from |∆t| to

infinity, we get 〈t1 + t2〉 = τB + |∆t|. Substituting this correction in Eq. 6.5, we obtain

∆z = cγβγ∗∆t+ cγγ∗β∗ cos θ∗(τB + |∆t|) . (6.6)

which is known as the “average τB approximation.”

In this analysis, we cannot measure the B decay direction because we haven’t fully
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reconstructed the neutrino. We take ∆z = cγβγ∗∆t as a further approximation. The

effect of the second term in Eq. 6.5 is to smear the exponential distribution of ∆z.

The RMS of the error due to this final approximation is

cγγ∗β∗√〈cos2 θ∗〉 〈(t1 + t2)2〉 ' 21 ·
√

6 τB
√
〈cos2 θ∗〉 (µm) (6.7)

where we have used β∗ ' 0.0606, γ ' 1.144 and the expectation value of 〈(t1 + t2)
2〉 =

6τ 2
B. The angular distribution for Υ (4S) → BB is given by (1 − cos2 θ∗)d(cos θ∗),

which gives 〈cos2 θ∗〉 = 1/5. The RMS of the ∆z residual due to the boost ap-

proximation is then about 35 µm, which is about 0.21 ps for ∆t. This result is for

integration over the entire (t1, t2) space. For a given ∆t, the expectation value of

(t1 + t2)
2 depends on |∆t|. We can integrate (t1 + t2)

2 from |∆t| to infinity and get

〈
(t1 + t2)

2
〉
|∆t = 2τ 2

B + 2τB|∆t| + |∆t|2 .

If we further integrate |∆t| from zero to infinity, we get the factor of 6τ 2
B that ap-

pears in Eq. 6.7. Therefore the smearing introduced by using the approximation

∆z/(γβγ∗c) can be written as a function of |∆t|:

β∗
√

5β

√
τ 2
B + (τB + |∆t|)2 ' 0.0557

√
τ 2
B + (τB + |∆t|)2 . (6.8)

We can illustrate this effect by plotting the RMS of ∆ztruth/(γβγ
∗c)−∆ttruth in bins

of |∆ttruth|. Figure 6.9 shows this plot for 80k signal MC events that pass all our final

signal cuts, and a fit to a function of the form given in Eq. 6.8: p0 ·
√
p2

1 + (p1 + |∆t|)2.

The quality of the fit result suggests that we have correctly parameterized the depen-

dence.

This smearing effect is even visible at the level of reconstructed ∆t. Consider

Fig. 6.10 which shows the RMS of several ∆t-related quantities as a function of

|∆ttrue|. The top plot in the figure shows the RMS of the residual; there is clear

evidence of structure, reminding us that the real residual of the ∆tmeas does depend

on ∆ttrue because of the boost approximation. The middle plot shows the effect of the

boost approximation in unadulterated form: we compare the ∆t estimate from the
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Figure 6.9: RMS of the distribution of residuals ∆ztruth/(γβγ
∗c) − ∆ttruth in bins of

|∆ttruth| for 80k signal MC events that pass all event selection criteria. A linear fit
to the function p0 ·

√
p2

1 + (p1 + |∆t|)2 is superimposed. The ∆z → ∆t conversion
factor used here is 166.87µm/ps.

boost-approximation using ztrue (∆tboost−approx) with the ∆ttrue and show the RMS of

that difference. The bottom plot is the bin-by-bin difference in quadrature between

the top and middle histograms. The observed “V” structure is almost entirely absent,

suggesting that the boost approximation is the major source of the dependence of

resolution on ∆ttrue.

Finally, we can observe some of this effect in the difference between measuring the

lifetime from a fit to ∆ttrue in signal Monte Carlo, and from a fit to ∆tboost−approx =

∆ztruth/(γβγ
∗c) using the Monte Carlo ztrue information. This (partially) isolates any

event selection bias from any bias introduced by the boost approximation. The shift

in fit results for the two techniques is about 0.0047 ps for τB0 and 0.00015ps−1 for

∆md, as shown in Fig. 6.11. In the final analysis with Data, the introduction of a ∆t

resolution function (described in the next section) absorbs these effects and makes

them negligible compared to the precision expected from the full dataset.



6.3. EXTRACTING THE DECAY-TIME DIFFERENCE 107

6.3.2 Per-event error

We calculate the uncertainty on ∆z due to uncertainties on the track parameters

from the SVT and DCH hit resolution and multiple scattering, our knowledge of

the beam-spot size, and the average B flight length in the vertical direction. The

calculated uncertainty does not account for errors in pattern recognition in tracking,

errors in associating tracks with the B vertex, or the effects of misalignment within

and between the tracking devices. The calculated uncertainties will also be incorrect

if our assumptions for the amount of material in the tracking detectors or the beam-

spot size or position are inaccurate. We use parameters in the ∆t resolution model,

measured with data, to account for uncertainties and biases introduced by these

effects. We assume, for this analysis, that the per-event error estimate is completely

uncorrelated with any other event characteristics.

The left-hand plot in Fig. 6.13 shows the distribution of σ∆t values observed in

signal MC. The right-hand plot in Fig. 6.13 shows that the pull distribution observed

in signal MC is approximately Gaussian, but is biased towards negative residuals and

has an RMS of about 1.3, which indicates that the calculated errors are underesti-

mated on average by about 30%.
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Figure 6.10: Top: the RMS of the residual δ∆t in bins of ∆ttrue for Monte Carlo
simulation. Middle: same plot with ∆t replaced by ∆ztrue/γβγ

∗c in the calculation
of the RMS of the residual. Bottom: bin-by-bin difference in quadrature between the
top two histograms. Note the factor of 10 difference in the vertical scales of the top
and bottom histograms.
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Figure 6.11: Fits for B0 lifetime (and mixing) using two-types of truth information
for signal Monte Carlo events. Upper: ∆ttrue, Lower: computing ∆t using ∆ztrue and
the boost approximation.
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Figure 6.13: Distribution of calculated vertex errors σ∆t (left side) and pulls (right
side) obtained from correctly reconstructed signal MC. Vertical dashed lines in the σ∆t

distribution indicate the slices used to select subsamples with approximately equal
calculated errors. The solid curve superimposed on the pull distribution is the result
of a single Gaussian fit.
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6.4 Resolution

6.4.1 Nature of the Resolution Model

As we have discussed, the variable we measure is ∆tmeas, while the true physics of

lifetime and mixing involves the variable ∆ttrue. We construct a convolution integral

(the resolution function R) which connects the two correlated spaces in terms of the

residual δ∆t:

P (∆tmeas) =

∫
Gsig(∆ttrue) · R(·tmeas − ·ttrue)d(·ttrue)

A resolution model R, then, specifies the expected distribution of residuals δ∆t ≡
∆tmeas − ∆ttrue for an event with measured ∆tmeas and calculated vertex error σ∆t.

We are assuming, then, that resolution is independent of ∆tmeas, but expect a strong

correlation with σ∆t; i.e., R = R(δ∆t, σ∆t).

If the calculated errors are accurate and the ∆t reconstruction is unbiased, then the

distribution of pulls δ∆t/σ∆t is a unit gaussian and the resulting resolution function

has no free parameters:

R(δ∆t, σ∆t) = G(δ∆t; 0, σ∆t) ,

where we define the gaussian function

G(x; x0, σ) ≡ 1√
2π σ

· exp
(
−(x− x0)

2/(2σ)2
)
. (6.9)

6.4.2 Dependence on σ∆t

Based on the grouping of events by common σ∆t as suggested by the vertical lines

in Fig. 6.13, we measure the mean and RMS of the residual distribution in each σ∆t

bin. We observe a clear dependence of both the mean and the RMS of the residual

distribution with σ∆t, as shown in Fig. 6.14. The RMS of the residuals scales with

the calculated error as expected — this just reflects the desirable feature that the

estimated ∆t error is highly correlated with the true error (the residual). The slope
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of the correlation is not quite unity, so we introduce a scale parameter which multiplies

σ∆t to compensate.
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Figure 6.14: RMS (a) and mean (b) of the residual distributions obtained from cor-
rectly reconstructed signal MC, in slices of σ∆t.

The dependence of the mean of the residual distribution on σ∆t merits some

explanation. The correlation is due to the fact that, in B decays, the vertex error

ellipse for the D decay products is oriented with its major axis along the D flight

direction, leading to a correlation between the D flight direction and the calculated

uncertainty on the vertex position in z for the Btag candidate. In addition, the flight

length of the D in the z direction is correlated with its flight direction. Therefore the

bias in the measured Btag position due to inclusion of D decay products in the vertex

estimate is correlated with the D flight direction. Taking into account both of these

correlations, we conclude that D mesons that have a flight direction perpendicular to

the z axis in the laboratory frame will have the best z resolution and will introduce

the least bias in a measurement of ztag, while D mesons that travel forward in the

lab frame will introduce a larger bias in the corresponding measurement. Fig. 6.15
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illustrates this argument geometrically. Fig. 6.16 uses signal Monte Carlo truth to

isolate the source of the ztag bias as longer-lived particles containing c-quarks. The

dependence turns over at larger σ∆t due to competing effects such as the dependence

of the D momentum on the lab polar angle. [47]

Figure 6.15: Diagram of the mechanism by which longer-lived daughters of the Btag

meson introduce a correlation between vertex error estimate σ∆t and the vertex es-
timate ztag itself. Consider two different situations where the Btag charm daughter
(here, a D meson) is emitted at two different angles in the lab frame: θ1 and θ2. We
observe that the projection of the D vertex error ellipse on the z axis introduces a
correlation with the bias on ztag as well.

6.4.3 Choice of Resolution Model

We summarize the observations about ∆t resolution and motivate our choice for

the final resolution model:

• Although the true resolution function is not independent of ∆ttrue, we shall
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Figure 6.16: Mean residual of ztag (scaled by γβc) in slices of σ∆t for signal MC events
in which at least one track used for tag-vertexing is produced from charm-containing
or τ -containing Btag daughters (black) and for events in which no track used for tag-
vertexing is produced from charm-tau (red). We observe that the correlation vanishes
for non-charm/τ -containing Btag-vertex events.

assume it is

• The per-event error estimate σ∆t for ∆t is typically underestimated, but is

proportional to the residual δ∆t = ∆tmeas − ∆ttrue

• Because ztag is typically overestimated, ∆z is biased low

• The residual exhibits a correlation with the per-event error such that the mean

and RMS of the residual distribution are positively correlated with σ∆t

In order to accommodate these effects, we consider two different models for the

“core” of the resolution function (loosely defined as |δ∆t| < 5 σ∆t, as used in Fig. 6.13.

The first core model consists of a double Gaussian whose biases and widths are scaled

by the measured σ∆t:

RG+G(δ∆t, σ∆t; b1, b2, s1, s2, f) ≡ f ·G(δ∆t; b1σ∆t, s1σ∆t)+(1−f)·G(δ∆t; b2σ∆t, s2σ∆t) .
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This model is similar to the one used for the CP [48] and hadronic mixing [49]

analyses, except for the scaling of the bias that is clearly present in signal Monte

Carlo (Fig. 6.14).

The second model is the sum of a single Gaussian and the same Gaussian convolved

with a one-sided (δ∆t < 0) exponential E(δ∆t; κ):

RGExp(δ∆t, σ∆t; κ, s, f) ≡ f ·G(δ∆t; 0, s σ∆t)+

(1 − f) · 1

2 κσ∆t

∫ 0

−∞
du exp

(
+u/(κ σ∆t)

)
·G(u− δ∆t; 0, s σ∆t) . (6.10)

The integral in this definition can be performed analytically to give

RGExp(δ∆t, σ∆t; κ, s, f) = f G(δ∆t; 0, s σ∆t)+

(1 − f)
1

2 κσ∆t
exp

(
s2 + 2 δ∆t · κ/σ∆t

2κ2

)
erfc

(
s2 + δ∆t · κ/σ∆t√

2 s κ

)
.

(6.11)

This model was also used in the hadronic lifetime analysis[50].

Once the parameters of a resolution model are known, we can calculate the cor-

responding moments of the residual distribution directly in terms of the moments of

the per-event error distribution. For the G+G model, the first and second moments

are

〈δ∆t〉G+G =
(
fb1 + (1 − f)b2

)
· 〈σ∆t〉 (6.12)

〈(δ∆t)2〉G+G =
(
f(s2

1 + b21) + (1 − f)(s2
2 + b22)

)
· 〈(σ∆t)

2〉 , (6.13)

from which we calculate the G+G RMS squared

(δ∆t)2
RMS =

(
fs2

1 + (1 − f)s2
2

)
· 〈(σ∆t)

2〉 + f(1 − f)
(
b1 − b2

)2 · 〈σ∆t〉2

+
(
fb21 + (1 − f)b22

)
· (σ∆t)

2
RMS .
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For comparison, the first and second moments of the GExp model are

〈δ∆t〉GExp = −(1 − f) κ · 〈σ∆t〉 (6.14)

〈(δ∆t)2〉GExp =
(
s2 + 2 (1 − f) κ

)
· 〈(σ∆t)

2〉 , (6.15)

from which we calculate the GExp RMS squared

(δ∆t)2
RMS = s2 · 〈(σ∆t)

2〉 + (1 − f 2) κ · 〈σ∆t〉2

+ 2 (1 − f) κ · (σ∆t)
2
RMS .

Both of these models predict a mean and RMS residual that scale linearly with σ∆t and

vanish in the limit of zero measured error. The predicted slopes for the dependence

of the mean residual with the measured error are

f b1 + (1 − f) b2 (G+G) , −(1 − f) κ (GExp) ,

and the predicted slopes for the RMS are

√
f s2

1 + (1 − f) s2
2 + f(1 − f) (b1 − b2)2 (G+G) ,

√
s2 + (1 − f 2) κ (GExp) .

Figure 6.17 shows the results of G+G and GExp fits to each of the slices shown

in Figure 6.13. We observe the expected scaling of the fit parameters at least out to

1.8 ps. Since events with calculated uncertainties σ∆t > 1.8 ps represent only about

1.5% of our sample and contribute even less to our statistical sensitivity, we will apply

an additional vertex quality requirement of σ∆t < 1.8 ps. §

Because of the strong influence of the charm daughters on the Btag vertex, we

prefer the GExp-based resolution model as it explicitly parameterizes this effect in

the ∆ttrue to ∆tmeas transformation with the “Exp” convolution. Additionally, it has

been shown [51] that the G+G-based resolution model can be biased when fitting for

the lifetime in a sample of limited size.

§This is tighter than the cut at 2.4 ps applied in the CP and hadronic mixing analyses.
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Figure 6.17: Parameters obtained from G+G and GExp fits to the residual distribu-
tions in slices of σ∆t for signal MC. The first 5 plots are the G+G parameters s1, s2,
b1, b2, and f . The last 3 plots are the GExp parameters s, κ, and f .

Fig. 6.18 illustrates the final form of resolution model as determined by the best

fit to well-reconstructed signal Monte Carlo. Each of the components of the GExp

model are explicitly shown as well. Note the overall asymmetry and bias, which ac-

commodates the residual distribution behavior. (See Section 11.2.1 for more details.)
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Figure 6.18: A projection of the GExp resolution model onto residual space for signal
Monte Carlo. The outer curve in solid blue is the sum of all components; the inner
red dashed curve is the wide Gaussian contribution; the lower green dotted curve is
the G⊗Exp core mode; the smallest dashed black curve is the outlier term, but the
fraction has been multiplied by 10 in order to make it visible.

6.5 Outliers

In addition to the core of the resolution function, we model the contribution of

“outliers”: loosely, candidates whose residual δ∆t is (on average) at least 5 times

larger than their calculated error σ∆t (and which are therefore poorly measured.)

Outliers represent about 1% of the candidates selected in signal Monte Carlo. Outliers

are a critical concern when measuring the lifetime because they have large residuals

but small σ∆t, making them hard to identify. The outlier population is expected to

be uniform in ∆tmeas, and since signal events are distributed according to a negative

exponential (i.e., lifetime), the outliers are fractionally dominant at large |∆t|. If

we mistakenly assume that the outliers events at large ∆t are actually well-measured

signal events, we grossly overestimate the lifetime in order to accommodate them.

Using Monte Carlo truth, we can continue the definition of outlier events as those

events with pull = δ∆t/σ∆t greater than 5 units. Keep in mind, however, that this

definition is arbitrary and we employ it only as a means of isolating events that
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have high potential of being outliers. From truth-matching, we learn that outlier

candidates are usually one of three types of events:

• Lepton from other B: The D∗ is correctly reconstructed but the lepton candi-

date is from the other B.

• BothB mesons are misreconstructed: The event is completely misreconstructed.

A mix of charged tracks from both B candidates is used in each vertex.

• Other B misreconstructed: The B0 → D∗−`+ν` candidate is reconstructed

correctly but the Btag is misreconstructed either because the daughter charm

vertex is found, or a mixture of primary B tracks and daughter charm tracks is

used in the vertex.

The first two sources of outliers will tend to decrease |∆t| but will not bias the average

value of ∆t. The third source will lead to a negative bias in ∆t since ∆t = tD∗` − ttag

and ttag will be biased in a positive direction.

In the top plots in Fig. 6.19, we show the distribution of ∆t for all signal Monte

Carlo candidate events and for outliers. The distribution for outliers is significantly

broader as expected. The third plot shows the distribution of residuals δ∆t = ∆tmeas−
∆ttrue for outliers. The final plot shows the fraction of events that are outliers, as a

function of ∆t. Although a very significant fraction of events at large ∆t are outliers,

this is partly due to the definition of outliers (|δ∆t/σ∆t| > 5) combined with the

earlier cut on maximum ∆t error: σ∆t < 2.4 ps. We have decided not to change the

existing cut on |∆t| < 18 ps. Instead, we will study the effect of varying the ∆t and

σ∆t cuts on the final physics results to estimate systematic uncertainties. As described

elsewhere [47], we also find the events with less than two tracks used in the Btag vertex

are more likely to be outliers as well. To minimize our outlier contamination, we will

require two or more tracks on the tag-side vertex.

We model outliers with a single Gaussian in residual space whose width and bias

are not scaled by the calculated error because, by their definition, σ∆t is not a useful

estimator:

Rout(δ∆t, σ∆t; bout, sout) ≡ G(δ∆t; bout, sout) .
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Figure 6.19: Distribution of ∆t for all signal Monte Carlo B0 → D∗−`+ν` candidate
events (top left) and for outliers (top right). The bottom left plot shows the distri-
bution of residuals δ∆t = ∆treco − ∆ttrue for outliers. The bottom right plot shows
the fraction of events that are outliers, as a function of ∆t. (Assuming a definition of
pull ≥ 5 for outliers!)

We combine the two core and outlier models using an extra parameter fout that

specifies the relative fraction of events in the outlier contribution:

RG+G+G(δ∆t, σ∆t; b1, b2, bout, s1, s2, sout, f, fout) ≡

f ·G(δ∆t; b1σ∆t, s1σ∆t)+

(1 − f − fout) ·G(δ∆t; b2σ∆t, s2σ∆t)+

fout · Rout(δ∆t; bout, sout) ,

(6.16)
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and

RGExp+G(δ∆t, σ∆t; κ, s, f, bout, sout, fout) ≡

f ·G(δ∆t; 0, s σ∆t)+

(1 − f − fout) ·
1

2 κσ∆t

∫ 0

−∞
du exp

(
+u/(κ σ∆t)

)
·G(u− δ∆t; 0, s σ∆t)+

fout · Rout(δ∆t; bout, sout) .

(6.17)

We will return to the subject of outliers in Section 12.1.1.



Chapter 7

Flavor Identification

“Which tag of the tagging tagbits should I use to tag the candi-

date?” – Anonymous

All charged tracks in the event, except the daughter tracks of the identified D∗` candidate,
are used to determine whether the Btag decayed as a B0 or a B0. This is called flavor tagging,
and is in turn used to classify the event as mixed or unmixed. We use five different types
of flavor tag, or tagging categories, in this analysis. The first two tagging categories rely
on the presence of a prompt lepton, or one or more charged kaons, in the event. The other
three categories exploit a variety of inputs with a neural-network algorithm.
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7.1 Definitions

We have defined the mixing state (or status) of a candidate BB event to be:

• mixed - The b quark in Brec has changed flavor between ttag and trec, or

• unmixed - The b quark in Brec has the same flavor at trec as it had at ttag.

In order to determine the mixing status of the event, we need to determine the b

quark flavor of the Brec and Btag mesons. Because we have exclusively reconstructed

the Brec as BD∗`, the flavor of this candidate is trivial (a negative lepton indicates b).

We also define the mistag rate or (probability) to be the chance of mis-identifying

the flavor of the Btag meson. (For all intents and purposes, the mistag rate for Brec

is negligible, since we do account for the chance the Brec is not well-reconstructed by

assigning it a per-event signal probability.) We assume that the mistag probability is

independent of ∆t, however.

The time dependent mixing asymmetry can be reformulated to include the realistic

effect of non-zero mistag probabilities. Consider a tagging algorithm that correctly

tags a B0 with probability ε and B0 with probability ε. Because the algorithm is 100%

efficient, events tagged incorrectly are merely assigned the opposite (incorrect) flavor.

Assume a sample of N events which contain true B0B0 decays with NB0→B0 +NB0→B0

mixed events and NB0→B0 +NB0→B0 unmixed events. The number of measured mixed

and unmixed events is then:

Nmeas
mixed = Nmeas

B0→B0 +Nmeas
B0→B0

= εNB0→B0 + (1 − ε)NB0→B0 + εNB0→B0 + (1 − ε)NB0→B0

Nmeas
unmixed = Nmeas

B0→B0 +Nmeas
B0→B0

= εNB0→B0 + (1 − ε)NB0→B0 + εNB0→B0 + (1 − ε)NB0→B0

(7.1)

and likewise for unmixed events. We can combine these observed quantities to form

the measured mixing asymmetry as below, where we have suppressed the dependence

on ∆t, and where we have identified in advance that the denominator is unchanged
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(flavor tagging does not alter the overall number of events):

Ameas =
Nmeas

unmixed −Nmeas
mixed

Nmeas
unmixed +Nmeas

mixed

=
εNB0→B0 + (1 − ε)NB0→B0 + εNB0→B0 + (1 − ε)NB0→B0

Nunmixed +Nmixed
−

εNB0→B0 + (1 − ε)NB0→B0 + εNB0→B0 + (1 − ε)NB0→B0

Nunmixed +Nmixed

=
(2ε− 1)(NB0→B0 −NB0→B0) + (2ε− 1)(NB0→B0 −NB0→B0)

Nunmixed +Nmixed
.

(7.2)

But from Eq. 2.35, we recognize that this is really just a linear combination of the

true mixing asymmetry:

Ameas =
1

2
(2ε− 1)A+

1

2
(2ε− 1)A

=

[
1

2
(2ε− 1) +

1

2
(2ε− 1)

]
cos(∆md ∆t)

=

[
1

2
(1 − 2ω) +

1

2
(1 − 2ω)

]
cos(∆md ∆t)

=

[
D

2
+

D

2

]
cos(∆md ∆t)

= 〈D〉 cos(∆md ∆t) ,

(7.3)

where we have made the substitution ω = 1−ε in the last steps and defined D ≡ 1−2ω

to be the dilution and 〈D〉 to be the average dilution. We see that, as claimed

earlier, a non-zero mistag probability merely reduces the amplitude of the mixing

asymmetry and does not interfere with the the time-dependence. Because of this, it

is straightforward to extract both the mixing frequency and the mistag probabilities

when fitting the observed time dependence.

In the event that different tagging categories have different mistag rates, we can

construct a separate diluted mixing asymmetry for each of them (using their respec-

tive mistag rates ωi) and use the population-weighted sum to describe the measured

asymmetry in the Data.
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7.2 Algorithms

B meson flavor-identification at BABAR is broken into several components. The

first stage is to remove the Brec and its identified daughters from the event, in a

similar way as was done for Btag vertexing. The “rest of the event” is then subjected

to several different algorithms whose outputs are ranked and then combined to form

the best estimate of the Btag flavor. This analysis uses the so-called Elba Tagger

which assigns a flavor status and one of five categories to each event; the category is

representative of the information used in making the final decision.

BABAR employs two very different but complementary strategies: one is a cut-

based algorithm (NOT - Non Optimal Tagging) while the second is a neural network

based approach (NetTagger). NOT uses identified electrons, muons, kaons and slow

pions from the decay D∗+ → D0π+ to determine the Btag flavor. The algorithm uses

all charged tracks not used in the Brec candidate and the various PID hypotheses

assigned to each track (as discussed in Chapter 5.5.2). The neural network allows

non-linear responses to linear combinations of input variables, and therefore greatly

enhances sensitivity to correlations. The ultimate approach is a hybrid which retains

the best qualities of both methods:

• LTag: This is the tagging category with the lowest mistag fraction. It uses

the correlation between the charge of the primary lepton and the flavor of the

b quark: b ⇔ `−. A momentum cut in the Υ (4S) rest frame of 1.1 GeV for

electrons and 1.0 GeV for muons (lower to recover efficiency) helps to reduce

contamination due to secondary leptons from semileptonic charm decays. (see

Fig. 7.1).

• KTag: If the sum of charges of all identified kaons is nonzero, the event is

assigned a KTag tag, with the flavor determined by b ⇔ ΣQK > 0, using the

correlation between the charge of the kaon and the b quark flavor in the most

probable decay chain b → c → s in a neural network. ∗ This category is the

∗On average there are 0.8 K mesons per B decay, and about 15% of these are so-called wrong-sign
which means that the charge of their contained s quark does not match that of the originating b
quark. See Chapter 7.4 for more details.
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most efficient.

• NT1: Events for which the absolute value of the NetTagger neural net output is

greater than 0.5.

• NT2: Events for which the absolute value of the neural net output is between

0.2 and 0.5.

• NT3: Events for which the absolute value of the neural net output is less than

0.2. (least certain)

Figure 7.1: Feynman diagram showing the production mechanism for direct and cas-
cade leptons. The region labelled (a) shows a direct lepton from the b to c transition,
while the region labelled (b) shows a cascade (or secondary) lepton from the subse-
quent c to s decay. Finally, region (c) shows another cascade lepton diagram, this
time with the same sign lepton charge as that of the b quark.

The first two categories contain more than 45% of the events. The final three

tagging categories involve the multi-variate analysis based on a neural network (Net-

Tagger), which is trained to identify primary leptons, kaons, and soft pions, and the
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momentum and charge of the track with the maximum center-of-mass momentum.

Depending on the output of the neural net, events are assigned to an NT1 (most

certain), NT2, or NT3 (least certain) tagging category (see Fig. 7.2). About 30% of

events are in the NT3 category, which has a mistag rate close to 50%. Therefore, these

events do not carry much sensitivity to the mixing frequency, but they increase the

sensitivity to the B0 lifetime.
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Figure 7.2: Distribution of neural network responses for events not claimed by the
LTag and KTag categories. The histogram is from simulation, the points from fully
reconstructed B events. An output value of +1 corresponds to a B0 flavor assignment,
and −1 to B0.

Tagging categories are mutually exclusive due to the hierarchical use of the tags.

Events with a LTag tag and no conflicting KTag tag are assigned to the LTag category.

If no LTag tag exists, but the event has a KTag tag, it is assigned to the KTag category.

Otherwise events are assigned to corresponding neural network categories.
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7.3 Performance

Because we use the full spectrum of output from the neural network, the flavor-

tagging algorithm is 100% efficient in this analysis. Using Monte Carlo data and

its corresponding truth information, we can measure the absolute efficiencies of each

tagging category, as well as the power Q = ε(1 − 2ω)2. Q measures the effectiveness,

combining the efficiency with the error rate. Using Data, we can only measure the

mistag rates per tagging category in the full fit. (Please refer to Table 12.1 for the

final mistag measurements in Data.)

Category εi ωi Qi = εi(1 − 2ωi)
2

LTag 13.2 .063 10.1
KTag 35.1 .157 16.5
NT1 8.3 .193 3.1
NT2 14.5 .338 1.5
NT3 28.9 .465 0.14
Total 100 29.9

Table 7.1: Tagging performance on signal Monte Carlo events. [52]

7.4 Vertexing-Tagging Correlations

A correlation of about 0.12 ps−1 is observed between the mistag rate and the ∆t

resolution for KTag tags. Fig. 7.3 shows the computed mistag rate (using Monte Carlo

truth) in increasing bins of σ∆t, and the correlation is strongest in the KTag category.

This effect is modeled in the resolution function for signal as a linear dependence of

the mistag rate on σ∆t, as shown here:

ωkaon = mkaon · σ∆t + ωoffset
kaon . (7.4)

We briefly describe the source of this correlation [53], but please see Ref. [54], [55]

for more details. We find that both the mistag rate for KTag tags and the calculated

error on ∆t depend inversely on
√
Σp2

t , where pt is the transverse momentum with
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Figure 7.3: From signal Monte Carlo, computed mistag fractions in increasing bins
of σ∆t for the 5 tagging categories described in the text. The KTag category exhibits
a significant correlation.

respect to the z axis of tracks from the Btag decay (see Fig. 7.4). Correcting for this

dependence of the mistag rate removes most of the correlation between the mistag

rate and σ∆t as demonstrated in Fig. 7.5.

The mistag rate dependence originates from the kinematics of the physics sources

for wrong-charge kaons. The three major sources of mistags are wrong-signD0 mesons
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Figure 7.4: Observation of common dependence of σ∆t (left) and mistag rate ω (right)

on
√
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t from Monte Carlo.
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Figure 7.5: Dependence of mistag rate in KTag category on σ∆t after scaling by
√
Σp2

t .
The flat slope indicates that most of the correlation between mistag rate and σ∆t is
removed after correcting for the common dependence shown in Fig. 7.4.

from B decays to double charm, wrong-sign kaons from D+ decays, and kaons pro-

duced directly in B decays, as illustrated in Fig. 7.6. All these sources produce a

spectrum of charged tracks that have smaller
√
Σp2

t than B decays that produce a

correct tag. The σ∆t dependence originates from the 1/p2
t dependence of σz for the

individual contributing tracks.
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p2
t spectra for correctly and incorrectly tagged events by KTag

in signal Monte Carlo. As shown elsewhere [54], Btag decays terminating in “wrong-
sign” K mesons typically have a softer pT spectrum due to a combination of effects
such as momentum losses in double-charm decays and charged track multiplicities in
D+ decays.



Chapter 8

Event Sample Selection

The Data used in this analysis were recorded with the BABAR detector [40] at the PEP-
II storage ring [38] in the period October 1999 to December 2000. The total integrated
luminosity of the data set is equivalent to 20.6 fb−1 collected near the Υ (4S) resonance and
2.6 fb−1 collected 40 MeV below the Υ (4S) (off-resonance data). The corresponding number
of produced BB pairs is estimated to be about 23 million.

We select events containing a fully reconstructed D∗− and an identified oppositely-
charged electron or muon. This D∗` pair is then required to pass kinematic cuts that enhance
the contribution of semileptonic B → D∗`ν` decays. In addition to the signal sample, we
select several control samples that are used to characterize the main sources of background.
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8.1 Overview

Not every event recorded by the BABAR detector is relevant for this analysis. The

physicist’s job is to look through the entire Data sample and reduce it to a smaller

(private) sample by filtering out “uninteresting” events. We focus on semileptonic

decays of the B meson: in particular, the mode B0 → D∗−`+ν`. Using the tagbit

technology defined in Chapter 5, we scan through the entire set of BABAR Data

taken from 1999–2000 and select those events which appear most promising as D∗`

candidates. The integrated luminosity considered is 20.6 fb−1 on the Υ (4S) peak, and

2.6 fb−1 off-resonance.

We build D∗` candidates on an event-by-event basis, starting by filtering on global

event properties and then reconstructing the in the mode B0 → D∗−`+ν`, starting to

build parent particles, working backwards up the decay chain. We select events by

requiring them to:

• be consistent with global event topology of B decay,

• contain a reconstructed D0 candidate in one of the four decay modes used:

D0 → Kπ, D0 → Kπππ, D0 → K0
Sππ, D0 → Kππ0, (as appropriate, a

reconstructed K0
S

is required),

• contain a reconstructed soft pion from the D∗− → D0π− decay, π−
soft,

• contain a reconstructed D∗ candidate using the D0 and π−
soft,

• contain a lepton candidate that associates with the D∗` candidate,

• pass Btag side criteria such as vertexing,

• contain a candidate B0 → D∗−`+ν` candidate in a suspected BB event.

This amounts to an overall branching fraction of 1.8% summing over both lepton

types. In the following sections, we’ll discuss each of these criteria with the ultimate

goal of efficiently selecting B0 → D∗−`+ν` events in a way that incorporates non-signal

in a known and parameterizable fashion; that is, following a strategy whose “mistakes”

we can identify and accommodate. (See Appendix B for more information.)
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We define here the following classification of the sources of signal and background

that we expect to contribute to this sample. The nomenclature shown in italics will be

used throughout this paper to define signal and all possible types of background. This

classification scheme will become more important as we move through the analysis.

1. Events with a correctly reconstructed D∗− candidate:

(a) Events that originate from BB events:

i. Events with a correctly identified lepton candidate:

A. Signal – B0 → D∗−`+ν` (X) decays.

B. Uncorrelated-lepton background – (B → D∗−X, other B → `+X)

or (B → D∗−X, X → `+Y )

C. Charged B background – B+ → D∗−`+ν`X.

ii. Fake-lepton background – events with a misidentified lepton candidate.

(b) Continuum background – cc→ D∗−X.

2. Combinatoric background – events with a misreconstructed D∗− candidate.

The careful accounting and labelling of events allows us to disentangle the background

(i.e., non-signal) contributions in our sample.

8.2 Signal Reconstruction

8.2.1 Daughter Reconstruction

The short-lived particles ∗ used in this selection are: π0, K0
S
, D0, and D∗±. We

identify candidates for each of these composites by combining entries in the recon-

struction lists, and possibly other composite lists, and requiring that the resulting

combinations pass loose kinematic cuts (applied to four-vector sums, without any

refitting to include geometric or kinematic constraints).

∗By which we refer to the particles that decay within the detector volume after production in
the B decay.
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π0 Selection

π0 candidates are reconstructed from two photons with invariant mass within

15.75 MeV of the nominal π0 mass. The mass of the photon pair is then constrained

to the π0 mass and the photon pair is kept as a π0 candidate if the χ2 probability

of the fit is greater than 1%. This refitting improves the energy resolution of the π0

candidates from about 3.0% to 2.5%. [56] Combined with the geometrical acceptance

of the calorimeter, the overall efficiency is 65-70% at moderate momentum.

K Selection

K0
S

candidates are reconstructed from a pair of charged particles with invariant

mass within 15 MeV of the K0
S mass. The pair of tracks is retained as a K0

S candidate

if the χ2 probability that the two tracks form a common vertex is greater than 1%.

Charged kaon candidates satisfy loose kaon criteria for the Kπ mode and tighter

criteria for the Kπππ and Kππ0 modes.

D0 Selection

The D0 candidate is reconstructed in the modes K−π+, K−π+π−π+, K−π+π0 and

K0
Sπ

−π+. D0 candidates must have measured invariant mass within 17 MeV of the D0

mass for the Kπ, Kπππ, and K0
S
ππ modes, and within 34 MeV for the Kππ0 mode.

The invariant mass of the daughters is then constrained to the D0 mass, and the

tracks are constrained to a common vertex in a simultaneous fit. The D0 candidate is

retained if the χ2 probability of the fit is greater than 0.1%. For the Kππ0 and K0
Sππ

modes, a likelihood is calculated as the square of the decay amplitude in the Dalitz

plot for the three-body candidate, based on measured amplitudes and phases. [57] The

candidate is retained if the likelihood is greater than 10% of its maximum value across

the Dalitz plot. Fig. 8.1 shows the Dalitz distribution from Monte Carlo truth for

D0 → Kππ0, i.e., before convolving with resolution functions. This decay has several

resonances, the largest being D0 → K−ρ+. The Dalitz decay amplitude criteria is

generally more effective than a traditional selection based on π+π0 invariant mass

and helicity analysis. [31], [58]
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Figure 8.1: D0 → K−π+π0 Dalitz distribution and contours according to parameters
found in Ref. [57], before convolving with resolution functions. The values on the
contours are 0, 10, 20, and 50, out of approximately maximum 357.

