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A simple approach for the beam size mesurements with optical diffraction radiation

from a slit target is presented. The estimations show that it is possible to measure the

beam size with a resolution of about ~1µm. We developed a new approach for

calculating diffraction radiation characteristics from a rectangular finite size target with

a rectangular opening in it to be able to estimate the influence of the coherent

diffraction radiation recoil.

1. Introduction     

A high brightness low emittance high-energy beam opens doors in many new fields
of the beam physics. For that purpose linear colliders with the energy from a few
hundreds of GeV to the TeV energy range and short wavelength free electron lasers
have been intensively studied all over the world. To realize such beams a detailed
monitoring of different beam parameters is undoubtedly necessary.

Modern accelerators preclude the use of any invasive techniques like transition
radiation monitors [1-3] because the electron scattering may lead to significant
worsening of the beam parameters.

Optical Diffraction Radiation (ODR) appearing when a charged particle moves in
the vicinity of a medium and interacts with the target through its electric field only
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could be a very precise and useful technique for non-invasive beam diagnostics;
however, the effect is not studied experimentally very well.

The first theoretical considerations of DR have appeared about 40 years ago [4-5].
Recent papers considered DR properties and their implementation to beam diagnostics
[6-8] in details. The first observation of coherent DR (CDR) (the wavelength is
comparable or longer than the longitudinal beam size) in millimeter and sub-millimeter
wavelength region has been performed in 1995 [9]. In [10-11] the authors presented
the backward CDR investigation and evaluation of the longitudinal beam size using
autocorrelation technique.

The first observation of incoherent DR in optical wavelength range from the target
edge has been performed by us at the extracted beam of the KEK-Accelerator Test
Facility (ATF) [12]. The obtained results are in good agreement with the theoretical
predictions based on the model of ideally conducting infinitely thin target. Here we
represent a new technique for beam size measurements with ODR. Our estimations
show that the resolution of about ~1µm is achievable.

However, for ultrarelativistic particles DR wavelength range is very broad. Due to
the coherent effects the beam characteristics could also worsen. Therefore, it is
extremely necessary to estimate the distortion of the beam parameters caused by the
emission of the DR at the target. In [13] the author considered the transverse kick
caused by a tapered collimator, which is usually used in circular and linear colliders to
eliminate halo particles from the beam. A similar kick might be caused by a tilted slit
target, which we plan to use for beam size measurements at KEK-ATF [14].

2. Beam size effect in optical diffraction radiation.

An approach of the pseudophoton scattering (describing an electric field of the
moving charge) by target surface is frequently used to describe the DR and TR
phenomena [5-6,11]. The horizontal (x) and vertical (y) polarization components of the
DR electric field from an ultarelativistic particle moving close to an ideally reflecting
infinitely thin flat target or through a hole of an arbitrary shape in it could be
represented in the following general form [5-6]:
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Here xk ≡ kx – [k /2γ2]cot(θ0) [10]. It means that the radiation pattern from a tilted
target is shifted by the angleγ-2/2. For an ultrarelativistic case (γ ~ 103) and large target
tilt angles (θ0 = 45deg.) this shift is negligible and we shall omit it in the future. In Eq.
(1) e is the particle charge; k = 2π / λ is the wave number;γ is the charged particle
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Lorentz-factor; k|x and k|
y are the components of the pseudophoton wave vector; kx = k

sinθ cosϕ ≈ kθx and ky = k sinθ sinϕ ≈ kθy are the components of the real DR photon
wave vector. The spectral angular distribution could be obtained as follows:





 +π=

Ωω
2

yxy
2

yxx
22

2

)k,k(E)k,k(Ek4
dd

Wd
(2)

Here θ and ϕ are the polar and azimuthal observation angles,θx and θy are
observation angles measured from the specular reflection direction from the target.
Throughout the paper the system of unitsh = me = c = 1 is used.

In Eq. (1) the x and y integrals are over the target surface. It is possible to calculate
DR from an arbitrarily shaped target numerically. However, usually, theoreticians try
to obtain simple solutions for particular cases.

The solution of Eq. (1) for a case when an electron moves through a slit between
two tilted semi-infinite planes has been represented in [5-6]. Afterwards, the author of
[7] has shown that vertical polarization component is sensitive to the beam size. The
expression for the ODR vertical polarization component convoluted with gaussian
distribution could be written as:
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Hereψ = arctg[θy/(γ-2 + θ2
x)

0.5], a is the slit size,σ is the rms beam size,α is the
fine structure constant.

Two-dimensional angular pattern of the vertical polarization component is
represented in Figure 1a. In [7] the author proposed to use the minimum-to-maximum
ratio of the differential intensity as a parameter for beam size determination (see Figure
1c). However, this method requires a very small angular acceptance. Otherwise, the
resolution of the method could be very poor. But the detector sensitivity may not be
enough to precisely measure the ODR pattern. In this paper we propose a new method
to measure the beam size. From Eq. (3) it is apparent that if the beam size is zero, the
photon yield between two peaks (Figure 1a) is zero. However, for a non-zero beam
size, the intensity between two peaks is not zero already. It means that all those
photons are useful. It is possible to collect them all (integrate overθx) and increase the
detector sensitivity. We call it as the method of theprojected vertical polarization
component(PVPC). Figure 1b illustrates the PVPC calculated for two beam sizes.
Obviously the angular pattern depends on the beam size. As a sensitivity criterion we
have chosen the minimum-to-maximum ratio. Figure 1c shows the comparison
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between the differential ODR minimum-to-maximum ratio and the PVPC one
calculated for the same parameters. One can see that the PVPC is better sensitive to the
beam size.
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Figure 1. a) Two-dimensional vertical polarization pattern calculated forγ = 2500,λ = 500nm, a sinθ0 =

0.2mm,θ0 = 45deg.; b) PVPC calculated for:σ = 0 – solid line,σ = 30µm – dashed line; c) minimum-to-

maximum ratio for PVPC – solid line and differential ODR– dashed line.
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Figure 2. a) Dependences of the minimum-to-maximum ratio for different angular acceptances; b)

Dependence of the estimated resolution for beam size measurements with PVPC as a function of the

detector angular acceptance

A large detector angular acceptance may significantly distort the angular pattern.
Figure 2a represents the minimum-to-maximum ratio of the PVPC versus the beam
size calculated for zero and non-zero angular acceptances. One may see that when∆θy

≠ 0, the ratio is not saturated to zero at zero beam size. As a result in the range shown
in the picture with dashed-dotted line the beam size effect is very small and the angular
pattern almost remains unchanged. This range could be considered as the resolution for
the beam size measurement (the smallest beam size, which is possible to measure). The
resolution could be improved by reducing the angular acceptance, however the number
of photons in that case will be reduced too. Figure 2b shows the dependence of the
estimated resolution versus the detector angular acceptance. In the range of
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acceptances we have chosen this dependence is linear. From the picture one can see
that the resolution of ~1µ is achievable at∆θy = 0.02 /γ.

We should notice here that the real experimental situation is a lot more
complicated. The resolution could worsen by the target deformation, contamination of
any background sources like synchrotron radiation from the accelerator magnets (since
it is polarized two, the contamination could be reduced cutting off one of the
polarization components with a polarized) or X-ray background (could be reduced with
lead shielding), accuracy of the measurements system, etc. That is why the
experimental verification is required.

3. Applicability of DR to non-invasive electron beam diagnostics
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Figure 3. DR geometry from a particle moving through a rectangular opening in a rectangular screen. z axis

is directed along the specular reflection.

There are a lot of theoretical papers representing both different approaches for
beam size measurements and estimations for real accelerator installations. However,
there are no any considerations on the beam characteristics perturbation caused by
coherent DR (CDR) from the target. The DR as well as TR spectral range is very
broad. For example, during last several years coherent DR in millimeter and sub-
millimeter wavelength range has intensively been studied as a possible tool for
longitudinal bunch shape measurements [10-11]. Due to the similar coherent effects
the electron beam characteristics could worsen.
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In our calculations presented above we assumed that the target was infinite. This
approximation is usually valid for short wavelengths when the outer target dimensions
are much larger than the DR formation zone (γλ / 2π). In reality the target is finite.
Therefore, the first step to estimate the transverse kick is to obtain the expression for
TR from a target of finite dimensions. Integrating the Eq. (1) over x from –aout

sin(θ0)/2 to aout sin(θ0)/2 and over y from –bout/2 to bout/2, where aout and bout are
horizontal and vertical target dimensions (see Fig. 3), the vertical polarization
component of the DR field for a single electron can be represented as:
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In spite of an infinite integration limits the dominant part of the integral is confined
within the range of∆t<<1. The horizontal polarization component (Ex) could be
obtained either directly from Eq. (1) or simply exchangingθx ←→ θy and
aoutsin(θ0)←→ b in Eq. (4). By proper integration one may derive an expression for
DR field from a particle moving through a rectangular opening in a rectangular screen.
The expression could be introduced using the Eq. (4):
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Figure 4. a) TR and DR spectra for a single electron crossing a rectangular target calculated forγ = 2500,

0.2rad angular acceptance, opening dimensions are 5×0.26mm and outer target dimensions are 7×9mm; b)

Coherent DR spectra for 1010 electrons

Here ain and bin are the horizontal and vertical sizes of the rectangular opening
respectively (see Fig. 3). One may notice that Eq. (5) introduces the well-known
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Babinet’s principle from classical optics.
Figure 4a represents the TR and DR spectra. One may see that in contrast to TR,

which is saturated while the wave number increases, DR spectrum decreases
exponentially as expected. However, in the soft part both TR and DR intensity is
suppressed due to the finite target size.

Table I. Estimated transverse kick.

σz 6mm 1mm 0.5mm
Tr. kick 0.028µrad 0.973µrad 3.742µrad

The coherent radiation spectrum per electron could be obtained by multiplying the
single electron spectrum by the number electrons Ne and the bunch form factor F,
which is usually introduced as the Fourier transform of the longitudinal electron
distribution in the bunch [10-11]. The coherent DR spectra for different bunch lengths
σz are shown in Figure 4b. Integrating over the spectra one may obtain the mean
energy ER emitted by each electron in the bunch in the perpendicular direction as the
target is assumed to be inclined with 45 deg. to the beam trajectory. As a result each
electron obtains a mean transverse momentum∆P⊥ = ER/c. Knowing the transverse and
longitudinal momenta one may estimate the transverse kick (see Table I). One may see
that for shorter bunches the transverse kick may become significant and exceed the
electron angular divergence. Therefore, the beam emittance could be worsen. On the
other hand, increasing the outer target dimensions the energy losses due to CDR effect
increase, and, as a result, the transverse kick becomes bigger too.

4. Conclusion

In this paper we have presented a new method for the beam size measurements
with ODR. We have shown that if all technical and experimental difficulties are
solved, it is possible to achieve resolution of about 1µm.

To estimate the coherent radiation recoil we developed a new model for calculating
DR characteristics from a particle moving through a rectangular opening in a tilted
finite size rectangular screen. The estimations show that for KEK-ATF beam
parameters (design bunch length ~6mm and population ~1010) and the target
configuration, which was chosen for the experiment [14], the influence onto the beam
parameters is negligible. However, this effect must be taken into account when DR is
used for short electron bunch diagnostics. Moreover, for higher energy accelerators
(γ>104), when the DR formation zone is very big, optimization of the target size is
required.

It may be noted that the effect of the finite size target leads to essential distortion of
the coherent DR spectra and must be taken into account when measurement of the
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bunch length is carried out using this technique [9-11].
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We investigate generation of electron beams injected by interaction of two laser
pulses. Colliding laser pulses produce a standing wave that injects electrons in
plasma into a wakefield excited by a high peak power laser. We make a numerical
simulation of the optical injection assuming a plasma density distribution. We find
that a high quality intense relativistic electron beam is generated.

1. Introduction

Recently laser-driven plasma accelerators using laser wakefields have been

conceived to be the next-generation particle accelerators, promising ultra-

high field particle acceleration and compact size compared with conven-

tional accelerators 1. The laser wakefield acceleration has been experi-

mentally demonstrated and has great potential to produce ultrahigh field

gradients of the order of ∼ 100 GeV/m 2−12. The maximum energy gain

has exceeded 100 MeV with an energy spread of ∼ 100% due to dephasing

and wave-breaking effects in the self-modulated laser wakefield accelera-

tion regime, where thermal plasma electrons are accelerated 8. The highest

energy gain acceleration which exceeded 200 MeV was observed with the

injection of an electron beam at an energy matched to the wakefield phase

velocity in a fairly underdense plasma 9−12.

Hence, from the point of view of applications for particle accelerators,

it is crucial that an ultrashort particle bunch with an energy higher than

the trapping threshold should be injected with respect to the correct accel-

1
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eration phase of the wakefield to produce a high quality beam with small

momentum spread and good pulse-to-pulse energy stability. The trapped

phase space of the wakefield accelerations are typically less than 100 fs

temporally and 10 µm spatially, respectively.

Therefore it is essential to inject a very short pulse and a low emittance

electron beam into the wakefield. Electron beam injection triggered by an

intense ultrashort laser is proposed to an injector of ultrashort electron

beams as ”optical injection”. Presently there are three major schemes:

nonlinear wave-breaking injection 13, transverse optical injection 14, and

colliding pulse optical injection 15,16. No proof-of-principle experiment for

these schemes has been yet performed because of experimental difficulties.

Nonlinear wave-breaking injection uses one pump laser pulse. Transverse

optical injection uses two laser pulses; one pump pulse and one injection

pulse. The two pulses cross at a focal point. Three laser pulses consisting of

a pump pulse for wakefield excitation and two injection pulses for trapping

the electrons in plasma make up a colliding optical injector.

In this paper, we present a new optical injection scheme that utilizes

two counter-propagating laser pulses.

2. Optical injection of two laser pulses

A plasma electron density oscillation δne/ne and an longitudinal electric

field eEz on the center axis of laser pulse propagation are written 1,2
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where c is the speed of light, me is the rest mass of the electron, a is the

laser strength parameter, kp = ωp/c is the wave number of the plasma,

ωp = (4πnee
2/me)

1/2 is the electron plasma frequency, σz is the rms-width

of the laser pulse in the longitudinal direction, σr is the rms-width of the

laser pulse in the radial direction, and ζ = z − vpt is the longitudinal

coordinate in the speed-of-light-frame.

Consider interaction of two laser pulses, a schematic of the interaction

is shown in Fig. 1. In this figure, a0 and a1 are laser strength parameters

of pulse 0 and pulse 1, respectively. When a0 > a1, wave 0 is dominant
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rather than wave 1 in the electron oscillation and the electric field for accel-

eration. Colliding laser pulses generate a standing wave. The wave injects

electrons in plasma into a wakefield excited by the pulse 0. The electrons

are accelerated by the wakefield and become a relativistic electron beam.

Figure 1. A schematic of the optical injection by two counter-propagate laser pulses.
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Figure 2. Plasma density distribution used for simulation of the optical injection.
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Figure 4. (a) The pulse shape and (b) the energy spectrum of the accelerated electrons
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Figure 5. The distribution of the transverse normalized velocity βt of the accelerated
electrons for a0 = 1.0 and a1 = 0.3 at ne = 7 × 1017 cm−3.

We make a numerical simulation of the optical injection scheme for the

plasma density distribution shown in Fig. 2 using a Particle-in-Cell (PIC)

code 17. The plasma density distribution was measured by a Mach-Zehnder

interferometer 18. The electron distribution in a phase space and the energy

spectrum for a0 = 1.0 and a1 = 0.3 at ne = 7 × 1017 cm−3 are shown in

Figs. 3(a) and (b), respectively. A part of electrons in plasma is trapped
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and accelerated in the wakefield excited by the pump pulse. The pulse

shape and the energy spectrum of the accelerated electron beam are shown

in Figs. 4(a) and (b), respectively. The electron beam has the pulse width

of 7.7 fs (rms), the peak energy of 7.5 MeV with the energy spread of 3%

(rms) from these figures. The accelerated energy is consistent with Eq. 2 in

linear theory. Assuming the electron beam radius of 15 µm, the accelerated

electron charge is 26 pC corresponding to the peak current of 1.3 kA. It

could be difficult to generate such an ultrashort intense electron beam by

means of the conventional RF accelerators.

Figure 5 shows the distribution of the transverse normalized velocities

βt of the accelerated electrons. We can obtain an emittance of the electron

beam from βt = 0.0064. The unnormalized emittance εx of the electron

beam is approximately,

εx = rbβt, (3)

where rb is the electron beam radius. The normalized emittance εnx is

εnx = γβεx, (4)

where β is the longitudinal normalized velocity of the electron. For the

electron energy of 7.5 MeV γ and β are approximately equal to 14.7 and 1,

respectively. Assuming the electron beam radius, rb = 15 µm, the normal-

ized emittance of the accelerated electrons is 0.4 π mm mrad (rms). This

emittance is smaller than the best quality beam produced by the conven-

tional RF accelerator technology such as a photocathode RF-gun 12,19.

3. Conclusions

We have explored the generation of high quality electron bunched by us-

ing optical injection. Colliding of two two laser pulses injects electrons in

plasma into the wakefield and the wakefield accelerates the electrons. We

have made a numerical simulation of the optical injection scheme. The

colliding plasma wave injection scheme investigated in this paper has the

ability to produce relativistic electron bunches with low energy spread and

low normalized transverse emittance. We verify the possibility of high qual-

ity electron beam generation and acceleration by laser wakefield in a gas-jet

plasma.
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Nonlinear Compton scattering of linearly polarized laser beam is discussed in this
paper. Using Volkov solution and polarization density matrix, a complete tran-
sition probability formula for linearly polarized laser and unpolarized electron is
obtained. The polarization properties of final photons are discussed for different
condition.

1. Introduction

In the interaction process between electron and laser beams, if laser in-

tensity parameter ξ ≈ λL[m]
√

P [GW/m2]/27.3 increases to a high value,

nonlinear Compton scattering(NLCS) happens, i.e. an electron absorbs

multi-photons from the laser field and radiates a single photon. Here λL

and P are the wavelength and power density of laser.

Through the backward Compton scattering of a polarized laser and

relativistic electron beam, high energy and polarized X(or γ)-ray can

be obtained. At the Accelerator Test Facility of Brookhaven National

Laboratory(BNL-ATF), a high intensity picosecond X-ray laser syn-

chrotron source(LSS) through Compton backscattering between a relativis-

1
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tic electron beam with 60MeV and a linearly polarized CO2 laser beam has

been developed 1.

Both high laser intensity and polarization of γ-ray are very important

in high energy physics applications, such as the application of polarized

laser-Compton scattering in polarized positron generation and in the γ-γ

collider. The possibility of the collision of linearly polarized laser for the

possible experiments on CP violation.

In Sec.3, an analytical formulas of transition probability, and Monte-

Carlo simulation of scattered photons of NLCS for linearly polarized laser

are given, and the characters of final polarization are discussed in Sec.4.

Finally, the conclusions are given in Sec.5.

2. Kinematics of Nonlinear Compton Scattering

In present paper, we adopt a head-on frame (e1, e2, −k) of laser-electron

beam system, where 4-vector ei = (0, ei)(i = 1, 2), e1 parallels to laser

polarization, and e2 = −k/ |k| ×e1. Azimuthal angle φ is defined by anti-

clockwise direction from e1.

Quantum effect of Compton process is characterized by an invariant

parameter λ = 2k·p/m2 ≈ 4ωE/m2, where ω is the energy of laser photon,

E energy of initial electron, and ‘≈’ means approximation for relativistic

incident electron beam.

Final photon energy ω′ is expressed by a dimensionless Lorentz invariant

parameter x:

x =
k·k′

k·p
=

nλ

1 + ξ2 + nλ + u2
≈

ω′

E
, (1)

where u =
√

nλ(1−x)

x − (1 + ξ2) ≈ γθ and θ is scattering polar angle. For

a relativistic electron beam, the scattered photons are limited in a narrow

cone with solid angle 2/γ. The maximum energy of scattered photons

emitted from backward direction(i.e. θ = 0) for given harmonic n is given

by xn,max = nλ/(1 + ξ2 + nλ).

3. Transition Probability

After using Volkov’s solution and polarization density matrix of scattered

photons, finally we obtain the differential transition probability formula of

nth harmonic NLCS for linearly polarized laser as 3

Wn(x, φ) =
αm2ξ2

2q0

[f0n + f1nξ′

1
+ f3nξ′

3
] , (2)
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where α is the fine structure constant, Stokes parameter ξ′ represents the

polarization component to be measured by the detector, and functions

f(x, φ) are given by 3

f0n = −
|A

(0)

n |2

ξ2
+

(

1 − x +
1

1 − x

)

[

|A(1)

n |2 − A(0)

n A(2)

n )
]

, (3)

f1n =
|A

(0)

n |2

ξ2
u2 sin 2φ + 2

√
2
u

ξ
sin φA(0)

n A(1)

n , (4)

f3n = −(1 + 2u2 sin2 φ)
|A

(0)

n |2

ξ2
+ 2

[

|A(1)

n |2 − A(0)

n A(2)

n )
]

. (5)

Here polarization term f1n is new result, f3n was given by 4, and function

A
(s)
n is defined by A

(s)
n =

∮

dφ
2π coss φei[nφ−α1 sin φ+(α2/2) sin(2φ)], s = 0, 1, 2.

with arguments α1 = −2
√

2 ξ
λ

xu
1−x cos φ, and α2 = ξ2

λ
x

1−x .

The energy spectrum of scattered photon is plotted in Figure.1 for

λ = 1.0 × 10−4 and ξ = 0.8. Sharp peaks are seen at the high energy

edge only for odd harmonics. Figure.1.(b) shows the energy spectrum of

scattered photons whose polarization is parallel or perpendicular to the

laser polarization, where the upper(lower) lines for parallel(perpendicular)

for each harmonic.

(a)

(b)

Figure 1. Energy spectrum, where the transition probability are in units of
αm2/E. (b) shows spectrum of scattered photons with polarization.

The code of Monte-Carlo simulation of NLCS for linearly polarized laser

has been developed by us. Figure.2 shows the correlation between energy

and polar angle of the scattered photons. Scattered photons can be found

in the backscattering region θ ∼ 0 for odd harmonics. Figure.3.(a)-(c) show

the transverse profile of the scattered photons of the first three harmonics.

The pattern for the first harmonic has one peak and a dumbbell form,
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which is the same as the patterns of dipole radiation in the classical theory.

The patterns for the second and third harmonics have two and three peaks.

We used the parameters of 2nd CO2 laser power stage of the Compton

scattering experiment in BNL-ATF.

Figure 2. Energy via polar-angle distribution.

(a) (b) (c)

Figure 3. Transverse profile of scattered photons for linearly polarized laser case, where
Px, Py and Ps are the momentums of scattered photons.

4. Final photon polarization

Final photon linear polarization(measured value) for n harmonic at (x, φ) is

given by ξ3 = f3n/f0n, ξ1 = f1n/f0n
3. The degree of linear polarization

ξL and the angle φL of polarization plane (measured from the polarization

plane of the laser) are given by ξL =
√

ξ2

1
+ ξ2

3
, ξ3 = ξL cos 2φL and ξ1 =

ξL sin 2φL.

Final polarization in the (γθx, γθy) plane is plotted in Figure.4 for the

first third harmonics, where λ = 1, ξ = 0.01, 1.0. The length and direction

of the short lines express the degree and direction of polarization. The
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Figure 4. Final polarization in (γθx, γθy) plane.

Figure 5. ξL vs polar angle u ≈ γθ.

Figure 6. ξ1 vs energy x on φ = 45◦ plane.

polarization degree is also shown by contours (the uppermost contour is

80% and the lowermost 20%).

Final polarization ξ3 vs polar angle u ≈ γθ is plotted in Figure.5, for

the first fourth harmonics under conditions φ = 0◦(x-axis, ξ1 ≡ 0 on this
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plane), where ξ = 1 and λ = 0.1, 1, 3, 5. One finds ξ3 ≥ 0 anywhere on the

x-axis and there are [(n + 1)/2] zero points where ξ3 = 0. The location of

the zeroes is independent of λ as a function of u(Note that it depends on λ

as a function of x.). The term of f1n in Eq.(2) is necessary for calculating

final photon polarization, as ξ1 equals zero only correct on the φ = 0◦ and

90◦ planes. Figure.6 shows ξ1 on φ = 45◦ plane. One finds the following

facts:

1). No final circular polarization appears.

2). When λ is small, the degree of polarization is nearly 100% for any

harmonic n and laser strength ξ, except in the vicinity of a few points on

the x-axis.

3). Final polarization is parallel to the laser polarization on x-axis (φ = 0).

On y-axis (φ = 90◦), it is parallel for odd harmonics and perpendicular for

even harmonics.

4). For large polar angle θ, the polarization degree is almost 100%.

5). For small polar angle, the polarization decreases as λ, but increases as

ξ.

5. Conclusions

NLCS for linearly polarized laser is discussed, and a complete transition

probability formula Eq.(2) for linearly polarized laser and unpolarized elec-

tron is obtained, where term f1n in Eq.(2) is a new result. Using both f1n

and f3n, we can exactly describe the degree and plane direction of final

polarization for scattered photons in different azimuthal scattering angle.

The polarization properties of final photons are discussed. The code of

Monte-Carlo simulation for linearly polarized laser has been developed by

us.
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IS IT POSSIBLE TO OBTAIN POLARIZED POSITRONS
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If a beam of unpolarized positrons (which is considered as a sum of two fractions
with opposite helicities) passes through an intense circular polarized laser radiation
these fractions may be separated. For high laser flash intensity each positron
will interact with k0 �1 laser photons subsequently (linear multiple Compton
scattering process). Due to difference in the compton cross-sections for positrons
polarized in opposite directions the mean final energy of each fraction will be
different. It allows to get a polarized positron beam using the momentum selection
(with some intensity loss). Estimations show the possibility to obtain a positron
beam with 35% longitudinal polarization and 25% intensity from the initial one for
focussed laser flash with total energy 5J and positron beam with energy 5 GeV.

1. In existing projects of electron-positron colliders, the option of polar-

ized electron and positron beams is considered [1,2]. While one can consider

the problem of producing the polarized electron beams with required char-

acteristics as having been solved [3], the existing approaches to polarized

positrons generation [4-7] do not provide required parameters. In quoted

papers the schemes were offered, in which by means of various methods a

beam of circularly-polarized (CP) photons with energy of ∼ 101 MeV is gen-

erated to be subsequently used for producing the longitudinally polarized

positrons during the process of pair creaction in the amorphous converter.

In this paper an alternate approach is discussed - at the first stage the

unpolarized positrons are generated by the conventional scheme (interac-

tion of an electron beam with energy of ∼101 GeV with an amorphous or

crystalline converter), which are accelerated up to energy ∼ 5÷10 GeV and

then interact with intense CP laser radiation.

In the scheme of ”laser cooling” of an electron beam suggested in the

paper [8] , electrons with energy of 5 GeV in head-on collisions with laser

photons lose their energy practically without scattering. Thus, as a result of

1
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a multiple Compton scattering (MCS), the electron beam ”is decelerated”

resulting in some energy distribution, which variance is determined by the

electron energy and laser flash parameters. It is clear that the laser cooling

process will accompany also the interaction of positrons with laser photons.

If we consider an unpolarized positron beam as a sum of two fractions

of the identical intensity with opposite signes of 100% longitudinal polar-

ization, its interaction with CP laser radiation results in different Compton

cross-sections for positrons with opposite helicity. After a few collisions

positrons with opposite polarization lose a various part of the initial en-

ergy, therefore, by means of momentum selection of the resulting beam, it

is possible to get a polarized positron beam with some intensity loss.

2. Let us write the Compton cross-section for CP photons after sum-

ming over scattered photon polarization [9] (the system of units being used

hereinafter is ~ = m = c = 1):

dσ

dy
=

πr2

0

x

{ 1

1 − y
+ 1 − y − s2 − ξ0z Pc cy

2 − y

1 − y
−

− ξzPc

[

szscy + cz

( y

1 − y
+ yc2

)]

+ (1)

+ξ0zξz

[

szs(1 + c2 − yc2) + czc
( 1

1 − y
+ (1 − y)c2

)]}

=

dσ0

dy
+ Pc ξ0z

dσ2

dy
+ Pc ξz

dσ2

dy
+ ξ0z ξz

dσ3

dy
.

Here Pc is the degree of circular polarization of laser photons, ξ0z(ξz) is the

spin projection of an initial (final) positron on the axis z coincident with

the direction of the initial positron momentum, r0 is the classical electron

radius. In (1) standard symbols are used [9]:

x = 2pk ≈ 4γ0ω0 , y = 1 −
pk

′

pk
≈

ω

γ0

,

γ0 is Lorentz factor of an initial positron; ω0(ω) is energy of an initial

(scattered) photon. The factors s, c are determined in the known way [9]:

s = 2
√

r(1 − r) , c = 1 − 2r, r =
y

x(1 − y)
,

where as factors sz, cz are obtained in the same coordinate frame for

positron scattered at the angle θe

sz = s − c θe , cz = c + s θe .
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For an ultrarelativistic case θe = 1

γ0

√
y(x−y−xy)

1−y , so with an accuracy of

∼ γ−1

0
, sz = s, cz = c.

With the same accuracy, the cross-sections of spin-flip transitions

dσ+−
, dσ

−+ from states with opposite polarization signs (ξ0z = +1 →

ξz = −1 and ξ0z = −1 → ξz = +1) are equal. It means that the Compton

scattering process does not result in considerable polarization of an unpo-

larized beam. It should be remarked that the formula (1) is not the exact

invariant expression (as well as formula (12) in paper [9]). Both expressions

may be written in the invariant form with an accuracy of ∼ γ−1

0
. The au-

thor’s conclusion [10] concerning the possibility of polarization of a positron

beam as a whole through MCS process was incorrect (it was based on the

assumption that the magnitude
∫

dy
[

dσ+−

dy −
dσ−+

dy

]

presents an exact in-

variant which it was calculated in the rest frame of an initial positron, see

also [11]).

3. As follows from (1), the total cross-section of positron interaction

with CP photons depends on spin projection (ξ0z):

σ =
8

3
πr2

0
[(1 − x) − Pc ξ0z

x

4
] . (2)

In many cases of interest (laser cooling, for example) the relation x �1 is

satisfied, therefore in (2) the terms ∼ x2 and higher are discarded. Let’s

write the cross-section (2) for 100 % right circular polarization of laser ra-

diation ( Pc= +1) and for positrons polarized along the photon momentum

and in the opposite direction:

σ
±

=

x/1+x
∫

0

dσ
±

dy
dy ≈

2πr2

0

x

x/1+x
∫

0

[

2−4
y

x
(1+y)+4

y2

x2

(

1+2y
)

±
(

2y−4
y2

x

)

]

dy ,

Then

σ+ = σ(Pc = +1, ξ0z = +1) =
8

3
πr2

0
(1 −

5

4
x) = σT

(

1 −
5

4
x
)

, (3)

σ
−

= σ(Pc = +1, ξ0z = −1) = σT

(

1 −
3

4
x
)

.

Here σT = 8

3
πr2

0
is the classical Thomson cross-section. It is clear that due

to inequality of cross-sections (3), the positrons with various helicities un-

dergo the various number of collisions, that eventually results in difference

of average energies γ̄
±

of both fractions of the initial unpolarized beam.
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With this distinction being sufficiently great, and the variance of energy

distribution for each fraction being enough small, the polarized positron

beam can be generated by means of momentum selection.

4. In paper [12], in considering the MCS process by analogy with passage

of charged particles through a condensed medium, the partial equations are

derived that describe evolution of average energy γ̄ and energy straggling

(distributions variance) ∆ for unpolarized electron beam passing through

an intense laser flash. The approximate analytical solution was derived

there as well:

γ̄ =
γ0

1 +

∑

(1)
l

γ0

, ∆ =

∑

(2)
l

(

1 +

∑

(1)
l

γ0

)4

. (4)

In (4) l is the laser flash length (”the thickness” of light target),
∑

(n)
is

the n-order moment of ”macroscopic” interaction cross-section:

∑(n)

= 2nL

ωmax
∫

0

ωn dσ

dω
dω = 2nLγn

0

x/1+x
∫

0

yn dσ

dy
dy . (5)

Here nL is the concentration of laser photons, that for ”short” laser flash

[8] is estimated as follows:

nL =
A

ω0

1

πr2

phl
, (6)

A is the laser flash energy; rph is the minimum radius of the laser beam.

Developing (1) as a series in powers of x and retaining two first sum-

mands, we get:
∑(1)

= nLσT γ0x
(

1 −
21

10
x
)

,
∑(2)

=
7

10
nLσT γ2

0
x2

(

1 −
22

7
x
)

. (7)

After substitution of the found values for
∑

(n)
in (4) we have:

γ̄ =
γ0

1 + nLσT lx
(

1 − 21

10
x
) , (8)

∆ = γ2

0

7

10
nL σT l x2

(

1 − 22

7
x
)

[

1 + nLσT lx
(

1 − 21

10
x
)]4

. (9)

Let’s write the equation (9) in more evident form:

γ0

γ̄
= 1 + nLσT lx

(

1 −
21

10
x
)

= 1 +
1

2
k0 x

(

1 −
21

10
x
)

. (10)
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In approximation x �1 the quantity k0 = 2nLσT l corresponds to the

mean number of scattered photons per an electron of the initial beam (in

other words, the average number of collisions of an electron in passing

through the ”light” target). When expressing the photon concentration

nL in Gaussian laser beam in terms of Rayleigh length zR and the photon

wavelength λ0, defining minimum radius of the ”light” target

r2

ph =
λ0 ZR

2π
,

one can readily see that the number of collisions is independent of the laser

wavelength directly:

k0 =
16

3
α

A

mc2

r0

ZR
,

here α is the fine structure constant.

The condition of the approximation applicability (4) (and, therefore, (8)

and (9) as well) is written as follows:

k0x
2 � 1 . (11)

For electrons with initial energy E0 = 5 GeV having passed through a laser

flash of following parameters (see [8]): ω0=2,5 eV; A=5J; r2

ph=4 µm2, from

(10) one can get γ0/γ̄ ≈ 8.7.

Noteworthy is the reasonable agreement with estimates obtained by

V. Telnov [8], though the criterion (11) is not satisfied in this case.

5. As it was mentioned above, neglecting by spin flip transitions the

evolution of each fraction of polarized positrons can be considered indepen-

dently.

In this case, the average energy of a fraction and variance may be written

in the full analogy with (4):

γ̄
±

=
γ0

1 +
∑(1)

±
l

γ0

, ∆
±

=

∑

(2)

±

l
(

1 +
∑(1)

±
l

γ0

)4
. (12)

Here by
∑

(n)

±

the appropriate cross-section moments are denoted:

∑(n)

±

= 2nL γn
0

x/1+x
∫

0

yn dσ
±

dy
dy .

The calculation of moments involved in (12) and (13) in the same approx-

imation as before, gives the following result:
∑(1)

+
= nL σT γ0x

(

1 −
8

5
x
)

,
∑(1)

−

= nL σT γ0x
(

1 −
13

5
x
)

;
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∑(2)

+
=

7

10
nL σT γ2

0
x2

(

1 −
35

14
x
)

,
∑(2)

−

=
7

10
nL σT γ2

0
x2

0

(

1 −
53

14
x
)

.

Thus, the relative width of energy distribution in each fraction is de-

duced from the relations:

√

∆+

γ̄+

=

√

7

10
nLσT lx2

(

1 − 35

14
x
)

1 + nLσT lx
(

1 − 8

5
x
) =

√

7

20
k0 x2

(

1 − 35

14
x
)

1 + 1

2
k0 x

(

1 − 8

5
x
) , (13)

√

∆
−

γ̄
−

=

√

7

10
nLσT lx2

(

1 − 53

14
x
)

1 + nLσT lx
(

1 − 13

5
x
) =

√

7

20
k0 x2

(

1 − 53

14
x
)

1 + 1

2
k0 x

(

1 − 13

5
x
) . (14)

Figure 1. a) Energy distribution of positrons polarized in opposite directions N
±

(γ)
after passing a laser flash; b) the degree of longitudinal polarization ξz(γ) versus
positrons energy.

Figure 1a presents the distribution for each positron fraction with

γ0 = 104 after passing the laser radiation with flash parameters: A=5J;
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λ0=1 µm, rph= 4.2 µm(k0= 60). The distributions were approximated by

Gaussians with parameters (12), (13), (14):

γ̄+ = 2868,
√

∆+/γ̄+ = 0.12 ;

γ̄
−

= 3129,
√

∆
−

/γ̄
−

= 0.10 .

The degree of positron polarization being determined in the ordinary

way

ξz(γ) =
N+ − N

−

N+ + N
−

(15)

is shown in Figure 1b.

By means of momentum analysis with the fixed acceptance ∆p/p =

∆γ/γ= const in proximity to a preset value γp one can get a partially

polarized positron beam.

Figure 2. a) Histogram of positron distribution after momentum selection with ac-
ceptance σ =

√

∆ (see Figure 2); b) the degree of positron longitudinal polarization
after momentum selection.

Figure 2 presents the polarization degree and intensity of the positron

beam resulting from the similar procedure, when after passing a laser flash
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the beam had characteristics depicted in Figure 1. For simplicity, the cal-

culations were carried out for uniform acceptance:

P =











const, γp −
1

2

√
∆ ≤ γ ≤ γp +

1

2

√
∆

0 off.

As follows from Figure 2, positrons with energy in the interval γ = 2660

± 170 have average polarization < ξz > ≈ - 0.35, then in the interval γ =

3330 ±170, < ξz > ≈ 0.34, with the positron intensity in each ”pocket”

reaching ∼ 24% of the initial one.
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1D PIC SIMULATION OF PLASMA CATHODE
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A laser driven plasma cathode experiment is planned using 100TW, 20fs laser
system at JAERI-APR. Before the experiment, we made a parameter survey with
1D PIC simulation. We have developed relativistic 1D PIC code to study the
propagation of the high intense laser pulse in the plasma and the high energy
electron generation. Time evolution of the laser-interaction is simulated. Low
emittance electrons with high energy up to several handred MeV are generated.
We will report the simulation results of the plasma cathode.

1. Introduction

High energy electrons are generated by focusing an intense ultra short laser

pulse into a plasma. The recent experiments demonstrate the high energy

electron generation [1,2,3, 4,5] due to the progress on the short laser pulse

technology. A laser driven plasma cathode is expected as a high quality

electron source. We are preparing the plasma cathode experiment using

the 100TW, 20fs Ti:sapphire laser system [6] at JAERI-APR. The peak

power up to 100TW is focused into a 7µm spot by an off-axis parabolic

mirror with a focal length of 177 mm. Intensity of 1020W/cm2 can be

achieved.

Before conducting the experiment, we made a parameter survey using

one dimensional particle-in-cell (1D PIC) simulation code. One dimen-

sional simulation cannot treat the transverse nature of the laser- plasma

interaction such as the self-focusing effect. However the 1D code requires

1
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less computer time and computer memory than the 2D and 3D code. It is

convenient to use the 1D code for the parameter survey. We will report the

results of the simulation of the plasma cathode.

2. 1D PIC Simulation Model

We have developed a 1D PIC (Particle-In-Cell) simulation code to study

the interaction of the laser pulse and the plasma. The particle motion and

the electromagnetic field are calculated self consistently. The laser-plasma

interaction in this code is implemented as follows.

The quantities in the code are normalized based on a quantity char-

acterizing the time evolution of the plasmas, an electron plasma frequency

ωpe =
√

4πe2ne0/me. Where e and me are the magnitude of electron charge

and the electron mass, respectively. ne0 is electron number density. ne0 is

used as normalization factor. Time t is normalized by ωpe as t ≡ ωpet,

where t of left hand side is normalized time. According to the time, the

spacial length x is normalized as x ≡ xkpe, here kpe = ωpe/c. The particle

velocity is normalized by the speed of light c, β ≡ v/c. The electric field

E, the magnetic field B, the current density j and the charge density ρ ;

E ≡
eE

mecωpe
, B ≡

eB

mecωpe
, j ≡

j

ene0c
and ρ ≡

ρ

ene0
. (1)

Finally, the particle charge q and mass m are also normalized as q ≡ q
e and

m ≡ m
me

, respectively.

One dimensional spatial grid is located at xi = i∆x. ∆x is grid size

and i is the index of the grid. The electromagnetic field vectors, Ey, Ez

are assigned on xi and Ex, By, Bz are on xi+ 1

2

. The current density vector

components Jx, Jy, Jz ,which are assigned on the grid same as the electric

field vector, are calculated from the particle distribution.

Time evolution of the electromagnetic field is calculated by time inte-

gration of the Maxwell equations;

B
n+

1

2

y,i+ 1

2

= B
n−

1

2

y,i+ 1

2

+ ∆t
∆x (En

z,i+1
− En

z,i)

B
n+

1

2

z,i+ 1

2

= B
n−

1

2

z,i+ 1

2

− ∆t
∆x (En

y,i+1
− En

y,i)
(2)

En+1

x,i+ 1

2

= En
x,i+ 1

2

− ∆tj
n+

1

2

x,i+ 1

2

En+1

y,i = En
y,i − ∆t

∆x (B
n+

1

2

z,i+ 1

2

− B
n+

1

2

z,i− 1

2

) − ∆tj
n+

1

2

y,i

En+1

z,i = En
z,i + ∆t

∆x (B
n+

1

2

y,i+ 1

2

− B
n+

1

2

y,i− 1

2

) − ∆tj
n+

1

2

z,i ,

(3)
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where n is the index of time step. Bx is constant in time for one dimentional

case.

An open boundary condition for the electromagnetic wave is taken into

calculation following Ref [7]. For an electromagnetic wave incident in the

−x direction at left side of the system with phase velocity c the relation

kxEy − ωBz = 0 is rewritten using time average of Ey and spatial average

of Bz as

En
y,0 + En+1

y,0 + B
n+

1

2

z,− 1

2

+ B
n+

1

2

z, 1

2

= 0 (4)

with the help of kx = −ω. B
n+

1

2

z,− 1

2

can be eliminated with

∆t

∆x

B
n+

1

2

z,+ 1

2

− B
n+

1

2

z,− 1

2

∆x
+

En+1

y,0 − En
y,0

∆t
= 0. (5)

Thus, En+1

y,0 at left boundary is obtained;

En+1

y,0 = −
1 − ∆x/∆t

1 + ∆x/∆t
En

y,0 −
2

1 + ∆x/∆t
B

n+
1

2

z, 1

2

. (6)

En+1

z,0 is also calculated by similar way. The open boundary condition for

Ey and Ez at right side is implemented with same algorithm.

Laser pulse injection is implemented by adding oscillation to the current

density at the boundary region;

jz,i=1 =
2EL

∆x
g(t) sin(ωLt), (7)

where EL is amplitude of laser electric field, g(t) is the time envelope and

ωL is laser frequency. Time envelope function is given by

g(x) = exp[−
(t − 3τL)2

4τ2

L

], (8)

where τL is the pulse length. In this case, the laser electric field is linearly

polarized in the z-direction. The laser pulse propagates in the x-direction.

The motion of the particles in the electromagnetic field is calculated by

numerically solving the Lorentz force equation for the electrons and ions.

un+
1

2 − un−

1

2

∆t
=

q

m
(En +

un+
1

2 + un−

1

2

2γn
× Bn) (9)

where u = γβ, γ = 1/
√

1 − β2, the relativistic factor. The Boris push

algorithm is implemented to solve this equation.
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The current distribution is calculated from the particle distribution.

When the particle is located between xi and xi+1, the z-component of the

current density jz is

jz,i = qM
uz

γ
xi+1−rx

∆x2

jz,i = qM
uz

γ
rx−xi

∆x2 .
(10)

The x and y components of the current are calculated by the same manner.

All of particles are accumulated to the current density on each grid. Macro

particle charge qM is determined by qM = q
∫

ns dx/NM . Where ns is the

initial density distribution of the particles and NM is number of macro

particles.

The electric and magnetic field, the particle position and velocity are

advanced in time step by step. At first Bn−

1

2 , En, un−

1

2 and rn are given

initially. The procedure is as following;

1) The magnetic field is advanced half step.

Bn = Bn−

1

2 −
∆t

2
∇ × En (11)

2) The particle velocity is advanced full step.

un+
1

2 = un−

1

2 −
Fn

m
∆t (12)

3) The magnetic field is advanced half step.

Bn+
1

2 = Bn −
∆t

2
∇ × En (13)

4) The particle position is advanced half step.

rn+
1

2 = rn −
un+

1

2

γn+
1

2

∆t

2
(14)

5) jn+
1

2 is calculated from un+
1

2 and rn+
1

2 .

6) The particle position is advanced half step.

rn+1 = rn+
1

2 −
un+

1

2

γn+
1

2

∆t

2
(15)

7) The electric field is advanced full step.

En+1 = En + ∆t∇ × Bn+
1

2 − ∆tjn+
1

2 (16)
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Figure 1. Waveform of the wakefield field excited by the laser pulse and energy distri-
bution of the electrons for a0 = 8. Laser wave length is 800 nm and pulse length is 20 fs
(FWHM).

3. Simulation Results

In the 1D simulation presented here, the initial plasma is uniformly dis-

tributed between x = 0 and x = 500µm. The 20fs laser pulse is injected

from left side (x = 0) at t = 0. The laser electric field is linearly polarized in

z-direction. Figure 1 shows the wake field excited by the laser pulse and the

electron energy distribution. The normalized vector potential of the laser

a0 is 8 and the initial plasma density is 1019cm−3. Nonlinear wakefield is

excited and the electrons are trapped in the acceleration phase of the wake.

The generated electron bunch is very short. The length is the order of 1

µm. The scattering angle of the accelerated electrons is shown in Figure 2.

There are three peaks in the scattering angle. Two peaks around 1 and -1

rad. are due to the scattering by the laser ponderomotive acceleration [8].

The electrons trapped in the wakefield have small scattering angle. It is es-
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timated from the Figure 2 that the divergence
√

< (βz/βx)2 > is 1.2×10−3

for high energy electrons.
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Figure 2. Scattering angle as a function of electron energy. The simulation parameter
is the same as in Figure 1.

The energy of electron increases in time as the wakefield propagates

in the plasma. The time evolution of the maximum electron energy is

plotted in Figure 3. It is seen that the electron is alternately accelerated

and decelerated for the plasma density over 1 × 1019cm−3. This is due to

the phase slipping because the dephasing length decreases with increasing

in the plasma density. Maximum energy gain is obtained at the plasma

density around 7 × 1018cm−3. The electron energy reaches 300 MeV.

4. Summary

1D PIC simulation is conducted for the plasma cathode experiment at

JAERI-APR. When the 100TW, 20fs laser pulse is focused into the plasma,

high energy electrons over 300 MeV are generated. Although 1D simula-

tion cannot treat transverse characteristics, estimation of the emittance is

possible by supposing that transverse interaction region is the same as the

laser spot size (7µm). In our case, the normalized emittance is the order of

1 π mm-mrad and 109 − 1010 electrons are accelerated by the wakefield.
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Figure 3. Time evolution of peak energy of the electrons.
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BOILING THE VACUUM WITH AN X-RAY FREE
ELECTRON LASER
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X-ray free electron lasers will be constructed in this decade, both at SLAC in
the form of the so-called Linac Coherent Light Source as well as at DESY, where
the so-called TESLA XFEL laboratory uses techniques developed for the design
of the TeV energy superconducting electron-positron linear accelerator TESLA.

Such X-ray lasers may allow also for high-field science applications by exploiting
the possibility to focus their beams to a spot with a small radius, hopefully in
the range of the laser wavelength. Along this route one obtains very large electric
fields, much larger than those obtainable with any optical laser of the same power.
We consider here the possibility of obtaining an electric field so high that electron-
positron pairs are spontaneously produced in vacuum (Schwinger pair production)
and review the prospects to verify this non-perturbative production mechanism for
the first time in the laboratory.

1. Introduction

Spontaneous particle creation from vacuum induced by an external field was
first proposed in the context of e+e− pair production in a static, spatially
uniform electric field1 and is often referred to as the Schwinger2 mecha-
nism. It is one of the most intriguing non-linear phenomena in quantum
field theory. Its consideration is theoretically important, since it requires
one to go beyond perturbation theory, and its eventual experimental ob-
servation probes the theory in the domain of strong fields. Moreover, this
mechanism has been applied to many problems in contemporary physics,
ranging from black hole quantum evaporation3 and e+e− creation in the
vicinity of charged black holes4, giving rise possibly to gamma ray bursts5,
to particle production in hadronic collisions6 and in the early universe7,
to mention only a few. One may consult the monographs8 for a review of
further applications, concrete calculations and a detailed bibliography.

1
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It is known since the early 1930’s that in the background of a static,
spatially uniform electric field the vacuum in quantum electrodynamics
(QED) is unstable and, in principle, sparks with spontaneous emission of
e+e− pairs1. However, a sizeable rate for spontaneous pair production
requires extraordinary strong electric field strengths E of order or above
the critical value

Ec ≡ me c2

e λe–
=

m2
e c3

e �
� 1.3 · 1018 V/m . (1)

Otherwise, for E � Ec, the work of the field on a unit charge e over the
Compton wavelength of the electron λe– = �/(mec) is much smaller than the
rest energy 2 mec

2 of the produced e+e− pair, the process can occur only via
quantum tunneling, and its rate is exponentially suppressed, ∝ exp[−π Ec

E ].
Unfortunately, it seems inconceivable to produce macroscopic static

fields with electric field strengths of the order of the critical field (1) in
the laboratory. In view of this difficulty, in the early 1970’s the question
was raised whether intense optical lasers could be employed to study the
Schwinger mechanism9,10. Yet, it was found that all available and conceiv-
able optical lasers did not have enough power density to allow for a size-
able pair creation rate9,10,11,12,13,14,15,16,17,18,19. At about the same time,
the thorough investigation of the question started whether the necessary su-
perstrong fields around Ec can be generated microscopically and transiently
in the Coulomb field of colliding heavy ions with Z1 + Z2 > Zc ≈ 17020.
At the present time, clear experimental signals for spontaneous positron
creation in heavy ion collisions are still missing and could only be expected
from collisions with a prolonged lifetime21.

Meanwhile, there are definite plans for the construction of X-ray free
electron lasers (FEL), both at SLAC, where the so-called Linac Co-
herent Light Source22,23 (LCLS) is under construction, as well as at
DESY, where the so-called TESLA XFEL uses techniques developed for
the design of the TeV energy superconducting e+e− linear accelerator
TESLA24,25,26. Such X-ray lasers may possibly allow also for high-field
science applications27,28,29,30,31: One could make use of not only the high
energy and transverse coherence of the X-ray beams, but also of the possi-
bility to focus them to a spot with a small radius σ, hopefully in the range
of the laser wavelength, σ >∼ λ � O(0.1) nm. In this way one might obtain
very large electric fields,

E =

√
µ0 c

P

πσ2
= 1.1 · 1017 V

m

(
P

1 TW

)1/2 (
0.1 nm

σ

)
, (2)
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Figure 1. Principle of a single-pass X-ray free electron laser in the self amplified spon-
taneous emission mode26.

much larger than those obtainable with any optical laser of the same peak
power P . Thus, X-ray FELs may be employed possibly as vacuum boilers28.

In this contribution, I will review recent work on spontaneous e+e−

pair production at the focus of future X-ray FELs32,33,34,35 and discuss the
prospects to verify this non-perturbative production mechanism for the first
time in the laboratory.

2. X-Ray Free Electron Lasers

Let us start by briefly reviewing the principle of X-ray free electron lasers.
Conventional lasers yield radiation typically in the optical band. The

reason is that in these devices the gain comes from stimulated emission
from electrons bound to atoms, either in a crystal, liquid dye, or a gas. The
amplification medium of free electron lasers36, on the other hand, is free,
i.e. unbounded, electrons in bunches accelerated to relativistic velocities
with a characteristic longitudinal charge density modulation (cf. Fig. 1).

The basic principle of a single-pass free electron laser operating in the
self amplified spontaneous emission (SASE) mode37 is as follows. It func-
tions by passing an electron beam pulse of energy Ee of small cross section
and high peak current through an undulator – a long periodic magnetic
structure (cf. Fig. 1). The interaction of the emitted synchrotron radia-
tion, with opening angle

1/γ = mec
2/Ee = 2 · 10−5 (25 GeV/Ee) , (3)
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Figure 2. Spectral peak brilliance of X-ray FELs and undulators for spontaneous radi-
ation at TESLA, together with that of third generation synchrotron radiation sources26.
For comparison, the spontaneous spectrum of an X-ray FEL undulator is shown.

where me is the electron mass, with the electron beam pulse within the
undulator leads to the buildup of a longitudinal charge density modulation
(micro bunching), if a resonance condition,

λ =
λU

2γ2

(
1 +

K2
U

2

)
= 0.3 nm

(
λU

1 m

) (
1/γ

2 · 10−5

)2 (
1 + K2

U/2
3/2

)
, (4)

is met. Here, λ is the wavelength of the emitted radiation, λU is the length
of the magnetic period of the undulator, and KU is the undulator parame-
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Figure 3. The TESLA XFEL campus North-West of the DESY laboratory26, whose
commissioning is expected in 2010. The XFEL electron beam is accelerated by a ded-
icated 20 GeV linear accelerator (linac) starting at a supply hall ≈ 4 km south of the
XFEL laboratory. The XFEL linac tunnel runs under a small angle of 2o with respect
to the tunnel of the future TESLA linac, which is shown in grey color.

ter,

KU =
eλUBU

2πmec
, (5)

which gives the ratio between the average deflection angle of the electrons in
the undulator magnetic field BU from the forward direction and the typical
opening cone of the synchrotron radiation. The undulator parameter should
be of order one on resonance. The electrons in the developing micro bunches
eventually radiate coherently – the gain in radiation power P ,

P ∝ e2 N2
e B2

U γ2 , (6)
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over the one from incoherent spontaneous synchrotron radiation (P ∝ Ne)
being proportional to the number Ne ≥ 109 of electrons in a bunch (cf.
Fig. 2) – and the number of emitted photons grows exponentially until sat-
uration is reached. The radiation has a high power, short pulse length,
narrow bandwidth, is fully polarized, transversely coherent, and has a tun-
able wavelength.

The concept of using a high energy electron linear accelerator for build-
ing an X-ray FEL was first proposed for the Stanford Linear Accelerator22.
The LCLS at SLAC is expected to provide the first X-ray laser beams in
2008. The feasibility of a single-pass FEL operating in the SASE mode has
been demonstrated recently down to a wavelength of 80 nm using electron
bunches of high charge density and low emittance from the linear accelerator
at the TESLA test facility (TTF) at DESY38 (cf. Fig. 2). Some character-
istics of the radiation from the planned X-ray FELs at the TESLA XFEL
laboratory26 (cf. Fig. 3), whose commissioning is expected in 2010, are
listed in Table 1.

Table 1. Properties of X-ray FELs at the TESLA XFEL laboratory.

unit SASE 1 SASE 3 SASE 5

wavelength nm 0.1 ÷ 0.5 0.1 ÷ 0.24 0.4 ÷ 5.8
bandwidth (FWHM) % 0.08 0.08 0.29 ÷ 0.7
peak power GW 37 22 110 ÷ 200
average power W 210 125 610 ÷ 1100
photon beam size (rms) µm 43 53 25 ÷ 38
peak power density W/m2 6 · 1018 3 · 1018 6 · 1019

3. Semi-classical Rate Estimates

We now turn to the main subject of our contribution, namely the sponta-
neous pair production at the focus of future X-ray FELs. We will elaborate
in this section on a simplified approximation concerning the electromagnetic
field of the laser radiation which retains the main features of the general
case but nevertheless allows to obtain final expressions for the pair produc-
tion rate in closed form. This should be sufficient for an order-of-magnitude
estimate of critical parameters to be aimed at to get an observable effect.

It is well known that no pairs are produced in the background of a
light-like static, spatially uniform electromagnetic field2, characterized in-
variantly by

F ≡ 1
4

FµνFµν ≡ −1
2

(E2 − c2B2) = 0 , (7)
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Table 2. Laser parameters and derived quantities relevant for estimates of the
rate of spontaneous e+e− pair production. The column labeled “Optical” lists
parameters which are typical for a petawatt-class (1 PW = 1015 W) optical laser,
focused to the diffraction limit, σ = λ. The column labeled “Design” displays design
parameters of the planned X-ray FELs at DESY (Table 1). Similar values apply
for LCLS. The column labeled “Focus: Available” shows typical values which can
be achieved with present day methods of X-ray focusing: It assumes that the X-ray
FEL X-ray beam can be focused to a rms spot radius of σ � 21 nm with an energy
extraction efficiency of 1 %. The column labeled “Focus: Goal” shows parameters
which are theoretically possible by increasing the energy extraction of LCLS (by the
tapered undulator technique) and by a yet unspecified method of diffraction-limited

focusing of X-rays.

Laser Parameters

Optical X-ray FEL

Focus: Design Focus: Focus:
Diffraction limit Available Goal

λ 1 µm 0.4 nm 0.4 nm 0.15 nm

�ω = hc
λ

1.2 eV 3.1 keV 3.1 keV 8.3 keV

P 1 PW 110 GW 1.1 GW 5 TW
σ 1 µm 26 µm 21 nm 0.15 nm
�t 500 fs ÷ 20 ps 0.04 fs 0.04 fs 0.08 ps

Derived Quantities

S = P
πσ2 3 × 1026 W

m2 5 × 1019 W
m2 8 × 1023 W

m2 7 × 1031 W
m2

E =
√

µ0 c S 4 × 1014 V
m

1 × 1011 V
m

2 × 1013 V
m

2 × 1017 V
m

E/Ec 3 × 10−4 1 × 10−7 1 × 10−5 0.1
�ω

mec2
2 × 10−6 0.006 0.006 0.02

η = �ω
e Eλe–

9 × 10−3 6 × 104 5 × 102 0.1

G ≡ 1
4

Fµν F̃µν ≡ cE · B = 0 , (8)

where Fµν is the electromagnetic field strength tensor and F̃µν =
(1/2) εµναβFαβ its dual. It has been argued that fields produced by fo-
cusing laser beams are very close to such a light-like electromagnetic field,
leading to an essential suppression of pair creation12. Yet, in a focused
wave there are regions near the focus where F < 0 and pair production is
possible9,27. For other fields, F and G do not vanish, and pair production
becomes possible, unless G = 0, F > 0, corresponding to a pure magnetic
field in an appropriate coordinate system2. In particular, one expects pair
creation in the background of a spatially uniform electric field oscillating
with a frequency ω, say

E(t) = (0, 0, E cos(ωt)) , B(t) = (0, 0, 0) , (9)

which has G = 0, F < 0. As emphasized in Refs.13,15,16,28, such a field may
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be created in an antinode of the standing wave produced by a superposition
of two coherent laser beams with wavelength

λ =
2πc

ω
, (10)

and, indeed, it may be considered as spatially uniform at distances much
less than the wavelength.