D∗ Selection

D∗ candidates are selected in the decay mode D∗+ → D0π+. The low-momentum

pion candidates for the D∗+ → D0π+ decay are selected from a list of loosely †

selected tracks with total momentum less than 450 MeV in the Υ (4S) rest frame and

momentum transverse to the beam line greater than 50 MeV. (See Fig. 8.2.) The

momentum of the D∗ candidate in the Υ (4S) rest frame is required to be between

0.5 and 2.5 GeV, which helps discriminate against continuum-generated D∗ mesons,

as shown in Fig. 8.3. Continuum events typically have more energetic D∗’s because

there is more energy available for momentum transfer to the D∗ daughter, since the

c quark is lighter than the b. Because of differences in resolution on the soft pion, we

separate D∗ candidates into those whose soft pion candidate has DCH hits in addition

†GoodTracksVeryLoose
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to the SVT ones, and those that have only SVT hits on track.
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Figure 8.2: Left: Distribution of transverse momentum for the π−
soft provided that

it is an SVT-only candidate. Right: Distribution of π−
soft momentum for candidates

with at least hits in the drift chamber tracking system. The red histograms are the
distribution from signal Monte Carlo, the blue from the truth-matched subset. The
dashed line shows the lower cut.
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Figure 8.3: Distribution of D∗ center-of-mass momenta for signal candidates (left
histogram in red) and continuum generated D∗ (right histogram in black), at the
Monte Carlo truth level. The selection window prefers the softer signal D∗ candidates.
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Lepton Selection

Lepton candidates are defined as charged tracks from the tight track list ‡ with mo-

mentum in the Υ (4S) rest frame greater than 1.2 GeV, which helps separate primary

from secondary leptons (see Fig. 8.4). For the D∗e samples, the electron candidate

passes selection criteria with a corresponding electron identification efficiency of about

90% and hadron misidentification less than 0.2%. For the D∗µ samples, the muon

candidate passes selection criteria with a corresponding muon identification efficiency

of about 70% and hadron misidentification between 2% and 3%. For the fake-lepton

control sample, D∗` candidates are accepted if the lepton fails both electron and muon

selection criteria looser than those required for lepton candidates.

lepton CM momentumlepton CM momentum (GeV)

✁

0 0.5 1 1.5 2 2.5

Figure 8.4: Distribution of ` center-of-mass momentum for signal candidates (right
histogram in red) and secondary leptons (left histogram in black), at the Monte Carlo
truth level. The high-momentum requirements preferentially selects leptons from the
B decay.

‡GoodTracksTight
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8.2.2 B0 → D∗−`+ν` Selection

The D∗` candidate satisfies | cos θ∗thrust| < 0.85, where θ∗thrust is the angle between

the thrust axis of the D∗` candidate and the thrust axis of the remaining charged and

neutral particles in the event. D∗` candidates are retained if the χ2 probability that

the daughter tracks form a common vertex is greater than 1% and δm = m(D∗) −
m(D0) is less than 165 MeV, where m(D∗) is the candidate D0 π− mass calculated

with the candidate D0 mass constrained to the true D0 mass, m(D0). We also then

require that the triply constrained (D∗, `, beamspot) refitting algorithm described in

Chapter 6.1.1 converges.

Finally, events are retained if: (a) at least two tracks are used to determine the

decay point of the other B, (b) the fit that determines the distance ∆z between

the two B decays along the beamline converges, (c) the time between decays (∆t)

calculated from ∆z is less than 18 ps, and (d), the calculated error on ∆t (σ∆t) is less

than 1.8 ps.

8.3 Final Data Sample

We’ve described everything but the final step of B0 → D∗−`+ν` event selection.

Because selection criteria are efficient but impure, we inevitably end up including

various backgrounds in the Data sample (where we’ve tried to isolate the signal).

In part because of the overall goal of high precision for this analysis, we need to

be able to account for these background events in the sample when we perform the

final measurement. We employ a (standard) technique for characterizing backgrounds

in the signal sample by “inverting” the “last few” signal selection criteria to select

a background control sample which is mostly background and poor in signal. By

studying the behavior of this sample, we can extrapolate (by analogy) to describe

the behavior of the background candidates in the signal sample. The novel feature of

this analysis is that not only do we study the background control samples separately,

but we include them as much as possible in the final fit for the time dependence.

That is, to minimize the chance for bias and systematic error, we perform the final
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measurement on a sample that is more than 75% background!

As described above, then, we have a set of B0 → D∗−`+ν` candidates where we

have not applied the following requirements, which would select the purest subsample

of signal:

• restrict to the peak region 143 MeV < δm < 148 MeV of the m(D∗) − m(D0)

spectra (minimizing the number of candidates with “fake” (combinatoric) D∗’s)

• require strict e or µ particle identification of the lepton (minimizing the number

of candidates with fake leptons)

• require D∗` kinematics and angular correlations consistent with a semileptonic

decay and a missing neutrino.

We apply combinations of these requirements to the raw B0 → D∗−`+ν` sample to

form the final Data sample. We further divide the sample into several subgroups in an

effort to distinguish their physics based on several different characteristics. A trivial

example of this is the background control sample for combinatorics. We “invert” the

signal selection criteria to use the δm sideband (δm > 155 MeV) as a relatively pure

sample of combinatoric candidates.

We define two angular quantities for each D∗` candidate to classify them into

a sample enriched in B0 → D∗−`+ν` signal events, in which the D∗ and lepton

candidates are on opposite sides of the event, and a sample enriched in uncorrelated-

lepton background events, in which the D∗ and lepton candidates are on the same side

of the event. The first angle is θD∗,`, the angle between the D∗ and lepton candidates

in the Υ (4S) rest frame. The second angle is θB0,D∗`, the angle between the direction

of the B0 and the vector sum of the D∗ and lepton candidate momenta, calculated in

the Υ (4S) rest frame. Fig. 8.5 shows the distributions of these angles for signal and

background (some of each are included in the Data sample). We also calculate the

same angle with the lepton momentum direction reflected through the origin in the

Υ (4S) rest frame: cos θB,D∗(−`).

The B0 is a spin-0 particle, so by angular momentum conservation, the total

spin of the D∗−`+ν` system must also be zero. The D∗ is a spin-1 meson, so the
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Figure 8.5: Distribution of angular quantities for D∗` candidates in the signal Monte
Carlo sample. Signal behavior is shown in solid black circles, and backgrounds in
open circles. The left plot shows the preferred “opposite-side” nature of signal D∗`
candidates; the right plot shows cos θB,D∗`, which leaks beyond the [−1,+1] physical
region due to reconstruction effects.

lepton-neutrino system must align its total angular momentum to cancel out the

total angular momentum projected on the z axis. Since the helicity of the neutrino is

fixed (left-handed neutrinos, right handed anti-neutrinos) the lepton tends to come

out back-to-back from the D∗ with a harder spectrum than the neutrino. Hence,

the cos θD∗,` distribution for signal will be strongly peaked at −1. A number of

backgrounds unfortunately have the same topology; cc events will also have a real

D∗-` system that behaves this way. However, uncorrelated lepton backgrounds can

be distinguished using this variable, as they will tend to be flat across the spectrum.

Since we do not know the direction of the B0, we calculate the cosine of θB0,D∗`

from the following equation, in which we assume that the only B decay particle missed

in the reconstruction is a massless neutrino:

cos θB,D∗` =
−(m2

B0 +m2
D∗` − 2EBED∗`)

2|~pB||~pD∗`|
. (8.1)

All quantities in Eq. 8.1 are defined in the Υ (4S) rest frame. The energy and the

magnitude of the momentum of the B are calculated from the e+e− center-of-mass

energy and the B0 mass. For true B0 → D∗−`+ν` events, cos θB,D∗` will lie in the
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physical region [−1,+1], aside from detector resolution effects. Backgrounds lie both

inside and outside the range [−1,+1].

With these definitions in hand, we select a sample enhanced in B0 → D∗−`+ν` sig-

nal events (called the opposite-side sample (OS))with D∗` candidates with cos θD∗,` <

0 and | cos θB,D∗`| < 1.1. We additionally divide this sample by considering the lepton

identification criteria, whether the candidates satisfy the criteria for an electron, a

muon or a fake-lepton. The first two samples are the signal samples, and the latter

is the fake-lepton control (sub)sample (of the OS sample).

From Fig. 8.5 we observe that there is significant uncorrelated background in the

signal region, where cos θD∗,` < 0. Following the prescription above, we might con-

sider selecting a complementary background control sample by requiring cos θD∗,` > 0

and | cos θB,D∗`| < 1.1. However, according to Monte Carlo simulation, § the distri-

bution of cos θB,D∗` in the background control sample is systematically different than

that of the uncorrelated-lepton background in the signal sample. We observe, though,

that the distribution of cos θB,D∗(−`) in this control sample is similar to the distribu-

tion of the appropriate cos θB,D∗`, as indicated in Fig. 8.6. We can use cos θB,D∗(−`)

to form the background control sample, but still require cos θD∗,` > 0 to maintain

independence from the signal OS sample. An additional background control sample,

representative of the uncorrelated-lepton background and called the same-side (SS)

sample, is composed of D∗` candidates with cos θD∗,` ≥ 0 and | cos θB,D∗(−`)| < 1.1.

We also divide this sample by considering the three different lepton identification

criteria (electron, muon, fake).

Approximately 68, 000 candidates pass the above selection criteria, and are dis-

tributed over the two signal samples (e and µ) and ten background control samples

defined by the following characteristics: whether the Data was recorded on or off

the Υ (4S) resonance (two choices); whether the candidate lepton is same-side (SS)

or opposite-side (OS) to the D∗` candidate (two choices); and whether the lepton

candidate passes the criteria for an electron, a muon, or a fake lepton (three choices).

Of the ten control samples, five are primary samples which we use to directly study

§Here we rely on the current parameterizations of the appropriate form factors in Monte Carlo,
and therefore we do acquire some systematic uncertainty.
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Figure 8.6: Distribution of cos θB,D∗` for various subsamples of Monte Carlo. The up-
per plot shows the distribution for uncorrelated lepton background candidates as iden-
tified by Monte Carlo truth-matching. (This is the distribution we want to match.)
The middle plot shows the cos θB,D∗` distribution for the sample cos θD∗,` > 0, which
is not a good match for the distribution of the background candidates which contam-
inate the signal sample. The bottom plot shows the cos θB,D∗` distribution for the
control sample which is computed using the flipped-lepton momentum, and therefore
also cos θD∗,` > 0. This new sample represents the signal pollutants much better.
NOTE: The distribution in the upper and lower plots are after the restriction to the
range ±1.
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backgrounds that contribute to the signal samples. The other five are secondary

subsamples which we use to understand the cross-contamination between the pri-

mary background control samples. Table 8.1 enumerates these samples, and their

relationships.

Sample AngCut OnOffRes Lepton ID Sample enriched in...

1 OS On e electron signal
2 OS On µ muon signal
3 OS On !e,!µ fake bkg to samples 1 and 2
4 OS Off e continuum bkg to sample 1
5 OS Off µ continuum bkg to sample 2
6 SS On e uncorrelated bkg to sample 1
7 SS On µ uncorrelated bkg to sample 2
8 OS Off !e,!µ fake bkg to samples 4 and 5
9 SS On !e,!µ fake bkg to samples 6 and 7

10 SS Off e continuum bkg to sample 6
11 SS Off µ continuum bkg to sample 7
12 SS Off !e,!µ fake bkg to samples 10 and 11

Table 8.1: Summary of the signal and control samples selected for lifetime and mixing
analysis. Samples 1–2 are signal, 3–7 are primary background control samples, and
8–12 are secondary background control samples.

A key feature of this analysis is the inclusion of such large background samples

in the Dataset used in the final fit. This is necessary if we wish to understand the

background components in the signal samples (D∗e and D∗µ) when our background

samples are impure. (For instance, the D∗µ signal sample contains a significant sub-

population of fake-µ candidates. The fake-µ control sample, however, also contains

combinatoric, continuum, and uncorrelated lepton candidates that will distort the

overall behavior of the control sample unless we separate them out.) In the coming

Chapters, we will use the m(D∗)−m(D0) distribution and and other information to

evaluate the signal and background quality of each event. The cartoon in Fig. 8.7

illustrates our approach: by simultaneously considering all the subsamples of the

Data defined above, we can extract reliable estimates of the signal probability for

each candidate.
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Figure 8.7: Artist’s conception of the use of multiple samples to properly account
for the backgrounds in the signal region. In the m(D∗) − m(D0) spectrum, the
B → D∗`ν` signal is concentrated in the peak region, which also includes combina-
toric, continuum, fake lepton, and uncorrelated lepton backgrounds. The additional
background control samples shown in the blowout figures (whose relative efficiencies
we calculate in Chapter 10) clearly show the cross-contamination in the background
control samples.

8.4 Implementation

For gritty details, please see Ref. [41]. In the interest of clarity, we note the

following features of the technology used to select the final event sample:

• We use the BToDstarlnuVTight tagbit, in Stream6 of the kanga files which uses

the BToDstarlnuLoose tagbit.

• The Data is processed in Release 8.8.0x (i.e., tagbits were calculated using Re-

lease 8), with the final event reconstruction and selection occurring in analysis-11

based executables.

• The analysis package DstarlnuUser V00-04-00 is the primary event handling
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engine for this analysis. We use DstarlnuUser to process the reduced collections

of Data (stored in the Objectivity database) into ntuples, which were filtered

to ascii files, the final format used for fitting.



Chapter 9

Analysis Strategy

We have described how the Data sample is collected and selected. We now turn to the
task of extracting the most precise, unbiased measurements of the B0 lifetime and mixing
parameters. As described earlier, the events selected for inclusion in the Data sample are
not all signal. In fact, as much as 20% of the selected events which satisfy nominal signal
criteria are due to backgrounds from incorrect D∗’s and leptons or cross-feed from other
processes. In order to properly measure the time evolution we need to characterize and then
parameterize these contributions to the sample. To improve our precision in understand-
ing these backgrounds and to reduce our dependence on systematic assumptions, our study
includes the additional control samples described in the previous chapter.

The strategy for this measurement is to build up a probability density function (the
master pdf) that models the distribution of all selected events (signal and background) in
several key variables and then apply the method of maximum likelihood to estimate the
parameters of the model which best describe the Data. At the basic level, the master pdf
describes the distribution of events in the continuous variables δm and ∆t.

Not all candidates are identically distributed, of course, so we divide the entire sample
into subgroups where events behave similarly. Considering behavior in δm and ∆t space,
the Dataset is separated into 360 distinct subsamples. Each sample is not characterized
independently of all others; for instance, some classes of events share ∆t resolution models,
but have different distributions in m(D∗) − m(D0), etc.

We use the computed per-event probabilities (extracted from fits to the δm spectra and
other information) to weight events in a combined master pdf that describes the ∆t distri-
bution for each of the five physics processes (one signal plus four background sources).

To prevent the introduction of bias due to expectations of the experimenters, we insert
an interface layer between the analysis software and the users that “blinds” the values of
τB0 and ∆md. The quantities used in the fitting are those preferred by the Dataset under
study, but they are offset by a fixed random amount so that the user can compare shifts in
the central value but not the absolute scale.

147
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9.1 Overview

At the top level, this study measures the B0 lifetime and mixing frequency by:

1. Selecting events that pass criteria consistent with the kinematics of semileptonic

B decays

2. Reconstructing a BD∗` and inclusively identifying the Btag candidate in each

event

3. Extracting the decay-time difference ∆t and computing the mixing status for

each event

4. Assigning a set of per-event probabilities to each event based on the m(D∗) −
m(D0) value and other candidate characteristics: signal, combinatoric back-

ground, continuum peaking background, fake lepton peaking background, and

uncorrelated lepton peaking background probabilities

5. Building an overall likelihood model for the Data sample that incorporates the

per-event probabilities to weight pdfs describing the ∆t distribution of each

signal and background source

6. Minimizing the negative log likelihood to obtain the best-fit parameter values

7. Performing a series of consistency and validation checks to substantiate the

measurement.

The previous chapters of this document described Steps 1–3. We outline the

strategy for Steps 4-6 here. The goal, again, is to write down a probability distribution

function that describes the entire Data, including both signal and backgrounds. To

preface the discussion, consider a cartoon version of the full pdf we’ll introduce next.

Prob(δm,∆t) ∼ f combF comb(δm)Gcomb(∆t)+

(1 − f comb)F peak(δm)[fpkgbkgGpkgbkg + (1 − fpkgbkgGsig] .
(9.1)
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We see the two δm pdfs for the peak and combinatoric part of the m(D∗) −m(D0)

spectrum weighting the ∆t distributions. ∗ These tell us the “quality” of the D∗

candidate. † Because we cannot separate peaking background from signal based

on the δm fits alone, the F (δm) function multiplying them is common; however

the background fraction fpkgbkg weights them appropriately to form the combined

peaking-δm behavior in ∆t-space. (The determination of the background fractions

will be described in the next chapter.) This toy likelihood is sufficient for the case

where all events in each class (signal, combinatoric, or peaking background) have

identical ∆t probability distributions. As we shall see, this is not the case, and the

situation becomes quite a bit more complex. For the moment, though, the general

task is merely to:

• Determine F comb, F peak and f comb from fits to the m(D∗) −m(D0) spectrum,

• Determine Gcomb , Gpkgbkg , and Gsig from fits to the ∆t distributions, taking

advantage of the enriched background control samples to improve our precision,

• Determine fpkgbkg by a variety of techniques which exploit known relationships

between the signal and background control sample,

• Fit the final model to the ∆t distribution of the full Dataset.

9.1.1 The Master Model

Our realistic goal is to perform an unbinned fit simultaneously to events in each

of the 12 signal and control samples (indexed by s) that are further subdivided into

∗Recall that we can use the m(D∗) − m(D0) spectrum to evaluate the probability that we have
a true D∗ in the D∗` candidate. Fake D∗ candidates are called combinatoric backgrounds; fake
D∗` candidates with good D∗’s are called peaking backgrounds because they ”look good” in the
m(D∗) − m(D0) projection as they peak in the signal region.

†We use the δm variable to evaluate candidate quality rather than the missing invariant mass or
cos θB,D∗` because it is easier to parameterize and understand, and the separation of background
contributions physics class is straightforward.
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30 subsamples (indexed by c) using a likelihood ‡

L =
12∏

s=1

30∏
c=1

N(s,c)∏
k=1

Ps,c(~xk ; ~p) , (9.2)

where k indexes the N(s, c) events ~xk in each of the 360 subsamples. The probability

Ps,c(~xk ; ~p) of observing an event ~xk = (δm,∆t, σ∆t, g) is calculated as a function of

the parameters ~p = (f comb
s,c , ~p comb

s,c , ~p peak
c , ~q comb

s,c , f pkg
s,c,1, f

pkg
s,c,2, f

pkg
s,c,3, ~q

pkg
s,c,1, ~q

pkg
s,c,2, ~q

pkg
s,c,3, ~q

sig
c )

as

Ps,c(δm,∆t, σ∆t, g ; ~p) =

f comb
s,c · F comb(δm ; ~p comb

s,c ) · G comb(∆t, σ∆t, g ; ~q comb
s,c ) +

(
1 − f comb

s,c

)
· F peak(δm ; ~p peak

c )·[
3∑

j=1

f pkg
s,c,j · G

pkg
j (∆t, σ∆t, g ; ~q pkg

s,c,j) +

(
1 −

3∑
j=1

f pkg
s,c,j

)
· Gsig(∆t, σ∆t, g ; ~q sig

c )

]
, (9.3)

where j indexes the three sources of peaking background and δm = m(D∗)−m(D0).

The index g is +1 (−1) for unmixed (mixed) events. By allowing different effective

mistag rates for apparently mixed or unmixed events in the background functions

G comb and G pkg, we accommodate the different levels of backgrounds observed in

mixed and unmixed samples. Functions labelled with F describe the probability of

observing a particular value of δm while functions labelled with G give probabilities for

values of ∆t and σ∆t in category g. Parameters labelled with f describe the relative

contributions of different types of events. Parameters labelled with ~p describe the

shape of a δm distribution, and those labelled with ~q describe a (∆t, σ∆t) shape.

Note that we make explicit assumptions that the δm peak shape, parameterized

by ~p peak
c , and the signal (∆t, σ∆t) shape, parameterized by ~q sig

c , depend only on the

subsample index c. The first of these assumptions is supported by data, and simplifies

the analysis of peaking background contributions. The second assumption reflects our

expectation that the ∆t distribution of signal events does not depend on whether they

‡See the following chapters for a discussion of the division of the Data into subsamples. As
foreshadowed, these 360 subdivisions are necessary because not all event behave identically in δm
and ∆t space.
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are selected in the signal sample or appear as a background in a control sample.

Because of these assumptions of independence, the analysis proceeds in two stages:

(1) determine the best models to describe the m(D∗) − m(D0) distribution for all

events and calculate the per-event probabilities with those fit results, and (2) fit

the ∆t distributions of all events using the per-event weights determined from the

previous step. We do not expect to have the computational power or precision to

perform both the δm and ∆t fits simultaneously. Note then, that the we are not

using the ∆t structure of the events to distinguish signal from background (except in

the case of charged B semileptonic decays which contaminate the signal region).

The ultimate aim of the fit is to obtain the B0 lifetime and mixing frequency,

which by construction are common to all sets of signal parameters ~q sig
c . Most of

the statistical power for determining these parameters comes from the signal sample,

although the fake and uncorrelated background control samples also contribute due

to their signal content (see Table 10.2).

9.1.2 Sharing or Splitting Parameters

The task of Chapters 10-11 is to determine the most effective models for the δm

and ∆t distributions, respectively. Note that with the general pdf as defined above

in Eq. 9.3, the complete space of parameters can allow for a maximum of 3, 960 §

parameters to describe the 360 different δm distributions and per-event probabilities,

and another 9, 362 ¶ to describe the potentially unique signal plus background ∆t

distributions in of each the 360 different categories. The real challenge, then, is

to use physical argument, empirical observation, and common sense to reduce this

ungodly number by “sharing” parameters between subsamples that behave similarly.

This assertion may sound preposterous, but it is the general case of a usually trivial

situation. At one extreme, we could fit the entire sample (which includes background

control samples) at once to a single set of shape parameters. We choose not to do

§Assuming 5 peak plus 2 combinatoric background plus 4 independent per-event probabilities per
distinct subsample

¶Assuming 2 overall physics parameters, and then 6 signal parameters plus 4×5 background
parameters per subsample
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this because we find that different subsamples have significantly different behaviors.

Instead, we account for these differences to improve our statistical sensitivity, and

more importantly, to reduce possible systematic biases in lifetime and mixing fits. At

the other extreme, we could independently fit each of the 360 subsamples we obtain

with the full breakdown by the attributes identified in Chapter 8. This approach

provides the maximum statistical sensitivity, in principle, but suffers from significant

book-keeping overhead and problems with fitting small samples.

We choose to compromise by “sharing” parameters between subsamples. Techni-

cally, this means that in the fitting procedure, the likelihood is re-calculated for both

samples when varying a parameter that is shared between samples. In this analysis,

we alternatively think of sharing parameters as the opposite of “splitting” them. For

instance, if two processes share a similar Gaussian behavior, but with different widths

and identical means, we could imagine performing a fit to all events but with two dif-

ferent “copies” of the width parameter, each restricted to the distinct subset of events

to which it corresponds. In this way, the shared mean gains the statistical power of

the full dataset, while the widths are allowed to be different. The methodology in

this study then, is as follows (which closely follows the technical implementation as

well):

1. Identify the prototype model for the full sample of events, i.e., the m(D∗) −
m(D0) lineshape model of double Gaussian peak plus combinatoric background

term will be used to model the δm spectrum

2. Separate the full sample into subgroups (as intuition directs) that might exhibit

different detailed structure in the common form, i.e., events with soft π± tracks

that reach the DCH will have better momentum resolution than those that do

not

3. Fit the isolated subsamples and compare the best-fit parameters, looking for

statistically significant differences, i.e., the peak shape parameters for the two

types of soft π candidates are separated by as much as 5σ

4. Repeat the fit to the full sample, sharing the consistent parameters across all
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subsamples and “splitting” those between subsamples that behave differently

(in this way, each “split” of a prototype parameter actually adds one more

floating variable to the fit).

In summary, note that this procedure involves selecting a prototype model (a pdf

which uniformly describes all events in the sample), and then splitting parameters

to accommodate particular features of subclasses of events. Using this procedure, as

illustrated in the upcoming chapters, we are able to reduce the full space of parameters

from more than 13, 000 to less than 2, 000, of which only a fraction are freely floating

in the δm or ∆t fits at any stage in the analysis.

9.2 Notation

The final model contains more than 70 parameters. Some parameters are split

according to different combinations of categories. To avoid confusion, we define the

notation used in this study for parameters in the ∆t models. In general, a parameter

is denoted by

plabel
cat ,

where the subscript represents the category values (if any) to which this parameter

is restricted, and the superscript is an extra label for distinguishing different roles of

a certain type of parameter in a model, if necessary.

Recall the motivation for “splitting” a parameter: in some cases, we expect dif-

ferent groups of events to behave according to the same ∆t model, but with different

parameter values. By “splitting” a parameter according to a certain candidate prop-

erty, we assign the parameter a domain of context or relevance that is the subset of

data possessing a certain value of that property, and create additional instances of

the parameter for the other subsets of the data with different values for that property.

For instance, we often “split” resolution model parameters by tagging category. This

means that each tagging category will have identical resolution model structure, but

that certain parameters of that model will be unique to the LTag or KTag events,

etc.
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For the signal physics model (G(sig) in Chapter 11),

• τB0 and ∆md represent B0 lifetime and mixing frequency, respectively.

• The mistag fraction is noted as ω and is split by tagging category (LTag, KTag

and NTx are short-handed as “LT”, “KT”, and “Nx”) :

– ωLT, ωKT, ωN1, ωN2, ωN3 are the mistag probabilities averaged over B and

B.

– Mistag for KTag is a linear function of σ∆t: ωKT = mKT · σ∆t + ωoffset
KT . The

slope mKT is always given in units of ps−1.

– ∆ω is the difference in mistag probabilities for B and B (see next section).

• fB+ represents the charged B fraction in signal events (see Chapter 11.2.2).

For each of the background ∆t models, we use a “physics model” convoluted with

a “resolution function” to describe the ∆t distribution of the background events.

Although for background events, the true ∆t and resolution are not well-defined, we

still use the names “physics model” and “resolution function” just to refer to the

mathematical form of the ∆t models.

A background ∆t model consists of a prompt term plus either a lifetime term or

an oscillating term, or a prompt term by itself. These three terms can be written as

Gpmt
phys(∆t, g) = (1/2) · δ(∆t) ·

(
1 + g · (1 − ωpmt)

)
,

Glife
phys(∆t, g) = (1/4) · exp(−|∆t|/τbkg) ·

(
1 + g · (1 − ωlife)

)
,

Gosc
phys(∆t, g) = (1/4) · exp(−|∆t|/τbkg) ·

(
1 + g · (1 − ωosc) cos∆mbkg∆t

)
,

where δ(∆t) is a δ-function, g is a sign representing mixing status, i.e., g = +1 (−1)

for unmixed (mixed) events, and τbkg and ∆mbkg are effective lifetime and mixing fre-

quency for this particular background. The combined physics model for a background

model, then, is typically one of the following:

• f life · Glife
phys + (1 − f life) · Gpmt

phys
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• f osc · Gosc
phys + (1 − f osc) · Gpmt

phys

• Gpmt
phys

We use three different resolution functions for ∆t models, GExp+G, G+G+G

and G+G functions. The basic ingredients are a Gaussian, G (Eq. 6.9, Sec. 6.4) and

the sum of a single Gaussian and the same Gaussian convoluted with a one-sided

(δ∆t < 0) exponential, G⊗ E.

RG+G(δ∆t, σ∆t; b
1, s1, f 1, bout, sout)

= f 1 ·G(b1σ∆t, s
1σ∆t) + (1 − f 1) ·G(boutσ∆t, s

outσ∆t) ,

RG+G+G(δ∆t, σ∆t; b
1, s1, f 1, b2, s2, bout, sout, f out)

= f 1 ·G(b1σ∆t, s
1σ∆t) + (1 − f 1 − f out) ·G(b2σ∆t, s

2σ∆t) + f out ·G(bout, sout) ,

RGExp+G(δ∆t, σ∆t; s
1, κ, f 1, bout, sout, f out)

= f 1 ·G(0, s1σ∆t) + (1 − f 1 − f out) ·G(0, s1σ∆t) ⊗ E(κσ∆t) + f out ·G(bout, sout) ,

where the dependent variable δ∆t in G and E is not shown explicitly. The function

E is defined as E(x; a) = 1
a

expx/a. (Note that we deliberately do not scale the bias

and width parameters of the third term, the outlier Gaussian, when present. This

is because it addresses physics events which are so poorly reconstructed (mistaken,

actually), that the vertex error estimate σ∆t has little to do with the true uncertainty.)

The same type of function may be used for different backgrounds, therefore the

same symbol will represent different parameters in different background models. In

principle we should add another label to distinguish them, but this will make the

notation very cumbersome. Fortunately we rarely need to put different backgrounds

in the same context. So we will not add this extra label unless it is necessary for

clarity.

Finally, we typically represent the change in a parameter due to a variation in the

fit method, data sample or some other procedure as δ(par) = parchanged −parunchanged.
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9.3 Blinding

The physics parameters τB0 and ∆md were kept hidden until all analysis details

and the systematic errors were finalized, to eliminate experimenter’s bias. This was

accomplished directly by using features of the analysis technology. [59] The key is to

allow the fitting application to work with the true representation of the parameter

but scrambling the value by a fixed but unknown amount when showing the user.

In this study, we chose to scramble τB0 by shifting it a random amount as selected

from a Gaussian distribution of width 0.06 ps, while we chose a scale of 0.04 ps−1 for

∆md. This “blinding” of the fit result prevented us from attaching any significance to

the numerical value of the result (i.e., we could not directly compare it to the world

average).

However, statistical errors on the parameters and changes in the central values of

the physics parameters due to variations in the analysis were not hidden. For system-

atic studies then, we list the difference in the central values of the fit results so the

blinding offset cancels out. Fits to Monte Carlo data samples were not blinded except

during tests of the blinding procedure implementation in our analysis framework.



Chapter 10

Models for Per-event Probability

We use the m(D∗) − m(D0) spectra, BABAR particle identification tables, and a small
amount of Monte Carlo to determine several different probabilities for each event: signal
probability, combinatoric background probability, and the probability of being each of three
types of peaking background. We use these probabilities to weight each event in the master
pdf which then describes its behavior in ∆t space. We find that the δm spectrum depends
on a number of event characteristics, including:

• the magnitude of soft pion’s transverse momentum affects the quality of track re-
construction because there is a threshold for reaching the precision tracking DCH (2
choices)

• the D0 decay mode affects the level of combinatoric background (number of false D∗

candidates) and the resolution of m(D∗) − m(D0) peak (3 choices)

• the particle identification hypothesis for the lepton candidate is correlated with the
combinatoric background level because of the hadron misidentification rates (3 choices)

• the hint about the nature of Btag offered by the tagging category is correlated with the
background level as well due to different probabilities for mixing up tracks from the
two B’s (4 choices).

By subdividing the Data sample into smaller groups, we find that our description of the
δm spectrum becomes more precise, and we are able to accommodate the contaminated
background control samples, i.e., the background in the background.

157
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10.1 Strategy

Given that we’ve selected the events described in Chapter 8, we next address the

question of evaluating our confidence in the signal probability on an event-by-event

basis. Because we do not reconstruct the neutrino, the most stringent test we apply

to the Brec kinematics is the m(D∗)−m(D0) value, which should be strongly peaked

for signal (see Fig. 10.1.) We can use the distribution of δm = m(D∗) −m(D0) to

evaluate the “good D∗” probability of the candidate. The combinatoric background

due to events with a misreconstructed D∗ candidate can be distinguished from events

with a real D∗ in a plot of the mass difference m(D∗) −m(D0), where m(D∗) is the

mass of the D∗ candidate with the D0 mass constrained to its true value, and m(D0)

is the true D0 mass. Our signal mode (B0 → D∗−`+ν`) requires more than just a

“good D∗’,” however; the D∗ candidate must be paired with a lepton in a manner

consistent with the signal mode’s dynamics. As shown in Fig. 10.1, this means that

events which have δm in the peak region can actually still be backgrounds to our

signal, so-called peaking backgrounds. These peaking backgrounds are from three

main sources, and represent events which are selected in the δm “good D∗” region

but do not correspond to physics of the signal mode:

• continuum: the D∗ candidate is from continuum cc production

• fake lepton: the lepton associated the D∗ is a falsely identified lepton (i.e., a

hadron, or perhaps a mis-typed lepton)

• uncorrelated lepton: the lepton associated with the D∗ is either a secondary

lepton from Brec, or a lepton from the Btag decay.

Our primary tool for characterizing the backgrounds that contribute to our signal

sample is, then, to fit the distribution of the D∗ −D0 mass difference δm and use it

to evaluate the per-event reliability of each candidate. In general, our fit to the δm

distribution has three ingredients:

1. a model for the shape of the peak due to candidates with a correctly recon-

structed D∗,
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Figure 10.1: Plot of δm = m(D∗) −m(D0) for D∗µ candidates from Data, which we
use to evaluate the quality of the D∗ candidate. The colored regions represent the
estimated contributions from the different background sources; that is, events which
have good D∗ candidates but are not proper B0 → D∗−`+ν` candidates. Note the
three types of peaking background.

2. a model for the shape of the combinatoric background due to candidates with

an incorrectly reconstructed D∗, and

3. a parameterization of the yields of peak and combinatoric components in each

sample.

The general program for using these fits is to first determine the yields in different

subsamples of the signal and control samples, and then to use these yields to cal-

culate the fractions of different sources of peaking background. Finally, we will use

the calculated amounts and fitted shapes of each background source to estimate the

probability of each candidate to be due to signal or each type of background we con-

sider (combinatoric, continuum, fake-lepton, or uncorrelated) in our fits to obtain the

lifetime and mixing parameters.
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In studying the sample, we observe that the peak and combinatoric background

shapes describing the distribution of δm depend on several different characteristics of

the event. In other words, we find that it is appropriate to split the shape parameters

amongst several subgroups so that we maximize our sensitivity to the m(D∗)−m(D0)

information. We also find that the peaking background fractions depend on other

candidate characteristics, most notably the particle identification hypothesis for the

lepton candidate and the angular correlation between the D∗ and `. Table 10.1 sum-

marizes the full set of candidate attributes which we might consider when subdividing

the Data sample.

This allows subdivision into 360 samples. In the unbinned maximum likelihood fits

to them(D∗)−m(D0) and (∆t, σ∆t) distributions, individual fit parameters are shared

among different sets of subsamples based on physics motivation and observations in

the data.

10.2 Fitting the m(D∗) −m(D0) Shapes

We perform a simultaneous fit to the m(D∗) − m(D0) distributions for all 360

subsamples. The peak due to real D∗ candidates is modeled by the sum of two

Gaussian distributions; the mean and variance of both the Gaussian distributions, as

well as the relative normalization of the two Gaussians, are free parameters in the fit:

F peak(δm) =

2∑
k=1

fk√
2πσk

exp

(
−(δm− δmk)

2

2σ2
k

)
(10.1)

where f1 + f2 = 1. We model the shape of the combinatoric background with the

function

F comb(δm) =
1

N

[
1 − exp

(
−δm− δm0

c1

)](
δm

δm0

)c2

, (10.2)

where δm ≡ m(D∗) − m(D0), N is a normalization constant, δm0 is a kinematic

threshold equal to the mass of the π±, and c1 and c2 are free parameters in the fit.

Fig. 10.2 shows the effects of varying the two free parameters in the model. The

exponential term enforces the turn on at the π± mass and asymptotically approaches
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Attribute Ncat Description

angCut 2 What are the angular correlations between the D∗ and `?
(1) candidates pass the “opposite-side” (OS) cuts
(2) candidates pass the “same-side” (SS) cuts

onOffRes 2 What center-of-mass energy was the event recorded at?
(1) near the Υ (4S) resonance
(2) below the Υ (4S) resonance

leptID 3 Is the kinematically-selected ` candidate lepton-like?
(1) candidate passes “very-tight” electron ID
(2) candidate passes “very-tight” muon ID
(3) candidate fails “loose” electron and muon ID

svtDch 2 How was soft-pion candidate track reconstructed?
(1) in the SVT only
(2) in the SVT and the DCH

Dmode 3 How was the D0 candidate reconstructed?
(1) D0 → Kπ
(2) D0 → Kππ0

(3) D0 → Kπππ or D0 → K0
S
ππ

tagCat 5 How was the flavor of the non-D∗` B determined?
(1) using the LTag category algorithm,
(2) using the KTag category algorithm,
(3) using the NT1 category algorithm,
(4) using the NT2 category algorithm,
(5) using the NT3 category algorithm

Table 10.1: Attributes used to subdivide the signal and control samples for the pur-
poses of background characterization and extraction of lifetime and mixing parame-
ters.

the value 1 for large values of δm. The power law factor allows the PDF to match

the slope of the combinatoric tail at large values of δm.

If we are only interested in determining shape parameters, and not absolute yields,

we can combine these models with one additional parameter fpeak:

F (δm) = fpeak · F peak(δm) + (1 − fpeak) · F comb(δm) . (10.3)

The value of fpeak corresponds to the fraction of peak events in the entire sample
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Figure 10.2: Effects of the combinatoric model shape parameters c1 and c2. Each
plot is calculated using a different value of c2: 0 (left), -10 (middle), +10 (right).
The curves within each plot represent different values of c1: 2 MeV (solid), 0.2 MeV
(dashed), or 25 MeV (dotted). The starting values in a fit are c1 = 2 MeV and c2 = 0,
and the allowed ranges are 0.01 MeV < c1 < 50 MeV and −20 < c2 < +20.

being fit (including the δm sideband).

Once we have specified our model F (δm), we next identify subsamples that will

be fit with a single set of shape parameters. An initial fit is done to determine

the shape parameters describing the peak and combinatoric background. Separate

values of the five parameters describing the shape of the peak are used for the six

subsamples defined by whether the π− candidate is tracked in the SVT only or in

the SVT and DCH, and the three types of D0 decay modes. In particular, we find

that the peak shape does not depend on whether an event is recorded on or off the

peak (onOffRes), whether a candidate passes or fails the angular cuts (angCut), or

whether the lepton candidate passes or fails lepton ID requirements (leptID). Using

the same peak shape (within a peak group) for the signal and its control samples will

simplify the characterization of peaking backgrounds later. Each of these six groups

that share peak parameters is further subdivided into 12 subgroups that each share a

common set of the two combinatoric background shape parameters. Ten of these 12

subgroups are defined by the five tagging categories for the large signal samples and

for the fake-lepton control samples, in on-resonance data. The other two subgroups

are defined as same-side, off-resonance samples and all off-resonance samples.
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10.3 Calculating Yields

Once the peak and combinatoric background shape parameters have been deter-

mined, we fix the shape parameters and determine the peak and combinatoric back-

ground yields in each of the 360 subsamples with an unbinned extended maximum-

likelihood fit. The total peak yields in the signal sample and each background control

sample are then used to determine the amount of true signal and each type of peaking

background in the m(D∗) −m(D0) peak of each sample as follows.

Each of the 12 samples described above are further divided into 30 subsamples

according to the following characteristics that may affect the m(D∗) −m(D0) or ∆t

distributions.

1. The π− from the D∗ decay is reconstructed in the SVT only, or in the SVT and

DCH (two choices): The m(D∗) − m(D0) resolution is worse when the π− is

reconstructed only in the SVT; the ”peak” region is nominally 143-148 MeV for

SVT-only candidates, and a narrower 144-147 MeV for SVT+DCH candidates.

2. TheD0 candidate is reconstructed in the modeKπ orKππ0 or (Kπππ orK0
Sππ)

(three choices): The level of contamination from combinatoric background and

the m(D∗) −m(D0) resolution may depend on the D0 decay mode.

3. The b-tagging information used for the other B (Btag) (five choices; see Chap-

ter 7): The level of contamination from each type of background and the ∆t

resolution parameters may depend on the tagging information.

The main advantage of such a detailed breakdown is that it offers the maximum

flexibility for later regrouping subsamples. The potential disadvantage is that our

procedure involves fits to some categories with very few events (even zero events in

some cases).

In fact, we find that these fits are stable and give reasonable results once the shape

parameters are fixed. This is not surprising since, to a good approximation, the fits

could simply be replaced by counting the number of events inside and outside of the

peak region (with some assumption about the extrapolation of the sideband under

the peak). The refinement that the fits provide is to account for the variations in the
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expected peak width and sideband extrapolation based on the actual composition of

events in each of the 360 subsamples. For example, consider a sample consisting of a

single candidate with δm = 147.5 MeV (that is, near the edge of the peak region).

By assuming an average shape for the peak and combinatoric background, we would

calculate that this event is more likely to be in the peak than the background. With

our approach, if in fact the candidate’s soft pion is measured in the SVT and DCH,

we correctly identify it as being background as we know that such candidates have

a narrower peak (only 144-147 MeV) compared to SVT-only candidates. In short, by

considering additional information about the candidate, we are able to increase the

precision of our signal (well, really just peak here) versus background discrimination.

We combine our peak and combinatoric models into an unbinned extended maximum-

likelihood fit using

L(N ′
peak, N

′
comb) =

∏
evts j

{
Npeak

Ntot
· fpeak(δmj) +

Ncomb

Ntot
· fcomb(δmj)

}
·P (Ntot) , (10.4)

where Ntot ≡ Npeak + Ncomb and P (Ntot) is the Poisson probability of the observed

number of events when Ntot are expected. The actual fit parameters in this likelihood,

N ′
peak and N ′

comb, are yields calculated within a signal window (δm1, δm2)

N ′
peak ≡ Npeak ·

∫ δm2

δm1

fpeak(δm)d(δm)

N ′
comb ≡ Ncomb ·

∫ δm2

δm1

fcomb(δm)d(δm) .

(10.5)

The choice of signal window does not affect the subsequent analysis since we calculate

per-event signal probabilities over the full range of δm. We use 143–148 MeV for all

categories of events.

10.3.1 Combinatoric Background

We define combinatoric background as events in which the selected D∗ candidate

is either not a real D∗ or else is misreconstructed. This background then corresponds
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to the extrapolation of the upper δm sideband to the region under the peak, and

we determine its contribution to each subsample directly from the combinatoric yield

parameter, N ′
comb, in the δm fits described above.

10.3.2 Continuum Peaking Background

We use the peak yields in off-resonance data, scaled by the relative integrated

luminosity for on- and off-resonance data, to determine the continuum-background

yields in on-resonance data.

10.3.3 Fake Lepton Peaking Background

Particle identification and misidentification efficiencies for the e, µ, and fake-lepton

selection criteria are measured in Data as a function of laboratory momentum, polar

angle, and azimuthal angle, for true electrons, muons, pions, kaons, and protons. B0B0

and B+B− Monte Carlo simulations are used to determine the measured laboratory

momentum, polar angle, and azimuthal angle distributions for true electrons, muons,

pions, kaons and protons that pass all selection criteria for D∗` candidates, except

the lepton (or fake-lepton) identification criteria. These distributions are combined

with the measured particle identification efficiencies and misidentification probabili-

ties to determine the momentum- and angle-weighted probabilities for a true lepton

or true hadron to pass the criteria for a lepton or a fake lepton in each of the D∗`

signal and background control samples. We then use these efficiencies and misidenti-

fication probabilities, and the observed number of lepton and fake-lepton candidates

in data, to determine the number of true leptons and fake leptons (hadrons) in each

control sample. This procedure is sophisticated, yet general, and best described in

Refs. [41], [54].

The observed numbers of candidates in the D∗ peak, after continuum subtraction,

in the lepton signal and fake control samples (Ne, Nµ, Nf) are related to the numbers of

D∗` candidates where the lepton candidate is a true lepton or a true hadron (ηe, ηµ, ηh)
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through a set of linear equations:




Ne

Nµ

Nf


 =




εe(e; !µ) εµ(e; !µ) εh(e; !µ)

εe(!e;µ) εµ(!e;µ) εh(!e;µ)

εe(!e; !µ) εµ(!e; !µ) εh(!e; !µ)






ηe

ηµ

ηh


 . (10.6)

The true numbers of events (ηe, ηµ, ηh) can easily be found by inverting the matrix.

The fake fractions in the signal and control samples are therefore

fe = ηhεh(e; !µ)/Ne (10.7)

fµ = ηhεh(!e;µ)/Nµ (10.8)

ff = ηhεh(!e; !µ)/Nf (10.9)

We use two different sets of efficiencies εx(y; z) for Opposite-Side (OS) and Same-Side

(SS) sample, and assume they are valid for all subsamples with the same angCut.

10.3.4 Uncorrelated Lepton Peaking Background

To determine the number of uncorrelated-lepton events in each sample, we use the

relative efficiencies from Monte Carlo simulation for signal and uncorrelated-lepton

events to pass the criteria for same-side and opposite-side samples.

The measured yields of opposite-side (NOS) and same-side (NSS) events, after

subtracting fake and continuum fractions, are related to the true number of signal

(ηsig) and uncorrelated background (ηunc) events by

(
NOS

NSS

)
=

(
εsigOS εunc

OS

εsigSS εunc
SS

)(
ηsig

ηunc

)
. (10.10)

After solving for (ηsig, ηunc), the uncorrelated background fractions can be expressed



10.4. RESULTS 167

as

fOS = εunc
OS ηunc/N mathrmOS (10.11)

fSS = εunc
SS ηunc/N mathrmSS (10.12)

(10.13)

Note that although we normalize the relative efficiencies for passing the OS or SS

selections so that the sum of the efficiencies is 1, the resulting background fractions

do not depend on this normalization. In other words, we are depending on the Monte

Carlo for the relative efficiencies within each class of events (signal or uncorrelated

lepton) but not the absolute efficiencies or the relative efficiencies between the two

classes of events. We have assumed that one efficiency matrix is valid for all SVT-only

samples and one for all SVT+DCH samples.

10.4 Results

The peak yields and continuum, fake-lepton, and uncorrelated-lepton fractions of

the peak yield, as well as the combinatoric fraction of all events in a m(D∗)−m(D0)

signal window, are shown in Table 10.2 for the signal and background control samples

in on-resonance data. The peak yields include the peaking backgrounds. The signal

window is defined as (143 - 148) MeV for the calculation of combinatoric background

fractions.

We illustrate the results of δm analysis with several sample plots here, but refer

the reader to Appendix A for a more complete set. Fig. 10.3 shows the results of the

first fit stage which estimates the peak shape parameters for the double Gaussians

in each of the 6 subsamples of the Data. The following figure (Fig. 10.4) shows the

results of the analysis of the combinatoric background shapes within the subsample of

candidates with SVT-only soft pion candidates and reconstructed in the D0 → Kπππ

or D0 → K0
S
ππ decay mode. Note the variations in the level and shape of the

combinatoric background, making the need for separate parameterizations explicit.

Finally, we use the calculated fractions and fitted shapes of each background
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Category Peak Yield fcont(%) ffake(%) funco(%) fcomb(%)
OS e 7008 ± 91 1.53 ± 0.42 0.1678 ± 0.0042 3.14 ± 0.39 17.89 ± 0.24

µ 6569 ± 88 2.27 ± 0.57 2.669 ± 0.067 2.85 ± 0.48 18.36 ± 0.25
f 8770 ± 108 12.8 ± 1.3 72.4 ± 1.8 0.7 ± 1.6 31.40 ± 0.24

SS e 306 ± 21 0.00 ± 0.006 0.533 ± 0.039 56.9 ± 7.0 34.0 ± 1.3
µ 299 ± 20 5.1 ± 3.6 8.89 ± 0.64 48.9 ± 8.0 34.4 ± 1.3
f 1350 ± 45 20.4 ± 4.1 74.4 ± 5.4 3.6 ± 7.8 42.59 ± 0.61

Table 10.2: Peak yields and continuum, fake-lepton, and uncorrelated-lepton fractions
of the peak yield, and the combinatoric fraction of total events in a m(D∗) −m(D0)
signal window for the signal and background control samples in on-resonance data.
Peak yields include the peaking backgrounds. The signal window for combinatoric
background is defined as (143 - 148) MeV. OS and SS refer to opposite-side and
same-side samples; e, µ, and f indicate the type of lepton candidate: electron, muon
or fake-lepton.
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Figure 10.3: Projections of the fit result on Data for the δm peak shape fits described
in the text. The 6 plots show the fit on the 6 distinct subsamples of the Data. The
dashed curve shows the fitted contribution from combinatorics.
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Figure 10.4: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of the
(SVT x (D0 → Kπππ + D0 → K0

S
ππ) sample from Data. The dashed curve shows

the fitted contribution from combinatorics.
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source in each control sample to estimate the probability of each candidate to be

due to signal or each type of background (combinatoric, continuum, fake-lepton, or

uncorrelated-lepton) when we fit the (∆t, σ∆t) shape to determine the lifetime and

mixing parameters. We take advantage of the fact that charged and neutral B decays

have different decay-time distributions (because the charged B does not mix) to

determine the fraction of charged B background events in the fit to (∆t, σ∆t).

By summing the Data subsamples and the corresponding fitted PDFs, we can form

the summary plots as shown in Fig. 10.5. We observe excellent agreement between

the Data and the fit result, which indicates that the technology running the individual

fits down at the 360 categories level is operating successfully.

For reference, we draw histograms of the per event probabilities as determined by

the sequence of fits outlined in this chapter, indicated in Fig. 10.6. These histograms

show the “purity” of the sample; because of the vast δm sideband, there is a clean,

easy-to-isolate combinatoric background control sample, where as the uncorrelated

lepton sample is more complex.
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Figure 10.5: Uncorrelated D∗`, fake `, continuum D∗X, and combinatoric D∗ con-
tributions for opposite-side samples. From top to bottom: electron, muon and fake
control samples; left column: on-resonance and right column: off-resonance.
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Figure 10.6: Histograms of the per-event signal probabilities as calculated for Data.
The zero bin entries have been suppressed by placing a cut at 5% probability. Inte-
grating the contents of the histograms yields the overall purities for each event class
in the sample: 21.7% signal, 62.7% combinatoric, 2.8% continuum background, 11.5%
fake lepton background, and 1.3% uncorrelated lepton background.



Chapter 11

Models for Time-Dependence

The final fit uses the per-event probabilities developed in the preceding chapters to weight
the contributions from each of the five general classes of events (signal, combinatoric back-
ground, and the three peaking backgrounds) in the overall ∆t spectrum from which we’ll
extract the physics. We determine the appropriate form for the ∆t model for each class
of event by studying Monte Carlo truth-matched samples and the control samples in Data.
For each class of event, we first find the general prototype model and then determine which
parameters need to split between subsamples due to statistically different behaviors. This
phase is the first of a bootstrap process wherein we use smaller, enriched subsamples to
predetermine behavior and performance before advancing to the full fit in the next chapter.

174
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11.1 Strategy

We bootstrap the full fit with a sequence of initial fits using reduced likelihood

functions to a partial set of samples, to determine the appropriate parameterization

of the signal resolution function and the background ∆t models, and to determine

starting values for each parameter in the full fit.

1. We first find a model that describes the ∆t distribution for each class of event:

signal, combinatoric background, and the three types of backgrounds that peak

in the m(D∗)−m(D0) distribution. To establish a model, we use Monte Carlo

samples that have been selected to correspond to only one type of signal or

background event based on Monte Carlo truth information. These samples are

used to determine the ∆t model and the categories of events (e.g., tagging cat-

egory, fake or real lepton) that can share each of the parameters in the model.

Any subset of parameters can be shared among any subset of the 360 subsam-

ples. We choose parameterizations and sharing of parameters that minimizes

the number of different parameters while still providing an adequate description

of the ∆t distributions.

2. We then find the starting values for the background parameters by fitting to

each of the background-enhanced control samples in data, using the model (and

sharing of parameters) determined in the previous step. Since these background

control samples are not pure, we start with the purest control sample (combi-

natoric background events from the m(D∗)−m(D0) sideband) and move on to

less pure control samples, always using the models established from earlier steps

to describe the ∆t distribution of the contamination from other backgrounds.

The result of the above two steps is a ∆t model for each class of event and a set of

starting values for all parameters in the fit. When we do the final fit, we fit all signal

and control samples simultaneously (≈68k events), leaving essentially all parameters

free (72, actually) in the fit.



176 CHAPTER 11. MODELS FOR TIME-DEPENDENCE

11.2 Signal Models

11.2.1 B0 Model

Physics

For signal events in a given tagging category c, the probability distribution func-

tion (PDF) for ∆t consists of a physics model convolved with a ∆t resolution function:

Gsig(∆t, σ∆t, g ; ~q sig
c ) ={

1

4τB0

e−|∆ttrue|/τB0 (1 + g(1 − 2ωc) cos(∆md∆ttrue))

}
⊗R(δ∆t, σ∆t; ~qc) ,

(11.1)

where R is a resolution function, which can be different for different event categories,

g is +1 (−1) for unmixed (mixed) events, and δ∆t is the residual ∆t − ∆ttrue. The

physics model shown in the above equation has seven parameters: ∆md, τB0 , and

mistag fractions ωc for each of the five tagging categories (as motivated in Chap-

ter 7.2). To account for an observed correlation between the mistag rate and σ∆t in

the kaon category (described in Chapter. 7.4), we allow the mistag rate in the KTag

category to vary as a linear function of σ∆t:

ωkaon = mkaon · σ∆t + ωoffset
kaon . (11.2)

In addition, we allow the mistag fractions for B0 tags and B0 tags to be different.

We define ∆ω = ωB0 − ωB0 and ω = (ωB0 + ωB0)/2, so that

ωB0/B0 = ω ± 1

2
∆ω . (11.3)

There are 13 free parameters in the complete physics model for all tagging categories.

Resolution

For the ∆t resolution model, we use the sum of a single Gaussian distribution and

the same Gaussian convolved with a one-sided exponential to describe the core part
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of the resolution function, plus a single Gaussian distribution to describe the contri-

bution of “outliers” – events in which the reconstruction error δ∆t is not described

by the calculated uncertainty σ∆t:

RGExp+G(δ∆t, σ∆t; s, κ, f, b
out, sout, f out) =

f ·G(δ∆t; 0, sσ∆t) + (1 − f − f out) ·G(u− δ∆t; 0, sσ∆t) ⊗E(u; κσ∆t)

+ f out ·G(δ∆t; bout, sout) , (11.4)

where u is an integration variable in the convolution G⊗E. The functions G and

E are defined as in Eqs. 6.9-6.11 and Chapter 6.4:

G(x; x0, σ) ≡ 1√
2πσ

exp
(
−(x− x0)

2/(2σ)2
)

and

E(x; a) ≡
{

1
a
exp (x/a) if x ≤ 0,

0 if x > 0.

Since the outlier contribution is not expected to be described by the calculated

error on each event, the last Gaussian term in Eq. 11.4 does not depend on σ∆t.

However, in the terms that describe the core of the resolution function (the first two

terms on the right-hand side of Eq. 11.4), the Gaussian width s and the effective decay

constant κ are scaled by σ∆t. The scale factor s is introduced to accommodate an

overall underestimate (s > 1) or overestimate (s < 1) of the errors for all events. The

decay constant κ is introduced to account for residual charm decay products included

in the Btag vertex; κ is scaled by σ∆t to account for a correlation observed in Monte

Carlo simulation between the mean of the δ∆t distribution and the measurement

error σ∆t.

The mean and RMS spread of ∆t residual distributions in Monte Carlo simulation

vary significantly among tagging categories, as illustrated in Fig. 11.1. We find that

we can account for these differences by allowing the core Gaussian fraction f to be

different for each tagging category. In addition, we find that the correlations among

the three parameters (bout, sout, f out) describing the outlier Gaussian are large and
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that the outlier parameters are highly correlated with other resolution parameters.

Therefore, we fix the outlier bias bout and scale factor sout, and vary them over a wide

range to evaluate the systematic uncertainty on the physics parameters due to fixing

these parameters instead of fitting for them (see Chapter 14.6). The resolution model

then has 8 free parameters: s, κ, f out, and five fractions fc (one for each tagging

category c).

We demonstrate the performance of the Gsig model by fitting to well-reconstructed

signal Monte Carlo events, as shown in the matrix of plots in Fig. 11.2. The estimates

of ∆md and τB0 are unbiased, as indicated in Table 11.1.

Signal ∆t fits to signal MC

Par Generator Fit to ∆ttrue Fit to ∆tmeas ∆
∆md (ps−1) 0.4720 0.4709 ± 0.0013 0.4715 ± 0.0043 0.0006
τB0 (ps) 1.5480 1.5446 ± 0.0051 1.5523 ± 0.0091 0.0077

Table 11.1: Results of fitting Gsig to signal Monte Carlo, using either ∆ttrue and true
tagging information, or ∆tmeas (i.e., using the full resolution model) and measured
tagging information. The final column (∆) shows the difference with respect to the
∆ttrue results.
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Figure 11.1: Using Monte Carlo truth information, we compute the RMS of the
residual distribution when dividing the signal MC sample into various subsamples.
This figure shows the spread of calculated RMS’s for 8 different ways of dividing up
the sample. Of key importance is the significance in residual RMS for the 5 different
tagging categories.
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Figure 11.2: ∆t distributions for unmixed and mixed events on a log scale, and the
asymmetry plots for the signal Monte Carlo sample, divided into the five tagging
categories. The curves are projections of the signal model from the GExp+G fit to
signal Monte Carlo.
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11.2.2 B± Model

The charged-B peaking background is due to decays of the type B± → D∗0`±ν`.

Since charged B’s do not exhibit mixing behavior, our strategy is to use the ∆t

and tagging information to discriminate charged-B peaking background events from

neutral-B signal events, in the simultaneous fit to all samples. We use the same

resolution model and parameters as for the neutral-B signal since the decay dynamics

are very similar. The signal model, with the charged B background term, becomes

GB±
(∆t, σ∆t, g ; ~q sig

c ) =
1

4τB+

e−|∆ttrue|/τB+ (1 + g(1 − 2ωc
B+))]⊗R(δ∆t, σ∆t; ~qc) (11.5)

where ωc
B+ is the mistag fraction for charged B mesons for tagging category c.

Since the ratio of the charged B to neutral B lifetime is close to 1 and the frac-

tion of charged B mesons in the peaking sample is small, we do not have sufficient

sensitivity to distinguish the lifetimes in the fit. We parameterize the physics model

for the B± in terms of the lifetime ratio τB+/τB0 , and fix this ratio to the PDG2002

world average. [5] For Monte Carlo, we use the ratio of generated lifetimes.

The fit is sensitive to only two parameters among ωB+ , ωB0 and the charged B

fraction (fB+). The reason is that, given the fact that the two lifetimes are so close,

the time evolution of mixed and unmixed events can be expressed approximately as

U(∆t) ∝ (1 + fB+DB±)/2 + ((1 − fB+)DB0 cos ∆md∆t)/2

M(∆t) ∝ (1 − fB+DB±)/2 − ((1 − fB+)DB0 cos ∆md∆t)/2 ,

where D is the dilution 1 − 2ω. Only two quantities, fB+D±
B and (1 − fB+)D0

B are

measurable (the constant term and the amplitude of the oscillating term). Therefore

we fix the ratio of mistag rates, ωB+/ωB0 , to the value of the ratio measured with

fully reconstructed charged and neutral hadronic B decays in Data, for each tagging

category. For Monte Carlo, we fix these ratios to the results of truth-counting in

the generic sample. See Tables 11.2-11.3 for these values. (The values for Data are

obtained from the BABAR BTagging Group. [52])
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Nominal B+/B0 Ratios for MC

τB+/τB0 1.0690 ± 0.029

ωB+

LT /ω
B0

LT 1.210 ± 0.46

ωB+

KT/ω
B0

KT 0.724 ± 0.12

ωB+

N1 /ω
B0

N1 0.740 ± 0.26

ωB+

N2 /ω
B0

N2 0.942 ± 0.17

ωB+

N3 /ω
B0

N3 1.121 ± 0.12

Table 11.2: Values for ratios of B+ to B0 parameters for use in the signal ∆t model
which describes candidates from both charged and neutral parents. The mistag rates
were determined directly from Monte Carlo truth by counting.

Nominal B+/B0 Ratios for Data

τB+/τB0 1.083 ± 0.017

ωB+

LT /ω
B0

LT 0.54 ± 0.10

ωB+

KT/ω
B0

KT 0.68 ± 0.05

ωB+

N1 /ω
B0

N1 0.99 ± 0.12

ωB+

N2 /ω
B0

N2 1.05 ± 0.07

ωB+

N3 /ω
B0

N3 1.12 ± 0.12

Table 11.3: Values for ratios of B+ to B0 parameters for use in the signal ∆t model
which describes candidates from both charged and neutral parents. These values for
performance on Run-1 Data were obtained from other BABAR studies, except for the
NT3 category, which are determined by Monte Carlo truth counting.

11.2.3 Combined Signal Model

We combine the charged-B and neutral-B models with the fraction fB+ since we

assert that they will have identical resolution models. The combined model becomes

Gsig(∆t, σ∆t, g ; ~q sig
c ) =

[
1 − fB+

4τB0

e−|∆ttrue|/τB0 (1 + g(1 − 2ωc
B0) cos(∆md∆ttrue))+

fB+

4τB+

e−|∆ttrue|/τB+ (1 + g(1 − 2ωc
B+))] ⊗R(δ∆t, σ∆t; ~qc) ,

(11.6)

We use this model to fit a sample of neutral and charged B signal candidates in the
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generic Monte Carlo, in which 17290 events are real signal and 952 are B+ → D∗−`+X

events, and there are no other backgrounds. The charged B fraction in this mixture

is 5.2%. The lifetime ratio τB+/τB+ and mistag ratio ωB+/ωB0 are set to be 1.069

and 0.97, respectively. The lifetime ratio is based on the PDG2000 value, which is

the value used in the event generator of the Monte Carlo samples. The mistag ratio

is calculated from the overall mistag fractions for B0B0 and B+B− samples by event

counting based on the truth. The fit results for ∆md, τB0 and the charged B fraction

are shown in Table 11.4, along with the results of the fit to B0 signal only, and the

fit with charged B fraction fixed at the true value. In all fits, the resolution function

and mistag fractions are free parameters.

The fitted charged B fraction is consistent with the “true” value. The generic MC

sample is significantly smaller than the signal MC sample, but the fitted lifetime and

mixing values appear consistent with the generator values at the 1σ level. We note

however, that in this truth-matched sample of Generic MC events, we are unable to

measure a non-zero outlier fraction. The correlation between f out and τB0 is what

drives the measured lifetime higher in the Generic MC fits. This “systematic” fail-

ure is reflected in the “statistical” error which incorporates these correlations. Upon

closer inspection, we see the error on ∆md inflates when we float fB+ , as expected,

and because of the positive correlation, an underestimate of fB+ also causes an under-

estimate of ∆md, as seen by comparing columns 2, 3 and 4 of the table. We conclude

that while we are unlucky with our Generic MC sample in that we cannot reliably

measure the signal outlier fraction, the fit results are still correctly described by their

statistical errors.
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Signal ∆t fits to (truth-matched) Signal & Generic Monte Carlo

Par. Sig MC Gen MC B0B0 GenMC B0B0 &B+B− Gen MC B0B0 &B+B−

∆md (ps−1) 0.4715 ± 0.00427 0.4640 ± 0.0101 0.4630 ± 0.0106 0.4617 ± 0.0132
τB0 (ps) 1.5523 ± 0.00915 1.5749 ± 0.0227 1.5666 ± 0.0221 1.5656 ± 0.0227
f out 0.0044 ± 0.0015 −0.0012 ± 0.0027 −0.0005 ± 0.0029 −0.00024 ± 0.0034
fB+ 0 0 0.0521 0.047 ± 0.030

Table 11.4: G(sig) fits to MC truth-matched signal B0B0 and B+B− from Generic MC (we include the result for the
fit to signal MC for reference). We show the fitted results (with full statistical errors) for ∆md, τB0 , fB+ , and the
signal outlier fraction f out. The third column of values represents a fit to truth-matched B0B0 and B+B− Generic
MC events where we fix fB+ to its true value and hold it constant in the fit; in the fourth column we float this
parameter and extract it from the fit. In all the fits, resolution function and mistag fractions are floating, except
for the two signal outlier model shape parameters.
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11.3 Background Models

One of the key features of this study is the effort to describe the four classes of

background events using knowledge derived directly from the Data. Here, we elu-

cidate models for the ∆t distributions of the combinatoric, continuum, fake lepton,

and uncorrelated lepton background events. We use samples of Generic Monte Carlo

events and the control samples in Data to determine the functional forms, but leave

almost all of the parameters floating in the final fit to the full sample. This properly

treats the correlations between the ∆t models because while the “true” background

candidates are separable into the four distinct classes, we only have per-event prob-

ability estimates, i.e., we do not have certainty about which events are absolutely

combinatoric or absolutely peaking background. Finally, although the ∆ttrue and res-

olution on ∆ttrue are not well-defined for background events, we still describe the total

∆t model as a “physics model”convolved with a “resolution function” for convenience.

The background ∆t physics models we use in this analysis are each a linear combi-

nation of one or more of the following terms, corresponding to prompt (zero lifetime),

exponential lifetime, and oscillatory distributions:

Gpmt
phys(∆ttrue, g) = (1/2) · δ(∆ttrue) ·

(
1 + g · (1 − ωpmt)

)
,

Glife
phys(∆ttrue, g) = (1/4) · exp(−|∆ttrue|/τbkg) ·

(
1 + g · (1 − ωlife)

)
,

Gosc
phys(∆ttrue, g) = (1/4) · exp(−|∆ttrue|/τbkg) ·

(
1 + g · (1 − ωosc) cos ∆mbkg∆ttrue

)
,

where δ(∆t) is a δ-function, g = +1 for unmixed and −1 for mixed events, and

τbkg and ∆mbkg are the effective lifetime and mixing frequency for the particular

background.

For backgrounds, we use a resolution function that is the sum of a narrow and a

wide Gaussian distribution, the so-called double Gaussian:

RG+G(δ∆t, σ∆t; b, s, f, b
w, sw)

= f ·G(δ∆t; bσ∆t, sσ∆t) + (1 − f) ·G(δ∆t; bwσ∆t, s
wσ∆t) .

To reduce the total number of free parameters in the fit, parameters that describe



186 CHAPTER 11. MODELS FOR TIME-DEPENDENCE

the shape of the wide Gaussian (bias and width) are shared between combinatoric

background and the three types of peaking background: continuum, fake-lepton, and

uncorrelated-lepton. The wide fraction is allowed to be different for each type of

background.

11.3.1 Combinatoric background

Model

Events in which the D∗ candidate corresponds to a random combination of charged

tracks (called combinatoric background) constitute the largest background in the sig-

nal sample. We use two sets of events to determine the appropriate parameterization

of the ∆t model for combinatoric background: events in data that are in the upper

m(D∗) − m(D0) sideband (above the peak due to real D∗ decays); and events in

Monte Carlo simulation that are identified as combinatoric background, based on the

true information for the event, in both the m(D∗)−m(D0) sideband and peak region.

We have an advantage in studying this largest source of background, as the control

sample (the δm sideband) is very pure in combinatorics.

An important concern about the sideband control sample for combinatorics is

whether it accurately describes the behavior of combinatorics in the peaking region

of δm. If it does, then there is a benefit to including it in the final analysis since it

will significantly increase the number of events used to determine the combinatoric

∆t portion of the model. Using generic Monte Carlo, we observe that B+B− combina-

torics do not exhibit time-dependent mixing, but combinatoric candidates from B0B0

parents can, as seen in Fig.11.3. The relative fraction of B0B0 and B+B− events in the

combinatoric background depends slightly on δm as shown in Fig. 11.4(a). Clearly

the B0B0 background dominates, and there is a tradeoff with B+B− sources as one

nears the peak region. We might expect then, that an effective mixing frequency for

combinatorics could depend on the δm value.

If we fit the generic Monte Carlo sample of combinatorics in slices of δm, we find

that the effective mixing frequency ∆mbkg is uniform across m(D∗) − m(D0) (see

Fig. 11.4(b)). No significant dependence of the parameters of the ∆t model on δm
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Figure 11.3: Effective mixing asymmetry for combinatoric candidates selected from
B0B0 parents and B+B− parents. We observe that the candidates from charged B
mesons do not exhibit any mixing asymmetry, while the B0B0 combinatorics do.

is observed in Data or the Monte Carlo simulation. We therefore choose to employ

a common ∆mbkg for all combinatoric candidates. The data and Monte Carlo ∆t

distributions are described well by a prompt plus oscillatory term convolved with a

double-Gaussian resolution function:

Gcomb = [f osc · Gosc
phys(∆ttrue, g; τ

comb,∆mcomb, ωosc) +

(1 − f osc) · Gpmt
phys(∆ttrue, g;ω

pmt)] ⊗RG+G(δ∆t, σ∆t; b, s, f, b
w, sw) . (11.7)
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Figure 11.4: Left: Relative composition of the combinatoric δm spectrum from Monte
Carlo. Note that B0B0 dominates everywhere, although the relative composition
between B0B0 and B+B−, changes by 15% from the signal region to the far sideband.
Right: The fitted value of ∆mbkg from fits to slices of the generic Monte Carlo sample
in m(D∗)−m(D0). We observe that ∆mbkg is consistent across all eight bins, despite
the changing relative fraction of contributions from B0B0.

Parameterization

Because the sideband control sample is so pure, we develop the ∆t model without

using the detailed δm per-event probability information. The prototype form of Gcomb

above has 10 parameters. To determine the most appropriate sharing or splitting

of these parameters amongst subsamples in the Data, we study the behavior of fit

results for different variations of the model. For instance, we suspect that f osc might

vary between subsamples, so we consider different groupings of events to share a

common f osc and compare the fitted values. The worst case scenarios might be

that all 360 subsamples have a unique fraction of oscillatory time dependence; the

best might be that all combinatoric candidates share the same fraction identically.

Consider the plots in Fig. 11.5. The left-hand figure shows the different values for

the parameter obtained when splitting it by one type of category at a time, i.e.,

sideband candidates with identified leptons prefer a higher level of oscillation in their

time structure as compared to those with fake leptons, or combinatoric candidates
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with same-side angular correlation prefer a lower oscillation fraction than those with

opposite-side angular correlation. However, subdivisions like these only divide the

data by the values of one category at a time. We also perform tests such as the one in

the right-hand plot of Fig. 11.5 where we separate the sample into 3×5 = 15 different

groups which have separate oscillation fractions (and share all other parameters).

Here we observe that, as expected, the fake lepton combinatoric candidates have a

small oscillation fraction, but not all: the combinatoric candidates with a fake lepton

and assigned the KTag tagging category have an oscillation fraction more like that

of identified leptons. After a complete study of different groupings, we arrive at

the simplified splitting shown in Fig. 11.6. Here, the combinatoric control sample

(i.e., the δm sideband) is divided into 5 distinct groups, each of which has a unique

oscillation fraction.

We find that the parameters ωpmt, ∆mcomb, τ comb, f , bw, and sw are best shared

among all subsamples of the combinatoric background. The parameters ωosc, f osc,

b, and s are allowed to be different depending on criteria such as tagging category,

whether the data was recorded on- or off-resonance, whether the candidate lepton

passes real- or fake-lepton criteria, whether the event passes the criteria for same-side

or opposite-side D∗ and `, and how many identified leptons are in the event. The

total number of free parameters in the combinatoric background ∆t model is 24. The

sample of events in the δm sideband is used to determine the starting values for the

parameters in the final full fit to all data samples.

11.3.2 Continuum peaking background

For this and the other peaking backgrounds, we follow a similar strategy as we

did for the combinatorics. For brevity, however, we will not go into as much depth.

Please see Ref. [47] for more details.

Model

All cc events that have a correctly reconstructed D∗ are defined as continuum

peaking background, independent of whether the associated lepton candidate is a real
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Figure 11.5: Spread of fit results for f osc for fits to the sideband sample of Data,
almost 100% pure in combinatoric events. Each region of the plot indicates a fit
where the oscillation fraction was allowed to be different for each category of events
labelled on the right hand side. The left-hand plot shows 4 fits with 4 different
groupings of events; the right-hand plot shows one fit with the sample divided into
15 different groups for f osc.

lepton or a fake lepton. The cc Monte Carlo sample and off-resonance data are used to

identify the appropriate ∆t model and sharing of parameters among subsamples. The

combinatoric-background ∆t model and parameters described in the previous section

are used to model the combinatoric-background contribution in the off-resonance ∆t

distribution in data.

Events with a real D∗ from continuum cc production should have vanishing ∆t in

the case of perfect reconstruction. Therefore, we use the following model for the ∆t

distribution of these events:

Gcont = Gpmt
phys(∆ttrue, g;ω

pmt) ⊗RG+G(δ∆t, σ∆t; b, s, f, b
w, sw) .
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Figure 11.6: Spread of fit results for f osc for fits to the sideband sample of Data
using the final divisions of the sample. For instance, all off-resonance combinatoric
candidates are non-B0B0 parented, and so we expect a small fraction of oscillatory
time dependence. We observe this in the diagram. We also see that on-resonance,
same-side events have their own unique oscillation fraction. Finally, combinatoric
candidates that are on-resonance, opposite-side split into three groups, each displaying
a different value for f osc.