Thus, for definiteness, we assume that every X-ray laser pulse is split
into two equal parts and recombined to form a standing wave with locations
where the electromagnetic field has the form (9) and where the peak electric
field is given by Eq. (2). Alternatively, one may consider pair creation in
the overlap region of two lasers, whose beams make a fixed angle to each
other19. Furthermore, we assume that the field amplitude E is much smaller
than the critical field, and the photon energy is much smaller than the rest
energy of the electron,

E � Ec , �ω � mec
2 ; (11)

conditions which are well satisfied at realistic X-ray lasers (cf. Table 2).
Under these conditions, it is possible to compute the rate of e+e− pair pro-
duction in a semi-classical manner, using generalized WKB or imaginary-
time (instanton) methods10,11,18,19,39. Here, the ratio η of the energy of
the laser photons over the work of the field on a unit charge e over the
Compton wavelength of the electron,

η =
�ω

eEλe–
=

� ω

mec2

Ec

E =
mec ω

e E , (12)

plays the role of an adiabaticity parameter. Indeed, the probability that an
e+e− pair is produced per unit time and unit volume,

w =
d ne+e−

d3xdt
, (13)

depends on the laser frequency only through the adiabaticity parameter η

and reads, in the limiting cases of small and large η, as follows32,35

w � c

4 π3λe– 4 × (14)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2

π

(
E
Ec

) 5
2

exp
[−π Ec

E
(
1 − 1

8η2 + O(η4)
)]

, : η � 1 ,

√
π
2

(
� ω

mec2

) 5
2 ∑

n>2 mec2
�ω

(
e
4η

)2n

e−2
(

n−2 mec2

�ω

)
×

×Erfi
(√

2
(
n − 2mec2

�ω

))
: η � 1 ,
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η−1

Figure 4. The positron rate per laser shot as a function of the inverse of the adiabaticity
parameter, η−1, as measured by the SLAC experiment E-14440. The line is a power law
fit to the data which gives Re+ ∝ η−2n, with n = 5.1 ± 0.2 (stat)+0.5

−0.8 (syst).

where Erfi is the imaginary error function. This result agrees in the adi-
abatic high-field, low-frequency limit, η � 1, with the non-perturbative
Schwinger result2 for a static, spatially uniform field, if a proper aver-
age over an oscillation period is made. In the non-adiabatic low-field,
high-frequency limit, η � 1, on the other hand, it resembles a pertur-
bative result: it corresponds to the ≥ n-th order perturbation theory, n

being the minimum number of quanta required to create an e+e− pair:
n >∼ 2 mec

2/(�ω) � 1.
At this point it seems appropriate to discuss the question whether –

as argued in Ref.27 – the non-perturbative Schwinger pair creation mech-
anism has already been demonstrated by the SLAC experiment E-14440.
This experiment studied positron production in the collision of 46.6 GeV/c
electrons with terawatt optical (λ = 527 µm) laser pulses. In the rest frame
of the incident electrons, an electrical field strength of about 38 % of the
critical field (1), E � 5 · 1017 V/m, was reached. The values of the adi-
abaticity parameter η probed were therefore in the range η � 3 ÷ 10 (cf.
Fig. 4), i.e. in the non-adiabatic, perturbative multi-photon regime. Corre-
spondingly, in Refs.40,41 the data were convincingly interpreted in terms of
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multi-photon light-by-light scattering. Indeed, the observed positron pro-
duction rate scales as Re+ ∝ η−10 (cf. Fig. 4). This is in good agreement
with the fact that the rate of perturbative multi-photon reactions involving
n laser photons is proportional to η−2n for η � 1, Eq. (14), and with the
kinematic requirement that five photons are needed to produce a pair near
threshold.

For an X-ray laser (�ω � 1 ÷ 10 keV), the adiabatic, non-perturbative,
strong field regime, η <∼ 1, starts to apply for E >∼ �ω Ec/(mec

2) ∼ 1015÷16

V/m (cf. Eq. (12)). An inspection of the rate (14) leads then to the
conclusion that one needs an electric field of about 0.1 Ec ∼ 1017 V/m
in order to get an appreciable amount of spontaneously produced e+e−

pairs32. To this end one needs either a terawatt X-ray or a tens of exawatt
optical laser.

In Table 2 we have summarized the relevant parameters for the planned
X-ray FELs32. We conclude that the power densities and electric fields
which can be reached with presently available technique (column labeled
“Focus: Available” in Table 2) are far too small for a sizeable effect. On
the other hand, if the energy extraction can be improved considerably, such
that the peak power of the planned X-ray FELs can be increased to the
terawatt region, and if X-ray optics can be improved42 to approach the
diffraction limit of focusing, leading to a spot size in the 0.1 nanometer
range, then there is ample room (c. f. column labeled “Focus: Goal” in
Table 2) for an investigation of the Schwinger pair production mechanism
at X-ray FELs. At the moment it is hard to predict whether this goal will
be reached before the commissioning of exawatt-zettawatt optical lasers43.

4. Quantum Kinetic Studies

More information about the details of the Schwinger mechanism accessible
at the focus of an X-ray laser can be obtained via approaches based on
quantum kinetics. In Refs.33,34, quantum Vlasov equations, derived within
a mean-field treatment of QED44, were employed to obtain a description
of the time evolution of the momentum distribution function for the parti-
cles produced via vacuum decay in the background of a spatially uniform
external electric field of the form (9). It was found that – for realistic laser
parameters (cf. Table 2) – pair production will occur in cycles that proceed
in tune with the laser frequency (cf. Fig. 5). The peak density of produced
pairs, however, is frequency independent, with the consequence that sev-
eral hundred pairs could be produced per laser period, in accord with the
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Figure 5. Time evolution of the number density of produced e+e− pairs at the focus of
an X-ray laser33. In strong fields, particles accumulate, leading to the almost complete
occupation of available momentum states. In weak fields, repeated cycles of particle
creation and annihilation occur in tune with the laser frequency.

Schwinger rate. For even higher peak electric fields, E >∼ 0.25 Ec – possibly
achievable at a 9 TW X-ray FEL (cf. Table 2) – particle accumulation and
the consequent formation of a plasma of spontaneously produced pairs is
predicted34 (cf. Fig. 6). The evolution of the particle number in the plasma
will exhibit then non-Markovian aspects, and the plasma’s internal currents
will generate an electric field whose interference with that of the laser leads
to plasma oscillations34. This feature persists even if – in distinction to
Refs.33,34 – one takes into account collision terms in the quantum Vlasov
equations45.

5. Conclusions

We have considered the possibility to study non-perturbative spontaneous
e+e− pair creation from vacuum for the first time in the laboratory. We
have seen that for this application still some improvement in X-ray FEL
technology over the presently considered design parameters is necessary. In-
tensive development in technical areas, particularly in that of X-ray optics,
will be needed in order to achieve the required ultra-high power densities. It
should be pointed out, however, that even though progress to achieve such
a demanding goal is rather slow and laborious, the rewards that may be
gained in this unique regime are so extraordinary that looking into TESLA
XFEL’s or LCLS’s extension to this regime merits serious considerations.
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Figure 6. Left: Peak particle number density versus laser field strength34. The qualita-
tive change at E0 ≈ 0.25 Ec marks the onset of particle accumulation. Right: Internal to
external peak current ratio34: field-current feedback becomes important for E0 >∼ 0.25 Ec.

No doubt, there will be unprecedented opportunities to use these intense
X-rays in order to explore some issues of fundamental physics that have
eluded man’s probing so far.
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UNRUH EFFECT AS PARTICULAR FRENET SERRET VACUUM RADIATION

AND DETECTION PROPOSALS
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The paradigmatic Unruh radiation is an ideal and simple case of stationary scalar vacuum
radiation patterns related to worldlines defined as Frenet-Serret curves. We briefly review
the corresponding body of theoretical literature as well as the proposals that have been
suggested to detect these types of quantum field radiation patterns.

1. Frenet-Serret Worldlines and Vacuum Radiation Patterns

A thermal radiation effect due to vacuum oscillations in quantum field theory has
been discussed by Unruh in 1976,1 using the so-called detector method. This was
based on the first order perturbation calculation of the excitation rate of a quan-
tum particle considered as a two-level field detector around its classical trajectory.
Slightly earlier, Davies obtained a similar result using a mirror model,2 that im-
plies the calculation of the Bogoliubov coefficient β, like in particle production in
astrophysics and cosmology. A ‘thermodynamic’ temperature, TV = h̄

2πckB
· a, di-

rectly proportional to the proper linear acceleration a is the main feature of this
vacuum radiation pointing to a new universal quantum field thermal effect. More-
over, a direct link to the Hawking radiation in black hole physics could be thought
of through the equivalence principle. On the other hand, in a little noticed paper
of 1981, Letaw 3 studied by means of Frenet-Serret tetrads and the same detector
method the stationary world lines on which relativistic quantum particles with a lin-
ear coupling to the scalar vacuum have time-independent excitation spectra. These
worldlines are characterized by the requirement that the geodetic interval between
two points depends only on the proper time interval. Letaw employed a general-
ization of the Frenet-Serret equations to the four-dimensional Minkowski space in
which the worldlines are characterized by the curvature κ and two torsions τ1 and
τ2 instead of a single one as in the common three-dimensional space. Mathemati-
cally, this means a change of dimension of the antisymmetric matrix of curvature



invariants

⎛
⎝ 0 κ 0

−κ 0 τ
0 −τ 0

⎞
⎠ =⇒

⎛
⎜⎜⎝

0 −κ(s) 0 0
κ(s) 0 −τ1(s) 0
0 τ1(s) 0 −τ2(s)
0 0 τ2(s) 0

⎞
⎟⎟⎠ , (1)

where s is the proper time parameter along the classical Frenet-Serret trajectory.
Not surprisingly, the curvature invariants are the proper acceleration and angular
velocity of the world line. Solving the generalized Frenet-Serret equations for the
simple case of constant invariants leads to six classes of stationary world lines. He
also demonstrated the equivalence of the timelike Killing vector field orbits and
the stationary world lines. Last but not least, Letaw did some calculations of the
vacuum excitation spectra of detectors on the sample of six families of stationary
world lines, i.e., of the following cosine Fourier transform

S(E, τ) = 2πρ(E)
∫ 0

−∞
ds〈0|φ(x(τ))φ(x(τ + s))|0〉 cos(Es) , (2)

E is the energy difference between the two levels of the particle considered as de-
tector of the vacuum spectra, ρ(E) is the density of states of the detected vacuum
‘quasiparticles’, and 〈0|φ(x(τ))φ(x(τ + s))|0〉 is the expectation value of the Wight-
man autocorrelation function in the ground state of the particle. Letaw’s work
is a generalization of Unruh’s result concerning the excitation of a scalar particle
detector moving with constant linear acceleration in the vacuum of flat spacetime.
Unruh’s result became famous because of Unruh’s interpretation that the detector
behaves as if in contact with a bath of scalar ‘particles’ with energies in a Planck
spectrum of temperature proportional to a/2π (h̄ , c , kB = 1). The connection with
the Hawking radiation and its paradigmatic nature led many theoretical physicists
to focus on Unruh’s effect and there is a strong need for an experimental confirma-
tion of the effect as a consequence of long debate.4 It is the main goal of this short
survey to present the ideas that have been generated over the years in this respect.

1.1. The Six Stationary Scalar Frenet-Serret Radiation Spectra

We quote here those vacuum excitation spectra S(E, τ) that are independent of
proper time τ , i.e., stationary.

1. Inertial (uncurved) worldlines κ = τ1 = τ2 = 0

S0(E) = E3

4π2 .

The interpretation is a normal vacuum spectrum, i.e., as given by a vacuum of zero
point energy per mode E/2 and density of states E2/2π2.

2. Hyperbolic worldlines κ �= 0, τ1 = τ2 = 0

Sκ(εκ) = ε3κ
2π2(e2πεκ−1) .



This is the unique noninertial case that is torsionless. The employed variable is
εκ = E/κ.The excitation spectrum is Planckian allowing the interpretation of κ/2π

as ‘thermodynamic’ temperature.

3. Ultratorsional (helical) worldlines |κ| < |τ1| �= 0, τ2 = 0, ρ2 = τ2
1 − κ2

Su
τ1

(ερ)
κ/ρ→∞−→ Sp

τ1
(εκ) .

The excitation spectrum is an analytic function corresponding to the case 4 below
only in the limit κ � ρ. Letaw plotted the numerical integral for Su

τ1
(ερ), where

ερ = E/ρ for various values of κ/ρ.

4. Paratorsional (semicubical parabolic) worldlines κ = τ1 �= 0, τ2 = 0

Sp
τ1

(εκ) = ε2κ
8π2

√
3
e−2

√
3εκ .

The excitation spectrum is analytic, and since there are two equal curvature invari-
ants one can use the dimensionless energy variable εκ. It is worth noting that Sp

τ1
,

being a monomial times an exponential, is quite close to the Wien-type spectrum
SW ∝ ε3e−const.ε.

5. Infratorsional (catenary) worldlines |κ| > |τ1| �= 0, τ2 = 0, σ2 = κ2 − τ2
1

Sκ(εκ)
0←τ/σ←− Si

τ1
(εσ)

τ/σ→∞−→ Sp
τ1

(εκ).

In general, the catenary spectrum cannot be found analytically. It is an intermediate
case, which for τ/σ → 0 tends to Sκ, whereas for τ/σ → ∞ tends toward Sp

τ1
.

6. Hypertorsional (variable pitch helicoid) worldlines τ2 �= 0

Sτ2 is not analytic.

The hypertorsional worldlines are rotating with constant a⊥ to the rotation plane.
The excitation spectrum is given in this case by a two-parameter set of curves.
These trajectories are a superposition of the constant linearly accelerated motion
and uniform circular motion. According to Letaw, the spatial path of a two-level
detector on this world line is helicoid of variable pitch that decreases to zero at
proper time interval τ = 0 and increases thereafter. The corresponding vacuum
spectra have not been calculated by Letaw, not even numerically.

1.2. Conclusions from the stationary scalar cases

Examining the six scalar stationary cases we see that only the hyperbolic world-
lines, having just one nonzero curvature invariant, allow for a Planckian excitation
spectrum and lead to a strictly one-to-one mapping between the curvature invari-
ant κ and the ‘thermodynamic’ temperature (Tκ = TV = κ/2π). The excitation
spectrum due to semicubical parabolas can be fitted by Wien type spectra, the



radiometric parameter corresponding to both curvature and torsion. The other
stationary cases, being nonanalytical, lead to approximate determination of the
curvature invariants, defining locally the classical worldline on which a relativistic
quantum particle moves. This explains why the Unruh effect became so prominent
with regard to the other five types of stationary Frenet-Serret scalar spectra.

For the important case of electromagnetic vacuum fluctuations the FS formalism
has not been used in a direct way. However, Hacyan and Sarmiento 6 developed a
procedure by which they provided nonanalytic formulas (cosine Fourier transform
integrals) for the spectral energy density, flux density, and stress density of the
vacuum radiation in terms of the electromagnetic Wightman functions calculated
by means of the two Killing vectors associated to circular trajectories.

2. Detection Proposals

Because the curvature thermodynamic temperature is given by Tκ = h̄
2πck a this

leads to Tκ = 4 · 10−23 a and one needs accelerations greater than 1020g⊕ to have
‘thermal’ effects of only a few Kelvin degrees. On the other hand, one should
focus below the Schwinger acceleration for copious spontaneous pair creation out
of QED vacuum, aSchw ≈ mec

3/h̄ ≈ 1029 m/s2 ≈ 1028 g⊕. Thus the optimal range
for detecting a possible Unruh effect entails eight orders of magnitude in proper
acceleration

1020g⊕ ≤ a ≤ 1028 g⊕ , (3)

There are indeed several physical settings (for reviews, see 5) in which accelerations
can be achieved only a few orders below the Schwinger acceleration and forthcoming
technological advances could test routinely those acceleration scales. The Unruh
effect, if it exists, can be revealed as a tiny thermal-like signal in the background of
by far more powerful effects.

The following is the list of proposals.

2.1. Unruh Effect in Storage Rings (a ∼ 1022g⊕, Tκ = 1200 K)

J.S. Bell and J.M. Leinaas imagined the first laboratory phenomenon connected
to the Unruh effect. During 1983-1987 they published a number of papers on the
idea that the depolarising effects in electron storage rings could be interpreted
in terms of Unruh effect.7However, the incomplete radiative polarization of the
electrons in storage rings has been first predicted in early sixties by Sokolov and
Ternov,8 as an effect due to the spin-flip synchrotron radiation in the framework
of QED. Their approach successfully provides the observed maximum polarization
of electrons at storage rings, Pmax = 8

√
3

15 = 0.924.11 Besides, the circular vacuum
noise is not sufficiently “universal” since it always depends on both acceleration and
velocity. This appears as a ‘drawback’ of the storage ring electron radiometry,12 not
to mention the very intricate spin physics.



The polarization calculated by Bell and Leinaas is very similar in shape to a
formula for the polarization as a function of the electron gyromagnetic factor g

obtained by Derbenev and Kondratenko,9 in 1973 that is considered the standard
QED accelerator result for the polarization of beams. Their function PDK(g) is
a combination of exponential and polynomial terms in the anomalous part of the
gyromagnetic factor of the electron. Barber and Mane 10 have shown that the
DK and BL formalisms for the equilibrium degree of radiative electron polarization
are not so different as they might look. They also obtained an even more general
formula for the equilibrium polarization than the DK and BL ones and from their
formula they estimated as negligible the differences between them.

Recently, the spin-flip synchrotron radiation has been experimentally shown to
be important in the hard part of the spectrum in the axial channeling of electrons
in the energy range 35-243 GeV incident on a W single crystal.13 This may revive
the interest in the BL interpretation, especially in the cleaner planar channeling
case.14

One can also recall that K.T. McDonald applied the Unruh temperature formula
for a rapid calculation of the damping in a linear focusing channel.15 This is a
transport system at accelerators that confines the motion of charged particles along
straight central rays by means of a potential quadratic in the transverse spatial
coordinates. He used the same idea about two decades ago to reproduce Sands’
results on the limits of damping of the phase volume of beams in electron storage
rings.

2.2. Unruh Effect and the Physics of Traps (a ∼ 1021g⊕, Tκ = 2.4 K)

The very successful and precise physics of traps could help detecting the circular
thermal-like vacuum noise. The proposal belongs to J. Rogers 16 being one of the
most attractive. The idea of Rogers is to place a small superconducting Penning
trap in a microwave cavity. A single electron is constrained to move in a cyclotron
orbit around the trap axis by a uniform magnetic field (Rogers’ figure is B = 150
kGs). The circular proper acceleration is a = 6 × 1021g⊕ corresponding to T =
2.4 K. The velocity of the electron is maintained fixed (β = 0.6) by means of a
circularly polarized wave at the electron cyclotron frequency, compensating also
for the irradiated power. The static quadrupole electric field of the trap creates a
quadratic potential well along the trap axis in which the electron oscillates. The
axial frequency is 10.5 GHz (more than 150 times the typical experimental situation
17) for the device scale chosen by Rogers. This is the measured frequency since it is
known that the best way of observing the electron motion from the outside world
is through the measurement of the current due to the induced charge on the cap
electrodes of the trap, as a consequence of the axial motion of the electron along the
symmetry axis.17 At 10.5 GHz the difference in energy densities between the circular
electromagnetic vacuum noise and the universal linear scalar noise are negligible (see
Fig. 2 in Rogers’ work). Even better experimental setups in this context could be



electrons in cylindrical Penning traps with the trap itself representing the microwave
cavity.18

2.3. Unruh Effect and Nonadiabatic Casimir Effect (a ∼ 1020g⊕, T ∼ 1 K)

Yablonovitch,19 proposed a plasma front as an experimental equivalent of a fast
moving mirror. Plasma fronts can be created when a gas is suddenly photoion-
ized. The argument is that the phase shift of the zero-point electromagnetic field
transmitted through a plasma window whose index of refraction is falling with time
(from 1 to 0) is the same as when reflected from an accelerating mirror. Consider
the case of hyperbolic motion. Since the velocity is

v = c tanh(aτ/c) (4)

where τ is the observer’s proper time, the Doppler shift frequency will be

ωD = ω0

√
1 − v/c

1 + v/c
= ω0 exp(−aτ/c) (5)

and consequently a plane wave of frequency ω0 turns into a wave with a time-
dependent frequency. Such waves are called chirped waves in nonlinear optics and
acoustics. Eq. (5) represents an exponential chirping valid also for Schwartzschild
black holes with the substitution a = c4/4GM (G is Newton’s constant and M is
the mass parameter of the Schwarzschild black hole).

The technique of producing plasma fronts/windows in a gas by laser breakdown,
and the associated frequency upshifting phenomena (there are also downshifts) of
the electromagnetic waves interacting with such windows, are well settled since
about twenty years. Blue shifts of about 10% have been usually observed in the
transmitted laser photon energy.

In his paper, Yablonovitch works out a very simple model of a linear chirping
due to a refractive index linearly decreasing with time, n(t) = n0 − ṅt, implying
a Doppler shift of the form ω → ω[1 + ṅ

n t] ∼ ω[1 + a
c t]. To have accelerations

a = 1020g⊕ the laser pulses should be less than 1 picosecond. Even more promising
may be the nonadiabatic photoionization of a semiconductor crystal in which case
the refractive index can be reduced from 3.5 to 0 on the timescale of the optical
pulse. As discussed by Yablonovitch, the pump laser has to be tuned just below
the Urbach tail of a direct-gap semiconductor in order to create weakly bound
virtual electron-hole pairs. These pairs contribute a large reactive component to
the photocurrent since they are readily polarized. The background is due to the
bremsstrahlung emission produced by real electron-hole pairs, and to diminish it
one needs a crystal with a big Urbach slope (the Urbach tail is an exponential
behavior of the absorption coefficient).

In addition, Eberlein,20 elaborated on Schwinger’s interpretation of sonolumines-
cence in terms of zero point fluctuations and asserted that whenever an interface



between two dielectrics or a dielectric and the vacuum moves noninertially photons
are created, i.e., the Unruh effect occurs. An interesting discussion in favor of “di-
electric windows” rather than the “plasma window” is provided by Dodonov et al.21

Moreover, Grishchuk, Haus, and Bergman,22 discussed a nonlinear Mach-Zhender
configuration to generate radiation through the optical squeezing of zero-point fluc-
tuations interacting with a moving index grating that is also reminiscent of Unruh
effect.

2.4. Unruh Effect and Channeling (a ∼ 1030g⊕, Tκ ∼ 1011 K ?)

Relativistic particles can acquire extremely high transverse accelerations when they
are channeled through crystals. Darbinian and collaborators 23 related this physical
setting to Unruh radiation.

The idea is to measure the Unruh radiation emitted in the Compton scattering
of the channeled particles with the Planck spectrum of the inertial crystal vacuum.
The main argument is that the crystallographic fields act with large transverse ac-
celerations on the channeled particles. The estimated transverse proper acceleration
for positrons channeled in the (110) plane of a diamond crystal is a = 1025γ cm/s2,
and at a γ = 108 one could reach 1033 cm/s2 = 1030g⊕. Working first in the particle
instantaneous rest frame, Darbinian et al derived the spectral angular distribution
of the Unruh photons in that frame. By Lorentz transformation to the lab system
they got the number of Unruh photons per unit length of crystal and averaged over
the channeling diameter. At about γ = 108 the Unruh intensity, i.e., the intensity
per unit pathlength of the Compton scattering on the Planck vacuum spectrum
becomes comparable with the Bethe-Heitler bremsstrahlung (dNγ/dE ∝ 1/E, and
mean polar emission angle θ = 1/γ).

Similar calculations have been applied by the same group,24 to get an estimate
of the Unruh radiation generated by TeV electrons in a uniform magnetic field as
well as in a circularly polarized laser field but the conclusions are not optimistic
because of the huge synchrotron background.

2.5. Unruh Radiation and Ultraintense Lasers (a ∼ 1025g⊕, Tκ = 1.2 106 K)

A Unruh signal could be obtained in electron Petawatt-class laser interaction accord-
ing to a proposal put forth by Chen and Tajima in 1999.25 Uniform acceleration
through the usual quantum vacuum (Minkowski vacuum) of the electromagnetic
field distorts the two-point function of the zero-point fluctuations in such a way
that

〈Ei(−τ/2)Ej(+τ/2)〉 =
4h̄

πc3
δij

(a/c)4

sinh4(aτ/2c)
. (6)

The main point of Tajima and Chen is to introduce the so-called laser strength
(ponderomotive) parameter a0 = eE0

mcω0
in this formula and in all their estimations.

They calculate the Unruh radiation based on the autocorrelation function in Eq. (6).



The accelerated electron is assumed “classical”, i.e., with well-defined acceleration,
velocity, and position. This allows to introduce a Lorentz transformation so that
the electron is described in its instantaneous proper frame. In the words of Chen
and Tajima “the electron reacts to the vacuum fluctuations with a nonrelativistic
quivering motion in its proper frame” that triggers additional (Unruh) radiation
besides the classical Larmor radiation.

The important claim of Chen and Tajima is that there is a blind spot in the
Larmor angular distribution for azimuthal angle ∆φ = 10−3 and polar angle ∆θ 

1/a0 where the Unruh thermal-like signal could be revealed. Since at each half cycle
the electron almost suddenly becomes relativistic, with constant γ ∼ a0, the Unruh
radiation is boosted along the direction of polarization in the lab frame. Moreover,
they showed that the autocorrelation function, and therefore the Unruh signal, tend
to diminish more rapidly than that from Larmor within the laser half cycle. This
should induce a sharper time structure for the former that could help its detection.

2.6. Unruh Radiation in Quantum Optics (moderate a could work)

This is a very recent proposal in several versions due to a Scully collaboration.26

The idea is to enhance the thermal Unruh radiation signal from an accelerating He+

ion used as a two-level type detector of transition frequency ω passing through a
high Q “single mode” cavity of frequency ν in the vicinity of the atomic frequency
ω. The enhancement is very significant, in the sense that for reasonable values of
the parameters, the effective Boltzmann factor turns from the usual exponential
behaviour to a linear dependence in α/2πω, where α = a/c. Employing quantum
optics calculations, they showed that this type of Unruh effect is due to nonadiabatic
transitions stemming from the counter-rotating term â+

k σ̂+ in the time-dependent
atom-field interaction Hamiltonian. The Larmor radiation lobes (∼ sin2 θ) will
certainly be present but the blind spot in the forward direction of motion could be
hopefully used for the detection of this nonadiabatic thermal effect.

3. Conclusion

Although the Unruh radiative effect is interpreted as a thermal effect of the nonin-
ertially and nonadiabatically-produced vacuum state, its thermal features are quite
distinct of the usual thermal thermodynamics effects. For example, it is a highly
correlated state with EPR-type correlations,27 and not a thermal uncorrelated state
as the equilibrium states in statistical thermodynamics. Some of the most feasible
proposals are related to nonadiabatic conditions (i.e., capable of producing very
rapid oscillations) for those cases in which the nonadiabaticity parameter depends
on the proper acceleration. It is only for this reason that an association with Un-
ruh’s effect is mentioned. A direct detection of the scalar vacuum spectra has not
been proposed so far. It requires noninertial propagation of a source such as a dis-
location or a vortex through the corresponding phonon medium. For more details
the interested reader can look at the extended version in electronic preprint form.28
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QUANTUM EXCITATION-FREE RADIATION EMISSION

INCLUDING MULTIPLE SCATTERING

ULRIK I. UGGERHØJ

Department of Physics and Astronomy, University of Aarhus

DK-8000 Aarhus C, Denmark

In order to increase the luminosity of electron-positron colliders it is desirable to
find a means to reduce the phase-space of the beams. The transverse cooling of
positrons imposed by the quantum excitation-free radiation emission in a single
crystal is considered as a potential route to achieving ultra-cold beams. An anal-
ysis of the problem is presented, including an evaluation of the contribution from
multiple scattering during the passage. The analysis shows that an emittance re-
duction may be achieved in special cases, but in general the emittance will increase
as a result of the multiple scattering.

1. Introduction

In a series of theoretical papers, the quantum excitation-free radiation emis-

sion in a single crystal has been discussed 1,2. It is shown that the transverse

action - and thereby the emittance - decreases exponentially towards the

minimum value ~/2, corresponding to an emittance of half of the Comp-

ton wavelength. This applies as long as the radiation is in the undulator

regime where the angle of emission is larger than the pitch angle. On the

other hand, experiments 3 have been performed which in agreement with

theoretical expectations based on a completely different analysis show that

positrons in contrast to electrons generally suffer heating instead of cool-

ing. The present work is motivated by two things: The desire to estimate

the potential of single crystals as ‘devices’ for the production of ultra-cold

beams and a wish to find a consensus between two apparently different the-

oretical approaches and experimental results. In the following the outline

of 2 is followed, with the inclusion of multiple scattering, and it is shown

that for the experiment one should indeed expect heating as concluded from

both theories. Finally, it is shown that in special cases it is expected that

transverse cooling can be achieved.

1



2

2. Channeling, multiple scattering and dechanneling

The large fields present near the nuclei in solid materials may in the case

of single crystals add coherently such that a penetrating particle experi-

ences a continuous field along its direction of motion - the so-called contin-

uum approximation 4. If further the particle is incident with a sufficiently

small angle to a particular crystallographic direction, inside the so-called

Lindhard angle, the negatively/positively charged particle is constrained to

move near/far from the nuclei and the electron clouds surrounding these.

This is the channeling phenomenon 4 which has found widespread applica-

tions in physics. For a general introduction to channeling and applications,

see eg. 5. The critical angle for planar channeling is given by

ψp =
√

4Z1Z2e2NdpCaTF/pv (1)

where Z1e is the charge of the penetrating particle, Z2e that of the lattice

nuclei, p the momentum, v the velocity, Ndp is the planar density of atoms,

N being the atomic density and dp the planar spacing, C '
√

3 is Lindhard’s

constant and aTF is the Thomas-Fermi screening distance.
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Figure 1. The figure shows as a function of reduced transverse position, x/dp, a) the
transverse potential in the Molière and harmonic approximations and b) the electron
density calculated from Poisson’s equation.



3

In the continuum approximation, the resulting transverse potential leads

to a continuously focusing environment in which photon emission may take

place without recoil to the emitting particle, the recoil being absorbed by

the lattice. This is the so-called ’semi-classical channeling radiation reac-

tion’ 1,2. In the previous papers on this phenomenon two main assumptions

are made: The particle is moving in a harmonic potential and the energy of

the photons emitted is small compared to the energy of the particle. Disre-

garding for the moment the potentially important case of axially channeled

positrons along a crystal axis, this leaves only planar channeled positrons

since channeled electrons are in a strongly anharmonic potential. Axially

channeled positrons may be confined to a region between certain strings if

their transverse energy is very low, so-called proper channeled positrons. In

this case the transverse potential can be well approximated by a harmonic

potential, see e.g. 6. As seen from figure 1a, the harmonic approximation

is clearly well suited for positive particles.
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Figure 2. The squared scattering angle per unit distance, ∆θ2/∆z, as a function of
reduced transverse position, x/dp, for a p = 25 GeV/c beam in silicon.

The transfer of channeled particles to states above the barrier, so-called

random, is referred to as dechanneling. The length, LD, over which a planar

channeled beam of protons has been reduced to the fraction 1/e of the initial

intensity by transfer to the random beam is given for γ � 1 by 7, 8:

LD =
256

9π2

pv

ln(2γmc2/I) − 1

aTFdp

Z1e2
(2)

where I is the ionisation potential. Eq. (2) has been shown to be in good
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agreement with measured values of LD at room temperature 8. Due to the

dependence of electron density on transverse position, see figure 1a, the

dechanneling process which is a result of the multiple scattering depends

itself on the transverse position and therefore on the transverse energy. In

figure 2 is shown the squared scattering angle per unit distance, ∆θ2/∆z,

for a p = 25 GeV/c beam in silicon. For low transverse energies, the

multiple scattering is dominated by the interaction with electrons and it is

observed that ∆θ2/∆z is almost a factor of two lower for the more accurate

Molière approximation than for the harmonic potential (for the Molière

approximation, see e.g. 9).

3. Quantum excitation-free radiation emission including

multiple scattering

Following 2 the time evolution of the longitudinal Lorentz factor, γz ≡
√

m2c4 + p2
zc

2/mc2 = Ez/mc
2, in a continuous focusing environment is

given by the differential equation

dγz(t)

dt
= −ΓcGγ

3/2

z Jx(t) (3)

i.e. it couples to the transverse action, Jx = Ex/ωz, which evolves as

dJx(t)

dt
= −ΓcJx −

3

4
ΓcGγ

1/2

z (t)J2

x(t) (4)

leading to two coupled differential equations, both in the absence of multiple

scattering. Here Γc = 2reK/3mc is given by the focusing parameter, K,

related to the transverse potential height, U0, and planar spacing, dp, as

U0 = K(dp/2)2/2 and G =
√

K/m3c4 is a convenient constant expressing

the focusing strength.

The solution is given as

Jx(t) = Jx0(1 +
5

8
γ2

z0
θ2p0

(1 − exp(−Γct)))
−3/5 exp(−Γct) (5)

and

γz(t) = γz0(1 +
5

8
γ2

z0
θ2p0

(1 − exp(−Γct)))
−4/5 (6)

where θp0 =

√

2GJx0/γ
3/2

z0
is the initial pitch angle, Jx0 the transverse

action and γz0 the longitudinal Lorentz factor upon entry.

To include multiple scattering we use the analysis for the dechanneling

length, LD, of positive particles with γ � 1. The dechanneling process
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arises due to a steady increase of the transverse energy imposed by mul-

tiple scattering, i.e. the transverse energy increases as dEx/dz = U0/LD.

Therefore the transverse action increases as dJx/dt = U0c/LDωz, but since

the effective dechanneling length depends on the transverse energy approx-

imately as LD = LD0U0/Jxωz, the transverse action changes according to

dJx/dt = c/LD0Jx (7)

Here LD0 denotes the dechanneling length for states where Ex ' U0. This

is found by dividing the squared scattering angle for x = 0 by the average

over x of the squared scattering angles shown in figure and multiplying the

dechanneling length from eq. (2) by this ratio, i.e.

LD0 = LDdp∆θ
2(dp/2)/2

∫ dp/2

0

∆θ2(x)dx (8)

Thus, by combining eqs. (4) and (7), the result is

dJx(t)

dt
= (

c

LD0

− Γc)Jx −
3

4
ΓcGγ

1/2

z (t)J2

x(t) (9)

whereas γz(t) remains unaffected. By a change of variables Γ′

c = Γc(1 −

c/ΓcLD0 and G′ = G(1 − c/ΓcLD0)
−1 the same type of coupled differential

equations as eqs. (3) and (4) are obtained with solutions given by eqs. (5)

and (6) with Γ′

c and G′ instead of Γc and G and with a new pitch angle,

θ′

p0
= (1 − c/ΓcLD0)

−1/2θp0. To get the true pitch angle as a function of

time the inverse transformation is applied, i.e. θp = (1 − c/ΓcLD0)
1/2θ′

p

where θ′

p =

√

2G′J ′

x/γ
′3/2

z is the modified pitch angle. As expected and

seen from the results below, a good measure of the depth at which the

cooling effect starts to appear is given by cτc = c/Γc.

4. Results

In figure 3 is shown the pitch angle calculated as a function of normalized

penetration time, t/τc, for 25 GeV positrons in a (110) diamond, with

and without inclusion of the multiple scattering. It is seen that while the

cooling starts around t/τc = 0.1 without multiple scattering, it is postponed

to values above t/τc ' 5 when this additional effect is taken into account.

Since there is always an incoherent contribution to the radiation emission

which typically takes place as in an amorphous medium, it is important

to note the scale of cτc compared to the amorphous radiation length, X0,

which for diamond is 122 mm. It is thus not possible to utilize planar

channeling in diamond for cooling of a 25 GeV beam of positrons for an
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angle of incidence near ψp. However, for smaller angles the cooling starts

already at ' 0.1t/τc, i.e. a 10 mm thick diamond would suffice to initiate

the cooling.
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Figure 3. The pitch angle in diamond (110) as a function of normalized penetration
time, t/τc. The full drawn curve is calculated including multiple scattering while the
dotted line excludes this contribution. The graphs a), b) and c) are for incidence angles
ψp, ψp/2 and ψp/4, respectively.

In figure 4 is shown the different behaviours for several angles of in-

cidence, calculated for tungsten (110). Strong cooling is found to appear

early for small values of the angle of incidence, but for tungsten cτc ' 8X0

which means that even for small angles there will be a strong influence from

incoherent scattering.

In figure 5 is shown results for silicon and germanium showing that for

light materials, where the lattice is not very compact as in diamond, the

influence of multiple scattering is much stronger than for heavier ones.

To get an impression of the variation of the cooling effect as a function

of energy in figure 6 is shown the results for 4 different energies. Clearly,

as the energy increases, the influence of multiple scattering diminishes and

cooling starts earlier.
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Figure 4. The pitch angles in tungsten (110) as a function of normalized penetration
time, t/τc, for 4 different angles of incidence as indicated. The positron energy is set to
25 GeV and all curves are calculated including multiple scattering.
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Figure 5. The pitch angle in a) silicon and b) germanium (110) as a function of nor-
malized penetration time, t/τc. In each case, the initial pitch angle equals the planar
critical angle, ψp, and the full curves are calculated including multiple scattering while
the dotted curves do not include this effect.

As a crude estimate, the axial potential can be approximated by a har-

monic potential with barrier height equal to that found by the Molière

potential. The two kinds of motions in the planar and axial channeling



8

1E-3 0.01 0.1 1 10 100
0

25

50

75

100

125

150

175

200

ct
c
=29 mm

250 GeV

100 GeV

25 GeV

10 GeV

Tungsten (110)

P
itc

h
a
n
g
le

[m
ra

d
]

t/t
c

Figure 6. The pitch angle in tungsten (110) as a function of normalized penetration
time, t/τc, for 4 different energies as indicated. In each case, the initial pitch angle equals
the planar critical angle, ψp, and all curves are calculated including multiple scattering.

cases are very different and it is not expected to get anything but an indi-

cation of the magnitude of the effect from this analysis. However, in figure

7 is shown the results obtained by this procedure for two energies and we

note that in this case the characteristic cooling length is much shorter than

X0. This indicates that the much stronger axial fields may indeed provide

substantial cooling.

Such an experiment has been performed by NA43 at CERN, see 3, and

compared to a theoretical analysis by Kononets, see 10. It was found, in

agreement with this theory, that positrons suffered heating in contrast to

electrons. In figure 8 is shown results under the same crude estimation

method for the axial case as mentioned above. The actual value of the

crystal thickness in the experiment is given by the vertical dashed line and

it is seen - as observed in the experiment - that for all angles of incidence

positrons suffer heating.

In 11 calculations of the transverse cooling including multiple scatter-

ing have also been performed. However, in order to present a fully self-

consistent model, the authors have chosen to model the electron density by

solving the Poisson equation for the harmonic potential. This yields an elec-

tron density which is constant as a function of transverse position and may

underestimate the net cooling effect as a cause of this. On the other hand,

in 11 scattering ‘on fluctuations of the planar potential’, i.e. the nuclear
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Figure 8. The estimated axial pitch angle in silicon as a function of normalized pene-
tration time, t/τc, for 4 different angles of incidence. All curves are calculated including
multiple scattering.

contribution is not taken into account either. The analysis presented here

supplements that of Baier and Katkov 11 in producing essentially the same

conclusion by use of a different approach: Only under special circumstances

may a penetrating particle experience a net cooling effect.



10

5. Conclusions

Qualitative agreement among two different theoretical approaches and an

experiment on radiative angular cooling is shown. This gives considerable

confidence in the predictions, especially of the semi-classical channeling ra-

diation reaction approach. Furthermore, for this approach multiple scatter-

ing is included to obtain a more realistic estimate of the cooling properties.

Rough estimates show that for existing positron beams a strong cooling

effect may be achievable by means of axial channeling in a ' 20 mm thick

diamond crystal. There are however still open questions which deserve

attention, among others that of dilution of the longitudinal phase-space

due to the severe straggling in energy loss and the possibility of cooling

simultaneously in both transverse directions by proper axial channeling or

channeling in carbon nanotubes 12.
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FLYING MIRRORS – RELATIVISTIC PLASMA WAKE

CAUSTIC LIGHT INTENSIFICATION

T. ESIRKEPOV, S. V. BULANOV AND T. TAJIMA

Advanced Photon Research Center, JAERI, Kyoto-fu 619-0215, Japan

E-mail: timur@apr.jaeri.go.jp

A method to generate ultrahigh intense electromagnetic fields is presented. This
method, in principle, allows us to achieve the Schwinger limit of the electric field.
The method is demonstrated with the help of two- and three-dimensional particle-
in-cell simulations.

1. Introduction

The invention of chirped pulse amplification (CPA) method and recent

development of laser technology led to a stunning increase of the light

intensity in a laser focal spot1. Electrons in laser-induced plasma become

relativistic at intensities I ∼ 1018W/cm2. The ion motion strongly affect

the relativistic plasma dynamics starting from I & (mi/me)× 1018W/cm2,

as demonstrated in the review2. Nowaday lasers produce pulses, whose

intensity is approaching to 1022W/cm2. At intensities of the order of 1023−

1024W/cm2 the effect of radiation reaction force come into play3. Further,

starting from the intensity 1025W/cm2 we have to treat electrons in the

framework of the quantum electrodynamics (QED)4.

At intensity of the order of 1029W/cm2, which corresponds to the QED

critical electric field, light can generate particle-antiparticle pairs from vac-

uum. There are several ways to achieve such an intensity. One way was

demonstrated in the experiments 5, where high-energy bunch of electrons in-

teracts with counterpropagating intense laser pulse. In the reference frame

of electrons the electric field magnitude of the incident radiation was ap-

proximately 25% of the QED critical field.

Technically feasible way, in principle, is to increase the power of the

contemporary laser system by 7 orders of magnitude. Another way is to

increase the frequency of the laser radiation and then focus it into a tiny

region. In this method X-ray lasers with present-day power can be used,

1
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if one can focus such a radiation6. To achive more “moderate” intensities,

1024 − 1025W/cm2, another scheme was suggested in the paper7, where a

quasi-soliton wave between two foils is pumped by the external laser field

up to ultrahigh magnitude.

In this paper we consider a scheme based on the laser frequency upshift-

ing and the pulse compression. These two phenomena were discussed and

demonstrated experimentally in a broad variety of configurations, where

they were caused, in general, by different mechanisms. In particular, the

wave amplification reflected at the moving relativistic electron slab has been

discussed in references8,9, the backward Thompson scattering at relativistic

electron bunch was considered in references10,11, the reflection at the mov-

ing ionization fronts has been studied in references12,13,14,15,16,17, various

schemes of the counter-propagating laser pulses in underdense plasma and

a use of parametric instabilities were discussed in references18,19,20,21.

2. Mirrors in the plasma wake wave

Here we consider a plasma wakefield in the wavebreaking regime as a tool

for generating a coherent radiation of ultra-high intensity.

Consider the following scenario. A short intense laser pulse (the

“driver”) induces wakefield in an underdense plasma. Its group velocity

equals to zero, and its phase velocity vph = βphc is equal to the group ve-

locity of the laser pulse in the plasma. The corresponding Lorentz factor is

γph =
(

1 − β2

ph

)

−1/2

≈ ωd/ωpe, where ωd is the driver pulse frequency, ωpe

is the Langmuir frequency. The nonlinearity of strong wakefield causes a

nonlinear wave profile, including the steepening of the wave and formation

of the cusps in the electron density22. This amounts to the wavebreaking

regime2. Theoretically the electron density in the cusp depends on the co-

ordinate as ∝ (x − vpht)
−2/3

and tends to infinity, but remains integrable2.

Sufficiently weak counter-propagating laser pulse (the “source”) will be par-

tially reflected from the cusp. The amount of the reflected energy scales

with γph as γ−4

ph , as it is shown below. Thus the cusp acts as a mirror flying

with the relativistic velocity vph. The frequency of the reflected radiation

is up-shifted by the factor (1 + βph)/(1 − βph) ≈ 4γ2

ph, in accordance with

the Einstein formula. The reflection is small, but the frequency up-shift is

very high, and the intensity of the reflected radiation is much greater than

that of the source pulse.

It is important that the relativistic dependence of the Langmuir fre-

quency on the driver pulse amplitude results in the horseshoe-shaped pat-
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tern of the wakefield in two-dimensional (2D) and three-dimensional (3D)

configurations, since the driver pulse has a finite transverse size. Each cusp

in the electron density has a shape close to a parabaloid. Because now we

have a curved mirror, the frequency ω̃s of the reflected radiation depends

on angle:

ω̃s =
1 + βph

1 − βph cos θ
ωs , (1)

where ωs is the source pulse frequency, and θ is the angle of the reflected

wave vector in the laboratory frame. The reflected light is focused. The

focal spot size is of the order of the diffraction limited size. In the reference

frame of the cusp it is λs ((1 − βph) / (1 + βph))
1/2

≈ λs/(2γph), where λs

is the wavelength of the source pulse. In the laboratory frame the focal

spot size will be approximately λs/(4γ2

ph) along the paraboloid axis, and

≈ λs/(2γph) in the transverse direction.

With the ideal realization of the above dynamics, the resulting intensity

in the focal spot of the source pulse, reflected and focused by the electron

density cusp, is increased by the factor of the order of γ−4

ph × (4γph)2 ×

(2γphD/λs)
2 = 64(D/λs)

2γ2

ph, where D is the diameter of the efficiently

reflected portion of the source pulse.

In order to calculate the reflection coefficient, we consider the interaction

of an electromagnetic wave with a spike of the electron density formed in a

breaking Langmuir wave. In the laboratory frame, this interaction can be

described by the wave equation

∂ttAz − c2 (∂xx + ∂yy) Az +
4πe2n (x − vpht)

meγe
Az = 0 , (2)

where Az is the z-component of the vector potential, γe is the electron

Lorentz factor, near the maximum of the density it is γe ≈ γph.

In the reference frame comoving with the plasma wake wave, equation

(2) has the same form, whereas the electron density now reads n(x−vpht) ≈

n0(2/9)1/3γph (vphγph/ωpex
′)

2/3
in the vicinity of the cusp2. The transfor-

mation of coordinates to the moving frame is given by t′ = (t−vphx/c2)γph,

x′ = (x − vpht)γph, y′ = y, z′ = z.

Consider the vector potential in the

form Az = (A0 exp (ik′

xx′) + AR(x′)) exp
(

i
(

ω′t′ − k′

yy′

))

, where A0 and

AR correspond to the incident and reflected waves, and ω′ = (ω+vphkx)γph,

k′

x = (kx + vphω/c2)γph, k′

y = ky are the frequency and wave vector in the

moving frame, and k′

x > 0. Using this ansatz, from equation (2) we obtain
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for the reflected wave in the moving frame

d2AR

dx′2
+

(

q2 −
g

x′2/3

)

AR = A0

g

x′2/3
exp (ik′

xx′) , (3)

where q2 = ω′2/c2 − k′2

y ≥ k′2

x > 0 and g = (2/9)1/3k
4/3

pe γ
2/3

ph .Assuming

ωd � ωpe, and considering the amplitude AR to be much smaller than A0

at x′ → ∞, we find the reflected wave:

AR(x′) = i4/3gΓ(2/3)A0 exp (−iqx′) /q(q + k′

x)1/3 , (4)

where Γ is the Euler gamma function, q > 0. Performing the inverse Lorentz

transformation to the laboratory frame, we obtain that the frequency of

the reflected wave is defined by Eq.(1). In the case of normal incidence

(ky = 0), the electric field magnitude in the reflected wave is increased by

the factor (8/9)1/3Γ(2/3)(ωs/ωd)
4/3. The length of the reflected pulse is

≈ 4γ2

ph times shorter than the length of the incident pulse. Therefore, the

reflection coefficient scales as ∝ γ−4

ph .

If we take the electron plasma density ne = 1017cm−3, the driver pulse

wavelength 1µm and intensity Id = 1019W/cm2, source pulse wavelength

1µm and intensity Is = 1018W/cm2, and the diameter of the efficiently

reflected portion of the source D = 500µm, we obtain that the intensity

of the reflected and focused light is of the order of 1029W/cm2. We see,

that the scheme described above can be used to achieve the QED critical

electric field with present-day technology.

3. Three-dimensional Particle-in-Cell simulation

To demonstrate the feasibility of the effect of the light reflection and fo-

cusing by the breaking plasma wake wave, we performed three-dimensional

(3D) particle-in-cell (PIC) simulations using the code REMP (Relativistic

Electro-Magnetic Particle-mesh code). The code is massively parallel and

fully vectorized, it uses the ‘current density decomposition’ method23. In

the simulations the driver laser pulse propagates in the direction of the

x-axis. Its dimensionless amplitude is ad = 1.7 which corresponds to peak

intensity 4 × 1018W/cm2 × (1µm/λd)
2, where λd is the laser wavelength.

The driver is linearly polarized along the z-axis, it has gaussian shape, its

FWHM size is 3λd ×6λd ×6λd. The source pulse propagates in the opposite

direction. Its wavelength is two times greater than the wavelength of the

driver pulse, λs = 2λd. The source pulse amplitude is chosen to be small,

as = 0.05, to reduce a distortion of the plasma wake wave. The pulse shape

is rectangular in the x-direction and Gaussian in the transverse direction,
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Figure 1. The electron density in the wake of the driver laser pulse at t = 16 × 2π/ωd.

Figure 2. The profile of the electron density along the driver laser pulse propagation
axis at t = 14 × 2π/ωd.
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Figure 3. The cross-sections of the electric field components. The (x, y, z = −6λd)-
plane: Ex(x, y, z = 0) (colorscale), the plane (x, y, z = 0): Ez(x, y, z = 0) (curves), the
plane (x, y = 0, z): Ey(x, y = 0, z) (colorscale) at t = 16, 19, 23 × 2π/ωd.
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its size is 6λd × 6λd × 6λd. To distinguish the electromagnetic radiation of

the driver and source pulses, we set the source pulse to be linearly polarized

in the direction perpendicular to the driver pulse polarization, i. e. along

the y-axis. The laser pulses propagate in the underdense plasma slab with

the electron density ne = 0.09ncr, which corresponds to the Langmuir

frequency ωpe = 0.3ωd. The plasma slab is localized at 2λd < x < 13λd.

The simulations were performed on 720 processors of the supercomputer

HP Alpha Server SC ES40 at APRC-JAERI. The grid size is 2200×1950×

1920, the mesh size is dx = λd/100, total number of quasiparticles is 1010

(ten billion). The boundary conditions are absorbing on the x-axis and

periodic in the transverse directon, both for the electromagnetic fields and

quasi-particles. We emphasize that the simulation grid is set to be fine

enough to resolve the huge frequency up-shift, given by Eq.(1).

The simulation results are presented in Figs. 1-3. Fig. 1 shows the

plasma wake wave induced by the driver laser pulse, as modulations in

the electron density. We see the electron density cusps in the form of

paraboloids. They move with velocity vph ≈ 0.87c, the corresponding

gamma-factor is γph ≈ 2. Their transverse size is much larger than the

wavelength of the counterpropagating source laser pulse. Fig. 2 shows the

electron density profile along the axis of the driver pulse propagation. The

wake wave dynamics is close to wave-beaking regime. Each cusp is a semi-

transparent parabolic mirror which reflects a part of the source laser pulse

radiation.

In Fig. 3 we present the cross-sections of the electric field components.

The cross-section of the x-component of the electric field projected onto

the (x, y, z = −6λd)-plane represents the longitudinal wakefield. The driver

laser pulse is seen in the cross-section of the z-component of the electric field

in the (x, y, z = 0)-plane The source laser pulse and its reflection is seen in

the cross-section of the y-component of the electric field in the (x, y = 0, z)-

plane. The part of the source pulse is reflected from the paraboloidal cusp,

and focused into a small region. The reflected part has the same number

of cycles as the source pulse. The wavelength and duration of the reflected

pulse are appriximately 14 times less than the wavelength and duration

of the source pulse, in agreement with Eq.(1) since (1 + βph)/(1 − βph) ≈

14.4. The focal spot size of the reflected radiation is much smaller than

the wavelength of the source pulse. The electric field in the focal spot

is approximately 16 times higher than in the source pulse, therefore the

intensity increases 256 times, in accordance with theoretical estimations

above.
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In Fig. 3 we see that the part of the source pulse radiation is reflected

from the flying paraboloidal mirrors, then it focused giving the peak in-

tensity in the focal spot, and finally it is defocused and propagates as a

spherical short wave train, whose frequency depend on the angle from the

paraboloid mirror axis, in agreement with Eq.(1). The main part of the

reflected light power is concentrated whithin the angle ∼ 1/γph. This co-

herent high-frequency beam resembles a searchlight.

We emphasize that the efficient reflection is achievable only when the

wakefield is close to the wave-breaking regime, and the cusps in the elec-

tron density are formed. As we see in the simulations, the reflection and

focusing is quite robust, and even distorted (to some extent) wake wave

can efficiently reflect and focus the source pulse radiation. We also see

that despite the small reflection coefficient, the colossal frequency up-shift

and focusing by a sufficiently wide (transversely) wake wave give us a huge

increase of the light intensity.

4. Conclusion

We have demostrated the scheme of the relativistic plasma wake caustic

light intensification, which can be achieved due to the reflection and focus-

ing of light from the cusps of the electron density in the plasma wake wave

in the wave-breaking regime. The presented results of 3D PIC simulations

provide us a proof of principle of the electromagnetic field intensification

during reflection of the laser radiation at the flying paraboloidal relativistic

mirrors in the plasma wake wave.
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Quantum effects in spontaneous and stimulated Compton laser-beam interactions
are considered in the frame of the Klein-Gordon theory. We derive a quantum ki-
netic equation for the process of laser cooling of electron beams. Nonlinear theory
of coherent π-pulse generation in the quantum x-ray Compton FEL is presented.
A scheme of coherent stimulated annihilation of electron-positron pairs and stim-
ulated emission of γ-ray photons is proposed.

1. Introduction

Interaction of relativistic electron beams with ultrashort laser pulses at

high intensities has been intensively studied for decades which leads to

the progress in accelerator technology and development of new radiation

sources. One of the most important is the Compton interaction regime

which dominates in the radiative cooling of relativistic electron beams,1,2

x-ray free-electron lasers3,4 (FEL) and γ-ray photon sources.5 Nonlinear

Compton scattering has been proposed for coherent pair creation in linear

colliders.6

Quantum effects in the laser-beam Compton scattering are caused by

the recoil effect. In the laser cooling of electron beams,1,2 the limit of beam

emittance and energy spread is determined by the quantum fluctuations

caused by a discrete change in momentum and energy in a photon scattering

event. In the Compton FEL, with an advancement of lasing toward the x-

ray and γ-ray spectral domains, increasing quantum recoil will pull electrons

out of the energy interval of resonant photon emission, and a new essentially

quantum interaction regime emrges.3,4

1
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In this paper, we have developed the quantum theory of coherent laser-

beam Compton interaction at high intensities using the Klein-Gordon field

theory. The quantum kinetic equation which describes the evolution of

the energy and momentum distribution function of electron beam in the

laser cooling scheme is derived. Theory of the x-ray Compton FEL in

the quantum regime, in which FEL becomes a two-level quantum oscilator

with a completely inverted active medium, is presented. Using analogy be-

tween Compton and electron-positron annihilation processes, a new regime

of stimulated coherent annihilation and pair creation in the strong laser

field is proposed. Generation of coherent π-pulses of high-intensity x-ray

and γ-radiation is discussed.

2. Quantum Kinetics of the Laser Cooling of Relativistic

Electron Beam

To describe the Compton interaction of laser and electron beam, we start

with the Hamiltonian7 which includes the interaction of Klein-Gordon

scalar field with the quantized electromagnetic field in the momentum rep-

resentation, the Lorentz gauge A0 = 0 is chosen (~ = c = 1)

Hint =
∑

p

∑

k,λ

− µk(p − k)
[

(ek,λ,p)ck,λa+

p ap−k + (e∗

k,λ,p)c+

k,λa+

p−kap

]

−µi(p − ki)
[

(ei,p)cia
+

p ap−k
i

+ (e∗

i ,p)c+

i a+

p−k
i

ap

]

+gk(p − q)
[

(ek,λ, e∗

i )ck,λc+

i a+

p ap−q + (e∗

k,λ, ei)cic
+

k,λa+

p−qap

]

(1)

Here a+

p , ap are the field operators for the electron of momentum p and of

energy εp, c+, c are the photon operators, {k, λ} represents the scattered

mode of electromagnetic field of a wave vector k and polarization number

λ, and ek,λ is the polarization vector, the incident laser pulse is modelled by

the single mode {ki, λi}, with the polarization vector ei. The coefficients in

Eq.(1) are µk(p) = e(2V ωkεp+kεp)−1/2, gk(p) = e2(4V 2ωkωiεp+qεp)−1/2,

q = k − ki is the total change in momentum of an electron, V is the

quantization volume, and sum is over scattered modes {k, λ} 6= {ki, λi}.

In the laser cooling of electron beam, spontaneous Compton scatter-

ing dominates. We will consider here the linear Compton regime, when

an electron interacts with only one photon of the laser field. Solving the

Heizenberg equations for both the electron and photon operators in the

lowest unvanishing order of perturbation theory we have for the electron
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distribution function f(p) =< a+

p ap > the following evolution equation

d

dt
f(p) = 2

∑

k,λ

{Gk,λ(p + q)f(p + q) − Gk,λ(p)f(p)}, (2)

with the coefficients are

Gk,λ(p) = |
µi(p − k)µk(p − k)(ei,p − k)(e∗

k,λ,p)

εp−k − εp−q + ωi

+
µk(p − q)µi(p)(ei,p)(e∗

k,λ,p + ki)

εp+k
i

− εp−q − ωk

− gk(p − q)(e∗

k,λ, ei) |2 ni
sin(εp − εp−q − ωk + ωi)t

εp − εp−q − ωk + ωi
. (3)

Here, ni =< c+

i ci >= Ii/c~ωi is the density number of photons in the

pumping wave of intensity Ii. Equation (2) is a typical ”decay” kinetic

equation, the right hand side of which (i.e., the collision integral) represents

the balance of electrons in the state | p >. The term sin(∆t)/∆ corresponds

to the energy conservation law.

Expanding right hand side of Eq. (2) to the second-order of small

parameter |k|/|p|, we have a diffusion-like kinetic equation

d

dt
f(p) = A(p)f(p) +

∑

ν

Bν
∂f

∂pν
+

1

2

∑

ν,ξ

Cν,ξ
∂2f

∂pν∂pξ
+ ... (4)

Here the coefficients are A =
∑

k,λ [Gk,λ(p + q) − Gk,λ(p)], Bν =
∑

k,λ Gk,λ(p + q)qν and Cν,ξ =
∑

k,λ Gk,λ(p + q)qνqξ . The first two terms

in the right hand side are classical and describe the cooling and decrease

in energy of electron beam . The term with the second derivative contains

the Plank constant and describes the diffusive growth of the beam energy

spread. To illustrate competition between these two processes, let us con-

sider the 1D approximation. Keeping only the longitudinal momentum pz,

after integration over all the scattered photon modes, we have

d

dt
f(pz) =

8

3
πr2

0
Iiγ

2

[

c

εp
f +

∂f

∂pz
+

88

15
~kiγ

2
∂2f

∂p2
z

]

(5)

Here γ is the Lorentz factor of electrons. In the classical cooling regime,

when the quantum recoil (i.e., the second derivative term) is negligible,

solution to Eq. (5) describes a decreasing with time energy spread σ(t) ∼

σ0(1 − st), the cooling rate is s ≈ 8/3πr2

0
Ii , r0 is the classical radius of

an electron. It is easy to estimate that quantum diffusion heating will stop

the cooling process at the energy spread σq ∼ (88/15)~ωi which is of the

order of the energy of scattered photon.
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3. Quantum Limit in the x-ray FEL Theory

In the x-ray Compton FEL, the stimulated Compton scattering dominates,

in which electrons interact resonantly with the pump and the only scat-

tered electromagnetic mode. The resonant energy εo = mc2(1 − ω/kc)−2

corresponds to the synchronism of an electron with the slow ponderomotive

wave of frequency ω = ωs −ωi and wavenumber k = ks +ki, ωi,s and ki,s

are the frequencies and wave numbers of pumping (i) and signal (s) waves

respectively. The energy interval of resonant photon emission in an FEL

∆ε/εo ≈ max{(4N)−1, ∆γ/γ, ∆Θ2/2} is determined by the finite length

of interaction region L = Nλi , beam energy spread ∆γ/γ and divergence

∆Θ caused by beam emittance.3

Quantum operation regime in an FEL emerges when the quantum emit-

ted ~ωs ' 4γ2
~ωi exceeds ∆ε : as a result of recoil in Compton scatter-

ing, an electron is expelled from the energy interval of resonant photon

emission.3,4 Assuming pump laser wavelength λi ' 1µm and energy of

electron beam ε = 5MeV, the quantum emitted is ~ωs ≈ 0.5keV (soft x-ray

region), and the quantum regime becomes attainable at ∆ε/ε ∼ 10−4.

To describe lasing in the quantum regime, we will use the Klein - Gor-

don equation.4 Assuming vector potentials be Ai exp(i[kiz + ωit]) for the

pump and As exp(i[ksz − ωst]) for the signal waves, we have in the 1D ap-

proximation that the dynamics of electrons is reduced to the resonant ex-

citation of an anharmonic oscillator, the system of discrete levels of which

Ψ =
∑

an exp( i
~
[pnz − εnt]) is characterized by the eigen momenta pn =

po +n~(ωi +ωs)/c, n = 0, ±1, ±2.. and energies ε(pn) =
√

p2
nc2 + m2c4 . . . .

The anharmonicity ∆n = εn−εn−1

~
− ω ≈ ∆0 + nδ, δ = 8~ω

1/2

s ω
3/2

i /mc2 is

negligible in conventional FEL schemes, but in the quantum x-ray Comp-

ton FEL becomes significant δτin � 1, τin = Nλi/c is the electron time-

of-flight in the optical undulator. As a result4, FEL dynamics is reduced

to the transition between only two quantum levels which are in resonance

with the signal mode (n = 0, −1, for definiteness).

Evolution of the amplitudes of resonant levels in the interaction region

is guided by the following equations which can be found from the Klein-

Gordon equation4

∂a0

∂z
= −

i

4~c

e2AiA
∗

s
√

εoε−1

exp(−i∆0t) a
−1 ,

∂a
−1

∂z
= −

i

4~c

e2A∗

i As
√

ε0ε−1

exp(i∆0t) a0 (6)
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The wave equation for the signal wave amplitude is

∂As

∂z
+

1

c

∂As

∂t
= i

2πe2Ai

ωs
√

ε0ε−1

∫

∞

0

dε0f(ε0)a0a−1 exp(−i∆0t), (7)

with f(ε0) is the initial energy distribution of electrons in the bunch, no

depletion of pumping wave Ai ≈ const is assumed.

Thus the lasing in the two-level x-ray FEL is described by the closed

self-consistent nonlinear system of equations (6)-(7), which is analogous to

the Maxwell-Bloch system of equations in nonlinear optics.

Assuming exact resonance ∆0 = 0, Eqs. (6) are easily integrated by in-

troduction of the pulse area for the signal mode χ(z) = µ
c~

∫ z

0
Es(z)dz,

µ = e2Ei/mω
1/2

i ω
3/2

s is the characteristic dipole moment of the reso-

nant transition, and the field strength amplitudes Ei,s are used instead

of corresponding vector potentials. Optimum for the FEL lasing injection

of the electron beam corresponds to the the inverted state a0|z=0 = 1,

a
−1|z=0 = 0, and the solution to Eq. (6) is

a0(z) = cos(χ/2), a
−1(z) = −i sin(χ/2) (8)

The signal pulse area is then guided by the pendulum equation

∂2χ

∂z2
= α2 sin χ, α =

√

2πnee4E2

i

~ω2
sωim2c2

, (9)

α is the linear (χ � 1) gain coefficient. As a result, we have for the output

signal intensity4

Is(L) = dn−2(
αL

κ
, κ)Is(0). (10)

Here dn(x, y) is the Jacobi elliptic tangent, κ =
√

1 + Is(0)/Ib, Ib =

~ωsnec, and Is(0) is the initial (z = 0) signal intensity.

According to Eq.(10), the output intensity Is(L) of the high-frequency

signal is a periodic function of the interaction length L. Maximum output

intensity

Is(Lm) = Is(0) + Ib (11)

is achieved for a sequence of optimal lengths Lm = α−1κK(κ)(2m + 1),

m = 0, 1, . . . , K(κ) is a complete elliptic integral. In this optimum regime,

each electron will emit one x-ray photon coherently and inversion will be

completely removed in one pass. FEL output radiation then forms the

high-intensity π-pulse (χ(Lm) = π) of coherent x-ray radiation.
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Coherent generation of x-ray photons can be realized at conditions close

to that of the recent experiment,8 in which ∼6keV spontaneous photons

were produced in the scattering of 600MW 200psec CO2 (λi = 10.6µm)

laser pulses by 60MeV electrons. At the laser intensity Ii = 3 · 1015W/cm2

(normalized amplitude a ∼ 0.5) and the electron beam density ne =

1017cm−3, the linear gain coefficient is α ≈ 7.6cm−1. In the x-ray π-

pulse regime each electron (6·109 for 1nC bunch) will emit x-ray photon

coherently, and the output intensity is Is ' Ib = ~ωsnec ≈ 3 · 1012W/cm2.

4. Stimulated Coherent Annihilation in the Strong Field

It is well known7 that the processes of Compton scattering and electron-

positron pair annihilation have a deep analogy with each other, which is

reflected in the structure of corresponding matrix elements. This fact allows

us to propose, in analogy with the discussed in the previous section model

of x-ray quantum FEL, a new mechanism of stimulated pair creation and

annihilation in the strong electromagnetic field.

Let us consider the relativistic electron-positron beam interacting with a

strong counter-propagating laser pulse. If the energy of laser photon in the

beam reference frame exceeds mc2, m is the rest mass of electron, coherent

stimulated generation of γ-ray photons becomes possible. Let the vector

potential of the γ-ray photons is A1 exp(i[k1z − ω1t]), and that of the laser

pulse is A2 exp(i[k2z + ω2t]). In the Klein-Gordon theory, the annihilation

Hamiltonian can be written in the form7 (~ = c = 1)

H =
∑

p

{g∗

pa+

p b+

p′ + gpbpap′}δ(p + p′ − (k1 − k2)) (12)

Here a+

p , b+

p are the creation operators for electrons and positrons of the

momentum p and energy εp, respectively, and ap, bp are the corresponding

annihilation operators, gp = e2

4
√

εpε
p

′
(A2A

∗

1
) is the coupling constant. Delta

function express the energy and momentum conservation laws for the pair

creation and annihilation, p + p′ = k1 − k2 ≡ q and εp + εp′ = ω1 + ω2

,respectively.

Electron-positron pair in the electromagnetic field can be considered as

a two-level system, in which the upper state consists in one electron, one

positron and N pair of photons, and the lower state is (N+1) photon pairs.

Really, one can easy find the Bogolubov transformation which diagonalizes

the Hamiltonian (12) with the eigen energy

Ωp =
√

(εp + εq−p)2 + 4|gp|2 (13)
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which can be considered as the Rabi frequency of the effective two-level sys-

tem. Rabi frequency characterizes the rate of pair creation and annihilation

at given external field.

To describe the nonlinear evolution of the electron-positron pair in the

interaction region and coherent generation of coherent γ-rays, we will use

the Klein - Gordon equation and seek its solution for electrons and positrons

in the form

Ψe(z, t) =
∑

p

√

mc2

2V εp
u(−)

p (z) exp

(

i

~
[pz − εpt]

)

+

√

mc2

2V εq−p
v
(−)

q−p(t) exp

(

−
i

~
[(q − p)z − εq−pt]

)

Ψp(z, t) =
∑

p

√

mc2

2V εq−p
u(+)

p (z) exp

(

i

~
[(q − p)z − εq−pt]

)

+

√

mc2

2V εp
v(+)

p (z) exp

(

−
i

~
[pz − εpt]

)

(14)

where the momentum and the energy of particles satisfy the above con-

servation law. The amplitudes of the upper u(z) and lower v(t) states

of the two-level electron-positron system are assumed to be slow varying

functions, and after substitution in the Klein - Gordon equation we have

∂u
(±)

p

∂z
= −i

e2(A1A
∗

2
)

4~
√

εpε−p−q
v(±)

p

∂v
(±)

p

∂z
= −i

e2(A∗

1
A2)

4~
√

εpε−p−q
u(±)

p (15)

We will assume that electromagnetic modes have equal polarizations,

and one of the waves (counter-propagating) is sufficiently strong to neglect

its depletion. Evolution of the second (high-frequency) electromagnetic

wave is described by the Maxwell equations with the current density of the

Klein - Gordon field
(

∂

∂z
+

1

c

∂

∂t

)

A1 = i
2πe2A2n

ω1

√
εpεq−p

∫

dεp

(

u(−)

p v(−)

p + u(+)

p v(+)

p

)

(16)

where n is the density of electron- positron pairs. Equations (15), (16) are

analogous to Eqs. (6), (7) for the x-ray Compton FEL in the quantum

regime, and forms closed self-consistent system of Maxwell-Bloch equations

which allows solutions of the self-induced transparency type with the gen-

eration of π-pulses of coherent γ-rays.

By analogy with the case of two-level quantum FEL, we introduce the

pulse area χ1(z) = µ1

c~

∫ z

0
E1(z)dz with the characteristic dipole momentum
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of the two-level system under consideration µ1 = e2c2

2ω1ω2

√

εpε−p−q

. Boundary

conditions u
(±)

p |z=0 = 1 , v
(±)

p |z=0 = 0 corresponds to the case of stimu-

lated annihilation of electron-positron pairs and coherent γ-ray emission, for

which Eqs. (15) results in solutions u
(±)

p = cos(χ1/2) , v
(±)

p = −i sin(χ1/2).

For the opposite process of the stimulated generation of electron-positron

pairs in the strong external laser and γ-ray photon fields, boundary condi-

tions are v
(±)

p |z=0 = 1 , u
(±)

p |z=0 = 0, and solution to Eqs. (15) becomes

u
(±)

p = −i sin(χ1/2) , v
(±)

p = cos(χ1/2).

Evolution of the pulse area for the amplified γ-ray signal is guided by

the pendulum equation (8) with the linear gain coefficient

α′ =

√

πe4E2

2
nc2

~ω1ω2

2
εpεq−p

(17)

Intensity of the coherently generated γ-ray field in the process of stimulated

annihilation depends on the interaction distance z in analogous to Eq. (10)

way, I1(z) = dn−2

(

α′z
κ′ , κ′

)

I1(0), where parameter is κ′ =
√

1 + I1(0)/Im,

I1(0) is the initial intensity of the γ-ray photon flux, determined by the

spontaneous pair annihilation. For the process of stimulated pair creation,

the argument in this solution has to be shifted by the half of the period of

the Jacobi dn function, K(κ′). The parmeter Im = ~ω1nc is the maximum

intensity of the amplified γ-ray wave which can be attained as a result

of annihilation of positrons and electrons having the equal beam densities

n. By analogy with Eq. (11), the maximum intensity can be achieved

for the interaction distance Lmax = κ′K(κ′)/α′, I1(Lmax) = I1(0) + Im,

which corresponds to the formation of the π-pulse of the γ-ray photons,

χ1(Lmax) = π, with the complete removal of inversion (i.e., annihilation)

in the electron-positron pair two-level system.

Let us make some estimates. The optimum interaction conditions cor-

respond to the case when in the center-of-mass reference frame both pho-

tons have equal energies ~ω′

1
≈ ~ω′

2
≈ mc2 and electron and positron

are nonrelativistic and have a small kinetic energies. Let the second elec-

tromagnetic field is formed by the super-strong laser pulse. The gamma

factor for this moving reference frame is γ0 ≈ mc2/2~ω2 ∼ 2.5 × 105

for the frequency ~ω2 ∼ 1eV in the laboratory frame, which corre-

sponds to the energy of co-propagating electron and positron beams of

˜125 GeV. The linear gain coefficient is α ≈
(

πr0na2/2γ3

0

)1/2
≈ 0.53 ×

10−2a
(

n/1024cm−3
)1/2

cm−1 where a = eA2/mc2 is the normalized vector

potential amplitude of the laser field The coherent γ -ray field generated
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has the frequency ~ω1 ≈ 4γ2

0
~ω2 ≈ 2mc2γ0 ≈ 250GeV and π-pulse inten-

sity Im ∼ 1.2 × 1027
(

n/1024cm−3
)

W/cm2. The length of formation of

coherent π-pulse of γ radiation Lmax ∼ α−1and can be less than 1mm at

a ∼ 2 × 103 which corresponds to laser pulse intensity ∼ 5.5 × 1024W/cm2

at 1µm wavelength.
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INTERACTION OF CHARGED PARTICLES WITH ULTRA STRONG 
ELECTROMAGNETIC WAVES IN THE RADIATION DOMINANT 
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The plasma particle interaction with a relativistically intense electromagnetic 
wave under the conditions when the radiation reaction effects are dominant is 
considered. We analyze the radiation damping effects on the electron motion 
inside the circularly polarized planar wave and inside a subcycle crossed-field 
electromagnetic pulse. We consider the ion acceleration due to the radiation 
pressure action on a thin plasma slab. The results of 2D and 3D PIC 
simulations are presented.  

1. Introduction  

Acceleration of charged particles by an electromagnetic wave provides an 
example of one of the most fundamental processes in physics. When the 
electromagnetic wave becomes relativistically intense, i.e. when the charged 
particle’s quiver energy it’s above the rest mass energy, particle dynamics both 
within the classical and quantum description acquires remarkable properties 
which differ from the properties of the nonrelativistic particle interaction with 
the electromagnetic wave (see Refs. [1,2]). As the electromagnetic wave 
intensity increase to the ultrahigh intense level, the charged particle velocity will 
approach the speed of light and in the Lorentz force the magnetic term   can not 
be neglected compared to the electric term. Because of the combined action of 
the E and B fields in the limit of relativistic intensity of the electromagnetic 
wave, the longitudinal component of the particle momentum becomes much 
larger than the transverse one. However, for a finite (long enough) length 
electromagnetic pulse the net energy gain is almost zero according to the so-
called Woodward - Lawson theorem (see for example Ref. [3], and literature 
cited in). However, the condition for the theorem may be broken in a variety of 
ways, e.g. such as radiation damping due to the intense acceleration [4-6]. 
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 In the present paper we shall address mainly the regimes of the charged 
particle interaction with an electromagnetic wave when the radiation reaction 
force plays a dominant role. The nonlinear interaction of charged particles with 
relativistically strong electromagnetic fields is of great interest for astrophysics 
(see Refs. [6,7]). In addition, it is of great interest for the laser-matter 
interaction, when the laser pulse power range is in the multi-petawatt regime.  
With the advent of very powerful laser sources in recent years these regimes 
have become available for experimental studies [8]. When the petawatt radiation 
of the laser pulse with a wavelength equal to 0.8 mµ  is focused to a one-

wavelength focus spot, its intensity reaches the value 22 25 10 /W cm⋅ . In this 

case its dimensionless amplitude 0 0 0/ ea eE m cω=  is about 160. Here 0E   and 

0ω  are the electric field and the frequency of the electromagnetic wave, 

respectively. The threshold of the relativistic regime discussed above 
corresponds to 0 1a =  and an intensity 18 21.38 10 /W cm⋅ . In the case of a 

circularly polarized electromagnetic wave in a collisionless plasma the quivering 
electron energy is related to the wave amplitude as 2 2

01em c a= +E (see Ref. 

[9]). The quivering electron radiates a wave with a frequency spectrum ranging 
up to the frequency 3

0mω ω γ= , where the relativistic gamma factor is equal 
to 2/ em cγ = E . As a result, there is a radiation reaction force acting on the 
particle. Here 2 2 13/ 2.8 10e er e m c cm−= = ⋅   and 2 /λ π ω=  are the classical 
electron radius and the laser light wavelength, respectively. By comparing the 
radiation reaction force with the Lorentz force 2 2 2 22

08 / 3R e ef m rc aπ γ λ≈ , we 

find that the radiation damping effects become dominant for the wave with the 
amplitude ( )1 / 3

0 3 / 4 ea rλ π> . 
We see that for a 0.8 mµ   wavelength laser the role of the radiation effects 

becomes important for 0 408a > . This corresponds to the radiation intensity  
23 23.5 10 /W cm⋅ and to a 2.6PW  laser pulse focused to a one-wavelength 

focus spot. As it has been noticed recently [10], during interaction of the laser 
light with plasmas in the high amplitude range, a substantial portion of the 
incident light energy is transformed into electromagnetic radiation in the X-ray 
domain. 
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2. Electron interaction with a circularly polarized electromagnetic 
wave in a plasma in the radiation dominant regime 

  The investigations of free electron radiation during its interaction with an 
electromagnetic wave have always, starting from the work of J. J. Thomson, 
been of great significance. The literature devoted to studies of the 
electromagnetic wave – particle interaction is vast (see for example, Refs. [1-3, 
11-13]). 

 Below in this Section we shall consider a relativistic electron interacting 
with a circularly polarized electromagnetic wave. In the case of a circularly 
polarized electromagnetic wave the fact that the charged particle moves along a 
circular trajectory simplifies its motion description, and one may borrow the 
expressions for the properties of the radiation emitted by the particle from the 
theory of synchrotron radiation [14,15]. Taking into account the effects of the 
radiation damping force, equations of the electron motion can be written as 

, . (1)R

d e d
e

dt c dt γ
= + × =

m

p x p
E v B+ f                       

Here, the particle momentump , velocityv , and the Lorentz factor γ  

are /d dtv = x , 2 221 | | / em cγ = + p , and the radiation force Rf  is 

approximately equal to, 

 ( ) ( )[ ]
4

2 2

75

2
. (2)

3R e

e

e
m c

m c
γ

γ
= − + × − ⋅

p
f E p B p E               

Here, we retained the leading term in the ultrarelativistic limit in the radiation 
force given by the expression presented in the text-book [1].  

The electromagnetic wave is assumed to propagate in plasma with the 
velocity 

phv  along the x-direction. It is given by the vector potential 

( )2

0( / ) cos sine y za m c e ψ ψ= +A e e , where ( / )pht x vψ ω= − . The 

electric and magnetic fields are E 1 /c t−= − ∂ ∂A  and B = ∇×A . 
When the radiation damping force is taken into account the longitudinal 

component of the force (the radiation pressure) does not vanish. We assume that 
in this case the particle does not move along the x-axis because the radiation 
pressure force is balanced by the force due to the charge separation electric field 
in the plasma (see Refs. [13,16]). The x-component of a total force on the 
particle vanishes: ( )/ 0x y z z yeE e v B v B c+ − = , and the particle coordinate 

along the x-axis is equal to x=0. Here, the x-component of the electric field Ex 
that occurs due to the electric charge separation in the plasma. In the transverse 
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direction the particle rotates along a circle. From equations (1, 2) we obtain for 
the transverse components of the particle momentum with 

0 0sin ( , ), (3)y ep a m c t y aω ω γ= − − Φ                   

0 0cos ( , ) (4)z ep a m c t z aω ω γ= − Φ                      

( )2 2 2 20
0

2
( , ) ( sin ), (5)

3

e a
a p

c

ω
γ γ ϕΦ = −  

where we introduced a phase ϕ  between the particle rotation and the wave field, 
i.e. exp( )y zp ip p i t iω ϕ+ = +  and ( )/y z ey iz p ip m γ+ = + . From 

equations (3, 4) we find for the particle momentum 
22 42

2 2 2
0 02 22

.       (6)rad

e e e

p p p
a a

m c m c p m c
ε= + +

+

                 
 

Here the dimensionless parameter radε  is  
(4 / 3 ) .                          (7)rad erε π λ=  

We see that in the limit of a relatively low amplitude laser pulse, 
when 1 / 3

01 rad rada a ε −= , the particle momentum depends on the laser 
pulse amplitude as 0ep m ca= , and in the limit 1 / 3

0rad rad rada a aε − ≡  the 

momentum dependence on 0a  is given by 1 / 4

0( / )e radp m c a ε=  as it is illustrated 
in Figure 1.  
 

 
Figure 1. Double logarithm dependence of the particle energy on the dimensionless 
amplitude of the laser pulse. The dashed line corresponds to the dependence 

2 2
01em c a= +E .  

 
The Pointing vector of the electromagnetic wave is 

2/ 4 / 4gc Eπ π= =P E B v× . The total scattering cross section is defined as 
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the ratio of the electromagnetic energy reemitted by the particle 
( / ) sineeE p m γ ϕ  with respect to the value of the Pointing vector. It reads  

( )

( ) ( )

2 4 4

0

1 / 22 2 2 2

0

, (8)
e

T

e e

p a m c p

a m c m c p
σ σ

+
=

+

    

where the particle momentum p  dependence on the wave amplitude 0a  is given 

by equation (6) and 25 228 / 3 6.65 10T er cmσ π −= = ⋅  is the Thomson cross 
section. In the limit of low laser pulse amplitude, when 01 rada a , the 
scattering cross section depends on the laser pulse amplitude 
as 2 2

0 0(1 )Ta aσ σ≈ + , and in the limit 3
0rad rada a a  it is given 

by 3
0/T rada aσ σ≈  with a maximum of 2

T radaσ σ≈  at 0 rada a≈  [16]. 
 Quantum physics effects become important when the photon, generated due 

to the Compton scattering, has the energy of the order of the electron energy, i.e. 
m eω ≈ E . (In the quantum regime in addition to the damping effects due to 

radiation, recoil effects due to the stochastic emission of photons have to be 
taken into account, thus making the motion explicitly stochastic similar to a 
Brownian particle subject to a noisy environment. However, we do not discuss 
here the quantum fluctuations of the electron orbit similar to the quantum 
fluctuations of the trajectory of an electron moving in a magnetic field [15]. The 
electron with the energy 2

e em c γ=E rotates with the frequency ω in the 
circularly polarized wave propagating in plasma and it emits photons with 
frequency 3

mω ωγ= [1]. We obtain that quantum effects come into play 

when ( )1 / 22 /qua em cγ γ ω≥ = . For the electron interacting with one micron 
laser light we find 600qγ ≈ . From the previous analysis of the radiation effects 

we have for the electron gamma factor 1 / 4

0( / )radaγ ε= . This is why the 
quantum limit is  

2

2 2

2 1
,                         (9)

3 3
e e

qua

c

e m c r
a

λ

ω π
= =  

where the Compton length is /c em c= . For the equivalent electric field of 
the electromagnetic wave it yields  

22

2

2 2
.                    (10)

3 3
e c

qua Schw

e

em c
E E

r
= =  
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Here 32 /Schw eE m c e=  is the Schwinger electric field [17]. The quantum limit 
electric field Eq is in a factor 23 / 2 3 / 2e cα = , i.e. approximately 200 times, 
smaller than the Schwinger electric field.  

In the radiation dominant regime in the quantum limit we have instead the 
equation (6)  

( ) ( )2 8 22 2
0 / / U ( ).                (11)e rad ea p m c p m cε− = ϒ  

Here the dimensionless variable ϒ  is ( )( )22/ /   e em c p m cωϒ = and the 
function ( )U ϒ  can be expressed via the Airy function and its derivative (see 
Refs. [2,18]). In classical limit, for 1ϒ , the function ( ) 1U ϒ ≈ , and in the 

quantum limit, when 1ϒ , we have -4/3( ) (128 / 81 3)U πϒ ≈ ϒ . Substituting 
this expression into equation (11) we find the electron momentum as a function 
of the electromagnetic wave amplitude in the 
limit 0 qa a> : ( )( )3 / 42

01.693 / / , e e radp m c m c aω ε≈ as it is shown in Fig. 1. 

For a one micron laser pulse interaction with plasmas, as it is well known, 
the relativistic effects become important for 0 1a ≥ , which corresponds to the 
radiation intensity above 18 21.38 10 /relI W cm= ⋅ . The radiation dominant 
regime begins at 0 rada a≈  with 400rada ≈ , i.e. for the laser light intensity of 
the order of 23 23 10 /radI W cm= ⋅ . Quantum physics effects come into play 
at 0 2500qa a≈ = , which gives 26 21.38 10 /qI W cm= ⋅ . We reach a limit 

when the nonlinear quantum electrodynamics effects with the electron-positron 
pair creation in the vacuum come into play, when the laser pulse electric field 
becomes equal to the Schwinger electric field 32 /Schw eE m c e= , which 
corresponds to 2 5/ 5 10Schw ea m c ω= = ⋅  and 29 23 10 /SchwI W cm= ⋅ . 

Above we have considered the charged particle interaction with the 
electromagnetic wave in a plasma when the radiation pressure force is balanced 
by the electric field due to the electric charge separation. As is well known, when 
the electromagnetic wave packet interacts with a charged particle at rest before 
the interaction in vacuum, the particle momentum and the Lorentz factor are 
given by 2 2

0 0 0||
/ 2, , 1 / 2e ep m c a p m c a aγ⊥= = = +  [1,3]. In the 

ultrarelativistic limit, when 0 1a  the longitudinal component of the particle 
momentum is much larger than the transversal component. The particle drift 
velocity along the direction of the wave propagation is equal 
to 2 2

0 0|| ||
/ 2 /(2 )ev p m ca aγ= = + . We perform the Lorentz transformation 

into the reference frame moving with the particle drift velocity
||
v . We find that 
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in the moving reference frame the dimensionless amplitude value of the laser 
pulse is the same as its value in the laboratory reference frame: 0 0a a= . This is 
a consequence of the fact that the transverse component of a four vector does dot 
change during the Lorentz transformation. In contrast, the parameter radε , given 
by (7), is not a Lorentz invariant. We can find that it is 

( )1 / 22
0(4 / 3 ) / 1 ,rad e radr aε π λ ε= = + where we have used the fact that the 

wavelength of the laser pulse in the moving reference frame is equal to 

[ ] ( )1 / 2 1 / 22
0|| ||

( )/( ) 1c v c v aλ λ λ= + − = + . The limit of the radiation 
dominant regime now reads as 3 1

0 rada ε −  or 1 / 2
0 rada ε − . It is easy to show 

that quantum effects, in the case of the charged particle interaction with the 
electromagnetic wave in vacuum, become important when the wave electric field 
reaches the Schwinger limit. 

3. Scattering of the laser light on small clusters and the interaction of 
a super-intense laser pulse with a thin foil 

 We have considered above the light scattering on a charged particle within the 
framework of the single particle-light interaction. Another approach to study the 
radiation dominant regimes for the laser – plasma interaction is connected with 
the usage of targets with their size significantly smaller than the wavelength of 
the laser radiation. The examples of such the interaction can be provided by 
small cluster targets and a thin foil target.  

3.1. The laser-cluster interaction 

 The laser – cluster interaction is accompanied by the efficient transformation of 
the laser light energy into the energy of the scattered electromagnetic wave [19]. 
In typical situations the cluster size is smaller than the wavelength of the laser 
light. In this case the scattering occurs in the collective regime and the scattering 
cross section increases as 2N . Here, N  is the number of electrons involved into 
the scattering process. Typical value of the electron number in the cluster can be 
estimated to be equal to 810N = . We see that the parameter 

1 / 3(4 / )rad ea Nrπ λ −=  becomes 500≈  times larger. It corresponds to the laser 
intensity of the order of 18 210 /qI W cm= . Thus in this regime we can model 

the radiation dominant laser plasma interaction using the moderate power lasers 
and provide a source of powerful ultra-short electromagnetic bursts. 
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 When the cluster is exposed to a strong enough electromagnetic wave the 
electrons are pushed away within a few laser cycles. The electron bunch moves 
with acceleration and hence, it generates coherent EM radiation. This radiation 
was identified in the 3D PIC simulation corresponding to Figure 2. The electron 
bunch makes a few oscillations almost without decaying. It generates a short 
pulse of high-intense antenna-like EM radiation shown in Fig. 2, see Ref. [20]. 
Due to coherent motion of electrons the magnitude of radiation reaction is 
significant. Therefore this case provides an example of the radiation-dominant 
regime of laser-plasma interaction, where a bunch of electrons behaves as a 
single ultra-relativistic particle. 

Even in the relatively low intensity limit the radiation damping may play an 
important role leading to the saturation of resonances [20]. For example, in the 
case of electrically non-neutral spherical cluster the electrostatic component of 
the electric field is radial: E r4 enπ=  with the electric charge density inside the 
cluster en. Incorporating this electric field into the equations of the particle 
motion, we obtain instead (6) equation  

2 2 2
2 2

2 2 1/2 2 20 2 2

21/22 2 4 2

2
2 2 1/20 2

1
( )

1 1 . (12)
( )

e
rad

e e e

e

e e e e

p m c p
a

m c m c p m c p

p p p m c
a

m c m c m c m c p

δ
ε

δ
δ

− − =
− +

+ − + −
−

           
                                           

 

Here 2( / )peδ ω ω= . This equation has a form of the equation for the amplitude 

of driven oscillations for a nonlinear oscillator in the presence of damping. Here 
the nonlinearity comes from the relativistic dependence of the particle mass on 
its energy. From the left hand side of this equation we see that in the limit of a 
small amplitude wave a resonance appears at 1δ = . If the ratio 0/ 1rad aε , the 

resonance saturates at the amplitude 0 /m rada a ε≈ . As it is well known the 

nonlinear dependence of the oscillator frequency on the oscillation amplitude 
results in appearance of the region with three stationary solutions and the 
hysteresis (see Ref. [21]). Typical resonance curves are presented in Figure 3, 
where the transverse momentum versus the parameter δ  for different values of 
the e. m. wave amplitude 0a  are shown. In Figure 4 we present the dependence 

of the particle momentum on the wave amplitude.  
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Figure 2. Coherent radiation from the cluster. Electromagnetic field pattern at t=7T, 
t=8T and t=9T (upper row), where T is the period of laser radiation. Electron and 
ion density distribution (lower left hand side frame). The frequency spectrum of 
emitted radiation (lower right hand side frame). 

 

  
Figure 3. Transverse momentum versus the parameter δ  (l.h.s. frame).  
Figure 4. Particle momentum versus e.m. wave amplitude (r.h.s. frame).  
 

We see that for a relatively small amplitude wave ( 0a δ< ) we have a region 

where we have three branches of the solution. The momentum depends on 0a , as 

0 /a δ  for the first branch, it changes from 1 at 0a δ≈  to δ≈  at small 0a , and 

then is increases monotonously for the third branch. On the third branch the 
momentum increases as 0a  for 1 / 3

0 rada ε −
< , which corresponds to the negligibly 
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small effects of the radiation damping, and then it grows as 1 / 4

0( / )rada ε  for 
1 / 3

0 rada ε −
> in the radiation dominated regime.  

3.2. High efficiency ion acceleration during the laser-foil interaction 

It is well known that the interaction of a laser with a thin target can produce 
a copious high energy proton beam with superior transverse emittance. The 
proton generation is a direct consequence of the electron acceleration. The 
electrons that are violently accelerated in the laser field can attract protons 
behind them. In the radiation dominant regime the proton acceleration process 
acquires novel features. In this case the proton slab moves with almost the same 
velocity as the electron slab and the acceleration is realized through direct action 
of the radiation pressure force. This regime is illustrated in Figures 5-7.  

Here the linearly polarized (with s-polarization) laser pulse interacts with a 
thin foil target. The laser pulse has the size 10 10λ λ× and the amplitude 

0 316a = . The foil density is equal to 16 crn n= and its thickness is / 4λ . During 

the laser foil interaction the laser pulse deforms the foil into the “cocoon”, which 
confines the laser radiation (see Figures 6 and 7). The leading part of the foil 
moves with relativistic velocity. This results in the reflection of the laser light at 
the relativistic mirror. Since the reflected radiation has a substantially lower 
amplitude and frequency compared with the initial amplitude and frequency, the 
energy of the laser pulse is almost completely transformed into proton energy. 
The energy spectrum of the electrons and  protons is shown in Figure 8. We see 
that the fast proton energy is 3.5 times larger than the electron energy.  

 

 
Figure 5. Distribution of the z-component of the electric field in the x,y plane at 
t=87.5T, where T is the laser radiation period.  
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Figure 6. Distribution of the electron (upper frame) and the ion (lower frame) 
denstity in the x,y plane at t=87.5T.  

 
Figure 7. The electron and the ion energy spectra at t=87.5T. 

4. Intensification of the Electromagnetic Radiation during its 
Interaction with the “Flying Mirror” formed in the Wake behind 
the Laser Pulse  

Today’s technology tells us that the power of the most powerful laser 
that could be built is limited by the available pump source. As it has been 
discussed by Tajima and Mourou in Ref. [5] the largest laser that could be used 
as a pump, at present is the National Ignition Facility (NIF) in the US and the 
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Laser Megajoule in France. Assuming that we could compress the beam over 
10fs, with a 70% efficiency compressor we would obtain a power close to 

210.1 10× W or 0.1 zettawatt.  
 Using another approach [22], ultra high intensity electromagnetic radiation 

limit can be reached as a result of subsequent laser radiation frequency up-
shifting and focusing into a one-wavelength focus spot. Within the framework of 
this scheme we use the properties of the wake field generated in underdense 
plasmas by the ultra-short relativistically strong laser pulse – driver. The electron 
density modulation within nonlinear wake plasma waves can be regarded as high 
density plasma shells moving with velocity phv  close to the speed of light in 

vacuum. The second laser pulse, which counter propagates with respect to the 
driver pulse, may now be reflected back at these relativistic electron shells with 
frequency upshifting and compression of the reflected pulse. We may say that in 
a wake behind the laser pulse – driver we see “flying relativistic mirrors”. As a 
result the wavelength of the reflected wave becomes a factor 24 1phγ  shorter. 

 Within the framework of this scheme it is important that the relativistic 
dependence of the Langmuir frequency on the wave amplitude results in the 
formation of wake waves with curved fronts that have a form close to a 
paraboloid. The electromagnetic wave reflection at the paraboloid flying mirror 
leads to the electromagnetic wave focusing. The resulting intensity in the 
laboratory frame increases by a factor ph R

26
016 ( / )γ λ . This value must be 

multiplied on the reflection coefficient which is smaller than one. Calculation of 
the reflection coefficient  shows that it is about ph

4γ − . As a result we can have the 

electromagnetic wave intensification of a factor phR 2 2
016( / )λ γ≈ . 

Take the example of the wakefield excitation in a gas of density 19 310 cm− . 
This means the Lorentz factor associated with the phase velocity of the 
wakefield is related to / peω ω  , which is on the order of 10. Thus a laser pulse 
intensification of the order of 104 may be realized for R0 / 10λ ≈ . For the 
plasma density equal to 17 310 cm− the Lorentz factor associated with the wake 
field phase velocity is equal to 100, and the laser pulse intensification may reach 

610 . In this case one finds if one has a laser of 1PW and focuses it down to the 
intensity of 22 210 /W cm , the relativistic engineering of this intensification may 
lead to the intensity of W cm28 210 / . We see that the reflected radiation intensity 
can approach the Schwinger limit. In this range of electromagnetic field intensity 
it becomes possible to investigate the fundamental problems of the current 
physics using presently available laser devices. 
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Figure 8. Paraboloidal modulations of the electron density in the wakewave. 

 

  
Figure 9. The projections of the electric field components. 

 
 Now we present the results of 2D PIC simulations of the laser pulse 

reflection at the “flying mirrors”. The results of the simulations are presented in 
Figures 8 and 9. Figure 8 shows the paraboloidal modulations of the electron 
density in the wake behind the driver laser pulse. Their transverse size is larger 
than the reflecting laser pulse wavelength.  In Figure 9 we present the z-
component of the electric field. We see that the reflected laser light has its 
wavelength substantially shorter than in the incident wave as well as its focusing 
in a region with size also much smaller than the wavelength of the incident pulse. 
For the parameters of the simulations the phase velocity of the wake wave 
corresponds to 0.87phβ = , i. e. 2phγ = . The reflected light has a frequency a 

factor 14 higher than the incident radiation in perfect agreement with the 
expression(1 )/(1 ) 14.4ph phβ β+ − ≈ . The electric field of the reflected 
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radiation is at about 16 times higher than in the incident pulse, i. e. the intensity 
increases 256 times. These results provide us a proof of principle of the 
electromagnetic field intensification during reflection of the laser radiation at the 
flying paraboloidal relativistic mirrors in the wake plasma waves.  
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ELECTRON-POSITRON PAIR-BEAM PRODUCTION AND
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Recent tremendous advances of ultraintense lasers have enabled the production of
positrons via pair creation in ultrastrong fields in plasma. This process produces an
electron-positron pair beam with relativistic energy in an overdense plasma, where
an ultraintense ultrashort laser pulse propagates. We propose an intense pair-beam
production and its acceleration up to high energies via consecutive interactions
with ultrastrong laser fields. Applications of pair-beams provide a new concept of
laser-plasma accelerators and an electron-positron collider in a micro-scale size.

1. Introduction

The recent progress of ultraintense lasers makes it possible to conceive a

novel concept on production and acceleration of an intense electron-positron

pair beam, and its application to an electron-positron collider. The strong

laser field can produce plasmas through quantum mechanical tunneling ion-

ization mechanism, and accelerate produced electrons and ions to generate

a relativistic electron beam and energetic ions in plasmas. This process

will be followed by creation of electron-positron pairs through interaction

of relativistic electrons with a Coulomb field of a nucleus in plasma ions

or a strong laser field. In the ultraintense laser intensities more than 1021

W/cm2, the pair-production rate rises quickly to enormous values. Since

the pair-production occurs in the presence of the laser field and the electro-

static field generated by an ultraintense laser pulse, the produced pairs will

be accelerated by the coherent action of those fields to form a relativistic

beam. This pair-beam will be useful for applications to high energy collider

physics as an electron-positron beam source if it can be accelerated to a

very high energy and focused to a very small spot size.

In this paper, the possible pair-production processes in strong laser-

1



2

plasma interactions are investigated to estimate the number of electron-

positron pairs in terms of the laser intensity and the plasma density. We

propose acceleration and focusing of the pair beam by the ponderomotive

acceleration scheme to compose a high energy electron-positron collider

with very high luminosity.

2. Pair production processes in laser fields

2.1. Multiphoton pair creation in a Coulomb field

The creation of an electron-positron pair in the vicinity of a nucleus with

charge Z is a process of extremely large multiphoton order, given by

nωL + Z → e+e− (1)

where a very large number of photons of the order of n ∼ 2mec
2/~ωL must

be absorbed for any laser frequency ωL to create a pair. The pair creation

rate per nucleus is expected to be of order1

W ∼ exp

[

−
mec

2

~ωL

]

∼ exp[−106] sec−1. (2)

The cross section for this process is so small at optical frequencies as to

make it completely negligible in laser-plasma interactions.

2.2. Pair creation by relativistic electrons

Focused laser pulses produce plasmas in matter. Electrons can be acceler-

ated to relativistic energy by electrostatic wakefields collectively generated

by intense short laser pulses in plasmas or by direct laser fields as the quiver

motion of electrons becomes relativistic. When the incident electron kinetic

energy exceeds the pair-production threshold 2mec
2, the high energy elec-

tron can produce an electron-positron pair by scattering in the Coulomb

potential of a nucleus in the process, often called ”trident process”.

e+ Z → e′e+e−. (3)

The cross section for the trident pair-production process is first calculated

by Bhabha as2

σT =
(αreZ)2

128

(

ln γ2 −
161

60
+ c1 + c2 + c3

)

(γ − 3)4, (4)

where α is the fine structure constant, re = e2/mec
2 is the classical electron

radius, Z is the nuclear charge, and γ is the Lorentz factor of the electron
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with the kinetic energy Ev, defined by γ = 1+Ev/(mec
2). The symbols c1,

c2, and c3 are lengthy algebraic functions of γ, given by Bhabha’s paper2.

The more exact calculation can be approximated over most of the energy

range near the trident production threshold as3

σT ≈ 9.6 × 10−4
(αreZ)2

(γ − 3)3.6
. (5)

2.3. Pair creation by an incident non-laser photon

An incident non-laser photon can produce an electron-positron pair in pres-

ence of a laser field in the process

ω + nωL → e+e−. (6)

For n = 1, this pair production in two-photon collision is known as Breit-

Wheeler process4 of which the cross section for unpolarized photons is given

by

σpair =
1

2
πr2e(1 − β2)

(

(3 − β4) ln
1 + β

1 − β
− 2β(2 − β2)

)

, (7)

where β = (1−m2

ec
4/(~2ωωL))1/2. The multiphoton Breit-Wheeler process

is considered as the trident process

e+ nωL → e′e+e−. (8)

In this process an incoming high energy electron emits a virtual photon

that decays into an electron-positron pair in the presence of the absorption

of n laser photons. From the energy-momentum conservation for the tri-

dent process, the threshold electron Lorentz factor for a head-on collision

between laser and electron is given by

γ >
2mec

2

n~ωL

(

1 +
〈e2A2〉

m2
ec

4

)

, (9)

where A is the vector potential of a laser field5.

Schwinger6 predicted that the spontaneous breakdown of vacuum occurs

in a strong static electric field at the critical value,

Ec =
m2

ec
3

e~
= 1.32 × 1016 V/cm. (10)

The physical meaning of this critical field can be interpreted as follows.

A charge e moving through the uniform electric field Ec over the distance

permitted by the uncertainty relations, i.e., the Compton wavelength λC =



4

~/mec gains the energy, which should be at least equal to the rest mass,

eEcλC = mec
2. The pair production in vacuum in the presence of a strong

laser field has been discussed by Brezin and Itzykson7 using the normalized

vector potential of the laser field,

a0 =

[

e|〈AµA
µ〉|

m2
e

]1/2

=
eErms
ω0mec

, (11)

where 〈〉 denotes the average over one period of the field, Erms is the root

mean-square electric field and ω0 is the laser angular frequency. The pair

production probabilities per unit time-unit volume are derived for two cases:

in the perturbative regime, a0 � 1,

w '
αE2

4~

(

eE

2meω0c

)4mec2/~ω0

, (12)

and in the static (zero frequency) regime, a0 � 1,

w '
αE2

π~
exp

(

−
πm2

ec
3

e~E

)

. (13)

In the perturbative regime n = 2mec
2/~ω0 is the number of photons re-

quired to produce the pair. In the static regime the behavior of the rate

can be understood as a quantum-mechanical tunneling. This is analo-

gous to ionization, where a pair is bound in vacuum with binding energy

V0 ∼ 2mec
2.

3. Electron acceleration in plasmas

In order to produce electron-positron pairs in plasma via the trident process

in the presence of either nuclear charge fields or laser fields, initially plasma

electrons must be accelerated up to relativistic energy for both cases. For

a nonrelativistic plasma wave, the acceleration gradients are limited to the

order of the wave-breaking field given by

eE0[eV/cm] = mecωp ' 0.96n1/2

e [cm−3], (14)

where ωp = (4πnee
2/me)

1/2 is the electron plasma frequency and ne is

the ambient electron plasma density. It means that the plasma density of

ne = 1018 cm−3 can sustain the acceleration gradient of 100 GeV/m. The

recent laser-plasma interaction experiments have demonstrated relativistic

electron acceleration exceeding > 200 MeV for the laser strength param-

eter a0 ∼ 18,9. Here we estimate the energy of electrons accelerated by

ultraintense laser pulses in plasmas.
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3.1. Basic equations for particle acceleration in plasma

The laser electromagnetic field and electron space charge field can be ex-

pressed by the vector potential A and the scaler potential Φ as

E = −
1

c

∂A

∂t
− ∇Φ, B = ∇ × A (15)

The equation of a particle motion is written as

dp

dt
= −

(

eE +
v

c
× B

)

=

(

eΦ +
1

c

∂A

∂t

)

−
v

c
× (∇ × A), (16)

where d/dt ≡ ∂/∂t+ v · ∇. The equation of a particle energy is given by

dγmc2

dt
= −ev ·

(

∇Φ +
1

c

∂A

∂t

)

. (17)

The vector potential and the scaler potential can be obtained from the

Maxwell’s equations and the continuity equation of plasma density n
(

1

c2
∂2

∂t2
− ∇2

)

A =
4π

c
j − ∇

(

1

c

∂Φ

∂t
+ ∇ · A

)

, (18)

∇ ·

(

∇Φ +
1

c

∂A

∂t

)

= −4πρ, (19)

∂n

∂t
+ ∇ · nv = 0 (20)

where j = 〈−env〉 is the current density and ρ = 〈−en〉 is the charge

density, respectively.

In a 1-dimensional laser field according to the Coulomb gauge ∇·A = 0,

letting the axial field Az = 0, the vector potential is expressed as

A = Axex +Ayey (the circular polarization), (21)

A = Axex (the linear polarization). (22)

Considering the laser pulse frame propagating at a group velocity in plasma

vg = c(1−ω2

p/ω
2

0
)1/2, the momentum equation can be transformed to a new

variable ζ − vgt. From the transverse component of the equation,

d

dζ

(

p
⊥

−
e

c
A

⊥

)

= 0. (23)

This gives conservation of canonical transverse momentum

p
⊥

=
e

c
A

⊥
. (24)
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Then the electron quiver velocity is given by v
⊥

= p/(γm) = (e/γmc)A
⊥

where the Lorentz factor γ = (1 − β2)−1/2 and β = v/c. Defining the nor-

malized vector potential, a ≡ eA/(mc2), the normalized particle velocity

is written as β
⊥

= a
⊥
/γ.

The longitudinal component of the energy equation derives

d

dζ

(

pz −
γmc2

vg
+

e

vg
Φ

)

= 0. (25)

This gives

γ(1 − βgβz) − φ = γ0(1 − βgβ0) (26)

where βg = vg/c is the normalized group velocity and φ ≡ eΦ/mc2 is the

normalized scaler potential of the electron space charge field, assuming that

prior to the laser-particle interaction, γ = γ0, βz = β0 and a
⊥

= φ = 0.

Using the relation γ = γ
⊥
γz where γ

⊥
=
√

1 + a2

⊥

, and γz = 1/
√

1 − β2
z ,

these two equations can be solved on the normalized velocity β and the

energy γ as

β
⊥

=
a

γ
, βz =

βgγ
2

⊥

±H0[H
2

0
− (1 − β2

g)γ2

⊥

]1/2

H2

0
+ β2

gγ
2

⊥

, (27)

and

γ =
H2

0
+ β2

gγ
2

⊥

H0 ∓ βg[H2

0
− (1 − β2

g)γ2

⊥

]1/2
, (28)

where H0 = γ0(1 − βgβ0) + φ.

The space-charge potential φ is obtained from the continuity equation

and the Poisson’s equation:

∂n

∂t
+ ∇ · (nβ) = 0, (29)

∇2φ = k2

p

(

n

ne
− 1

)

, (30)

where kp = ωp/c is the plasma wave number. In an initial equilibrium

prior to the laser pulse, the space-charge potential is negligible, i.e. φ = 0.

Assuming n = n(ζ), the continuity equation becomes

d

dζ
[n(βg − βz)] = 0. (31)

This derives the electron density in plasma as

n = ne
βg − β0

βg − βz
. (32)
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Assuming that the group velocity is close to the vacuum speed of the light

, i.e. βg ≈ 1, the Poisson’s equation is

d2ψ

dζ2
=
k̂2

p

2

[

1 + a2

(1 + ψ)2
− 1

]

, (33)

where ψ = φ/γ0(1 − β0) and k̂p = kp/γ
3/2

0
(1 − β0). This is the nonlinear

wake equation on the electrostatic potential ψ driven by the ponderomotive

potential a(ζ) of a laser pulse. In the short pulse limit of cτL � λp/2π,

where τL is the laser pulse duration and λp is the plasma wavelength, the

wake excitation is negligible: |ψ| � 1. In the long pulse limit of cτL �

λp/2π, the electrostatic potential is given by

ψ ≈ 〈(1 + a2)1/2〉 − 1 ∼= (1 + a2

0
/2)1/2 − 1, (34)

for the linearly polarized laser pulse. The amplitude of the normalized

vector potential is given by

a0 = (2e2λ2

0
I/πm2

ec
5)1/2 ∼= 0.855 × 10−9λ0[µm]I1/2[W/cm

2
], (35)

where λ0 is the laser wavelength and I is the laser intensity.

3.2. Production of a high energy ultrashort intense electron

beam in plasmas

In the short pulse limit, φ = 0, the maximum and minimum energies of

electrons by the laser field is given by

γmax,min = γ2

gγ0(1 − βgβ0) ± γbβg[γ
2

gγ
2

0
(βg − β0)

2 − a2]1/2, (36)

where γg = (1 − β2

g)−1/2. For initially stationary plasma electrons, φ =

γL−1, where γL = (1+a2

0
/2)1/2 in the long pulse limit, the final accelerated

energy is

γ = (2γ2

g − 1)γL (37)

The dispersion relation of relativistically strong electromagnetic waves

is

ω2 = k2c2 + ω2

p/γL. (38)

This gives a group velocity of the intense laser pulses:

βg =

(

1 −
ω2

p

γLω2

0

)1/2

=

(

1 −
ne

γLnc

)1/2

, (39)
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where nc = π/(reλ
2

L) is the critical plasma density. It implies that the laser

pulses can propagate overdense plasmas for ne < γLnc. This corresponds to

the relativistic transparency of overdense plasmas. As γg = ω0

√
γL/ωp =

(γLnc/ne)
1/2, the final energy is given by

γ = 2γ2

Lnc/ne − γL ≈ a2

0
nc/ne. (40)

The density n1 of accelerated electrons can be calculated from Eq. (32) as

n1 = neβg/|βg − βz| = (2γ2

g − 1)ne = 2γLnc − ne ≈
√

2a0nc (41)

Finally the intense laser pulse propagating the plasma with thickness ∆ an

electron beam with bunch length,

lb = ∆|βz −βg|/βg = ∆/(2γ2

g −1) ∼= ne∆/(2γLnc) ≈ ne∆/(
√

2a0nc). (42)

As an example, the intense laser pulse of the wavelength λ0 = 0.8µm

with the intensity I = 2.1 × 1020 W/cm2 (a0 = 10) can accelerate elec-

trons up to the energy of 1.6 GeV in a plasma of the electron density

ne = 5.3 × 1019 cm−3. An electron beam produced from a plasma with

thickness ∆ = 100 µm is compressed to the bunch length lb = 0.2 µm (700

attoseconds) with density of n1 = 2.4 × 1022. The results of the particle-

in-cell simulation can show such high energy high intensity electron beam

production in plasmas10.

4. Pair-beam production yield in plasmas

4.1. A trident process in the nuclear field

The pair creation rate by means of the trident process in a volume of which

the characteristic length lλ is

dNp

dt
= (lλ0)

3nineσT ve, (43)

where ni is the ion (nucleus) density, ne is the electron density and ve =

βc = (c/γ)(γ2 −1)1/2 is the velocity of the electron. In a plasma containing

of charge Zi = ne/ni,

dNp

dt
=

9.6π2

104

(

c

λ0

)

l3α2
Z2

Zi

(

ne

nc

)2

(γ − 3)3.6(γ2 − 1)1/2/γ. (44)

Substituting Eq. (40) into the electron energy γ � 3, the pair production

yield is given by

Npair ≈
0.48π3

103
α2a8

0
Z3

(

nc

ne

)2(

r0
λ0

)2(

∆

λ0

)2

(45)

≈ 2.8 × 10−45Z3I4[W/cm
2
]n−2

e [cm−3]r2
0
[µm]∆2[µm], (46)
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where r0 is the laser spot radius and ∆ is the plasma thickness. As an

example, when a laser pulse with I = 1 × 1022 W/cm2 focused on the spot

size of r0 = 10 µm is propagating a thickness of ∆ = 100 µm in the Xe

(Z = 54) plasma with density ne = 1 × 1020 W/cm−3, the number of pairs

produced is Npair ≈ 4.4 × 1014.

4.2. A trident process in the counter-propagating laser field

in plasma

If an electron moves through the electric field with 4-momentum pµ (γ =

p0/mec), a nonzero Lorentz and gauge invariant parameter can be formed

as5

χ2 = −
〈(e(pµ − eAµ)Fµν)

2
〉

(mec2)6
, (47)

where 〈 〉 denotes the average over one period of the field. Using a four-

potential of the laser field,

Aµ = [0, A1(kx), A2(kx), 0]. (48)

and a four-dimensional wave vector,

kµ = (ω0,k), kx = ω0t− kx, (49)

this invariant parameter is

χ2 =
(pk)2

(mec2)4
(eA)2

(mec2)2
. (50)

For a head-on collision between an electron and a laser field,

χ =
2cp0~ω0

(mec2)2
a = 2γ

e~EL

m2
ec

3
=

2γEL

Ec
= 2γa

~ω0

mec2
= 2γa0

λC

λ0

, (51)

where λC/2π = ~/mec ≈ 3.86 × 10−11 cm is the Compton wavelength of

the electron.

Let us consider the Ne electrons with energy γmec
2 crossing the laser

field with EL. Integrating the probability over volume ∆V and time ∆t for

each electron crossing, i.e. ∆V = (λC/2π)3 and ∆t = τL/2γ for the time

of interaction with laser pulse of duration τL in the electron rest frame,

assuming that a pulse length is smaller than the Rayleigh length. The

number of pairs produced per laser shot is given by

Npair
∼= Ne

(

λc

2π

)3
τLαE

2

c

2γπ~
χ2 exp

[

−
π

χ

]

(52)

= 4Neγa
2

0

(

λC

λ0

)(

cτL
λ0

)

exp

[

−
π

χ

]

. (53)
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Substituting Eq. (40) into the electron energy γ, the pair production

yield is

Npair
∼=

8π3a4

0

α

(

r2
0
∆

λ3

0

)(

cτL
λ0

)

exp

[

−
π

χ

]

,

≈ 5 × 10−33I2[W/cm
2
]r2

0
[µm]∆[µm]τL[fs] exp[−π/χ]. (54)

where the invariant parameter is

χ ∼=
4π2

α

a3

0

neλ3

0

≈ 3.38 × 10−12
I3/2[W/cm

2
]

ne[cm−3]
. (55)

As an example, when a laser pulse with I = 1 × 1022 W/cm2 and τL = 20

fs focused on the spot size of r0 = 10 µm is propagating a thickness of

∆100 µm in plasma of density ne = 1 × 1020 cm−3, the number of pairs

produced is Npair ≈ 9 × 1016 with χ ∼= 34. In Figure 1, the number of pair

production yields for two processes calculated from Eqs. (46), and (54) are

shown as a function of the laser intensity.

5. Relativistic ponderomotive acceleration and focusing of

a pair beam

High energy booster acceleration of a pair-beam can be accomplished by the

relativistic ponderomotive acceleration with focusing in vacuum or tenuous

plasma. In the ponderomotive acceleration11, the final energy is obtained

approximately by γf ≈ a2

0
for a particle initially at rest. The accelerated

final energy is written as

Ef [GeV] ≈ 0.37 × 10−21I[W/cm
2
]λ2

0
[µm]. (56)

As an example, the laser intensity I = 1 × 1024 W/cm2 of λ0 µm can

accelerate the electron beam up to 240 GeV.

The focusing of an electron beam will be accomplished by the higher

order Hermite-Gaussian modes. The focusing force is obtained from the

ponderomotive potential U as Fr/mec
2 = ∂U/∂r. In the fundamental

Hermite-Gaussian mode referred to as a Gaussian mode, the ponderomotive

potential propagating in vacuum is given by

U0(r, z, t) = a2

0

σ2

⊥0

σ2

⊥

exp

[

−
r2

2σ2

⊥

−
(z − ct)2

2σ2
z

]

, (57)

where σ
⊥0 is the rms spot size at z = 0, σ

⊥
= σ

⊥0

√

1 + z2/Z2

R the rms

spot size at z, ZR the Rayleigh length, and σz the rms laser pulse length.

Since ∂U0/∂r < 0, the ponderomotive potential of a Gaussian mode exerts
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Figure 1. The number of pair production yields for two trident processes as a function
of the laser intensity: a for the trident process in the nuclear field and b for the trident
process in the counter-propagating laser field. The pair production yields are calculated
for the parameters, τL = 20 fs, r0 = 10µm, ne = 1 × 1020 cm−3, ∆ = 100µm and
Z = 54.

defocusing forces on off-axis particles that are quickly expelled from the

laser beam in the radial direction. The focusing force can be produced by

superposition of a Gaussian mode and higher order modes of which the

ponderomotive potential creates a potential well in the radial direction12:

U1(r, z, t) = a2

1

r2σ2

⊥0

σ4

⊥

exp

[

−
r2

2σ2

⊥

−
(z − ct)2

2σ2
z

]

, (58)

where a1 is the dimension less vector potential of the first order mode. The

focusing strength at r = 0, and z − ct = 0 is

KF =
Fr

γmec2r
=

∂U

γr∂r
=

2a2

1
− a2

0

γσ2

⊥0

, (59)

where U = U0 + U1 is the total ponderomotive potential. Then the beam
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envelope equation on the rms beam radius σrb is written as

d2σrb

dz2
+KFσrb −

reNb
√

2πβ2γ3σrbσzb

−
ε2b
σ3

rb

= 0, (60)

where Nb is the number of electrons in the bunch, σzb the rms bunch length,

εb = ε/(γβ) the geometrical beam emittance, and εn is the normalized

beam emittance. In this equation the third term and the fourth term are

attributed to a space charge force and the thermal emittance, respectively.

The equilibrium beam radius is obtained from d2σrb/dz
2 = 0.

5.1. A focused beam size limited by the space charge force

First let us consider an equilibrium beam size of the electrons or the

positrons focused by the laser ponderomotive potential well in the case of

the radial expansion of the beam due to the space charge force. The equi-

librium beam size is given by the focusing strength at r = 0, and z− ct = 0

is

σrb ≈

√
reN

(2π)1/4K
1/2

F βγ3/2σ
1/2

zb

=

√
reN

(2π)1/4(2a2

1
− a2

0
)1/4σ

1/2

zb

σ
⊥0

γ
. (61)

Assuming a1 = a0, σ⊥0 = r0/2, and σzb ≈ λ0/2π, an estimate of the beam

size is

σrb ≈
(2πr0)

1/4

2a
5/2

0

√

reN

λ0

. (62)

This is rewritten in terms of the laser intensity as

σrb[pm] ≈ 2 × 1024

√
N

I5/4[W/cm
2
]

r0[µm]

λ3

0
[µm]

. (63)

As an example, for N = 1 × 1010, λ0 = 0.8 µm, the laser pulse of the peak

intensity of I = 1.0 × 1022 can focus the spot radius to σrb ≈ 1.2 nm.

5.2. A focused beam size limited by the thermal emittance

If an electron-positron pair beam is focused, the space chrage force will be

neglected. The focused beam size can be limited by equilibrium between

the ponderomotive focusing and the thermal emittance expansion:

σrb ≈

√
εb

K
1/4

F

=
γ1/4

√
εbσ⊥

0

(2a2

1
− a2

0
)1/4

, (64)



13

Assuming a1 = a0, σ⊥0 = r0/2, εb ≈ εn/γ ≈ λ0/(2πa
4

0
), an estimate of the

beam size is

σrb ≈

√
εnσ⊥0

a0

=
1

2a2

0

√

λ0r0
π

. (65)

This is rewritten in terms of the laser intensity as

σrb[pm] ≈
4 × 1023

I[W/cm
2
]

√

r0
λ0

. (66)

As an example, for λ0 = 0.8µm and r0 = 10µm, the laser pulse of the peak

intensity of I = 1.0 × 1022 can focus the spot radius to σrb ≈ 0.14 nm.

5.3. Application to a high energy electron-positron collider

It is conceivable that two counter propagating laser-accelerated beams make

it possible to produce the e+e−, e−e−, and e+e+ high energy collisions.

The colliding beam energy is given by Eq. (56). We can estimate the

collision luminosity for the new concept collider from above discussions on

the accelerated energy and the focused beam size due to the ponderomotive

acceleration mechanism.