Dependence on the flavor tagging information is included to accommodate any dif-

ferences in the amount of background events classified as mixed and unmixed.

Parameterization

In Data, the background control samples for the continuum peaking background

are the off-resonance samples. To bootstrap the continuum ∆t parameters in the

final fit, we first fit to a combination of combinatoric background and continuum

peaking background in both data and Monte Carlo. For the Monte Carlo sample, the

cc sample is artificially divided into two samples with the proportion of numbers of

events being 1:7 (similar to the ratio of off- to on-resonance data). The smaller Monte

Carlo sample is artificially marked as off-resonance. Both the data and Monte Carlo

samples are analyzed as described in Chapter 10 to extract δm shapes and background

fractions. In each case, the δm sideband events are used to obtain the parameters

of the ∆t model for combinatoric background. We fix all parameters except the

continuum peaking background ∆t model. The results are shown in Table 11.5, and

directly illustrate the process of bootstrapping. The parameters from the fit to data
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(right-hand column) will be used as starting values in the final full fit to data.

Par cc D∗ MC “Off-Res” MC Off-Res Data

ωpmt
LNTx 0.483 ± 0.018 0.491 ± 0.050 0.445 ± 0.055

ωpmt
KT 0.117 ± 0.013 0.064 ± 0.033 0.094 ± 0.034

b1OS 0.015 ± 0.039 −0.048 ± 0.15 −0.098 ± 0.15
b1SS −0.177 ± 0.072 0.01 ± 0.41 −0.597 ± 0.28
s1 1.145 ± 0.037 1.07 ± 0.25 1.16 ± 0.16
f 1 0.930 ± 0.023 0.69 ± 0.28 0.83 ± 0.11

Table 11.5: G(cont) fit parameters for continuum D∗ candidates from cc Monte Carlo
with a real D∗, and combined fits to combinatoric background and continuum peaking
background in “off-resonance” cc Monte Carlo (defined in text) and data. Recall that
the subscripted labels on the parameters indicate the subset of the sample to which
they are restricted. For instance, b1SS is the mean of the core Gaussian of the resolution
model for candidates with so-called “same-side” angular correlation between the D∗

and `.

By fitting to the Data and Monte Carlo control samples with different sharing of

parameters across subsets of the data, we find that the apparent “mistag fraction”

for events in the KTag category is significantly different from the mistag fraction for

other tagging categories. We also find that the core Gaussian bias is significantly

different for opposite-side and same-side events. We introduce separate parameters

to accommodate these effects, i.e., split the parameters across the aforementioned

category values. The total number of parameters used to describe the ∆t distribution

of continuum peaking background is six. The off-resonance control samples in data

are used to determine starting values for the final full fit to all data samples.

11.3.3 Fake-lepton peaking background

Model

To determine the ∆t model and sharing of parameters for the fake-lepton peaking

backgrounds, we use B0B0 and B+B− Monte Carlo events in which the D∗ is correctly

reconstructed but the lepton candidate is misidentified. In addition, we use the fake-

lepton control sample in data. The combinatoric and continuum peaking background



11.3. BACKGROUND MODELS 193

∆t models and parameters described in the previous two sections are used to model

their contribution to the fake-lepton ∆t distribution in data. For this study, the

contribution of signal is described by the signal parameters found for signal events in

the Monte Carlo simulation.

Since the fake-lepton peaking background is due to B decays in which the fake

lepton and the D∗ candidate can originate from the same B or different B mesons,

we include both prompt and oscillatory terms in the ∆t model:

Gfake =
[
f osc · Gosc

phys + (1 − f osc) · Gpmt
phys

]
⊗RG+G(δ∆t, σ∆t; b, s, f, b

w, sw) .

Parameterization

We find that the apparent mistag rates for both the prompt and mixing terms, and

the bias of the core Gaussian of the resolution function, are different between some

tagging categories. The total number of parameters used to describe the fake-lepton

background is 14. The fake-lepton control samples in data are used to determine

starting values for the final full fit to all data samples.

11.3.4 Uncorrelated-lepton peaking background

Model

To determine the ∆t model and sharing of parameters for the uncorrelated-lepton

peaking backgrounds, we use B0B0 and B+B− Monte Carlo events in which the D∗

is correctly reconstructed but the lepton candidate is from the other B in the event

or from a secondary decay of the same B. In addition, we use the same-side con-

trol sample in data, which is only about 30% uncorrelated-lepton background in the

m(D∗)−m(D0) peak region due to significant contributions from combinatoric back-

ground and signal. The combinatoric and other peaking background ∆t models and

parameters described in the previous two sections are used to model their contribu-

tion to the same-side ∆t distribution in data. For this initial study, the contribution

of signal is described by the signal parameters found for signal events in the Monte

Carlo simulation.
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Physics and vertex reconstruction considerations suggest several features of the ∆t

distribution for the uncorrelated-lepton sample. First, we expect the reconstructed ∆t

to be systematically smaller than the true ∆t value since using a lepton and a D∗ from

different B decays will generally reduce the separation between the reconstructed BD∗`

and Btag vertices. We also expect that events with small true ∆t will have a higher

probability of being misreconstructed as an uncorrelated lepton candidate because it is

more likely that the fit of the D∗ and the “wrong” ` to a common vertex will converge

for these events. Finally, we expect truly mixed events to have a higher probability

(than unmixed events) of being reconstructed as uncorrelated-lepton events because

in mixed events the charge of the primary lepton(s) on the tagging side is opposite that

of D∗, and can therefore be consistent with the BD∗` hypothesis. These expectations

are confirmed in the Monte Carlo simulation. For instance, Table 11.6 shows the

calculated χd parameter for uncorrelated-lepton events identified in the generic Monte

Carlo sample. We observe that this sample is enriched in mixed events, as expected

(that is, mixed events are more likely to become uncorrelated lepton candidates than

unmixed events).

Tagging Category % Sample χd

LTag 13 0.68
KTag 43 0.53
NT1 7 0.59
NT2 11 0.43
NT3 26 0.55

Table 11.6: Ratio of the number of truly mixed events to the total number of events,
χd, for the pure uncorrelated lepton sample from generic BB Monte Carlo. Note that
the sample has a high average value of χd, and is relatively enriched in LTag events.

We do not expect the uncorrelated-lepton background to exhibit any mixing be-

havior and none is observed in the data or Monte Carlo control samples. We describe

the ∆t distribution with the sum of a lifetime term and a prompt term, convolved
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with a double-Gaussian resolution function:

Guncor =
[
f life · Glife

phys(∆ttrue, g; τ
uncor, ωlife) + (1 − f life) · Gpmt

phys(∆ttrue, g;ω
pmt)

]
⊗

RG+G(δ∆t, σ∆t; b, s, f, b
w, sw) . (11.8)

Parameterization

The effective mistag rates ωpmt and ωlife accommodate different fractions of uncorrelated-

lepton backgrounds in events classified as mixed and unmixed. We find that the ap-

parent mistag rate for the lifetime term is different between some tagging categories.

All other parameters are consistent among the different subsamples. The total num-

ber of parameters used to describe the uncorrelated-lepton background is six. The

uncorrelated-lepton control samples in data are used to determine starting values for

the final full fit to all data samples.



Chapter 12

Results

The final model is fitted to the full Data sample, and we report the fit results. To
improve the robustness of the result, we fix the two shape parameters of the signal outlier
shape after surveying the likelihood values in that two-dimensional space. We extract the
following (uncorrected) values for lifetime and mixing:

τB0 = 1.545 ± 0.023 ps

and
∆md = 0.512 ± 0.018ps−1

and
ρ(∆md, τB0) = −0.22 .

We observe non-linearities in the likelihood space around the minimum in the τB0 direction,
so we correct the upper statistical error on τB0 by 6%. We also study the source of the
correlation between τB0 and ∆md and find that it is largely due to the signal resolution
model and the charged B fraction.

196
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12.1 Comments on Implementation

12.1.1 Signal Outlier Model

The outlier portion of the signal resolution function is intended to describe the ∆t

distribution for candidates whose residual is not consistent with the calculated error.

These outliers are typically due to gross errors in tagside vertex reconstruction. Since

there is little reason to expect the “mean” and “width” of the signal outlier Gaussian

to scale with the per-event error, the outlier resolution function is parameterized as

a Gaussian in δ∆t (= ∆tmeas − ∆ttrue).

We found that the fit to Data (and Generic Monte Carlo) is not robust when all

three parameters for the outlier Gaussian of the resolution function are allowed to

float in the fit. In particular, the best fit value for the bias of the outlier function

is always at the lower end of the allowed range, even when the lower limit is set at

−18 ps! This is likely due to the negative tail in the ∆t distribution for events in the

signal sample; see Fig. 12.4. In addition, when all outlier parameters are free, many

fits fail to converge or have an error matrix that is not positive definite. Therefore, we

repeat the full fit with 36 different fixed values of the outlier bias and outlier width,

covering a wide range for each parameter (-1 to -10 ps in bias, 4 to 11 ps in width).

Figure 12.1 shows the negative-ln-likelihood surface as a function of outlier bias

and width. The negative-ln-likelihood has been offset so that the minimum value

over the plot is zero. For fixed width, the minimum in negative-ln-likelihood always

occurs at the most negative bias. For fixed bias, the likelihood curve as a function of

resolution becomes broader as the bias becomes more negative. Note that there is a

local minimum at small bias. Also note that the change in negative-ln-likelihood is

less than 0.5 for most of the values of bias and width scanned in this study.

A scatter plot of the resulting values of ∆md and τB0 is shown in Fig. 12.2.

Note that the spread in values of τB0 and ∆md is small compared to the statistical

uncertainty on each quantity. This is consistent with the fact that the change in

ln-likelihood is small as the outlier bias and width are varied (see Fig. 12.1).

In order to choose an outlier bias and width for the default fit to data, we select

a point near the middle of the cluster of points in the τB0 versus ∆md scatter plot
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Figure 12.1: The negative-log-likelihood surface in the space of outlier bias and outlier
width for the outlier Gaussian of the signal resolution model in Data. The vertical
scale has been offset so that minimum is at 0. The surface is constructed from 36 fits
to the Data with different fixed values of the signal outlier parameters.

(Fig. 12.2) and use the corresponding bias and width. We selected a bias of -5 ps and

a width of 6 ps.

To summarize, we fix the bias and width in the outlier Gaussian of the resolution
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Figure 12.2: Scatter plot of the set of (blinded) ∆md, τB0 values obtained from data
for 36 fits with different fixed values of the outlier bias and width in the range −1
to −10 ps for bias and 4 to 11 ps for width. The cross indicates the mean and RMS
of the ∆md, τB0 distribution. Note that the range of the τB0 (y) axis is slightly less
than one statistical error bar, and that the range of the ∆md (x) axis is less than 1/5
of a statistical error bar.

function to −5 ps and 6 ps, respectively. We note that it is not unusual to fix

outlier parameters in lifetime and mixing fits in BABAR— no other lifetime and mixing

analysis in BABAR has allowed the outlier parameters to be free. (In fact, this detailed

studied of the likelihood surface in the outlier shape parameter space is most likely a

first.)
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12.1.2 Performance

The technology used to define the probability density functions, build the like-

lihood and perform the fit consists of two general toolkits, RooFit [60] and MI-

NUIT [61] both running under the umbrella environment of ROOT [62]. Because

of the complexity of the likelihood, the computational power required to perform the

minimization is impressive. A typical fit to the Data set, starting from good initial

values, takes 8-9 hours on a Pentium III with 500 MB of memory running at 800

MHz to find the minimum, and another 8-9 hours to calculate the covariance matrix.

In order to make study of the measurement more tenable, we typically conducted

studies without requesting the covariance matrix unless it was absolutely necessary

(thereby halving the time of each fit.)

We also found that the covariance matrix calculation was sometimes unstable, re-

porting that a non-positive-definite matrix was found (i.e., the minimum appeared to

be a saddle point). By optimizing the precision of the calculation and feeding the more

detailed information from the minimization step to the covariance-calculation stage,

we were able to substantially improve the reliability of the error matrix computation.

12.2 Fit Results

12.2.1 Final Parameter Values

The total number of free parameters in the final fit is 72: 22 in the signal model,

24 in the combinatoric background model, and 26 in peaking background models.

The fitted signal ∆t model parameters are shown in Table 12.1. The fitted combina-

toric background model parameters are shown in Table 12.2 and the fitted peaking

background parameters are listed in Table 12.3.

The statistical correlation coefficient between τB0 and ∆md is ρ(D−, τB0) = −0.22.

The global correlation coefficients for τB0 and ∆md, and some of the correlation

coefficients between τB0 or ∆md and other parameters, are shown in Table 12.4. We

draw the error ellipse for the τB0-∆md correlation in Fig. 12.3, where the contour is

estimated from the covariance matrix.
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Table 12.1: Results of full fit to data — signal model and resolution function pa-
rameters. A small correction, described in Chapter 13.3.3, will be applied to τB0 and
∆md.

Signal Model and ∆t Resolution Function Parameters
parameter value parameter value parameter value
∆md (ps−1) 0.512 ± 0.018 fB+ 0.082 ± 0.029 s 1.201 ± 0.063
τB0 (ps) 1.545 ± 0.023 ωlepton 0.071 ± 0.015 κ 0.86 ± 0.17
- - ωoffset

kaon 0.002 ± 0.024 f lepton 0.72 ± 0.10
- - mkaon 0.229 ± 0.036 fkaon 0.609 ± 0.088
- - ωNT1 0.212 ± 0.020 fNT1 0.69 ± 0.13
- - ωNT2 0.384 ± 0.018 fNT2 0.70 ± 0.10
- - ωNT3 0.456 ± 0.012 fNT3 0.723 ± 0.078
- - ∆ωlepton −0.001 ± 0.022 fout 0.0027 ± 0.0017
- - ∆ωkaon −0.024 ± 0.015 bout (ps) −5.000
- - ∆ωNT1 −0.098 ± 0.032 sout (ps) 6.000
- - ∆ωNT2 −0.112 ± 0.028 - -
- - ∆ωNT3 −0.023 ± 0.019 - -

The charged B fraction in data from this final fit is (8.2 ± 2.9)%. Although the

selection criteria are not exactly the same, it is interesting to compare this result

with the charged B fraction found for the B0 → D∗−`+ν` sample described in the

Ref. [12]: (4.5 ± 0.3 ± 2.2)%. This result was determined from a fit to the cos θB,D∗`

distribution in data, with shapes taken from Monte Carlo. Given that the errors on

the two results are not correlated, the difference is (3.7 ± 3.7)%. Therefore, the two

results are consistent.

12.2.2 Plots of ∆t Projections

We can review the performance of the fit by projecting the master PDF onto ∆t

separately for mixed and unmixed events, overlaying the Data as well. A subsample

of known purity can be selected by computing the average per-event probability as

predicted from the δm analysis. For instance, in Fig. 12.4 we plot the fit result

projected onto a sample of 80% signal purity by selecting events with per-event signal
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Final Fit to Data, Combinatoric ∆t Model Parameters

parameter value parameter value
∆mcomb 0.422 ± 0.020 b1LNT12 −0.056 ± 0.021
τ comb 1.234 ± 0.024 b1KNT3 −0.104 ± 0.012
ωosc

Fake;LTag 0.434 ± 0.026 f osc
Off 0.099 ± 0.035

ωosc
Fake;KTag 0.128 ± 0.017 f osc

SS 0.385 ± 0.023
ωosc

Fake;NT1 0.443 ± 0.032 f osc
NoLept 0.526 ± 0.019

ωosc
Fake;NT2 0.507 ± 0.024 f osc

OneLept 0.894 ± 0.022
ωosc

Fake;NT3 0.589 ± 0.020 f osc
TwoLept 1.000

ωosc
Lept;LTag 0.156 ± 0.023 s1

OffSS 1.337 ± 0.024
ωosc

Lept;KTag 0.297 ± 0.010 s1
On;OS 1.259 ± 0.021

ωosc
Lept;NT1 0.377 ± 0.025 f 1 0.9666 ± 0.0071

ωosc
Lept;NT2 0.401 ± 0.016 bout −0.98 ± 0.24

ωosc
Lept;NT3 0.491 ± 0.011 sout 4.60 ± 0.42

ωpmt 0.3960 ± 0.0093 - -

Table 12.2: Default fit result for Data — ∆t model parameters for combinatoric
background, G(comb).
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Figure 12.3: ]
The one-sigma contour for τB0vs. ∆md from the full fit to Data. The correlation
coefficient is −0.22.
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Final Fit to Data, Peaking BKG Model Parameters

cont. par. value fake par. value unco. par. value
ωKT 0.083 ± 0.028 ∆mfake 0.444 ± 0.031 τunco 1.07 ± 0.17
ωLNT 0.457 ± 0.040 τ fake 1.416 ± 0.060 ωlife

KNT 0.71 ± 0.13
b1OS 0.04 ± 0.11 ωosc

LT 0.248 ± 0.038 ωlife
LT 0.9998

b1SS −0.08 ± 0.13 ωosc
KT 0.142 ± 0.029 ωpmt 0.00000 ± 0.00064

s1 1.300 ± 0.090 ωosc
NT1 0.342 ± 0.044 f life 0.877 ± 0.085

f 1 0.909 ± 0.040 ωosc
NT2 0.377 ± 0.039 b1 −0.30 ± 0.18

- - ωosc
NT3 0.512 ± 0.042 f 1 1.000

- - ωpmt
KNT3 0.46 ± 0.14 s1 1.34 ± 0.24

- - ωpmt
LNT12 0.64 ± 0.15 - -

- - f osc 0.852 ± 0.046 - -
- - b1KNT3 −0.208 ± 0.062 - -
- - b1LNT12 −0.078 ± 0.065 - -
- - f 1 0.944 ± 0.023 - -
- - s1 1.159 ± 0.091 - -

Table 12.3: Default fit result for Data — ∆t model parameters for peaking back-
grounds. The outlier bias (µout) and scale factor (σout) for these peaking background
are shared with combinatoric background parameters.

Table 12.4: Global correlation coefficients for ∆md and τB0 from the full fit to data
and other correlation coefficients for pairs of key parameters in the fit.

∆md global correlation 0.74
τB0 global correlation 0.69
ρ(∆md, τB0) −0.22
ρ(∆md, fB+) 0.58
ρ(τB0 , σ1

sig) −0.49
ρ(τB0 , f out

sig ) −0.26

probability ≥ 0.4, yielding about 15, 900 events. (Recall Chapter 10.4.) Likewise we

construct the mixing asymmetry by combining the projections in Fig. 12.4 to form

the appropriate ratio. The asymmetry in Data between mixed and unmixed events

per unit time is shown in Fig. 12.5 along with the projection of the fit result.
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Figure 12.4: The ∆t distribution of unmixed and mixed events in an 80% pure signal
subsample of Data, and the projection of the model. The left hand plots are for
unmixed events, the right for mixed events; the middle row is simply a log y plot. The
superimposed shaded areas on the upper plots show the background contribution to
the distributions. The bottom row is the Poisson probability of observing n events or
smaller (larger) if n is smaller (larger) than the expected value, i.e., y =

∑n
i=0 P (i;µ)

for n < µ and y =
∑∞

i=n P (i;µ) for n > µ.

12.3 Discussion

Parameter Errors and Correlations

Since we float many parameters in the model, it is useful to see how the errors on

τB0 and ∆md, and their correlation change when different parameters are free in the
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Figure 12.5: The asymmetry plot for the 80% pure signal sample of Data, and the
projection of the model fit result from Data. The lower plot shows the bin-by-bin
difference normalized by the error estimated from data on each bin.

fit, or fixed to their best value from the full fit. We perform a series of fits, fixing all

parameters at the values obtained from the default fit, except (a) ∆md and τB0 , (b)

∆md, τB0 , and all mistag fractions in the signal model, (c) ∆md, τB0 , and fB+ , (d)

∆md, τB0 , fB+ , and all mistag fractions in the signal model, (e) all parameters in the

signal ∆t model. The one-sigma error ellipses for these fits and for the default fit are

shown in Fig. 12.6.
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We can see that the error on τB0 changes very little until we float the signal resolu-

tion function. Floating the background parameters adds a very small contribution to

the error. The contribution from the charged B fraction and mistag fractions to the

τB0 error is negligible. On the other hand, the charged B fraction changes the error

on ∆md the most. The contributions from floating the mistag fractions, resolution

functions, and background ∆t models are relatively small.
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Figure 12.6: Comparison of one-sigma error ellipses in the ∆md-τB0 plane for fits
in which different sets of parameters are free. From the innermost to the outermost
ellipse, the floating parameters are (∆md, τB0), (∆md, τB0 , mistag fractions), (∆md,
τB0 , fB+), (D−, τB0 , fB+ , mistag fractions), all signal ∆t parameters, and the default
fit (72 floating parameters).

The covariance matrix we report above is estimated from the partial derivatives

of the likelihood surface near the minimum and assuming locally parabolic behav-

ior. However, the log-likelihood function may not be symmetric and the real error

(deviation from the minimum such that log-likelihood changes by 0.5 units) may not
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be the same as that estimated from the curvature. The more correct technique in-

volves actually stepping along each single parameter at a time and re-minimizing the

negative-log likelihood at each step until it changes by required 0.5 units.∗ Due to

the large number of floating parameters, it is impractical to measure the true errors

on every parameter, however, because this would involve repeating the full fit at least

72 times. However, since we observe that the statistical error contribution from the

background ∆t parameters to τB0 and ∆md is minimal, we can hold them constant

and explore the reduced parameter space. We find that the parabolic error estimates

for the signal model parameters (including τB0 and ∆md) are accurate and symmetric

at the 0.1% level.

To estimate the statistical errors at higher accuracy while including the contribu-

tion from the background parameters, we scan the log-likelihood function along the

1−σ contour on the ∆md-τB0 plane predicted by the approximate covariance matrix.

That is, we fix ∆md and τB0 to the values on the 1−σ contour in Fig. 12.3 and repeat

the full fit with all other parameters floating. If the errors from the are correct, the

log-likelihood should be greater than the minimum by exactly 0.5 units.

The resulting values of eight points on the one-sigma contour are shown in Fig. 12.7.

The percentages shown in parenthesis are how much the error should increase in that

particular direction if a parabolic curve is assumed. The largest difference from 0.5

is in the positive τB0 direction. We therefore correct the positive τB0 statistical error

by 6.5%. For ∆md and negative τB0 errors, the correction is negligible.

To more directly understand these conclusions from the strategy outlined in Chap-

ter 9, we visually portray the correlation matrix for the 72 parameters in the final ∆t

fit in Fig. 12.8. We observe that although all 72 parameters are floating and could

have large correlations, because many are restricted to distinct subsamples of the

data, the correlation matrix has significant block diagonal structure. We are effec-

tively performing several smaller fits simultaneously. In the limit of control sample

purity, the final fit would cleanly factorize into separate fits to each sample to de-

termine its behavior for extrapolation/subtraction from the signal region. From the

correlation matrix, however, we do directly observe several significant correlations far

∗We use the MINOS [61] analysis package to extract the true error contours.
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Figure 12.7: The log-likelihood difference between points on one-sigma contours and
the minimum. The percentages shown in parenthesis are how much the error should
increase in that particular direction if a parabolic curve is assumed.

from the diagonal; these are properly taken into account statistically by the full fit,

which is the true power of this technique.

We also check the statistical errors on data by measuring the increase in negative

log likelihood in data in the two-dimensional (τB0 , ∆md) space in the vicinity of the

minimum of the negative log likelihood. We found that the positive error on τB0 is

about 6% larger than that predicted by the fitting program, whereas the other errors

are the same as predicted. The positive statistical error on τB0 is increased by 6% to

accommodate this observation.
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∆t Projections For Backgrounds

The fit result can also be projected onto the background control samples. In

Fig. 12.9 the ∆t projections for a 99.5% pure sample of combinatoric events is shown,

along with the corresponding mixing asymmetry in Fig. 12.10. (This sample was

formed by requiring the combinatoric background per-event probability to be greater

than 90%, selecting about 33, 800 events.) Similarly, we select a subsample of the

Data that is 61% pure in fake lepton backgrounds and project the model onto ∆t, as

shown in Fig. 12.11 and Fig. 12.12. (This sample was formed by requiring the fake

lepton per-event probability to be greater than 40%, selecting about 10, 400 events.)

In each case, we observe that the model describes the data well.
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Figure 12.8: Visual representation of the correlation matrix between all 72 free pa-
rameters in the final ∆t fit. The diagonal elements have been suppressed. The upper
plot illustrates the size of the correlations while the lower shows the overall density
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top shows the range of ∆t parameters grouped by model type, i.e., signal or com-
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Figure 12.9: The ∆t distribution of unmixed and mixed events in a 99.5% pure
combinatoric subsample of Data, and the projection of the model. The left hand
plots are for unmixed events, the right for mixed events; the middle row is simply a
log y plot. The bottom row is the Poisson probability of observing n events or smaller
(larger) if n is smaller (larger) than the expected value, i.e., y =

∑n
i=0 P (i;µ) for

n < µ and y =
∑∞

i=n P (i;µ) for n > µ.
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Figure 12.10: The asymmetry plot for the 99% pure combinatoric sample of Data,
and the projection of the fit result from Data. The lower plot shows the bin-by-bin
difference normalized by the error estimated from Data on each bin.
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Figure 12.11: The ∆t distribution of unmixed and mixed events in a 60% pure fake
lepton subsample of Data and the projection of the model. The left hand plots are
for unmixed events, the right for mixed events; the middle row is simply a log y plot.
The bottom row is the Poisson probability of observing n events or smaller (larger)
if n is smaller (larger) than the expected value, i.e., y =

∑n
i=0 P (i;µ) for n < µ and

y =
∑∞

i=n P (i;µ) for n > µ. The smooth (blue) curve is the projection of the full
model; the dashed (red) curve is the projection of the background component of the
full model.
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Figure 12.12: The asymmetry plot for the 61% pure fake lepton sample of Data, and
the projection of the model fit result from Data. The lower plot shows the bin-by-bin
difference normalized by the error estimated from Data on each bin.



Chapter 13

Validation and Consistency Checks

We give the results of performing cross-checks on data, including fitting to different
subsamples of the data and fitting with variations to the standard procedure. All tests show
the nominal result to be robust and well-behaved. We also describe several tests of the fitting
procedure that were performed with both fast parameterized Monte Carlo simulations and
full detector simulations.

A small bias on the fit values of τB0 and ∆md is observed when fitting a combination
of signal and background Monte Carlo events. We apply this correction (approximately
equivalent to the statistical uncertainty on τB0 and ∆md in data) to the final fit results
in Data and apply a systematic uncertainty equivalent to the statistical uncertainty on the
Monte Carlo fit result.

215
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13.1 Consistency of Subsamples

We perform the full maximum-likelihood fit on different subsets of the data and

find no statistically significant difference in the results for different subsets. The fit

is performed on datasets divided according to tagging category, b-quark flavor of the

D∗` candidate, b-quark flavor of the tagging B, and D0 decay mode. We also vary

the range of ∆t over which we perform the fit (maximum value of |∆t| equal to 10,

14, and 18 ps), and decrease the maximum allowed value of σ∆t from 1.8 ps to 1.4 ps.

Again, we do not find statistically significant changes in the values of τB0 or ∆md.

For ease of comparison, tables of results in this section show differences as compared

to he baseline measurement from the full Data set. Where possible, statistical errors

have been computed to correctly take into account overlaps between samples.

13.1.1 Flavor Subsamples

The sample was split into two subsamples, according to the reconstructed flavor

of the signal B0, B0 and by tag side B0, B0 as a consistency check. The results

are shown in Table 13.1 for Data. We re-computed the set of per-event (signal and

background) probabilities for the two subsamples to maximize our sensitivity to dif-

ferences in reconstruction between B0 and B0. Because we depend heavily on mixing

time structure to separate the charged from neutral B candidates in the sample, these

flavor-separated subsample fits have diminished precision. The fit results from the

Rec B0 subsample did not provide a positive-definite covariance matrix (in part b/c

the preferred outlier fraction is so small), but we believe the error estimates to be

approximately correct. Additionally, as mentioned earlier, our ability to precisely ex-

tract the charged B fraction fB+ is limited. For the Tag B0 fit result, we were forced

to fix fB+ to be constant and equal to the nominal fit result to guarantee convergence.

The errors account for this.

The differences in mistag rates for the Rec B0, Rec B0 categories are consistent

with the ∆ mistag rates measured in the standard fit. The differences in the Tag B0,

Tag B0 samples come from the fact that most events are unmixed, thus there is a

strong correlation between an event having a Tag B0 and a Rec B0. The correlation
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Full ∆t fits (GExp+G) to Data
Brec Btag

B0 B0 B0 B0

δ(∆md) (ps−1) 0.026 ± 0.018 −0.041 ± 0.018 −0.045 ± 0.010 0.001 ± 0.015
δ(τB0) (ps) −0.047 ± 0.025 0.041 ± 0.023 −0.015 ± 0.023 0.019 ± 0.025
fout 0.005 ± 0.002 0.001 ± 0.019 0.003 ± 0.002 0.001 ± 0.003
δ(ωLT) −0.011 ± 0.017 0.024 ± 0.012 −0.010 ± 0.011 0.028 ± 0.013
δ(ωoffset

KT ) 0.024 ± 0.031 0.001 ± 0.011 −0.001 ± 0.029 0.006 ± 0.029
δ(mKT) −0.049 ± 0.046 0.043 ± 0.053 0.004 ± 0.043 −0.007 ± 0.042
δ(ωN1) −0.003 ± 0.023 0.014 ± 0.016 −0.015 ± 0.019 0.017 ± 0.021
δ(ωN2) −0.017 ± 0.022 0.027 ± 0.016 0.022 ± 0.020 −0.013 ± 0.015
δ(ωN3) −0.004 ± 0.012 0.011 ± 0.016 0.023 ± 0.011 −0.020 ± 0.012

Others Parameters Suppressed

Table 13.1: Fitting for τB0 , mistag rate and ∆md broken down by reconstructed B0,
B0 and tag side B0, Bzb. The fits use the full data sample and a GExp+G resolution
function in the full model. The values listed are the change in central value with
respect to the nominal fit. The errors are the difference in quadrature between the
subsample and full sample fit results, with the ∆ωi parameters fixed to the nominal
results, and therefore take into account the correlations due to the common events in
both samples.

isn’t perfect, so the difference in mistag rates isn’t as large. The values of the two

physics parameters appear to be consistent across the subsamples.

13.1.2 D0 Mode Subsamples

The fill fit to Data was performed separately for each D0 decay mode group. Each

Dmode category has roughly the same number of peak δm events, although the Kπ

mode is the cleanest due to the much reduced combinatoric backgrounds in the three-

track final state signal mode. In Table 13.2 we compare the final fit values for each

subsample of the Data as grouped by Dmode, and find no significant variation between

subsamples.



218 CHAPTER 13. VALIDATION AND CONSISTENCY CHECKS

Full ∆t fits (GExp+G) to Data

Par D0 → Kπ D0 → Kπππ D0 → Kππ0/K0
Sππ

Nevents 14523 33621 19760
δ(∆md) 0.034 ± 0.024 −0.037 ± 0.026 0.019 ± 0.025
δ(τB0) −0.035 ± 0.027 0.017 ± 0.039 0.016 ± 0.032
δ(f out) 0.001 ± 0.002 0.000 ± 0.003 −0.002 ± 0.002
δ(fB+) 0.043 ± 0.035 −0.022 ± 0.048 −0.025 ± 0.036

Table 13.2: Difference in fit results between MasterModel fits to the D0 subsamples
and the baseline fit result with Data. Errors listed are the difference in quadrature.
We observe no statistically significant difference between the combined D0 fit to all
Data and the separate subsample fits.

13.1.3 ∆t-selected Subsamples

∆t selection window

The Data sample was selected applying the criterion |∆t| ≤ 18 ps. We expect

the fractional population of outliers to increase at large ∆t, so we can test our sensi-

tivity to them by narrowing the ∆t selection window. The number of events lost by

narrowing the window is small. There are a total of 16 events lost when moving from

|∆t | <18 ps to |∆t | <14 ps in the data sample, and 114 events for the very tight

cut on |∆t| < 10 ps. Table 13.3 shows the effect of using a smaller |∆t| range for fits

to data.

In these fits, we fix the outlier parameters (bias, width and fraction) to the values

determined from the fit to the full ±18 ps ∆t range. Note that the relative fraction

of outliers is defined over an infinite ∆t range so it makes sense to hold it constant

while changing the ∆t range for the fit. We are testing the sensitivity of the physics

results to the events at large ∆t, not our ability to extract outlier parameters when

the range of ∆t is reduced.

The mistag rates and resolution parameters are insensitive to the ∆t selection

criterion. The values of τB0 and ∆md change very little compared to the statistical

errors. The changes are consistent with zero.
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Full fits to Data, fixed outliers
|∆t| cut (ps) 10 14

δ(∆md) (ps−1) −0.0102 ± 0.0188 0.0016 ± 0.0020
δ(τB0) (ps) 0.0381 ± 0.0467 −0.0023 ± 0.0047

Table 13.3: The effect of changing the ∆t cut on τB0 , and ∆md. The fits use the
GExp+G resolution model on the full data sample, and since the physics parameters
are blinded, we report the shift with respect to nominal fit result. The parameters of
the signal outlier model (bias, width and fraction) are fixed in these fits.

Varying σ∆t Criterion

The value of the σ∆t cut was chosen because of the fact that resolution bias

parameters scaled linearly with σ∆t up to a value of 1.8 ps for both resolution models

(G+G+G and GExp+G). The events with a σ∆t larger than 1.8 ps represent less than

≈1.5% of the total events in our sample, plus they have the largest uncertainty in the

measurement of ∆t, so removing these events has a minimal impact on the statistical

uncertainty of our measurements. Table 13.4 shows the change in final fit results for

the tighter σ∆t cut of 1.4 ps. Recall that the outlier shape is fixed, although we float

the overall fraction. As we select harder on σ∆t, the overall population of outliers

decreases, although the physics results are relatively robust. We also performed a full

fit to Data with σ∆t < 1.4 ps in which we fixed the outlier fraction of the signal model

(f out) to the value from a fit to Data with σ∆t < 1.8 ps. In that case, the shift in the

fitted value of τB0 is about twice that shown in Table 13.4, but is still not statistically

significant.

13.1.4 Tagging Category Subsamples

The different flavor tagging algorithms have different efficiencies and purities, and

are susceptible to different sources of error. To explore the possibility that they might

be inconsistent, we alter the signal portion of the model to allow for a separate ∆md,

τB0 , and ∆-mistag rate for each tagging category. The results are consistent across

the five tagging categories, as shown in Table 13.5 for the full fit to Data. The values
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Full ∆t fits (GExp+G) to Data
σ∆t cut (ps) 1.4
δ(∆md) (ps−1) 0.0012 ± 0.0069
δ(τB0) (ps) −0.0046 ± 0.0082
δ(fB+) −0.004 ± 0.007
δ(f out) −0.0013 ± 0.0003

Table 13.4: The effect on τB0 and ∆md of changing the σ∆t cut from the nominal 1.8 ps
to 1.4 ps. The fits use the GExp+G resolution model for Data. Mistag parameters
are consistent across each fit, but suppressed for clarity. The significant change in
outlier population is plausible since the wayward outliers are likely removed by the
tighter σ∆t cut, and thus the outlier population decreases. The central values reported
are the change with respect to the baseline value, and the errors are the quadrature
difference of statistical errors from the fits.

of τB0 and ∆md for each tagging category are consistent with the baseline results.

(Comparing quadrature difference of statistical errors is not quite correct due to the

different character of this fit.)