In the space charge limited case, the collider luminosity will be given by

L =
N2frep

4πσ2

rb

≈
a5

0
λ0Nfrep

√
2π3/2rer20

, (67)

where frep is the repetition frequency of the colliding laser pulses. In terms

of the laser intensity, the collision luminosity is

L[cm−2s−1] = 2 × 10−30I5/2[W/cm
2
]λ6

0
[µm]r−2

0
[µm]Nfrep[Hz]. (68)

In the emittance-limited case, where the electron-positron pair beam is

collided with no separation, the luminosity results in

L =
N2frep

4πσ2

rb

≈
a4

0
λ0N

2frep

r0λ0

. (69)

In terms of the laser intensity, the collision luminosity is

L[cm−2s−1] = 5.3 × 10−27I2[W/cm
2
]λ3

0
[µm]r−1

0
[µm]N2frep[Hz]. (70)

As an example, in order to accelerate the pair beams to the center-of-

mass collision energy of 10 GeV, the laser intensity of I = 2.1×1022 W/cm2

is required. For N = 1 × 1010, λ0 = 0.8µm, r0 = 10µm, and frep = 10

Hz, the space-charge limited luminosity is 3.35 × 1034 cm−2s−1 and the

emittance limited luminosity becomes 1.2 × 1038 cm−2s−1. This is four

orders of magnitude higher than the conventional B factories.
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6. Conclusions

The pair-production processes in ultra-strong laser-plasma interactions

have been investigated to estimate the number of electron-positron pairs

in terms of the laser intensity and the plasma density. Since the pair-

production occurs in the presence of the laser field and the electrostatic

field generated by an ultraintense laser pulse, the produced pairs will be

accelerated by the coherent action of those fields to form a relativistic beam.

This pair-beam will be useful for applications to high energy collider physics

as an electron-positron beam source if it can be accelerated to a very high

energy and focused to a very small spot size by the ponderomotive ac-

celeration mechanism. We propose a new concept of a high energy, high

luminosity electron-positron collider driven by the ultra-strong lasers in a

micro-scale size.
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Quantum aspect of interaction between high intensity laser and electron plasma has 
been studied in point of view of coherent state formalism In the previous  paper, I 
present a theoretical foundation based on quantum-mechanical- and coherent-state-
formalism for analyzing the  interactions between the high-intensity laser and 
electron plasma in a many electron system.  In this paper the group theoretical 
methods are studied for dealing with many modes created in the target under the 
super strong laser irradiation. The methodology based on the exponential Hilbert 
space approach are  studied for analyzing the modes interacting system  where non 
linear mode interaction becomes prominent over the linear space analysis. 

1. Introduction  

1.1.   

In my previous paper[1], I  discussed  a theoretical foundation based on quantum-
mechanical- and coherent-state-formalism for analyzing the  interactions between 
the high-intensity laser and electron plasma in a many photon-electron system. The 
Two times Green Function method developed by Matsubara [2] is used for giving 
quantum theoretical foundation on  the  free electron laser for both low and high  
intensity lasers [3,4]. The analysis base on the multiple excitation of  fock type 
number state becomes complex  to be solved, the high intensity laser are treated as 
the classical field and the equation of motion under classical field can be derived. 
By using this classical field, the formalism can be greatly simplified, and the many 
correlation associated the plasma under high intensity laser can be obtained in the 
analytical form. However the quantum aspect of the laser electrons interacting 
system is not expressed clearly in this formalism, 

In order to clarify, the quantum effect for the laser, the coherent state description for the 
laser field is more appropriate than classical field presentation. 
or getting the dispersion formula, for free electron laser,  the total Hamiltonian of the 
system are expanded with the creation ( a+, A+) and annihilation (a, A) operators of 
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the  relativistic electron which moved in the wiggler magnetic field and the laser 
photon and the coulomb interaction  between relativistic electrons are described 
using their  density operators of ( a+ a) , and the two times Green function of 
photon are obtained by solving the equation of the motion for the Green 
function for photon << [A+, A]>> 
For high intensity laser, the equation of motion for multiple photons states are 
created, the very large number of the states are involved, but the many photons 
are behaves same way so that  these states are treated as the group and the large 
numbers of the states are grouped together and the number of states dealing with 
the equation motion for the analysis are reduced. Classical formalism for electro 
magnetic fields equivalent with the coherent states.  
When a high intensity laser irradiation on the target, not only many photons but 
also the higher atomic excitation will be occurs, and these can be analyzed by 
many kind coherent states of atomic, squeezed , super-radiant [4-6] as discussed 
in the previous paper [2]. 
 
 
Note of A2  term in the Hamitonian 
 
 To derive the dispersion relation for the photon in the strong laser irradiation to 
electron plasma,  the energy difference between  the two dressed relativistic 
electron   was assumed to be small in the previous paper. However, it is not 
negligible in the case when the large momentum change of electrons occurs as 
the strong laser irradiation. In the relativistic electron which wave function is 
approximated as the schrodinger type equation, the electron motion by strong 
laser irradiation is affected by the square of photon amplitude A2 term in the 
formalism.  As you find the formalism using the schrodinger type equation in 
the semi-classical  formalism  A**2 term will play important role for high 
intensity laser irradiation, due to creating the pondermotive potential . For 
dealing with relativistic electron, we have to use  the Dirac equation under high 
laser field which used for the Compton scattering study[ 9]. The relativistic 
electron wave function under strong laser field is derived as  
 
Using this formalism, we can derive the dispersion formula in the similar way as 
the above non-relativistic electron plasma,  
In my previous paper for high intensity laser, we derived the dispersion relation 
for the laser photon, this classical EM field formalism are treated as the similar 
to the static magnetic Wiggler field.  so that it might not properly treated the 
higher order process such as scattering of laser. Although first order transition 
of Compton scattering can be described as discussed in our referenced paper  
Where  the relativistic electron wave function are obtained by solving the Dirac 
equation under strong laser described as A cos (Θ). 
When the wave function of relativistic electron ha the form of  
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Where u(p) is bi-spinor,  p is a constant four vector determining the state , 
p2=m2, q =p – a e/ 4(pk)]  
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The cross section for compton scattering of high intensity laser is derived by us 
using the Dirac wave function (eq.(4)  for getting the scattering matrix 
amplitude of equation (5) 5i  
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2.  Many modes interacting system (analysis by Exponential  Hilbert space) 
 
When Strong laser is irradiating target, many modes of the photon, electron, 
even nucleon fields through the photo-nuclear reaction will be involved, and the 
many mode of the coherent states are involved and the interaction between these 
modes are came in the analysis. To deal with these high numbers of  modes, 
straight forward extension of the above formalism is too much complicated in 
the same way as the multi-photons excitation . 
To deal with this many body problem, group theoretical approach can be applied 
in the similar way for the analysis for nuclear, atomic physics.  
The system in which many modes are interacting  has some symmetry structure, 
and to analyze this system, group theory associated with this symmetry is 
imposed. When this group can be factorized into subgroups so that there is no  
interaction between subgroups,  it can be solved more simple way. However  
due to quantum fluctuation came in the physical system, the interaction between 
subgroups can be occurs through quantum fluctuations and it can not be 
neglected. In this way the quantum aspect are came in the analysis of the many 
body problems structured as the some hierarchy character. 
To analyze the interacting many mode system, the second quantization method 
applied in the field theory simplify greatly the formalism for the interacting 
mode systems. When the total  Hamiltonian is composed of the many 
independent mode, it will be expressed with the creation operator and 
annihilation operators of the each modes. And the coherent wave function are 
used for expressing the wave function describing the mode, the equation  of 
motion for each mode are solved independently from the other modes, the 
formalism becomes factorized and  can be solved without difficulty, but when it 
is treated quantum mechanically, between modes, there is interaction through 
quantum fluctuation. We need take into account quantum effect, although if the 
mode is composed of many particles, and the momentum of mode is large, the 
effect of the quantum fluctuation becomes small so that the classical description 
for the mode can be justified. 
When the many modes are interacting through interaction with the intermediate 
mode, the Hamiltonian can be expressed with the non-linear interaction. This 
non-linear interaction play very important role for whole structure behavior of 
the system term similar way as the turbulence of the hydraulic  dynamics. The 
soliton behavior observed from the computer analysis will be created through 
this non linear interaction. Thus the quantum effect for each mode are small but 
the effect through this non linear interaction become large effect for analysis of 
global behavior. 
To derive the analytical method for this mode interacting, the exponential 
Hilbert space which was proposed by Klauder will be very useful tool. In this 
formalism, the Coherent state which defined as the annihilation operator A to 
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the state Pai > can be expressed with the complex value z >. More extended 
state expressed as Sum zip  
 
Exponential For Mode A is defined and the Hilbert space which is built as the 
polynomial of the operator A  is expanded.  
 
The foundation of the quantum behavior will be constructed in solid foundation 
as the similar way as the quantum physics foundation built upon the Hilbert 
space.  
By using this exponential Hilbert Space, the symmetry associated with the 
whole system will be imposed with the sound mathematical  foundation. 
With group structure are imposed, The use of the exponential Hilbert space 
greatly simplify the formalism.  
Klauder developed the formalism for the interacting mode system by extending 
the Hilbert space to the Exponential Hilbert space [ ],  This was carried out in 
the similar way developed the coherent state  is an abstraction of the Fock space 
for boson field using the wide class of the field operator representation. He 
provided the methodology deal with many interacting mode fields can be useful 
for analysis of the system which has  own interacting subgroup structure.  
  The Hamiltonian of the His dynamically system  
His  general formula for the fields of Dynamics based on the Hamiltonian of the 
form of the form  
 

†

† †

† †

. .

, (2.13)
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klm k l m

klm k l m

H A A

g A A A h c

v A A A Aν ν
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+ +

+

∑
∑
∑

 (2.1) 
 
which is including the terms representing production and decay , scattering , etc. 
For the analysis of the strong laser relativistic electron system since we are 
dealing with the relativistic system which is imposed by Lorentz group,    The 
imposing the Lorentz group to the every mode from the beginning  greatly  
simplified the formulation. By using the  an equal time field algebra which 
characterized by family of formally self-adjoint field operator  Wl(x) , l=1,2,…L 
with comutation relation of as  
 
 
  
(2.2)  
Here clmn are the structure constants of Lie group.  When we choose the real 
function of f(x), g(x) then  
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( ), ( ) ( )l m lmn nW f W g ic W fg=⎡ ⎤⎢ ⎥
(2.3)  
The unitary group element in canonical coordinates are given as 
 (4.3) where f (x)  it is representation of these field operators. We are seeking, 
the  using these function and unitary operators the overcomplete family of states  
 
[ ] [ ]Im( , '[ ])

0' li f
l lf e U fξ φφ φ−=

 
(4.4) 
for some choice of ξ and of ϕ’[fl]∈h. We insist on an  
 

[ ] [ ] [ ] [ ]( ' , ' )( ' , ' ) ' l lf f
l lf f N N e φ φφ φ −=

 
(4.5) 
 
The group law reads  
[ ] [ ] [ ]( . ) )l l lU f U f U f f≡

 
where f.f symbolize the parameter combination law characterizing the group.  
To straight forward extension of the above formalism becomes complicated.  
 
Acknowlegements 
 
The author thanks to Profs. M. Namiki, Nakjima , A. Yu  for their valuable discussion . 
 
References 
 
[1] Hiroshi Takahashi “ Theory of the free electron laser".  Physica 123 C 
(1984) 225-237 North-Holland Amsterdam 
[2] T. Kwan., J.M.Dawson,  and A.T. Lin. Phys. Rev. 16A (1977)   
[3]Hiroshi Takahashi “Interaction between a Plasma and a Strong 
Electromagnetic Wave “ Physica 98C (1980) 313-324  
[4]  Tadashi Toyoda and Karl Widermuth “ Charged Schroedinger particle in a 
c-number radiation field” Phy. Rev. 10D, p2391 (1980) 
[5]  Yosio Ohnuki and Taro Kashiwa “Coherent State of Fermi Operators and 
the Path Integral” Prog. Theo. Physics, 60. 548, (1978) 
 [6] F.T.Arecchi, E.Courtens, R. Gilmore and H. Thomas “ Atomic coherent 
states in Quantum Optics” Phys. Rev A, 6, 2211, 1972. 
[7} John Klauder “ Exponential Hibert Space: Fock Space Revited” Journal of 
Mathematical Phyisics . 11 , 233. (1970) 

 



 7 

[8] D. Horn ,R.Siver “ Coherent Prouction of Pion “ Annals of Physics 66. 509. 
(1971) 
(9) Roy Gluber “ Coherent and Incoherent States of the radiation Field. 
Physical Review 131, 2766, (1963)  
 
 

 



TOWARDS AIGO, AN ATOM-BASED INTERFEROMETRIC

GRAVITATIONAL-WAVE OBSERVATORY

RAYMOND Y. CHIAO and ACHILLES D. SPELIOTOPOULOS

Department of Physics, University of California, Berkeley, CA 94720-7300

It is shown that the use of atom interferometry allows for the construction of
AIGO, the Atom-based Interferometric Gravitational-wave Observatory, that, for
the same sensitivity, is expected to be orders of magnitude smaller than traditional
laser-based observatories as LIGO or LISA. A design for AIGO is introduced, and
the technologies required for its construction is presented. For meter-sized AIGOs
with fringe sensitivity limited by shot noise, the sensitivity of AIGO to gravita-
tional waves is compared with the 4 km-size LIGO. A road map for experimentally
verifying the feasibility of AIGO is outlined.

1. Introduction

We propose a research program that will lay the foundations for the

construction of AIGO, an Atom-based Interferometric Gravitational-wave

Observatory. For the same sensitivity, AIGO is expected to be orders of

magnitude smaller than the laser-based observatories such as LIGO and

LISA.

Roughly speaking, since an atom weighs much more than a photon,

an atom’s response to gravitational waves (GWs) should be much greater

than that of a photon (see III-F below). Hence atoms will be much more

sensitive to GWs than light. This increase in sensitivity can be exploited

by making use of the quantum phase of an atomic DeBroglie matter wave.

The DeBroglie wavelength of a particle depends inversely on its velocity.

When a GW passes through an atom interferometer, the velocities of the

atoms—and hence their DeBroglie wavelengths—will be slightly perturbed.

By suitably designing the interferometer, this perturbation in the DeBroglie

wavelength causes a phase shift, which will result in a shift in the interfer-

ence pattern that—like LIGO and LISA—can then be measured interfero-

metrically, and used to determine the properties of the GW.

While classical-based systems such as LIGO and LISA place classical

test masses (mirrors) a certain distance way from the central beam splitter

1
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of the interferometer, and measures slight shifts in their positions through

light-based interferometry, quantum-based systems such as AIGO throw

out quantum test masses (atoms) with certain velocities, and measures

the quantum phase shift due to slight shifts in their velocities through

atom-based interferometry. A GW can readily change the velocities of

nonrelativistic atoms, but it cannot change the velocity c—or even the

frequency—of photons (although it can slightly change their directions)

Stated in terms of general relativity, since nonrelativistic atoms, which

follow timelike geodesics, are used in AIGO, they are very sensitive to

changes in the local Riemann curvature of spacetime due to the passage

of a GW. This is in contrast to the case of ultrarelativistic particles, such

as photons, which rigidly follow null geodesics, and are therefore relatively

insensitive to such changes.

Consequently, we find that for AIGO the perpendicular length of the

“arms” of the interferometer L
⊥

, should be much shorter than that of

LIGO’s for the same sensitivity to GWs. Defining LAIGO ≡ L
⊥

, in AIGO’s

operating range this length scale is given by

LAIGO =

{

~ω

mc2
LLIGOλGW

4π

}1/2

, (1)

if the interferometers have the same phase sensitivity (see III-F). Here

LLIGO is the effective optical path length of LIGO’s arms, λGW is the

wavelength of the GW to be detected, ω is the frequency of the laser used

in LIGO, and m is the mass of the atom used in AIGO. Due to the fac-

tor ~ω/mc2 ' 3.1 × 10−10 (i.e., the “weight” of a 1.06 µm photon rela-

tive to the “weight” of a helium atom), LAIGO is smaller than LLIGO by

many orders of magnitude. For the helium–atom-based AIGO that has

a sensitivity comparable to LIGO in LIGO’s operating frequency band,

LAIGO/LLIGO < 3 × 10−5. Similarly, comparing AIGO to LISA within its

frequency band, LAIGO/LLISA < 1 × 10−4. As a consequence, meter-sized

AIGOs could in principle be constructed with sensitivities comparable to

LIGO: We hereby propose a radically different route for the construction of

gravitational-wave observatories than the traditional light-based systems.

In the preliminary phase of this research program, we propose to explore

the range of potential physical systems and available technologies that can

be implemented in the construction of a space-based AIGO. As we shall

outline below, the great majority of the various technologies needed to con-

struct AIGO have already been demonstrated separately in various atom

diffraction and interferometry experiments since Stern’s early demonstra-
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tion of the diffraction of helium atoms by alkali-halide crystals. However,

they have not been integrated into the construction of a whole atom in-

terferometer with a design and a sensitivity that can be used to detect,

measure, and observe GWs. Moreover, atom interferometers that can be

constructed from crystal diffraction gratings have not been demonstrated as

of yet, although Bonse-Hart-type neutron interferometers based on single-

crystal silicon ingots have been used to measure gravitational effects 1.

These crystal-based atom interferometers would be needed to construct a

meter-scale AIGO. Nanofabricated transmission gratings with a periodic-

ity of 20 nm could also be used, but would result in an AIGO many times

longer.

The overarching objective of this preliminary research program is to

determine the feasibility of constructing AIGOs, and to establish the tech-

nologies needed for their implementation. To this end, we have in this pa-

per outlined the design of a specific AIGO configuration, and calculated the

phase shifts expected to be seen by this AIGO resulting from the passage of

GWs. Using this analysis as a guide, we have estimated the specifications

of an interferometer needed to measure GWs, and we have outlined the

technologies that could be used in reaching these specifications. The exper-

imental plan in this preliminary phase will focus on gathering the needed

experimental results required to finalize the design of AIGO.

2. Background and Review of Research

In this section we review some of the relevant research in atom interferom-

eters, and in GW detectors.

2.1. Atom Interferometry

The diffraction of helium atoms off crystalline surfaces was first seen by

Stern in 1929 2 (see 3 for a complete overview). Using a room-temperature

helium-atom beam, and a pressure manometer as a detector, clear diffrac-

tion peaks could be seen for helium diffracting off of both NaCl and LiF

cleaved single-crystal surfaces. Due to its unique properties, research in the

diffraction of helium atoms continues 16, and the construction of a scanning

helium-atom microscope is actively being pursued 5.

While the diffraction of atoms has been used to construct atom inter-

ferometers (see for example 6), these interferometers have been based on

fabricated transmission gratings with a periodicity of typically 100 nm, and

are typically three orders of magnitude larger than the lattice constant for
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most crystals. The crystalline lattice of silicon has been used to construct

an Bonse-Hart-type interferometer 1, but using neutrons and not atoms.

2.2. LIGO, LISA, and the Detection of GWs

The great majority of the current experimental searches for GWs are

based on laser interferometry. These detectors are scalable by design

to a size where the detection of GWs become feasible. A number of

research groups located throughout the world 7 are expecting to begin

to collect data soon: GEO600, German-British collaboration; VIRGO, a

French-Italian collaboration; TAMA300, a Japanese effort; and ACIGA,

an Australian effort. The current US-based, international collaboration,

is LIGO (Laser Interferometer Gravitational-wave Observatory). In addi-

tion, a space-based laser interferometer system LISA (Laser Interferometer

Space Antenna) is currently in the initial planning stage. We will focus

specifically on LIGO in this section.

LIGO is a set of three interferometers based at two locations separated

by 3020 km: Hanford, Washington and Livingston, Louisiana. All three

instruments are based on Michelson interferometers with Fabry-Perot arms.

The physical length of the each arm of the main LIGO interferometer is 4

km, and with a Fabry-Perot interferometer in each arm, the optical path of

the arm is increased 150-fold. At the end of each arm is a massive mirror

suspended vertically within a vacuum chamber, and the location of this

mirror must be held in position within 10−10 to 10−13 m with respect to

the center of the interferometer. An analysis of the response of LIGO within

the approximation of freely-falling mirrors will be given in III-F. We shall,

for now, give a qualitative discription of the physics underlying LIGO.

Consider a freely-fally test mass m placed a certain distance L away

from an observer. When a GW passes the system, the wave is expected to

slightly shift the position of the test mass. It will, however, also shift the

position of the observer. Consequently, only the difference—the geodesic

deviation—in the distance xi between the observer and the test mass can

be measured. From 9, xi obeys the geodesic deviation equation.

d2xi

dt2
= −RGW

0i0jx
j , (2)

where RGW
0i0j is the Riemann curvature tensor for the GW. In deriving

Eq. (2), the long-wavelength limit—expected to be valid for GWs from

astrophysical sources—was taken. The GW slightly shifts the position of

the test mass, and this shift is proportional to L; the longer L, the larger
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the shift. By measuring the changes in xi it is in principle possible to detect

the presence of a GW.

The laser interferometry used by LIGO provides a means of accurately

doing so over large distances, and in LIGO, the test mass are mirrors sus-

pended by piano wire off of a fixed frame. The shift in the mirror’s position

causes a phase shift that produces an interference pattern that can, in

principle, be seen. However, while laser interferometry provides the most

accurate means to measure this shift, it is important to note that it is the

response of the test masses to the passage of the GW that is measured, not

that of the photons in the interferometer.

Because the mirrors of LIGO are suspended off of piano wire, they are

not in free-fall. They form pendula, and undergo simple harmonic motion

when a GW passes through. There are resonance effects which cause an

increase in sensitivity between 10 − 100 Hz, but a decrease in sensitivities

at higher frequencies. For low frequencies, seismic noise in the mirror’s

suspension system will also cause a decrease in the sensitivity. Because the

mirrors have to be as freely-falling as possible, an active noise cancellation

scheme has to be used to fix the position of the mirror relative to the center

beam splitter.

Construction of LIGO began in 1996, and the main interferometers were

commissioned in 2001 8. The first science runs were started in June of 2002,

and these data are currently being analyzed. The installation of Advanced

LIGO—designed to be used for GW astronomy—is expected to begin in

2006.

3. An Atom-based Interferometric Gravitational-wave

Observatory (AIGO)

In this section we outline the basic design of a proposed version of AIGO,

and the technologies that could be used to construct it. We also derive the

phase-shifts expected for this AIGO, and use this calculation as a guide to

determine the specifications of AIGO based on current technology.

3.1. Theoretical Basis

In this subsection we outline the conceptual foundations for AIGO, a

matter-wave interferometer for measuring GWs. To focus on the under-

lying physics, we consider an interferometer in free fall in Low Earth Orbit

(LEO) (see 10). In this idealized interferometer, the very large ground-based

acceleration-dependent effects seen in 1 are not present. In addition, orbital
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Figure 1. 1a is a sketch of the the spacetime diagram of the atom interferometry mea-
surement and 1b is its corresponding spatial projection (not to scale). An atomic beam
is coherently split at A, and recombined coherently at B.

dynamics can be used to eliminate the need for mirrors in the construction

of this interferometer (and their complications), and the essential physics

become readily apparent. In III-E we shall provide the detail analysis of

the phase shifts expected for the proposed space-based AIGO.

With its conceptual roots in the work of 11,12,13, we consider an atom

interferometer in LEO at a distance ri(t) from the center of the Earth.

We choose a local coordinate system Xµ fixed on the center-of-mass (CM)

of the apparatus. We then release an atom traveling along the orbit of

the CM (see Fig. 1a). At tA, a transmission diffraction grating is used

to coherently split the atomic beam. One possible geodesic for the atom

is γ1 where the atom is given a velocity ~v
⊥

at the beam splitter that is

perpendicular to the CM’s orbit. The other path corresponds to a geodesic

γ2 with velocity −~v
⊥

. If the beam is split coherently, it will not possible to

determine which geodesic any individual atom will take because the atom

behaves quantum mechanically. Because the spatial projection of both γ1

and γ2 correspond to LEOs, the two paths will intersect with one another

again after a time T as shown in Fig. 1b. A second transmission diffraction-

grating beam splitter is then used to recombine the two paths coherently at

tB , and detectors are then be used to determine the interference pattern,

and through it the phase shift ∆φ that the atom picks up between the two

possible geodesics. Importantly, the combined spacetime path γ = γ1 ∪ γ2

is closed (see Fig. 1a), and forms the boundary of a spacetime surface D.

As usual, we take the linearized gravity limit gµν = ηµν + hE
µν + hGW

µν

where ηµν is the flat spacetime metric, and hE
µν is the deviations from

the flat metric due to the Earth. The components hE
0i form the Lense-

Thirring field of the rotating Earth that causes frame dragging, and, as

usual, hE
00

= −2GM/r is proportional to the Newtonian potential. Next,

hGW
µν —whose components are often called are the strain—are fluctuations

in the flat spacetime metric due to the passage of a GW. We shall work in

the transverse-traceless (TT) gauge 9 where ∂µhGW
µν = 0 and ηµνhGW

µν = 0.

As usual, we consider the GW to be in the long-wavelenth limit.

The Schrödinger equation for the atom the the CM frame is

i~
∂ψ

∂t
= −

~
2

2m
∇2ψ + i(~NE

i + ~NGW
i )∇iψ −mNE

0
ψ, (3)
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Figure 2. Sketch of “octahedral” interferometer with diffraction-grating beam splitters
and diffraction-grating mirrors left out for clarity. The quadrupolar pattern for the +
polarization of a GW perpendicularly incident on the detector is shown on the center
plane (not to scale).

where ψ is the wavefunction, m is the mass of the atom, and using the

usual techniques,

NE
0

=
1

4
XiXj∂i∂jh00(r(t)) +

1

2
XjXk dr

i

dt
∂j∂kh0i(r(t)),

NE
i = Xj∂jh0i(r(t)) −

1

2
XjXk∂j∂kh0i(r(t)), (4)

where ∂if = ∂f/∂xi. From 13, NE
µ = (NE

0
, NE

i ) is the four-velocity field

acting on the test particle induced by the tidal field of the Earth as seen

by an observer at the CM (see also [14]). Similarly,

NGW
i = ḣGW

ij xi/2, (5)

is the tidal velocity field induced by the GW in the long-wavelenth approx-

imation. Note that in the TT gauge, NGW
0

= 0.

Unlike RE
0i0j , R

GW
0i0j varies rapidly with time, and the above approxima-

tion no longer holds. Contributions to ∆φ due to the GW depend on the

details of the interferometer, and we differ this analysis to III-E.

The wave-packet of the atom propagates along either γ1 or γ2. Taking

the eikonal approximation ψ = eimS/~ψ0, where ψ0 is the solution of Eq. (3)
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in the absence of (N0, Ni),

∂S

∂t
= −

1

2
|∇S|2+(NE

i +NGW
i )∇iS+N0, 0 =

ψ0

2
∇2S+(∇iS−NE

i −NGW
i )∇iψ0.

(6)

From Eq. (4), ∇iNE
i = 0, and in the TT-gauge, ∇iNGW

i = 0 as well. Thus,

Eq. (6) becomes

∂S

∂t
= NE

0
, ∇iS = NE

i +NGW
i , (7)

neglecting terms of O(N2). Solving Eq. (7)

S(X) =

∫ Xµ

0

(NE
µ +NGW

µ )dX̃µ, (8)

integrated along γ1 or γ2. Thus,

∆φ =
m

~

∫

γ2

(NE
µ +NGW

µ )dX̃µ−
m

~

∫

γ1

(NE
µ +NGW

µ )dX̃µ =
m

~

∫

D

(RE
0i0j(r(t))+R

GW
0i0j )X̃

idt̃dX̃j

(9)

by Stokes’ theorem.

Consider the contribution ∆φE to ∆φ from the curvature of the Earth.

Since the normal to D is a spacelike vector,

∆φE ≈
m

~
|R̄E

0i0j |AT (10)

where R̄E
0i0j is the average of RE

0i0j over D, and we have assumed that RE
0i0j

varies slowly within D. For the Space Station with an orbit of 90 minutes,

this is a good approximation. The area A is that contained within the two

intersecting orbits in Fig. 1b, and T is the transit time.

3.2. A Proposed AIGO Configuration: The “Octahedral”

Interferometer

Based on our analysis of an idealized atom interferometer in the previous

section, we expect that quantum phase shifts of the atoms in an interferom-

eter will be sensitive to the local curvature of the spacetime. Moreover, due

to the overall factor of m/~, small changes in the total Riemann curvature

tensor from the passage of GWs could in principle be seen. Motivated by

this qualitative result, we shall present in this section a specific design for

a space-based AIGO along with an outline of the technologies can could be

used in its construction.

Detailed analysis of the response of this interferometer to the passage

of GWs will be done in the next section. However, some knowledge of the
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Grating Size δϕshot = 10−9, L
⊥

= 5.0 m δϕshot = 10−10, L
⊥

= 1.6 m

T0 (K) P0 (atm) L
‖

(m) T0 (K) P0 (atm) L
‖

(m)

10 nm 5.2 19 230 5.2 1900 75

20 nm 5.2 19 476 5.2 1900 151

Si (5.43 Å) 5.2 19 7.8 40 5400 11

BeCo (2.61 Å) 15 31 2.6 40 5400 4.32

operating parameters and sizes of the interferometer must of known before

any technologies that could be used in its construction can be proposed.

Based on an analysis given in III-G, Table I lists some of the possible

operating parameters for AIGO.

The overall design of this proposed configuration for AIGO is shown in

Fig. 2. It is a balanced interferometer with an octahedral shape. An atomic

source emits a high-intensity beam of atoms that strikes a beam splitter

which splits the beam along the ±x and ±y direction. One of the beams in

the x-direction and one of the beams in the y-direction are capped-off, and

the other two beams are reflected by mirrors, and recombined at the final

beam splitter. The flexibility in choosing which beams to cap enables parity

discrimination to be done on the signal. In addition, unlike LIGO, this

“octahedral” configuration for AIGO is able to measure the local curvature

from any source. The Sagnac effect, or the local curvature of the Earth can

thus be used to calibrate the interferometer.

We propose to make the beam splitters and the mirrors from diffraction

gratings. These gratings will either be nanofrabricated, such as the one

shown in Fig. 3, used in transmission, or using the cleaved-surface periodic

structures of crystalline materials, used in reflection. The sketch of AIGO in

Fig. 2 shows crystal gratings being used in reflection. As we shall see in III-

G, the width L
⊥

and length L
‖

will be determined by three parameters: the

sensitivity of the interferometer δϕshot, the type of GW the interferometer

is designed to detect, and the grating period a. Generally, the higher the

sensitivity, the smaller L
⊥

, and the smaller the a, the shorter L
‖
.

As we can see from Table 1, an “octahedral” AIGO made using a

BeCo crystal with a lattice constant of 2.606Åwould have an aspect ra-

tio of L
‖
/L

⊥
= 2.7 for a shot-noise-limited sensitivity of δϕshot = 10−10.

However, an atom interferometer using crystal-lattice reflection gratings has

never been demonstrated before, and, as we shall see below, there may be

some question of whether the atomic beams in such an interferometer will
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Figure 3. Photographs of a 100 nm periodicity transmission grating with 25 nm fea-
tures fabricated for atom interferometry. From Space Nanotechnology Laboratory
(www.snl.mit.edu/projects.html).

maintain its phase coherence. A 20 nm nanofabricated transmission grat-

ing at the same sensitivity would have an aspect ratio of 95, and would be

much longer. Nevertheless, atom interferometers using transmission grat-

ings have been demonstrated 6, nanofrabricated transmission gratings with

a periodicity of 32 nm have been made 4, and 10 nm periodicity gratings

are within the goals of current nanotechnology research. Thus, there is a

trade-off in size of the interferometer versus risk of its development through

the choice of grating types. Because of its inherent advantage in the size of

the interferometer, we will focus on development of crystal-based diffraction

grating systems.

The “octahedral” configuration for AIGO can be divided into four sub-

systems. We analyze and describe the possible technologies that can be

used in each subsystem to construct AIGO.

3.2.1. Atom Source Subsystem

Helium is the atom of choice for AIGO-type interferometers (see III-

G).There are several reasons for this. First, we shall see that the low

temperatures needed for a high-intensity atom source suggests the use of

gaseous or liquid helium for reasonable parameter ranges of AIGO sensi-

tivities. Second, helium atoms would not stick to the proposed optical ele-

ments, i.e., the mirrors and beam-splitters made from crystals or nanofabri-

cated gratings that are necessary for the construction of the interferometer.

Third, the use of helium atoms would allow a reasonably high probability

of elastic, and hence coherent, atomic diffraction and reflection processes;

diffraction of helium atoms is well established 16. Fourth, the construction

of helium-atom mirrors based on thin silicon wafer technology, which has

also already been demonstrated 17, lends itself naturally to the design of
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a pressure-based “quantum accumulator” detector for the interferometer,

which is described below.

Standard supersonic sources are already well developed for noble gases,

including helium 18. A jet of gas from a high-pressure reservoir escapes

supersonically in free expansion through a nozzle, which consists of a small

orifice, typically 10 to 100 microns in diameter, into a differentially pumped

low-pressure chamber with a larger orifice at its output end called the “skim-

mer”. This skimmer has the appropriate geometry so as to skim away the

outer components of the rapidly expanding gas jet, thus leaving only the

intense, low-temperature central component of the atomic beam to enter

into another differentially pumped chamber, where the beam is further col-

limated by a slit at its output end. The beam could be further collimated by

means of a second slit at the output end of yet another differentially pumped

chamber, before it enters the main vacuum chamber containing the atom

interferometer 6. Thus, with successive stages of differential pumping by

means of diffusion pumps, one can maintain an ultra-high vacuum of the

main chamber inside which the optical elements are placed.

Based on the calculations given in III-B, for an AIGO sensitivity of

δϕshot ' 10−9, we would need a helium atom source intensity of ' 1018

atoms per sec, which should be achievable with a standard gas-based super-

sonic source such as that described above. However, for the higher AIGO

sensitivities of δϕshot ' 10−10, we would need to go to a liquid-based super-

sonic source, since a liquid can have much larger number density of atoms

than a gas. At intensities higher than 10−9, it becomes difficult construct a

gas-based source, even from a supersonic source, to emit these many atoms

per second. In addition, the density of atoms in the beam can be so high

that collisions between atoms in the beam can occur while they traverse

the interferometer 15. These collisions can potentially induce decoherence

in the beam, and wash-out the interference fringes. Thus, for sensitivities

above 10−9, we would consider instead liquid based sources where reservoir

consisting of liquid helium which emerges supersonically through a nozzle

into a low pressure chamber. Such sources have recently be constructed by

Toennies’ group (www.gwdg.de/˜mpisfto/www.e/superfluid e.html), where

in vacuo filamental beams of superfluid helium have been made.

3.2.2. Atomic Beam Optical Elements: Mirrors and Beam Splitters

We propose to explore two different routes for the fabrication of mirrors

and beam splitters needed for the construction of AIGO. First, we shall
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consider cleaved surfaces of single crystals for such optical elements, which

we know yield such near-perfect crystalline surfaces. These crystals would

be used to construct mirrors and beam splitters. Various diffraction or-

ders from such surfaces have already been observed for helium atoms 16.

Furthermore, Holst and Allison have demonstrated that the flexible, thin,

hydrogen-passivated single-crystal silicon wafer surface Si(111)-(1 × 1)H

can be used as a mirror for focusing helium atom beams 17. Using this

helium-based mirror, scanning helium-atom microscopes are presently be-

ing developed 5.

Second, we shall consider the nanofabricated gratings which have previ-

ously been used for demonstrating matter-wave interferometry with various

atoms and molecules (see 6). Gratings with square array of holes having a

100 nm period with 25 nm features have been fabricated (see Fig 3).

Both routes have their advantages and disadvantages. On the one hand,

crystals have smaller grating periods, and hence typically yield smaller in-

terferometer sizes. However, the use of crystalline surfaces requires an

ultra-high vacuum environment. On the other hand, nanofabricated grat-

ings can be flexible in their design, and can also be easier to align than

crystals due to their larger grating periods. However, their use entails the

construction of much longer AIGO interferometers.

3.2.3. Laser Interferometer Alignment Subsystem

It is important for space-based AIGOs to develop laser interferometry for

positioning and aligning the various optical elements of the atom interfer-

ometer. This is a difficult engineering task. As we shall argue below, there

are no fundamental physical obstacles to achieving this goal.

Unlike LIGO, where the mirrors of the interferometer are in free fall,

i.e., placed as pendula on the end of kilometer-long interferometer arms,

here in AIGO, the mirrors and beam splitters must be bolted to some

underlying mechanically rigid structure. (The fringe shift in AIGO is due

to deflections in the motion of the atoms, and not of the mirrors as in

LIGO, by the GW; see III-E). Furthermore, the size of AIGO is on the

order of meters, and not of kilometers as in the case of LIGO, or of millions

of kilometers as in the case of LISA. This should make this engineering

task orders of magnitude easier for AIGO than for LIGO. In addition,

the active-feedback-mechanism technology developed for LIGO to stabilize

the mirror–central-beam-splitter distance could be transfered to AIGO if

needed.
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Figure 4. Schematic of a mirror for helium atoms from
20.

Nevertheless, for the crystal-based AIGO interferometers the position-

ing and aligning of the various optical elements must be accomplished on

the scale of Ångströms. Furthermore, in order to observe the “white-light

fringe,” it would be necessary to balance the two arms of the interferome-

ter also on the scale of Ångströms. Such careful measurements of distances

are difficult, but not impossible, and are certainly much easier than the

even more stringent requirements for LIGO and LISA. The fundamental

sensitivity of the laser interferometer in distance measurements necessary

to make such measurements arises from the photon-shot noise limit

δϕlaser '
1

√

Nphoton

'
1Å

1µm
' 10−4, (11)

where Nphoton is the number of photons in a given measurement time in-

terval. Hence we would need Nphoton ' 108 in order to perform these

measurements. This is not difficult achieve with standard lasers.

For nanofabricated-grating-based AIGOs, similar considerations apply.

Although grating periods for these AIGOs are typically three orders of

magnitude larger than for the crystal-based AIGOs, the longitudinal length

scales are correspondingly larger, so that the required fractional precision

for position measurements using the laser interferometry subsystem is about

the same in both cases.

3.2.4. Detector Subsystem

For detecting the high-intensity helium atom beams at the output port

of AIGOs, we propose to use a “quantum accumulator detector,” i.e., a

pressure detector of the beam emerging from the atom interferometer. This

detector works on the principle of momentum conservation during elastic,

specular reflections of the helium atoms from a thin silicon wafer supported
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Figure 5. The “quantum accumulator detector,” i.e., a pressure detector for the helium
atom beam emerging from the output port of the atom interferometer.

at its boundary by a spacer separating it from the ground plane (see Fig. 4).

The impacts of 1020 helium atoms per second (in order to have δϕshot '

10−10 in a typical bandwidth of 1 Hz) in a beam moving with a typical

velocity of 200 m/s, elastically reflected at 45◦ from the center of the silicon

wafer, yields a typical force of 20 dynes. A capacitor consisting of the silicon

wafer which is metalized on its back side and the ground plane, is used here

to measure the pressure due to this beam impinging on the wafer, by means

of a biased capacitance manometer. The beam is also focused through a

small orifice into a “beam dump” (i. e., a diffusion pump) by the mirror

formed by the bias voltage on the silicon wafer. The quantum shot-noise

limit should be achievable with this detector.

3.3. Preliminary Experiments: The Test Interferometer

The ultimate goal of this research program is to construct an AIGO with

the sensitivity to detect, measure, and observe GWs, and the experiments

planned in this preliminary phase of the research program are designed to

support this goal. Based on these experiments, a better assessment of the

feasibility of can be made.

Table II is a preliminary sketch of the AIGO development effort and

how these experiments fit within the whole development plan. The right

two columns list the performance goals, and the expected subsystem con-
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figurations of the space-based AIGO based on the preliminary considera-

tions outlined in III-B. The interferometer is divided into subsystems, and

aside from the laser-interferometer-alignment subsystem, specific prelimi-

nary experiments are listed on the left column to develop understanding

of the fundamental physics of the subsystem in support of the eventual

space-based-AIGO performance goals. Based on the analysis in III-B, it

is expected that the development of laser-interferometer-alignment system

will be more an issue of careful engineering than of any underlying physics,

and we do not plan much research in this subsystem in these preliminary

experiments.

The first part of the experimental plan focuses on evaluating and se-

lecting candidate crystals could be used in the space-based AIGO. We will

either need to set up a test rig for measuring the properties of such mir-

rors and beam splitters in an ultra-high vacuum scattering chamber, or to

use existing facilities, such as those in Berkeley’s chemistry department, in

order to make such measurements. In particular, we propose to measure

the probabilities of the scattering of helium atoms into the various diffrac-

tion orders for the passivated cleaved silicon surfaces Si(111), Si (100), and

Si(110), using standard passivation techniques, to find out their suitabil-

ity for a helium atom interferometer, as well as other candidates, such as

surfaces of LiF, BeCo, etc. We would also need to obtain nanofabricated

gratings, such as the MIT Space Nanotechnology Laboratory, etc., but we

will also explore the possibility of using the Berkeley EECS microfabrication

facility to make these gratings.

In dividing each subsystem into separate parts, and designing experi-

ments to understand the fundamental physics underlying each subsystem,

we can at most ensure that each subsystem, separately, can be designed.

To ensure that these subsystems can be integrated into an interferome-

ter, we propose to construct a test interferometer, which, like the Bonse-

Hart neutron interferometer used by Collela, Overhauser, and Werner 1,

would be formed out of one large piece of monolithic, single-crystal silicon

ingot. Silicon ingots with diameters of 12 inches are commercially avail-

able, and ingots with diameters of up to 22 inches can be obtained from

Silicon Crystals, Inc., 2620 Mercantile Dr., Rancho Cordova, CA 95742

(www.siliconcrystals.com/services.html). This would serve as a ground-

based test of a simplified version of the proposed “octahedral” interferom-

eter described above, which would combine into an integrated whole all

the crucial elements of an atom interferometer, including beam splitters

and mirrors. Thus the question of how the decoherence occurring at these
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Sub-System Preliminary Experiments Space-based Interferometer Space-based Interferometer

Low-intensity sources High-intensity sources

Source - Effusive noble-gas source Supersonic noble-gas source Liquid-based atom source

- Supersonic noble-gas source with ∆ϕ
shot

∼ 10
−7

with ∆ϕ
shot

∼ 10
−10

“Optics” - Prepare crystal samples Crystal-based Crystal-based

(Mirrors and - Explore candidate crystals

Beam Splitters) - Measure diffraction intensities

- Demonstrate optical elements

Laser - Construct high-accuracy Laser-interferometer based Laser-interferometer based

Interferometer laser interferometer

Alignment

Detector - Accumulators Quantum-accumulator Quantum-accumulator

- Metastable noble-gas detectors detectors detectors

elements would degrade the visibility of the resulting interference fringes

could be answered experimentally.

In the test interferometer, an incoming helium atom beam from a super-

sonic source “S” enters a rhomboidal interferometer (see Fig. 6). This beam

from the atom source would be introduced by means of a mirror cleaved

out of a pedestal located at the position marked “S”, oriented in such a way

so as to reflect an incident beam into the plane of the interferometer and

directed towards the initial beam splitter. This incoming beam is coher-

ently split by this beam splitter (a crystalline reflective diffraction grating)

into an upper path and a lower path. These two beams are reflected by the

top and bottom mirrors towards the final beam splitter (also a crystalline

reflective diffraction grating), where they are coherently recombined into a

single outgoing beam directed towards the detector “D,” in a time-reversed

version of the initial beam-splitting process. Thus the interferometer con-

sists of four optical elements at the four corners of a rhombus, the top and

bottom elements being two mirrors, and the left and right elements being

the initial and final beam splitters. These elements, indicated by the heavy

lines, are first etched out of a single, underlying silicon crystal base. The

surfaces for the beam splitters and mirrors are then cleaved from the etched

crystal, and then passivated to preserve its surface crystalline structure, and

thus to ensure well-defined diffraction peaks of the beam. A metastable gas

detector will primarily be used for these experiments. In the metastable

gas detector, an electron beam is used to excite the helium atoms to a

metastable excited state. When a metastable helium atom strikes a metal

surface, an electron is released and is detected by an electron multiplier.

This test interferometer possesses automatically balanced arms, so that

a “white-light” fringe should be readily observable, provided that no sub-

stantial decoherence of the quantum mechanical phase of the helium atoms

occurs at the beam splitters, mirrors, or along the paths of the beam.
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When the plane of the interferometer is horizontal, there should be a large

detectable Sagnac phase shift due to the Earth’s rotation. If the plane of

the interferometer is tilted towards the vertical, a large detectable phase

shift due to the Earth’s gravitational acceleration g should be observable,

similar to that observed in the neutron interferometer 1.

Decoherence and the Debye-Waller factor Quantum interference re-

quires that there exists no possibility of “which-path” information for the

helium atom inside the interferometer. This places stringent limits on the

decoherence of the atom beam as it is diffracted from the beam splitters,

and reflected off the mirrors. (Scattering of atoms in the beam off of back-

ground gas is assumed to be negligible). In particular, the diffraction and

reflection processes have to be elastic. A measure of the inelastic versus

elastic components of these process is based on the Debye-Waller factor

W in the intensity ratio I/I0 = exp(−2W ), where I is the diffracted (or

reflected) intensity and I0 is the incident intensity. This factor W is a mea-

sure of the fluctuations of the locations of the atoms in the crystal that

diffracts the incident helium beam. For diffracted helium beams,

W = B/a2, (12)

where a is the lattice constant of the silicon crystal, and B is measured to

be 0.45 Å2 at room temperature 19. The rule of thumb in the atomic beam

community is that 3

W

12
< 0.1 , (13)

for sharp, elastic diffraction patterns to be seen. However, our requirement

for observing interference is more stringent: We require that the probability

of emitting even a single phonon during the diffraction process be negligible.

The criterion for predominantly single-phonon processes is that 21

W

12
< 0.01. (14)

For the proposed test interferometer, W/12 = 1.3 × 10−3 at room tem-

perature and decreases at lower temperatures. Thus it is highly probable

that the zero-phonon process is the dominant one, and therefore quantum

phase coherence is expected. However, this conclusion must be checked

experimentally in the proposed test interferometer.
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Figure 6. Schematic of the proposed test interferometer, which is a Bonse-Hart-type
interferometer for helium atoms formed out of a single crystal of silicon.

3.4. Expected Phase Shifts

In this section we estimate the phase shifts expected for AIGO in the space-

based, octahedral configuration described above. In the free-fall environ-

ment of LEO, only the local curvature of spacetime will determine the paths

of the atoms in the interferometer. In III-B we have already estimated the

contribution of the Riemann curvature of the Earth ∆φE to the total phase

shift. We shall focus here only on the GW component of the phase shift,

and neglect the effect of the Earth’s curvature on the motion of the atoms.

Since RE
0i0j ∼ 10−6 s−2, while for a GW with a frequency of 104 Hz and

strain of 10−21 has a RGW
0i0j ∼ 10−12 s−2, this is a good approximation.

We consider a GW incident along the longitudinal axis of the interfer-

ometer. Along this axis, the x- and y-axes of the interferometer look like

the Michelson interferometer used by LIGO. Like LIGO, the × polarization

does not produce a measureable signal; this polarization tends to move the

atoms perpendicular to their path. The + polarization, on the other hand,

does contribute and will tend to speed-up and slow-down the particle along

each axis separately.

As usual, we choose as our origin the initial beam splitter at the base

of the interferometer (see Fig. 2). The net phase shift for a single atom in
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the continuous atom beam traveling along the x-axis versus the y-axis is,

∆φGW =
1

~
(Sx − Sy), (15)

where

Sx =

∫

γx

(

1

2
mviv

i −mNGW
i vi

)

, Sy =

∫

γy

(

1

2
mviv

i −mNGW
i vi

)

,

(16)

are the classical action for a particle traveling along the x-axis (γx) and

y-axis (γy) respectively. NGW
i is given in Eq. (5), and it is straightforward

to see that either Sx or Sy leads to the Hamiltonian for the Schrödinger

equation (3).

While a continuous atom source will most likely be used in AIGO, for

clarity in this derivation of the phase shift of AIGO due to the passage

of a GW let us consider a pulse source for that throws out N∆t atoms at

intervals of ∆t; the continuous source to be recovered by letting ∆t → 0

appropriately. For the atoms traveling along the x-axis released at time

tn = n∆t,

v0x = v
⊥
, x0(t) = v

⊥
(t− tn), (17)

v0z = v
‖
, z0(t) = v

‖
(t− tn),

for tn < t < tn + T/2, where T/2 is the time for the atom to travel from

the beam splitter to the mirror, while

v0x = −v
⊥
, x0(t) = L

⊥
− v

⊥
(t− tn), (18)

v0z = v
‖
, z0(t) = v

‖
(t− tn),

for tn +T/2 < t < tn +T . Due to the mirrors, there is a jump discontinuity

in v0x. Similar equations hold for the path along the y axis. It is clear that

L
‖

= v
‖
T , and L

⊥
= v

⊥
T/2.

At t > 0 a GW in the long-wavelenth limit with strain hGW
ij with a +

polarization passes through the interferometer traveling parallel to the z-

axis. The paths of the atoms will be slightly perturbed so that x = x0 +x1

and y = y0 + y1, where x1 and y1 are deviations from the free-space paths

x0 and y0. These perturbations satisfy the geodesic deviation equations of

motion in Eq. (2). The GW does not affect motion along the z-axis. Then,

writing vx = v0x + v1x, for the bunch of atoms released at t = tn,

Sx =
m

2
(v2

‖

+ v2

⊥

)T +m

∫ tn+T

tn

v0x

{

v1x −
1

2
hGW

xx x0v0x

}

dt. (19)
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After successive integration by parts and use of Eq. (2),

Sx =
m

2
(v2

‖

+v2

⊥

)T+m

{

L
⊥

(

v1x(tn + T−/2) − v1x(tn + T+/2) + hGW
xx (tn + T/2)v

⊥

)

−
v2

⊥

2

∫ tn+T

tn

hxx(t)dt

}

,

(20)

where v1x(tn + T−/2) ≡ limε→0 v1(tn + T/2 − ε) is the value of v1x right

before the mirror, and v1x(t+ n+ T+/2) ≡ limε→0 v1(tn + T/2 + ε) is the

value of v1x right after the mirror. The jump condition of the x-velocity at

the mirror requires that v1x(tn + T−/2) = −v1x(tn + T+/2); everything is

reflected. Integrating Eq. (2), we get

v1x(tn + T−/2) =
L

⊥

2
ḣGW

xx (tn + T/2) −
v

⊥

2

{

hGW
xx (tn + T/2) − hGW

xx (tn)
}

,

(21)

so that for the + polarization where hxx = −hyy,

∆φGW =
2m

~
L2

⊥

{

ḣGW
xx (tn + T/2) + 2

hxx(tn)

2
−

1

2T 2

∫ tn+T

tn

hGW
xx (t)dt

}

.

(22)

Taking now the Fourier transform of hGW
xx (t),

hGW
xx =

∫

∞

−∞

dω

2π
h+(ω)eiωt, (23)

we find the following frequency response,

∆φAIGO(ω) =
2m

~
L2

⊥

ih+(ω)ωeiωt/2

{

1 −
2i

ωT

[

cos
ωT

2
−

sinωT/2

ωT/2

]

−
sinωt/2

ωT/2

}

.

(24)

for the phase shift.

The resonance apparent at T us due to the finite size of the interfer-

ometer, and the relatively slow velocity of the atom compared to the GW.

When ωT >> 2π,

|∆φAIGO| ≈
2m

~
L2

⊥

|h+(ω)|ω. (25)

In this limit T is much longer than the period of the GW, and the time

behavior of the GW can be discerned. As we shall see, it is in this limit

that AIGO is most sensitive to gravitational waves, and we shall focus on

this limit when discussing the size and design of the interferometer.

In the other limit where ωT << 2π

|∆φAIGO| ≈
m

3~
L2

⊥

|hGW
+

(ω)|ω =
2m

3~
|R0x0x(ω)|L2

⊥

T. (26)



21

In this limit T is shorter than the period of the GW, and in this limit, the

time behavior of RGW
0x0x(t) cannot be discerned, and is effectively a constant

for each bunch of atoms passing through the interferometer. As expected,

Eq. (26) reduces Eq. (10) in the static limit. Note, however, that |∆φAIGO|

is proportional to ωT , which is very small is this limit. Consequently, AIGO

will not be as sensitive to GWs in this limit.

As we see from Eq. (22), the phase shift ∆φGW depends explicitly on

the transit time T of the atom through the interferometer, which can be

very slow. Thus, it seems that due to this relatively long transit time,

AIGO would appear to be a slowly-responding interferometer. This would

be incorrect. Each bunch of atoms travels through the interferometer as

a group, and a sequence of ∆φ(T ), ∆φ(T + ∆t), ∆φ(T + 2∆t), . . . , can

then be measured. Each measurement of the phase shift corresponds to a

value of hGW
xx at a different time, and using Eq. (22), the time dependence

of hGW
xx can in principle be reconstructed. Thus, what determines overall

response-time of AIGO not the transit time of the atom, but rather the

integration time of the interferometer.

As we can see from Eq. (25), unlike ∆φLIGO, ∆φAIGO depends on the

square of L
⊥

, and not simply on L
⊥

. As we shall see in the next section, this

difference in the power-law dependence of the phase shift on the size of the

interferometer is due to the fact that while LIGO measures fluctuations in

the positions of classical test masses (the mirrors of LIGO’s interferometer)

due to the passage of a GW, AIGO measures fluctuations in the velocity of

quantum test masses (the atoms used in AIGO).

3.5. AIGO and LIGO: The Underlying Physics

In this section, we delineate the physics underlying both AIGO and LIGO,

and compare their relative sensitivities to GWs from astrophysical sources.

We shall emphasize only the physics here, and our arguments will be more

physical than formal. Consequently, we shall consider the effects of a GW

passing over freely-falling particles only, and neglect all other external forces

on the system. We begin with the classical dynamics arising from the

geodesic deviation equations of motion from Eq. (2); on a classical level,

both AIGO and LIGO are governed by it. For LIGO, one considers a test

mass (a mirror) at a distance Li from the center of mass (the central beam

splitter) of the apparatus, which is the origin of the coordinate system.

When a GW passes over the apparatus, it causes small shifts ξi in this

distance as observed by an observer at the origin. Thus, we can write



22

xi = Li + ξi, where
∣

∣ξi
∣

∣ <<
∣

∣Li
∣

∣, and

d2ξi
dt2

≈ −RGW
0i0jL

j . (27)

To lowest order,

ξi ≈ −Lj

∫ t

0

dt′
∫ t′

0

dt′′RGW
0i0j (t

′′) =
1

2
LjhGW

ij , (28)

where for t ≤ 0, hGW
ij ≡ 0. Thus, in LIGO one puts a mass (a mirror) at

t = 0 a certain distance Li away from the center, and observes fluctuations

in its position due to the passage of a GW. In AIGO, on the other hand,

one throws out a test mass (an atom) at t = 0 with a velocity Vi from

the center, and observes deviations in its velocity, and thus its path in

spacetime, due to the passage of a GW. To see this, we write vi = Vi + βi,

where |βi| << |Vi|. Then

dβi

dt
≈ −RGW

0i0jV
jt. (29)

Once again to lowest order,

βi ≈ −V j

∫ t

0

dt′RGW
0i0j (t

′) =
1

2
V j ḣGW

ij (30)

where ḣGW
ij is the rate of change of the strain field hGW

ij of the GW. The

parallelism between the displacement ξi in LIGO, and the velocity shift βi

in AIGO, are readily apparent. Classically, the velocity shift βi is extremely

small, and virtually impossible to measure. Quantum mechanically, how-

ever, this velocity shift can be measured by means of quantum interference.

A quantum particle has a DeBroglie wavelength λDB = 2π~/mv, where

m is the mass of the particle and v is its speed. Changes in the particle’s

speed ∆v result in changes to its local DeBroglie wavelength, and hence its

quantum phase. This phase shift could be measured by means of an atom

interferometer, as we have described above. Indeed, Eq.(25) can rewritten

as

∆φAIGO =
2π

λ
⊥dB

∆Leff , (31)

where λ
⊥DB = 2π~/mv

⊥
and

∆Leff = 4π∆vT = 4πL
⊥

∣

∣

∣
ḣGW

ij

∣

∣

∣
T. (32)

Thus, the quantum phase in AIGO is a cumulative effect depending on the

total history of the atom in the presence of the GW. Note that in AIGO
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it is the phase of the atom which is directly acted upon by the GW, and

used in the measurement. This is not the case in LIGO, where any means

to measure the deviations in the position of the test mass, can be used. In

LIGO, light-based interferometry is used to measure these deviations, and

the test mass is a freely-falling mirror in the interferometer, and the phase

shift is given by LIGO is given by

∆φLIGO =
2π

λ
∆LLIGO, (33)

where λ = 2π/k is the wavelength of the laser, ∆LLIGO is the optical path

length difference of LIGO induced by the GW, and where for the two arms

of the interferometer,

∆LLIGO = 150
∣

∣hGW
ij Li

∣

∣ , (34)

where the factor of 150 accounts for multiple reflections within each arm of

LIGO. Thus, the phase in LIGO depends on the instantaneous position of

the test particle (i.e., the mirror) in the presence of the GW. Note that in

LIGO the photons used in making the measurement are not the particles

being acted on by the GW: It is only the test mass (i.e., the mirror) which

is being acted on. Thus, even though the velocity of the test mass is small

in AIGO, the effect of a GW on the particle may still may be large.

3.5.1. Comparison of AIGO and LIGO

To compare the ability of AIGO to detect GWs to LIGO’s, we consider a

+ polarized, monochromatic GW with frequency νBW and amplitude h+

incident on both AIGO and LIGO. Then

∆φAIGO

∆φLIGO
=

λ

λ
⊥DB

∆Leff

LLIGOh+

. (35)

Then if the sensitivity of AIGO is equal to LIGO, ∆φAIGO/∆φLIGO = 1,

and from Eq. (32),

LAIGO =

{

~ω

mc2
LLIGOλGW

4π

}1/2

, (36)

where ω is the frequency of the laser. LIGO’s designed operating frequency

range is from 10 Hz to 104 Hz, and we find that LAIGO/LLIGO < 3 × 10−5

for helium atoms. For the same size, AIGO is orders of magnitude more

sensitive than LIGO.

From Eq. (33) we see that ∆φLIGO increases with decreasing λ. We

are proposing to construct AIGO using atoms whose DeBroglie wavelength
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is in the x-ray region, much shorter than LIGO’s current lasers. However,

even if x-ray lasers can be constructed for LIGO, we see that

LAIGO =

{

v
⊥

c

LLIGOλGW

4π

}1/2

, (37)

where we have set λ = λ
⊥DB in Eq. (35). For a helium-atom-based

AIGO using silicon crystal gratings, v
⊥

= 389 m/s (see below), and

LAIGO/LLIGO < 0.23, and is still over 4 times shorter than LIGO.

3.5.2. Matter-wave Interferometry and the Detection of

Gravitational Effects

The relative sizes of AIGO compared with LIGO given in Eqs. (36) and

(37) would seem to be counterintuitive. AIGO makes use of slowly-moving,

nonrelativistic atoms to make its measurements, while LIGO would seem

to make use of fast-moving photons. Thus, at first glance it would seem

that AIGO should be less sensitive to GWs than LIGO by some power of

v
⊥
/c. This, however, would be an erroneous argument. As outlined in II-B

and in the above, it is not effect of GW on the photons used in the laser

interferometer that is being measured in LIGO; it is the effect of the GW

on the test masses (the mirrors) which are at rest that is being measured.

Indeed, it is precisely because the atoms are nonrelativistic that the effect of

GWs on their motions are much more readily measurable than their effect

on photons.

Again, a GW can readily change the velocities of nonrelativistic atoms,

but it cannot change the velocity c—or even the frequency—of photons

(although it can slightly change their directions). Photons are constrained

to have a zero 4-momentum, and must travel along null geodesics between

to events in spacetime. Massive particles such as atoms, however, can only

travel along timelike geodesics, and for nonrelativistic particles, there are

an many available paths between two events depending on the velocity of

the atom. Thus, roughly speaking, an atom’s path is much more readily

shifted than a photon’s. Consequently, we would expect that the sensitivity

to detecting GWs to decrease if ultrarelativistic particles—which behave

like photons—are used instead of slow-moving, nonrelativistic atoms.

Equations (25), (35), and the conclusion that the sensitivity of atom-

based interferometers to GWs is larger in comparison to light-based inter-

ferometers, are also surprising when compared to the results of Bordé 22.