13.1.5 Summary

Figures 13.1–13.2 summarize the results of this set of cross-checks on the Data

sample.
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Figure 13.1: These plots show the ∆md differences from the standard fit for various
fits to the Data sample. The units of the plots are ns−1. The errors shown on the plots
are the sample and subsample errors subtracted in quadrature. The lines marked with
an (*) indicate extremely large errors, which are suppressed. The line marked with
(**) represents a fit that only converged when fB+ was fixed to the nominal value.
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Full ∆t fit (GExp+G) to Data

Par LTag KTag NT1 NT2 NT3

δ(∆md) −0.047 ± 0.026 0.016 ± 0.022 0.036 ± 0.045 0.012 ± 0.088 0.009 ± 0.183
δ(τB0) 0.011 ± 0.048 0.007 ± 0.032 −0.003 ± 0.059 0.023 ± 0.050 −0.066 ± 0.036
δ(∆ω) −0.003 ± 0.004 0.000 ± 0.003 −0.002 ± 0.005 0.001 ± 0.008 0.000 ± 0.003
δ(ωoffset) 0.007 ± 0.004 −0.005 ± 0.003 −0.008 ± 0.007 −0.001 ± 0.006 −0.001 ± 0.003
δ(mKT) 0.000 ± 0.005
δ(f 1) 0.125 ± 0.077 0.113 ± 0.073 0.100 ± 0.097 0.100 ± 0.076 0.066 ± 0.064
δ(κ) −0.027 ± 0.079
δ(s1) 0.009 ± 0.012
δ(f out) −0.002 ± 0.001

Table 13.5: Master Model fits to the full Dataset using separate ∆md and τB0 parameters for each tagging category.
The table shows the difference in the fit results with respect to the baseline result which uses the combined statistical
power of all tagging categories to measure the physics parameters. The fit is done with the GExp+G resolution
model. The units for ∆md and τB0 are ps−1 and ps. The errors shown are the errors from the fit. The lower section
of the table shows parameters which are already split on tagging category and are common for the whole sample;
there we report the shift in central values as well.
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Figure 13.2: These plots show the τB0 differences from the standard fit for various
fits to the Data sample. The units of the plots are fs. The errors shown on the plots
are the sample and subsample errors subtracted in quadrature. The line marked with
(**) represents a fit that only converged when fB+ was fixed to the nominal value.
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13.2 Sensitivity Checks

13.2.1 Upper Limit on m(D∗) −m(D0)

The parameters for combinatoric background are determined primarily by events

in the δm sideband. The events in the sideband are similar to the events in the peak

region as discussed in Chapter 11.3.1. We test the effect of this assumption in Data

by varying the upper limit and repeating the fitting procedure. The default fit uses

δm < 165 MeV. We change this to 162.5, 160.0, 157.5, and 155.0 MeV. The lifetime

changes by +0.6, −1.2, +1.0, +0.4 fs, and ∆md by +0.7, +0.5, −0.5, −0.2×10−3 ps−1,

respectively. There is no systematic effect due to the choice of the sideband upper

limit.

13.2.2 NT3 Tagging

Using the tagging information for events in the NT3 category allows us to treat

all events on an equal footing for the lifetime and mixing measurement. Since the

Q value for this category is estimated to be about 0.3 %, it has only a small impact

on the mixing measurement. This analysis is currently the only analysis in BABAR

that uses tagging information from the NT3 category, which is called the “NoTag”

category in other analyses. Since the NT3 tagging performance is not well verified in

BABAR, we also perform a fit to Data in which we assume the tagging power of NT3

is 0. This is a non-trivial assumption – we are, in effect, assuming a value of χd for

the NT3 tagged events when we do this; i.e., we fix the mistag probability at 50%

rather than fitting for it.

We fix the NT3 mistag rates (ωNT3) in signal and background ∆t models to be 0.5.

In a few parameters in background models, NT3 is grouped with other categories.

We maintain the original parameter grouping, without separating NT3 from them,

and still let these parameters float. Therefore, in this fit, we are not totally fixing

NT3 tagging information, but very close.

The change in parameters are all very minor. When the NT3 tagging information

is not used, the lifetime increases by 0.0022 ps and the statistical error increases by
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0.002 ps larger (in quadrature); the change in ∆md is +0.0008 ps−1 with an error

that is larger by 0.0036 ps−1 (in quadrature). We therefore conclude that extracting

NT3 mistag rates from data is warranted, and is actually slightly beneficial. (Clearly,

including them in a lifetime-only fit is helpful.)

13.2.3 ∆md From Shape or Counting Information

In this analysis, we use both ∆t-shape information and flavor-tagging information

simultaneously to extract ∆md, and τB0 . That is, we fit both the mixed and unmixed

event sample simultaneously for a common value of ∆md, using the knowledge that χd

(the fraction of mixed events in the sample) depends explicitly on ∆md and τB0 . An

important consistency check is to consider what value of ∆md (and what statistical

error) we might measure using only the time information or only the flavor tagging

information (i.e., mixing status) of each event. (By “flavor information,” we refer

to the relative fraction of the observed number of mixed and unmixed events; i.e., a

“time-integrated” mixing measurement.) We use the full signal Monte Carlo sample

and the nominal signal model in this study to establish the highest precision for our

conclusions.

∆md From ∆t Only

To estimate ∆md using only ∆t-shape information (and the mixing status of the

events, but not their relative proportions), we take advantage of one of the design

features of RooFit – the lack of a strong distinction between parameters and de-

pendents of a pdf at construction time. The RooFit pdf only becomes useful when

it is assigned to a dataset, which in turn it uses to distinguish which parameters

are dependent variables (i.e. “input” variables, having a value for each event) and

which are parameters (to be varied as part of the maximum likelihood fitting proce-

dure). Our standard signal ∆t model is associated with datasets containing both ∆t

and mixing status (tag) information. We eliminate the mixing information from the

dataset as a dependent variable in the fit, and then can fit for ∆md (and even τB0

and the resolution model if we choose) using only the ∆t information. To achieve an
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answer most comparable with the the flavor-only result, we fix all parameters in the

∆t-only fit to be constant except for ∆md. For signal Monte Carlo, we then extract

∆m
(shape−only)
d = 0.47627 ± 0.00487 ps−1, which can be compared with the full fit

result of ∆md = 0.47257 ± 0.00357 (when only floating ∆md).

∆md From Flavor Only

To estimate ∆md using only flavor information, we can näively calculate it using

χd as measured in signal Monte Carlo which amount to simply counting mixed and

unmixed events. This yields χd = 0.174 → ∆md = 0.4705 using the measured τB0 and

in the absence of mistag rates. An alternative technique is to return the full signal fit,

but fix the resolution function to a very, very wide gaussian (width > 18 ps) so that all

∆t information is significantly smeared, and re-fit for ∆md only. In this case, using the

mistag rates obtained from the full fit, we obtain ∆m
(flavor−only)
d = 0.47361± 0.00533

ps−1.

We note that the two results are consistent with the full fit, and both achieve a

comparable statistical error, indicating that both shape and flavor information are

important in obtaining the most precise value of ∆md from the fit. (Note, for instance,

the statistical error on the simultaneous fit is the quadrature sum of the inverses of

the independent errors, i.e. 1/σ2
tot = 1/σ2

shape−only + 1/σ2
flavor−only.)

∆t-Only Fits to Mixed and Unmixed Events

We also consider fitting for both τB0 and ∆md using the ∆t-shape only method

for mixed or unmixed events separately. In order to optimize convergence of the

∆t-shape-only models, we fixed the mistag rates at the values obtained from the

full fit and set them constant. Table 13.6 illustrates the fitted central values and

their statistical errors for τB0 and ∆md for this set of ∆t-shape-only fits. We note,

in particular, that the measured value of τB0 is more precise in the mixed event

sample despite the smaller number of events primarily due to the increased “temporal

separation” between oscillation and decay time dependence.
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∆t-shape only fits to signal MC
Sample ∆md [ps−1] τB0 [ps]

Unmixed evts 0.47653 ± 0.00711 1.5508 ± 0.0160
Mixed evts 0.47217 ± 0.00903 1.5522 ± 0.0121
All evts 0.47685 ± 0.00520 1.5568 ± 0.0091

Table 13.6: Fitted values from a full signal ∆t-shape fit to different samples of signal
MC. The mistag rates were held constant in these fits.

We can conclude from the central values that the mixed and unmixed event sub-

samples yield consistent ∆t-shape-only estimates of ∆md and τB0 at better than the

0.5σ level.

We also perform a check where we fix all parameters in the fit to those val-

ues obtained from the full ∆t fit to the full signal MC sample, except for ∆md.

We then extract the two values, ∆m
(shape−only)
d (mixed) = 0.47867 ± 0.00595 and

∆m
(shape−only)
d (unmixed) = 0.47147 ± 0.00847 ps−1, which are consistent at the 1.5σ

level, and when combined with a weighted average yield a value of ∆m
(shape−only)
d (est) =

0.47444± 0.00486 ps−1. This estimate has nearly the same error and central value as

the corresponding simultaneous fit.

13.3 Comparison with Simulation

13.3.1 Signal MC

We perform fits to the signal Monte Carlo sample that includes full detector sim-

ulation to check for event selection bias and to validate our procedure. We take

advantage of the Monte Carlo truth information to quantitatively evaluate our per-

formance.

To check whether the selection criteria introduce any bias in the lifetime or mixing

frequency, we fit the signal physics model to the true distribution of ∆t, using true

tagging information, for a large sample of signal Monte Carlo events that pass all

selection criteria. We obtain the results shown in Table 13.7 which are unbiased
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with respect to the generated values of τB0 = 1.548 ps (significance = −0.67σ) and

∆md = 0.472 ps−1 (significance = −1σ).

Signal ∆t fit to Sig MC truth

τB0 (ps) ∆md (ps−1)
1.5446 ± 0.0051 0.4708 ± 0.0013

Table 13.7: Results for τB0 and ∆md as fit to the true ∆t and tagging information
from signal MC.

We also compare the measured mistag rates in the signal Monte Carlo sample with

those obtained by comparing the reconstructed mixing status with the true mixing

status, as shown in Table 13.8. No significant bias is observed.

Comparison of Measured vs True Mistags in Sig MC

Source ωLT (%) ωKT (%) ωN1 (%) ωN2 (%) ωN3 (%)
Truth-counting 6.3 15.7 19.2 33.8 46.5
Signal ∆t Fit 5.6 ± 0.3 15.8 ± 0.9 18.4 ± 0.6 33.9 ± 0.5 46.2 ± 0.4

Table 13.8: Comparison of mistag rates as calculated from the number of wrongly
tagged events according to the MC truth versus those extracted from the signal
model fit to signal Monte Carlo. (We have used the average value of σ∆t to extract
the average mistag rate from the fit result for ωKT.)

We also fit the measured ∆t distribution, using measured tagging information,

with the complete signal ∆t model described in Chapter 11.2.1, alternately fixing τB0

or ∆md, and then floating them both. We find no statistically significant bias in the

values of τB0 or ∆md extracted in these fits. Table 13.9 summarizes these measured

values from the signal Monte Carlo sample.

13.3.2 Generic MC

The B0 B0, B+B−, and cc Monte Carlo samples that provide simulated back-

ground events along with signal events are much smaller than the pure signal Monte

Carlo samples. In addition, they are not much larger than the Data samples. In or-

der to increase the statistical sensitivity to any bias introduced when the background
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Signal ∆t (GExp+G) fits to signal MC
δ(fixτB0) δ(fix∆md) fit τB0 , ∆md

∆md (ps−1) 0.0007 ± 0.00034 0.472 0.4715 ± 0.0043
τB0 (ps) 1.548 −0.0004 ± 0.0006 1.5523 ± 0.0091
Mistag Rates
ωLT −0.00016 ± 1.0e − 4 −9.4e − 05 ± 3.7e − 5 0.0561 ± 0.0035
ωoffset

KT −0.00021 ± 1.9e − 4 −4.2e − 05 ± 2.1e − 4 0.0672 ± 0.0084
mKT 8.0e − 05 ± 2.7e − 4 −8.0e − 05 ± 3.1e − 4 0.1275 ± 0.0121
ωN1 −0.00015 ± 1.8e − 4 −9.0e − 05 ± 1.3e − 4 0.1840 ± 0.0061
ωN2 −6.0e − 05 ± 1.6e − 4 −5.0e − 05 ± 1.4e − 4 0.3391 ± 0.0054
ωN3 0 ± 1.2e − 4 −1.0e − 05 ± 1.1e − 4 0.4617 ± 0.0040
∆ Mistag Rates
∆ωLT −9.9e − 06 ± 6.8e − 5 3.5e − 06 ± 9.0e − 5 0.0044 ± 0.0058
∆ωKT −4.0e − 06 ± 3.0e − 5 −4.2e − 05 ± 3.0e − 5 −0.0140 ± 0.0045
∆ωN1 5.0e − 06 ± 4.4e − 5 −6.0e − 06 ± 6.3e − 5 0.0120 ± 0.0098
∆ωN2 −4.6e − 06 ± 1.0e − 7 1.6e − 06 ± 1.0e − 7 −0.0415 ± 0.0083
∆ωN3 2.0e − 07 ± 1.0e − 7 1.0e − 07 ± 1.0e − 7 −0.0742 ± 0.0061
Resolution Pars
κ 0.0053 ± 0.0023 0.0008 ± 0.0017 1.1598 ± 0.0680
s1 0.0058 ± 0.0025 0.0011 ± 0.0030 1.0017 ± 0.0216
f1
LT 0.00037 ± 0.0024 −0.00031 ± 0.0010 0.8412 ± 0.0230

f1
KT 0.0012 ± 0.0029 9.0e − 05 ± 0.0011 0.6864 ± 0.0219

f1
N1 7e − 05 ± 0.0030 −0.00026 ± 0.0012 0.8532 ± 0.0289

f1
N2 0.00085 ± 0.0029 0.00018 ± 0.0010 0.7397 ± 0.0248

f1
N3 0.00093 ± 0.0026 0.00026 ± 0.0009 0.7188 ± 0.0202

fout 0.00031 ± 0.0001 2.1e − 05 ± 7.7e − 5 0.0044 ± 0.0015
bout - - −1.68
sout - - 5.44

Table 13.9: The effect of fixing τB0 and ∆md to the generator values compared to the
baseline result. These fits use all correctly reconstructed signal MC events. All fits
use the GExp+G resolution model; the right most column is the “standard” fit to
which all other fits are generally compared. The outlier width is fixed to a value of
5.44 ps for all fits, and the bias to −1.68 ps. The errors are statistical, and represent
the difference in quadrature between the nominal result w/fixed τB0 or ∆md and the
result from the corresponding fixed generator value fit.

samples are added to the fit, we compare the values of τB0 and ∆md from the fit to

signal plus background events, and pure signal events from the same sample. We find

that when background is added, the value of τB0 increases by (0.022 ± 0.009) ps and



230 CHAPTER 13. VALIDATION AND CONSISTENCY CHECKS

the value of ∆md increases by (0.020±0.005) ps−1, where the error is the difference in

quadrature between the statistical errors from the fit with and without background.

The generic Monte Carlo sample is a mixture of 14.5 fb−1 of B0B0, 16.4 fb−1 of

B+B− and 7.6 fb−1 of cc events. Because the event selection efficiency for Monte

Carlo events is higher than that for data, we have more events (72677) selected from

generic MC than from data (67904). Since we do not have off-resonance Monte Carlo,

we artificially divide the cc sample into two samples; one has seven times as many

events as the other, and the smaller sample is marked as off-resonance events.

For this validation exercise, we perform a complete fit to generic Monte Carlo.

The ratio of B+ to B0 lifetimes is fixed at their generated value, r = 1.069, and the

ratios of B+ to B0 mistag fractions are fixed at the values from MC truth counting.

We conduct a study similar to that described in Chapter 12.1.1 to determine the

best values for the signal outlier model shape parameters, bout and sout. We cannot

expect the population of outliers in Generic MC to be identical to those in true

Data, so we undertake the full “scan” of fixed outlier shape parameters as before. As

suggested in Chapter 11.2.2, we appear to be unlucky with Generic MC in that the

preferred value of the outlier fraction is close to zero and slightly negative.

The likelihood surface for Generic MC in the bout − sout space is much different

than that for Data. All of the 33 different fits used for the scan in outlier shape

space resulted in an essentially zero outlier fraction, and a large fB+ . (See Fig. 13.3.)

We observe that since the outlier fraction is essentially zero, the minimum likelihood

value (and fit result) is mostly insensitive to the details of the outlier shape. It is

only at the extreme values of the outlier shape parameters (bout = −8, sout = 10) ps

that the likelihood starts changing dramatically – this is where the outlier fraction is

becoming increasingly negative, about -0.3%.

We choose the fixed values for the Generic MC full fit model for two reasons:

• The signal MC fits using just the signal ∆t model preferred outlier shape pa-

rameters (bout = −1.68 ± 0.99, sout = 5.45 ± 0.86) ps.

• The weight of the (∆md,τB0) distribution due to variations in the outlier pa-

rameters is centered near (bout, sout) = (−2, 6) and (0, 8) ps.
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Figure 13.3: The negative-ln-likelihood surface in the space of bias and outlier width
of the outlier signal resolution model, as fitted in Generic MC. The vertical scale
has been offset so that minimum is at 0. The surface is constructed from 33 fits to
Generic MC with different fixed values of the signal outlier parameters. This surface
is essentially flat until the edges where the extreme values of the model make it
unstable, i.e. the fitted outlier fraction becomes significantly less than 0. We do not
observe a physical, preferred minimum.
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We prefer to use the set of fixed integer values closest to the fit results obtained from

the high statistics signal MC sample, so we choose, for Generic MC, to fix the signal

outlier shape parameters to be (bout, sout) = (−2, 6). (We note in passing that the

other preferred value (8,0) is what other time dependent analyses have assumed for

their outlier models.)

Table 13.10 compares the fit results for Generic MC to the true values from the

event generator, and to the best-fit results from the signal fit to the truth-matched

Generic MC sample as appropriate.

Full Fit to Generic MC, Comparing Signal Model Pars

δ(par) value δ(par) value δ(par) value
∆md (ps−1) 0.014 ± 0.015 fB+ 0.043 ± 0.028 s1 0.026 ± 0.064
τ (ps) 0.032 ± 0.024 ωLT −0.015 ± 0.011 κ 0.041 ± 0.19
- - ωoffset

KT −0.062 ± 0.027 f 1
LT 0.040 ± 0.055

- - mKT 0.081 ± 0.039 f 1
KT −0.023 ± 0.060

- - ωN1 0.041 ± 0.018 f 1
N1 −0.067 ± 0.092

- - ωN2 0.041 ± 0.015 f 1
N2 −0.057 ± 0.073

- - ωN3 −0.029 ± 0.011 f 1
N3 0.011 ± 0.054

- - ∆ωLT −0.015 ± 0.018 f out 0.0024 ± 0.0022
- - ∆ωKT −0.020 ± 0.014 bout 0.32
- - ∆ωN1 0.041 ± 0.029 sout 0.55
- - ∆ωN2 0.041 ± 0.024 - -
- - ∆ωN3 −0.029 ± 0.018 - -

Table 13.10: Full fit to generic MC — comparison of signal model results to generator
truth (for ∆md, τB0 , and fB+) and truth-matched generic MC results for everything
else. (Recall thatsout and bout for the signal resolution model are fixed to constant
values.) Errors listed are the error on the Gen MC fit result, the appropriate σ for
measuring degree of difference.

These fit results bear some discussion, particularly the signal parameters. Several

observations are in order:

• The observed outlier fraction is low by, perhaps, about 1σ.

• The measured ∆md value is 1σ high, the measured τB0 value is 1.4σ too high,

each with respect to the true values from the generator level. They are 1.5σ and
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0.58σ too high (respectively) compared to the values from the truth-matched

sample of Generic BB and B+.

• The outlier fraction is still consistent with zero, as originally observed in the

fits to only only truth-matched candidates from Generic MC.

• The charged B fraction, fB+ , is significantly higher, by about 1.6σ with respect

to the true value, or 1.65σ with respect to the result from the truth-matched

fit.

• The observed slope for the linear relation between mKT and σ∆t is significantly

higher, by 2.1σ. Additionally, all the mistag rates seem perturbed by at least

1σ, and this is an underestimate because the truth-match signal events are a

subset of the full Generic MC data sample.

The kaon mistag rate is modeled as a linear function of σ∆t in the signal ∆t

model. The slope from the fit to signal only in generic MC is 12%, while the slope

from the full fit to signal and background events is 20±4%. The change is due to the

fact that we ignore the similar effect in background events, i.e., we assume the kaon

mistag rate in the background ∆t model is flat. We can confirm that the kaon mistag

rate in background events does increase as σ∆t increases by calculating the observed

mixed events in background in slices of σ∆t. Kaon-tagged events have a slope similar

to kaon-tagged signal events, while events in other tagging categories do not have a

non-zero slope. The correlation coefficients between this slope and (∆md, τB0) are

very small, such that fixing this slope at 12% does not change τB0 and ∆md by more

than 0.001. Therefore, we can safely ignore the slope for backgrounds.

The large value of fB+ from the fit to Generic MC is surprising, in particular since

the result from the full fit should be highly correlated with the result from the fit

to only the truth-matched signal events (See Chapter 11.2.3). We suspect that the

our Generic MC sample has an unusually small population of outliers in the large

∆t tails which degrades our ability to fit for their overall fraction. This inability, in

turn, weakens the signal resolution model which convolutes the charged and neutral

B time structures together.
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To investigate this claim, we observe the correlation coefficients in the final Mas-

terModel Generic MC result shown in Table 13.12. We see that an upward fluctuation

in fB+ by 1.6σ would induce a downward fluctuation in f out of about 0.5σ, and cause

a positive change in ∆md of about 0.8σ, The low f out could induce an increase in

τB0 of about 0.4σ. These shifts are not quite sufficient to explain the parameters we

observe in the full fit result, however. We do, see, though, that if we fix fB+ to lower

values, we can recover performance, as illustrated in Table 13.11.

We have conducted several other studies to understand the source of this bias, but

no smoking gun was found. In particular, we used Generic MC truth information to

fit with peaking backgrounds or without combinatorics, but the results are hard to

interpret and are still consistent with a biased result. With a Generic Monte Carlo

sample of this limited size (where the statistical error of the fit result is as large as

the possible bias), it is very difficult to isolate cause and effect.

Full fit results to Generic MC w/fixed fB+

fB+ δ(fB+) ∆md δ(∆md) τB0 δ(τB0) f out

0.0474 -0.0047 0.4718 -0.0002 1.5718 0.0238 -0.00008
0.0521 0.0000 0.4732 0.0012 1.5728 0.0248 -0.0003
0.0600 0.0079 0.4756 0.0036 1.5744 0.0264 -0.0006
0.0700 0.0179 0.4786 0.0066 1.5764 0.0284 -0.0011
0.0951 0.0430 0.4856 0.0136 1.5806 0.0326 -0.0019

Table 13.11: Selected results from full MasterModel fits to Generic MC with fixed
fB+ to several different values. We directly observe the strong correlations between
these four parameters. The columns labelled δ() reflect the change with respect to
the value from MC truth. Recall that the statistical error on ∆md from these fits is
around 0.015 ps−1 and about 0.024 ps for τB0 .

13.3.3 Correction Based on Generic Monte Carlo Sample

We correct our final results in data for these biases, which are each roughly the

same size as the statistical error on the results in data. In order to increase sensitivity,
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Corr. coeff’s from full fit to Gen MC
pars value pars value

ρ(∆md, τB0) -0.162 ρ(mKT, ω
offset
KT ) -0.944

ρ(f out,∆md) -0.169 ρ(fB+ ,∆md) 0.552
ρ(f out, τB0) -0.402 ρ(fB+ , τB0) 0.162
ρ(f out, mKT) -0.018 ρ(fB+ , mKT) 0.086
ρ(f out, ωoffset

KT ) 0.004 ρ(fB+ , ωoffset
KT ) -0.060

ρ(f out, fB+) -0.333

Table 13.12: Correlation coefficients from baseline MasterModel fit to Generic MC.
(fB+ is correlated with all the mistag rates at only the few % level.)

we include the filtered generic Monte Carlo.∗ Although the generic plus filtered MC

sample has a slightly different background composition from the generic MC, the

dominant background (combinatoric) is similar. More over, the biases are consistent

between fits to generic MC sample only and fits to the generic plus filtered MC sample.

The results are shown in Table 13.13.

The fit to signal events with signal model has been shown to be unbiased with

large statistics of signal Monte Carlo sample (Table 13.9). Therefore we test the bias

of the full model based on the difference between the fit to signal events with with

signal model and the full fit to signal and background events.

The bias is +0.022 ps for τB0 and +0.020 ps−1 for ∆md. We apply a correction

for these biases. For the systematic error due to the statistical uncertainty on this

correction, we conservatively apply the full statistical error of the fit result to the

generic plus filtered MC sample, i.e., ±0.018 ps for τB0 and ±0.012 ps−1 for ∆md.

13.3.4 Toy MC

Although there is no definitive test for goodness-of-fit, one can measure how likely

the Data is given the full model and fit parameters. We take the final pdf with the

∗The “filtered” generic MC is an equivalently sized sample of Generic MC events that have passed
a requirement that they have at least one lepton with momentum greater than 1.0 GeV in the center-
of-mass system at the truth level. Studies elsewhere [47] have shown this sample to be unbiased for
this purpose.
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Fits to Generic Monte Carlo Sample
Type τB0 change(10−3) ∆md change(10−3) change wrt
generator 1.548 − 0.472 − -
truth fit 1.538 ± 0.011 −10 ± 11 0.469 ± 0.005 −3 ± 5 generator
sig model 1.566 ± 0.023 +28 ± 20 0.462 ± 0.013 −7 ± 12 truth fit
full model 1.580 ± 0.024 +14 ± 6 0.486 ± 0.015 +24 ± 6 sig model

Fits to Generic plus Filtered Monte Carlo Sample
Type τB0 change(10−3) ∆md change(10−3) change wrt
truth fit 1.556 ± 0.009 +8 ± 9 0.470 ± 0.004 −2 ± 4 generator
sig model 1.554 ± 0.016 −2 ± 13 0.459 ± 0.011 −12 ± 10 truth fit
full model 1.576 ± 0.018 +22 ± 9 0.479 ± 0.012 +20 ± 5 sig model

Table 13.13: Fit results and biases for generic Monte Carlo sample and for generic plus
filtered Monte Carlo sample. The errors on changes are calculated as the difference
in quadrature between two errors. This method of estimating error on the change
may be a gross overestimate.

fitted parameters and generate dozens of data-sized samples from it, using the Monte

Carlo technique. By fitting each sample with the original pdf, we expect to obtain

unbiased estimates of the parameters in the case of a consistent description, i.e., we

should get out what we put in, which is only the pattern of correlation specified in

the model. We can examine the distributions for each fitted parameter to check for

bias and accurate error estimation (that is, we expect the RMS of the distribution

parameter estimates to be commensurate with the reported statistical error). Finally,

we compare the minimized log-likelihood value obtains from the fit to Data with the

distribution of those values from the set of Monte Carlo experiments. In the event

that the model is as likely to describe the generated dataset as the real Data, the

likelihood value from Data should lie within the distribution of those from the Monte

Carlo experiments.

We conduct a test of our fitting procedure using this fast parameterized Monte

Carlo simulations, where 87 experiments are generated with signal and background

control sample sizes and compositions corresponding to that obtained from the full

likelihood fit to data. The mistag rates and ∆t distributions are generated according

to the model used in the likelihood fit. The full fit is then performed on each of these
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experiments. We find no statistically significant bias in the average values of τB0 and

∆md for the 87 fits. The RMS spread in the distribution of results is consistent with

the mean statistical error from the fits and the statistical error on the results in data,

for both τB0 and ∆md. We find that 17 of the fits to the 87 experiments result in a

value of the negative log likelihood that is smaller (better) than that found in data.

(The distribution of log-likelihood is drawn in Fig. 13.4.)

minNll
7950 7955 7960 7965 7970

2x100

5

10

15
87 Entries

Mean=  796097

RMS=  277

Figure 13.4: The distribution of minimixed negative log-likelihood values from 87 of
the fast parameterized Monte Carlo studies described in the text. The dashed line
indicates the value found in the Data.



Chapter 14

Systematic Studies

We estimate systematic uncertainties on the parameters τB0 and ∆md with studies per-
formed on both data and Monte Carlo samples. We consider each of the key assumptions
or conditions under which we perform the analysis and vary it to observe the change in the
measured values. Effects considered include:

• Uncertainty in the estimate of the decay-time difference due to assumptions about
the z-scale of the detector, knowledge of the Υ (4S) boost in the lab-frame, internal
alignment of the SVT’s sensors, and effect of the beamspot constraint in the Brec and
Btag vertex fits.

• Assumptions about properties of the B+ meson, such as the lifetime ratio with respect
to the B0, and the assumed ratio of B+ to B0 flavor misidentification probabilities.

• The accuracy of the background fractions which we use to weight each events as signal
or specific background. These probabilities are determined from a separate fit to the
δm spectrum and therefore are subject to uncertainty.

• Sensitivity to the choice of shape for ∆t model of the largest source of background,
combinatorics.

• Assumptions about the shape and parameterization of the signal resolution function,
including the outlier term.

• Uncertainty in the size of the correction we apply to the final results because of the
bias observed when applying the analysis to Generic Monte Carlo.

We find an overall systematic uncertainty (assuming the sources are uncorrelated) of ±0.013ps−1

on ∆md and 0.022 ps for τB0 .

238
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14.1 Motivation

We now develop an estimate for our uncertainty on the measurements due to

systematic effects in our technique. Systematic effects are not statistical by nature;

in fact, some define them as sources of uncertainty which do not yield immediately

to more data. In this analysis, for instance, we might imagine a systematic error

in our procedure due to an error in understanding the z-scale of the inner tracking

detector, the SVT. To address systematic error sources, one typically constructs a

recipe to vary some condition under which the measurement was made within a range

of values consistent with the uncertainty on precise knowledge of that condition. The

measurement is then re-performed, and the change in the final result is used as an

indication of the degree of sensitivity to the original condition.

In this study, we conduct systematic studies on both the Data and the Monte

Carlo event samples, often using the full model incorporating both ∆t and δm. We

then assume that each source of uncertainty is uncorrelated with the others, and sum

them in quadrature to form the final estimate. We neglect, at this point, correlated

changes between τB0 and ∆md. For instance, the beamspot position is varied, both

τB0 and ∆md are re-extracted, and the shift in each is computed by comparing with

the nominal central value. There is no attempt made to disentangle whether or not

the change in τB0 “cancels” out any of the potential change in ∆md. This appears

to be a safe assumption, as most of the systematic uncertainties are small enough

compared to the overall error that a correction due to statistical correlation would

still be negligible.

14.2 Uncertainty in Decay-Time Difference

The calculation of a decay-time difference ∆t for each event assumes a nomi-

nal detector z-scale, PEP-II boost, vertical beam-spot position, and SVT internal

alignment. We vary each of these assumptions and assign the variation in the fitted

parameters as a corresponding systematic uncertainty.
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z Scale

The z scale systematic error is common to many analyses which measure the time

difference between B0 decays. The difference in the z position is used to determine

∆t for an event, so a bias in the z scale will directly lead to a bias in the measured

∆t. A conservative estimate of the z scale uncertainty is ±0.4% [63], as measured

elsewhere by reconstructing electron-neutron that are scattered into the detector vol-

ume because of interactions in the beampipe walls. These measurements determine

the uncertainty in the z-scale at the radius of the beampipe, and we conservatively

enlarge them by a factor of 2 to account for possible differences at the interaction

point (where the ∆z measurement is made). Using this recipe, the uncertainties are:

• δ(∆md) ≤ ±0.002 ps−1

• δ(τB0) = ±0.006 ps.

PEP-II Boost Uncertainty

Since ∆t is directly proportional to the measured average PEP-II boost, the errors

on τB0 and ∆md are also directly related to the uncertainty on the boost. At BABAR,

the Υ (4S) boost in the z-direction is known to relative uncertainty of 0.1%, based

on an analysis of PEP-II knowledge of the beam energies. [40] We use this 0.1 %

prescription for the systematic uncertainty, i.e.,

• δ(∆md) = ±0.0005 ps−1

• δ(τB0) = ±0.0015 ps.

Beamspot Position

The beamspot is used as a constraint in both the tag-side and reconstructed-side

vertices. We investigate the dependence of the fitted values of τB0 and ∆md on the

assumed beamspot position by using the entire signal Monte Carlo and varying the

beamspot position in y direction, where it is most important. The nominal position
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of the beamspot is determined on a detector run-by-run basis using reconstructed

Bhabha and dimuon events.

We use beamspot information returned from the eventInfo → beamSpotBFlight()

method, which incorporates a 25 µm width due to the flight distance of the B candi-

date. This 25 µm is combined with the roughly 10 µm intrinsic width of the beamspot

in the y-direction to form an effective spread of 30 µm. For this systematic study

we examine two scenarios: one where we systematically shift the beamspot position

(via the BtaLoadBeamSpot::offsetY parameter), and the other where we smear

the position randomly according to a Gaussian of fixed width (via the BtaLoad-

BeamSpot::errorYPos tcl parameter). Tables 14.1-14.2 describe the effect we ob-

serve in the final parameter values after performing the full fit (floating the resolution

functions) on the signal sample. For these results, we use the GExp resolution model

exclusively. (Note: For this study to be generally valid, we assume that detector

effects and event selection are symmetric in the y-direction.)

We note that in particular, the lifetime τB0 is very robust with respect to move-

ments of the beamspot position. The resolution function model adapts easily even

to the most significant smearing and offset of the beamspot position. The mixing

frequency, ∆md appears more sensitive, and we note that the measured dilution pa-

rameters change slightly as we systematically disturb the beamspot. To investigate

this further, we perform another series of signal ∆t fits to the different Monte Carlo

samples where we use Monte Carlo truth information to determine flavor tagging

status. This increases our statistical precision by nearly a factor of two , and allows

us to write another (abbreviated) table, Table 14.3.

By studying the z-residuals of each vertex (reco and tag) separately, we also find

that this uncertainty in the beamspot constraint affects each vertex about equally.

From figures similar to Fig. 6.1 for each of the transformed-beamspot datasets, we

write into Table 14.4, which records the effect of the beamspot transformation on the

z-residual distribution’s width and bias.

Based on these observations, and knowing that (a) the difference in estimated

beamspot position between different algorithm is than 10 µm and (b) that average

resolution of the beamspot is about 30 µm, we estimate the systematic error due to
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Change in fit results to signal MC w/ beamspot variations
Beamspot Variation [µm ]

Parameter nominal err shift 10 shift 30 shift 80 shift/smear 20

∆md ±0.00435 −0.00054 −0.00129 −0.00202 0.00008
τB0 ±0.00878 −0.0042 −0.0001 0.0012 −0.0024
mistag rates All values very consistent
κ ±0.0847 −0.004 −0.0125 −0.0853 0.0307
f 1

KT ±0.0304 −0.00371 −0.0106 −0.0214 0.0149
f 1

LT ±0.0278 0.00203 0.00343 0.00606 0.0167
f 1

N1 ±0.034 0.00443 0.00566 0.0005 0.0224
f 1

N2 ±0.0312 0.00372 −0.00967 −0.0162 0.0169
f 1

N3 ±0.0271 −0.00274 −0.00909 −0.0177 0.00023
bout ±0.699 −0.124 −0.476 −0.821 −0.269
f out ±0.00318 −0.000225 −0.00101 0.000076 −0.000683
s1 ±0.0227 0.0159 0.019 0.0997 0.0203

Table 14.1: Difference in final parameter values from the full signal fit to signal Monte
Carlo samples for different variations applied to the beamspot position, as compared
to a fit to the nominal sample. Here we shift the beamspot position systematically
before applying reco- and tag-side vertexing. (The first column of numbers lists the
statistical errors on the fitted parameters for the 20 fb−1 nominal signal Monte Carlo
sample.)

uncertainties in the beamspot position to be

• δ(τB0) = ±0.005 ps

• δ(∆md) = ±0.001 ps−1.

SVT alignment

This analysis relies on the precision vertexing possible with the combined reso-

lution of the SVT and DCH. However, the technique is most sensitive to internal

misalignments of the SVT, i.e. to the relative positions of the wafers and strips which

report individual hits per track. To estimate this effect, we study the fit results us-

ing two different alignment scenarios with signal Monte Carlo, and then consider the

consistency of two large subsamples of the Run-1 Data using different SVT alignment
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Change in fit results to signal MC w/ beamspot variations
Beamspot Variation [µm ]

Parameter smear 20 smear 40 smear 80 shift/smear 80
∆md 0.00053 −0.00022 −0.00295 −0.00577
τB0 −0.005 −0.0036 −0.0029 0.0024
mistag rates All values consistent.
f1
KT 0.00685 0.0104 −0.0126 −0.0271

f1
LT 0.00078 0.00036 −0.0197 −0.0108

f1
N1 0.0158 0.00839 0.0124 −0.00667

f1
N2 −0.00742 0.0107 −0.0265 −0.0328

f1
N3 0.00065 0.00945 −0.0107 −0.0189

bout 0.383 0.303 0.0398 −0.461
fout −0.000712 −0.000468 0.000463 0.00187
s1 0.0248 0.0314 0.0947 0.146

Table 14.2: Difference in final parameter values from the full signal fit to the sig-
nal Monte Carlo samples for different variations applied to the beamspot position.
Here we smear the beamspot position randomly by sampling from a gaussian of the
indicated width, before applying reco- and tag-side vertexing.