Using the standard formalism for quantum field theory in the presence of

linearized gravity, he considered the phase shift that a GW would induce



25

on a generic atom interferometer constructed using nonrelativistic, spin 1/2

atoms. His starting point was the Dirac equation in curved spacetime, and

he derived an incorrect expression (Eq.(92) of 22) for the quantum phase

shift. In his expression, the power-law dependencies on λ
⊥DB and λ is very

much different than ours, and lead him to the erroneous conclusion that

atom-based interferometers are no more sensitive to GWs than light-based

interferometers.

However, it is well known 9 that when dealing with GWs, the effect

of the GW on all parts of the system, including the observer, must be

included; this leads naturally to the geodesic deviation equation of motion,

which scales linearly with the distance between the center of mass of the

apparatus, and the rest of the instrument. Unlike electromagnetic waves,

no part of an atom interferometer can be shielded from the GW. Bordé’s

governing Hamiltonian (Eq. (89) of 22) that does not scale correctly with

the size of the interferometer, and this is the reason why he calculated the

incorrect expression for the quantum phase shift.

3.6. Potential Sensitivity

3.6.1. Sizing AIGO

As mentioned in III-E, phase shifts measured by AIGO scales quadrati-

cally with it width L
⊥

. Thus, the larger the interferometer, the larger the

expected phase shift. How large of a L
⊥

is needed to measure a specific GW

depends on the sensitivity of the interferometer, however. This sensitivity,

in turn, depends on the design details of the device, and, most critically,

on its signal-to-noise ratio. A reliable analysis of the signal-to-noise ratio

of AIGO is not possible without an instrument on hand. However, the

sensitivity of the final space-based interferometer cannot exceed the funda-

mental shot-noise limit, and for the supersonic sources described in III-B

an estimate for the shot-noise sensitivity δϕshot can be estimated, and given

a range of GWs to be detected, L
⊥

can then be determined.

What is not obvious from Eq. (25) is that the length L
‖

of AIGO is

also set by δϕshot as well once a periodicity a of the grating used in the

interferometer. Note, that

sin θ =
va

v
‖

(38)

where va = 2π~/ma and θ is the angle that the atom is diffracted off

the surface of the beam splitter in Fig. (2). Then, v
‖

= va/ sin θ and

v
⊥

= va/ cos θ. L
⊥

is set by the GW, and δϕshot while v
⊥

, to a great
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extent, is determined by a. This sets the time-of-flight T for the atom

through the interferometer, and thus the aspect ratio of the interferometer

L
‖
/L

⊥
= 2/ tan θ. The interferometer is “sized” once ∆φshot, a, v‖

, and a

representative h+νGW is given.

However, ∆φshot is determined by the rate of atoms emitted from the

source Ṅ , the integration time τ , and the contrast C ≡ (Imax−Imin)/(Imax+

Imin),

δϕshot =
1

√

Ṅτ

1

C
, (39)

and for a given initial density of atoms in the source, Ṅ increases with

increased v
‖
. Thus, for the high-intensity beams needed for AIGO, AIGO

can be run “hot” with a large v
‖

for the atoms in the beam and a lower

pressure at the atom source, or it can be run “cold” with a correspondingly

higher pressure at the atom source. The first choice will give a longer L
‖

and the second choice will give a shorter L
‖
. In either case, supersonic

sources described in III-B will have to be used to decrease δϕshot to the

level needed to observe GW.

For the supersonic sources outlined in III-B, the temperature of the

gas inside the source is

T0 =
γ − 1

2γ

mv2

‖

kB
, (40)

where γ is the ratio CP /CV of the heat capacity of the gas at constant

pressure to the heat capacity at constant volume, and comes from the

isentropic expansion of the gas out of a the high-pressure source 18. For an

ideal gas γ = 5/3. The internal pressure P0 of the source is

P0 =
mv

‖
Ṅ

A∗

√

γ2 − 1

2γ

(

γ + 1

2

)
1

γ−1

, (41)

where A∗ is an effective cross-sectional area of the nozzle of the supersonic

source. While we would wish to make L
‖

as small as possible, to have

sufficient δϕshot, P0 will soon become so high that at some given T0 that

the gas inside the source will condense into a liquid. Moreover, the density

of the atoms in the beam will be so high that the collision time between

atoms will be shorter than the transit time of the atoms through the in-

terferometer risking decoherence of the atoms through collisions. For these

practical reasons, we propose to use helium in AIGO, even though Eq. (25)

would argue for using heavier atoms; helium remains a gas at very low

temperatures and high pressures. It is also the reason we suggested the
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development of liquid-based sources in III-B, which would not be bound

by this constraint on Ṅ .

From Eqs (40) and (41), T0 scales as 1/a2 while P0 scales as 1/a. The

difficulties of running gas-based sources at high-P0 and low-T0 are even

greater for larger a. As a consequence, AIGOs constructed from nanofabri-

cated transmission gratings will have much longer aspect ratios than AIGOs

constructed from crystal gratings.

Based on these considerations, a representative set of the size and op-

erating of parameters for AIGO listed in Table (1) can be determined for

δϕshot = 10−9 and δϕshot = 10−10. Notice that for δϕshot = 10−9 it is pos-

sible to construct an AIGO using a supersonic source and any one of the

four gratings. This is no longer possible for δϕshot = 10−10. The nanofab-

ricated grating would have to be run at such high P0 that it would not be

feasible. Even for the crystal grating the needed running P0 may be too

high. Thus, for δϕ < 10−10 a liquid-based source would have to be used.

3.6.2. AIGO Sensitivities

Given the crystal-grating-based AIGO in Table (1), we now determine the

spectrum GWs that can potentially be detected with it for various δϕshot.

From the overview given in III-B, it is not possible to know C without

building the actual interferometer, although for silicon-based beam splitters

and mirrors it is expected to be very high. We will set C ≈ 1 in this estimate

of AIGO’s sensitivity. The integration time is primarily set by the atomic

source and Ṅ ; the higher the Ṅ , the shorter τ can be. Thus,

τ ≈

{

α/νGW , if τ < 1/ν0
1/ν0 if τ > 1/ν0

(42)

for some α and ν0 set by Ṅ , and 1/ν0 is the integration time of the inter-

ferometer. Eq. (42) states that for GWs below ν0, the source is emitting

enough atoms that the signal can be sampled α-times in one period of the

GW; above ν0, it can only be sampled once. For the supersonic sources

described in III-B, a reasonable estimate of α and ν0 would be 10 and 1

Hz, respectively.

For L
⊥

= 1.6 m, fig. (7) gives the expected sensitivity for AIGO con-

structed using a silicon-crystal grating for various δϕs. This size of the

interferometer was chosen as an extreme example the size advantage that

AIGO has over LIGO; other sizes of interferometers can be chosen. The

change in the slope of the graphs of AIGO sensitivity at 60 Hz is due to
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the finite transit time T of the atoms through the interferometer; for fre-

quencies higher than 60 Hz the phase shift is governed by Eq. (25) and for

frequencies lower than 60 Hz, it is governed by Eq. (26). (Note that near

60 Hz the phase shift oscillates with ω, but this is cannot be seen on this

graph due its scale. The second change in slope occurs at ν0 Hz, and is due

to Eq. (42). The graph of the expected sources and strengths of GWs from

various astronomical sources on which Fig. (7) is based is from 23 and was

compiled by Thorne; it is most likely dated. Note that the amplitude h of

the GW is plotted against the frequency f and not h/
√
f as is the current

practice. The sensitivity of LIGO, for example, is expected to be better

than that shown in the figure. However, this figure does outline in a single

graph the target sensitivity for both LIGO and LISA, and the potential

sensitivity of AIGO can be compared to both. We see that at the very

minimum, it is expected that AIGO can fill the gap in the sensitivies of

LIGO and LISA for GWs with frequences between 0.1 and 10 Hz

It should be emphasized that the choice L
⊥

= 1.6 m was arbitrary. By

making the interferometer bigger, the same sensitivity can be obtained with

a larger δϕshot. The relevant parameter is δϕshot/L
2

⊥

, which, unlike LIGO,

depends on the square of L
⊥

. Thus, by making L
⊥

ten times larger, the

same middle graph on fig. (7) with only a 10−8 instead of 10−10. Moreover,

decreasing L
⊥

also increases T by a factor of 10 (for the same source-

temperature), which will shift the first break point of the slope of the graphs

to 6 Hz, close to ν0, and increasing the region where AIGO is most sensitive.

4. Conclusion

The ultimate goal of this research program is to construct an AIGO with

the sensitivity to detect, measure, and observe GWs. As AIGO is a new

concept, we have given a detailed description of the physics underlying the

concept, and have estimated the potential of its gain in sensitivity to GWs

over LIGO. In all, the tremendous increase in the capability to measure

astrophysical GWs with AIGO that may be had over LIGO and LISA,

argues strongly for this research program. At the very minimum, it is

expected that AIGO can fill the gap in the sensitivities of LIGO and LISA

for GWs with frequencies between 0.1 and 10 Hz (see Fig. 7).
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Figure 7. Plot of expected AIGO sensitivities for various shot-noise-limited fringe sen-
sitivities. The center dot-dash line is the ∆φshot = 10−10 line. The two dotted lines
below, and the two dotted lines below this center line corresponds to the increase or
decrease, respectively, of this sensitivity by an order of magnitude each. (Original figure
from
23.
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Since Einstein predicted the existence of gravitational waves in nature,

more than eighty years passed. Several methods such as Weber antenna,

laser interference to directly detect the gravitational waves have been pro-

posed and developed. Unfortunately, untill now, no confirmative gravi-

tational wave signal has been observed directly. Here, we propose a new

method to directly detect the gravitational waves by monitoring the motion

of charged particles in the storage ring.

Suppose that a plane gravitational wave is incident on a simple quadru-

ple oscillator consisting of charged particles moving in a storage ring. The

metric of spacetime with a plane gravitational wave propagating along z-

axis is given in c = 1 unit by

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + 2h
×

dxdy + dz2, (1)

where h+(� 1) and h
×

(� 1) are two independent polarizations. Its effect

on a storage ring and beam position monitors (BPM) is negligible because

they are fixed on the ground and because the gravitational wave is extremely

weak. However, the gravitational wave will lead to the moving particles in

the storage ring deviating from their original orbits. The deviation nµ will

be recorded by BPM. The equation of the deviation for the moving particles

with the rest mass m0 and the 4-velocity Uµ is

D2nµ

dτ2
+ Rµ

αβγUα(xβ − xβ
o )Uγ =

1

m0

DFµ

dxα nα, (2)

where Rµ
αβγ is the curvature tensor of the spacetime, xβ

0
the coordinates of

the center of the storage ring, and Fµ the four-vector of the Lorentz force.
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When the storage ring is placed on the x–y plane with the center at the

origin of the coordinates, equation (2) may reduce to

d2n1

dt2
+ ω2

an1 =
1

2

(

∂2h+

∂t2
· x +

∂2h
×

∂t2
· y

)

(3)

d2n2

dt2
+ ω2

an2 =
1

2

(

∂2h
×

∂t2
· x −

∂2h+

∂t2
· y

)

(4)

under the simplified assumptions that (i) the magnetic field B is in the z-

axis, (ii) n0 and n3 are negligible, and (iii) the variations of U0 and U3 are

negligible. In equations (3) and (4), ω2

a = ω2

o + ωoωB , where ω0 = qB/m

is the angular velocity of the charged particles in the storage ring, ωB =

qRB′(r)/m the angular velocity induced by the gradient of B in radial

direction on the x–y plane, q and m = m0/
√

1 − ω2

0
R2 the charge and the

moving mass of each charged particle, respectively, and R the radius of the

orbit of the charged particles.

For simplicity, we consider the sinusoidal plane gravitational wave with

the angular frequency ωg and the wavelength λg, i.e., h+ = A+ cos(ωgt −

2πz/λg) and h
×

= A
×

cos(ωgt − 2πz/λg). The solution of the equations

(3) and (4) is

n1 = A1 cos(ωat + ϕ1) +
ω2

g(A+x + A
×

y)

2(ω2

g − ω2

a)
cos(ωgt) (5)

n2 = A2 cos(ωat + ϕ2) +
ω2

g(A
×

x − A+y)

2(ω2

g − ω2

a)
cos(ωgt). (6)

Obviously, both the deviations n1 and n2 caused by the gravitational wave

have sharp maximums at the angular frequency ωg = ωa. Namely, the

gravitational wave with such an angular frequency is in resonance with the

rotations of the charged particle in the storage ring.

It is well known that the charged particles in circular motion will have

synchrotron radiation, which results in the damping of the motion. If the

damping with a rate η is considered, the factor ω2

g/(ω2

g − ω2

a) in the second

term in equations (5) and (6) should be replaced by the quality factor

Q = ωg/2η at the resonance frequency. In order to estimate the quality

factor due to the minimum synchrotron radiation and the sensitivity to

gravitational waves, let’s consider two running storage rings. The first one

is SPring-8. It has the radius of about 227 m. The position of electrons can

be determined within the precision of 1 µm. The energy of the electron is

8 Gev. The angular velocity is then about 6 × 106s−1. The quality factor

for the synchrotron radiation is about 104. Therefore, one might detect the
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1 MHz gravitational wave on SPring-8 with the dimensionless amplitude

h =
√

A2
+

+ A2
×

of 10−13. Obviously, such a sensitivity is still too low to

detect the gravitational wave. The second example is the storage ring of

RHIC has the radius of radius 605 m. The Au nuclei are accelerated to

an energy 300 GeV. The angular velocity is then about 5 × 105s−1. The

quality factor due to the synchrotron radiation is as high as 1012. Then,

one might have a chance to detect the 100 KHz gravitational wave on RHIC

with the dimensionless amplitude h = 10−21 if the position of nuclei can

be determined with the precision of 1 µm. Of course, one should not be

so optimistic because of the existence of other potential damping effects.

Clearly, to make the storage ring as a realistic detector, one has to, at

least, rebuilt the storage ring and analyze other potential effects which

might decrease the quality factor.

Usually, the frequency of the gravitational waves generated in astrophys-

ical process is lower than 104 Hz. One might argue that it is impossible to

use the storage ring to search the gravitational waves because the resonance

frequency is too high. However, the high frequency gravitational radiation

may be generated, on one hand, by the coalescence of two small black holes

with radii less than 1 km or by the oscillation of cosmic strings. On the

other hand, the angular velocity of particles moving in a storage ring may

be lowered to 2πs−1, so that we might have an opportunity to detect the

gravitational waves with a frequency of 1 Hz by monitoring the motion of

charged particles in the storage ring.

In conclusion, the charged particles moving in a storage ring could be

used as a detector of gravitational waves. Its working frequency band can

spread from 1Hz to 107Hz. The favorite working frequency is between

104Hz and 107Hz. It would open a new window for detecting the gravi-

tational waves, because the electromagnetic detectors are sensitive to the

gravitational waves with 108Hz or higher, while the traditional detectors,

including mechanical and optical devices, are sensitive to the waves with the

frequency below 104 Hz and the pulsar timing and the cosmic microwave

anisotropy work in the even low frequency band.
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COSMOLOGICAL FINAL FOCUS

SYSTEMS

JOHN IRWIN AND MARINA SHMAKOVA

SLAC, Stanford University, Stanford, CA 94309

We develop the many striking parallels between the dynamics of light streams from
distant galaxies and particle beams in accelerator final focus systems. Notably the
deflections of light by mass clumps are identical to the kicks arising from the
long-range beam-beam interactions of two counter-rotating particle beams (known
as parasitic crossings). These deflections have sextupolar as well as quadrupolar
components. We estimate the strength of such distortions for a variety of circum-
stances and argue that the sextupolar distortions from clumping within clusters
may be observable. This possibility is enhanced by the facts that i) the sextupolar
distortions of background galaxies is a factor of 5 smaller than the quadrupolar
distortion, ii) the angular orientation of the sextupolar and quadrupolar distor-
tions from a mass distribution would be correlated, appearing as a slightly curved
image, iii) these effects should be spatially clumped on the sky.

1. Introduction

The dynamics for a light stream from a distant galaxy which is collected

by an earth-based telescope is shown to be analogous to the dynamics of

a particle beam in a final focus system in an accelerator 1. The beam

emittance is well-defined and is similar to that found in present generation

accelerators. The dynamics is well approximated by drifts and thin-lens

kicks from clusters of matter. The thin-lens kicks are mathematically iden-

tical to the kicks arising from parasitic crossings of beams in accelerators.

The usual weak gravitational lensing analysis ( for recent review see 2, 3

and references therein ) restricts itself to the creation of quadrupole mo-

ments in the observed light bundle, but here we propose that the sextupole

moments, and even octupole moments, may also be observable if the light

stream passes close to a dark matter clump. The clump need only have a

mass of 109 solar masses. We present the mathematics which determines

the map from observed image to the source image, and the relationship

1
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of that map to the observed moments of the galaxy images. Finally, we

report the beginning of our studies of galaxy images in the Hubble deep

fields. The magnitude of background sextupole-moments is a factor of 5

smaller than the background quadrupole moments.

2. Final focus analogy

The dynamics governing the light stream from a distant galaxy collected by

an earth-based telescope is analogous to the dynamics of a particle beam

for two reasons: the dynamics is governed by a Hamiltonian, and the emit-

tance is small. Paths of photons are determined within general relativ-

ity by an action principle I =
2
∫

1

gµν (x) dxµ

dλ
dxν

dλ dλ, hence there is a Lan-

grangian L = 1

2
gµν (x) dxµ

dλ
dxν

dλ , a canonical momentum pµ=gµν (x) dxν

dλ , and

a Hamiltonian H = 1

2
gµν (x) pµpν , defining the trajectory given by Hamil-

ton’s equations dxµ

dλ = ∂H
∂pµ

; dpµ

dλ = − ∂H
∂xµ

. Since the metric is changing

very slowly with time and the gravitational fields are weak, the Newto-

nian approximation is adequate g00 = −1−φ. For non-relativistic particles
d2xi

dt2 = − ∂φ
∂xi

. Light ray deflections can be calculated from non-relativistic

trajectories by multiplying deflection angles by 2.

The emittance can be calculated at the entrance to the telescope. For a 2

m diameter telescope aperture and a galaxy image that has an rms angular

radius of 0.1”, the emittance is 0.5 mm-mr (millimeter-milliradians). 1”

corresponds to 5 · 10−6 radians. 0.1” is about 2 “drizzled” pixels in the

Hubble deep fields.

Furthermore, the light beam dynamics are similar to those of a final

focus system, because the telescope translates arrival angles into position

on the focal plane rendering the position on the surface of the collecting

aperture irrelevant, i.e. only 2 dimensions of the full 4 dimensional phase

space is important for the dynamics. The system can be approximated by a

series of drifts and thin-lens kicks because the distance between kicks is the

order of 500 Mpc (about 1.5 billion light years) whereas the longitudinal

size of the mass distributions giving rise to the light bending is usually

smaller than 500 kpc (1.5 million light years)( for review see 4).

The deflection angles are rarely larger than 10−4 radian, so one can

integrate along the undeflected trajectory to find the magnitude of the
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thin-lens kick. At a distance x from a point mass the result is

∆

[

dx

ds

]

=
2

c

∫

Fx

m
= −2

∞
∫

−∞

GM

(x2 + s2)

x

(x2 + s2)
1/2

ds = −
4GM

x
. (1)

This 1/r kick is similar to the electric field of a line-charge in electro-

statics. The potential function is 2Φ(r) = 4GM Ln [r], which is the

Green’s function for the 2D Laplace equation, ∇2Φ(~r) = 4π G Σ(~r) =

4π G
∫

∞

−∞

ρ (~r, s) ds. In other words, the situation is identical to the para-

sitic crossings in beamlines. The factor 2 is inserted to obtain potential for

light ray deflections from the potential for non-relativistic particle deflec-

tions.

3. Multipole analysis

The Ln[r] potential can be written in Cartesian coordinates as Ln[r] =

Re(Ln[x + iy]). This is an example of the fact that solutions to ∇2Φ = 0

can be written as the real part of an analytic function. We will use a

standard complex variable notation, w = x + iy . We will assume that the

light beam is passing the mass distribution at position (x0, y0) and expand

about this position to get a multipole expansion for the deflections. For a

point mass (or outside a spherically symmetric distribution)

Ln [w0 + w] = Ln [w0] + Ln

[

1 +
w

w0

]

= Const −
∑

n≥1

1

n

[

−
w

w0

]n

.

By also introducing the variable w̄ = x − iy, and noting that derivative

operators can be defined by

∂

∂w
=

1

2

(

∂

∂x
− i

∂

∂y

)

≡ ∂ and
∂

∂w̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

≡ ∂̄

to correctly give ∂
∂ww = ∂

∂w̄ w̄ = 1 and ∂
∂w w̄ = ∂

∂w̄w = 0, we are able to

express the horizontal and vertical kicks, given by δx′ = −∂(2Φ)

∂x and δy′ =

−∂(2Φ)

∂y , by the single equation δw′ = −2∂(2Φ)

∂w̄ .

Returning to the logarithmic potential we get

2Φ = 4MG Re(Ln [w0 + w]) = −2MG
∑

n≥1

1

n

{[

−
w

w0

]n

+

[

−
w̄

w̄0

]n}

+ const

from which it follows that

δw′ = −2
∂(2Φ)

∂w̄
= −

4MG

w0

∑

n≥1

[

−
w̄

w̄0

]n−1
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These are the usual multipole kicks (dipole, quadrupole, sextupole, oc-

tupole).

A general potential distribution can be written

Φ(w, w̄) = Φ0 + ∂Φ w + ∂̄Φ w̄ + 1

2

[

∂2Φ w2 + 2 ∂∂̄Φ ww̄ + ∂̄2Φw̄2
]

+ 1

3!

[

∂3Φ w3 + 3 ∂2∂̄Φ w2w̄ + 3 ∂∂̄2Φ ww̄2 + ∂̄3Φ w̄3
]

+ . . .

from which we see there are additional kick terms all of which contain

∂

∂w

∂

∂w̄
Φ =

1

4

(

∂2

∂x2
+

∂2

∂y2

)

Φ =
1

4
∇2Φ = π G Σ(~r).

In other words the additional terms will be zero unless Σ(r) or its derivatives

are unequal to zero at the light-path centroid.

4. Multipole kick-strength estimates

In our sample of deep field galaxies, the average angular size of the core of

distant galaxies in the Hubble deep field is θG ≈ 0.1”. At a distance of 1000

Mpc, where the light path passes a rich cluster, the footprint size would

be about 0.5 kpc. A rich cluster of mass MC = 5 · 1014M
�

would give a

light-beam passing at its edge, at a distance from the center of rC = 500kpc

, a dipole kick of strength θD
C :

θD
C =

4GMC

rC
≈ 30 arc sec, implying

θD
C

θG
≈ 300.

The strength of the quadrupole kick θQ
C would be:

θQ
C =

4GMC

rC

(

rG

rC

)

≈ 0.03 arc sec, implying
θQ

C

θG
≈ 0.3,

and the sextupole kick-strength θS
C would be

θS
C =

4GMC

rC

(

rG

rC

)2

≈ 3 · 10−5 arc sec, implying
θS

C

θG
≈ 3 · 10−4.

This is a hopelessly small number. On the other hand, if the dark-matter

clump had a mass equal to MC = 5 · 1010M
�

and a light-beam is passing

at a much smaller distance from the center of the cluster at rC = 5kpc

then the quadrupole kick-strength would be the same but the sextupole

kick-strength would be 100 times larger:

θS
C =

4GMC

rC

(

rG

rC

)2

≈ 3 · 10−3 arc sec, implying
θS

C

θG
≈ 0.03.

As we will see later, this is approximately the value of the rms sextupole

moments of the background galaxies in the Hubble deep field. One could

hope to detect such a kick.
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5. Finding kick-strengths from image moments

If the source had no quadrupole or sextupole moment one could easily

deduce the strength of the kick that would have produced the measured

moment. Let the superscripts S and T designate the source and telescope

image, respectively. The condition that the source have no quadrupole

moments can be written

0 = MS
20

≡

∫

w2

S iS(wS , w̄S) dxSdyS .

We will now change from source variables to telescope variables (the map we

can deduce goes from the telescope image to the source, in reverse because

both the position and the slope are known at the telescope), wS = wT +aw̄T .

Under this transformation

iS(wS , w̄S) = iT (wT (wS) , w̄T (wS)) ·

∣

∣

∣

∣

∣

∂wT

∂wS

∂w̄T

∂wS

∂wT

∂w̄S

∂w̄T

∂w̄S

∣

∣

∣

∣

∣

.

We end up with

MS
20

=
∫

wS(wT , w̄T )2 iT (wT , w̄T ) dxT dyT

=
∫

(wT + aw̄T )
2

iT (wT , w̄T ) dxT dyT

=
∫ (

w2

T + 2awT w̄T + a2w̄2

T

)

iT (wT , w̄T ) dxT dyT

= MT
20

+ 2a MT
11

+ a2 MT
02

.

Under the assumption that the original galaxy had no quadrupole moment

this can be solved for the map coefficient a

a = −
M20

M11

1

1 +
√

1 − |M20|

2

M2

11

and a ≈ −
M20

2M11

for
|M20|

M11

� 1.

The coefficient a is related to the kick strength through a geometrical factor

a = DLS

DS

θQ

C

θG

. Here DLS is the distance from the source to the lensing matter

and DS is the distance from the telescope to the source galaxy. The ratio of

these distances reflects the fact that the apparent displacement of a point in

the image due to a kick at the lens plane will be given by the kick strength

time this distance ratio.

Similarly the sextupole strength can be found from

0 = MS
30

≡

∫

w3

S iS(wS , w̄S) dxSdyS ,
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yielding

MS
30

=
∫

wS(wT , w̄T )3 iT (wT , w̄T ) dxT dyT

=
∫ (

wT + a w̄T + b w̄2

T

)3
iT (wT , w̄T ) dxT dyT

=
∫ (

w3

T + 3b w2

T w̄2

T + 3a w2

T w̄T + . . .
)

iT (wT , w̄T ) dxT dyT

= MT
30

+ 3b MT
22

+ 3a MT
21

+ . . .

For small b and negligible a · M21, b = − M30

3M22

. Note that if M21 is non-

zero, the quadrupole kick can also create a sextupole moment. Non-zero

M21 requires symmetry breaking and in general will be much smaller than

M22, which is equal to < r4 >. Still with a expected to be much larger

than b one must pay attention to the possibility that contributions may

arise from a non-zero M21.

6. The Hubble deep fields

We have used the software SExtractor 5 to identify and extract galaxy

images from the Hubble deep field. This software requires a number of input

decisions that affect which galaxies are selected and how their boundaries

are defined. One will end up with noisy boundaries (and noisy sextupole

moments) for the images unless thresholds are set to be considerably larger

than the noise floor. We have used the factor 10 for this input parameter.

There is also a subtlety with the convolution matrix for the filter that

determines the footprint. In general, less convolution is better.

The extracted images were transferred to the Mathematica(

www.wolfram.com ) computing environment where we could use the full

power of the image processing available there. Figure 1 shows contour

plots and 3-D images of two of these galaxies. Such images gave us a sense

of what we were looking at, and allowed us, for example, to eliminate all

galaxies that had two or more maxima. After filtering we had more than

600 high-z galaxies in our selected sample for each Hubble deep field. We

measured the sextupole moments for these galaxies, and found them to be

about a factor of 5 smaller than the quadrupole moments: they have a di-

mensionless rms strength of about bσ=0.03. The rms size of the galaxy is

introduced to create the dimensionless measure sought. A cautionary note!

Our result for this sextupole strength depends on the threshold setting for

galaxy intensity. Nevertheless, the sextupole moments are small, as we had

hoped (see Figure 2).
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Figure 1. Two galaxy images (contour plots and 3-D plots of surface brightnessfrom
the Hubble north field).

7. Correlations and clumping

A careful look at the induced quadrupole and sextupole moments from a

kick reveals that together they give a small curvature to the image. This

is equivalent to saying that the orientation of the induced sextupolar dis-

tortion has its minimum aligned with the minimum of the quadrupolar

distortion. We have looked for such a correlation in our galaxy images, and

refer to these as “curved” galaxies. We have taken the sample of “curved”
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Figure 2. The sextupole strength of faint, z > 0.8 galaxies from Hubble Deep Field
(North) data.

galaxies and investigated how these galaxies are arranged on the sky, look-

ing for evidence of clumping. Our conjecture was that if there were clusters

of dark matter with sub-clumps of order 1010M
�

then the galaxy light

paths passing through the cluster might pass near a small clump and be-

come curved. Indeed we have observed statistically significant clumping of

curved galaxies in both of the Hubble deep fields. (A random choice of

galaxies would give the observed clumping in each field with a probability

less than 0.03. Taking the fields together, the probability is less than 1 part

per thousand that our result occurs by chance.) However it remains to rule

out other possible sources for this clumping. We have determined that if

one takes a set of galaxies of a certain slice in z having the same number of

members as our curved sample, then clumping is evident as one might ex-

pect, since galaxies are known to be clumped. It is also known that high-z

galaxies have more complex shapes than low-z galaxies. We are currently

investigating whether this correlation can explain our observations.

8. Conclusion ( Future plans )

If indeed one can establish that some of the images of distant galaxies are

curved because of the presence of small dark matter clumps within larger
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dark matter clusters, then one might hope to develop a method that would

determine the power spectrum of mass structure in the universe on a much

smaller angular scale than has been previously possible. To carry out such a

program would require the study of larger fields than it is possible with the

Hubble, though there are plans for enlarging the Hubble deep field studies.

The two fields we have been studying are each about two minutes across,

each corresponding to only one part in 2 107 of its hemisphere.

Our observations indicate it would be difficult to make these measure-

ments in the presence of atmospheric turbulence. Even a good earth-based

point-spread function (PSF) of 0.4” is 6 times larger than the Hubble PSF

of 0.07”. And the radius of the typical galaxy image we are using is only

slightly larger than the Hubble PSF. Fortunately a mission is planned that

would do high-resolution lensing from space, known as SNAP (Supernovae

Acceleration Probe)6. The weak-lensing program for SNAP plans to scan

an area of either 300 or 1000 sq. degrees. This would be from 3 105 to 106

larger than the Hubble deep fields.

We would like to thank Tony Tyson, David Wittman and the Bell-

Lab group for encouraging our work and providing us with the orientation

and tools needed to get started. We thank Ron Ruth and Pisin Chen for

providing support and encouragement for our work at SLAC.
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SPONTANEOUS GRAVITATIONAL INSTABILITY OF STAR

DISTRIBUTION IN A NONROTATING GALAXY
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Gravitational instability of the distribution of stars in a galaxy is a well-known
phenomenon in astrophysics. This work is a preliminary attempt to analyze this
effect using the standard tools developed in accelerator physics. The result is first
applied to nonrotating gallaxies with spherical and planar symmetries. Extensions
to rotating galaxies are not studied here.

1. Introduction

Consider a distribution of stars in a galaxy described by a distribution den-

sity ρ(~x,~v, t) in the phase space (~x,~v). We wish to analyze the stability of

this distribution of stars under the influence of their collective gravitational

force. To simplify the problem, we will use a flat Euclidean space-time and

will consider Newtonian, nonrelativistic dynamics only. The instability does

not assume a specific cosmological model other than Newtonian gravity. If

this approach turns out successful, a large arsenal of analysis tools can be

transported from accelerator physics to this problem.

The instability we are interested in is self-generated, i.e. it occurs spon-

taneously. In particular, it does not require an initial “seed” fluctuation

at the birth of the galaxy. The instability growth pattern as well as its

rate of growth are intrinsic properties of the system. This gravitational

instability is a wel-known problem; its first analysis was almost a century

ago 1. What we do in the following is to treat the same problem using

the standard techniques developed in the study of collective instabilities in

circular accelerators 2.

1
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2. Dispersion Relation

Consider a particular star in the galaxy. The equations of motion of this

star are

~̇x = ~v

~̇v = G

∫

d~v′

∫

d~x′

ρ(~x′, ~v′, t)(~x′ − ~x)

|~x′ − ~x|3
(1)

Note that these equations do not depend on the mass of the star under

consideration.

Evolution of ρ is described by the Vlasov equation

∂ρ

∂t
+

∂ρ

∂~x
· ~̇x +

∂ρ

∂~v
· ~̇v

=
∂ρ

∂t
+

∂ρ

∂~x
· ~v +

∂ρ

∂~v
· G

∫

d~v′

∫

d~x′

ρ(~x′, ~v′, t)(~x′ − ~x)

|~x′ − ~x|3

= 0 (2)

Let the galaxy distribution be given by an unperturbed distribution ρ0

plus some small perturbation. Let the unperturbed distribution ρ0 depend

only on ~v,

ρ0 = ρ0(~v) (3)

This unperturbed distribution is uniform in ~x, i.e. it is uniform in the

infinite 3-D space. The function ρ0(~v) is so far unrestricted, and is to be

prescribed externally.

The perturbation around ρ0 will have some structure in t and in ~x. We

Fourier decompose this structure and write

ρ(~x,~v, t) = ρ0(~v) + ∆ρ(~v) e−iωt+i~k·~x (4)

The quantity ∆ρ is considered to be infinetisimal compared with ρ0.

Substituting Eq.(4) into Eq.(2) and keeping only first order in ∆ρ yield

−i(ω − ~v · ~k)∆ρ(~v) + G

(
∫

d~v′ ∆ρ(~v′)

)

∂ρ0(~v)

∂~v
· ~q(~k) = 0 (5)

where

~q(~k) ≡

∫

d~x′

ei~k·(~x′
−~x)(~x′ − ~x)

|~x′ − ~x|3
=

∫

d~y
ei~k·~y ~y

|~y|3
(6)

is a well-defined quantity depending only on ~k; it is the Fourier transform

of the Newton kernel, and might be called the graviton propagator. In fact,
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avoiding the singularity at the origin ~k = ~0, it can be shown that

~q(~k) =
4πi

|~k|2
~k (7)

Eq.(5) can be rewritten as

∆ρ(~v) = −iG

(
∫

d~v′ ∆ρ(~v′)

) ∂ρ0(~v)

∂~v · ~q(~k)

ω − ~v · ~k
(8)

Integrating both sides over ~v and canceling out the mutual factor of
∫

d~v′ ∆ρ(~v′) then gives a dispersion relation that must be satisfied by ω

and ~k,

1 = −iG

∫

d~v
∂ρ0(~v)

∂~v · ~q(~k)

ω − ~v · ~k
(9)

We need to solve this dispersion relation for a given ρ0(~v) to find the most

unstable pattern of perturbation and its corresponding growth rate, as will

be described next. This result, we hope, could say something about the

characteristic dimension of galaxies.

3. Uniform Isotropic Galaxy

We next consider an unperturbed distribution that depends only on the

magnitude of ~v, i.e., let

ρ0 = ρ0(|~v|2) (10)

which gives

∂ρ0

∂~v
= 2~v ρ′

0
(|~v|2) (11)

This is the case of a uniform isotropic (spherically symmetric) galaxy. Nor-

malization condition is
∫

∞

0

4πv2dv ρ0(v
2) = ρm

= volume mass density of stars (12)

Substituting Eqs.(7) and (11) into Eq.(9) then gives

1 =
8πG

|~k|2

∫

d~v ρ′

0
(|~v|2)

~v · ~k

ω − ~v · ~k
(13)
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Let ~k = (0, 0, k), and choose coordinates so that ~v =

v(sin θ cos φ, sin θ sin φ, cos θ), Eq.(13) becomes, with a change of variable

u = cos θ,

1 =
16π2G

k

∫

∞

0

v3dv ρ′

0
(v2)

∫

1

−1

du
u

ω − kvu
(14)

One must refrain from performing the integration over u at this time.

Proper treatment of the singularity is first necessary. We then follow the

standard technique used in accelerator physics on Landau damping 3. The

treatment amounts to adding an infinitesimal positive imaginary part to ω,

i.e. ω → ω + iε,

I(ω, kv) ≡

∫

1

−1

du
u

ω − kvu

→

∫

1

−1

du
u

ω + iε − kvu

= P.V.

∫

1

−1

du
u

ω − kvu
− i

πω

k2v2
H

(

1 −
∣

∣

∣

ω

kv

∣

∣

∣

)

= −
2

kv
−

ω

k2v2
ln

∣

∣

∣

∣

ω − kv

ω + kv

∣

∣

∣

∣

− i
πω

k2v2
H

(

1 −
∣

∣

∣

ω

kv

∣

∣

∣

)

(15)

where P.V. means taking the principal value of the integral, and H(x) = 1

for x > 0 and 0 for x < 0 is the step function.

To be specific, we next take a uniform distribution of ρ0,

ρ0(v
2) =

{

3ρm

4πv3

0

if v2 < v2

0

0 otherwise
(16)

with

ρ′

0
(v2) = −

3ρm

8πv4

0

δ(v − v0) (17)

The quantity v2

0
is related to the “temperature” of the stars. Substituting

Eq.(17) into Eq.(14) gives the dispersion relation

1 = −
6πGρm

kv0

I(ω, kv0) (18)

Substituting Eq.(15) into Eq.(18) then gives

λ =
1

2 + x ln
∣

∣

∣

x−1

x+1

∣

∣

∣
+ iπx H(1 − |x|)

(19)
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where

λ =
6πGρm

k2v2

0

and x =
ω

kv0

(20)

4. Stability Condition

We next need to compute the instability growth rate, which is given by

the imaginary part of ω, as a function of k. The star distribution ρ0(~v)

is unstable when ω is complex with a positive imaginary part. We need

to compute x as a function of λ using Eq.(19) in order to obtain ω as a

function of k.

In general x is complex, but at the edge of instability, x is real. The edge

of stability can be seen by plotting the RHS of Eq.(19) as x is scanned along

the real axis from −∞ to ∞. Fig.1 shows the real and imaginary parts of

the RHS of Eq.(19) in such a scan. The horizontal and vertical axes of Fig.1

are the real and imaginary parts of the RHS of Eq.(19) respectively. As x

is scanned from −∞ to ∞, the RHS of Eq.(19) traces out a cherry-shaped

diagram, including the “stem” of the cherry running from −∞ to 0 along

the real axis. If λ lies inside this cherry diagram (including the stem), the

galaxy distribution is stable. Since λ is necessarily real and positive, the

stability condition therefore reads

λ <
1

2
(21)

Eq.(21) indicates that a hot universe (high temperature, i.e. large v0)

is more stable than a cold universe. This is expected due to the Landau

damping mechanism. It also indicates that the star distribution is unstable

for long-wavelength perturbations (small k). The threshold wavelength is

given by 2π/kth, where

kth =

√
12πGρm

v0

(22)

Perturbations with wavelength longer than that corresponding to Eq.(22)

are unstable. One might expect that the galaxy will have a dimension of

the order of this wavelength because if the galaxy had a larger dimension, it

would have broken up due to the instability. There will be more discussions

on this point later.
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Figure 1. Stability diagram for the galaxy distribution.

5. Spontaneous Gravitational Instability

When λ > 1/2, ω will be complex. The instability growth rate will be

determined by the imaginary part of ω,

τ−1 = Im(ω) (23)

We need to go back to Eq.(19), but modify it slightly for complex ω. Let

ω

kv0

= x + iy, (y > 0) (24)

Eq.(19) then becomes

λ =
1

2 +
(

x+iy
2

)

ln
[

(x−1)2+y2

(x+1)2+y2

]

+ (ix − y)
[

tan−1

(

x+1

y

)

− tan−1

(

x−1

y

)]

(25)

When y → 0+, we obtain Eq.(19) as it should.

We will need to solve Eq.(25) for x and y for given λ > 1

2
. It turns out

that in this range there is always one solution with purely imaginary ω, i.e.

x = 0, and

λ =
1

2 − 2y tan−1

(

1

y

) (26)



7

or, written out explicitly,

6πGρm

k2v2

0

=
1

2 − 2τ−1

kv0

tan−1
(

kv0

τ−1

) (27)

We need to find τ−1 as a function of k. To do so, we first scale the variables

by

u =
kv0

√
6πGρm

, v =
τ−1

√
6πGρm

(28)

and then

1

u2
=

1

2 − 2
(

v
u

)

tan−1
(

u
v

) (29)

Fig.2 shows the result.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 2. v vs u according to Eq.(29).

As seen from Fig.2, the growth rate vanishes (v = 0) when u =
√

2,

corresponding to λ = 1/2, i.e. at the stability boundary. This is of course

expected. Fig.2 also shows that instability occurs fastest for small u, i.e.

small k and large wavelegnth. The growth rate is maximum at u = 0 with
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v =
√

2/3. This means the maximum growth rate occurs for perturbation

of infinite wavelength, and is given by

(τ−1)max =
√

4πGρm (30)

Note that the growth rate is independent of v0, even though there is still

the condition that the distribution is unstable, i.e. λ > 1/2, which does

depend on v0 and can be cast into the form (see Eq.(22))

k <

√
3

v0

(τ−1)max (31)

The fastest instability corresponds to k = 0, or an instability wavelength

of infinity.a

According to Eq.(31), all stable galaxies must have a dimension smaller

than a critical value, i.e.

galaxy dimension <
2πv0

√
12πGρm

(32)

The stability is provided through Landau damping. When the temperature

v0 → 0, no galaxies can be stable. Eqs.(30) and (32) are our main results.

6. Numerical Estimates

For a numerical application, we take estimates from the Milky Way,

ρm = 2 × 10−23 g/cm3

v0 = 200 km/s

We obtain a maximum growth time of τmax = 7×106 years for perturbations

with very large wavelengths. For stability, the galaxy dimension must be

smaller than 14000 light-years, which seems to be consistent with the size

of the Milky Way.

7. Discussions

• The case studied so far is that of a galaxy with uniform distribution

of stars. One direction of generalization is to consider galaxies with

a finite spherically symmetric distribution. One attempt was made

aThis result depends on our assumption of Newtonian dynamics of action-at-a-distance.
Perturbation at one location instantly affects locations infinitely far away. If this action-
at-a-distance effect is appropriately removed, it is expected that the instability for per-
turbations with very large wavelengths will be weakened.
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and included in Appendix A. Our finding here is that a spherically

symmetric distribution of the Haissinski type (to be explained in

Appendix A) does not exist.

• Appendix B gives an extension to a planar galaxy, still nonrotating.

The unperturbed distribution does exist and is given in Appendix

B. However, this planar distribution is found, as shown in Appendix

C, to be always stable against perturbations that do not involve

transverse structures. Any instability of the planar galaxy will

therefore have to have a sufficiently complex pattern.

• It is conceivable that the same analysis can be applied to the dy-

namics of galaxies in a galaxy cluster, instead of stars in a galaxy.

In that case, ρ(~x,~v, t) describes the distribution of galaxies in the

galaxy cluster. We might then take the corresponding numerical

values

ρm = 10−31 g/cm3

v0 = 1000 km/s

We obtain a growth time of τmax = 1 × 1011 years. The galaxy

cluster dimension should be smaller than 1×109 light-years. These

values do not seem to be too unreasonable.

• For more detailed applications, we will have to include the rotation

of the galaxy into the analysis. The unperturbed distribution will

then involve also the angular momentum. The analysis is much

more involved but should be straightforward.

• Still further extensions might include the special relativity and gen-

eral relativity to replace Newtonian gravity and to avoid the “action

at a distance” problem.
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So far we have considered the stability of a galaxy whose unperturbed

distribution is uniform in the infinite space and is nonrotating. As a first

(unsuccessful) attempt of genralization, we will look for an unperturbed

distribution that is isotropic, nonrotating, and finite in size. To do so, we

first note that Eq.(1) is derivable from a Hamiltonian

H =
~v2

2
− G

∫

d~v′

∫

d~x′

ρ(~x′, ~v′, t)

|~x′ − ~x|
(33)

We then make the observation that one possible unperturbed distribution

is that it is a function of this Hamiltonian, i.e.

ρ0(~x,~v) = ρ0(H) (34)

For example, one may choose

ρ0(~x,~v) = Ne−H/σ2

v = N exp

[

−
1

σ2
v

(

~v2

2
− G

∫

d~v′

∫

d~x′

ρ0(~x
′, ~v′)

|~x′ − ~x|

)]

(35)

where σv is the rms of the magnitude of ~v, and is a prescribed input param-

eter in this model. The quantity N is a normalization so that integrating

ρ0 over ~x and ~v gives the total mass of the galaxy M . Note that Eqs.(34)

and (35) are not a useful ansatz for a rotating galaxy because it assumes a

distribution that is isotropic in ~v.

Equation (35) is a self-consistent equation for ρ0. It is equivalent to the

Haissinski equation in accelerator physics 4. Our job is to solve for ρ0 from

Eq.(35). It turns out that the distribution factorizes,

ρ0(~x,~v) =
e−~v2/2σ2

v

(
√

2π σv)3
ρm(~x) (36)

The quantity ρm is then the mass volume density of the stars in the galaxy,

now a function of ~x. Substituting Eq.(36) into Eq.(35) yields self-consistent

equation for ρm(~x),

ρm(~x) = (
√

2π σv)3 N exp

[

G

σ2
v

∫

d~x′

ρm(~x′)

|~x′ − ~x|

]

(37)

If we now assume ρm is also isotropic, i.e. ρm(~x) = ρm(r) in spherical

coordinates, then Eq.(37) becomes

ρm(r) = (
√

2π σv)3 N exp

[

4πG

σ2
v

∫

∞

0

r′
2
dr′

ρm(r′)

max(r, r′)

]

(38)

It turns out that no solution exisits that satisfies Eq.(38) while is also

normalizable to a finite total mass of the galaxy. This means that an

isotropic unperturbed distribution of the Haissinski type does not exist.
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Appendix B

A planar distribution avoids the singularity problem that leads to the

failure of a Haissinski type distribution in the spherical case. Use cylindrical

coordinates (~x
⊥

, z), and let the unperturbed distribution be independent

of ~x
⊥

and factorizable in such a way that

ρ0(~x⊥
, ~v

⊥
, z, vz) = ρ

⊥
(~v

⊥
) ρz(z, vz) (39)

where we demand
∫

d~v
⊥

ρ
⊥

(~v
⊥

) = 1 (40)

∫

dz

∫

dvz ρz(z, vz) = Σ

= surface mass density of stars (41)

This unperturbed distribution is that of an infinite disk of finite thickness.

We will first need the equations of motion,

~̇x
⊥

= ~v
⊥

~̇v
⊥

= ~0

ż = vz

v̇z = 2πG

∫

dv′

z

∫

dz′ ρz(z
′, v′

z) sgn(z′ − z) (42)

Equation (42) is derivable from first principles, as well as from Eq.(1). The

corresponding Hamiltonian is

H
⊥

=
~v2

⊥

2

Hz =
v2

z

2
+ 2πG

∫

dv′

z

∫

dz′ ρz(z
′, v′

z) |z′ − z| (43)

We then form the Haissinski ansatz

ρ
⊥

=
1

2πσ2

v⊥

e−~v2

⊥/2σ2

v⊥

ρz = N exp

[

−
1

σ2
vz

(

v2

z

2
+ 2πG

∫

dv′

z

∫

dz′ ρz(z
′, v′

z) |z′ − z|

)]

(44)

where σv⊥
relates to the transverse temperature, and σvz relates to the

longitudinal temperature. The fact that the transverse and longitudinal

motions decouple allows the two different temperatures.

Note that although a gaussian form of ρ
⊥

is most natural, this as-

sumption is not compulsary. Any normalized form is acceptable, without

affecting our following analysis.
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Writing ρz as

ρz(z, vz) =
1

√
2π σvz

e−v2

z
/2σ2

vz ρm(z), with

∫

∞

−∞

dz ρm(z) = Σ (45)

then gives the Haissinski equation

ρm(z) =
√

2π σvz N exp

[

−
2πG

σ2
vz

∫

dz′ ρm(z′) |z′ − z|

]

(46)

Equation (46) can be manipulated to yield
(

ρ′

m

ρm

)

′

+
4πG

σ2
vz

ρm = 0 (47)

where a prime means taking derivative with respect to z. We then make a

transformation to the scaled variables u and w,

z = u
σ2

vz

GΣ
, ρm = w

GΣ2

σ2
vz

(48)

to obtain
(

w′

w

)

′

+ 4πw = 0 (49)

where a prime now means taking derivative with respect to u. The Haissinki

equation (46) is rewritten as

w(u) =
√

2π
σ3

vzN

GΣ2
exp

[

−2π

∫

∞

−∞

du′ w(u′)|u′ − u|

]

(50)

There is also the normalization condition
∫

∞

−∞

du w(u) = 1 (51)

as well as the condition that w′(0) = 0. The planar unperturbed distribu-

tion has an exponential tail in |z|. The distribution found numerically by

MATHEMATICA is shown in Fig.3.

Given the function w(u), the planar unperturbed distribution is sum-

marized as

ρz(z, vz) =
GΣ2

(2π)1/2σ3
vz

exp

(

−
v2

z

2σ2
vz

)

w

(

GΣ

σ2
vz

z

)

(52)

ρ0(~v⊥
, z, vz) =

GΣ2

(2π)3/2σ2

v⊥

σ3
vz

exp

(

−
~v2

⊥

2σ2

v⊥

−
v2

z

2σ2
vz

)

w

(

GΣ

σ2
vz

z

)

(53)

The thickness of the planar distribution is ≈ σ2

vz/GΣ. This thickness cor-

responds, not surprisingly, to an equipartition of the longitudinal potential

and kinetic energies.
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Figure 3. Planar unperturbed star distribution w(u) vs u. w(0) ≈ 1.5822.

Appendix C

To study the gravitational stability of the planar unperturbed distri-

bution Eqs.(52, 53), we need to analyze the behavior of its infinitesimal

perturbations. We have examined perturbations of the type

ρ(~x
⊥

, ~v
⊥

, z, vz) = ρ
⊥

(~v
⊥

) [ρz(z, vz) + ∆ρ(z, vz, t)] (54)

i.e. the perturbation occurs only in the longitudinal (z, vz) dimension. We

found that such perturbations are always stable. Analysis leading to this

conclusion is given in the Appendix. Instabilities of a planar galaxy will

therefore have to involve the transverse coordinates in forms different from

Eq.(54).

The Vlasov equation, to first order in ∆ρ, reads

∂∆ρ

∂τ
+

∂∆ρ

∂u
v +

∂∆ρ

∂v

w′(u)

w(u)

−
√

2π ve−v2/2w(u)

∫

dv′

∫

du′ ∆ρ(u′, v′) sgn(u′ − u) = 0 (55)

where we have introduced the scaled dimensionless variables

u =
GΣ

σ2
vz

z, v =
vz

σvz
, τ =

GΣ

σvz
t (56)

The function w′/w in the third term is the gravitational focusing coming

from the unperturbed distribution of the stars.

To proceed, we first try to linearize the problem (thus losing Landau

damping) for small u. In doing so, however, to be self-consistent, we must
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at the same time linearize the unperturbed distribution ρz, i.e.

w ≈ w(0)e−2πw(0)u2

ρz ≈
GΣ2w(0)
√

2π σ3
vz

e−v2/2−2πw(0)u2

(57)

Substituting Eq.(57) into Eq.(55) gives

∂∆ρ

∂τ
− ω0

∂∆ρ

∂φ
−

√
2π ω2

0
r sin φ

ω2

0

4π
e−ω2

0
r2/2

×

∫

∞

0

r′dr′

∫

2π

0

dφ′ ∆ρ(r′, φ′, τ) sgn(r′ cos φ′ − r cos φ) = 0 (58)

where

u = r cos φ,
v

ω0

= r sin φ, ω0 =
√

4πw(0) (59)

Consider a collective mode

∆ρ = e−iΩτ
∞

∑

m=−∞

Rm(r)e−imφ (60)

Charge conservation requires that
∫

∞

0

4πrdr R0(r) = 0 (61)

Eq.(58) becomes

−iΩRm(r) + imω0Rm(r) −
ω4

0

4π
√

2π
r e−ω2

0
r2/2

∫

2π

0

sin φ dφ eimφ

×

∫

∞

0

r′dr′

∫

2π

0

dφ′

∞

∑

m′=−∞

Rm′(r′)e−im′φ′

sgn(r′ cos φ′−r cos φ) = 0 (62)

Integration over φ′ and after some algebraic manipulations, we obtain

−iΩRm(r) + imω0Rm(r) −
ω4

0√
2π

e−ω2

0
r2/2

∫

∞

0

r′dr′

∞

∑

m′=−∞

Rm′(r′)

× im−m′
−1m

∫

∞

−∞

dk

k2
Jm(kr)Jm′(kr′) = 0 (63)

The case of m = 0 is a special mode. It is the static eigenmode with

Ω = 0, m = 0 (64)

while the corresponding eigenfunction R0(r) is arbitrary as long as it sat-

isfies Eq.(61).
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We now decompose Rm(r) as

Rm(r) =

(

ω0r
√

2

)

|m|

e−ω2

0
r2/2

∞

∑

n=0

amn L(|m|)

n

(

ω2

0
r2

2

)

(65)

where L
(m)

n ’s are the generalized Laguerre polynomials. Using their orthog-

onality properties, and applying to both sides of Eq.(63) by (for chosen m

and n)

∫

∞

0

rdr

(

ω0r
√

2

)

|m|

L(|m|)

n

(

ω2

0
r2

2

)

(66)

we obtain

−i(Ω − mω0) amn (67)

−
√

2 ω0

∞

∑

m′
=−∞

m+m′
=even

∞

∑

n′=0

am′n′

m i|m|−|m′
|−1(|m|+|m′|+2n+2n′−3)!!

(|m| + n)!n′! 22n+2n′+|m|+|m′
|

= 0

The infinite matrix equation (67) is then solved for the eigenmode fre-

quency Ω. Instability of the perturbations of type Eq.(54) is to be identified

with complex solution of Ω, but it is found that all eigenvalues of Ω are

real. We conclude that the planar galaxy is stable against longitudinal per-

turbations of the form (54). The largest “frequency shift” occurs for the

m = 1 mode with Ω/ω0 ≈ 1.37. Instabilities, if any, will have to involve

transverse dynamics.
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THE SEARCH FOR QUANTUM GRAVITY USING MATTER 
INTERFEROMETERS 

 
R BINGHAM 

 
Rutherford Appleton Laboratory 

Chilton, Didcot, Oxfordshire OX11 0QX, UK 
 
 

One of the biggest unsolved problems in fundamental physics is the unification 
of quantum mechanics and gravity.  One of the consequences of unification 
could be the existence of “incoherent conformal waves” in gravitational fields 
due to quantum mechanical zero-point fluctuations.  Recent theories have 
demonstrated that these fluctuations change the first order correlation function 
of matter-waves.  A spacecraft mission called Hyper is being designed to 
conduct matter-wave experiments in space.  An order of magnitude 
improvement may be gained by going into orbit reducing the effects of 
environmental interactions.  The results of such experiments are to put 
constraints on the upper bands of measurements of de-coherence of a matter- 
wave interferometer due to quantum fluctuations. 

 

1. Introduction 

 
The physics of the very small is based on quantum theory, and physics on the 
largest scales is based on Einstein's theory of general relativity, which interprets 
gravity as the curvature of space-time.  There can be no unification of physics, 
which does not include them both.  Superstring theory (Green et al 1987) and its 
recent extension to the more general theory of branes is probably the best 
candidate, but the links with experiment are very tenuous. 
 
One hundred years ago, when Planck introduced the constant named after him, 
he also introduced the Planck scales, which combined this constant with the 
velocity of light c  and Newton's gravitational constant G to give the 
fundamental 
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Experiments on quantum gravity require access to these scales.  When 
compared with atomic scales, the time and length are very small and the mass is 
extremely large.  To access these scales directly using accelerators would 
require 1019GeV accelerators, well beyond any conceivable experiments. 
 
The atomic scales were first accessed through Brownian motion, using 
Einstein's theory for the thermal fluctuations of small particles (1905).  By 
interpreting the motion of these particles as due to random collisions with atoms, 
Einstein was able to deduce many atomic properties, even though each 
individual atom was too small to be observed directly in his time.  The 
advantage of this method is that it depends for its success on the square root of 
the ratio of the atomic scale to macroscopic scales, and not any integer power of 
the ratio.  This was crucial for this method, and led to the most accurate 
estimates of Avogadro's number at the time, and thus to the universal 
recognition of the reality of atoms. 
 
Quantum decoherence is also a fluctuation phenomenon, and satisfies the same 
scaling laws as for Brownian motion.  Modern experimental methods are so 
much in advance of those of Einstein's time, that we are now in a position to 
consider accessing the Planck scales by a method analogous to Brownian 
motion (Percival 1997).  This is why quantum decoherence due to space-time 
fluctuations have been suggested as a method to study quantum gravity effects 
at the Planck scale. (Ellis et al 1984, Percival et al 1997).  The basic idea is that 
space-time does not vary smoothly as in Euclidean or Minkovski geometries but 
has topological discontinuities.  Both semi-classical analysis and String theory 
supports the concept of space-time quantum decoherence at the Planck scale.  
Combining the sensitivity of atom interferometers at the quantum level to the 
greatly reduced "noise" environment of space the possibility of using a 
"macroscopic" instrument to investigate a microsystem is now a real possibility. 
 
The curvature of space-time produces changes in "proper time", the time 
measured by moving clocks, for sufficiently short time intervals, of the order of 
the Planck time, the proper time fluctuates strongly due to quantum fluctuations.  
For longer time intervals, proper time is dominated by a steady drift due to 
smooth space-time.  Proper time is therefore made up of the quantum 
fluctuations plus the steady drift.  The boundary separating the shorter time 
scale fluctuations from the longer time scale drifts, marked by a time 0τ , which 
is approximately around the Planck time, .105 44 sTplanck

−×≈   
 
Atom interferometers are ideal in measuring decoherence effects and will be 
able to put upper limits on quantum fluctuations which will help guide the 
theoretical work.  Decoherence can be caused by other less interesting processes 
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such as black body radiation, collisions with atoms and molecules, and even 
interactions with its own components.  By performing the experiments in space 
some of the environmental problems such as natural vibrations can be reduced 
allowing a more accurate measurement. 
 
Search for evidence of space-time granularity deteriorating the coherence of 
matter waves. One of the biggest unsolved problems in fundamental physics is 
the unification of quantum mechanics and gravity. One consequence of the 
unification will be the existence of so called incoherent conformal waves in 
gravitational fields due to quantum mechanical zero-point fluctuations. These 
fluctuations granulate the space-time and lead presumably to an observable 
decoherence of matter waves. New theories have been developed to describe the 
changes of first order correlation function of matter-waves under the presence of 
space-time granularity as a function of parameters like the atomic mass or like 
the geometry of the atomic trajectories. Investigations with atom interferometers 
will open up a new field in quantum gravity, which a large impact on the grand 
unification theories or on the superposition principle in quantum mechanics.  
Atom interferometers in space will improve on laboratory experiments putting 
upper bounds to quantum fluctuations that can be used to test theories. 
 

2. Ground based tests and limits. 

 
The detection of the decoherence due to these fluctuations on the Planck scale 
would provide experimental access to quantum gravity effects on this scale 
analogous to the access to atomic scales provided by Brownian motion.  The 
properties of the Planck-scale quantum fluctuations in space-time are open to 
investigation by studying their cumulative effects in matter interferometers, by 
analogy with the cumulative effects of atomic collisions on the motion of small 
macroscopic particles. 
 
Quantum coherence is powerful tool for investigating properties of the micro 
system of quantum fluctuations with a macroscopic instrument such as an atom 
interferometer.  More specifically it has been advocated as a way of studying 
phenomena leading to quantum decoherence induced by quantum gravity effects 
(Percival & Strunz 1997).  In particular the papers by Pervical and co-workers 
show how incoherent conformal waves in the gravitational field, which are 
produced by quantum mechanical zero point fluctuations, interact with wave 
packets of massive particles.  The non-linear interaction between the quantum 
fluctuations cause a decoherence of the quantum wave packets of massive 
particles. 
 



 

 

4 

Atom beam

Lasers 1

Lasers 2

π/2 π/2π

Fluorescence
 detection

Space time fluctuations
   (shown locally for clarity)

 
 
Figure 1. 
 
An atom is a quantum clock with a very high frequency proportional to its mass.  
In an atom interferometer, Fig.1, an atomic wavepacket is split into two 
coherent wave packets that follow different paths before recombining.  The 
phase change of each wavepacket is proportional to the proper time along its 
path, resulting in constructive or destructive interference when the wavepackets 
recombine.  Where the phases differ by an even multiple of π , there is 
constructive interference, and where they differ by an odd multiple, there is 
destructive interference.  The interference pattern contains information about the 
time difference between the two paths, the phases of the atoms depend on the 
paths followed.  The phase change ( )tφ  over a proper time interval, T , is 
( )Tφ TΩ= , where h/2mc=Ω  is the quantum angular frequency associated 

with the rest mass, m  of the atom.  Note that the phase change for large scales 
where space-time is smooth is proportional to time.  On the other hand quantum 
gravity fluctuations in space-time are irregular and produce stochastic phase 
shifts described as with any stochastic process like Brownian motion is a 

diffusion process proportional to 2
1

T , the regular phase due to smooth space-
time shift is proportional to T .   Therefore, in the simplest model, the intrinsic 
space-time fluctuations lead to an additional fluctuating phase which is 
proportional to the regular phase charge ( )Tφ  multiplied by a fluctuation factor 

( )2
1

/ Toτ  resulting in a fluctuating phase ( ) ( ) Ω= 2
1

TT oτδφ where oτ  is close to 
the Planck time planckT  [Percival 1997].  Due to the different paths in the 
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interferometer the atoms experience different space-time fluctuations resulting 
in a decoherence observed in the interference pattern.  Because of the locality of 
the beams smooth space-time produces the same phase shift in both arms of the 
interferometer and any decoherence is then due to quantum fluctuations.  The 
wave function experiences a quantum random walk in phase due to fluctuations 
on scales less than το close to the Planck time.  Figure 2 represents the total 
phase shift for times less then 0τ , close to the Planck time planckT , the graph is 
roughly parabolic due to space-time fluctuations.   
 
For longer times the phase shift is linear in time being dominated by smooth 
space-time.  From the formula for ( )Tδφ  it follows that the best atom 
interferometers are those with relatively large atomic mass which increases Ω  
and large drift times. 
 

 
Figure 2. 
 
The most promising source of space-time quantum gravity fluctuations for 
experimental detection by atom interferometers is zero-point energy fluctuations.  
A well-known effect of zero-point energy is the Casimir force (1948) which 
describes a quantum electrodynamical force of the vacuum observed recently by 
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Lamoreaux (1997) and Mohideen & Roy (1999).  Recently Powers and Percival 
(2000) have shown how non-linear incoherent conformal waves in the 
gravitational field produced by quantum mechanical zero-point fluctuations, 
interact with the wave-packets of massive particles causing decoherence.  
Previous studies of decoherence include non-propagating interactions conformal 
fluctuations by Sanchez - Gomez (1993), a Newtonian gravitational model by 
Kay (1998).  The most recent work by Power and Percival (2000) considered 
sources of the conformal field and amplitudes and coherence properties of the 
resulting fluctuations.  A drawback of their model is that a classical model for 
quantum fluctuations is used which does not guarantee that all the essential 
physics is included.  Conformal metric fluctuations are also considered since the 
deviation in the Minkowski metric is equal in all dimensions making the 
problem mathematically easier to deal with.  Theories of quantum gravity 
predict a cut-off wavelength for conformal gravitational waves related to the 
Planck length planckcT such that =−offcutλ planckcTλ  and a cut-off frequency 

offcutm c −= λπω /2 , where λ  is in the range 62 1010 − .  For a matter wave 
interferometer using particles of mass m  separated in space by a distance large 
compared with the correlation length for a time T  Powers and Percival (2000) 
estimate λ to be  
 

( )( )
7
1

2

42

/2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

o
TTcM planck

ρδρ
πλ
h

 

 
where ( )oρ  is the density matrix of the wavepacket at time 0=T  and δρ  is 
the change due to space-time fluctuations, ( )oρδρ /  represent the decoherence.  
Recent atom interferometer experiments by Peters et al. (1997), using cesium 
atoms separated for s32.0  detected a loss of contrast of about 3% putting a 
lower bound on λ  of 18>λ .  In contrast accelerator based experiments put an 
upper bound of λ  which in current experiments is still above the theoretical 
prediction of 610 and unlikely to improve significantly in the foreseeable future. 
 

3. Improved tests with Hyper. 

 
The results of decoherence in the two-path atom interferometer investigated by 
Percival and Strunz (1997) hold if the separation of the wavepackets is large 
compared to the width of the wavepacket.  In this case it will be the loss of 
coherence between the two wave packets that will be noticed.  If not then the 
loss of coherence within the wavepacket is important factor.  The approach of 
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Power(1999) includes both.  It also includes the nonlinearity in the gravitational 
field equations, without which the ordinary commutative structure of space-time 
gives the same fluctuating contribution to both arms of an interferometer, and 
thus no net effect on the interference pattern.  Both approaches neglect the back-
reaction of the matter on the space-time metric, and make a semiclassical 
approximation to the space-time fluctuations.  These approximations could be 
removed using ordinary Feynman diagram expansions.  But there remains the 
need for a cut-off because the gravitational field is not renormalizable.  If the 
claims of superstring theory and its modern extensions are to be believed, it 
does not have the renormalization problems of field theory, and could 
presumably therefore be used to make precise predictions of the size of the 
fluctuations, without approximation, and thus subject the theory to direct 
experimental test using matter interferometers.  The difficulty here seems 
largely cultural: there is no tradition of applying superstring theory directly to 
laboratory or space experiments of this kind.  
 
Improvements in the sensitivity by reducing background noise and vibrational 
noise in the apparatus and increasing the mass and time of flight in atom 
interferometer experiments will raise the bound on λ  although the th7/1  power 
dependence results in a small rise.  The recent experiments that show no 
evidence of space-time fluctuations require suppression of interference, which 
can be achieved by increasing the separation of the wave packets, which can be 
done using HYPER.  An order of magnitude improvement may be gained by 
going into orbit reducing the effects of environmental interactions, taking the 
experiments into the domain of theory.  The final result of such experiments is 
to put constraints on the upper bounds of measurements of decoherence which 
quantum fluctuations, which can be used to test some quantum theories of 
gravity. The proposed HYPER mission would increase our understanding and 
provide a test bed for many of the quantum gravity theories. 
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ELECTRON-POSITRON-PHOTON PLASMA AROUND A

COLLAPSING STAR

R. RUFFINI, L. VITAGLIANO AND S.-S. XUE

We describe electron-positron pairs creation around an electrically charged star
core collapsing to an electromagnetic black hole (EMBH), as well as pairs annihi-
lation into photons. We use the kinetic Vlasov equation formalism for the pairs
and photons and show that a regime of plasma oscillations is established around
the core. As a byproduct of our analysis we can provide an estimate for the ther-
malization time scale.

1. Dynamics of Dyadosphere

Dyadosphere was first introduced in Ref. 1 as the region surrounding an

electromagnetic black hole (EMBH) in which the electromagnetic field

strength exceeds the critical value Ec for electron-positron pair creation via

the mechanism à là Heisenberg-Euler-Schwinger.2,3 The relevance of the

dyadosphere around an EMBH, for the astrophysics of gamma-ray busts

has been discussed in Refs. 1, 4–6 (the external radius of dyadosphere will

be denoted by rds). In those papers the pair production in dyadosphere has

been described as an electrostatic problem: instantaneously a massive body

collapses to an EMBH whose charge is large enough that the electric field

strength E exceeds Ec and the Schwinger process is triggered in the entire

dyadosphere; moreover the pairs are produced at rest and remain at rest

during the whole history of their production; finally they instantaneously

thermalize to a plasma configuration (see Fig. 1). These ansatz, formu-

lated for the sake of simplicity, allow one to estimate the number density

of pairs produced as well as the energy density deposited on the pairs in

a straightforward manner. We relax the hypothesis that the large electric

field is instantaneously built up and take the following dynamical point of

view:

(1) A spherically symmetric star core endowed with electric, say posi-

tive, charge Q, collapses. We assume that the electromagnetic field

strength E on the surface of the core is amplified to Ec during the

collapse and the Schwinger process begins.
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Figure 1. Vacuum polarization process of energy extraction from an EMBH. Pairs are
created by vacuum polarization in the dyadosphere and the system thermalizes to a
neutral plama configuration (see Ref. [1] for details).

(2) The pairs produced by the vacuum polarization progressively screen

the electromagnetic field of the core, thus reducing its strength.

Furthermore the charges (electrons and positrons) are accelerated

by the Lorentz force in the electromagnetic field. Finally particles

and antiparticles annihilate into photons.

An enormous amount of pairs (N ∼ Q
e

rds

λC

, where λC is the Compton

length of the electron) is produced, as claimed in Refs. 1, 4–6, if the core

charge is not annihilated by the charge of the accelerated electrons during

the gravitational collapse (see Ref. 7). Therefore it is useful to study the
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dynamics of the electron-positron-photon plasma in the electric field of the

core in some details. This will be the main object of the next section. As a

byproduct of the analysis we obtain an estimate for the time scale needed

for the thermalization of the system.

In Ref. 8 it was suggested that the exact solution of Einstein-Maxwell

equations describing the gravitational collapse of a thin charged shell can

be used as a simplyfied analytical model for the gravitational collapse of

a charged core; it was also discussed in some details the amplification of

electromagnetic field strength on the surface of the core. Here we briefly

review some of the results of Ref. 8. The region of space-time external to

the core is Reissner-Nordström with line element

ds2 = −fdt2 + f−1dr2 + r2dΩ2 (1)

in Schwarzschild like coordinate (t, r, θ, φ) , where dΩ2 = dθ2 + cos2 θdφ2,

f = f (r) = 1 − 2M
r + Q2

r2 ; M is the total energy of the core as measured at

infinity and Q is its total charge. Let us label with R and T the radial and

time-like coordinate of the shell, then the equation of motion of the core is

(cfr. Ref. 8)

dR
dT = − f(R)

H(R)

√

H2 (R) − f (R) (2)

where H (R) = M
M0

−
M2

0
+Q2

2M0R ; M0 is the rest mass of the shell. The analytical

solution of Eq. (2) was found in Ref. 8 in the form T = T (R). According

to a static observer O placed at the event x0 ≡ (R, T (R) , θ0, φ0) the core

collapses with speed given by

V ∗ ≡ −dR∗

dT ∗ =
√

1 − f(R)

H2(R)
≤ 1 (3)

where dR∗ ≡ f−1/2dR and dT ∗ ≡ f1/2dT are spatial and temporal proper

distances as measured by O. In Fig. 2 we plot V ∗ as a function of R for a

core with M = M0 = 20M
�

a and ξ ≡ Q
M = 10−3, 10−2, 10−1. Recall that

dyadosphere radius is given by1

rds =
√

eQ~

m2
e
c3 , (4)

where c is the speed of light; e and me are electron charge and mass re-

spectively. Then note that V ∗

ds
≡ V ∗|R=rds

' 0.2c for ξ = 0.1.

aThe condition M0 = M corresponds to a shell starting its collapse at rest at infinity.
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Figure 2. Collapse velocity of a charged star of mass M0 = M = 20M
�

as measured
by static observers as a function of the radial coordinate of the star surface. As the
charge is not too large (ξ . 0.1) there is not much difference between collapse velocities
of stars with different charge. Dyadosphere radii for different charge to mass ratios
(ξ = 10−3, 10−2, 10−1) are indicated in the plot together with the corresponding velocity.

2. Plasma oscillations and screening

We now turn to the pair creation taking place during the gravitational

collapse. The gravitational fields of the core is considered classical; the

gravitational effects of the electron-positrons-photons plasma are neglected.

The most detailed framework for studying electromagnetic vacuum po-

larization and particle-antiparticle scattering around an electromagnetic

collapsing core is quantum electrodynamics in the classical external elec-

tromagnetic field of the core on the Reissner-Nordström space-time around

the core itself. Of course a number of approximations is needed in order to

make the problem be tractable. Let us discuss such approximations.

(Homogeneity) First of all, the static Reissner-Nordström space-time region exter-

nal to the collapsing core is naturally splitted in space (hypersur-

faces orthogonal to the static Killing field) and time. In the local

frames associated with static observers, the electromagnetic field of

the core is purely electric. Moreover, we will see that the length

scale L over which the electric field as well as the particle num-

ber densities vary, is much larger than the length scale l which is
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charachteristic of the electron–positron motion. Thus we can divide

dyadosphere into small regions Di

Di : ri ≤ r ≤ ri+1 = ri + ε; (5)

r+ ≤ ri ≤ rds ε . l

such that for any i the system formed by the electric field and the

pairs can be considered homogeneous in Di.

(Flat space-time) For, in geometric units, the electron charge e is much larger than

the electron mass me, the gravitational acceleration is negligible

with respect to electric acceleration for sufficiently large electric

field strengths (even much less than Ec), therefore we will neglect the

curvature of space-time and use the local frame of a static observer

as a globally inertial frame of the Minkowski space-time.

(Mean field) The number of pairs is so high that a semiclassical formalism and

mean field approach can be used, in which the total electromagnetic

field (core electromagnetic field and screen field due to pairs) is con-

sidered to be classical, while the electron-positron field is quantized.

It has been shown9−11 that, if we neglect scattering between parti-

cles, the semiclassical evolution of the homogeneous system in a flat

space-time is well described by a Boltzmann-Vlasov-Maxwell system

of partial differential equations, where the electrons and positrons

are described by a distribution function fe = fe (t,p) in the phase

space, where t is the inertial time and p the 3−momentum of elec-

trons. Finally we use the method presented in Ref. 13 to simplify

such a Boltzmann-Vlasov-Maxwell system.

Let us summarize results in Ref. 13: we obtained the following system of

ordinary differential equations which simultaneously describes the creation

and evolution of electron-positron pairs in a strong electric field as well as

the annihilation of pairs into photons:


































d
dtne = S (E) − 2n2

eσ1ρ
−1

e

∣

∣πe‖

∣

∣ + 2n2

γσ2

d
dtnγ = 4n2

eσ1ρ
−1

e

∣

∣πe‖

∣

∣ − 4n2

γσ2

d
dtρe = eneEρ−1

e

∣

∣πe‖

∣

∣ + 1

2
Ejp (E) − 2neρeσ1ρ

−1

e

∣

∣πe‖

∣

∣ + 2nγργσ2

d
dtργ = 4neρeσ1ρ

−1

e

∣

∣πe‖

∣

∣ − 4nγργσ2

d
dtπe‖

= eneE − 2neπe‖
σ1ρ

−1

e

∣

∣πe‖

∣

∣

d
dtE = −2eneρ

−1

e

∣

∣πe‖

∣

∣ − jp (E)

, (6)

where ne (nγ) is the electron (photon) number-density, ρe (ργ) is the elec-

tron (photon) energy-density, πe‖
is the density of electron radial momen-

tum and E the electric field strength. Finally S (E) is the Schwinger prob-
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ability rate of pair creation, jp (E) is the polarization current-density, σ1,2

are total cross sections for the processes e+e− � γγ and the corresponding

terms describe probability rates of pair annihilation into photons and vice

versa. System (6) was numerically integrated in Ref. 13.

Here it has to be integrated once for each of the regions Di (see (5))

with initial conditions

ne = nγ = ρe = ργ = πe‖
= 0; E0 = Q

r2

i

. (7)

Let us recall the main results of the numerical integration. The system

undergoes plasma oscillations:

(1) the electric field oscillates with lower and lower amplitude around

0;

(2) electrons and positrons oscillates back and forth in the radial direc-

tion with ultrarelativistic velocity;

(3) the oscillating charges are trapped in a thin shell whose radial di-

mension is given by the elongation ∆l = |l − l0| of the oscillations,

where l0 is the radial coordinate of the centre of oscillation and

l =

∫ t

0

π
e‖

ρe

dt. (8)

Note that
π

e‖

ρe

≡ v is the radial mean velocity of charges (we plot

the elongation ∆l as a function of time in Fig. 3);

(4) the lifetime ∆t of the oscillation is of the order of 102 − 104τC (see

Fig. 3).

(5) in the time ∆t the system thermalizes in the sense that both num-

ber and energy equipartition between electron–positron pairs and

photon are approached.

In Fig. 4 we plot electrons mean velocity v as a function of the elon-

gation during the first half period of oscillation, which shows precisely the

oscillatory behaviour.

3. Conclusions

In a paper under preparation7 we are examining the conditions under which

the charge of the collapsing core is not annihilated due to vacuum polar-

ization as a consequence of the above plasma oscillations.

Note that e+e− � γγ scatterings is marginal at early times (t �

∆t) since the cross sections σ1,2 are negligible in the beginning of pair

production.13 However at late times (t & ∆t) the system is expected to
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Figure 3. Electrons elongation as function of time in the case r = 1

3
rds. The oscillations

are damped in a time of the order of 103τC.

relax to a plasma configuration of thermal equilibrium.13 Thus a regime of

thermalized electrons-positrons-photons plasma begins in which the system

can be described by hydrodynamic equations. It is shown in Refs. 12, 14

that the equations of hydrodynamic imply the expansion of the system.

In “brief” the system reaches the ultrarelativistic velocities required in a

realistic model for GRBs. It is worthy to remark that the time scale of

hydrodynamic evolution (t ∼ 0.1s) is, in any case, much larger than the

time scale ∆t needed for thermalization.
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PLASMA EXPANSION IN THE GEOMETRY OF A

COLLAPSING STAR

R. RUFFINI, L. VITAGLIANO AND S.-S. XUE

We describe the evolution of an electron-positron-photon plasma created by
Sauter–Heisenberg–Euler–Schwinger mechanism around a collapsing charged star
core in the Reissner-Nordström geometry external to the core, in view of the ap-
plication in the framework of the EMBH theory for gamma ray bursts.

1. Introduction

In 1975, following the work on the energetics of black holes,1 Damour and

Ruffini2 pointed out the existence of the vacuum polarization process à là

Sauter–Heisenberg–Euler–Schwinger3,4 around black holes endowed with

electromagnetic structure (EMBHs), whose electric field strength exceeds

the Schwinger critical value Ec =
m2

e
c3

e~
, where c is the speed of light, e

and me are electron charge and mass respectively. Damour and Ruffini

gave reasons to believe that this process is almost reversible in the sense

introduced by Christodoulou and Ruffini1 and that it extracts the mass

energy of an EMBH very efficiently: this have been proved in Ref. 5. The

vacuum polarization process around an EMBH offered a natural mechanism

for explaining the Gamma Ray Bursts (GRBs), just discovered at the time.

Moreover the mechanism had a most peculiar prediction: the characteristic

energetics of the burst should be of the order of 1054 ergs; while nothing at

the time was known about either the distances or the energetics of GRBs.

More recently, after the discovery of the afterglow of GRBs and their

cosmological distance, the idea by Damour and Ruffini has been reconsid-

ered in Refs. 6–9 where the EMBH model for GRBs is developed. The

evidence is now that through the observations of GRBs we are witness-

ing the formation of an EMBH and therefore are following the process of

gravitational collapse in real time. Even more importantly, the tremendous

energies involved in the energetics of these sources have their origin in the

extractable energy of black holes.

Various models have been proposed in order to extract the rotational

energy of black holes by processes of relativistic magnetohydrodynamics

1
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(see, e.g., Ref. 10). It should be expected, however, that these processes

are relevant over the long time scales characteristic of accretion processes.

In the present case of GRBs a sudden mechanism appears to be at work

on time scales of the order of few seconds or shorter and they are naturally

explained by the vacuum polarization process introduced in Ref. 2.

All considerations on the electric charge of stars have been tradition-

ally directed towards the presence of a net charge on the star surface in a

steady state condition, from the classic work by Shvartsman11 all the way

to the fundamental book by Punsly.12 The charge separation can occur in

stars endowed with rotation and magnetic field and surrounded by plasma,

as in the case of Goldreich and Julian,13 or in the case of absence of both

magnetic field and rotation, the electrostatic processes can be related to the

depth of the gravitational well, as in the treatment of Shvartsman.11 How-

ever, in neither case is it possible to reach the condition of the overcritical

field needed for pair creation.

The basic new conceptual point is that GRBs are the most violent tran-

sient phenomenon in the universe and therefore in order to realize the con-

dition for their occurrence, one must look at a transient phenomenon. We

propose as a candidate the most transient phenomenon possibly occurring

in the life of a star: the gravitational collapse. The condition for the cre-

ation of the supercritical electromagnetic field required in the Damour and

Ruffini work has to be achieved during the process of gravitational collapse

which lasts less than ∼ 30 seconds for a mass of 10M
�

and the relevant

part of the process may be as short as 10−2 or even 10−3 seconds. It is ap-

propriate to consider a numerical example here14 (see Fig. 1). We compare

and contrast the gravitational collapse of a star in the two limiting cases

in which its core of M = 3M
�

and radius R = R
�

is either endowed with

rotation or with electromagnetic structure. The two possible outcomes of

the process of gravitational collapse are considered: either a neutron star

of radius of 10km or a black hole.

In the case of rotation the core has been assumed to have a rotational

period of ∼ 15 days. For such an initial configuration we have:

Erot ' 7×10−12Etot � |Egrav| ' 6×10−6Etot � Ebar ' 4.4×105cm . (1)

In the collapse to a neutron star we have:

Erot ' 0.01Etot � |Egrav| ' 0.1Etot � Ebar ' 4.4 × 105cm . (2)

The very large increase in the rotational energy is clearly due to the pro-

cess of gravitational collapse: such a storage of rotational energy is the well
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Figure 1. Comparing and contrasting gravitational collapse to a neutron star and to a
black hole for a star core endowed with rotation or electromagnetic structure. Repro-
duced from Ref. [14] with the kind permission of the author.

known process explaining the pulsar phenomena. The collapse to a black

hole has been estimated assuming the mass–energy formula.1 The overall

energetics, for the chosen set of parameters, leads to a solution correspond-

ing to an extreme black hole, for which in principle 29% of the energy is

extractable.

The similar process in the electromagnetic case starts from an initial

neutral star with a magnetosphere oppositely charged from a core with

Q

M
√

G
= 0.1 . (3)

Let us first evaluate the amount of polarization needed in order to reach

the above relativistic condition. Recalling that the charge to mass ratio

of a proton is qp/
(

mp

√
G

)

= 1.1 × 1018, it is enough to have an excess

of one quantum of charge every 1019 nucleons in the core of the collapsing

star to obtain such an EMBH after the occurrence of the gravitational

collapse. Physically this means that we are dealing with a process of charge

segregation between the core and the outer part of the star which has the

opposite sign of net charge in order to enforce the overall charge neutrality
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condition.

We then have:

Ecou ' 6×10−8Etot � |Egrav| ' 6×10−6Etot � Ebar ' 4.4×105cm . (4)

In the collapse to the neutron star configuration we have:

ECou ' 0.001Etot � |Egrav| ' 0.1Etot � Ebar ' 4.4 × 105cm . (5)

Once again, the amplification of the electromagnetic energy is due to the

process of gravitational collapse. Again, assuming the mass–energy for-

mula, the collapse to a black hole for the chosen set of parameters leads

to:

Mir = 0.9975Etot , ECou = 2.5 × 10−3Etot . (6)

It is during such a process of gravitational collapse to an EMBH that the

overcritical field is reached.

The process of charge segregation between the inner core and the oppo-

sitely charged outer shell is likely due to the combined effects of rotation

and magnetic fields in the earliest phases of the gravitational collapse of

the progenitor star or to a process of ionization. In the following we will

forget about the outer shell and will treat the inner core as an electrically

charged collapsing star.

2. Energy extraction from a supercritical EMBH

We know from the Christodoulou-Ruffini mass formula1 that the mass en-

ergy of an EMBH is the sum of the irreducible mass and the electromagnetic

energy:

M = Mir + Q2

2r+

, (7)

where Q is the charge and r+ is the radius of the horizon. Moreover in

Ref. 5 it is shown that the electromagnetic energy Q2

2r+

is stored throughout

the region external to the EMBH and can be extracted. If the condition

Q
r2

+

≥ Ec (8)

is fulfilled the leading extraction process is a collective process based on

the electron-positron plasma generated by Schwinger mechanism in the

supercritical electric field of the EMBH.5 The condition (8) implies

GM/c2

λC

(

e
√

Gme

)

−1

' 2 · 10−6 M
M�

≤ ξ ≤ 1 (9)
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and therefore this vacuum polarization process can occur only for an EMBH

with mass smaller than 2·106M
�

. The electron-positron pairs are produced

in the dyadosphere of the EMBH,6 the spherical region whose radius rds

satisfies Ec ≡ Q
r2

ds

. We have

rds =
√

eQ~

m2
e
c3 . (10)

The number of particles created is6

Nds = 1

3

(

rds

λC

) (

1 −
r+

rds

)

[

4 + r+

rds

+
(

r+

rds

)2
]

Q
e ' 4

3

(

rds

λC

)

Q
e . (11)

The total energy stored in the dyadosphere is6

Etot

ds
=

(

1 −
r+

rds

)

[

1 −
(

r+

rds

)4
]

Q2

2r+

' Q2

2r+

. (12)

The mean energy per particle produced in the dyadosphere 〈E〉
ds

=
Etot

ds

Nds

is

then

〈E〉
ds

= 3

2

1−

( r+

rds

)
4

4+
r+

rds

+

( r+

rds

)
2

(

λC

rds

)

Qe
r+

' 3

8

(

λC

rds

)

Qe
r+

, (13)

which can be rewritten as

〈E〉
ds

' 3

8

(

rds

r+

)

mec
2 ∼

√

ξ
M/M�

105keV . (14)

Such a process of vacuum polarization, occurring not at the horizon but

in the extended dyadosphere region (r+ ≤ r ≤ rds) around an EMBH, has

been observed to reach the maximum efficiency limit of 50% of the total

mass-energy for an extreme EMBH (see e.g. Ref. 6). As discussed in Ref. 5

the e+e− creation process occurs at the expense of the Coulomb energy

and does not affect the irreducible mass, which does not depend of the

electromagnetic energy. In this sense, δMir = 0 and the transformation is

fully reversible.

3. The EMBH Theory

In a series of papers,6−9 Ruffini and collaborators have developed the

EMBH theory for GRBs, which has the advantage, despite its simplicity,

that all eras following the process of gravitational collapse to the EMBH

are described by precise field equations which can then be numerically in-

tegrated.
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Starting from the vacuum polarization process à là Sauter–Heisenberg–

Euler–Schwinger in the overcritical field of an EMBH first computed in

Ref. 2, Ruffini et al. developed the dyadosphere concept.6

The dynamics of the e+e−–pairs and electromagnetic radiation of the

plasma generated in the dyadosphere propagating away from the EMBH

in a sharp pulse (PEM pulse) has been studied by the Rome group and

validated by the numerical codes developed at Livermore Lab.15,16

The collision of the still optically thick e+e−–pairs and electromagnetic

radiation plasma with the baryonic matter of the remnant of the progen-

itor star has been again studied by the Rome group and validated by the

Livermore Lab codes.15,16 The further evolution of the sharp pulse of pairs,

electromagnetic radiation and baryons (PEMB pulse) has been followed for

increasing values of the gamma factor until the condition of transparency

is reached.17

As this PEMB pulse reaches transparency the proper GRB (P-GRB) is

emitted8 and a pulse of accelerated baryonic matter (the ABM pulse) is in-

jected into the interstellar medium (ISM) giving rise to an afterglow. Thus

in GRBs we can distinguish an injector phase and a beam-target phase.

The injector phase includes the process of gravitational collapse, the for-

mation of the dyadosphere, as well as the PEM pulse, the engulfment of the

baryonic matter of the remnant and the PEMB pulse. The injector phase

terminates with the P-GRB emission. The beam-target phase addresses

the interaction of the ABM pulse, namely the beam generated during the

injection phase, with the ISM as the target. It gives rise to the E-APE (Ex-

tended Afterglow Peak Emission) and the decaying part of the afterglow.

The existence of both the P-GRB and the E-Ape is shown in Fig. 2, where

the fit of observational data relative to GRB 991216 within the EMBH

theory is reported.

4. Gravitational Collapse of an Electrically Charged Core:

Formation of Dyadosphere

We now turn to the details of the formation of dyadosphere. If the electric

field of a charged star core is stable against vacuum polarization during the

gravitational collapse,18 then an enormous amount of pairs can be created

by Schwinger mechanism. Moreover the pairs thermalize to a positrons-

electrons-photons plasma configuration (see Refs. 6, 19, 20). Such a plasma

undergoes a relativistic expansion. The evolution of the system and the

details of GRB emission, along the lines summarized in the previous section,
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Figure 2. The overall description of the EMBH theory applied to GRB 991216. The
BATSE noise threshold is represented and the observations both of the P-GRB and of the
E-APE are clearly shown in the subpanels. The continuos line in the picture represents
the theoretical prediction of the EMBH model.

were described in Refs. 6–8, 15–17. In the latter papers the time scale of

the gravitational collapse is neglected with respect to the hydrodynamic

time scale. In this paper we relax this approximation: our main aim is to

describe how the plasma expansion occurs during the gravitational collapse.

In a forthcoming paper18 we will discuss how the expansion is affected by

the strong gravitational field near the horizon of the forming EMBH.

In Refs. 20 and 21 it was suggested that the exact solution of Einstein-

Maxwell equations describing the gravitational collapse of a thin charged

shell can be used as an analytical model for the gravitational collapse of a

charged core. First we briefly review some of the results of Ref. 21. The

region of space-time external to the collasping core is Reissner-Nordström
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with line element, in Schwarzschild like coordinates (t, r, θ, φ) ,

ds2 = −α2dt2 + α−2dr2 + r2dΩ2, (15)

where dΩ2 = dθ2 + sin2 θdφ2, α2 = α2 (r) = 1 − 2M
r + Q2

r2 , M is the total

energy of the core as measured at infinity and Q is its total charge. Let us

label with r0 and t0 the radial and time-like coordinates of the shell, then the

electromagnetic field strength on the surface of the core is E = E (r0) = Q
r2

0

and the equation of core’s collapse is21

dr0

dt0
= −α2

(r0)

H(r0)

√

H2 (r0) − α2 (r0) (16)

where H (r0) = M
M0

−
M2

0
+Q2

2M0r0

and M0 is the rest mass of the shell. The

analytical solution of Eq. (16) was found in Ref. 21 in the form

t0 = t0 (r0) . (17)

Dyadosphere is formed since the instant tds = t0 (rds) when E = Ec. In the

following we put tds = 0.

5. Formation of e+e− Pairs around a Collapsing Charged

Core

For t < tds, E < Ec and the Schwinger process of e+e− pairs creation is ex-

ponentially suppressed. For t > tds the Schwinger process becomes relevant

and e+e− pairs are created. As shown in Refs. 19,20 the pairs created at

radius r0 < rds oscillate with ultrarelativistic velocity and partially annihi-

late into photons. At the same time the electric field oscillates around zero

and the amplitude of such oscillations decreases in time: in a time of the

order of 102 − 104
~/mec

2 the electric field is effectively screened to about

the critical value; more precisely, the average of the electric field E over one

period of oscillation is 0, but the average of E2 is of the order of E2

c . As a

result an energy density has been deposited5 on the pairs and the photons

given by

ε0 (r0) =
1

8π

[

E2 (r0) − E2

c

]

=
E

2

c

8π

[

(

rds

r0

)4

− 1

]

. (18)

The pairs and the photons are expected to thermalize6,19,20, to an e+e−γ

plasma equilibrium configuration:

ne+ = ne− ' nγ = n0, (19)
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(where n
•

is the proper number density of particles of type •), and reach

an average temperature T0 such that

ε (T0) ≡ εγ (T0) + εe+ (T0) + εe− (T0) = ε0; (20)

here ε
•
(T ) is the equilibrium proper energy density at temperature T for

the species •. Then ne± (nγ) are given by Fermi (Bose) integrals once the

temperature T0 is known.

6. Plasma’s Expansion

The highly energetic plasma so formed undergoes a relativistic expansion.

As will be shown, the expansion (hydrodynamic) time-scale is much bigger

than both the pair creation and the thermalization time-scales, then the

process can be described as follows: at any time t0 it begins to expand a

slab of plasma of thickness ∆l = α−1∆r (as measured by static observers)

produced at radius r0 = r0 (t0). ∆l can be chosen very small in comparison

with rds so that, in particular, the temperature T is approximately constant

in the slab. Moreover ∆l has to be much bigger than the quantum length

scale (∼ ~/mec).

We can follow the expansion of each slab of plasma by using conservation

of energy and number of particles. Note that Eqs. (20) and (19) provide

initial data for the problem of the expansion. We describe the expansion

of a single slab using the following approximations:

(1) the geometry in which the expansion occurs is Reissner-Nordström

with line-element given by (15). In particular we will denote by ξa

the static vector field normalized at unity at spatial infinity, and

by {Σt}t the family of space-like hypersurfaces orthogonal to ξa (t

being the Killing time);

(2) the plasma is assumed to be a neutral perfect fluid characterized

by proper energy density ε, proper pressure p, proper particle (elec-

trons, positrons and photons) number density n and 4−velocity ua;

(3) at any instant, electrons, positrons and photons in a single slab are

assumed to be at thermal equilibrium with temperature T , possibly

different from slab to slab. The slabs are uncorrelated in the sense

that they do not share energy nor particles. In other words the

expansion of each slab is adiabatic; this will be checked a posteriori

(see also Ref. 16);

(4) the thickness ∆l = α−1∆r of a slab as measured by static observers

is constant.
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Figure 3. A sequence of snapshots of coordinate baryon energy density is shown from
the numerical solution of partial differential continuity equations. This run correspond
to an EMBH of mass M = 103M

�
and charge to mass ratio ξ ≡ Q/M = 0.1.

The last approximation is justified by the result in Ref. 16, where it is

shown, by numerical integration of the partial differential continuity equa-

tions, that the baryon energy density of an expanding slab of plasma en-

riched with nucleons from the remnant of the progenitor star is localized in

a region of constant thickness (see Fig. 3).

Given the above assumptions, both the energy momentum–tensor T ab =

(ε + p) uaub + pgab and the electron (positron) –number current na
e = neu

a

are conserved:

∇bT
ab = 0, (21)

∇bn
b
e = 0. (22)

In particular, using assumption (4) one can reduce the partial differential

continuity equations (21) and (22) to ordinary differential equations for the

radial coordinate r and the temperature T of the single slab as functions

of time (see Ref. 16). The equation of motion of a single slab can be
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numerically integrated with initial conditions

r (t0) = r0, (23)
dr
dt

∣

∣

t=t0
= 0, (24)

T (t0) = T0. (25)

The overall motion of the plasma is the superposition of motions of single

shells. The typical plasma expansion curves are shown in Fig. 4 from the

numerical integration of the equations of motion.

The curvature of space–time strongly affects the motion of plasma in

the vicinity of the EMBH horizon and in turn the phenomenology of the

GRB. We discuss these issues in a forthcoming paper.18
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GENERALIZED UNCERTAINTY PRINCIPLE AND DARK

MATTER

PISIN CHEN

Stanford Linear Accelerator Center

Stanford University, Stanford, CA 94309, USA

There have been proposals that primordial black hole remnants (BHRs) are the
dark matter, but the idea is somewhat vague. Recently we argued that the gen-
eralized uncertainty principle (GUP) may prevent black holes from evaporating
completely, in a similar way that the standard uncertainty principle prevents the
hydrogen atom from collapsing. We further noted that the hybrid inflation model
provides a plausible mechanism for production of large numbers of small black
holes. Combining these we suggested that the dark matter might be composed of
Planck-size BHRs. In this paper we briefly review these arguments, and discuss
the reheating temperature as a result of black hole evaporation.

1. Introduction

It is by now widely accepted that dark matter (DM) constitutes a substan-

tial fraction of the present critical energy density in the universe. However,

the nature of DM remains an open problem. There exist many DM can-

didates, among which a contending category is weakly interacting massive

particles, or WIMPs. It has been suggested that primordial black holes

(PBHs)1,2 are a natural candidate for WIMPs3. More recent studies4 based

on the PBH production from the “blue spectrum” of inflation demand that

the spectral index n ∼ 1.3, but this possibility may be ruled out by the

recent WMAP experiment5.

In the standard view of black hole thermodynamics, based on the

entropy expression of Bekenstein6 and the temperature expression of

Hawking7, a small black hole should emit blackbody radiation, thereby

becoming lighter and hotter, leading to an explosive end when the mass

approaches zero. However Hawking’s calculation assumes a classical back-

ground metric and ignores the radiation reaction, assumptions which must

break down as the black hole becomes very small and light. Thus it does

not provide an answer as to whether a small black hole should evaporate

1
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entirely, or leave something else behind, which we refer to as a black hole

remnant (BHR).

Numerous calculations of black hole radiation properties have been

made from different points of view8, and some hint at the existence of

remnants, but none appears to give a definitive answer. A cogent argument

against the existence of BHRs can be made9: since there is no evident

symmetry or quantum number preventing it, a black hole should radiate

entirely away to photons and other ordinary stable particles and vacuum,

just like any unstable quantum system.

In a series of recent papers10,11, a generalized uncertainty principle

(GUP)12,13,14 was invoked to argue the contrary, that the total collapse of a

black hole may be prevented by dynamics and not by symmetry, just like the

prevention of hydrogen atom from collapse by the uncertainty principle15.

These arguments then lead to a modified black hole entropy and temper-

ature, and as a consequence the existence of a BHR at around the Planck

mass. This notion was then combined with hybrid inflation model16,17,18,19

and it was shown that primordial BHRs might in principle be the primary

source for dark matte11. In this paper we briefly reproduce these argu-

ments, and include additional discussion on the reheating temperature as

a result of black hole evaporation.

2. Generalized Uncertainty Principle

As a result of string theory12 or general considerations of quantum mechan-

ics and gravity13,14, the GUP gives the position uncertainty as

∆x ≥
~

∆p
+ l2p

∆p

~
, (1)

where lp = (G~/c3)1/2 ≈ 1.6 × 10−33cm is the Planck length. A heuristic

derivation may also be made on dimensional grounds. We think of a particle

such as an electron being observed by means of a photon with momentum

p. The usual Heisenberg argument leads to an electron position uncertainty

given by the first term in Eq.(1). But we should add to this a term due

to the gravitational interaction of the electron with the photon, and that

term must be proportional to G times the photon energy, or Gpc. Since

the electron momentum uncertainty ∆p will be of order of p, we see that

on dimensional grounds the extra term must be of order G∆p/c3, as given

in Eq.(1). Note that there is no ~ in the extra term when expressed in this

way. The position uncertainty has a minimum value of ∆x = 2lp, so the

Planck distance, lp, plays the role of a fundamental length.



3

3. Black Hole Remnant

The characteristic energy E of the emitted photons may be estimated from

the uncertainty principle. In the vicinity of the black hole surface there

is an intrinsic uncertainty in the position of any particle of about the

Schwarzschild radius, ∆x ≈ rs, due to the behavior of its field lines20 -

as well as on dimensional grounds. This leads to a momentum uncertainty

∆p ≈
~

∆x
=

~

rs
=

~c2

2GMBH

, (2)

and hence to an energy uncertainty of ∆pc ≈ ~c3/2GMBH. We identify this

as the characteristic energy of the emitted photon, and thus as a character-

istic temperature; it agrees with the Hawking temperature up to a factor

4π, which we will henceforth include as a “calibration factor” and write

(with kB = 1),

TH ≈
~c3

8πGMBH

=
M2

p c
2

8πMBH

, (3)

where Mp = (~c/G)1/2 ≈ 1.2 × 1019GeV is the Planck mass.

The blackbody energy output rate of BH is given by

ẋ =
1

tch(x3

i − 3t/tch)2/3
, (4)

where x = MBH/Mp and xi refers to the initial mass of the hole. tch =

60(16)2πtp ≈ 4.8 × 104tp is a characteristic time for BH evaporation, and

tp = (~G/c5)1/2 ≈ 0.54 × 10−43sec is the Planck time. The black hole thus

evaporates to zero mass in a time given by t/tch = x3

i /3, and the rate of

radiation has an infinite spike at the end of the process.

The momentum uncertainty according to the GUP is

∆p

~
≈

∆x

2l2p

[

1 ∓
√

1 − 4l2p/(∆x)
2

]

. (5)

Therefore the modified black hole temperature becomes

TGUP =
Mpc

2

4π
x
[

1 ∓
√

1 − 1/x2

]

. (6)

This agrees with the Hawking result for large mass if the negative sign is

chosen, whereas the positive sign has no evident physical meaning. Note

that the temperature becomes complex and unphysical for mass less than

the Planck mass and Schwarzschild radius less than 2lp. At the Planck

mass the slope is infinite, which corresponds to zero heat capacity of the

black hole, and the evaporation comes to a stop.
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If there are g species of relativistic particles, then the BH evaporation

rate is

ẋ = −
16g

tch
x6

[

1 −
√

1 − 1/x2

]4

. (7)

Thus the hole with an initial mass xi evaporates to a Planck mass remnant

in a time given by

τ =
tch

16g

[8

3
x3

i − 8xi −
1

xi
+

8

3
(x2

i − 1)3/2 − 4
√

x2

i − 1 + 4 cos−1
1

xi
+

19

3

]

≈
x3

i

3g
tch, xi � 1 . (8)

The energy output given by Eq.(7) is finite at the end point where x = 1,

i.e., dx/dt|x=1 = −16g/tch, whereas for the Hawking case it is infinite at

the endpoint where x = 0. The present result thus appears to be more

physically reasonable. The evaporation time in the xi � 1 limit agrees

with the standard Hawking picture.

4. Hybrid Inflation and Black Hole Production

The hybrid inflation, first proposed by A. Linde16, can naturally induce

large number of small PBHs21. In the hybrid inflation model two inflaton

fields, (φ, ψ), are invoked. Governed by the inflation potential, φ first exe-

cutes a “slow-roll” down the potential, and is responsible for the more than

60 e-folds expansion while ψ remains zero. When φ eventually reduces to

a critical value, it triggers a phase transition that results in a “rapid-fall”

of the energy density of the ψ field, which lasts only for a few e-folds, that

ends the inflation.

The evolution of the ψ field during the second stage inflation, measured

backward from the end, is

ψ(N [t]) = ψe exp(−sN [t]) , (9)

where N(t) = H
∗
(te − t) is the number of e-folds from t to te, H∗

is the

Hubble parameter during inflation, and s is a numerical factor of the order

unity.

Quantum fluctuations of ψ induce variations of the starting time of the

second stage inflation, i.e., δt = δψ/ψ̇. This translates into perturbations on

the number of e-folds, δN = H
∗
δψ/ψ̇, and therefore the curvature contrasts,

δρ/ρ ≡ δ. With an initial density contrast δ(m) ≡ δρ/ρ|m, the probability

that a region of mass m becomes a PBH is23

P (m) ∼ δ(m)e−w2/2δ2

. (10)
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Let us assume that the universe had inflated eNc times during the second

stage of inflation. It can be shown21 that

eNc ∼
(2Mp

sH
∗

)1/s

, (11)

and the curvature perturbations reentered the horizon at time

t ∼ th = H−1

∗

e3Nc . (12)

At this time if the density contrast was δ ∼ 1, then BHs with size rs ∼

H−1

∗

e3Nc would form with an initial mass

MBHi '
M2

p

H
∗

e3Nc . (13)

Following the numerical example given in Ref.21, we let H
∗

∼ 5 × 1013

GeV and s ∼ 3. Then the density contrast can be shown to be δ ∼ 1/7,

and the fraction of matter in the BH is thus P (m) ∼ 10−2. From Eq.(11),

eNc ∼ 54. So the total number of e-folds is Nc ∼ 4. The black holes

were produced at the moment th ∼ 2 × 10−33 sec, and had a typical mass

MBHi ∼ 4 × 1010Mp. Let g ∼ 100. Then the time it took for the BHs to

reduce to remnants, according to Eq.(8), is

τ ∼
x3

i

3g
tch ∼ 5 × 10−10sec . (14)

The “black hole epoch” thus ended in time for baryogenesis and other

subsequent epochs in the standard cosmology. As suggested in Ref.21, such

a post-inflation PBH evaporation provides an interesting mechanism for

reheating.

5. Black Hole Remnants as Dark Matter

This process also provides a natural way to create cold dark matter. Al-

though in our example P (m) ∼ 10−2, PBHs would soon dominate the

energy density by the time t ∼ P (m)−2th ∼ 2 × 10−29s, because the origi-

nal relativistic particles would be diluted much faster than non-relativistic

PBHs. By the time t ∼ τ , all the initial BH mass (xi) had turned into ra-

diation except one unit of Mp preserved by each BHR. As BH evaporation

rate rises sharply towards the end, the universe at t ∼ τ was dominated by

the BH evaporated radiation.

Roughly, ΩBHR,τ ∼ 1/xi and Ωγ,τ ∼ 1 at t ∼ τ , and since the universe

resumed its standard evolution after the black hole epoch (t > τ), we find
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the density parameter for the BHR at present to be

ΩBHR,0 ∼
( teq

τ

)1/2( t0
teq

)2/3 1

xi
Ωγ,0 , (15)

where t0 ∼ 4×1017s is the present time, and teq is the time when the density

contributions from radiation and matter were equal. It is clear from our

construction that (teq/τ)
1/2 ∼ xi. So teq ∼ 1012 sec, which is close to what

the standard cosmology assumes, and Eq.(15) is reduced to a simple and

interesting relationship:

ΩBHR,0 ∼
( t0
teq

)2/3

Ωγ,0 ∼ 104Ωγ,0 . (16)

In the present epoch, Ωγ,0 ∼ 10−4. So we find ΩBHR,0 ∼ O(1), about the

right amount for dark matter!

6. Black Hole Epoch and Reheating Temperature

As discussed above, shortly after PBHs were produced the density of the

universe was dominated by the BHs. Eventually the universe was reheated

through their continuous evaporation. To simplify the discussion we ignore

BH accretions of the radiation as well as BH mergers. Then under Hubble

expansion the effective reheating temperature at the end of the black hole

epoch, or t ∼ τ , can be expressed as

Tr(τ [xi]) =
1

xi − 1

∫ xi

1

dxTGUP(x)
a(t[x])

a(τ [xi])
, (17)

where a(t) is the scale factor. Since xi � 1, the evaporation only became

effective near the late times during this black hole epoch, when the energy

density was dominated by the BH radiation. As a further approximation we

assume radiation dominance throughout the BH epoch so that a(t) ∝ t1/2.

Expressing t in terms of x using Eq.(7), we find

Tr(τ [xi]) ≈
Mpc

2

16π(xi − 1)

[

2 log(2xi) − 1
]

+ O
( 1

x3

i

)

. (18)

In our model xi ∼ 4 × 1010. So Tr(τ [xi]) ∼ 1.3 × 108 GeV, which is

sufficiently lower than the Planck and the GUT scales, but higher than the

baryogenesis scale.
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CP VIOLATION OF THE EARLY UNIVERSE AND THE

MASS SCALE OF HEAVY MAJORANA NEUTRINOS
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Recent study on CP violation of leptogenesis is briefly discussed with emphasis
on CP violation of the seesaw model and Majorana mass scale bound from the
leptogesis

1. Introduction

Where did anti-matter disappear ? The ratio of baryon number density

and photon number density of our universe ; nB/nγ ' 10−9∼−10 The pho-

ton number density of our universe can be estimated with 3K background

black body radiation. Particle physics model for generating baryon number

asymmetry must account for this number. There are famous Sakharov’s [1]

three conditions for baryogenesis.

• B − L violation at high energy

• CP violation

• Thermal non-equilibrium

The first condition is modified from the original one after we know the

sum of the baryon and lepton number is not conserved due to anomaly.

The washing out effect is significant when the temperture of our universe

was higher than T 〉 100(GeV) ∼ 1(TeV). Because of this effect, a simple

baryogenesis scenario based on GUT model does not work and primordial

B+L generated before the anomolous effect is frozen will be washed out as

(B + L)prim. exp[− t
τ ]. By considering the chemical equilibrium condition

∗Work partially supported by grant no. 13640290 from the ministry of education, science,
and culture of japan
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for various processes, the present baryon number becomes proportional to

B − L.

Bnow =
8Ng + 4NH

22Ng + 13NH
(B − L)primordial

'
1

3
(B − L)prim.. (1)

Therefore, in order to generate the present baryon number, B−L must be

broken at high energy. This may be a guide for construction of the models

for baryogenesis as well as new physics model beyond the standard model.

In the seesaw models, the heavy Majorana neutrinos are introduced and the

primordial lepton number can be produced. Moreover,baryons are stable in

zero temperature and primordial B − L is generated through leptogenesis

[2].

(B − L)prim. = −Lprim. (2)

Therefore the present baryon number is determined from Lprim.

Bnow ' −
1

3
Lprim.. (3)

Next we come to CP violation. The standard model can not account for

the baryogenesis, though it is good at explaining the present measured CP

violation phenomena observed in K and B meson system. We need some

new source of CP violation other than Kobayashi Maskawa phase. On

the otherhand, in the seesaw models =(standard model + heavy Majorana

neutrinos), there are CP violation phases and some of them are related

to leptogenesis. B − L can be broken and the other two conditions (CP

violation and thermal non-equilibrium) may be satisfied. In this talk, I will

explain:

• CP violation of the seesaw models

• How well can we predict the baryon number asymmetry based on

a specific seesaw model ?

• How can we test the model in the laboratory experiments ?

Let’s start how three conditions of the baryogensis are satisfied in the see-

saw models. By adding N heavy Majorana neutrinos NR to the standard

three generation left-handed neutrinos νLi(i = 1 ∼ 3), the lepton sector of

the seesaw model is given by the following Lagrangian:
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L = − ψLiyDij φ̃NRj − ψLiylijφlRj

−
1

2
(NRi)cMRijNRj + h.c., (4)

where ψT
Li = (νLi, lLi). Without loss of generality, we can choose a basis in

which both charged lepton and Majorana mass terms are real diagonal, i.e.,

MRij = MRiδij and ylij = yliδij . In the broken phase of Higgs potential,

L = −[νLmDNR +
1

2
(NR)cMRNR + lLmllR]− h.c. (5)

where l = e, µ, τ are charged leptons.

mD =
v
√

2
yD

ml =
v
√

2
yl (6)

In the basis, the charged lepton mass matrix and Majorana mass matix are

given as; ml = diag.(me,mµ,mτ ). and MR = diag.(M1,M2, ...MN ). The

lepton number is broken because it is related to the symmetry with respect

to the phase rotation for charged leptons (both left and right) and left-

handed neutrinos. If there were not the Majorana mass term MR, we can

define lepton number as the vectorial phase rotation for neutrinos with both

chiralties, i.e., νL and NR. However, the Majorana mass term prevents us

from defining the conserved lepton number. Because Majorana neutrinos

NR do not have lepton number, the lepton number is explicitly broken in

the Dirac mass term mD The primordial lepton number is produced form

NR decays due to the Dirac mass term mD. In the basis which we adopt,

mD(yD) is a general complex (3, N) matrix. How many independent CP

violating phases in mD ? Im(mD) 6= 0 implies CP violation;

CP [νLmDNR]CP−1 = NRm
T
DνL. (7)

mD =





m11 m12 .. m1N

m21 m22 .. m2N

m31 m32 .. m3N



 (8)

From 3N imaginary parts in mD, there are 3N −3 independent CP phases.

−3 comes out because we can still make the phase rotation as:

li → exp(iθi)li

νLi → exp(iθi)νLi, (9)
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and accordingly three CP phases are absorbed into the field’s redefinition.

mD →





exp(iθ1) 0 0

0 exp(iθ2) 0

0 0 exp(iθ3)









m11 m12 .. m1N

m21 m22 .. m2N

m31 m32 .. m3N



 , (10)

3N − 3 phases become physical CP violating phases. Depending on the

number of Majorana neutrinos, we have

N = 1 (no CP violation)

N = 2 three CP violating phases

N = 3 six CP violating phases

We note the following decomposition is always possible:




m11 m12 .. m1N

m21 m22 .. m2N

m31 m32 .. m3N



 = UL





m1 0 .. 0

0 m2 .. 0

0 0 m3 0



VR,

= ULmVR (11)

where UL(3, 3) Unitary: VR(N,N) Unitary matrices. Seesaw model is an

attractive model since it may explain the smallness of the neutrino masses

compared with other charged fermions. From the hypothetical heavy Majo-

rana neutrinos’ exchanged Feynman diagram, and small Majorana neutrino

mass terms νLimeff ijνLj
c are generated:

meff = −mD
1

MR
mT

D. (12)

In the symmetric universe of the early universe, heavy Majorana neutrinos

can decay into Higgs and lepton pairs. The relevant interaction terms are:

L = yDij
¯lLiNRjφ

−

−yDij ¯νLiNRjφ
0 (13)

N ↔ l∓φ± (14)

When the temprature cooled down compared with M〉T , the inverse deca

is suppressed and the production of lepton and higgs particle occurs:

N → l∓φ± (15)

If CP symmetry is broken, the primordial lepton number Lprim. is propor-

tional to CP asymmetry. occur as:

ε1 =
Γ[N → l−φ+]− Γ[N → l+φ−]

Γ[N → l−φ+] + Γ[N → l+φ−]
(16)
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The lepton number is converted into baryon number in anomolous process.

The mechanism generating Lprimordial is similar to ”Direct CP violation” in

K and B physics. Γ[B+ → K+π0]− Γ[B− → K−π0] ∼ Im(a0a1
∗) sin(δ0 −

δ1)

Amp.(B+ → K+π0) = a0exp(iδ0) + a1exp(iδ1)

Amp.(B− → K−π0) = a∗

0
exp(iδ0) + a∗

1
exp(iδ1) (17)

where δ is strong phase. In the standard model, CP violation Im(a0a1
∗) is

determined by a single Kobayashi Maskawa phase.

In the expanding universe,e.g.,in the Friedmann Universe: ds2 = dt2 −

a(t)2(dx2 + dy2 + dz2), time evolution of the number density of heavy Ma-

jorana neutrino n(t) and lepton number density L(t).

dn(t)

dt
+ 3Hn(t) = −ΓN (n− neq.).

dL(t)

dt
+ 3HL(t) = (Γ[N → l−φ+]− Γ[N → l+φ−])(n− neq), (18)

where we omit the temperture dependence of the decay width ΓN and the

terms which is related to washingout effects of the lepton number. Using

the relation between the temperture and time in radiation dominated era,

t =
√

45

16π3g∗

Mpl

T 2 , we can solve the evolution equation. We must set the

initial condition such as at T = 1016(GeV),

n = neq, L = 0

The result depends on ΓN , ” Direct CP violation” (ε1) Γ[N → l−φ+] −

Γ[N → l+φ−] and expansion rate of the universe (Hubble) H = ȧ
a .

Lprimodial is efficiently produced if the non-equilibrium condition is sat-

isfied.

H〉ΓN (19)

If this is the case, we may obtain large deviation of n from the thermal

equilibrium density neq.

Now we briefly discuss how we can test the leptogenesis in the laboratory

experiments. CP violation of neutrino oscillations is a place to see the CP

violation related to leptogenesis.

P (νµ → νe)− P (ν̄µ → ν̄e) = 4J [sin(
∆m2

12
L

2E
) + sin(

∆m2

23
L

2E
) + sin(

∆m2

31
L

2E
)].

J = Im
(

Ue1U
∗

µ1
U∗

e2Uµ2

)

.
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The lepton mixing matrix U can be obtained from the diagonalization of

meff . We may expect the correlation between CP violation for leptogen-

esis and CP violation in neutrino oscillation because both may come from

imaginary part in mD.

Lprim. ∼ Im(m†

DmD)2ij , (i 6= j) : −U†mD
1

M
mD

TU∗ =

(

n1 0 0
0 n2 0
0 0 n3

)

L← Im(mD)→ Im(U)→ J.

Both J and L are related to CP phases in mD. However, the correlaton

may not be manifest in the most general case. This is because, there are

many CP violating phases in seesaw model and there are no one to one

correspondance between CP violation of high energy and low energy. To

start with, we first count the number independent parameters.

model (3,N) (3,3) (3,2)

M N 3 2

Re(mD) 3 N 9 6

Im(mD) 3N-3 6(3) 3 (1)

total 7N-3 18 11

Even in the minimal seesaw model (N = 2), there are 11 parameters which

are more than low energy observables 7.

mixing angles 2 + |Ue3|

∆m2 2 (solar, atm.)

neutrinoless double β |(meff )ee|

CP violation in oscillation 1 (∆P )

total 7

We adopt four high energy physical quantities as input. For example, Heavy

Majorana masses (M1,M2) and their decay widths Γ1,Γ2 can be chosen.

We can fix 11 parameters of the minimal seesaw (3,2) model.

7 (low energy observables)+ 4 (high energy observables)=11. mD in (3,2)

model can be parametrized as [3]:

mD =





m11 m12

m21 m22

m31 m32



 = UL





0 0

m2 0

0 m3



VR

= ULmVR. (20)
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UL: 3× 3 , VR:2× 2 unitary matrix.

UL = O(θL23)U(θL13, δL)O(θL12)diag.(1, exp[−i
γL

2
], exp[i

γL

2
])

VR =

(

cR sR

−sR cR

)(

exp(−iγR

2
) 0

0 exp(iγR

2
)

)

.

Among 3 CP phases(δL, γL, γR) γR is related to leptogenesis.

ε1 ∼ Γ[N1 → l−φ+]− Γ[N1 → l+φ−] ∼ −Im[(m†

DmD)2
12

]

∼ −(m3
2 −m2

2)2sR
2cR

2 sin 2γR.

By using the light neutrino mass eigenvalue equation det.(meffm
†

eff−n
2) =

0, we can extract the leptogenesis phase as;

cos 2γR =
n2

2
+ n2

3
− x2

1
− x2

2

2(x1x2 − n2n3)
, (21)

where, xi = (mD

†mD)ii

Mi

and
(

V
Mi

)2

with V =
√

4πv Combining the above

formulae, we get:

ε1 = −
3M1

4x1V 2

√

((n
−

)2 − (x
−

)2) ((x+)2 − (n+)2), (22)

where n
±

= n3±n2 and x
±

= x1±x2. The lower bound of M1 can obtained

because lepton number asymmetry ε1 is proportional to M1. In an analysis

[3], we showed M1〉1× 1011 GeV.
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High-energy end of the cosmic-ray spectrum has provided us to check a validity
of the Lorentz Invariance and the Relativity principle, through the observation of
the so-called GZK cut-off. It is claimed in this report that the comoving reference
frame in the expanding universe might define the preferable inertia frame, in con-
tradiction to the relativity principle. If the present universe has been permeated
by tensor fields in a manner like it has been done by Higgs scalar field , the limiting
particle velocity of each species splits to different values depending on the coupling
coefficients to these external fields.

1. Historical Introduction

Energy spectrum of the cosmic rays extends by a power-law over more

than ten decimal, decreasing in a power-law like E−γ with energy E and

γ ∼ 2.5. Then a natural question is whether the high-energy end in the

energy spectrum does exist or not. In 1966, a very clear-cut prediction was

presented, which introduced a definite upper-limit in the power-low energy

spectrum, which is called now as GZK(Greisen-Zatepin-Kuzmin) cut-off.1

This cut-off prediction was invoked by the discovery of ”3K radiation”

in 1965, which is now called as CMB(cosmic microwave background). Al-

though CMB was observed just on the earth, CMB was supposed to fill up

in the whole cosmic space uniformly, even in the extra-galactic space, as the

relics of ”hot” big-bang. Therefore it became crucial to check the presence of

CMB in the extra-galactic space, in order to settle the big debates between

the steady state cosmology and Gamow’s hot big-bang cosmology. As an

advocator of the steady-state cosmology, Fred Hoyle tried hard to present

two types of counter arguments, one was about exotic interstellar dusts

which masks the extragalactic view in this wave-band and another one was

1
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how much degree the high-energy cosmic radiations(γ-rays,X-rays,electron-

positron,etc) are masked by the extra-galactic presence of CMB. Hoyle’s

motivation of the latter argument was to point out a contradiction of the

hot big-bang cosmology but this argument had created a rich implication of

CMB toward the high-energy cosmic radiations, including the GZK cut-off.