Fits to signal MC using truth-tagging
Par Nominal Value shift 10 shift 80 smear 20 smear 80 shft/smr 80

∆md 0.472 ± 0.00216 0.00022 −0.00106 0.00008 −0.00026 −0.00262
τB0 1.54 ± 0.00686 −0.0017 0.0045 −0.0022 −0.0012 0.0053
κ 0.928 ± 0.0668 −0.0266 −0.0482 −0.00771 −0.00666 −0.0341
s1 1.02 ± 0.0182 0.0117 0.085 0.0177 0.0874 0.14
bout −1.48 ± 0.357 −0.151 −0.405 0.192 −0.0836 −0.52

Table 14.3: Fit results for select parameters from signal ∆t fits to Monte Carlo samples
with a shifted and/or smeared beamspot constraint. As described in the text, Monte
Carlo truth information was used to determine the flavor status of each candidates,
thereby improving the statistical precision on the other physics parameters. The first
column of numbers shows the fit results to the nominal signal Monte Carlo sample
and their statistical error, the other columns show the change in central value.

sets “D” and “E”.
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Characteristics of z-vtx residuals from signal MC
Variation Size zreco Bias zreco RMS ztag Bias ztag RMS
nominal 0 0.05 ± 0.3 77.5 ± 0.2 34.4 ± 0.5 156.1 ± 0.4
shift 10 0.07 77.4 34.6 156.8
shift 80 1.92 85.5 36.7 162.2
smear 20 0.09 77.9 34.1 156.8
smear 80 0.03 85.0 34.8 161.6

Table 14.4: Shape parameters for tag- and reco- vertex z-residual distributions of
correctly reconstructed signal Monte Carlo under several different beamspot transfor-
mation scenarios. [All units are µm.] As expected, systematic offsets of the beamspot
increase the bias and RMS of the z-residual for each vertex separately, while smearing
only degrades the RMS of the residuals.

Estimate of bias using signal MC

We form a signal Monte Carlo cocktail of 20 fb−1 by combining SP3 simulated

events (in luminosity proportion) for the four different D0 decay modes for the three

months of largest luminosity, Jul2000, Aug2000, and Oct2000. The cocktail created

with this recipe has an approximate composition as shown in Table 14.5.

D0 Mode Evts / 20 fb−1

D0 → K−π 52k
D0 → K−πππ 102k
D0 → K−ππ0 188k
D0 → K0

Sπ
+π− 36k

Table 14.5: Numbers of events per D0 decay mode in the signal Monte Carlo cocktail
with luminosity weight totalling 20 fb−1.

An SVT alignment scenario consists of a set of transformations that are applied

to the set of individual wafers and modules. The alignment scenario can be used

to describe the difference between one state of SVT internal alignment and another.

So-called “misalignment” occurs when the particle hits and tracks are reconstructed

using incorrect knowledge of the relative positions of the sensors. “Perfect” alignment

is therefore the default case, where tracks are reconstructed from hits with completely
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accurate knowledge of their relative positions.

The SP3 Monte Carlo default scenario uses so-called “perfect” alignment, i.e. it

uses the same alignment scenario for event generation and event reconstruction. In

the real detector, however, we do not have the luxury of perfect knowledge of the

sensors’ locations when the event was “generated,” or rather, detected. Through a

variety of sophisticated fitting algorithms using dimuon events, we derive an alignment

scenario for the real detector which describes the “true” positions of the sensors with

respect to the nominal positions. During Run-1 and Run-2 data-taking, the SVT

internal alignment algorithm was substantially improved, leading to several different

procedures for constructing alignment scenarios and some data was processed with

each of these alignment scenarios, or “sets.”

To estimate the effect of the systematic uncertainties inherent in the estimated

positions of the SVT wafers in the real detector, we “misalign” the signal Monte

Carlo cocktail (described above) to match the alignment scenarios used in the real

data processing and reconstruction. We then look for biases in the parameter values

after the full signal fit to the “misaligned” signal Monte Carlo. The key point is

that the data sample is reconstructed with imperfect knowledge of the SVT’s internal

alignment; to mimic the effect of that uncertainty, we perturb the SVT in signal

Monte Carlo and the reconstruct the data.

To achieve this in practice, we follow a recipe suggested by the Tracking Group.

We assume that alignment set “L” is perfect for Run-1 data, which we then associate

with the default perfect alignment of SP3 Monte Carlo. We then assume the align-

ment sets used in Release-8 processing (28% set “D” and 56% set “E”) are additively

related to this near-perfect “L” alignment. We derive the alignment transformations

“diffDL” and “diffEL,” which we claim are reasonable descriptions of the changes

in internal SVT alignment (with respect to nominal) necessary to emulate perfor-

mance under alignment sets “D” and “E”. (i.e., We degrade the internal alignment

with respect to the alignment used for event generation to match the scenario used

for reconstruction. The degradation is chosen to be consistent with the two differ-

ent misalignments used for data-taking/processing.) We then apply these alignment

transformations to the raw Monte Carlo data, and re-run the entire event processing
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chain from Bear (reconstruction) to ascii file production (input to the signal fits). We

report here on a study of three different datasets, each corresponding to reconstruc-

tion, event selection, and signal ∆t fitting under a different alignment scenario for

the 20 fb−1 signal Monte Carlo cocktail:

• Default (nominal SP3),

• diffEL,

• diffDL.

In the full signal fit, we use Monte Carlo truth information to determine the mixing

status of each candidate. This improves the statistics used in the study, and focuses

our attention on the changes in ∆t due to the degraded alignment scenarios. (This

also eliminates changes in the fitted physics parameters due to correlations between

reconstructed flavor and vertexing. All three datasets were fitted successfully with

the full signal model, and yield consistent, less precise conclusions.)

By comparing the best-fit values for τB0 and ∆md between the nominal “per-

fect” alignment and the degraded models of real detector alignment, we estimate the

uncertainty in the result from data due to the uncertainty about the true internal

alignment of the SVT. Table 14.6 summarizes the change in physics and resolution

parameters in the two (mis)alignment scenarios diffDL and diffEL with respect to the

default case.

We observe that the central value of ∆md decreases in both misalignment scenar-

ios, and that τB0 increases. In the case of ∆md, the change is nearly comparable to

the statistical precision of the nominal fit, indicating that misalignment is probably

an important systematic uncertainty. (Note: The statistical error on ∆md increases

from ±0.00516 in the perfect alignment case to ±0.00530 in the misalignment sce-

nario. This might suggest that the misalignment itself contributed ±0.001 to the

error on ∆md, while the resolution model absorbed other effects.)

Based on these results, we assign the following systematic uncertainty to our

measurements of ∆md and τB0 :

• δ(τB0) = −0.0056 ps



14.2. UNCERTAINTY IN DECAY-TIME DIFFERENCE 247

Effect of misalignment on signal ∆t fits to MC
Parameter Nominal Value ∆ diffDL ∆ diffEL

∆md 0.477 ± 0.00516 −0.00316 −0.00292
τB0 1.53 ± 0.0155 0.0057 0.0055
κ 0.812 ± 0.131 0.0452 0.00591
s1 0.969 ± 0.0423 0.0569 0.108
f 1

KT 0.507 ± 0.0767 −0.0213 0.0159
f 1

LT 0.687 ± 0.0812 −0.0254 0.00904
f 1

N1 0.831 ± 0.0839 −0.0997 0.0589
f 1

N2 0.555 ± 0.084 0.0059 −0.0105
f 1

N3 0.566 ± 0.069 −0.05 0.00131
bout −0.440 ± 0.551 0.112 0.368
f out 0.0291 ± 0.00498 0.000435 0.00319

Table 14.6: Parameter values and their change from nominal values for a full signal ∆t
fit (with Monte Carlo truth tagging information) to the signal Monte Carlo cocktail in
different SVT alignment scenarios: the nominal scenario typical of SP3, misalignment
scenario diffDL, and misalignment scenario diffEL.

• δ(∆md) = −0.0030 ps−1

With the understanding that the alignment transformations diffDL and diffEL

distort the SVT alignment from nominal (perfect) to imperfect, we recognize that

our estimate of ∆md (τB0) from Run-1 data (using the imperfect alignment scenarios

setD and setE) may be biased low (high).

Consistency in Data between different alignment scenarios

For this study, we separate the Run-1 Data sample into three subsamples according

to the SVT alignment scenario used in event processing and reconstruction: set “D”

(29%), set “E” (53%), and “other” (18%). (We perform the grouping by matching

event run numbers and conditions information.) We fit the full model to each of the

“D” and “E” subsamples, independently, including the background δm analysis for

evaluation of background composition/fractions. Although the statistical power of

the test is poor, we find results as shown in Table 14.7. The fitted central values for

the key parameters are statistically consistent between these two subsets of the Data.
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Full ∆t fits to Data

Parameter Set “D” Set “E”
δ(∆md) −0.0202 ± 0.0449 −0.0001 ± 0.0308
δ(τB0) −0.0342 ± 0.0434 −0.0083 ± 0.0227
δ(f out) 0.0034 ± 0.0035 −0.000088 ± 0.0024
δ(κ) −0.254 ± 0.442 −0.133 ± 0.304

Table 14.7: Results of the full fit to subsamples of the Data, as grouped by SVT
alignment set (here, sets “D” and “E”). We show the difference in central values
as compared to the baseline fit, but quote the statistical error on the subsample fit
result, as we wish to compare the results from Sets D and E with each other.

14.3 Fixed B± Properties

The model of the charged B background assumes fixed B+/B0 ratios for the mistag

rates and lifetimes. We vary the mistag ratio by the uncertainty determined from sep-

arate fits to hadronic events. We vary the lifetime ratio by the statistical uncertainty

on the world average. [5] The resulting change in the fitted physics parameters is

taken as the systematic uncertainty.

In the MasterModel fit to Data, the B+ to B0 lifetime ratio is fixed. We vary this

ratio up and down by one sigma according to PDG2002 lifetime ratio [5] and repeat

the full fit. The mixing and lifetime results are shown in Fig. 14.8. We assign half of

the observed difference as the systematic error.

The B+ to B0 mistag ratios for all five tagging categories are also fixed. We vary

all five mistag ratios jointly by ± 1σ according to Table 11.3 and repeat the full fit.

The results are shown in Table 14.9. Again we assign half of the difference as the

systematic due to fixing mistag ratios.

We conclude that the uncertainties on the two physics parameters due to the

assumed properties of the B± mesons are:

• δ(∆md) = 0.0003 ps−1

• δ(τB0) = 0.0019 ps
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Full ∆t fits to Data

Parameter (τB+/τB0) + 1σ (τB+/τB0) − 1σ diff./2
δ(∆md) (ps−1) −0.00002 0.0006 0.0003
δ(τB0) (ps) −0.0016 0.0021 0.0019
δ(fB+) −0.0025 0.0029

Table 14.8: Fitted results from Data for the two physics parameters for different
values of the fixed B+ to B0 lifetime ratio. All other fit parameters were nearly
identical.

Full ∆t fits to Data

(ωB+/ωB0) + 1σ (ωB+/ωB0) − 1σ diff./2
δ(∆md) (ps−1) −0.00007 -0.00023 0.00008
δ(τB0) (ps) −0.0002 0.0004 0.0003
δ(fB+) −0.0020 -0.0026

Table 14.9: Fitted results from Data for the two physics parameters for different
values of the fixed B+ to B0 mistag rate ratio.

14.4 Background Fractions

The modeling of the background contributions to the sample determines the prob-

ability we assign to each event for it to be signal, and the ∆t distribution we expect

for background events. We estimate the uncertainty due to the signal probability

calculations by repeating the full fit using an ensemble of different signal and back-

ground parameters for the m(D∗) −m(D0) distributions, varied randomly according

to the measured statistical uncertainties and correlations between the parameters. We

assign the spread in each of the resulting fitted physics parameter as the systematic

uncertainty.

The per-event probabilities use two key ingredients: fit results that describe the

peak and sideband lineshapes for δm in 360 sub-categories of the data, and back-

ground fractions which essentially count the fraction of peak and sideband events in

each of the sub-categories (using the lineshape fit results). The fits and subsequent

computations that produce this set of values (which are held fixed in the full ∆t fit
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because we expect ∆t and δm to be independent variables) introduce many correla-

tions between them (due to the simultaneous nature of the result). To understand

the effect of the statistical error on the calculations needed for per-event probabilities,

we therefore perturb this set of values jointly and randomly, taking into account the

individual errors on each result as well as the correlation between any two results (via

the covariance matrix). We then have a “new” set of values from which to compute

per-event probabilities in the full ∆t fit.

We examine the distribution of fitted τB0 and ∆md for 111 different perturbations

of the parameters used to compute the per-event probabilities. In order to optimize

our use of computing resources, (and possibly be conservative on our estimate of the

error), we fix the other 70 parameters in the full fit to the baseline values. These 2-

parameter (τB0 and ∆md) run quickly, and allows us to gather sufficient statistics for a

conclusion. We also ran full ∆t fits to the Data for 20 different random perturbations

to verify that the 2-parameter fit results were not an inappropriate estimate. Our

results are shown in Fig. 14.1 and Tab. 14.10. When floating only the two physics

parameters, we achieve a statistical error from the fit of ±0.012 ps−1 on ∆md and

±0.017 ps on τB0 .

Full fits to Data, floating only ∆md, τB0

δ(∆md) (ps−1) δ(τB0) (ps)

Mean −0.0013 ± 0.0003 −0.0006 ± 0.0003
RMS 0.0029 ± 0.0002 0.0032 ± 0.0002

Table 14.10: Characteristics of the distribution of fitted results for ∆md and τB0 (with
respect to the baseline) from the 111 fits with perturbed background fraction when
floating only the two physics parameters.

In this study, we performed two separate perturbations to affect the per-event

probability calculations (varying the δm shape fit values, and varying the yields fit

results used to compute the background fractions). We also treated each perturbation

separately, and found that for the 111 fits floating only the 2-physics parameters, the

dominant source of spread in the fitted values was due to the perturbation of the

background fractions. For instance, the RMS of the distribution of the fitted ∆md
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Figure 14.1: Histograms of the spread in fitted results (with respect to the baseline
blinded value) from Data using 111 different statistical variations of the input δm
parameters and floating only τB0 and ∆md in the final ∆t fits. The superimposed
shaded histograms show the distribution of fit results for the 20 fits where the entire
model was floating in the fit.

values from just the shape-fit perturbation was small, about 0.00055 ps−1 whereas

the RMS of the ∆md values fitted using just the perturbed background fractions

was 0.0033 ps−1. (Likewise for τB0 , the numbers were 0.0015 ps and 0.0034 ps,

respectively.) This suggests that the statistical uncertainty on the δm shape fits is

negligible compared to the statistical uncertainty on the background fractions due to

statistical fluctuations of the Data populations in each of the 360 categories.

An additional cross-check used each of 20 different sets of perturbed parameters

in a full fit to Data. Although the precision is poor, the RMS of the distributions

of ∆md and τB0 values are consistent with the 111 two-parameter fits, and the bias

with respect to the baseline fit is very small. The fitted ∆md values from the 20

different fits using perturbed background parameters yield an average shift (wrt the

nominal fit) of −0.002 with an rms of 0.0012 ps−1. Likewise for τB0 , the distribution

of fitted values have an average of 0.0016 and an RMS of 0.0033 ps. (The error on

these RMS values is roughly 20%.) This increases our confidence in assigning the
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systematic errors as listed at the end of this section.

Finally, we examine the correlation between τB0 and ∆md as a function of the

background fraction perturbations. Fig. 14.2 shows the empirical lack of correlation

between τB0 and ∆md from the 111 different perturbed background fraction results.

Using the 20 full fits, however, we can examine the measured correlation coefficient

between the two physics parameters. Unfortunately, only 10 of the fits yielded a good

measure of the error matrix. From these fits, we find that the average correlation

between τB0 and ∆md is −0.213 ± 0.003 with an RMS of 0.011.
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∆(
τ B
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Figure 14.2: Scatter plot of pairs of (τB0 ,∆md) values (wrt baseline fit) from the 111
2-parameter floating Master fits to the Data, each using a different set of perturbed
background fractions in the fit. We observe no induced correlation on τB0 and ∆md

due to varying the δm fit results and background fractions.

Based on these results, and recognizing that ∼100 tests give us a fractional pre-

cision of order 7% on the rms of the distribution, we assign the following systematic

errors:

• δ(∆md) = ±0.0029 ps−1



14.5. BACKGROUND MODELS 253

• δ(τB0) = ±0.0032 ps.

14.5 Background Models

We estimate the systematic uncertainty due to the assumed background ∆t distri-

butions as the shift in the fitted parameters when we replace the model for the largest

background (due to combinatoric events) with a pure lifetime model. An important

feature of the ∆t model we’ve selected is its effort to accommodate the mixing struc-

ture of the combinatoric background. As a suitable variation, we consider modelling

the combinatoric background ∆t and flavor distribution with a pure lifetime-based

model. Comparing the results from a full fit to data gives us an estimate of our

systematic error due to the choice of model for the largest background.

The fit result with this combinatoric model shows that the lifetime shifts by

+0.0063 ps and ∆md shifts by −0.0012 ps−1. It is worth noticing that the mini-

mized negative log-likelihood is 795996.3, which is larger than the default fit value,

795903.8. The charged B fraction, fB+ , also changes from 8% to 6%. Although this

is an extreme test for exposing our sensitivity to assumptions about the functional

form of the background ∆t distributions, we use the size of this shift as an estimate

of our systematic uncertainty:

• δ(∆md) = ±0.0012 ps−1

• δ(τB0) = ±0.0063 ps.

14.6 Signal Resolution Models

The final category of systematic uncertainties is due to assumptions about the

resolution model for signal events. We have largely avoided assumptions by floating

many parameters to describe the resolution simultaneously with the parameters of

interest. However, two sources of systematic uncertainty remain: the shape of the

outlier contribution, which cannot be determined from data alone, and the assumed

parameterization of the resolution for non-outlier events.
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Outlier Resolution Model

Based on the analysis described in Section 12.1.1, the shape of the outlier model

for signal (the Gaussian’s width and bias) was fixed. We study the sensitivity to this

outlier shape by repeating the full fit with an ensemble of different shapes described

by the 36 different pairs of outlier shape parameters. We assign half the full spread

of lifetime and mixing fit results as the uncertainty due to the choice of model. The

resulting systematic errors are:

• δ(∆md) = ±0.0010 ps−1

• δ(τB0) = ±0.0054 ps.

Core Resolution Model

We estimate the uncertainty due to the assumed resolution parameterization by

repeating the full fit with a triple-Gaussian resolution model (see Eq.6.16) and assign-

ing the shift in the fitted values as the uncertainty. This test isolates the sensitivity to

the shape of the core resolution model, because the outlier gaussian shape is identical,

i.e., σout = 6 ps and bout = −5 ps. The biases and widths of the other Gaussians are

scaled by σ∆t. The number of free parameters is 74, two more than that of default

fit. In comparison with the default GExp fit, the lifetime shifts by +0.0034 ps and

∆md shifts by −0.0009 ps−1. The minimized negative log-likelihood is 795904.4, (for

reference, the value for the default fit is 795903.8.). We assign the full scale of the

shift as the systematic uncertainty due to the core resolution model:

• δ(∆md) = ±0.0034 ps−1

• δ(τB0) = ±0.0009 ps.

14.7 Selection and Fit Bias

The largest source of systematic uncertainty on both parameters is the limited

statistical precision for determining the bias due to the fit procedure (in particular,

the background modelling) with Monte Carlo events.
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We check for event selection bias by fitting to the truth ∆t distributions of signal

Monte Carlo sample using the physics-only pdf. There is a slightly negative bias for

both mixing and lifetime, as mentioned in Chapter 13.3. We also expect a small

positive bias in lifetime due to ignoring the resolution dependence on true ∆t, as

discussed in Chapter 6.3. However, the result from the fit to signal Monte Carlo

events with the default signal ∆t model (as shown in Table 13.9) does not show

any significant deviation from the generated values. Hence we do not assign any

systematic errors for this source.

However, the full fit to generic Monte Carlo does show a bias, also as discussed in

Section 13.3. We assign the statistical errors of a full fit to the Monte Carlo samples

including background to estimate this systematic uncertainty:

• δ(∆md) = ±0.0123 ps−1

• δ(τB0) = ±0.0178 ps.

14.8 Summary

The largest source of systematic uncertainty on both parameters is the limited

statistical precision for determining the bias due to the fit procedure (in particular,

the background modelling) with Monte Carlo events. We assign the statistical errors

of a full fit to Monte Carlo samples including background to estimate this systematic

uncertainty.

The total systematic uncertainty on τB0 is 0.022 ps and on ∆md is 0.013ps−1.
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Table 14.11: Summary of systematic uncertainties on the two physics parameters,
τB0 and ∆md.

Source δ(∆md) (ps−1) δ(τB0) (ps)

Selection and fit bias 0.0123 0.0178
z scale 0.0020 0.0060
PEP-II boost 0.0005 0.0015
Beamspot position 0.0010 0.0050
SVT alignment 0.0030 0.0056
Background / signal prob. 0.0029 0.0032
Background ∆t models 0.0012 0.0063
Fixed B+/B0 lifetime ratio 0.0003 0.0019
Fixed B+/B0 mistag ratio 0.0001 0.0003
Fixed signal outlier shape 0.0010 0.0054
Signal resolution model 0.0009 0.0034
Total systematic error 0.013 0.022



Chapter 15

Discussion and Outlook

The central value and precision of our measurement is comparable to other recent mea-
surements from both the BABAR and Belle experiments at the asymmetric B-factories. The
technique has been successful enough to merit extension to larger datasets where the analyt-
ical technique can be improved. Despite some challenges, it is worth considering extending
the definition of the signal model to parameterize additional features of B0B0 time evolution,
such as the difference in lifetimes of the mass eigenstata, ∆Γd.

257
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15.1 Significance of This Result

This study uses about 20 fb−1 of BABAR data, and achieves measurements of τB0

with almost 2% overall precision and ∆md with better than 5% overall precision.

Other experiments and analyses have performed equivalently, and these results com-

pare well, both in terms of central value and overall uncertainty, as summarized in

Fig. 15.1.

)-1m (ps∆
0.45 0.5 0.55 0.6 0.65

PDG2002

νl  *BABAR excl. D

BELLE di-lept
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Figure 15.1: Comparison of this measurement with the world average and other
measurements made at BABAR and Belle. The measurements described in this note
are not included in the world average. Left: mixing frequency: BABAR exclusive
hadronic measurement [64], BABAR dilepton measurement [65], Belle dilepton mea-
surement [66], and the world average (PDG2002 [5]). Right: lifetime: BABAR ex-
clusive hadronic measurement [50], BABAR inclusive D∗ ` measurement [67], Belle
exclusive hadronic measurement [68], and world average (PDG2002 [5]).

One obvious conclusion from this analysis is that it was critical to perform it

blind. The correction applied to the fit result to account for the bias observed in

Monte Carlo data moved the central value on the order of one statistical σ. If the

true central value had been known when the correction was being considered, it would

have been much more difficult to make the decision, as we could have compared the

corrected value with the world average, rather than letting our analysis speak for

itself.

The OPAL result [37] using a time-dependent analysis of semileptonic B-decays

also reports the statistical correlation between τB0 and ∆md, and they observe -0.14.

Despite the difference in details of the analysis, the general mechanisms causing the
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correlation are in common (namely, detector resolution), and our measured correlation

coefficient of -0.22 is comparable. We note, in passing, that the correlation between

τB0 and ∆md does depend on the charged B composition of the sample. (See Ref. [69]

for a discussion of this effect.)

15.2 Extracting Additional Performance

This study has pioneered a complex technique and has been successful in several

different areas. In terms of physics results, we have measured the lifetime and mixing

frequency of the neutral B meson with high precision. In terms of analysis strategies,

this measurement is the first of its kind in that we also report the statistical correlation

due to experimental technique between the two independent physics observables. And

finally, this analysis has raised the bar in terms of maximizing sensitivity of the

Data by incorporating a simultaneous analysis of signal and background to reduce

systematic uncertainties.

Yet there is still room for improvement. Because of the strength of this technique,

it is appropriate to extend it for larger Data samples and to address additional issues.

The prospect for an impressive new B-factory Data sample is good, as suggested in

Fig. 15.2. The current 100 fb−1 available is exciting enough to merit extension of this

analysis, but a projected 1000 fb−1 is breath-taking. In the following list, we discuss

areas where future work can be directed to strengthen this analysis.

• First and foremost, the apparent bias observed in the fit results when analyzing

Monte Carlo data with simulated backgrounds needs to be characterized and

understood. A necessary condition for this resolution is a significantly larger

sample of trusted Monte Carlo data in order to establish the statistical signifi-

cance of the potential bias. If the bias proves to be significant, areas in which

to direct attention might be the outlier fraction of the signal resolution model

(observed to be negative in the current generic Monte Carlo sample), fit results

with only e or µ subsamples, and studies restricted to samples of signal and one

class of background events at a time.
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• Perhaps on the heels of such an undertaking, there are some unanswered ques-

tions surrounding the final yields ofD∗e andD∗µ in the Data (and Monte Carlo)

samples. Although we measure the selection efficiencies to differ by more than

20%, the signal yields in the δm peak regions are comparable. This could be

due to differences in reconstruction/selection effects with the high momentum

cut on the lepton; for instance, electrons might experience greater energy losses

(material interactions) than muons.

• The ability to measure the charged B fraction in the sample, fB+ , can be im-

proved by including the spectrum of another variable in the analysis – cos θB,D∗`.

By parameterizing the signal probability with this variable as well, sensitivity

to fB+ could be increased.

• BABAR has introduced improved flavor-tagging algorithms [70], and the im-

provements in tagging power are worthwhile. It may be necessary to re-examine

the dependence of the mistag rates on σ∆t since the new tagging algorithms cat-

egorize physics processes differently.

• In the current study, we have assumed (a) that fB+ does not depend on any event

characteristics, and (b) that all candidates from B+ parents behave identically

as those from B0 parents, except in the signal region where we separate the

charged B sample by “physics” ∆t structure. Current studies show that, for

instance, splitting fB+ by tagging category yields statistically consistent values.

We also assume that charged B candidates have the same signal resolution

model as the neutral B candidates. With access to an even larger sample size

of Monte Carlo, these assumptions should be checked, and then tested in Data.

• The background control sample identified in Section 8.3 for uncorrelated back-

grounds is relatively impure. To improve the Data-driven characterization of

uncorrelated-lepton peaking background events, a cleaner sample can be se-

lected. It has been suggested by C. LeClerc [71] and others that a more power-

ful control sample might be formed by requiring instead that cos θD∗,` > 0 and

cos θB,D∗` > 1.1. Preliminary studies suggest that this proposal might better
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match the ∆t structure of uncorrelated lepton events in the signal region.

• A additional benefit of using an updated Data sample is the advantage of more

advanced reconstruction algorithms available in new releases of the software.

Specifically, the internal alignment of SVT has been more carefully parame-

terized and measured, and we expect reprocessed Data and new Data to be

better aligned, i.e., that source of systematic error could decrease. Bug fixes

and improvements to the track finding algorithms are also available which could

increase the signal selection efficiencies.

• As explained in Section 7.4, we observe correlations between the per-event ∆t

error (σ∆t) and the mistag fraction, largest in the KTag category. We do not

allow for this affect in our models for background ∆t structure, nor for any of

the other tagging categories. The linear correlation model could be extended to

relax both of these assumptions i.e., allowing for a dependence of mistag rate

on σ∆t for all tagging categories and for all background ∆t models.

• We have ignored some of the issues of multiple D∗−`+ν` candidates per event. In

reality, we should expect at most only two Brec in the event, corresponding to the

semileptonic decays of both B mesons. The current implementation selects only

one BD∗` candidate per D0 decay mode, determined by the candidate with a D0

mass closest to the nominal value. We therefore allow multiple candidates per

event to selected ∗ provided that they differ in D0 mode, lepton identification,

or in angular correlation of the D∗ − ` system. For instance, about 3.5% of the

events from Data have identical timestamps, but are distinct in at least one of

the aforementioned three characteristics, and (of course) have different ∆t and

δm values. It would be appropriate to explore this more fully in the future.

The difficulty is in the technique for determining the “best” candidate, as we

select both signal and background candidates from an event, and it is therefore

non-trivial to determine which is the “better” candidate to retain. †

∗As distinguished by event timestamps.
†On an unrelated note, the rate of overlapping event selection with other time-dependent analyses

per was estimated to be less than a few percent [72].
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• As was illustrated in Section 12.1.1, the current Dataset is insufficient to com-

pletely characterize the outlier component of the signal resolution model. One

could imagine developing strategies to completely eliminate outliers. An ini-

tial step could involve examining the handful of outliers in Monte Carlo (for

instance, those eliminated when tightening the |∆t| selection window) with the

event display and/or the new mini event store.

• Finally, the calculation of per-event probabilities relies on the BABAR particle

identification algorithms and characterizations developed by the Particle Iden-

tification (PID) Group [73]. Studies suggest that the results are not strongly

dependent upon the absolute efficiencies of the lepton identification algorithms,

but we do note that the efficiencies used in this analysis were developed for

slightly different selection criteria ‡ With the statistical power of additional

Data and Monte Carlo, it would be appropriate to regenerate the so-called PID

tables, tailored to the B0 → D∗−`+ν` needs.

While this may seem like a depressingly long list of future work, it is, on the

contrary, an exciting opportunity to move forward and harvest more Data. It is

a tribute to our success that we have the freedom to use new Data to relax even

more assumptions and let the Data help us determine the true parameters and their

relationships.

Last but not least, the RooFit technology [60] was used in building, maintaining,

and fitting the multi-dimensional probability density functions. This analysis suite is

incredibly powerful, but due to the level of sophistication required by the analysis, the

computational overhead became intense. For future work with even more Data and

even more complex models, one may need to re-evaluate or re-optimize this technology

for meaningful progress.

‡That is, our lepton selection criteria requires the charged tracks to pass the GoodTracksTight
selection, while the particle identification tables only require GoodTracksLoose.
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Figure 15.2: One model for the accumulation of integrated luminosity by BABAR for
the next few years.

15.3 Extracting Additional Physics

15.3.1 General Comments

Because of the high precision offered by the large BB data samples at the asym-

metric B factories, it is natural to consider the reach for new types of physics as well

as the precision measurements of traditional parameters. Given the framework and

definitions provided in Chapter 3, one avenue of exploration is the discrete symme-

tries of B0B0 time evolution. Consider the cartoon in Fig. 15.3. In neutral B meson

oscillations, we can gain access to the probabilities for

• B0 → B0 ,
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• B0 → B0 ,

• B0 → B0 ,

• B0 → B0 .

For example, if B mixing obeyed the T symmetry, we would expect the rate for

B0 → B0 to equal the rate of B0 → B0. Alternatively, CPT symmetry would require

that prob(B0 → B0) = prob(B0 → B0), and so on. In our discussion of Chapter 3,

we required CPT symmetry, which allowed us to take the elements M11 and M22 to

be equal, and similarly for Γ11 and Γ22. If, as the Standard Model suggests, CPT is a

good symmetry but CP and T are separately violated, we would expect M12 and Γ12

to have identical phases. To determine which of these scenarios Nature has provided

is the challenge to the experimentalist.

Figure 15.3: Artist’s rendition of the possible relations between B0B0 time evolution
and combinations of the discrete symmetries C, P , and T .

Several such measurements are already underway at BABAR. A comparison of the

time-integrated rates for inclusive B0B0 → B0B0 → `+`+ and B0B0 → B0B0 → `−`−
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at BABAR directly examines the probabilities for B0 → B0 and B0 → B0. [74] By

measuring the time-dependent asymmetry of like-sign lepton pairs

Ameas
T/CP (∆t) =

N(`+ `+,∆t) −N(`− `−,∆t)
N(`+ `+,∆t) +N(`− `−,∆t)

≈ 1 − |q/p|4
1 − |q/p|4

(15.1)

using a large sample of inclusive dileptons, the study concluded that |q/p| = 0.998±
0.006(stat)±0.007(syst), very consistent with unity as expected if CPT is conserved.

Additionally, work is in progress to measure ∆Γ and test CPT/T violation using a

large variety of B decay modes. [75] (See Section 15.3.2 for additional remarks.)

This is just one example of work that has yet to be done. With the precision

environment offered by the B-factories and the expected large samples of Data, §

searches for these asymmetries could become a very rewarding industry.

15.3.2 A Specific Case: ∆Γ

The discrete symmetry violations discussed above are all interesting, and they

probe the Standard Model description. However, we should recall that the Standard

Model prescribes a non-zero value for ∆Γd, and recent theoretical estimates place

the ratio ∆Γ/Γ ∼ 0.3% [22]. In the natural progression of bigger and better, we

might first expect to measure ∆Γ and then add in searches for additional sources

of CP violation, for instance. In fact, as we saw in Section 3.1.2, ∆Γ appears as a

hyperbolic trigonometric term in the model for B time-evolution, and will therefore

need to be included in future higher precision fits for parameters such as τB0 , ∆md,

and sin2β. We will discuss some properties of ∆Γ in the Bd system, and then make

some observations about techniques to measure it.

§Keep in mind, though, that the bb production cross-section at the upcoming hadron machines
is significantly larger, and those Data samples could be even more gigantic.
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Comments on ∆Γ

From our discussion in Sections 2.1.5 and 3.3, we recall that in the limit of zero CP

violation in the Standard Model, ∆md = 2 |M12| and ∆Γd = 2 |Γ12|. As mentioned

before, ∆Γ is the sum of contributions from real intermediate states to which both

B0 and B0 can couple, states such as uudd (π+ π−), ccdd (D∗+ D∗−), and cudd (D∗±

π±). And, as we stated earlier, these couplings are heavily CKM-suppressed, of order

λ6. ∆md is related to virtual transitions in the box diagram, which, due to heavy

top-exchange, is dominated by |VtdVtb|2 which is also of order λ6. (See Fig. 15.4 for

the two different ”aspects” of the box diagram to which ∆md and ∆Γd are sensitive.)

As ∆Γd does not access the intermediate states involving the top quark ¶, we expect

that
Γ12

M12
∼ O(

m2
b

m2
t

) . (15.2)

Figure 15.4: The B mixing diagrams [22] that contribute to ∆md (left) and ∆Γ
(right).

Borrowing heavily from the analysis by Dighe et al. in Ref. [22], an effective

theory below the mW scale would suggest

Γ12 =
1

2mBd

〈Bd|i Im
∫
d4xT (Heff

∆B=1(x)H∆B=1
eff (0))|Bd〉 , (15.3)

where the effective Hamiltonian H∆=1
eff can be written as the sum of short-distance

physics contributions (Wilson coefficients, CKM elements, and four-quark operators)

from u and c interactions. We see here that while M12 and Γ12 both produce ∆B =

2 transitions, because ∆Γ is sensitive to long distance physics (real intermediate

¶Note that Ref. [26] disagrees with this comment on pg. 619; this has been corrected in the
updated version.
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states), the hadronic matrix element is really the product of two ∆B = 1 operators

evaluated at different points. However, because the bottom quark mass offers another

short-distance scale, we return to short-distance physics and expand in terms of local

∆B = 2 operators scaled by 1/mb. Jumping to the conclusion, we find that Γ12 can

be written as [26]

Γ12 =
G2

Fm
2
bη

′
bmBd

BBd
f 2

Bd

8π

[
(V ∗

tdVtb)
2 + V ∗

tdVtbV
∗
cdVcbO(

m2
c

m2
b

) + (V ∗
cdVcb)

2O(
m4

c

m4
b

)

]
(15.4)

where we only wish to observe the presence of the CKM matrix elements. If we

approximate the sum as (V ∗
tdVtb+V ∗

cdVcb)
2 we can use the unitarity condition to replace

it with (V ∗
ubVud) and identify the phase of Γ12 as that of −η from the Wolfenstein

parameterization of the CKM matrix (see Section 2.1.3). Recall now that M12 is

controlled by V ∗
tdVtb which conveniently has the same phase. This suggests that

φM12 − φΓ12 ∼ 0 + O(
m2

c

m2
b

) . (15.5)

Finally, the best estimate for ∆Γ/Γ in the Standard Model is ∼ +(0.3+1.2
−1.6)% where

Dighe et al.have included 1/mb contributions and some of the next-to-leading order

QCD corrections. ‖

Modified Time Dependence

Before discussing some experimental techniques, let’s recall the modified time

dependence when we include the natural presence of ∆Γ. Effectively, we add one

more parameter, replacing the 1 with cosh((∆Γ/2) t):

|〈B0|B0
phys(t)〉|2 ∼

e−Γ|t|

2

[
cosh(

∆Γd

2
t) + cos(∆mdt)

]

|〈B0|B0
phys(t)〉|2 ∼

e−Γ|t|

2
|q
p
|2
[
cosh(

∆Γd

2
t) − cos(∆md t)

]
.