Since then, the GZK cut-off energy of about 1020eV became an

experimental target for the cosmic-ray physicist. Observation of the

EAS(extensive air shower) started also in Japan and EAS-group led by

K. Suga constructed the array of detectors in the suburb of Tokyo, a dense

array in the site of the research institute and several remote stations at the

sites of elementary school, the city office and so on. It was the autumn

of 1971 when they announced that their detector had catched a huge EAS

with energy over GZK cut-off in 1970. In following February, the workshop

was organized in order to discuss this puzzling EAS event.

At the workshop, I gave a talk by the title ”Very high-energy cosmic-

rays and the limitation of relativity principle”.2 If the high-energy end

does not exist contrary to the GZK cut-off prediction, we could enumerate

three possible ways of resolution, 1) ”3K”radiation is local, 2)source of such

cosmic ray is local(within mean-free-path), 3) cosmic ray is not proton

but some exotic primary. At the workshop of 1972, I added the fourth

possibility 4) violation of relativity principle. Later the paper was written

by the title ”Ultra-high Energy cosmic rays, Hot universe and Absolute

reference frame”.3

Although the energy estimation of this 1970-event was not accurate

enough to claim the existence of super-GZK cut-off cosmic rays, this event

promoted very much the effort toward a construction of bigger array in

Akeno. This new big array, AGASA, finally presented more assured ex-

perimental evidences of super-GZK cut-off after 1997. Experimental data

suggesting super-GZK cosmic rays given by AGASA4 as well as FlysEyes

gave a great impact towards the bigger new observational projects such as

Auger, EUSO5 , and others.

In such trend of research, an implication of the super-GZK cosmic ray

has been discussed widely. In different from the situation in 1972, the first

possible way(local ”3K”) has been eliminated and other three possibili-

ties have been discussed; a) exotic local source such as cosmic string, mini

black hole,etc.(so-called top-down scenario), b)exotic primaries such as neu-

trinos, neutrino with Z-burst in Galactic halo, etc, and finally c)violation

of Lorentz invariance.

Even for the last possibility, there are variety of arguments.6,?,8,9 In this
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report, a specific toy model of violation of Lorentz invariance is proposed

and an extension of Lorentz invariance with non-unique limiting velocities

is discussed.

2. Comoving Frame in the Expanding Universe and

Relativity Principle

In the expanding universe, we can clearly identify preferential inertia

frames: (1)rest frame of baryon matter, (2)rest frame of astronomical ob-

jects, (3)frame in which CMB is isotropic, (4) frame in which the Hubble

flow is observed isotropic. Furthermore, these four frames are approxi-

mately identical within a relative velocity difference of several hundreds

km/sec. These inertia frames have a concrete physical effect when we un-

derstand the structure formation in the expanding universe.9

According to recent theoretical view on the early universe, these cosmo-

logical frames are considered to have the same physical origin; spontaneous

selection of the inertia frame in which the primordial black body radiation

is isotropic via a reheating at Inflation. But even in the vacuum universe

without material substance, the creation of the expanding universe itself is

the browken state of Lorentz invariance. That is a formation of comoving

frame perpendicular to the time direction. We call this cosmological and

comoving frame as C-frame.

In spite of a lucid presence of the C-frame, however, the Lorentz invari-

ance is supposed to hold in any local physical phenomena. The relativity

principle does not respect this lucid presence. Whatever lucid this presence

is, it has no physical effect. That is the spirit of the relativity since Galileo.

In the derivation of GZK cut-off, the relativity principle is used as usual

but its situation is very special because the Lorentz factor relative to the

C-frame is as large as γ ∼ 1011, which is far beyond the Lorentz factor in

the particles the accelerators of about γ ∼ 105.

Here we should not confuse the two meanings of ”high energy”. One is

an invariant energy(or center of mass energy) defined such as ,

pµpµ = E2 − P 2 = Q2

,where pµ is total four momentum of the system. Another one is energy

relative to a specific reference frame and it will be defined in the following

manner as

Nµpµ = 1 · E − 0 · P = E
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, where Nµ is a four vector specifing the frame. For the C-frame, the

component is given asNµ(1, 0, 0, 0) in the C-frame. The Relativity principle

claims that the cross section of collision, σ, does depend solely on Q but

does not depend on Nµpµ , such as σ(Q) but not as σ(Q,Nµpµ). In our

early paper3, the cut-off function in the momentum space was assumed to

depend on Nµpµ and the cross section involved to the GZK was altered not

to give the cut-off of the spectrum.

In the discussion of GZK cut-off, Q is ∼ 108.5eV, which is rather low

energy in high-energy physics, but, Nµpµ ∼ 1020eV is extraordinarily large

even in high-energy physics. The uniqueness of the GZK cut-off lies on

the largeness of Nµpµ, but not on the so-called energy frontier of the high-

energy physics, e.g., Energy frontier for supersymmetry, GUT, Planck scale,

etc., those are talking about large Q but not on the largeness of Nµpµ.

3. A Toy Model of Lorentz-Invariance Violation

Consider the following Lagrangian for a Dirac particle A,

LA =
i

2
ψ̄γµ∂

µψ − αAφψ̄ψ +
i

2
gAFµνψ̄γ

µ∂νψ,

where ψ is the Dirac field of A, φ is Higgs scalar field with coupling

coefficient αA and Fµν is a tensor field with coupling coefficient gA.The

first term in the right hand side is kinetic term and the second one is the

Yukawa coupling term which creates mass by Higgs mechanism. In this

Lagrangian, the dynamical parts of φ and Fµν has been omitted and φ and

Fµν are both taken as an external field. They are un-removable given field

in the present state of universe. Non-zero value of < φ > gives the mass,

mA = αA < φ >, to this Dirac particle.

Next we assume that some component of the tensor field has got some

non-zero value as followings,

< F 00 >= B 6= 0 and < Fµν >= 0 for other components.

B is supposed to be constant in space and time but can be slowly changing

with cosmological spacetime scale. Then the dispersion relation for plain

wave is given as10

pµpµ −m2

Ac
2 = −2gAB(E/c)2
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, where only the first order terms of B has been retained and the higher

term of B has been neglected.

This relation is rewritten by denoting the three momentum as p as

(1 + gAB)(E/c)2 = p2 +m2

Ac
2,

where c is the universal constant introduced at the definition of the space-

time length by space length and time length.

Renormalizing the velocity and mass as followings

c2A =
c2

1 + gAB
and m2

AB = (1 + gAB)m2

A,

the conventional energy-momentum relation is resumed

E2 = p2c2A +m2

ABc
4

A.

but now cA is depending on particle species through gA, that is, the limiting

velocity, velocity in the limit of E → ∞, is depending on the particle species.

Here we remark some difference between the Higgs scalar φ and the

tensor external field Fµν . Different from a scalar field , we have adopted the

C-frame as the preferential frame and the above energy-momentum relation

holds only in the C-frame. If we modified the Lorentz transformation with

psudo-Lorentz factor

γA =
1

√

1 −
(

v
cA

)2

instead of γ =
1

√

1 −
(

v
c

)2

,

the above relation keeps its form. However the Lorentz invariance appar-

ently breaks down if we consider a system consisting of pariticles of different

species.

The perturbative super string theory has suggested an existence of var-

ious hidden fields such as the above tensor field.11 If we assume a vector

field Aµ in stead of Fµν as the external field, the Lagrangian is written,13

LA =
i

2
ψ̄γµ∂

µψ −mAψ̄ψ − fAVµψ̄γ
µψ.

, where the Higgs term is now rewritten by the mass term. Here we assume

< V0 >= V 6= 0 and < Vµ = 0 > for all other components

and the the dispersion relation becomes like

E2 − p2c2 −m2

Ac
4 = −2fAV E.
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If we define as

cA(E) =
c

1 + fAV
E

, m2

AV = (1 + fAV/E)2[m2

A + (fAV )2/c4],

the above dispersion relation resume a pseudo-conventional form like

E2 = p2cA(E)2 +m2

AV cA(E)4.

cA(E) has anomaly in the limit of E → 0 but this limit would need a

quantum mechanical correction. The violation of Lorentz invariance would

dominate in the vector case similar to the scalar or Higgs case. Then the

tensor case is necessary as the toy model which exhibits the violation of

Lorentz invariance in the limit of large γ

4. Boost Particle-Transformation in the External Field

The above argument can be discussed from a different viewpoint. We can

consider two types of transformation, boost particle-transformation and the

Lorentz transformation.12 The Lorentz transformation is just a change of

reference frame for the description of the same phenomena and is some-

time called ”passive” transformation. The boost particle-transformation is

”active” transformation, where particle’s energy-momentum are changed

actually. Relativity principle claims that the boosted state and the origi-

nal state seen from the transformed reference frame are identical. For the

system of particles, this is trivial and the classification into ”Boost” and

”Lorentz” has no particular meaning.

However some complication comes in when we consider the system con-

sisting of particles and external given field. In the Lorentz transformation,

both the particle’s energy-momentum and the components of the exter-

nal field are transformed. Therefore the relative relation between particle

and external field does not changed. In the boost particle-transformation,

however, particle’s energy-momentum are transformed but the field config-

uration is kept unchanged. Therefore two states of the particles relative to

the field are different. In this way, the actively boosted state of particle is

not identical with the passively Lorentz transformed state having the same

particle state but different field configuration. Thus we call this situation as

an ”apparent” violation of Lorentz invariance but it is in fact a misconduct

of the Lorentz transformation.

What we have done in the previous section is something like this. In

the actual universe, the external fields like Fµν are totally unknown to us

upto now and ”misconduct” of application of the Lorentz transformation
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could happen. Conversely we also say that the apparent violation implies

a finding of the hidden external fields.

5. Eigen State of the Limiting Velocity and GZK cut-off

Without touching on the origin of various limiting velocity, we can rise a

question how much degree the universality of limiting velocity has been

checked by direct experiment. The assumption of non-equality of the lim-

iting velocity of a charged particle and light velocity is equivalent to the

introduction of the Lorentz non-invariant term of the electromagnetic field

into the Lagrangian.16 In general, this is true for any non-universal assump-

tions of the limiting velocity.15

Coleman and Glashow also discussed this assumption, firstly in order

to explain the neutrino oscillation.14 They also pointed out that the high-

energy phenomena might disclose an apparent degeneracy of limiting veloc-

ity and reveal a splitting into a fine structure. They called various limiting

velocity as eigen state of velocity. They have shown also that this modifi-

cation does not hurt the standard theory of interaction based on the gauge

field theory.15 The discussion in the section 3 is concerned the origin of such

an ad hoc assumption of the eigen state of limiting velocity.

If we introduce the particle species dependent cA, the GZK cut-off dis-

cussion could be modified very much. By the head-on collision between

the cosmic-ray proton and the CMB photon, ∆ particle is produced if the

following condition is satisfied.10

(Ep + Eγ)2 − (pp + pγ)2c2
∆
> m2

∆
c4
∆
,

while the proton obeys to E2

p = p2

pc
2

p+m2

pc
4

p. In the situation of Ep � mpc
2

p

and |c∆ − cp| � cp, the condition becomes as followings

−
c∆ − cp
cp

E2

p + 2EpEγ >
m2

πc
4

2

In the conventional case, c∆ − cp = 0 and the threshold energy is obtained

Ep > m2

πc
4/4Eγ .

If (c∆−cp) 6= 0, the above equation gives a quite different result; the cut-

off disappears for (c∆ − cp) > 0 and the cut-off energy decreases compared

with the GZK cut-off for (c∆ − cp) < 0. For example, the above equation

does not have solution if

c∆ − cp
cp

> 2

(

Eγ

mπc2

)2

∼ 10−22,
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the cut-off does not exist.

On the other hand, for (c∆ − cp) < 0, the cut-off energy is modified as

EGZK

[

1 −
|c∆ − cp|

2cp

(

mπc
2

Eγ

)2
]

for
|c∆ − cp|

2cp

(

mπc
2

Eγ

)2

< 1

and
√

cp
2|c∆ − cp|

mπc
2 for

|c∆ − cp|

cp
m2

πc
4 � E2

γ

6. Paradigm of Spontaneous Symmetry Breakdown

One of the achievement of the 20-century Physics was discovery of vari-

ous symmetry hidden deep in the diversity of superficial phenomena: we

can point out many symmetries such as rotational and boost symmetry

of 3-space, past-future symmetry in mechanics, duality symmetry between

electro- and magneto-fields, Lorentz symmetry of spacetime, discrete sym-

metry in atomic structure of solid, particle-antiparticle symmetry, isospin

symmetry of nuclear force, chiral symmetry, ”eight-fold symmetry”, super-

symmetry, colour symmetry and so on. Particularly, in the late of 1970’s,

theory of fundamental interactions among elementary particles was formu-

lated into the unified-gauge-theory, based on internal or local symmetry

hidden in electro-weak and strong interactions among quarks and leptons.

This unification of the fundamental interaction was accomplished, how-

ever, by one extra idea called ”spontaneous symmetry breakdown(SSB)”,

which is schematically written as

[observed law] = [symmetric law]x[SSB].

That is, the symmetric law itself is not realized in this universe because the

universe is not empty but the external field called Higgs field has permeated

by . The most essential difference of the Higgs field from a conventional field

is that it is un-removable from the universe. Then the genuine symmetric

law looses its chance to exhibit its original form in this universe.

This SSB has introduced a new ingredient about the concept of physics

law, that is, the physics law itself is symmetric but our actual universe is

not in a state of exact symmetry. This may be re-phrased also as followings;

physics law is universal but our universe is not universal entity, or, physics

law itself does not exhibit its original form in our universe where we live

in. We call this kind of idea as the SSB paradigm.8

In fact, some symmetries are not exact but show a tiny breakdown,

like in case of CP-asymmetry. The actual composition of cosmic matter
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does not obey the particle-antiparticle symmetry in spite of CPT-symmetry

in physics law itself. Following these considerations, we are tempted to

think that any symmetry might be not exact in this actual universe, which

has come into an existence through various spontaneous selections of non-

universal parameters.

Lorentz invariance claims that there is no preferential inertia frame; that

is the central dogma of relativity principle. However, in our universe filled

with the CMB and cosmic matter, we can clearly identify the preferential

frame, which we have called the C-frame. In the inflationay scenario, CMB

is supposed to be created in association with some SSB of the vacuum state

of quantum field theory. Some features of the particle interaction in this

universe is supposed to have inherited the parameters chosen by a dynami-

cal process of this SSB. Furthermore, the SSB paradigm is now extended to

the creation of spacetime from higher dimensional space through a dynam-

ical process similar to SSB. Thus we can speculate also the exact Lorentz

symmetry might have been violated dynamically in ”our universe”, that is

spontaneous breaking of Lorentz symmetry.11

Lorentz symmetry, however, has been built in all fundamental concepts

of modern physics, such as Dirac field, spin, renormalization group of quan-

tum field theory, and so on. Therefore, the violation of this symmetry can

not be introduced so easily. One of the outcomes of the relativity princi-

ple is the equivalence of all inertia frame. However this equivalence has

not been directly proved so much.17 Only the accelerator experiments has

proved this equivalence up to some Lorentz factor of γacce ∼ 105. In this

respect, the GZK cut-off has an unique status for the experimental veri-

fication of the equivalence of all inertia frames and the validity limit may

be extended up to γGZK ∼ 1011. Following to the SSB paradigm, this ver-

ification has coupled with the universality of the limiting velocity. And if

there were not the GZK cut-off, that may imply a finding of a un-removable

hidden external field of tensor type. The SSB paradigm anyway describes

our universe as ”un-universal” universe.
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The present Cosmos consists of about 65% ”dark energy”, 30% dark matter, and
5% baryons, all embedded in a cosmic medium of 2.73◦ K cosmic microwave back-
ground (CMB) and 1.95◦ K cosmic neutrino background (CνB). Based on the
conventional particle astrophysics, we may describe the propagation of ultra high
energy cosmic rays (UHECR’s) in the cosmic medium, but interactions of UHECR’s
with the atmosphere or the detector would require a better knowledge of particle
physics at PeV’s (”PeV particle physics). In this paper, I wish to describe how
UHECR’s serve as a natural bridge over which we may walk from particle astro-
physics to cosmology.

1. Cosmology

1.1. The Discoveries of 1992 and 1999

In retrospect as well as in my personal views, the cosmology has trans-

formed itself, at the turn of the new century, into an experimental science

primarily due to two major discoveries, the 1992 discovery1 of anisotropies

in the cosmic microwave background (CMB) and the 1999 discovery of the

accelerating universe via Type Ia supernova observations.2 The significance

of the turning point that cosmology is becoming a true science, as I see it,

is that it will be remembered as a historic moment in the civilization of

the mankind, especially in the scientific history of how the human beings

develop their understandings towards the environments.

The 1992 discovery1 of anisotropies, at a level of 10−5, associated with

the cosmic microwave background (CMB) has helped to identify the physics

of the early universe as a prime research area in astronomy and in parti-

cle astrophysics, theoretically and observationally3. CMB anisotropies and

polarizations, the latter beginning to be observed most recently4,5, either

1
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primary (as imprinted on the last scattering surface when the universe was

about 300,000 years old) or secondary (as might be caused by the interac-

tions of CMB photons with large-scale structures along the line of sight),

are linked closely to the inhomogeneities produced in the early universe.

Although such inhomogeneities are often attributed to quantum fluctua-

tions produced at the early inflationary epoch, as amplified by many orders

of magnitude through the inflation, it is nevertheless of importance to note

that phase transitions, an inevitable process in the hot big bang era, might

also have played an important role of amplifying, as well as generating,

inhomogeneities as seen to be associated with our universe.

The 1999 discovery of the accelerating expansion of our present universe,

as based upon Type Ia supernova observations2, has suggested the existence

of yet another form of energy, the so-called ”dark energy” as coined by

M.S.Turner. The fraction of ”dark energy” in the present universe is by no

means small, about 65 % of the total energy content in order to account

for the supernova type Ia observational data.2

1.2. The Standard Cosmology

A prevailing view regarding our universe is that it originates from the joint

making of Einstein’s general relativity and the cosmological principle while

the observed anisotropies associated with the cosmic microwave background

(CMB), at the level of about one part in 100,000, provide a measure of quan-

tum fluctuations in the inflation era. This is the standard cosmology,which

we often use as the benchmark in tackling the various problems at hand.

Based upon the cosmological principle which states that our universe is

homogeneous and isotropic, we introduce the Robertson-Walker metric to

describe our universe.6

ds2 = dt2 − R2(t){
dr2

1 − kr2
+ r2dθ2 + r2sin2θdφ2}. (1)

Here the parameter k is the spatial curvature with k = +1, −1, and 0

describing an open, closed, and flat universe, respectively. The scale factor

R(t) provides a measure of the size of the universe at time t.

To the approximation that anisotropies can be neglected, the universe

may be described by a perfect fluid, i.e., a fluid with the energy-momentum

tensor Tµ
ν = diag (ρ, , −p, −p, −p) where ρ is the energy density and

p the pressure. Thus, the Einstein equation, Gµ
ν = 8πGNTµ

ν + Λgµ
ν ,

gives rise to only two independent equations, i.e., from (µ, ν) = (0, 0) and

(i, i) components,
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Ṙ2

R2
+

k

R2
=

8πGN

3
ρ +

Λ

3
. (2)

2
R̈

R
+

Ṙ2

R2
+

k

R2
= −8πGN p + Λ. (3)

Combining with the equation of state (EOS), i.e. the relation between the

pressure p and the energy density ρ, we can then solve the three functions

R(t), ρ(t), and p(t) from the three equations. Note that the above two

equations yields

R̈

R
= −

4πGN

3
(ρ + 3p) +

Λ

3
, (4)

showing either that there is a positive cosmological constant or that ρ +

3p must be somehow negative, if the major conclusion of the Supernovae

Cosmology Projects are correct,2 i.e. the expansion of our universe still

accelerating ( R̈
R > 0).

It might be useful to remind our readers a few important results based

on these equations. First of all, we assume a simple equation of state,

p = wρ, and obtain, from Eqs. (2) and (3),

2
R̈

R
+ (1 + 3w)(

Ṙ2

R2
+

k

R2
) − (1 + w)Λ = 0, (5)

so that, with p = −ρ and k = 0, we find

R̈ −
Ṙ2

R
= 0, (6)

which has an exponentially growing, or decaying, solution R ∝ e±αt, com-

patible with the so-called ”inflation” or ”big inflation”. In other words,

the idea of ”inflation” is perfectly consistent with both Einstein’s general

relativity and the cosmological principle.

To realize the inflation scenario, we may consider the simplest case of a

real scalar field φ(t),

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ), (7)

so that, when the ”kinetic” term 1

2
φ̇2 is negligible, we have an equation of

state, p ∼ −ρ. That is, a universe filled with only matter in the form of

such fields can be inflating for a while until the potential term loses its grip.
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In addition to its possible role as the ”inflaton” responsible for inflation,

such field has also been invoked to explain the accelerating expansion of

the present universe, as dubbed as ”quintessence”7 or ”spintessence”.8

1.3. The Hot Big Bang

Another simple consequence in the standard cosmology is to derive the

continuity equation from Eqs. (2) and (3):

d(ρR3) + pd(R3) = 0. (8)

We see that ρ ∝ R−4 for a radiation-dominated universe (p = ρ/3) while

ρ ∝ R−3 for a matter-dominated universe (p << ρ). When the universe

was young enough or R → 0, the universe would have to be dominated by

radiations, leading to the idea of ”big bang” or ”hot big bang”. The ”dark

energy”, as invoked to explain the accelerating expansion of the present

universe, could be in the form of a positive cosmological constant Λ or

”quintessence”,7,8 or caused by evolution of extra dimensions.9 Dark energy

in the form of the cosmological constant remains as a constant when R

changes. It is clear that dark energy will become negligible when R is

small enough, or when the universe was young enough. In the standard

cosmology, therefore, our universe began with an exponential ”inflation” to

saw the seed for the ”hot big bang”, to be followed by a matter-dominated

universe, and eventually entering the present era of being dominated by

”dark energy”.

Another useful note is that, over the last three decades, the standard

model of particle physics has been established to a precision level of 10−5

or better in the electroweak sector while to a level of about one percent on

strong interactions. In the standard model, the electroweak (EW) phase

transition, which endows masses to the various particles, and the QCD

phase transition, which gives rise to confinement of quarks and gluons

within hadrons in the true QCD vacuum, are two well-established phenom-

ena. Presumably, the EW and QCD phase transitions would have taken

place in the early universe, respectively, at around 10−11 sec and at a time

between 10−5 sec and 10−4 sec, or at the temperature of about 300 GeV

and of about 150 MeV , respectively. While it is imperative to understand

the roles of the EW and QCD phase transitions in the early universe, none

of ordinary particles would assume the meaning of ”mass” before the EW

phase transition had ever occurred while a nucleon had yet to be formed

before the QCD phase transition took place.
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For the radiation-dominated early epochs of the universe with k = 0

and Λ = 0 (for the sake of simple arguments), we may deduce, also from

Eqs. (2) and (3),

ρ =
3

32πGN
t−2, T = {

3c2

32πGNa
}

1

4 t−
1

2 ∼= 1010t−1/2(◦K). (9)

These equations tell us a few important times in the early universe, such

as 10−11sec when the temperature T is around 300 GeV during which the

electroweak (EW) phase transition is expected to occur, or somewhere be-

tween 10−5sec (T ∼= 300 MeV ) and 10−4sec (T ∼= 100 MeV ) during which

quarks and gluons underwent the QCD confinement phase transition. We

may use ”the radiation” as a ”thermometer” for measuring the temperature

of the universe, or the instant (the age) of the universe.

At t ∼ 10−11sec or T ∼ 300 GeV , we have

ργ ∼ 6.4 × 1022gm/cm3, ρm ∼ 3.2 × 1012gm/cm3. (10)

Just above the electroweak phase transition, all particles of the familiar

kinds are massless. The fact that ργ was bigger than ρm by 10 orders of

magnitude is something beyond anyone’s imagination. Thermal equilib-

rium would not distinguish one species of massless particles from another

massless species. Something is terribly ”wrong”, either there was not ther-

mal equilibrium at such early times or the initial condition is completely

”biased”. In this paper, however, I shall not dwell on such problem and

proceed to discuss other issues.

At t ∼ 10−5sec or T ∼ 300 MeV , we have

ργ ∼ 6.4 × 1010gm/cm3, ρm ∼ 3.2 × 103gm/cm3. (11)

Or, slightly later when QCD phase transition has completed, at t ∼ 10−4sec

or T ∼ 100 MeV , we have

ργ ∼ 6.4 × 108gm/cm3, ρm ∼ 1.0 × 102gm/cm3. (12)

At 10−5sec or 300 MeV , before QCD phase transition took place, chemical

equilibrium would still be an issue (which we no longer try to tackle) but

the universe is definitely a strangeness-rich system. The phase transition

will bring about large numbers of strange baryons which decay quickly

into nucleons. Since we are working near the critical temperature, T ∼

150 MeV , the masses m∗

i (T ) for the various baryons will be an important

input for any decent predictions. In fact, the various axial couplings gi∗
A

would determine the decay rates of strange baryons and would have to be
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understood. It seems that QCD sum rules in a more versatile context10

would be something which we could use to tackle these problems.

At t ∼ 1 sec or T ∼ 1 MeV , we have

ργ ∼ 6.4gm/cm3, ρm ∼ 1.0 × 10−4gm/cm3. (13)

Nucleosynthesis began to take place in a radiation-dominated environment,

until t ∼ 10τn ∼ 15 min when all neutrons decay or get imprisoned in 4He.

The fact that m∗

n − m∗

p is comparable with the temperature (1 MeV ) to

begin with and the mass difference controls the neutron decay rate suggest

that we must understand more precisely its temperature dependence, but

here the method of QCD sum rules is fairly reliable.

At the ”last scattering surface”, t ∼ 300, 000 years or T ∼ 5.4 × 102 ◦K

when the universe just turned transparent for photons, we have

ργ ∼ 6.4 × 10−26gm/cm3, ρm ∼ 3.2 × 10−24gm/cm3. (14)

Now, the matter already began to dominate but the dark energy component

remains far less important. Protons and helium nuclei are already stable

objects for quite a while, and nucleon properties are what we are seeing

today.

1.4. A Short Summary of the Present Universe

To sum up, CMB observations indicate that our universe is flat, or that

the energy density is of the critical value, 8.0 × 10−30gm/cm3. CMB and

Supernovae observations indicate that 65 % of the presence universe is in

the form of ”dark energy”, 30 % in the form of ”dark matter”, and about

5 % in the baryon content. The radiation content of the present universe

is 5 × 10−35g/cm3, as estimated from the 2.73◦ K black-body radiation.

As we extrapolate back in time, t → 0, we anticipate R → 0, a very small

universe as compared to the present one. We would first get back to the

”matter epoch” when the matter content is the dominant component of

the universe. As the time is even earlier, the universe would necessarily

be dominated by the radiation. At present, we have already entered the

”dark” age as the dark energy dominates over all the rest.

2. Ultra High Energy Cosmic Rays (UHECR’s)

2.1. Observations of Cosmic Rays near 1020 eV

The observation of ultra high energy cosmic rays (UHECR’s) beyond the

Greisen-Zatsepin-Kuzmin (GZK) cutoff energy presents an outstanding
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puzzle in astrophysics and cosmology.11 It has long been anticipated that

the highest energy cosmic rays would be protons from outside the galaxy,

but there is an upper limit of the highest energy in the observed proton

spectrum, commonly referred to as the GZK cutoff,12 as the protons trav-

elling from intergalactic distances should experience energy losses owing

to pion productions by interacting with photons in the cosmic background

radiation.

2.2. Propagation of UHECR’s in the Cosmic Medium

The 2.73 K cosmic microwave background (CMB) of the photons satisfies

the Planck’s ideal black-body radiation formula, with the number density

nγ = 16πζ(3) (kT/hc)
3

= 413 photons per cm3 and the mean energy per

photon εγ = π4kT/30ζ(3) = 6.35 × 10−4 eV, where ζ(3) = 1.20 is the

Riemann Zeta function. When the nucleon with 4-momentum p = (E,p)

interacts with the photon with 4-momentum k = (ε,k), and compose into

a system with the center of mass energy squared S, we have

E =
(

S − m2

N

)

/2ε

(

1 −
√

1 − m2

N/E2 cos θ

)

, (15)

where θ is the angle between p and k. θ cannot be zero since a nucleon

cannot catch up a photon moving in the same direction, and the energy of

the nucleon E must be very large near the pion photoproduction process

N + γCMB → π + N , therefore we have,

E ≈
(

S − m2

N

)

/2ε (1 − cos θ) . (16)

The threshold energy for pion production N + γCMB → π + N is

E ≈
(

2mNmπ + m2

π

)

/4ε = 1.10 × 1020 eV, (17)

and the threshold energy for producing the ∆ resonance N +γCMB → ∆ →

π + N is

E ≈
(

m2

∆
− m2

N

)

/4ε = 2.52 × 1020 eV. (18)

The neutron has a mean life time τn = 887 s in its rest reference frame. Due

to time dilation, the lifetime of a moving particle is dilated by a factor γn =

En/mn. Thus, we have, for a neutron at the pion production threshold,

ln ≈ cγnτn = 3.12 × 1024 cm = 1.01 Mpc, (19)

and, for a neutron near the ∆ resonance threshold,

ln ≈ cγnτn = 7.11 × 1024 cm = 2.30 Mpc. (20)
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Therefore the neutron fraction around the GZK cutoff is expected to be

negligibly small for nucleons coming from a source with distance of consid-

erably more than a few Mpc.

To take into account the detailed features of the pion photoproduction

reactions, N + γCMB → π + N , we may employ the low energy theorem 18

or the chiral quark model 19. In this approximation, we have19

A(pγ → π+n) =
√

2
(

A− + A0
)

, (21)

A(nγ → π−p) =
√

2
(

A− − A0
)

, (22)

A(pγ → π0p) = A+ + A0, (23)

A(nγ → π0n) = A+ − A0, (24)

where the isospin amplitudes A±,0 can be expanded in terms of the ratio

between pion mass and nucleon mass η = mπ/mN

A− = 1 + O(η2), A+ = A0 = −η/2 + O(η2). (25)

Thus, we obtain

σ(nγ → π−p)

σ(pγ → π+n)
=

(1 + η/2)2

(1 − η/2)2
≈ 1.34, (26)

which is in excellent agreement with the experimental data 20, and

σ(pγ → π0p)

σ(pγ → π+n)
=

η2

2(1 − η/2)2
≈ 0.01, (27)

σ(nγ → π0n)

σ(pγ → π+n)
=

O(η4)

2(1 − η/2)2
≈ O(η4), (28)

which means that the neutral pion production processes, p+γCMB → π0+p

and n+γCMB → π0+n, can be neglected. Adopting an average cross section

σ(pγ → π+n) = 200 µb 12,14 above the pion photoproduction threshold,

we have the mean free path of interaction for the proton

λp =
1

nγσ(pγ → π+n)
= 1.21 × 1025 cm = 3.92 Mpc, (29)

and that for the neutron

λn =
1

nγσ(nγ → π+p)
= 9.04 × 1024 cm = 2.93 Mpc. (30)

It is interesting to note that the protons and neutrons change into each

other via charged pion production by the relic photons in the travel until

the nucleon energies degraded to below the GZK cutoff. There is always a
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certain amount of neutron fraction for nucleons above the pion photopro-

duction threshold, since the protons can always change into neutrons via

the charged pion photoproduction. Though the neutrons change more fast

into protons via both beta decay or charged pion photoproduction (with

effective mean free path λeff

n = lnλn/(ln + λn)), these produced protons

continue to change into neutrons if their energy is still above the pion pro-

duction threshold. As a consequence, there is always a non-trivial neutron

fraction in the nucleon cosmic rays above the GZK cutoff. Assuming that

the nucleons with energy above the GZK cutoff are from a point source

with uniform nucleon spectrum at a distance far away, the neutron/proton

ratio would soon reach the equilibrium value of λeff

n /λp ≈ 0.19 at the pion

production threshold and 0.33 at the ∆ production threshold, independent

of the neutron/proton ratio of the source.13

2.3. On the Origin of Ultra High Energy Cosmic Rays

Stecker suggested14 that the particles with energy above the GZK cutoff

may come from within the local “supercluster” of galaxies of which we

are a part. Thus, the “GZK cutoff” would not be a true cutoff, but a

suppression of the ultrahigh energy cosmic ray flux owing to the limitation

of the propagation distance, which we refer to as the GZK zone. According

to Stecker’s suggestion, the observed cosmic ray events above the GZK

cutoff come from sources within the GZK zone, i.e., not far from us in a

few tens of Mpc.

The “Z-bursts” 15,16,17 hypothesis was also introduced to account for

the highest energy cosmic ray events observed by far, but with the bursts

taking place within the GZK zone.14 The reason is that the “Z-bursts” are

from the Z-boson annihilations of the ultrahigh energy neutrino (antineu-

trino) cosmic rays with the relic neutrinos (antineutrinos) in the cosmic

background. The “Z-bursts” could produce nucleon cosmic rays beyond

the GZK energy if taking place within the GZK zone, as the energy of

the produced Z-bosons would be high enough by the collision of ultrahigh

energy neutrino beams with the relic neutrinos of non-zero mass.

The possibility that the UHECR’s above the GZK cutoff energy may in

fact be neutrinos rather than protons or nuclei is to be explored briefly in

the next section on ”PeV Particle Physics”.
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3. PeV Particle Physics

Noting that we now have evidences of observing UHECR’s near or even

above 1020 eV , we wish to address the next basic question of how such

UHECR particle initiates a gigantic shower in the atmosphere or how they

would interact with a ”detector” if it would ever be made. This leads to

what I would call ”PeV Particle Physics” (PPP), or particle physics in

the energy range of 1015 eV (PeV). It is simple to estimate the center-of-

mass squared S when a UHECR particle of 1020 eV energy interacts with

a nucleon in the atmosphere or in the hypothetical detector:

S ≡ (p1 + p2)
2 ∼= 2p1 · p2

∼= 2E1mN
∼= 2 × 1029 eV 2, (31)

giving rise to a CM energy of 450 TeV, or a half PeV, way above the

temperature for the EW phase transition. At these energies, photons and

neutrinos would not be very different in view of full electroweak unifica-

tion while supersymmetry (SUSY) might be at its full working. Quarks

inside the target nucleon or, if the UHECR particle is also a hadron, in the

UHECR would experience interactions slightly different from photons and

neutrinos and if SUSY would be the primary story at such energies such

distinction between quarks and leptons would be even smaller.

A serious study of PeV Particle Physics is much needed if the observed

UHECR’s above the GZK cutoff, or some of them, are in fact neutrinos.

Such neutrinos could come from anywhere in the Universe, way beyond

the so-called ”GZK zone”, a restriction for UHECR protons but not for

neutrinos.

Do we have a natural sources for UHECR neutrinos with energies above

1020 eV or even higher? The situation seems much better off than the neu-

trinos needed for initiating the so-call ”Z-bursts”. If a proton is accelerated

in the region of the jet or accretion disk near a supermassive black hole,

such as quasars or active galactic nuclei (AGN), there is a good reason to

believe that it could be accelerated to an energy way above the GZK cutoff

energy. Such proton, when propagating in the cosmic medium, converts

itself into a bunch of particles, including neutrinos above the GZK cutoff

energies, eventually to stablize the nucleon content against the GZK insta-

bility. These are what we call ”GZK neutrinos”, neutrinos coming from a

UHECR nucleon propagating in the cosmic medium.

So, the interactions of UHECR’s with the atmosphere or with the ”de-

tector” offer us the first glimpse of PeV particle physics in action. I suspect

that PPP will soon become a very active research area in particle physics,
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even before CERN’s LHC comes into operation.

4. Taiwan CosPA Project in a Glimpse

I would like to give our distinguished audience a very sketchy description

of the project which we are undertaking, for the sake of explaining to you

how we are engaging ourselves in the prime research area in cosmology

while offering our interested colleagues collaborative opportunities in the

near future.

The Project in Search of Academic Excellence on “Cosmology and Par-

ticle Astrophysics (CosPA)”, a multi-institutional research project21 funded

for a period of four years beginning from January 2000 by the Ministry of

Education of R.O.C. (Taiwan) and dubbed as “Taiwan CosPA Project”,

consists of five subprojects and an overseeing project and aims at building

up Taiwan’s astronomy through research efforts in the hotly-contested ar-

eas of cosmology and particle astrophysics. The total budget of the project

is at the level of about 15 million U.S. dollars over 4 Years. At the point of

this writing, we have submitted our request for funding over the subsequent

four years (2004.4 - 2008.3).

The five subprojects and their missions or science goals are described

very briefly as follows:

• Subproject No. 1: Array for Microwave Background Radiation

(AMiBA): From Construction and Operation to Data Acquisition

and Analysis (P.I.: Paul T.-P. Ho).

• Subproject No. 2: Experimental Particle Physics Studies on

Issues related to “Early Universe, Dark Matter, and Inflation” (P.I.:

W. S. Hou).

• Subproject No. 3: Theoretical Studies of Cosmology and Parti-

cle Astrophysics (P.I.: W-Y. Pauchy Hwang).

• Subproject No. 4: Frontier Observation in Optical and Infrared

Astronomy (P.I.: Typhoon Lee).

• Subproject No. 5: National Infrastructure (P.I.: Wing Ip).

On Subproject No. 1 for radio astronomy, we wish to complete, by the

end of 2003, the construction of 7-element AMiBA geared toward the mea-

surement of the CMB polarizations. While making use of the 7-element

array for scientific studies, we will be moving on to complete, by the end of

2005, the full 19-element AMiBA so that systematic SZ surveys of high-z

clusters could be conducted and accomplished well before ESO’s Planck
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Surveyor comes into operation. The 6-meter easy-to-rotate platform and

mount, with excellent pointing cabability, will be on site (Mauna Loa,

Hawaii) during the summer of 2003 and it will accommodate 19 1.2m dishes

in its full capacity.

On Subproject No. 2 for particle astrophysics, the experimental high

energy physics team based at National Taiwan University is the basic man-

power infrastructure to carry out the experiments related to dark matter,

the early universe, and/or inflation. The group has been an active player

in the KEK/Belle Collaboration on the B & CP studies - they were in the

news of major discovery, both in July 2001 and in February 2002. During

the first year of this project, the team has completed the feasibility study

of a dark matter search. Lately, their interests have switched to neutrino

astrophysics and now is attempting to build a prototype neutrino tele-

scope for the detection of very high energy cosmic neutrinos. In addition,

the group attempts to phase-in a meaningful participation of the GLAST

project (NASA / DOE), but outside the present CosPA framework.

On Subproject No. 3 for theoretical studies of cosmology and particle

astrophysics, the science goal is to make significant progresses, hopefully

some breakthroughs, in the prime area of cosmology, i.e. the physics of the

early universe. Subjects under intensive studies include CMB polarization

and anisotropy, dark energy and the accelerating universe, noncommuta-

tive spacetime and cosmology, roles of phase transitions in the early uni-

verse, and physics of ultra high energy cosmic rays (UHECR’s). Starting

from 2002, we also phase in an experimental component ”laboratory as-

trophysics”, as a new way to supplement the inadequacy of astrophysics

studies through observations or numerical simulations.

On Subproject No. 4 for optical and infrared astronomy, an agreement

between National Taiwan University and Canada-French-Hawaii Telescope

(CFHT) Corporation was ironed out in July 2001 in order that the CosPA

team will participate the construction efforts of the Wide-Field Infrared

Camera (WIRCam) and that the CosPA team will have 68 nights,over the

next six-year period, to use CFHT/WIRCam to conduct the large-scale-

structure (LSS) survey to complement the SZ survey of the AMiBA.

On Subproject No. 5 for national infrastructure, we are trying to make

the links between education and research so that there will be adequate

young manpower to sustain the growth of the astronomy as a field. Through

this sub-project, we establish, on top of the Lu-lin Mountain, an observatory

which house small research telescopes such as the TAOS survey network

telescopes.
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It is of some interest to note that CosPA’s overall scientific objectives sit

amazingly well on top of the CPU/BPA/NRC report, released April 2002

by the U.S. National Research Council. There are currently many other

projects around the world, with a scale similar to our CosPA project, such

as Center for Cosmology at University of Chicago, several distinguished

projects going on at California Institute of Technology, Kavli Institute for

Particle Astrophysics and Cosmology at Stanford University, and Research

Center for the Early Universe (RESCEU) at University of Tokyo. Cos-

mology has indeed become a hotly-contested area of forefront research in

physics and astronomy.

5. Prospects

The present Cosmos consists of about 65% ”dark energy”, 30% dark mat-

ter, and 5% baryons, all embedded in a cosmic medium of 2.73◦ K cosmic

microwave background (CMB) and 1.95◦ K cosmic neutrino background

(CνB). While we may employ conventional particle astrophysics to describe

the propagation of ultra high energy cosmic rays (UHECR’s) in the cos-

mic medium, interactions of UHECR’s with the atmosphere or the detector

would require a better knowledge of particle physics at PeV’s (”PeV par-

ticle physics). In this paper, I have described how UHECR’s may serve

as a natural bridge over which we may walk from particle astrophysics to

cosmology.

I also wish to stress that, at the turn of the century, cosmology is trans-

forming itself into an experimental science. It has become the main-stream

research in astronomy, as well as in particle astrophysics. In Taiwan, we are

joining this red-hot race through the Taiwan CosPA Project. The project,

if successfully carried out, should help us to build a world-class, research-

based, respectable astronomy in Taiwan.
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On the analogy with the Lamb shift, we study the vacuum effect that proton’s elec-
tric field interacts with virtual particles in the vacuum. We find a possible quantum
instability that triggered by an external force, proton’s electric field interacting
with virtual particles spontaneously induces a quantum force that back reacts on
the proton in the direction of the external trigger force. Such a quantum-induced
force accelerates the proton runaway, by gaining the zero-point energy from the
vacuum (∼ 10−5 eV/cm). This effect possibly accounts for the mysterious origin
and spectrum of ultra high-energy cosmic ray (UHECR) events above 1020eV, and
explains the puzzle why the GZK cutoff is absent. The candidates of these events
could be primary protons from the early Universe.

The effective Lagrangian for a proton. The Lamb shift1 shows that the en-

ergy level 2S 1

2

of the hydrogen atom spectrum is shifted upward +1008MHz,

compared with 2P 1

2

. This implies that QED vacuum effects drain the zero-

point energy to a hydrogen atom. We relate these vacuum effects to the

origin of UHECR events.

Considering a proton interacting with virtual particles in the vacuum,

we introduce (i) Ψ and Aµ describing a proton field and its gauge poten-

tial; (ii) ψq and Aq
µ describing the quantum fields of virtual fermions and

photons in the vacuum. To study this system, we start with a renormalized

lagrangian density L(x) with all necessary renormalization counterterms,

L(x) = −
1

4
(F 2 + F 2

q )+Ψ̄
[

iγµ∂µ−mp−epγ
µ(Aµ+Aq

µ)
]

Ψ

+ ψ̄q

[

iγµ∂µ −m− eγµ(Aµ +Aq
µ)

]

ψq+(c.t.), (1)

where F and Fq are classical and quantum electromagnetic field tensors, e

and m (ep and mp) and are electron(proton) charge and mass. This is a

complex interacting system, the classical fields Ψ and Aµ, quantum fields

1
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ψq and Aq
µ are coupled together. To the first order, we obtain an effective

interacting lagragian (details will be presented elsewhere):

Lext

i (x)=−̄eAext

ν Ψ̄γνΨ, ē=ep
4α2

3

(

ln
m

µ
−

7

40

)

; (2)

Aext

ν (x)=

∫

d4x′

m2
tr [SF (x−x′)γµSF (x′−x)γν ]Aµ(x′), (3)

=
1

60πm4

(

gµν −
∂µ∂ν

∆

)

(∆)2Aµ(x). (4)

In Feynman’s prescription of particles and antiparticles, Eq.(3) shows that

a pair of virtual fermion and antifermion (virtual pair) is created at one

spacetime point x and annihilates at another x′, behaving as an electric

dipole ~P in its life-time. This virtual pair couples to the classical field

Aµ(x′) of the proton at x. As a result, an induced quantum dipole field

Aext

ν (x) is created, attributed to virtual pairs, and this quantum field back

interacts with the proton as an external field Aext

µ ( ~Eext) .

Induced quantum force and instability. In the case of the proton at rest

or traveling with a constant velocity, we might conclude Aext

µ (x) ≡ 0 for

its transversality and the Lorentz invariance: Aµ(x) =
ep

4π|~x|

gµ◦, being

longitudinal in an instantaneous rest frame of the proton. However, we

have to consider the quantum nature of quantum-induced field Aext

µ (x). In

the absence of an external field, the quantum-field fluctuations of virtual

pairs and their dipole fields are entirely random-fluctuating of a time-scale

δτq ∼ 1/m in the spacetime, we do not expect any quantum-induced field

of life-time > δτq in(at) any particular direction(point) of the spacetime.

In the presence of longitudinal electric field of the proton, (i) the transverse

quantum-field fluctuations of virtual pairs and their dipole fields Aext

µ (x)

are entirely random-fluctuating of a time-scale δτq ∼ 1/m in the spacetime;

(ii) the longitudinal quantum-field fluctuations of virtual pairs and their

dipole fields Aext

µ (x), although their life-time can be larger than δτq, are

entirely spherically symmetric and total dipole field Aext

µ (x) acting on the

proton is zero. Thus, indeed we do not expect any induced quantum field

Aext

µ (x) of life-time > δτq, acting on the proton in a peculiar direction of

the instantaneous rest frame.

Nevertheless, in the instantaneous rest frame of the proton, we consider

the case that an external trigger force ~Ftri accelerates the proton for a time

interval ∆ttri � δτq. As a result, proton’s electric field ~E(x′) gets a trans-

verse component ~E
⊥

(x′), whose distribution (both value and direction) is

axial symmetric with respect to the direction of ~Ftri, as given by the Lien-
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ard Wiechert field. This transverse field induces the transverse component
~P

⊥
(x′) of quantum electric dipoles of virtual pairs at x′, ~P

⊥
(x′) ∼ ~E

⊥
(x′).

The spatial distribution of ~P
⊥

(x′) is the same as that of ~E
⊥

(x′). These

quantum electric dipoles create electric dipole fields ~Eext

⊥

(x) (4) back react-

ing on the proton at x. Summing over all contributions of quantum electric

dipoles ~P
⊥

(x′) of virtual pairs, we find that the total ~Eext

⊥

(x) acts on the

proton in the same direction of ~Ftri. This total ~Eext

⊥

(x) acting on the proton

then plays the same role of ~Ftri. This implies that quantum-field fluctu-

ations of virtual pairs, triggered by ~Ftri, could cause a quantum runaway

instability that the proton is accelerated further and further by a quantum

force ~Fq = ē ~Eext

⊥

(x) even after the trigger force is off. Such a quantum in-

stability can take place, provided quantum electric dipoles ~P
⊥

(x′) and their

electric fields ~Eext

⊥

(x) have a life-time � δτq. For the Lorentz invariance

and homogeneity of the vacuum state, the quantum-induced field ~Eext

⊥

or

F ext

µν must be constant.

In the following, we adopt a semi-classical model to qualitatively esti-

mate the value of such an induced quantum driving force in the instan-

taneous rest frame of the proton. Virtual pairs in an external field can

be possibly considered as unstable excitations of bound states of virtual

fermions and antifermions. We approximately estimate their binding en-

ergy, size and life-time. The energy scale of quantum-field fluctuations of

virtual pairs must be much smaller than the electron mass m, otherwise real

electrons and positrons would be created. We thus adopt a non-relativistic

description for virtual pairs, whose size is about 2

αm , binding energy ∼ α2m
2

.

This indicates the size of electric dipoles |d| ∼ |x− x′| ∼ 2

αm , and ~P = |e|~d

in Eq.(3). The cross-section(probability) of the annihilation and creation

of such a virtual pair is about π( α
m )2. The life-time of such a virtual pair

is then δτp ∼ 2

α5m = 6.2 · 10−11sec. This indicates the life-time of quantum

electric dipole ~P
⊥

and field ~Eext

⊥

(x) is δτp ∼ 2

α5m , which is much larger than

δτq ∼ 1

m . Using ~P
⊥

· ~E
⊥

. e2/(4π|d|), we can estimate | ~E
⊥

| . |e|/(4π|d|2).

The large wavelength modes k of proton’s gauge field Aµ are sensitive

to the low-lying states of virtual pairs of size ∼ 2

αm . This suggests k ∼ αm
2

in Eq.(4) and the infrared cutoff µ ∼ αm
2

in Eq.(2). The amplitudes of the

induced quantum dipole fields Aext

µ and ~Eext are approximately given by,

Aext

µ '
α4

960π
Aµ; ~Eext

⊥

'
α4

960π
~E

⊥
. (5)

Summing over the angular distribution of virtual pairs, we obtain the spon-
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taneously induced quantum force:

~Fq =
δE

δ~x
= ē ~Eext

⊥

' 2.82 · 10−5(eV/cm)~u, (6)

and its direction ~u(|~u| = 1) is kept in the same direction of proton’s accel-

eration. The life-time of this induced quantum force is δτp ∼ 2

α5m � τq,

and it seems that the quantum instability ought to occurs. Eq.(6) holds

for any charged particles and can be experimentally tested in a laboratory.

The estimations and considerations are still very qualitative and specula-

tive, need to be further improved and verified. It is highly deserved to have

a quantitative computation of this quantum-induced force and instability.

Vacuum energy gain and lost. We turn to discuss Eq.(6) from the energet-

ical point of view. In the absence of any external field, the quantum-field

fluctuations of virtual pairs are entirely random in the spacetime. This

determines the maximum value of the zero-point energy. However, in the

presence of a proton and its external field that couples to virtual pairs,

the quantum-field fluctuations of virtual pairs are re-oriented towards the

direction of the external field, so that the zero-point energy is reduced.

The variation of the zero-point energies due to the longitudinal compo-

nent of the external field dissipates back to the vacuum and the external

field. While, the variation of the zero-point energies due to the transverse

component of the external field drains to the proton as a recoiling effect.

This recoiling effect is realized by an induced quantum field Aext

µ (3) back

reacting on the proton. The re-orientation of quantum-field fluctuations

of virtual pairs towards external field’s direction takes place during their

life-time δτp ∼ 6.2 · 10−11sec. (corresponding to 1.86cm). The zero-point

energy variation δε ∼ α5m = 5.2 · 10−6eV, given by the Heisenberg uncer-

tainty relationship, consistently with the rate (6) of the zero-point energy

variation.

We discuss a proton passing through the vacuum. After triggered, the

proton driven by the quantum-induced force moves from one spacetime

point to another, virtual pairs are involved in interacting with the transverse

component of proton’s electric field, more and more the zero-point energy

drains into the proton. As a consequence, the constant quantum-induced

force, which is rather analogous to the Casimir force, is built to accelerates

the proton, as if the proton gets a continuous recoil from the vacuum and

rolls down along a potential with a very small slop ∼ −10−5eV/cm. In this

spontaneous process, the proton gains the zero-point energy and the vac-

uum reduces its zero-point energy in such a way that the whole interacting
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system of the vacuum and proton minimizes its interacting energy. This

causes the energetically favourable instability and accelerating the proton

runaway.

However, any other trigger forces ~F ′

tri acting on the proton can alter

the direction of the quantum-induced force ~Fq, since the later always keeps

in the same direction of acceleration of the proton. Let us consider the

following case: a proton driven by ~Fq (6) moves in velocity ~v that is in

the same direction of ~Fq; a trigger force ~F ′

tri acts on such a proton in the

opposite direction of ~Fq and |~F ′

tri| > |~Fq|. The direction of ~Fq is altered

to the direction of ~F ′

tri. After the trigger force ~F ′

tri is off, the direction of
~Fq turns out to be opposite to the direction of proton’s velocity ~v. This

causes the de-acceleration of the proton, Eq.(6) is negative for energy-lost,

indicating that the kinetic energy of the proton drains back to the zero-

point energy of the vacuum. In general, this happens for ~Fq · ~F ′

tri < 0

and |~F ′

tri| > |~Fq|. Trigger forces ~Ftri acting on protons are attributed to

all real particles and fields, rather than virtual particles in the vacuum.

With respect to a proton, these trigger forces are totally random in the

spacetime. This indicates that in our Universe, some protons gain the zero-

point energy from the vacuum, whereas others instead lose their kinetic

energy to the vacuum, both directions are equally probable and none of

them is preferential. Our Universe is not continuously heated up by gaining

the zero-point energy of the vacuum.

To discuss the energy conservation in such an spontaneously induced

process of the matter and vacuum interaction, we would like to first take

the Casimir effect (force) as an analogue. The Casimir force(vacuum) drives

two separating plates moving closer and closer at the cost of the zero-point

energy of the vacuum. On the other hand, any external force(matter) drives

against the Casimir force to separate two plates moving further and further,

and makes an energy-drain back to the vacuum. The induced quantum force
~Fq accelerates particles at the cost of the zero-point energy of the vacuum,

and de-accelerates particles at the cost of the kinetic energy of particles.

Energy-drain goes in bath directions, back and forth in between the matter

and vacuum. The total energy of our Universe is conserved.

UHECRs. Based on the rate of energy-gain (6) and considering those pri-

mary protons that the energy-gain prevails in their traveling, we give a very

preliminary discussion on UHECRs. With the present size of the Universe

∼ 1028cm, protons can possibly reach the energy more than 1021eV, if they

travel a distance D of 1027 −1028cm before reaching us. In such a scenario,



6

primary protons, the candidates of UHECR events, could be originated

from the astrophysical sources of large redshift z, like Quasars, or from the

early Universe, and no particular arrival direction can be identified.

The GZK cutoff does not apply to such a process of protons gaining

energy bit by bit on their way to us. The reason is that protons, beyond

∼ 50Mpc from us, have an energy much smaller than the energy threshold

1020eV. This explains the absence of the GZK cutoff in UHECR events.

However, when protons near us reach the energy 1021eV, the GZK effect

acts and average energy loss is about (10−5−10−6)eV/cm2, which is roughly

in the order of energy gain (6). This implies that ultra high energy protons

would not have large possibilities to exceed the energy 1022eV.

We set the origin of a spherical coordinate at the center of a primary

proton’s source, whose size is R
◦
, number-density n

◦
and mean outgoing

velocity v
◦
. The total flux out of the source is 4πR2

◦

n
◦
v

◦
. The Earth is

located at R distance away from the source. The total flux passing through

the spherical surface 4πR2 is 4πR2nv, where n is the number-density of

UHECR protons and v the mean velocity. We have the conservation of

total numbers of UHECR protons:

4πR2nv = 4πR2

◦

n
◦
v

◦
(1 + z)−3, (7)

where the factor (1+ z)−3 is due to the effect of expanding Universe. Thus

we obtain the flux of UHECRs measured on the Earth,

Φ = 4πR2

◦

n
◦
v

◦
(1 + z)−3

1

4πR2
∼

1

R2
. (8)

Due to the distribution of intergalactic magnetic field and/or galactic wind

etc, protons normally travel in a zigzag way with a mean-free path λp. The

distance D that protons travel is certainly larger than R. In one extreme

case, protons travel to us in a straightforward line, D = R. While in

another extreme case, protons travel in a way of random walk, D = R
λp

R.

This gives rise to the spectrum of UHECR flux observed on the Earth:

Φ(E) ∼
1

R2
∼

1

Eγ
1 ≤ γ ≤ 2, (9)

where γ = 2 is for proton traveling in a straightforward line (λp = R) and

γ = 1 in random walk.
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The High Resolution Fly’s Eye collaboration has measured the spectrum of cosmic
rays above 1017 eV using the air fluorescence technique. It is now possible to
observe structure within this spectrum including a steep fall which is consistent
with a GZK cut-off. This steep fall is inconsistent with measurements made by
the AGASA ground array detector which indicates a continuing spectrum above
1019.5 eV. A difference in energy scales between the experiments could be part of
the problem. A new collaboration, FLASH, has been formed to re-measure the
fluorescence yield and its contribution to the uncertainty in the energy scale. A
test run successfully demonstrated the feasibility of making these measurements at
the Stanford Linear Accelerator Center. A program of three short experiments (E-
165) has been approved by the SLAC experimental program advisory committee
and the experiment has now been scheduled for beam time.

1. Introduction

The cosmic ray spectrum is steeply falling and relatively featureless. Over

many orders of magnitude it follows a simple power law dependence: E−2.8.

What structure there is presents itself near 1016 eV, “the knee”, where the

spectrum becomes slightly more steep and again at 1018.5 eV, “the ankle”,

where it becomes slightly less steep. The question remains; Does it end?

After the discovery of the Cosmic Microwave Background (CMB) it was

quickly realized that collisions between Ultra High Energy (UHE) cosmic

rays and these low energy (2.7 K) photons would result in photo-pion pro-

duction (via a delta resonance). This should render the universe essentially

opaque to UHE cosmic rays beyond the mean free path in the CMB: ap-

proximately 100 Mpc. Therefore, we expect to observe a cut-off in the

cosmic ray spectrum near 1.6×1019 eV. Events observed above this energy

1
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must come from “nearby” sources. This is known as the Greisen-Zatsepin-

Kuzmin (GZK) cutoff. 1,2

In 1991, the Fly’s Eye experiment unexpectedly observed an event with

an amazing 3.2×1020 eV, well above the GZK limit. The Volcano Ranch,

Haverah Park, and Yakutsk experiments each also observed one “super-

GZK” event. More recently, the AGASA (Akeno Giant Air Shower Array)

experiment observed a significant flux of “super-GZK” events. With a

significantly higher exposure, AGASA observed ten “super-GZK” events.

The flux observed above the GZK limit in these experiments appears to

be inconsistent. Is this a resolution problem, an energy scale problem, or

something else?

2. Detector Description

The Fly’s Eye and its successor the High Resolution Fly’s Eye (HiRes) both

use the earth’s atmosphere as their calorimeter. When a cosmic ray enters

the atmosphere, it collides with an air molecule. In this hard collision,

many secondary particles are produced. These, in turn, go on to collisions

of their own. Thus, a cascade of particles or Extensive Air Shower (EAS)

potentially containing many billions of particles, results. As the charged

particles of the shower pass through the atmosphere, they excite the gas.

When the molecules return to their ground state, they emit fluorescence

light, mostly in the ultra-violet. (See figure 1.) The fluorescence light

is emitted isotropically, so that if one looks, a track glowing in the UV

develops at the speed of light.

The HiRes experiment employs an array of telescopes to observe these

tracks. (See figure 2.) Each telescope uses a 5 m2 spherical mirror to gather

light and focus it onto a 16×16 array of hexagonal PMTs in a hexagonal

close-pack AKA honeycomb geometry. Each PMT subtends 1◦ of sky. The

PMTs observe events though a 300-400 nm UV band-pass filter which trans-

mits the strongest air fluorescence signals while filtering out background

star and man-made light.

Like its predecessor, the High Resolution Fly’s Eye is located at the US

Army’s Dugway Proving Ground in Utah’s west desert. The observatory is

composed of two detector sites separated by 12.6 km. The first site, HiRes-

I, contains 22 telescopes arranged in a single ring geometry observing nearly

2π in azimuth and between 3◦ and 17◦ in elevation. Many of these telescopes

were previously used in the HiRes prototype and they are instrumented with

an older version sample and hold electronics. The 5.6 µs integration period
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Figure 1. The fluorescence spectrum for air at sea level.
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of these electronics is long enough to contain signals from all reconstructible

events. The current HiRes-I site became operational in the spring of 1997.