(15.6)

‖We have used the sign convention of Dighe et al., and therefore the Standard Model prediction
is that the ΓL > ΓH .
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Note that in the absence of CP violation in mixing, the factor | q
p
| is unity. We

illustrate the change to the decay time distributions in Fig. 15.5. A non-zero ∆Γ

effectively reduces the mixing amplitude with increasing |∆t|. Because cosh is an

even function, and cosh differs from unity for arguments near zero only by the square

of the argument (i.e., the Taylor expansion near 0), sensitivity to ∆Γ in the explicit

time dependence is reduced to (∆Γ/Γ)2.

Figure 15.5: Plots of the mixed and unmixed decay time distributions (left) and the
time-dependent mixing asymmetry (right), assuming perfect tagging and resolution.
The three curves correspond to three different values of ∆Γ/Γ: 0 (solid), 0.5 (dashed),
and 1 (dotted).

For so-called CP final states f±, we can write the tree-level decay amplitudes as

A+ = 〈f+|B0〉 = +e−2iβ ,

A− = 〈f−|B0〉 = −e−2iβ ,
(15.7)

where f+ is the CP -even final state. Substituting these and their conjugates into
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Eq. 3.27 and neglecting “direct” CP -violation, we arrive at

Γ(Bd(t) → f±) ∝ e−Γt

[
cosh(

∆Γ

2
t) ∓ cos(2β) sinh(

∆Γ

2
t) ± sin(2β) sin(∆mdt)

]

∝ e−ΓLt(1 ± cos(2β)) + e−ΓHt(1 ∓ cos(2β)) + oscillating terms .

(15.8)

For a final state such as the semileptonic decay B0 → D∗−`+ν`, we have (as before)

AD∗−`+ν`
= 0 and then

Γ(Bd(t) → f±) ∝ e−Γt

[
cosh(

∆Γ

2
t) + cos(∆mdt)

]

∝ e−ΓLt + e−ΓHt + oscillating terms .

(15.9)

Comments on Measuring ∆Γd

At present, there are no good experimental measurements, or even upper limits

on ratio ∆Γd/Γ. ∗∗ Because the B0-B0 mixing phase relative to decay (sin2β) is large

for charmonium final states, the CP eigenstates are measurably different from the

physical states (with widths ΓH and ΓL). That is, decays to CP states involves both

lifetimes, as do the flavor-tagging decays (such as the semileptonic modes). There

is no final state to which the B0 decay involves one of the decay widths (unlike

K0
L → π+π−). As such, the measurement of ∆Γ is difficult, but we press forward

anyway.

We consider two general strategies for measuring ∆Γ, the so-called “untagged” and

“tagged” measurements, by which we refer to flavor-identification of the decaying Bd

meson. Assuming balanced acceptances and efficiencies for B0 and B0, measurements

without flavor-tagging “integrate out” the dependence on the mixing status, elimi-

nating sensitivity to ∆md. Conventional wisdom claims that ∆t measurements are

only sensitive quadratically to ∆Γ/Γ. One can observe this explicitly by considering

∗∗CLEO has observed that their time-integrated χd measurement can be converted into a limit
for ∆Γ using the ∆md measurement from other experiments, but the technique is troubled by the
assumption of ∆Γd ≡ 0 in order to measure ∆md in the first place.
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the calculation (
1

σα

)2

= N

∫
1

f

(
∂f

∂α

)2

(15.10)

for the time dependence in Eq.15.6 and finding that σ∆Γ/Γ ∼ N−1/4. [76] Dighe

et al.propose a general argument by showing that all moments of the non-oscillating

part of the decay time distribution are linear in (∆Γ/Γ)2 for any analysis using a

single final state. However, as shown below, there are methods to get around this,

namely by using more than one mode.

At the basic level, non-zero ∆Γ implies that the lifetime distributions for B decays

are actually the sum of two slightly different negative exponentials. By considering

two final states that have different contributions from BH and BL we can extract two

different “lifetime” measurements and combine them to find ∆Γ. †† In the general

case for untagged measurements (integrating out the mixing dependence), the non-

oscillating part of the time dependence reduces to

f(t) =
1

2

[
(1 + b)e−ΓLt + (1 − b)eΓH t

]
, (15.11)

where we have effectively pulled the overall lifetime exponential through each of the

terms. For two different final states f1, f2 we can write:

τ1
τ2

= 1 +
b2 − b1

2

∆Γ

Γ
+ O(

∆Γ

Γ

2

) . (15.12)

We can immediately apply this result to the previous situations of decays to charmo-

nium CP eigenstates and semileptonic decays, identifying b as

bSL = 0

bCP+ = + cos(2β)

bCP− = − cos(2β) .

(15.13)

The experimental technique then is to measure the partial lifetimes and use their

ratio to extract ∆Γ. For the best precision, we might use the semileptonic final state

††Actually, this is a technique often used in the D0 system.
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and the charmonium CP− final state because of the higher reconstruction efficiencies:

τSL

τCP+
≈ 1 − cos(2β)

2

∆Γ

Γ
, (15.14)

assuming we know the CKM angle 2β to good accuracy. There are also techniques

that involve using only one final state, such as B0 → J/ψK∗, where a transversity

analysis can be used to separate the even- and odd- CP contributions. Another

popular notion is to construct the untagged time-dependent asymmetry between the

decays B0 → J/ψK0
S and B0 → J/ψK0

L, which (again) requires good knowledge of

2β.

Up to this point, we have not used the tagging information in the time-dependent

analysis. As T. Kittleman suggests in Ref. [77], we can gain sensitivity if we in-

clude the oscillation terms (i.e., those depending on the flavor of B). His analysis is

summarized in Fig. 15.6, and suggests that the statistical error on ∆Γ can decrease

substantially with the inclusion of the additional tagging information. ∗

The full time-dependent analysis appears to be the best option for measuring ∆Γ,

and by including both CP final states and flavor-tagging final states (that is, so-

called self-tagging final states) for Brec, we gain linear sensitivity to ∆Γ (CP events)

and high statistics for the resolution function(s) (flavor/mixing events). † Such an

analysis would need to simultaneously extract sin2β, because at the precision required

for measuring ∆Γ, corrections to the measurement of sin2β also arise:

ACP = sin(∆mdt) sin2β if ∆Γ = 0 ,

ACP =
e−Γt sin(∆mdt) sin2β

cos2 βe−ΓLt + sin2 βe−ΓH t
otherwise.

(15.15)

The fractional error introduced on ACP is approximately −(cos(2β)∆Γ t) so that for

t ∼ 1/Γ the fractional error on the sin2β extraction is about 0.5%. Ambitiously,

∗This is not surprising, as the τB0 -∆md analysis described in this paper relies on the same
principle: adding “good information” leads to enhanced sensitivity.

†One might imagine fitting just to a semileptonic sample, thereby removing the CP information
and recovering a large sample. Unfortunately, this again raises the feared quadratic sensitivity
dragon.
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Figure 15.6: Estimate of the ratio of statistical error on ∆Γ when ignoring flavor-
tagging information over including it in the fit. The three curves correspond to
different values assumed for ∆Γ. (Figure courtesy Ref. [77].)

one could then use the full fit to the decay time difference distributions of both CP

and flavor events to extract all four parameters: sin2β, τB0 , ∆md, and ∆Γ. There is

another wrinkle, however, in the plan. Recall that we chose to neglect CP violation

in mixing, by assuming that |q| = |p|. It might become necessary to parameterize and

simultaneously measure |q|/|p| for both B0B0 and K0K0 mixing as well since they are

expected to be of the same order of magnitude.

Finally, from Eq. 3.27 (Section 3.1.3), we recall the interference term in the model

for the correlated time dependence of the two B mesons. While we typically expect

this term to be small, it too involves ∆Γ. A proper analysis to extract these param-

eters needs to accommodate the interference term as well, significantly complicating

the situation. For instance, one should also consider the effects of so-called doubly
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CKM-suppressed decays on the Btag side, as they will contribute an interference term

that is not parameterizable with only uniform mistag rates. [24] A naive guess might

have been that such DCSD decays only contribute to an effective mistag rate, since

they will necessarily have “wrong-sign” decay products, but the interference term can

play an important role. Appropriate modelling of these experimental effects is at the

forefront of modern investigation.

Despite these complications, interest in measuring ∆Γ, perhaps necessarily in

combination with new parameters sensitive to CP violation (i.e., q and p) remains

strong, and we can look forward to exciting results from theB-factories on this matter.
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Closure

On the advice of the review committee, and with the full powers and privilege

vested within us by the BABAR Collaboration, we unblinded the fit results on 05

July, 2002. On the Run-1 Data sample using Release 8 processing, we measure the

following properties of B0 time evolution with a sample of approximately 14,000

exclusively reconstructed B0 → D∗−`+ν` signal events,

• ∆md = 0.492 ± 0.018 ± 0.013 ps−1,

• τB0 = 1.523 +0.024
−0.023 ± 0.022 ps

• statistical correlation ρ(∆md, τB0) = −0.22.

We compare our measurement with the world average: [78]

• ∆md = 0.503 ± 0.006 ps−1

• τB0 = 1.540 ± 0.014 ps,

and find that our results are very consistent (∆md and τB0 are both within 0.5σ). The

world averages for both lifetime and mixing are dominated by recent measurements

at the B-Factories (BABAR and Belle).

This result was announced at the 31st International Conference on High Energy

Physics (ICHEP02) in Amsterdam, The Netherlands on July 25, 2002. [79] Updated
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world-averages of B0 lifetime and mixing were calculated by the LEP B Working

Groups and incorporated this result. The technology used to extract the world av-

erage is advanced, but at the time of July 2002, was not sufficient to accept the

correlated measurement of τB0 and ∆md obtained here. For instance, the Working

Group adjusts the traditional measurements of ∆md to accommodate more recent

(and higher precision) measures of τB0 . Using our measured statistical correlation co-

efficient, we converted our simultaneous measurement to an equivalent “independent

measurement” of τB0 and ∆md from this sample. Our reformulated contribution was

incorporated into the new world averages announced at the ICHEP02 conference. See

Figs. 16.1-16.3 for details on the updates.

This study has focused on maximizing the sensitivity to the physics under study

(lifetime and mixing) by using few assumptions, by selecting additional background

control samples, and by employing an unbinned maximum likelihood fit with Data-

driven parameterizations wherever possible to simultaneously extract signal and back-

ground parameters. By bootstrapping the final fit with preliminary studies using en-

riched subsamples, we were able to develop not only an accurate understanding but

also sets of starting values for the final analysis. The full fit took into account the cor-

relations between all 72 ∆t parameters and transformed a traditionally systematics-

limited analysis into a statistics-limited one; with more data, the performance can

only improve. The general form of this analysis also lays important groundwork for

even more challenging measurements of the future.

We look forward to new analyses which expand upon this effort, and are proud to

have helped pioneer this technique. As we seek out the secrets of the Universe with

sophisticated analyses such as these, we can only benefit from being as inclusive and

objective as possible.
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0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

∆md (ps-1)

BABAR+BELLE average 0.503 ±0.007 ps-1

BELLE l/l

(32M BB
−
 prel)

0.503 ±0.008 ±0.009 ps-1

BELLE D *π(part)/l

(31M BB
−
 prel)

0.505 ±0.017 ±0.020 ps-1

BELLE D *lν/comb

(31M BB
−
)

0.494 ±0.012 ±0.015 ps-1

BELLE B 0
d(full)/comb

(31M BB
−
)

0.528 ±0.017 ±0.011 ps-1

BABAR D*lν/l,K,NN

(23M BB
−
 prel)

0.492 ±0.018 ±0.013 ps-1

BABAR l/l

(23M BB
−
)

0.493 ±0.012 ±0.009 ps-1

BABAR B0
d(full)/l,K,NN

(32M BB
−
)

0.516 ±0.016 ±0.010 ps-1

B Oscillations
Working Group

Figure 16.1: The updated world average for the mixing frequency of B0-B0 oscillations
as of July 2002, showing only the measurements from the asymmetric B-factories.
Note that this result includes the measurement outlined in this study.



277

0.4 0.45 0.5 0.55

∆md (ps-1)

world average 0.503±0.006 ps-1

ARGUS+CLEO
(χd measurements)

0.491±0.032 ps-1

average of above
after adjustments

0.503±0.006 ps-1

BELLE *

(2 + 2 prel)
0.506±0.006±0.007 ps-1

BABAR *

(2 + 1 prel)
0.500±0.008±0.006 ps-1

CDF *

(4 + 2 prel)
0.495±0.026±0.025 ps-1

SLD *

(5 prel)
0.507±0.023±0.019 ps-1

OPAL
(5)

0.479±0.018±0.015 ps-1

L3
(3)

0.444±0.028±0.028 ps-1

DELPHI *

(4 + 1 prel)
0.519±0.018±0.011 ps-1

ALEPH *

(3 + 1 prel)
0.446±0.020±0.018 ps-1

* working group average
   without adjustments

Figure 16.2: The new world average for the B0-B0 mixing frequency ∆md as of
July 2002, showing the averaged contributions from each experiment. This average
includes our result.
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

τ (B0) (ps)

Average 1.540±0.014 ps

BELLE exclusive
(99-01)

1.554±0.030±0.019 ps
BABAR excl. D(*) l

(99-02 Prel.)
1.523+0.024 ±0.022 ps1.523 -0.023 ±0.022new

BABAR incl. D(*) l
(99-01)

1.529±0.012±0.029 ps
BABAR exclusive

(99-01)
1.546±0.032±0.022 ps

SLD topology
(93-98 Prel.)

1.565±0.021±0.043 ps
SLD vert. + l

(93-95)
1.56+0.14 ±0.10 ps1.56 -0.13 ±0.10

OPAL Inclusive D(*) l
(91-00)

1.541±0.028±0.023 ps
OPAL D(*) l

(91-93)
1.53±0.12±0.08 ps
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1.523±0.057±0.053 ps
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1.74±0.12±0.04 ps
L3 topology
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1.52±0.06±0.04 ps

DELPHI πsl(91-94)
1.532±0.041±0.040 ps

DELPHI topology
(94-95 Prel.)

1.560±0.020±0.036 ps
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(91-93)
1.63±0.14±0.13 ps

DELPHI D (*) l
(91-93)

1.61+0.14 ±0.08 ps1.61 -0.13 ±0.08
CDF  D(*) l

(92-95)
1.474±0.039+0.052 ps1.474±0.039 -0.051

CDF J/ψ K
(92-95 Prel.)

1.497±0.073±0.032 ps
ALEPH π+π- recon.

(91-94)
1.49+0.17 +0.08 ps1.49 -0.15  -0.06

ALEPH exclusive
(91-94)

1.25+0.15 ±0.05 ps1.25 -0.13 ±0.05
ALEPH D (*) l

(91-95 )
1.518±0.053±0.034 ps

Figure 16.3: The world average for τB0 as of July 2002, including our result.
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Afterword

I entered graduate school for selfish reasons – because I enjoyed doing physics. In

particular, I found the crafty and clever ways that experimentalists teased out the

secrets of Nature to be very inspiring. But I didn’t choose graduate school to secure

a job in research physics or to acquire a set of technical credentials to advance my

career plans. I wasn’t even so much as interested in the skills I would take beyond

graduate school as I was in the process of learning and developing them in graduate

school. I think this attitude has given me an important sense of freedom, allowing

me to fully commit to the graduate school process without being anxious about the

future.

That journey is now complete. BABAR has taught me a lot, my advisor even more,

and 6 years of living the most of all. I’m grateful, ready, and open to whatever comes

next.

279



Chapter 18

Appendices

I include here additional materials that might be relevant or interesting to the

dedicated reader.
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Additional Plots of Event Sample
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Figure A.1: Uncorrelated D∗`, fake `, continuum D∗X, and combinatoric D∗ contri-
butions for same-side samples. From top to bottom: electron, muon and fake control
samples; left column: on-resonance and right column: off-resonance.
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Figure A.2: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of the
(SVT xD0 → Kπ) sample from Data. The dashed curve shows the fitted contribution
from combinatorics.
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Figure A.3: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of
the (DCH x D0 → Kπ) sample from Data. The dashed curve shows the fitted
contribution from combinatorics.
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Figure A.4: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of the
(SVT x (D0 → Kπππ + D0 → K0

S
ππ) sample from Data. The dashed curve shows

the fitted contribution from combinatorics.
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Figure A.5: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of the
(DCH x (D0 → Kπππ + D0 → K0

S
ππ) sample from Data. The dashed curve shows

the fitted contribution from combinatorics.
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Figure A.6: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of
the (SVT x D0 → Kππ0) sample from Data. The dashed curve shows the fitted
contribution from combinatorics.
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Figure A.7: Projection of the fit result on Data for the δm combinatoric background
fits described in the text. The 12 different plots show the distinct subsamples of
the (DCH x D0 → Kππ0) sample from Data. The dashed curve shows the fitted
contribution from combinatorics.



Appendix B

Event Selection Criteria

For the sake of completeness, we list the long, long list of specific event selection

criteria here. Refer to Chapter 5.5 for more details on the track lists, and Refs. [31]

and [41] for implementation specifics.

• | cos θ∗thrust| < 0.85 where θ∗thrust is the angle between the thrust of the D∗`
candidate and that of the rest of the event.

• The charged tracks of the D∗ and ` candidates have rdoca < 1.0 cm and |zpoca| <
3 cm where poca is the point-of-closest approach to the origin.

• The lepton candidate is selected from the GoodTracksTight list.

• The lepton momentum in the CM frame satisfies p∗` > 1.2 GeV.

• For e and µ samples, the lepton candidate passes the veryTight e or µ selector.
For fake samples, the lepton candidate fails both e and µ Loose selectors.

• π0 is reconstructed from two photons with raw invariant mass within ±15.75 MeV
of the PDG π0 mass. The π0 is fit with a mass constraint and has χ2 probability
greater than 1%.

• K0
S is reconstructed from a pair of charged π’s (from ChargedTracks list) with

raw invariant mass within ±15 MeV of the PDG K0
S

mass. The vertexing χ2

probability is greater than 1%.
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• For the charged daughters ofD0 candidates, π’s are selected from GoodTracksVery-
Loose; the K is selected from GoodTracksVeryLoose list for Kπ mode and
GoodTracksLoose list for Kπππ and Kππ0 modes.

• Raw D0 mass is within ±17 MeV for Kπ, Kπππ and K0
S
ππ and ±34 MeV for

Kππ0 of the PDG D0 mass. D0 is vertexed with mass contraint and the χ2

probability is greater than 0.1%.

• For Kππ0 and K0
Sππ modes, the Dalitz probability density∗ is greater than 0.1.

• Charged kaon passes Tight criterion for Kπππ and Kππ0, or notPion for Kπ
mode using KaonSMSSelector.

• Soft π± is selected from GoodTracksVeryLoose list.

• Soft π± satisfies pπsoft
< 450 MeV, and pt

πsoft
> 50 MeV.

• Momentum of the D∗ in the CM frame satisfies 0.5 GeV < p∗D∗ < 2.5 GeV.

• D∗ − D0 mass difference δm before D∗` refitting (but using mass-constrained
D0) is less than 165 MeV.

• D∗` vertex is fitted with beamspot contraint. The χ2 probability is required to
be greater than 1%.(Later, it is refitted with the multiply-constrained (D∗, `, beamspot)
fit which must converge as well.)

• For the opposite-side sample, the D∗` candidate satisfies cos θ∗D∗` < 0 and
| cos θ∗B−D∗`| < 1.1. For the same-side sample, it satisfies cos θ∗D∗` > 0 and
| cos θ ∗B−D∗(−`) | < 1.1, where −` represents the lepton four-momentum after it
is flipped by 180◦.

• Fit for ztag using Btag and beamspot constraint converges.

• |∆t| < 18 ps.

• σ(∆t) < 1.8 ps.

• The number of tracks used in the tag-side vertexing is greater than 1.

∗We calculate the decay amplitude squared based on measurements of amplitudes and phases by
E687[57] and the four-momenta of the D0 decay products in our data, assuming perfect resolutions.
The maximum is normalized to unity.



Appendix C

Comments on the BABAR Event

Store

“The Data” is a broad term. The BABAR detector provides a complex set of time-

dependent information, and it was only afters years of careful thought that the final

design emerged. In order to maximize the utility of the BABAR dataset, information is

organized into several gross domains under the BABAR Database Management System,

composed of the Event Store, the Conditions database, and the Online databases (the

Ambient and Configuration databases). The Configuration database is managed by

the online group, and is implemented in Oracle to track and record which detector

calibrations and configurations are used when data is recorded. The Event Store and

the Conditions databases are the most important for physics analysis.

A database is a mechanism by which data elements and relationships (often called

associations) between elements are preserved for index/retrieval. BABAR uses the

commercial technology Objectivity for many of its database needs. Objectivity is one

of the first commercially available implementations of a true object-oriented database

that offers real-time control and large-scale systems support. In the BABAR imple-

mentation, an Objectivity database is more specific: it represents a unit of stored

database information (usually just a file) with a given size, currently around 20 GB.

A federation is an Objectivity reserved word defining a set of related database files

and objects that can be accessed by a single application. Each federation consists
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of possibly multiple databases distributed across multiple file servers, together with

their indices and dictionaries. At BABAR there are several different federations in use

for the Event Store, to prevent the several different central read/write activities from

colliding. It is also nice to physically separate some groups of data, for instance, the

simulated from the real detector events.

The Event Store

This document focuses on the Event Store part of the Data. Event data arrives

from the detector, and if it passes the Level-3 Trigger selection criteria, it is written

to a file on disk, called an xtc file because of the tagged container data structuring.

The L3 trigger information is saved for each event as a set of trigger bits, the most

important of which are the L3OutDch and L3OutEmc bits. (The presence of either of

these bits guarantees an with a so-called physics trigger.) Simulated data is produced

by bbsim and SimApp and saved in xdr files. The L3-output xtc files are the

ones processed by OPR, served primarily by bbr-srv02. (OP)Reconstruction runs

in the form of Elf for detector data (xtc) and Bear for simulated data (xdr). The

”reconstruction” executable does double-duty on the data: it extracts and computes

the raw data format using digis (aka units of digitization), and also calculates (many)

new quantities for each event. Events are subjected to a set of ”filters”, usually called

BGFilter, and their pass/fail state for each filter component is recorded in the

event. The results of these conversions and computations are stored in the Objectivity

databases. Each Run’s set of events is stored as an Objectivity collection.

Hierarchy of Objects

In BABAR millions of useful events are recorded each year, but not all event are

useful to everyt physics analysis. If the analyst can make a selection decision based

on, say, only a dozen event summary variables instead of having to load and consider a

few dozen tracks in the event, he or she can make significant performance gains. Many

experiments, including BABAR, have elected to store several ”versions” of the data,

each with more reduced and more summarized information content. This allows the
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analyst to breeze through the high-level features of each event and quickly determine

if the event is useful. When a useful event is uncovered, the analyst requests the more

detailed information on that event, performs more precise calculations to determine

if the event meets stricter criteria, and so on and so on. There is some redundancy

in this duplication, since the summary information stored in the high-level rep of

the data is computed from quantities stored in the most-detailed representation. For

most physics quantities, however, retrieval of the stored high-level quantity is faster

than recomputation involving the retrieval of yet many more more detailed quantities.

In BABAR, the words raw, reco, mini, micro and nano are used (respectively)

to describe increasingly summarized levels of information about each event. (Tagbits

are, for instance, stored in the nano level of the Event Store.) We refer to these as

levels or stages of information about an event in the Store. The nano and micro levels

of information are well described in Ref. [80].

How does one store the different levels of detail about each event? BABAR uses

the tools of Objectivity (Objy) to manage these different layers of information in

a minimally redundant way. Each event is represented with an event header which

serves as a portal: The event header object holds references to child objects, each

corresponding to an additional stage of processing. Each child stage object contains

a stage header and a summary object. BABAR uses each stage of object to store

a level of information about the event. For instance, once the reco stage object is

attached to the event header, another processing pass (often in OPR) computes the

global R2 value for the event and adds the quantity to the nano stage (the event

summary object). Objectivity calls the summary object for each stage the tag object

because it provides fast query capabilities. For historical reasons, the nano level of

information is also known generally as the event Tag, the summary object for the

entire event (unrelated to B-tagging!). The power of the Objectivity implementation

lies in the organization of these levels (stages) of information; typically, a database

file will contain only one stage of an event’s processing. Event access and retrieval

per processing stage is therefore streamlined.
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Kanga

Due to initial concerns about the throughput, accessibility, and distribution of

the Objectivity Event Store, an alternative technique for compact data access was

proposed and implemented. Kanga uses a ROOT-based technology to store an event’s

micro and nano information (only) independent of Objectivity. Each Kanga file is

equivalent to an Objectivity collection, and in fact, Kanga files are produced from the

Objy Event Store by a separate production task. Kanga files offer efficient access and

portability but do NOT contain the full event information. In March 2000, Kanga

file production became centrally and uniformly managed. Kanga files are produced

for:

• skimmed events from good runs processed by the central skim production

• isPhysicsEvents from good runs processed by the central skim production

• SP3 Objy collections

Skims

For additional performance, skims have been developed. Known in some other

experiments as ”strips” or ”substrips” of the data, a skim contains a reduced set of

events that have been selected according to some physics criteria. Looping over a

smaller set of ”interesting” events will always be faster than examining every event

in the Store. Each group of analysts working on similar physics processes (i.e. within

an Analysis Working Group) defines their own private set of event selection criteria

that are loose and efficient. The central production team produces the skimmed data

sets which the individual analysts can process with their more detailed selection more

quickly. A well-planned skim selection criteria may actually only involve a single bit

in the event’s nano layer of detail, i.e. a tagbit. This greatly simplifies the selection

process and additionally preserves ”always and forever” (in the event itself) which

skim criteria are satisfied by the event. For some skimming procedures, the exectuable

will add a ”tagbit” to the event’s nano information to indicate its selection decision.
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It is important then for the central skim production team to run the same set of

executables over all events so that an event looks ”the same” in every skim.

The Objectivity implementation of the skim is again designed to minimize re-

dundancy: collections in an Objy skim only contain pointers to the selected events’

headers in the Event Store. An Objy skim doesn’t contain any new information,

it is just a list of pointers to events in the Store that passed certain (typically nano

based) selection criteria. Files in a Kanga skim, however, are actually standalone files

holding a smaller number of events with their own private nano and micro quantities.

Conceptually a stream and skim are equivalent : a subset of events that are

peeled off for a purpose, typically because they appear to contain a particular physics

feature. In these terms, a stream is just a big skim. Historically, the two words have

meant different things at different times, especially when comparing Kanga and Objy

implementations. Typically, a stream has referred to a collection of events that are

packaged in a manner to facilitate portability to remote sites. A skim is typically

defined by a set of physics processes or selection criteria.



Appendix D

Comments on Parameter Splitting

To build the case for parameter “splitting,” consider the following exercise. Sup-

pose we have a class of events that have Gaussian distributions in some variable x.

Additionally, half of the events have an attribute value of “Narrow” for some charac-

teristic, and the other have the value “Wide” for the same characteristic. If we were

to draw their collective distribution in x, we might arrive at Fig. D.1 which we fit

with a single, common Gaussian function.

Guessing that the fit is rather poor in terms of estimating the width of the Gaus-

sian, we might then separate the events completely by their Color category, “splitting”

the Gaussian’s mean and width on the values “Wide” and “Narrow”. We now per-

form another fit, but it is now two separate, disjoint fits. We discover that the the

widths σ of the two Gaussians are indeed statistically distinct, but the means µ look

similar, as shown in Fig. D.2.

Finally, we elect to “share” the mean between “Narrow” and “Wide” because

there will be twice as many events used to determine the common mean parameter,

greatly improving our statistical power. We are “splitting” the width, σ, between the

two subtypes of events, but “sharing” the mean parameter. The simultaneous fit to

the x distribution now looks as in Fig. D.3, and we observe the improved statistical

error on µ. Unveiling the source distributions in Fig. D.4, we observe that this final

simultaneous fit splitting across categories is indeed the correct way to represent the

joint distribution in the variable x.
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This exercise is trivially simple, but it outlines one of the strategies we use to

determine if parameters should be “shared” or “split” across categories. Note that

we do not need to split all parameters in the same way. We perform exercises in this

vein in Data using the full set of 360 possible subdivisions within each control sample.
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Figure D.1: The summed distribution in x for “Narrow” and “Wide” events and the
the projection of a single Gaussian fit.
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projection of the two, distinct Gaussian fits.
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Figure D.3: The summed distribution in x for “Narrow” and “Wide” events and the
projection of a fit result using a simultaneous pdf that shares and splits different
parameters. In particular, the width σ is distinct for “Narrow” and “Wide” events,
and the mean µ is common.
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Appendix E

SVT Radiation Monitoring and

Protection

This Appendix brings together several different resources to define the BABAR

Silicon Vertex Tracker’s radiation monitoring and protection system, SVTRAD for

which I was primarily responsible. It is impossible to distill the full spectrum of

documentation into one brief set of comments. We therefore choose to briefly describe

the system andinvite the reader to review some hand-picked references.

Reference Brief Description

Ref. [81] Homepage for complete online documentation
Ref. [82] Proceedings contributed to DPF2000 Conference
Ref. [83] Draft of future plans and upgrades
Ref. [84] Overview of the BABAR Radiation Protection System

Table E.1: Brief list of top references for the SVTRAD system.

E.1 Motivation

The demand for high luminosity at B-factories makes accelerator-induced back-

grounds an important issue. The need for strong final focusing, high beam currents,
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and tightly spaced bunch trains creates potential background sources, such as syn-

chrotron radiation, and lost particles from beam-gas interactions or the scraping of

beam-tails. The BABAR detector at the PEP-II B-factory is no exception. These

backgrounds can have a significant influence on the detector and its physics goals by

potentially causing: long-term damage to the detector hardware and its electronics

through integrated radiation exposure; performance reduction of the detector due to

hardware or bandwidth limitations; complications to the extraction of physics signals

due to spurious background tracks, photons, and triggers.

Radiation monitoring

Experience at accelerator-based experiments elsewhere has indicated that suc-

cessful control of radiation backgrounds relied strongly upon precision measurements

and characterization of background sources and dependencies: efficient remediation

of backgrounds requires an understanding of their origin. Based on detailed experi-

ments and testing before final assembly, many of the BABAR subsystems assigned a

lifetime radiation budget to their sensing hardware and front end electronics. To en-

sure the careful rationing of each sub-detector’s lifetime, detailed cumulative radiation

monitoring is necessary. The design of a system that could accurately report/record

instantaneous and long-term radiation dose rates for the BABAR detector was critical.

Radiation protection

An additional challenge at BABAR is the severity of machine-induced backgrounds

due in part to the high very beam currents of the PEP-II storage ring. An accident in

the machine could easily dump MRads of ionizing energy into the detector, damaging

it severely. A radiation monitoring system therefore needed an active “feedback”

component, a protection system that could automatically and independently abort

the beams in the machine if radiation levels within the detector became dangerously

large.

The decision to abort the beams because of a high risk of permanent radiation

damage is not easy – it must be weighed against the experiment’s needs for integrated
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luminosity and the operational efficiency of the detector. A hardware protection

system needs to be extremely flexible, then, in order to meet the changing demands

of the detector and accelerator as each evolves and matures. In addition, a rational

radiation protection system requires an expert monitoring system that can forewarn,

diagnose, and evaluate radiation accidents.

Radiation and the SVT

The unprecedented beam currents and luminosity at the PEP-II accelerator make

machine backgrounds a significant challenge to the BABAR experiment. Despite sig-

nificant use of radiation hard technology, the Silicon Vertex Tracker (SVT) is the

most radiation vulnerable sub-detector because of its proximity to the beamline. The

SVT has established a rigorous program of radiation monitoring and protection (SV-

TRAD) to ensure the proposed lifespan, including the ability to automatically abort

the beams in PEP-II when radiation exceeds programmable thresholds

The innermost subsystem of the BABAR detector is the Silicon Vertex Tracker

(SVT), consisting of 5 concentric layers of double-sided silicon microstrip detectors.

The inner two layers are within 3 cm of the beampipe, and hence receive some of the

most intense radiation within the entire detector. The proximity to high radiation,

combined with the inherently vulnerable Si nature of the detector modules and the

novel front-end CMOS electronics placed on the silicon wafers themselves, makes

radiation safety a top priority for the SVT.

The SVT is vulnerable to radiation damage by several different mechanisms. Both

the front-end readout electronics and the actual silicon wafers themselves are suscep-

tible to gross radiation damage. (For the silicon wafers, the pedestal leakage current

increases with damage and the CMOS readout electronics suffer a degradation in noise

performance.) Radiation damage to the SVT sensors and readout chips are increased

surface leakage current, increased interstrip capacitance, and increased noise from the

input transistor. These effects reduce the signal-to-noise ratio. The SVT has been

designed as a rad-hard device, such that test beam studies and extrapolation to the

full size detector give the SVT a minimum 2.4 MRad radiation dose budget over its
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lifetime.

Additionally, there was strong evidence that the detector modules could be vul-

nerable to large radiation transients which can short-circuit an effective capacitor

near the p-stop implants. It is estimated that an acute dose exposure is damaging

at levels of 1 Rad deposited in less than 1 second. The SVT is required to meet

its resolution performance specifications up to an integrated dose that is 10 times

the expected nominal dose, or 2.4 MRad over 10 years for the first-layer sensors and

electronics.

Because of the sensitivity of the SVT to radiation damage, and based on prelimi-

nary experiences with the diversity of backgrounds at PEP-II during the commission-

ing phase, it was necessary to design and implement a system specifically dedicated

to the SVT. The final solution described here fulfills both the radiation monitoring

and protection needs.

E.2 Specifications

The systems solution (SVTRAD) to the radiation monitoring and protection needs

for the SVT evolved through several years of prototyping and detailed studies during

the construction and commissioning phase of PEP-II. SVTRAD needed to use a set of

sensors which are compact and easy to distribute within the SVT volume. Using these

sensors and cutsom electronics, the systems needed to provide radiation monitoring

and protection, while conforming to BABAR and PEP-II standards of interface and

control. This section details these specifications.

Mechanical constraints

Early simulations accurately predicted a complicated pattern of radiation expo-

sure around the central beampipe near the interaction point. The scaling of the

background levels is more complex than a naive 1/r2 flux fall-off because of beamline

component shadowing and complex upstream and local scattering centers. This flux

consists primarily of secondaries from showers initiated by scattered beam particles.
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To obtain the most accurate (spatially segmented) monitoring of radiation exposure,

it was necessary that the radiation sensors be placed as close as possible to the SVT’s

silicon detector modules.

The narrow mechanical envelope allocated for the sensors was the most stringent

constraint. The sensing volume was restricted to two annular regions of 19.7 mm in

z and 3.6 mm in r, at z = +12.1 cm and -8.5 cm.

Performance requirements

The primary requirement of this system is to protect SVT components from avoid-

able radiation damage by early detection of increasing radiation levels. Provision of

real-time monitoring of slowly-varying ( few second) radiation levels in the interac-

tion region for accelerator tuning and diagnostics is also necessary. The ability to

integrate measured radiation dose rates to form estimates of the total dose received

by the SVT and its front-end electronics is critical as well. The radiation monitoring

and protection system needs to be operational at all times when beams are present

in the accelerator.

A standard unit for measuring absorbed radiation dose, which we use almost

exclusively here, is the Rad; we additionally use mR/s for measuring instantaneous

radiation dose rates. The design radiation dose budget of the SVT is 2.4 MRad

over 10 years. A naive model for the accumulation of this dose yields an average

dose rate of 24 mR/s. We therefore require that the radiation monitoring system be

sensitive to changes in dose rate on the order of 5 mR/s. Dose rate samples should

be provided at the rate of a few Hz, and should have an accuracy of at least 10%.

Systematic uncertainties (such as temperature dependence and radiation damage)

need to be controlled carefully to preserve the overall 10% uncertainty on radiation

dose integrals over the expected 10 year lifetime.

We require a minimum number of false-positive trips from the radiation protection

system. The shortest timescale for a response to avoid damage to the SVT is 100

mus, being equivalent to a few tens of ring turns, or a few times the minimum

response time of the beam abort kicker magnets. We therefore require that the system
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respond to acute radiation doses within 100 mus. The protection system must also

prevent chronic exposure at rates higher than the budget. These two requirements

are combined by defining a damaging exposure as a minimum dose absorbed at a

minimum dose rate. The minimum dose integrated above threshold which results in

a trip should be programmable between 100 mRad and 10 Rad, and the chronic dose

rate threshold should be usable between 10 mR/s and 1000 mR/s with an absolute

error better than 10%. The implementation of these thresholds must also be immune

to temperature variations induced by normal operations of the SVT and/or effects

induced by beam heating.

The SVTRAD system is only one component within the general BABAR Radiation

Protection System (RPS), and as such, it must also not unnecessarily interfere with

other systems’ performance. A sketch of the full BABAR RPS is shown in Fig. E.1.

Figure E.1: A schematic of the BABAR Radiation Protection System.
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E.3 Sensors

Based on the mechanical constraints and the need for radiation monitors with

sensivitiy and response comparable to silicon in the SVT, large area PIN photodiodes

were selected as the optimal sensors.

The SVTRAD system uses 12 Hamamatsu PIN photodiodes (S3590-08) and 24

YSI thermistors (55036). The reverse-biased diode behaves like a current source

whose output varies with the instantaneous dose rate, the integrated dose received,

and the temperature. The accuracy for measuring dose rate (= total current - leakage

current) depends initially on the current-measuring accuracy of the readout, and

then eventually (after sufficient radiation damagce) on the accuracy to which the

diode temperature can be monitored to correct for leakage current variations. The

accuracy for measuring integrated dose is limited by how well a diode’s annealing

history has been tracked, and the uncertainty in the damage coefficient. These issues

are discussed more completely in the next sections.

PIN photodiodes

The sensor of choice is a large-area Hamamatsu S3590-08 PIN photodiode. The

diode consists of a 300 µm thick N-type silicon substrate (intrinsic layer) with a thin

P-layer at the active side with the active area 1 cm × 1 cm and an N+-layer at

the rear surface. The capacitance of this diode is about 50 pF. For our detectors,

the diodes are reverse-biased at 50V (the full depletion voltage); the leakage current

for an undamaged PIN diode is typically 1–2 nA at room temperature. Because of

the relatively thick intrinsic layer, the fully depleted bias is relatively low, and since

almost the whole intrisic layer is depleted, the active region is almost the same size

as the whole material.

Because the diode relies on the details of the Fermi-Dirac distribution function for

majority and minor carrier population, the response of the diode is highly temperature

sensitive. Theoretically, one can show that the leakage current of the reverse biased
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diode should behave as

I(T ) = I(T0) × (T/T0)
2e

−E
k

( 1
T
− 1

T0
)
, (E.1)

where E is the bandgap energy of silicon, or about 1.2 eV, and k is the Boltzmann

constant. With a Taylor expansion in the limit of small temperature changes expected

during normal operation, this temperature dependence can be parameterized by a

simpler exponential model,

I(T ) = I(T0) × eα(T−T0), (E.2)

with the temperature coefficient, α typically 10%/◦C.

Signal extraction

Signal current is formed by the passage of charged particles through the diode’s

depletion region which deposit energy, creating electron-hole pairs along the particle

trajectory. (The number of the pairs produced is proportional to the energy lost by

the particle.) Under the applied electric field, the electron-hole pairs flow out of the

bulk and contribute a signal portion to the total leakage current. Taking into account

the bandgap energy in silicon, each mRad of energy absorbed by the diode yields

about 0.2 pC of charge.

To extract radiation dose rates one needs not only to accurately measure the total

leakage current, but also to have a good model for the pedestal.

The integrated radiation effects in semiconductors are complicated. With sig-

nificant exposure to radiation, the diode becomes damaged and the leakage current

increases. The basic radiation damage mechanisms are:

1. Displacement damage: Incident radiation displaces silicon atoms from their

lattice sites. The resulting defects alter the electronic characteristics of the

crystal.
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2. Ionziation damage: Energy absorbed by electronic ionization in insulator lay-

ers, predominantly SiO2, librates charge carriers that diffuse or drift to other

locations, usually at pre-existing defects, where they are trapped, leading to

unintended concentrations of charge and, as a consequence, parasitic fields.

Ionization effects depend primarily on the energy deposited in the material, in-

dependant of the energy and the type of the incident particles, and displacement

damage depends on the non-ionizing energy loss, namely, the energy transferred to

the lattice atoms, which depends on the mass and energy of the incident particles.

The ionization damage is considered to be more transient with relaxation time of the

order of days, which is highly dependent on the temperature, while the displacement

damage is a long-term effect. These mechanisms are not fully understood The effect

of damages on our device is the increase of the leakage current. The relation between

the increase of leakage current and the radiation dose depends on the types of the

radiation, and is assumed to be linear over a wide range. The proportionality factor

is of the order of 1 nA/cm2krad according to the previous studies using proton and

neutron sources.

• distributing bias voltage to each photodiode sensor

• receiving, filtering, accurately digitizing and simple time averaging of each

diode’s leakahe current

• forming and buffering a continuous data stream for acquisition via the BaBar

standard protocol for slow-control communication

• interpreting real-time diode leakage currents as radiation signals on-board to

provide an interlock alarm to the accelerator control system when radiation

levels exceed user-defined thresholds

Thermistors

Because of the leakage current’s significant temperature dependence, dedicated

temperature sensors were needed for each radiation sensor. Although thermal gra-

dients within the first layer of the SVT were expected to be small due to a chilled
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water cooling system, two negative temperature coefficient thermistors were mounted

adjacent to each photodiode.

E.4 Design Choices

Many of the design choices were guided by BABAR-wide system standards and

PEP-II interface considerations. Several key principles were emphasized in the design

phase of this project.

1. Systems flexibility and expandability. Many configuration options were left as

parameters, and conscious effort was made to keep the hardware rigorous and

failsafe and yet not value-specific.

2. Modularity. The separate importance of the radiation monitoring and protec-

tion tasks and their relative decoupling suggested that interdependencies be

minimized between them. Each subsystem was designed to operate with and

without remote support, such that a breakdown in communications would not

compromise the hardware protection, nor cause a configuration ambiguity when

communications were restored.

3. Synchronization and transparency. The tiered structure of the task description

(hardware, local firmware, remote communication protocols, and high-level user

interfaces) called for deliberate and careful bookkeeping. By instantiating cer-

tain tasks of the hardware as high level objects, organization of error detection

and configuration became simpler and more intuitive.

Monitoring

An obvious choice for precise monitoring of the diode leakage currents is high

efficiency charge-integrating ADCs. Relevant time scales for average values to be

sent to scrolling displays were judged to be a few Hz. This was in contrast with the

expected time development of dangerous radiation accidents, which could be anywhere

from a single beam turn around the ring (7.4 µs) to several seconds for a feedback
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instability. The dynamic range of 250 kHz - 0.5 Hz was too broad to span, so the

upper limit on ADC digitization was set around 20 kHz. To accommodate this range

of time-resolved ADC samples, a two-stream model of data transport was devised.

A front-end high-speed ADC with programmable sampling capabilities was nec-

essary, combined with a bank of accumulating registers implemented in a Field Pro-

grammable Gate Array (FPGA) and a set of deep memories to permit asynchronous

polling of the data from a remote logging client. Individual ADC samples (internally

averaged and/or filtered) are directed to the accumulator. Each sample updates the

accumulator’s contents, which is echoed onto a 5000 sample-deep circular buffer. This

very deep buffer forms the “fast” datastream, and after start-up equilibration, carries

at least 2500 samples of recent history. The accumulator rolls over every N samples,

copying its final sum value to the “slow” datastream buffer. (The rate of samples in

the “slow” buffer is chosen to match the remote polling rate.) At the user’s request,

the ADCs are frozen, and the “fast” circular buffer can be read-out at the standard

“slow” readout rate.

Analog low-pass filtering with a 5 ms time-constant was selected to form a primary

guard against high frequency noise. Optimal powerline noise (60 Hz) rejection was

achieved in the “slow” datastream by requiring the samples’ averaging time to be a

multiple of the fundamental 60 Hz. The circular buffer was implemented with a pair

of back-to-back deep FIFOs such that when one became full, the other was cleared,

and the sample stream transferred to it.

Protection

Solving the radiation protection problem with PIN diodes is intrinsically difficult,

especially in the high-dose/long-lifetime environment of BABAR. The design chosen

must allow precise setting of thresholds as low as 10 mR/s (10 nA) when diode leakage

current pedestals range from 2 nA to 1000 nA over their lifetime of radiation exposure.

The accuracy of the threshold depends almost entirely upon one’s knowledge of the

diode pedestal current. Because of the large temperature coefficient (approximately

10% / deg C), any meaningful radiation trip threshold also needs to allow for front-end
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temperature compensation. (For instance, the SVT DAQ system changes the diodes’

ambient temperature by as much as 0.5 deg C, which for an uncorrected diode signal

with pedestal current of 100 nA amounts to an excess signal of 5 nA or 25 mR/s.)

As radiation damage increments the diode pedestal current, the radiation protection

circuitry must also be capable of efficient re-calibration to adjust for damage and

re-compute the radiation trip thresholds. Finally, the radiation protection circuitry

should preserve the input diode signal for transmission to the monitoring system

for logging, computation, and display. (We have allowed for a degradation in signal

performance by a factor of 10 after radiation protection processing.)

Several analog schemes based on comparators with DAC-generated reference levels

were prototyped, but they typically failed due to poor noise immunity, thermal drift

of components, and a gross inability to effectively distinguish between events of dam-

aging dose integral and transient events with a high peak but negligible width over

the full range of time scales. A scheme of competing frequencies into a “leaky-bucket

counter” was designed, which additionally offered straightforward remote configura-

tion and control. This solution best instantiates the goals of minimizing radiation

exposure of the SVT while providing a programmable level of “forgiveness” for the

machine’s radiation backgrounds.

Commercially available ICs exist which can convert an input current to a frequency

pulse train in a reliable, 0% deadtime fashion. The leaky-bucket uses these frequency

inputs to implement a digital counter of programmable depth. The three inputs are

proportional to:

• total diode leakage current

• voltage-biased thermistor current

• programmable up/down clock rate

When the bucket overflows, the circuit trips, registering a radiation alarm. The

three primary inputs form a net count rate for the bucket; when the count rate

is greater than zero, the bucket will inevitably overflow and a trip is imminent. Of

course, if the net count rate is negative, the bucket will remain empty. The acute dose
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threshold is the delta-function extreme on the diode current input; in the limit of high

radiation, the time until trip is only governed by the depth of the counter, and hence

is proportional to the total dose integrated until the trip. The chronic dose threshold

takes over in the limit of many clock cycles from each of the inputs. The diode current

input increases with radiation and temperature, filling the bucket. The thermistor

input forms a negative temperature coefficient signal, which counteracts the changes

in the diode input due to thermal variations. The third input, a programmed clock

signal, sets the effective chronic dose threshold. To reach a trip condition, the diode

input signal must remain greater than the clock and thermistor combination long

enough to fill the bucket. The depth of the bucket is now the hysteretic threshold,

putting a cap on the dose integrated until trip. The time until trip is inversely

proportional to the input radiation dose rate, with a “forgiveness” equal to the depth

of the leaky-bucket.

The successful detection of dangerous radiation conditions and the accurate gener-

ation of a radiation trip signal is not the end of the story. The SVTRAD system must

interface with the PEP-II Machine Control System, to gain access to beam abort and

injection inhibit inputs. The SVTRAD radiation trip signals are routed to the accel-

erator control system via fiber optics to eliminate impedance and level-shifting issues.

At the machine interface, the fiber light levels are translated to locally-referenced TTL

and compared to individual injection triggers derived from PEP-II. Because injection

losses can easily dominate the radiation backgrounds in the interaction region and

because the cost of aborting stored beams in both rings is so high, the radiation trip

signals from SVTRAD are gated against individual injection triggers. If the radia-

tion trip is coincident with an injection pulse, the trip is steered toward the injection

kicker magnet and latches an injection inhibit. (Timing coincidence is independent

for each ring, and hence each ring can be separately inhibited.) If another radiation

trip occurs before the injection inhibit is manually reset, the stored beam is deemed

the guilty party and the stored beams are aborted.
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Remote protocols and controls

The SVTRAD system was designed to comply with BABAR interface standards,

namely through the use of EPICS and CAN-bus. Controller Area Network (CAN) is

a bus-protocol with high bandwidth (up to 25 kbits/s) and reliable arbitration. The

SVTRAD module operated independently of remote clients, retained configuration in

EEPROM across power-cycles, and could also host an elementary RS232 serial-port

sessions. A polling process living in EPICS requested status and slow ADC data from

the SVTRAD module at a constant rate.

E.5 Implementation

The SVTRAD system is the combination of several different pieces of hardware,

an array of sensors, and a dynamic set of EPICS-based applications running on single-

board computers and UNIX clients. We describe here the details these each in turn.

Overview

The front-end hardware of the SVTRAD system consists of printed circuit board

sporting three programmable memories, a microcontroller, and two communications

ports. Each SVTRAD module services three separate diodes, distributes bias volt-

age and a commonly referenced grounding scheme. Each diode is supported by two

thermistors in close thermal proximity; these thermistors are also connected to the

SVTRAD module.

The SVTRAD module is a custom designed 6U x 13 3/8” x 8 H PCB fabricated

specifically for insertion in a double depth VME crate, although there is no dynamic

link through the VME crate’s backplane. (Only a system reference for the grounding

scheme is provided on the backplane connector.)

The microcontroller is the heart of centralized operations of the board, although

both the monitoring and protection tasks (once configured, either at power-up or by

specific commands from the mcu) can run without support from the mcu. The radia-

tion monitoring task is handled by a dedicated FPGA, as is the radiation protection
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tasks’ leaky-bucket counters. Each of the module’s three channels uses a hardware

configuration jumper to determine if the diode current will be used exclusively for

monitoring. Any diode participating in the interlock/protection circuit is fed back

into the monitoring ADCs via a signal-reconstruction circuit. A combination of the

three diodes’ radiation trip states are used to form the entire module’s radiation

alarm, which is passed out on a dedicated fiber optic as a negative going 4 MHz

pulse. Fig. E.2 depicts the separation and collaboration between the two tasks of

monitoring and protection.

Figure E.2: Toy block diagram of the SVTRAD module.

Radiation monitoring system

When a particular diode enters the monitoring stream, the input level is digitized

using a precision Burr-Brown DDC101-U ADC. Most of the ADC conversion options

(rate, oversampling, averaging, etc.) are programmable and are set equally for all

three channels. These ADCs are operated continuously (with less than 1% deadtime),

but have programmable parameters that include number of integrations per sample

and number of bits transmitted after conversion (up to 20). The digital output
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from the ADCs is transferred to Xilinx FPGA on a dedicated databus, where it

is deserialized and stored in an accumulating register. The averaging cycle of the

accumulator can be user defined, as can the number of bits from the ADCs (up to 20)

that are used. The accumulator stores its averaged values in a ”slow” data stream

that fills a FIFO; the mcu begins a read sequence whenever the FIFO reports that it

is not empty. There is also a ”fast” data stream stores all of the ADC samples in a

circular buffer that can store at least 100 ms of data at the maximum sampling rate

of 15.6 kHz. The slow data stream divides down the data rate by averaging over N

(remotely configurable) samples. The circular buffer is normally not read out during

continuous sampling, but can be accessed at the receipt of a remote command. The

slow data stream is normally read out in real time during continuous sampling and

transmitted via CAN bus through the mcu.

During normal operations, the slow data was acquired at 0.47 Hz, with the ADC

integration time 0.250 ms. The ratio of fast/slow data rates was 1024. With this

configuration, stable input currents were resolved to better than 20 pA rms, with

equivalent accuracy. The SVTRAD modules were polled at 2 Hz so that nearly every

response message contained ADC data as well as status information.

The fast history buffer readout was configured with a post-mortem trigger man-

aged by a polling task in EPICS. When the SVTRAD module reported a radiation

trip to EPICS (via the routine status message), EPICS responded with a latency of

less than 500 ms and issued a series of commands to the module’s microcontroller that

stopped the ADC digitization and transferred the contents of the fast history buffer

to disk at 1600 bits/second over CAN. A manual fast history buffer request was

implemented as well. The 480 Hz fast history sampling rate was more than sufficient

to accurately reconstruct the 60 Hz fundamental and its harmonics in the noise spec-

trum. The combination of the fast history buffer and a simple FFT analysis package

formed a valuable diagnostic tool to verify the integrity of the module’s grounding

and shielding scheme.
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Radiation protection system

The radiation protection system is based on the Analog Devices AD652-KP Syn-

chronous Voltage-to-Frequency (VFC) converter. The frequency output is fanned to

a Frequency-to-Voltage (FVC) converter (to be sent back into the radiation monitor-

ing stream) and passed directly into the Lucent Orca FPGA as a digital pulse train

of TTL levels. The converters are so-called synchronous, and therefore have a pro-

grammable collected charge to pulse rate ratio, based on a supplied clock speed. (The

slower the driving clock speed, the more charge a given output pulse will correspond

to.) The VFC operates according to:

fout =
Iin

1.0mA
× fclk (E.3)

Thermistors near each diode are voltage biased with -5.0 V, passed through a tran-

simpedance stage, and then sent to a corresponding bank of VFCs. The FPGA uses

the thermistor frequency pulse trains for crude corrections to pedestal leakage current

due to temperature changes. The diodes have a temperature coefficient of 10% /

degC, the thermistors -5% / deg C, but because of the biasing scheme, both frequency

pulse trains from the VFC are positively correlated with temperature.

The Orca programmable logic device fulfills several functions. Included on each

channel of processing is a watchdog timer that monitors the nominal leakage current of

each interlocked diode, as well as the current from each included thermistor. Failure

to reset the timer results in an interlock alarm; this protects against bias supply

failure and breaks in cabling upstream of the SVTRAD board.

The leaky bucket counter within the AbortBrain FPGA pits a programmable clock

against the frequency pulse train from the thermistor and the diode (via the VFCs).

The counter has three inputs then: an INCREMENT input from the diode VFC,

a DECREMENT input from the thermistor VFC, and a programmable INCRE-

MENT/DECREMENT input from the internal timer. Thus, the net frequency

into the counter is:

fnet = ±ftimer + fdiode − ftemp (E.4)
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An interlock condition is achieved when the counter reaches its maximum value.

(i.e. Whenever fnet is positive for sufficient time to overflow the counter.) Note

that the total dose required to exceed the threshold depends on the rate at which

it is delivered: below a certain rate, the module never trips, but if this threshold is

exceeded for long enough, the unit will trip after absorbing a maximum dose that

decreases with increasing dose rate. Thus, the user has control over two independent

trip parameters that correspond to the instantaneous radiation dose threshold (acute)

and average dose rate threshold (chronic).

Upon power up, the Orca FPGA enters a configuration state, which by default

sets the radiation alarm. The on-board microcontroller can only address the when it

is in the configuration state, during which it can initiate calibration procedures or set

channel parameters. Because the uses a programmable depth counter, programmable

rate timer, and provides the clock pulses to each VFC, the unit can be calibrated to

subtract off pedestal leakage current of the diode, and to be immune to temperatures

changes in the diode leakage current.

In configuration mode, the user can initiate a calibration sequence (for diode

leakage or thermistor current) which counts the VFC pulses for each channel during

a precisely defined amount of time (at present, 16.7 seconds). The final value in the

counter (for each channel) then reflects the pedestal current for that device. The

user can then select the best set of parameters so that the net count-up input is

nearly temperature independent, so that the average state of the counter represents

only radiation dose. The user defines the two radiation thresholds (instantaneous

and cumulative dose rate) by constraining the relationship between the depth of the

counter, the VFC clock signals, and rate (and direction) of the timer. For a pictorial

overview of this design, see this image.

Knowledge of the SVT’s susceptibility to p-stop shorts came late in the SVTRAD

design phase, and it is only a tribute to the system’s flexibility that we have been able

to include hard protection against the sub-millisecond type of radiation damage. In

order to meet this compromise most satisfactorily, an additional timescale of chronic

dose threshold was necessary. By requiring the acute dose threshold to be near 100

mRad (100 mR / ms is the SVT’s best estimate of the scale of p-stop short formation,
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the module’s fastest response time is 500 usec), the hysteresis on the chronic dose

threshold is small. As successful commissioning of the collider ramped up, the chronic

dose threshold was raised to accommodate higher ambient background levels due to

stored beam backgrounds. A 100 mRad tolerance threshold became unforgivable. To

increase the hysteresis, another tier in the timescale hierarchy of thresholds was added.

By artificially raising the chronic dose threshold to, say, 300 mR/s, the front-end

circuits sensitivity to short-lived 150-200 mR background fluctuations was reduced.

A higher level administrative control was implemented in EPICs whereby a chronic

dose rate of 45 mR/s was enforced on the timescale of 5 minutes. When 5 consecutive

minutes passed with the average radiation dose rate over the long-term chronic dose

rate threshold, an EPICS process tripped the SVTRAD module, forcing a software

abort of the hardware interlock system. This “softAbort” system was very effective in

decreasing sensitivity to transient ∼few hundred mR background fluctuations while

continuing to enforce the SVT’s daily radiation budget.

The acute response time of the front-end radiation protection hardware scales

linearly with the value of the acute dose threshold such that

ttrip =
1ms

1Rad
(E.5)

but plateaus around 450µs. The injection trigger gating window was set to 2.0 ms to

allow for some jitter and non-infinitely tall acute dose events.

Control and monitoring

The SVTRAD modules are essentially autonomous in their protection task, aside

from updating the configuration and/or calibration. To meet the requirements of dy-

namic monitoring of radiation levels, a remote client service was implemented using

a multi-level custom EPICS package. A poll-response protocol was used on the CAN

bus, with EPICS polling regularly for status and recent data and the module push-

ing messages in response. Within EPICs the CAN messages are stripped down to

status contents and ADC data. The ADC samples are converted to measurements of
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integrated charge, converted to radiation dose rate by pedestal subtraction and tem-

perature correction, farmed to various display clients, and simultaneously archived to

local disk.

The conversion of measured diode leakage current to radiation dose rate is a non-

trivial matter, and one of the strengths of the EPICS implementation of the SVTRAD

system. The thermistors not used in the radiation protection circuit are handled by

another dedicated hardware module, HTEMP. The HTEMP module provides cur-

rent biased measurements of the thermistor resistances which are then converted to

temperature through the manufacturer’s reported R-T conversion table. The temper-

ature is instantiated as an EPICS record which then feeds the temperature correction

machinery. The entire dose rate conversion package uses an event processing state

machine; in the “run’ state, incoming ADC samples are assumed to contain a pedestal

and signal contribution, and the last know good pedestal is converted to the instanta-

neous temperature reading, subtracted from the instantaneous diode current sample,

converted to dose rate and pushed out. When the state machine is in the “calibra-

tion” state, incoming ADC samples are assumed to contained only diode pedestal

current. These samples and their temperature are accumulated sequentially to form

an increasingly more precise estimate of the diode’s true pedestal leakage current.

At 0.47 Hz sampling, 10-15 points (take over the course of 20-30 seconds) were en-

tirely sufficient to determine the diode pedestals to better than 0.25 nA precision,

and converge the diode dose rates to 0 mR/s with an rms resolution of 1 mR/s.

Because of the rate of radiation exposure by PEP-II during high luminosity run-

ning (often 1-3 kRad / day), the diode pedestal currents increment several nA per

day. In order to re-measure the pedestals and stay ahead of drift, an automatic diode

dose rate calibration system was implemented. Taking advantage of the widespread

EPICS support in BABAR, an automatic EPICS task was created that monitored the

state of the accelerator. when sufficient conditions (typically beam currents and as-

sociated warning indicators) indicated that PEP-II was in a stable, no beam state,

the task automatically denied PEP-II injection, changed the event processing state

machine to “calibration” for 35 seconds, and then cleared and exited.

Additional radiation protection algorithms are implemented in the online software
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as well. For instance, operator alarms can be triggered when the integrated radia-

tion dose for a sensor exceeds a daily, or hourly maximum. These “administrative”

alarms provide valuable feedback to the accelerator team, and advises their policy in

short-term planning. Recently, a new algorithm has been included that monitors ra-

diation dose absorbed during any particular PEP-II injection situation and, based on

comparisons to established limits on acceptable radiation exposure during injection,

can either inhibit the rate of injection, or abort the beams. Because radiation policy

has a direct impact on experiment up-time (i.e. aborting the beams costs integrated

luminosity), sophisticated algorithms have been necessary to carefully optimize the

balance between radiation exposure, risk, and the need for continuous up-time. The

EPICS control system has generously supported these efforts.

The combination of EPICS and the host UNIX platform posed an excellent en-

vironment in which to develop a streamlined task for calibrating the front-end pro-

tection hardware and computing the optimal parameters for a given set of radiation

thresholds. A native C + + program, a PERL script, and a well-documented EPICS

GUI screen were all that were needed to reduce the challenging calibration to a simple

button-click. Fig. E.3 shows a sample of the user-interface panels implemented under

EPICS.

E.6 Performance

A diode used in the protection circuit is typically referred to as “abort diode”

and those used in only the monitoring system are termed “monitoring diodes.” At

present, the four diodes in the horizontal plane have been configured as abort diodes,

and the other 8 TOP and BTM diodes are used only for radiation monitoring.

The SVTRAD system has met or exceeded most design expectations, and has

successfully protected the SVT from premature aging and catastrophic damage. It has

proven flexible and robust in the face of changing requirements and greater sensitivity

to radiation damage that hoped. As indicated in the left-hand portion of Fig. E.4, the

system has aborted the beams in PEP-II more than 10,000 times since inception in

order to protect the SVT and maintain an integrated dose that is less than the original
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Figure E.3: Sample EPICS screenshots. The left hand screen shows summary in-
formation for each diode, including dose rates, integrated dose, alarm status, and
trip alarms, and links to more detailed expert controls. The right hand screen shows
the more primitive EPICS proxy for the SVTRAD module, whose ADC samples and
configuration information are used to form the radiation dose rates in the summary
panel on the left.

budget determined in 1999 (solid black line in the right-hand portion of Fig. E.4).

The instantaneous dose rates delivered by the system have served as valuable tools

in characterizing and remediating backgrounds in the interaction region, and are

often used by the accelerator operators to tune the collision parameters to maximize

luminosity by minimize radiation damage to BABAR.

The redundancy of sensors in the system has proved important, as there is ample

evidence that the different locations of the diodes experience different patterns of ra-

diation backgrounds, often from different sources. Typically, diodes in the horizontal

measure dose rates 5-8 times larger than those out of the mid-plane, as expected

due to beam losses in the machine’s bean-plane. A catastrophic failure mode for one

diode (“BW:MID”) has also been observed, although it is suspected that this is due

to mechanical or electrical failure).

The single largest difficulty with the system has been accurate modeling of the
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Figure E.4: History of daily trip rate and integrated dose absorbed by the most
exposed sensors.

pedestal current for each diode. Calibration of the dose rates requires precise knowl-

edge of the pedestal current in order to perform the sensitive subtraction. Competing

effects (resulting from the accumulation and time-dependent annealing of radiation

damage) make absolute, precise knowledge of the diode’s pedestal current challenging.

With radiation exposure exceeding 1 kRad per day in many locations, the pedestal

current can be change by as much as 5 nA, which, if unaccounted, would appear as

an excess dose rate of 25 mR/s, or a radiation trip threshold reduced by 25 mR/s.

As the requirements of radiation protection for the silicon have evolved, so has

the system. Bear in mind that this description is already dated.



Appendix F

Background Remediation Group

The Background Remediation Group was formed in the fall of 1998 under Guy

Wormser with a charge to identify, characterize, and remediate the unprecedented

high levels of accelerator-related backgrounds at the Interaction Region. The BABAR

Detector is sensitive to, and vulnerable to, radiation damage, and the Background

Remediation Group was created to protect it.

As a member of this team, I participated in both on- and offline analysis tasks.

By conducting experiments with the accelerator, such as variations of circulating

beam currents, fill patterns, vacuum pump rates, deviations from nominal orbits, and

final focus optics, we determined the primary sources of background radiation in the

IR-2 region. With the assistance of a detailed simulation and analysis of subdetector

response, we developed specific recommendations for the remediation of backgrounds,

such as the installations of collimators and “super-low” vacuum pipe sections.

The primary set of conclusions from our work are excerpted below from Ref. [85].

Operationally, the acceptable level of backgrounds at an unprecedented machine like PEP-
II is determined primarily by the radiation hardness of the sub-detectors (SVT, EMC) and
by the tolerable drift chamber current. The Level-1 (L1) trigger rate and the occupancy
in other detectors (DIRC) also constitute occasional limitations. Careful measurement,
analysis and simulation of the background sources and of their impact, has led to a detailed
understanding and an effective remediation of these effects.

The primary causes of backgrounds in PEP-II are, in order of increasing importance:

• Synchrotron radiation (SR) generated in the bending magnets and final focussing
quadrupoles in the incoming high- and low-energy ring (HER and LER) beam lines.
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Careful layout of the interaction-region area and a conservative SR masking scheme
have proven very effective.

• Two-beam backgrounds from three sources: enhanced beam-gas interactions in the
HER, due to low-energy ring IP synchrotron radiation impinging onto the incoming
HER beam pipe; photons and low-energy e+- from radiative-Bhabha scattering hitting
nearby vacuum components; and tails generated by the beam-beam interaction and/or
by the electron-cloud-induced blowup of the low-energy beam.

• The interaction of beam particles with residual gas around the rings (beam-gas), which
constitutes the primary source of radiation damage, and that with the largest impact
on operational efficiency.

While instantaneous background conditions do vary because of IP orbit drifts, and of the
sensitivity of beam tails to small tune adjustments, reproducible patterns have emerged.

The HER beam-gas contribution is typically dominant: the combination of a 40m long
straight section, almost devoid of magnetic bending upstream of the final doublet, and of
the magnetic beam-separation scheme, conspire to direct abundant bremsstrahlung-induced
electromagnetic debris into the IP vacuum pipe. The same process occurs in the LER, but
to a lesser extent because of a shorter drift section and lower primary energy. Most BaBar
subdetectors, therefore, exhibit occupancy peaks at φ=0 and 180 degrees, reflecting the fact
that the separation dipoles bend energy-degraded particles in opposite directions. Such local
beam-gas interactions dominate the SVT instantaneous dose rates, the total drift chamber
current, and the L1 trigger rate. Limited vertexing of L1 pass-through events identifies
the beampipe wall and several aperture restrictions within 100cm of the IP as the primary
impact points of lost particles. Maintaining a low pressure in the region from 4m to 60m
upstream of the IP in the incoming HER beam line, is vital to minimize this background.
Scrubbing, which has reduced the HER-averaged dynamic pressure below 50% of its design
value, also proved effective.

Both the DIRC and the drift chamber appear sensitive to beam-gas Coulomb scatters
around the entire LER. In addition, the DIRC proved particularly vulnerable to tails gener-
ated by beam-beam or electron-cloud induced blowup of the low-energy beam. Even though
partially eliminated by a set of betatron collimators in the last arc, such tails tend to scrape
near the highest-beta point of the final LER doublet, located inside the SOB. This results in
photomultiplier counting rates sometimes exceeding 200 kHz; the problem has been alleviated
by local lead shielding, and additional collimation will be installed during the fall shutdown.

Whereas trigger-rate and occupancy considerations define acceptable dynamic running
conditions, it is the total integrated radiation dose that determines the lifetime of the sub-
detectors. Despite a significant investment in radiation-hard technology, the innermost lay-
ers of the SVT silicon and front-end electronics remain the most susceptible to radiation
damage. The accumulated dose has been maintained below budget, through a strict program
of hardware interlocks, administrative controls, and real-time monitoring. To date, the most
irradiated portion of the SVT has been exposed to approximately 475 kRad, 20 to 30% of
which is contributed by injection periods.
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The Background Remediation Group transformed into the initial core team of

the BABAR-PEP-II Liaisons in Summer 1999, the set of personnel who were qualified

and authorized to represent BABAR in the SLAC Main Control Center on a 24-hour,

7-days a week basis (during data-taking). Liaison shifts began in May, 1999 and were

a critical element in the highly efficient detector-accelerator relationship.

For more details about the Background Remediation Group’s work, please see

Refs. [86] and [87].



Appendix G

High Luminosity Backgrounds

Task Force

The High Luminosity Backgrounds Task Force was commissioned in June 2000

under Witold Kozanecki to estimate the BABAR background levels that could be ex-

pected as the B-factory luminosity increased by an order of magnitude over several

years. The particulars of the charge included developing estimates of BABAR back-

ground levels at luminosities up to 3 × 1034, estimating the impact of any potential

improivements, and identifying any areas of additional improvement.

In order to identify and characterize the various components of the background, ∗

a number of machine physics experiments were carried out in June and July 2000.

These consisted primarily in measuring the dependence of background levels in each

BABAR subdetector on beam currents and on luminosity. In addition, highly valuable

data, particularly on so-called vacuum scrubbing rates, were collected parasitically

during physics running or extracted from the BABAR and PEP-II history buffers.

These experimental studies were complemented by existing and new simulations of

beam-gas scattering around the PEP-II ring, and of the propagation of beam-gas

induced shower in the BABAR detector. Finally, a small number of collimation and

vacuum pump experiments were also carried out.

The task force completed its mission in October 2000, and the findings were

∗Borrowing from the introduction of the published report...
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published in Ref. [88]. † The overarching conclusion, at the qualitative level, was that

extrapolations to higher luminosities indicated no extreme performance limitations,

although concerns were noted about the trigger rates and the SVT absorbed radiation

dose.

†We urge the interested reader to pursue this document not only for its conclusions, but because
it serves as an excellent reference for the methods and procedures required for background studies.



Appendix H

Beam Abort Reduction Task Force

The Beam Abort Reduction Task Force was formed in mid-2000 in order to specif-

ically address the issue of overall PEP-II uptime. At that point, beam aborts were

occurring frequently (a dozen per day) enough to impact the integrated luminosity

deliverable to the BABAR experiment. Beam aborts were being caused by PEP-II

elements (bad orbit alarms, RF cavity trips, key magnet failures) and by the BABAR

Radiation Protection Systems (SVTRAD, DCH and EMC diodes). Additionally, so-

called trapped events were studied in detail; in these situations, background levels at

BABAR would increase by 3 time nominal, and then stay constantly high for several

minutes or until the PEP-II operators brought the beams out of collision or aborted

the beams.

The task force implemented a beam abort monitoring system which recorded

the source and type of each beam abort so that attention could be focused on the

most significant sources. The BABAR SVTRAD system and the PEP-II RF system

were identified as the leading causes. Optimizing the SVTRAD thresholds, in part

with new knowledge of the SVT’s sensitivity to “fast” radiation damage, significantly

reduced the number of detector beam aborts. Tuning the control software and oper-

ating parameters of the RF cavities assisted in reducing that source of beam aborts

as well. The final activity of the task force was the design and implementation of

a dedicated high-speed data acquisition system that monitored two dozen different

sensors near the interaction region with sampling rates more than 10 kHz. When
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triggered by a beam abort, the system archived precision data from the sensors for

up to 60 seconds before the beam abort. Analysis of this data provided key insights

into the mechanism of the trapped-events and supported the hypothesis of heavy-

element micron-sized dust particles becoming entangled in the electron beam’s orbit

and causing the elevated backgrounds.



Appendix I

Physics Impact of Beam

Backgrounds Task Force

The Physics Impact of Beam Backgrounds Task Force was convened in January

2001 under Steve Robertson to evaluate the effect on BABAR data of current and

possible future background running conditions. A secondary goal was to investigate

the possibility of supporting a long-standing investigation into the effects of machine-

related backgrounds on BABAR physics.

The task force used simulated performance data as well as samples of so-called

background triggers taken from real detector running (i.e., events recorded without

physics triggers present) to investigate the effect of beam backgrounds on issues such

as π0 mass resolution, SVT vertex resolution and efficiency, physics candidate recon-

struction efficiency, and generic track-finding. Ultimately, conclusions were limited.

The ability to disentangle beam background and detector noise contributions was

poor, and the random trigger background samples from Data quickly became dated

as background conditions in the machine changed. For instance, there was no toolset

to easily associate short spans of data with background conditions information from

which to build a self-consistent “high” vs “low” background comparison. However,

the clear presence of machine backgrounds in the physics data sample was established.

The task force’s analyses are more completely described in Ref. [89].
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