The second site, HiRes-II, is composed of 42 telescopes forming two rings.

It observes nearly 2π in azimuth and between 3◦ and 31◦ in elevation.

HiRes-II was completed late in 1999; considerably newer, these telescopes

are instrumented with 100 ns FADC electronics.

With smaller pixels and larger mirrors than the Fly’s Eye, the High

Resolution Fly’s Eye has an order of magnitude greater aperture than the

original Fly’s Eye or the present AGASA ground array (1000 km2 str vs.

100 km2 time averaged aperture). It also has significantly improved energy

and shower profile resolution. It was designed for stereo observation of

cosmic ray showers with energies above 3×1018 eV. The physics goals are to

measure the cosmic ray spectrum and chemical composition of the incoming

particles in addition to searching for point sources and/or anisotropy and

Ultra High Energy neutrinos, gamma rays, and other exotic particles. For

the present purposes, we concentrate on the Ultra High Energy Cosmic Ray

(UHECR) spectrum and then only the monocular results (events observed

by only one HiRes site), for which we have accumulated significant statistics.

A typical event is shown in figure 3.
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Figure 2. Some pictures of the HiRes detectors. Top left is a typical HiRes building
housing two telescopes. Bottom left, one can see a mirror in the background and a PMT
array in the foreground. The front side of the PMT cluster can be seen on the right
where the UV filter has been opened to show the tubes.

3. Data Collection and Analysis

The HiRes detector collects data on clear, moonless nights and has a duty

cycle approaching 10%. The current HiRes-I data set consists of events

from the date of the detector’s turn-on in June of 1997 through September

of 2001. It contains 3100 hours of data, 2410 hours of which are “good

weather” as identified by the operators. During that time, over 125 million

triggers were written, however these mostly consist of noise and atmospheric

monitoring data. Amongst these, 10,968 track candidates were found after

cuts such as minimum track distance, minimum light level, and observation

of the shower maximum.

Due to the limited angular coverage of HiRes-I, it is unable to completely

reconstruct the event geometry using timing information alone. However,

the HiRes Prototype, which had extensive zenith angle coverage, has pre-

viously shown that while the depth of shower maximum fluctuates, the

shower shape has little variation. 3 That measurement also found that the
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Figure 3. An event display for a typical stereo HiRes event. Top left, is the event
display for HiRes-I. The center of the picture is up. The ring is what the portion of the
sky which the detector sees. The outer edge is 3 degrees above horizon, the inner edge
is 17 degrees above horizon. The top of the ring is north and the right side is east. The
track can be seen, bottom right. The same event as seen by HiRes-II is top right. Below
is a composite of what the two sites see overlayed with the local topology.

shower profile was a good fit to a parameterization previously presented

by Gaisser and Hillas. 4 Using the additional constraint of the expected

shower shape allows HiRes-I data to be reconstructed with significantly

smaller uncertainties. We call this a profile constrained fit (PCF). After

reconstruction and cutting on minimum track length, maximum Čerenkov

light contamination, 5264 showers remained.

The HiRes-II data set covers December 1999 though May 2000, a period

where the trigger conditions were stable. The analysis for these events is

similar, except that the longer angular tracks and the improved timing res-

olution provided by the FADC system, the events can now be reconstructed

based on timing information - the profile constraint is no longer necessary.

For this period, 781 events remained after cuts. 5,6

Monte Carlo (MC) studies were performed to assess the reliability of
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the PCF method. The simulated events were subjected to the same se-

lection criteria and cuts imposed on the data. Not including atmospheric

fluctuations, an RMS energy resolution of better than 20% was seen above

3 × 1019 eV. However, the resolution degrades at lower energies to about

25% at 3 × 1018 eV. These MC results were cross-checked by examina-

tion of a small set of stereo events where the geometry is more precisely

known. Comparing the reconstructed energies and geometric parameters

using monocular and stereo geometries, we obtained resolutions in good

agreement with those seen in the MC.

The MC simulation is also used to calculate the detector aperture. Here

the simulated events were subjected to the same reconstruction algorithm

and cuts applied to the data. To verify the reliability of this calculation, we

compared, at different energies, the zenith angle (θ) and impact parameter

(Rp) distributions, which define the detector aperture. The MC predic-

tions for these are very sensitive to details of the simulation, including the

detector triggering, optical ray-tracing, signal/noise, and the atmospheric

modeling. We saw excellent agreement between data and MC. For example,

we show the comparison of Rp distributions at three energies in Figure 4.

Figure 4. Comparison of HiRes-I simulated (histogram) and observed (points) Rp distri-
butions at (a) 1018.5, (b) 1019.0, and (c) 1019.5 eV. The MC distributions are normalized
to the number of data events.

The monocular reconstruction apertures are shown in figure 5; both

HiRes-I and II approach 104 km2 steradian above 1020 eV. We restrict our

result for HiRes-I to energies > 3×1018 eV; below this the profile constraint

technique is unstable. Due to longer tracks and additional timing infor-

mation, the RMS energy resolution for HiRes-II remains better than 30%

down to 1017 eV. However, due to the significantly shorter running time,

the HiRes-II data sample becomes statistically depleted above 1019 eV. We

deal with this problem by combining the two sets of monocular data to get
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Figure 5. Calculated HiRes monocular Reconstruction aperture in the energy range
1017

− 3 × 1020 eV. The HiRes-I and -II apertures are shown by the squares and circles,
respectively.

one spectrum which stretches from near 1017 eV to beyond 1020 eV.

We calculated the cosmic ray flux for HiRes-I above 3 × 1018 eV, and

for HiRes-II above 2×1017 eV. This combined spectrum is shown in Fig. 6,

where the flux J(E) has been multiplied by E3. In the region of overlap, the

HiRes-I and HiRes-II detectors are in excellent agreement. For comparison,

current spectrum from the AGASA experiment7 is also shown. The error

bars represent the 68% confidence interval. The HiRes-I flux is the result

of two nearly independent analyses 8,9, which yielded essentially identical

flux values.

The largest systematic uncertainties are the absolute calibration of the

detectors (±10%) 10, the yield of the fluorescence process (±10%) 11, the

correction for unobserved energy in the shower (±5%) 12,13, and the model-

ing of the atmosphere. 14 To test the sensitivity of the flux measurement to

atmospheric uncertainties, we generated new MC samples with atmosphere

altered by ±1 RMS value. The MC was then reconstructed using the ex-

pected average atmosphere. We found a ±15% change which represents a

conservative over-estimate of the one sigma uncertainty from atmospheric

effects. If we add in quadrature this uncertainty to the others mentioned

above, we find a net systematic uncertainty in J(E) of 21%. This un-

certainty is common to the fluxes for HiRes-I and HiRes-II. There is an

additional relative calibration uncertainty between the two sites which is

less than 10%. 5

Evident in the figure is a dip near an energy of 5×1018 eV and a subse-
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Figure 6. Combined HiRes monocular energy spectrum. The squares and circles rep-
resent the cosmic ray differential flux J(E), multiplied by E3, measured by HiRes-I and
HiRes-II, respectively. The line is a fit to the data of a model, described in the text, of
galactic and extra-galactic cosmic ray sources. The AGASA spectrum shown is taken
from their Internet site[7].

quent flattening of the spectrum. The HiRes data is in disagreement with a

constant power law. Fitting the slope at lower energies and extrapolating,

one would expect to find 19 events above 1019.8 eV where we only observe

four, a Poisson probability of 1.4×10−4. This is in disagreement with the

AGASA spectrum which seems to indicate a continuing power law. In ad-

dition, the dip structure is at a higher energy in the AGASA data and the

overall normalization is higher in the AGASA data.

The discrepancies may be partially due to different energy scales. Scal-

ing the AGASA data by 0.79 causes it to virtually overlay the HiRes data.

Ground array experiments such as AGASA relate the surface particle den-

sity in an EAS measured about 1 km from the core to the primary particle’s

energy via a Monte Carlo calculation. The distance is chosen as the point

at which the MC fluctuations are minimized. The energy scale for an air

fluorescence measurement is much more direct. It depends upon knowledge

of the air fluorescence efficiency and the atmospheric transmission of the

light to the detector.
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An uncertainty in the fluorescence yield folds directly into energy un-

certainty in the HiRes measurement. In addition, as data continues to

accumulate and statistical uncertainties are reduced, it becomes important

to further reduce the systematic uncertainties. One effort to reduce the

systematic uncertainties is a new measurement of the fluorescence yield.

HiRes currently traces its measurements back to the spectrum of Bun-

ner. 15 Kakimoto et al. measured an overall fluorescence yield over the

300-400 nm range as well as the strength of a few lines. 11 Since Kakimoto

only measured a few lines, HiRes monocular analysis uses the spectral shape

provided by Bunner, with an overall yield (between 300 and 400 nm) nor-

malized to Kakimoto.

At the 2001 International Cosmic Ray Conference in Hamburg, Ger-

many, Nagano announced new fluorescence yield measurements which have

recently been submitted for publication. 16 In this paper, the authors state

that the photon yield which they believe HiRes is using is 13% smaller

then their current measurement. Nagano et al. also disagree with previous

measurements on specific spectral lines by factors of 2.8 - 3.5. Specifically,

in this measurement, the 390 nm line is significantly less pronounced. The

effect of this on the HiRes analysis is non-linear due to the λ4 dependence

of atmospheric attenuation. At 30 km, a 25% energy shift can result if

there is a 40% reduction in light in the 390 nm line.

In addition to the potential problems pointed out by Nagano, there are

two further weaknesses. The previous measurements of the fluorescence

yield indicate that the yield is proportional to dE/dx, however, there were

no measurements in the critical 100 keV - 1 MeV region. Finally, the

pressure dependence is not well measured below 100 Torr. As a result of

these uncertainties, some members of the HiRes group formed a collabora-

tion with the Stanford Linear Accelerator Center, Laboratory Astrophysics

group and the Taiwan Center for Cosmology and Particle Astrophysics. We

proposed to make a new detailed measurement of the fluorescence yield and

spectrum. A first pass of this, mostly a proof of principle, was performed

in June 2002 as SLAC test T-461.

SLAC is an ideal place to perform this measurement since it can pro-

vide a very high intensity electron beam. Firstly, important nitrogen flu-

orescence transitions have been demonstrated to be inaccessible to proton

or alpha excitations. Electrons are required to study all of the relevant

transitions. An EAS produced by a cosmic ray of HiRes energies is a su-

perposition of many electromagnetic sub-showers. By providing an electron

bunch composed of 109 electrons each at 28.5 GeV, SLAC mimics an EAS
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from a ≈1020 eV particle. (It reaches HiRes energy scales.) Finally, most

of the energy in an EAS at shower maximum is carried by electrons near

the critical energy in air (≈100 MeV). This can be reproduced by dumping

the SLAC beam into a thick target.

For T-461, we chose to simply measure the overall yield between 300

and 400 nm for a variety of gases and pressures. The measurements were

performed in the Final Focus Test Beam at SLAC. The beam is of mm

scale size and ps length. The energy of the electrons is 28.5 GeV and the

pulse rate is 10 Hz. Into this beam, we put a vacuum vessel instrumented

with two PMTs. Each PMT was fitted with a HiRes 300-400 nm UV band

pass filter. On the opposite side of the tank from the PMTs were UV LEDs

which could be pulsed to monitor PMT stability and gain. Two blind PMTs

were also packed into the beam line next to the tank PMTs for the purpose

of measuring the background. A sketch of the vessel is shown in figure 7.

Figure 7. A sideview sketch of the SLAC T-461 fluorescence yield chamber. The beam
enters via a vacuum window on the left and exits via another window on the right. The
gas pressure and composition were controlled from outside the beam line. There were
four side ports into the vessel. Two were instrumented with PMTs and two housed
LED’s which were flashed out of sync with the beam in order to monitor PMT gain and
stability.
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Data was collected during two, one week periods in June 2002. There

were 707 individual data runs each with 2500 - 5000 events or beam pulses.

Approximately two million events were recorded. The overall yield was

measured between 300 and 400 nm. The pressure dependence for this same

wavelength range was measured between 3 and 760 Torr. The average

lifetime of the excitations was measured as a function of pressure. Mea-

surements were made for nitrogen, air, nitrogen-air mixes, and ethylene

(which does not fluoresce and hence is a background measurement).

In addition to the PMT stability, PMT high voltage, gas composition

and pressure, vessel temperature, beam charge etc... were monitored. Life-

time measurements were made on the excitations to verify that indeed we

were seeing fluorescence. (See figure 8) A preliminary measurement of the

overall yield as a function of pressure is shown in figure 9. Despite their

rough nature, the results are consistent with expectations based on Kaki-

moto and Nagano.

Figure 8. The two plots on the left show the lifetime of the decay in air at 750 torr
(top) and 9.8 torr (bottom). On the right, the exponential decay constant is plotted
as a function of pressure in torr. This is a good check that one is actually measuring
fluorescence light.

Estimates of the larger uncertainties include the PMT calibration and
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Figure 9. Preliminary results from the test run T-461. The fluorescence efficiency is
plotted for nitrogen (circles) and air (squares) as a function of pressure from 10 - 760
torr. This is the integrated light through a 300 - 400 nm band bass filter with a beam
charge of 1.25×109 e−/pulse.

spectral assumption (∼10%), beam charge (∼5%), ADC to beam current

conversion (∼3%), and geometrical acceptance (∼3%). The total uncer-

tainty is of order 15-20%.

Having successfully demonstrated the detectability of nitrogen and air

fluorescence in a thin gas chamber at SLAC, the collaboration submitted a

proposal to the SLAC experimental program advisory committee (EPAC).

The FLuorescence in Air Showers (FLASH) proposal was for a two part

experiment - a thin target part and a thick target part. The objectives of

FLASH are a) to produce a spectrally resolved yield to better than 10%, b)

to measure the dependence on electron energy, c) to determine the effects of

atmospheric impurities and d) to observe the showering of electron pulses

in air equivalent material (Al2O3). FLASH/E-165 was presented to the

EPAC in November of 2002 and approved. It was recently scheduled for

beam time in September 2003 as well as February and June 2004.

In the thin target portion of the experiment, the yield will once again

be studied using a variety of gases. These will again include air and ni-

trogen, however impurities of H2O, CO2, Ar, etc... will also be studied.
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The wavelength dependence will be measured using filter wheels and a va-

riety of narrow band filters to zoom in on the predicted emission lines. A

spectrometer may also be used.

In the thick target stage, various thicknesses of alumina Al2O3, will

be inserted into the beam to study the shower as it develops. The effects

of low energy (<1MeV) electrons will be studied as will proportionality

to dE/dx. Comparisons will be made to various shower models (EGS,

GEANT, CORSIKA) to determine how closely they predict fluorescence

light levels. In addition, we will measure how closely fluorescence yield

tracks shower development.

Recently, several other groups interested in the fluorescence technique

are pushing new initiatives to better understand air fluorescence. A variety

of sources, energies, and techniques are under consideration. The efforts

are largely complementary. A first international workshop to discuss these

efforts was held in October, 2002 at the University of Utah. A follow-up

meeting is already under consideration for Germany in October, 2003.

4. Conclusion

The High Resolution Fly’s Eye has made monocular measurements of the

UHE cosmic ray spectrum and observes significant structure in that spec-

trum. In particular, it sees a sharp decrease in the event rate at the highest

energies. This is consistent with GZK cut-off expectation. It is inconsis-

tent with the continuing spectrum which the AGASA experiment appears

to observe. The collection of additional statistics are required to confirm

this, especially in stereo mode where the geometry is precisely determined.

In an effort to resolve the discrepancy with AGASA and to decrease the

systematic uncertainties associated with the fluorescence yield, a fluores-

cence yield experiment (FLASH) was proposed. FLASH aims to achieve

an accuracy better than 10% in the total fluorescence yield and in the indi-

vidual spectral lines. FLASH will be realized in two stages: thin and thick

target modes. FLASH was approved by the SLAC EPAC and was recently

scheduled for beam time.

We hope that FLASH will help to shed light on the apparent differences

between HiRes and AGASA, and provide reliable information for future

fluorescence-based UHECR experiments.
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AN OVERVIEW OF ASTROPHYSICAL ACCELERATORS

FRANK C. JONES

NASA/Goddard Space Flight Center Greenbelt, MD USA

There have been many acceleration mechanisms proposed to explain the presence
of energetic charged particles that appear to fill the observable universe. All of
these processes share an underlying similarity and they also appear to share a
common upper energy limit that the charged particles are able to attain. I will
discuss some of these mechanisms, several of which are presented at this conference
session, and point out there similarities and argue that all of them are subject to
the same scaling law that limits their maximum attainable energy (the Hillas rule).

1. Introduction

In astrophysics there are two quite different scenarios that are invoked in

the various theories of the origin of ultra high energy cosmic rays. One,

called the Top Down picture describes the origin of such particles as the

decay products of exotic particles or topological defects in space left over

from the creation of the universe. Their energy is high because their parent

particles were extremely massive and a great deal of energy was available in

the decay. The Top Down scenario may be true but it is not what we usually

mean by ”acceleration”. I will therefore devote my discussion to the Bottom

Up scenario in which charged particles start at nominal energies and are

subsequently accelerated to high energies by normal physical processes. I

will, further, consider only charged particles because it is almost universally

believed that energetic neutral particles are created in collisions of even

more energetic charged particles.

2. What accelerates a particle?

Starting with the Lorentz force equation

~F = e( ~E +
~v

c
× ~B) (1)

we can compute the work done on a charged particle

~F · ~v = e ~E · ~v (2)

1
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In a conducting plasma at rest ~E = 0 but in a frame where the plasma

moves with velocity ~U we have:

~E = −
~U

c
× ~B (3)

and rearranging terms we obtain

~F · ~v = −e

(

~U

c
× ~B

)

· ~v

= ~U ·

(

e
~v

c
× ~B

)

=
dE

dt
.. particle (4)

and we see that the particle gains energy from the motion of the plasma
working against the v × ~B force. The acceleration is, therefore, equivalent

to a particle bouncing off of a blob or cloud of plasma with an embedded

magnetic field. Such an interaction may be considered as a simple elastic

(in the plasma frame) scattering.

Figure 1. Particle scattering in disordered magnetic field in a plasma cloud.
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Figure 2. Scattering in Fig. (1)may be abstracted as a single scattering

3. Stochastic Acceleration

If U represents the speed of the moving clump of magnetic field and δw is

the change of energy of a particle with energy w on colliding with a cloud,

δt is the time between scatterings and λ is the mean free path between

scatterings we have

δw

w
=

(

U

c

)2

; δt =
λ

v
(5)

and α, the time rate of energy gain is given by

α =
1

w

δw

δt
=

v

λ

(

U

c

)2

. (6)

If we consider that a particle will continue to gain energy until it diffuses

out of the region, of size L in which the moving magnetic scatterers are

acting it will be accelerate, on the average, for a time T where

T =
3L2

vλ
. (7)

Then the theory of Fermi gives the resulting spectrum as

j = w−ν (8)

where

ν = 1 +
1

αT
= 1 +

1

3

(

UL

cλ

)

−2

. (9)
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Clearly we need UL
cλ ≥ 1 or the exponent of the spectrum, ν will become

large and the spectrum will be effectivly cut off. Since the mean free path

must be at least as large as the gyroradius we have

λ = ηrg = η
γmcv

ZeB
≈ η

E

ZeB
(10)

where η is equal or greater than 1. This gives

Ze
U

c

BL

η
≥ E (11)

which is known as the Hillas limit.1

4. Diffusive Shock Acceleration

Shocks propagating through a diffusive (in the sense of Section 3) medium

accelerate particles by scattering them in a more ordered fassion than in

stochastic acceleration. In Fig. (3) we see how a particle scatters from one

scattering to another and although the scattering centers are not moving

at random with respect to each other whenever the particle crosses the

shock it experiences converging flow and hence a compressiv heating or

energization.

In a diffusive shock the e-folding time for acceleration is given by κn/U2

where κn is the particle diffusion coefficient parallel to the shock normal. If

the lateral extent of the shock is L the time required for a particle to diffuse

to the shock’s edge and escape is given by L2/κp where κp is the particle

diffusion coefficient pependicular to the shock normal. Clearly when the

escape time becomes equal to or less than the acceleration time the prosess

ceases to be effective and the spectrum is cut off.

This will occur when

κn/U = L2/κp (12)

rearranging gives

κnκp ≈ κ
⊥

κ
‖

= L2U2 (13)

Since it can be shown that

κ
⊥

κ
‖

=
κ2

⊥

r2

g

λ2
≈ v2r2

g (14)

Eqn.(13) becomes

rg = L

(

U

v

)

≈ L

(

U

c

)

(15)
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Figure 3. Particle scattering back and forth across a shock.

and since rg = γmcv/ZeB where Z is the nuclear charge number we obtain

the final expression

γmc2 = wmax = Ze
U

c
BL (16)

which is just, once again the Hillas limit.

5. General Diffusive Acceleration

We saw that in stochastic acceleration

1

w

δw

δt
∝

(

U

v

)2(

λ

v

)

(17)

and in diffusive shock acceleration the energy gain per shock crossing (SC)

is

1

w

δw

δ(SC)
∝

(

∆U

v

)

≈

(

U

v

)

(18)

but the rate of shock crossing is given by

δ (SC)

δt
≈ (U/v)

(

λ

v

)

(19)
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and thus

1

w

δw

δt
∝

(

U

v

)2(

λ

v

)

(20)

so even though the energy gain rate per shock crossing is first order in

U/v the gain per unit time is second order in this quantity and hence the

two processes proceed at similar rates. The main advantage that shock

acceleration has over stochastic acceleration that the flow velocities are

ususlly much faster (super Alfvénic) in shocks while the scattering centers

in stochastic accleration usually are Alfvén waves and hence travel with the

Alfvén speed.

6. Colliding Galaxies

Some believe that the highest energy particles are accelerated by the col-

lision of galaxies where particles are trapped in the compressing magnetic

fields of the galaxies. If the galaxy’s velocity is greater than the Alfvén

speed in the intracluster medium a bow shock will form. Further, if the

medium is turbulent enough the diffusion scale will be smaller than the

galaxy separation distance and single shock acceleration will be the pic-

ture.

In a typical case we will have

Emax = L100U300ZB3 × 1017 eV (21)

where

L = L100 × 100 kpc

U = U300 × 300 km/sec

B = B3 × 3 µg (22)

Cesarsky and Ptuskin proposed 2 a ”low entropy model” in the Calgary

ICRC. Turbulence is assumed low and diffusion scales are much larger than

the separation distance of the galaxies. In this picture particles go back

and forth between the magnetic fields of the individual galaxies and are

accelerated by the electric fields induced by the moving magnetic fields,

E = BU/c.

We have, therefore, the rate of momentum gain given by dp/dt = ZeE =

ZeBU/c. According to Cesarsky and Ptuskin the particle will stay in the

system until it drifts across the size of the galactic field so the acceleration

time is limited to T = L/vd where the drift velocity due to the curvature
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Figure 4. Particle orbit trapped between colliding galaxies.

and gradients of the magnetic field is approximately given by vd ≈ crg/L.

Thus pMAX = ZeBL2U/c2rg Inserting the expression given above for rg

this may be solved to obtain

EMAX = ZeBL

(

U

c

)1/2

(23)

It would appear that, due to the fact that the term U/c appears under

the square root, we have made a considerable gain in efficiency. It is true

that the coherent type of acceleration described here is faster than the shock

acceleration process which must rely on scattering of the particles to bring

them back to the shock for further acceleration. This would seem to indicate

that smooth, low turbulence, structures are better accelerators; they are if

they are carefully designed. However, in nature, magnetic fields are rarely

such good trappers of charged particles especially if they are dynamic. And,

if the configuration is a trapping configuration, the question arises as to

how the particles go there in the first place. In fact such configurations will
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usually squirt out particles at about the particle speed v.

If the fields of the two approaching galaxies are aligned the geometry

is a mirror and particles will reflect out of the system with vd ≈ c. If,

on the other hand, the fields are opposed there is a neutral line or sheet

and the scale of variation of the field is rg rather than L and once again

vd ≈ crg/rg = c.

Employing this value yields:

pMAX =

(

ZeB
U

c

)(

L

c

)

(24)

and

EMAX = ZeBL
U

c
(25)

Which is just the expression we obtained earlier for a diffusive shock.

7. Rotating Black Holes

It has been pointed out by several authors 3,4 that a maximally spun up

Kerr black hole of ≈ 109 solar masses threaded by an externally produced

magnetic field of ≈ 104 g would develop an electrical potential of ≈ 1020

volts. This is obtained by analyzing Maxwell’s equations with simple di-

mensional arguments. In standard units where the black hole’s mass and

specific angular momentum, M and a respectively have the dimension of

length and ac
M2 has the dimension of frequency we have the approximation

~∇ × ~E =
∂ ~B

∂t
=⇒

E

M
≈

ac

M2
B (26)

assuming a ≈ M we have

V = E · M = acB

= 4.4 × 1020B4M9 eV (27)

where B = B4 × 104g and M = M9 × 109M
�

Some 4,5,6 argue that this

potential is available to accelerate charged particles along the magnetic

field lines thus producing the ultra high energy cosmic rays. Most authors

,however, assume that this electric field will have no component parallel to

the magnetic field since it would be shorted out by the ambient plasma to

produce the frozen field or degenerate field configuration.7

One can estimate the charge density required to short out the parallel

electric field component. We recall that the magnetic field that threads the
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black hole’s (stretched) event horizon must be produced by currents exterior

to the black hole. This requires a plasma with sufficient charge density to

support the currents. This is given by the following considerations

~∇ × ~B = µ0
~j ≈

B

M
(28)

j ≈ ρcv =⇒ ρc ≈
B

µ0vM
(29)

The charge density required to short out the electric field is given by

~∇ · ~E =
1

ε0
ρE ≈

E

M
(30)

=⇒ ρE ≈ ε0
ac

M2
B (31)

The ratio of these two charge densities is given by

ρE

ρc
≈ (ε0µ0c

2 = 1)
v

c

a

M
< 1 (32)

There is plenty of plasma around to short out the field and make ~E · ~B =

0. This indicates that models in which charged particles are accelerated

directly to ultra high energies by a vacuum electric field are unlikely to be

realized in nature.

8. Wakefield Acceleration

When a strong pulse from a laser passes through a plasma it excites a

longitudinal electric wake field, shown symbolicly in Fig.(5). This pulse

can trap charged particles around its potential minimum and because it is

traveling very close to the speed of light these particles aquire very high

energies. Furthermore, if this process is occuring in a jet of plasma which

is itself moving with relativistic speeds, these accelerated particles recieve

an additional boost in energy and can achieve ultra high energy.
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Figure 5. Symbolic view of wakefield of a laser pulse.

Figure 6. Particles accelerated inside a relativistic jet

F (E′) =
E′

2γ

γE
∫

E/γ

f(E)

E2
dE (33)

Assume

f(E) = AE−q E < EM

f(E) = 0 E > EM

F (E′) =
A

2(q + 1)

(

E′

γ

)

−q

×

(

1 −

(

E′

γEM

)q+1
)

(34)
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We see that the boosted spectrum is essentially the original spectrum

shifted up in energy by a factor γ.

Figure 7. Curve to the right is the boosted spectrum

9. Hillas Violated?

From the above it might appear that relativistic boosts from jets violate

the Hillas limit. However, if we designate quantities measured in the lab (or

galaxy) frame with a prime we note that starting with the original Hillas

formula EMax = Ze(U/C)BL and transforming EMax ⇒ E
′

Max
= γEMax

But! B ⇒ B
′

= γB So E
′

Max
= Ze(U/c)B

′

L and we obtain the same

expression in the boosted quantities.
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COSMIC PLASMA WAKEFIELD ACCELERATION
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Recently we proposed a new cosmic acceleration mechanism1 which was based on
the wakefields excited by the Alfven shocks in a relativistically flowing plasma. In
this paper we include some omitted details, and show that there exists a threshold
condition for transparency below which the accelerating particle is collision-free and
suffers little energy loss in the plasma medium. The stochastic encounters of the
random accelerating-decelerating phases results in a power-law energy spectrum:
f(ε) ∝ 1/ε2. As an example, we discuss the possible production of super-GZK
ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts.
The estimated event rate in our model agrees with that from UHECR observations.

1. Introduction

Ultra high energy cosmic ray (UHECR) events exceeding the Greisen-

Zatsepin-Kuzmin (GZK) cutoff2 (5 × 1019eV for protons originated from

a distance larger than ∼ 50 Mps) have been found in recent years3,4,5,6.

Observations also indicate a change of the power-law index in the UHECR

spectrum (events/energy/area/time ∝ ε−α) from α ∼ 3 to a smaller value,

at energy around 1018 − 1019eV. These present an acute theoretical chal-

lenge regarding their composition as well as their origin7.

So far the theories that attempt to explain the UHECR can be largely

categorized into the “top-down” and the “bottom-up” scenarios. In addi-

tion to relying on exotic particle physics beyond the standard model, the

main challenges of top-down scenarios are their difficulty in compliance with

1
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the observed event rates and the energy spectrum7, and the fine-tuning of

particle lifetimes. The main challenges of the bottom-up scenarios, on the

other hand, are the GZK cutoff, as well as the lack of an efficient acceler-

ation mechanism7. To circumvent the GZK limit, several authors propose

the “Z-burst” scenario8 where neutrinos, instead of protons, are the ac-

tual messenger across the cosmos. For such a scenario to work, it requires

that the original particle, say protons, be several orders of magnitude more

energetic than the one eventually reaches the Earth.

Even if the GZK-limit can be circumvented through the Z-burst, the

challenge for a viable acceleration mechanism remains, or becomes even

more acute. This is mainly because the existing paradigm for cosmic ac-

celeration, namely the Fermi mechanism9, as well as its variants, such as

the diffusive shock acceleration10, are not effective in reaching ultra high

energies11. These acceleration mechanisms rely on the random collisions of

the high energy particle against magnetic field domains or the shock media,

which necessarily induce increasingly more severe energy losses at higher

particle energies.

From the experience of terrestrial particle accelerators, we learn that it

takes several qualifications for an accelerator to operate effectively. First,

the particle should gain energy through the interaction with the longitu-

dinal electric field of a subluminous (v ≤ c) electromagnetic (EM) wave.

In such a setting the accelerated particle can gain energy from the field

over a macroscopic distance, much like how a surfer gains momentum from

an ocean wave. It is important to note that such a longitudinal field is

Lorentz invariant, meaning that the acceleration gradient is independent

of the instantaneous energy of the accelerating particle. Second, such a

particle-field interaction should be a non-collisional process. This would

help to avoid severe energy loss through inelastic scatterings. Third, to

avoid excessive synchrotron radiation loss, which scales as particle energy

squared, the accelerating particle should avoid any drastic bending beyond

certain energy regime. We believe that these qualifications for terrestrial

accelerators are also applicable to celestial ones.

Although they are still in the experimental stage, the “plasma wake-

field accelerator” concepts12,13, promise to provide all the conditions stated

above. Plasmas are capable of supporting large amplitude electro-static

waves with phase velocities near the speed of light. Such collective waves,

or “wakefields”, can be excited by highly concentrated, relativistic EM en-

ergies such as lasers12 and particle beams13. A trailing particle can then

gain energy by riding on this wakefield. Although hard scatterings be-
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tween the accelerating particle and the plasma medium is inevitable, under

appropriate conditions, as we will demonstrate below, the particle can be

collision-free.

In our recent paper1 we argued that magneto-shocks (Alfven shocks) in

a relativistic plasma flow can also excite large amplitude plasma wakefields,

which in turn can be highly efficient in accelerating ultra high energy parti-

cles. But with the limited space, many details and intermediate steps were

omitted in that paper. Here we provide a more explicit discussion of our

notions.

2. Alfven Waves and Plasma Wakefields

It is well-known that an ordinary Alfven wave propagating in a stationary

magnetized plasma has a velocity v
A

= eB0/(4πminp)
1/2, which is typically

much less than the speed of light. Here B0 is the longitudinal magnetic field

and np is the density of the magnetized plasma. The relative strength be-

tween the transverse E and B fields of the Alfven wave is E/B = v
A
/c.

Although the two components are not equal, being mutually perpendicular

to the direction of propagation they jointly generate a non-vanishing pon-

deromotive force that can excite a wakefield in the plasma, which is slow:

vph = vA � c. For the purpose of ultra high energy acceleration, such a

wakefield would not be too useful, for the accelerating particle can become

quickly out of phase with the accelerating field.

Such a slow wave is ordinarily not suitable for accelerating relativistic

particles. The situation changes when the plasma as a whole moves with

a relativistic bulk velocity Vp ≤ c. The standard method of obtaining the

linear dispersion relation of waves in a magnetized plasma leads to

k2

zc2

ω2
= 1 −

1

Γp

(ω2

pi + ω2

pe)(1 − Vpk/ω)

(ω − Vpk ± ωBi/Γp)(ω − Vpk ∓ ωBe/Γp)
, (1)

where k and ω are the wave number and the frequency of the EM wave,

respectively, ωpi,pe = (4πe2np/mi,e)
1/2 are the plasma frequencies for ions

and electrons, and ωBi,Be = (eB0/mi,e)
1/2 are the ion and electron cy-

clotron frequencies. Here Γp is the Lorentz factor of the bulk plasma flow.

Figure 1 shows the dispersion relations of various transverse EM waves

that propagate along the direction of B0 with and without the plasma bulk

flow Vp. In Fig. 1(a) we see that outside the lightcone (superluminous, or

vph > c) lie the regular EM waves, whose asymptotic dispersion is ω = kc.

Within the lightcone (subluminous), there are two additional branches, the
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whistler wave (an electron branch mode) and the Alfven wave whose fre-

quency remains quite low and its electric field is much smaller than the

magnetic one, i.e., E/B = v
A
/c � 1 in the absence of flow.

In the case where the bulk flow of the plasma approaches the speed

of light, however, the Alfven waves acquire a phase velocity close to c

and enhances the ratio of E/B to ∼ Vp/c ≤ 1, and it becomes indistin-

guishable from a bona fide EM wave. Preliminary results from simula-

tions indicate that such relativistic Alfven waves can indeed excite plasma

wakefields14 Further simulation works are currently in progress, as reported

in this workshop15. In this relativistic flow the excited wakefields are all in

one direction, which contributes to the unidirectional acceleration. With

our applications to astrophysical problems in mind, the Alfven-wave-plasma

interaction relevant to us is in the nonlinear regime.
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Figure 1. The dispersion relations for stationary and relativistic plasma flows.

The plasma wakefield in the nonlinear regime has been well-studied16.

The nonlinearity is determined by the driving EM wave’s ponderomotive po-

tential, which is governed by its normalized vector potential a0 = eE/mcω.

When this parameter exceeds unity, nonlinearity is strong12 so that addi-
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tional important physics incurs. For a stationary plasma, the maximum

field amplitude that the plasma wakefield can support is

Emax ≈ Ewba0 =
mecωp

e
a0 , (2)

which is enhanced by a factor a0 from the cold wavebreaking limit (the

naively assumed maximum field), Ewb = mecωp/e, of the linear regime. In

a relativistic plasma flow with a Lorentz factor Γp, the cold wavebreaking

field is reduced by a factor Γ
1/2

p due to Lorentz contraction. The maximum

“acceleration gradient” G experienced by a singly-charge particle riding on

this plasma wakefield is then

G = eE′

max
≈ a0mec

2

√

4πrenp

Γp
. (3)

The plasma wavelength, in the mean time, is stretched also by a factor a0

from that in the linear regime. So in a plasma flow the wavelength is

λpN =
2

π
a0λ

′

p ≈ a0

√

πΓp

renp
, (4)

where re = e2/mec
2 = 2.8 × 10−13cm is the classical electron radius.

3. Maximum Energy Gain and Spectrum

To determine the maximum possible energy gain, we need to know how

far can a test particle be accelerated. At ultra high energies once the test

particle encounters a hard scattering or bending, the hard-earned kinetic

energy would most likely be lost. The scattering of an ultra high energy

proton with the background plasma is dominated by the proton-proton col-

lision. Existing laboratory measurements of the total pp cross section scales

roughly as σpp = σ0 · {1+6.30×10−3[log(s)]2.1}, where σ0 ≈ 32mb and the

center-of-mass energy-squared, s, is given in (GeV)2. In our system, even

though the UHE protons are in the ZeV regime, the center-of-mass energy

of such a proton colliding with a comoving background plasma proton is in

the TeV range, so it is safe to ignore the logarithmic dependence and assume

a constant total cross section, σpp ∼ σ0 ∼ 30 mb in the ZeV energy regime.

Since in astrophysical settings an out-bursting relativistic plasma dilutes as

it expands radially, its density scales as np(r) = np0(R0/r)2, where np0 is

the plasma density at a reference radius R0 . The proton mean-free-path

can be determined by integrating the collision probability up to unity,

1 =

∫ R0+Lmfp

R0

σppnp(r)

Γp
dr =

∫ R0+Lmfp

R0

σppnp0

Γp

R2

0

r2
dr . (5)
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We find

1 =
σppnp0R0

Γp

[

1 −
R0

R0 + Lmfp

]

. (6)

Since Lmfp is positive definite, 0 < [1 − R0/(R0 + Lmfp)] < 1. Therefore

the solution to Lmfp does not exist unless the coefficient, σppnp0R0/Γp >

1. That is there exists a threshold condition below which the system is

collision-free:

σppnp0R0

Γp
= 1 . (7)

When a system is below this threshold, a test particle can in principle

be accelerated unbound. In practice, of course, other secondary physical

effects would eventually intervene.

In a terrestrial accelerator, the wakefields are coherently excited by

the driving beam, and the accelerating particle would ride on the same

wave crest over a macroscopic distance. There the aim is to produce near-

monoenergetic final energies (and tight phase-space) for high energy physics

and other applications. In astrophysical settings, however, the drivers,

such as the Alfven shocks, will not be so organized. A test particle would

then face random encounters of accelerating and decelerating phases of the

plasma wakefields excited by Alfven shocks.

The stochastic process of the random acceleration-deceleration can be

described by the distribution function f(ε, t) governed by the Chapman-

Kolmogorov equation17,18

∂f

∂t
=

∫

+∞

−∞

d(∆ε)W (ε − ∆ε, ∆ε)f(ε − ∆ε, t) −

∫

+∞

−∞

d(∆ε)W (ε, ∆ε)f(ε, t)

−ν(ε)f(ε, t) . (8)

The first term governs the probability per unit time of a particle “sinking”

into energy ε from an initial energy ε − ∆ε while the second term that

“leaking” out from ε. The last term governs the dissipation due to colli-

sion or radiation, or both. As we will demonstrate later, the astrophysical

environment that we invoke for the production of UHECR is below the

collision threshold condition, and so accelerating particles are essentially

collision-free.

The radiation loss in our system is also negligible. As discussed earlier,

in a relativistic flow the transverse E and B fields associated with the Alfven

shock are near equal in magnitude. Analogous to that in an ordinary EM

wave, an ultra relativistic particle (with a Lorentz factor γ) co-moving with
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such a wave will experience a much suppressed bending field, by a factor

1/γ2. Furthermore, the plasma wakefield acceleration takes place in the

region that trails behind the shock (and not in the bulk of the shock) where

the accelerating particle in effect sees only the longitudinal electrostatic

field colinear to the particle motion16. We are therefore safe to ignore the

radiation loss entirely as well. We can thus ignore the dissipation term in

the Chapman-Komogorov equation and focus only on the purely random

plasma wakefield acceleration-deceleration.

Assuming that the energy gain per phase encounter is much less than

the final energy, i.e., ∆ε � ε, we Taylor-expand W (ε − ∆ε, ∆ε)f(ε − ∆ε)

around W (ε, ∆ε)f(ε) in the sink term and reduce Eq.(9) to the Fokker-

Planck equation

∂f

∂t
=

∂

∂ε

∫

+∞

−∞

d(∆ε)∆εW (ε, ∆ε)f(ε, t)

+
∂2

∂ε2

∫

+∞

−∞

d(∆ε)
∆ε2

2
W (ε, ∆ε)f(ε, t) . (9)

We now assume the following properties of the transition rate W (ε, ∆ε)

for a purely stochastic process:

a) W is an even function;

b) W is independent of ε;

c) W is independent of ∆ε.

Property a) follows from the fact that in a plasma wave there is an equal

probability of gaining and losing energy. In addition, since the wakefield

amplitude is Lorentz invariant, the chance of gaining a given amount of

energy, ∆ε, is independent of the particle energy ε. Finally, under a purely

stochastic white noise, the chance of gaining or losing any amount of energy

is the same. Based on these arguments we deduce that

W (ε, ∆ε) =
1

2cτ2G
, (10)

where τ is the typical time of interaction between the test particle and the

random waves and G is the maximum acceleration gradient (cf. Eq.(4)).

We note that there is a stark departure of the functional dependence of W

in our theory from that in Fermi’s mechanism, in which the energy gain ∆ε

per encounter scales linearly and quadratically in ε for the first-order and

second-order Fermi mechanism, respectively.

To look for a stationary distribution, we put ∂f/∂t = 0. Since W

is an even function, the first term on the RHS in Eq.(10) vanishes. To

ensure the positivity of particle energies before and after each encounter,
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the integration limits are reduced from (−∞, +∞) to [−ε, +ε], and we have

∂2

∂ε2

∫

+ε

−ε

d(∆ε)
∆ε2

2
W (ε, ∆ε)f(ε) = 0 . (11)

Inserting W from Eq.(11), we arrive at the energy distribution function

that follows power-law scaling,

f(ε) =
ε0
ε2

, (12)

where the normalization factor ε0 is taken to be the mean energy of the

background plasma proton, ε0 ∼ Γpmpc
2. The actually observed UHECR

spectrum is expected to be degraded somewhat from the above idealized,

theoretical power-law index, α = 2, not only due to possible departure of

the reality from the idealized model, but also due to additional intermediate

cascade processes that transcend the original UHE protons to the observed

UHECRs.

We note that a power-law energy spectrum is generic to all purely

stochastic, collisionless acceleration processes. This is why both the first

and the second order Fermi mechanisms also predict power-law spectrum,

if the energy losses, e.g., through inelastic scattering and radiation (which

are severe at ultra high energies), are ignored. The difference is that in the

Fermi mechanism the stochasticity is due to random collisions of the test

particle against magnetic walls or the shock medium, which necessarily in-

duce reorientation of the momentum vector of the test particle after every

diffusive encounter, and therefore should trigger inevitable radiation loss at

high energies. The stochasticity in our mechanism is due instead to the ran-

dom encounters of the test particle with different accelerating-decelerating

phases. As we mentioned earlier, the phase vector of the wakefields created

by the Alfven shocks in the relativistic flow is nearly unidirectional. The

particle’s momentum vector, therefore, never changes its direction but only

magnitude, and is therefore radiation free in the energy regime that we

consider for proton acceleration.

4. Gamma Ray Bursts and Wakefield Acceleration

We now apply our acceleration mechanism to the problem of UHECR.

GRBs are by far the most violent release of energy in the universe, sec-

ond only to the big bang itself. Within seconds (for short bursts) about

εGRB ∼ 1052erg of energy is released through gamma rays with a spectrum

that peaks around several hundred keV. Existing models for GRB, such
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as the relativistic fireball model19, typically assume neutron-star-neutron-

star (NS-NS) coalescence as the progenitor. Neutron stars are known to

be compact (RNS ∼ O(10)km) and carrying intense surface magnetic fields

(BNS ∼ 1012G). Several generic properties are assumed when such com-

pact objects collide. First, the collision creates sequence of strong magneto-

shocks (Alfven shocks). Second, the tremendous release of energy creates a

highly relativistic out-bursting fireball, most likely in the form of a plasma.

The fact that the GRB prompt (photon) signals arrive within a brief

time-window implies that there must exists a threshold condition in the

GRB atmosphere where the plasma becomes optically transparent beyond

some radius R0 from the NS-NS epicenter. Applying Eq.(8) to the case of

out-bursting GRB photons, this condition means

σcnp0R0

Γp
= 1 , (13)

where σc = (πr2

e)(me/ωGRB)[log(2ωGRB/me) + 1/2] ≈ 2 × 10−25cm2 is the

Compton scattering cross section. Since σpp < σc, the UHECRs are also

collision-free in the same environment. There is clearly a large parameter

space where this condition is satisfied. To narrow down our further dis-

cussion, it is not unreasonable to assume that R0 ∼ O(104)km. A set of

self-consistent parameters can then be chosen: np0 ∼ 1020cm−3, Γp ∼ 104,

and ε0 ∼ 1013eV ≡ ε13.

To estimate the plasma wakefield acceleration gradient, we first derive

the value for the a0 parameter. We believe that the megneto-shocks con-

stitute a substantial fraction, say ηa ∼ 10−2, of the total energy released

from the GRB progenitor. The energy Alfven shocks carry is therefore

εA ∼ 1050erg. Due to the pressure gradient along the radial direction, the

magnetic fields in Alfven shocks that propagate outward from the epicenter

will develop sharp discontinuities and be compactified20. The estimated

shock thickness is ∼ O(1)m at R0 ∼ O(104)km. From this and εA one

can deduce the magnetic field strength in the Alfven shocks at R0, which

gives BA ∼ 1010G. This leads to a0 = eEA/mcωA ∼ 109. Under these

assumptions, the acceleration gradient G (cf. Eq.(4)) is as large as

G ∼ a0mc2

√

4πre

σcR0

∼ 1016

( a0

109

)(109cm

R0

)1/2

eV/cm . (14)

Although the UHE protons can in principle be accelerated unbound

in our system, the ultimate maximum reachable energy is determined by

the conservation of energy and our assumption on the population of UHE

protons. Since it is known that the coupling between the ponderomotive
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potential of the EM wave and the plasma wakefield is efficient, we assume

that the Alfven shock energy is entirely loaded to the plasma wakefields

after propagating through the plasma. Furthermore, we assume that the

energy in the plasma wakefield is entirely reloaded to the UHE protons

through the stochastic process. Thus the highest possible UHE proton

energy can be determined by energy conservation

ηaεGRB ∼ εA ∼ εUHE ∼ NUHE

∫ εm

ε13

εf(ε)dε . (15)

which gives

εm = ε13 exp(ηaεGRB/NUHEε13) . (16)

This provides a relationship between the maximum possible energy, εm,

and the UHE proton population, NUHE. We assume that ηb ∼ 10−2

of the GRB energy is consumed to create the bulk plasma flow, i.e.,

ηbεGRB ∼ NpΓpmpc
2 ∼ Npε13, where Np is the total number of plasma

protons. We further assume that ηc ∼ 10−2 of the plasma protons are

trapped and accelerated to UHE, i.e., NUHE ∼ ηcNp. Then we find

εm ∼ ε13 exp(ηa/ηbηc). We note that this estimate of εm is exponen-

tially sensitive to the ratio of several efficiencies, and therefore should

be handled with caution. If the values are indeed as we have assumed,

ηa/ηbηc ∼ O(102), then εm is effectively unbound until additional limiting

physics enters. Whereas if the ratio is ∼ O(10) instead, the UHE cannot

even reach the ZeV regime. The validity of our assumed GRB efficiencies

then relies on the consistency check against observations.

5. UHECR Event Rate

In addition to the energy production issue, equally important to a viable

UHECR model is the theoretical estimate of the UHECR event rates. The

NS-NS coalescence rate is believed to be about 10 events per day in the

entire Universe21,22. This frequency is consistent with the observed GRB

events, which is on the order of fGRB ∼ 103.5 per year.

In the Z-burst scenario an initial neutrino energy above 1021eV8 or

1023eV23 is required (depending on the assumption of the neutrino mass)

to reach the Z-boson threshold. For the sake of discussion, we shall take the

necessary neutrino energy as εν > 1022eV. Such ultra high energy neutrinos

can in principle be produced through the collisions of UHE protons with

the GRB background protons: pp → π +X → µ+ν +X. All UHE protons

with energy ε>22 ≥ 1022eV should be able to produce such neutrinos. The
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mean energy (by integrating over the distribution function f(ε)) of these

protons is 〈ε>22〉 ∼ O(100)ε22. Therefore the multiplicity of neutrinos per

UHE proton is around µ(p→ν) ∼ O(10) − O(100). At the opposite end of

the cosmic process, we also expect multiple hadrons produced in a Z-burst.

The average number of protons that Z-boson produces is ∼ 2.724. Finally,

the population of UHE protons above 1022eV is related to the total UHE

population by N>22 ∼ (ε13/ε22)NUHE ∼ ηbηcεGRB/ε22.

Putting the above arguments together, we arrive at our theoretical es-

timate of the expected UHECR event rate on earth,

NUHECR(> 1020eV) = fGRBµ(p→ν)µ(Z→p)N>22

1

4πR2

GRB

∼ fGRBµ(p→ν)µ(Z→p)ηbηc
εGRB

ε22

1

4πR2

GRB

. (17)

The typical observed GRB events is at a redshift z ∼ O(1), or a distance

RGRB ∼ 1023km. Our estimate of observable UHECR event rate is therefore

NUHECR(> 1020eV) = O(1)/100km2/yr/sr , (18)

which is consistent with observations, or in turn this observed event rate

can serve as a constraint on the various assumptions of our specific GRB

model.

6. A Laboratory Astrophysics Experiment

History has shown that the symbiosis between direct observation and labo-

ratory investigation was instrumental in the progress of astrophysics. Our

cosmic plasma wakefield acceleration mechanism can in principle be tested

in the laboratory setting26. A schematic diagram for such an experiment

is shown in Figure 2.

Figure 2. A schematic diagram of a possible laboratory experiment to verify the Alfven-
induced plasma wakefield acceleration mechanism.
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The main goals for such an experiment are

1. Generation of Alfven waves in a relativistic plasma flow;

2. Inducing high gradient nonlinear plasma wakefields;

3. Acceleration and deceleration of trapped e+/e−;

4. Power-law (n − 2) spectrum due to stochastic acceleration.

Although it is unlikely that the extremely high density, high intensity

and high acceleration gradient involved in this acceleration mechanism can

be reproduced in the laboratory setting, it is hoped that the key elements

necessary for this mechanism can indeed be verified. In this regard, the

value of the experiment lies in its validation of the underlying dynamics of

the Alfven-induced plasma wakefield acceleration.
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Many recent discoveries in astrophysics involve phenomena that are highly com-
plex. Carefully designed experiments, together with sophisticated computer sim-
ulations, are required to gain insights into the underlying physics. We show that
particle accelerators are unique tools in this area of research, by providing preci-
sion calibration data and by creating extreme experimental conditions relevant for
astrophysics. In this paper we discuss laboratory experiments that can be carried
out at the Stanford Linear Accelerator Center and implications for astrophysics.

1. Introduction

Recent advances in high-energy astrophysics involve observations of ex-

tremely complex phenomena such as jets from active galactic nuclei (AGN),

gamma-ray bursts (GRB), and ultrahigh-energy cosmic rays (UHECR). Ob-

servations of AGN jets, consisting of a highly collimated stream of material,

show that the outflow expands at relativistic velocity and spans a distance

scale of thousands of light-years. The collimation and production mecha-

nism, most likely involving the dynamics of accretion disks around a black

hole in the center of the AGN, are subjects of current research. Gamma-ray

bursts, on the other hand, are some of the brightest observed light sources

in the universe. The amount of electromagnetic energy output in a burst

is equivalent to several times the solar mass released in a matter of sec-

onds. The out-flowing materials of a GRB expand at relativistic velocity

as well, and are possibly collimated, similar to an AGN jet. The nature of

the progenitor and explanations for their observed characteristics are cur-

rently under debate. Much of our current understanding of these objects

∗This work is supported by the U.S. Department of Energy under contract DE-AC03-
76SF00515
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are inferred from the properties of the observed radiation.

A strong magnetic field is believed to exist in both the GRB and the

AGN jets. The interaction of the relativisticly expanding material with the

environment can lead to nonlinear plasma phenomena that result in the

acceleration of particles to high energies. Ultrahigh-energy cosmic rays,

with energies observed up to around 1020 eV, are believed to come from

extra-galactic sources. The nature and origin of these cosmic rays as well

as their acceleration mechanism are still a mystery.

The study of these extreme phenomena requires tremendous effort. So

far, progress in our understanding has required a combination of obser-

vation, numerical simulations, and theoretical modeling.1 However, astro-

physical observations must be carefully checked for instrumentation effects.

And the complex numerical and theoretical calculations used to interpret

these observations must be validated. Thus, it is important to calibrate

the techniques used in the observations and to benchmark computer model

calculations. Furthermore, since observational astrophysics deals with un-

controlled environments, laboratory experiments able to model the relevant

extreme conditions would provide unique insight into the underlying phys-

ical mechanisms.

Laboratory studies, ranging from work on atomic spectroscopy, and the

studies of hydrodynamics, radiation flow, and the equation-of-state using

intense lasers2, have been instrumental in astrophysics research. Recently,

it has been suggested that accelerators can be used in the laboratory in-

vestigation of extreme astrophysical phenomena.3 In this paper we discuss

possible experiments using intense particle and photon beams to verify

astrophysical observations and to study relativistic plasma dynamics and

ultrahigh-energy cosmic acceleration mechanisms. An overview of the ac-

celerator facility at the Stanford Linear Accelerator Center (SLAC) is given

in Section 2. In Section 3, we discuss calibration experiments, focusing on

the discrepancy in the UHECR spectrum measured by two large-aperture

cosmic ray experiments, and describe an experiment that may help resolve

it. In Section 4, we discuss laboratory experiments that may improve our

understanding of the underlying dynamics of high-energy astrophysics phe-

nomena. We conclude with an outlook in Section 5.

2. An Overview of the SLAC Facility

The 3-km long linear accelerator is the backbone for SLAC’s high-energy

physics research program. It is capable of delivering electrons and positrons
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Figure 1. Layout of the SLAC facility.

with 50 GeV energy and 120 Hz repetition rate at 1010 particles per pulse.

Currently it serves as the injector for the PEP-II storage ring to produce

copious amount of B-meson particles for CP-violation measurements. It

can also deliver beams to the fix-target experimental hall End-Station A

(ESA) and the Final Focus Test Beam (FFTB). A schematic layout of the

SLAC facility is shown in Figure 1. High intensity photon beams, tunable

from X-ray to gamma-ray, can be derived using a variety of methods, such

as undulators, laser-Compton back-scattering, and bremsstrahlung. De-

pending on the required wavelength, typical fluences of 109 photons per

pulse can be provided.

3. Calibration Experiments

3.1. Detector Calibration

High energy beams from the linac can be used to generate a variety of

secondary and tertiary beams for calibration purposes. A secondary pion

and positron beam with well-defined momentum can be generated using a

combination of target and selection magnet system, with a beam intensity

that can be set to below 1 particle per pulse. With the addition of a tagger

magnet, this secondary beam can be converted into a photon beam with

known energy up to 20 GeV.

This test beam setup in the ESA has been used for the GLAST satellite

mission, whose objective is to study energetic astrophysical gamma rays

with energies in the 20 MeV to TeV range. The GLAST detector package

consists of sophisticated silicon tracker and CsI calorimeter. It is important

to calibrate its response and understand the various analysis algorithms in

a controlled test beam environment before its space launch. Details on this

experiment can be found elsewhere4.
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3.2. X-ray Spectroscopy

Recent X-ray observations of AGN galaxies have revealed features in the

iron emission lines that are characteristic of Doppler shifts and gravitational

redshifts expected from accretion disk models.5 The emission lines can be

thought of as “clocks” moving in various circular orbits around the black

hole. To further probe the spacetime structure in the accretion disk, high

resolution imaging and broad-band spectroscopy, such as those planned for

the Constellation-X and MAXIM missions, are needed. A detailed lab-

oratory measurement of heavy element atomic transitions and associated

polarization effects will also be required for a proper interpretation of the

observational data.6

For this purpose, an intense X-ray source, such as those available at a

synchrotron light-source facility would be valuable. The next generation

of linac-based light-source, with peak brilliance in the range of 1032-1033

photons/sec/mrad2/mm2/0.1% bandwidth at 1-10 keV, could also play a

role in this study.

3.3. Air Fluorescence Efficiency Measurement

The study of ultrahigh-energy cosmic rays has been based on observations

of the secondary shower particles resulting from interactions in the atmo-

sphere. For cosmic ray energies above ∼1014 eV, the shower particles can

reach ground level and extend over a large area. One observation technique

uses an array of sparsely spaced ground detectors to measure the density of

these shower particles, which is related to the energy of the primary cosmic

ray. The Akeno Giant Air Shower Array (AGASA) near Tokyo, Japan, for

example, covers an area of approximately 100 km2, with 100 detector units

separated by about 1 km from each other.7

The cosmic ray shower also generates a trail of fluorescent light. The flu-

orescence is emitted nearly isotropically, mostly by the nitrogen molecules in

air excited by shower secondaries. Instead of studying the transverse profile

of the shower, as in the ground array approach, fluorescence-based detectors

use a system of mirrors and photomultipliers to image the shower’s longitu-

dinal development. The fluorescence luminosity is related to the primary’s

energy; and the shape of the longitudinal profile provides information on

the primary’s composition. This technique is used by the Fly’s Eye detector

and its upgraded version, the High Resolution Fly’s Eye (HiRes).8

Studies of UHECR events showed that they are not related to any known

galactic sources. If they originated in extra-galactic sources, interactions
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with the cosmic microwave background radiation would result in the atten-

uation of their energy. The flux above 1019 eV is expected to drop signif-

icantly due to the production of pions – the so-called GZK cutoff.9 How-

ever, the Fly’s Eye/HiRes and AGASA experiments have observed events

greater than 1020 eV, well above the GZK cutoff. The two experiments

have now accumulated similar exposure at the highest energies. With in-

creased statistics, differences between the two measurements have become

apparent. In particular, the flux measured by HiRes is systematically lower

than that reported by AGASA above 4 × 1018 eV; there is also a difference

in the energy at which the observed power-law spectrum changes slope, the

so-called “ankle” structure.10 This can be due to tails in the energy resolu-

tion function or other systematic errors, and is currently being investigated

by both experiments.

One possible contribution to this discrepancy is the air fluorescence

yield. Current understanding of air fluorescence, based on previous mea-

surements, is incomplete. Many issues still remain: the detailed shape of

the fluorescence spectrum, the pressure and atmospheric impurities depen-

dences, and the dependence of fluorescence yield on shower particle energy.

The associated systematic uncertainty is estimated to be 15%. A more

precise measurement is desired as improvements are being made to other

systematics in the observation.

Recently, it has been suggested that the high intensity electron beams

at SLAC can be used for such study.11 At the relevant energies, air showers

produced by a cosmic ray hadron is a superposition of electromagnetic sub-

showers. At the shower’s maximum, it consists of mostly electrons with

energies dissipated to the 100 MeV level, near the critical energy of air.

Further shower development is dominated by energy loss through ionization

and excitation rather than shower particle creation. SLAC’s electron beams

interacting in an air-equivalent alumina target produce similar secondary

electron energy distributions – see Figure 2. The SLAC E-165 experiment

– Fluorescence in Air from Showers (FLASH) – has been proposed to study

in detail the fluorescence yield in an air shower. It aims to make precision

measurements of the total air fluorescence yield, as well as the spectral,

pressure, composition, and energy dependencies. Details on this experiment

have been presented elsewhere at this Workshop.10

Other examples of accelerator-based experiments that support as-

trophysical investigations are measurement of the Landau-Pomeranchuk-

Migdal (LPM) effect, which has implication for photon/hadron identifica-

tion at high energies, and observation of the Askarian effect, which can be
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Figure 2. Simulations of shower secondary electron and photon energy distributions for
a 1017 eV cosmic ray proton (top, CORSIKA) and a 28.5 GeV electron beam (bottom,
GEANT) at the shower maximum.

used to detect UHE neutrinos. These experiments have been carried out

using SLAC beams.13

4. Relativistic Plasma Experiments

While important issues remain to be resolved in the observational results of

super-GZK events, the existence of extra-galactic UHECR above 1018 eV

is well established. The nature of these cosmic rays and their acceleration

mechanism are still a mystery, and various models have been proposed as

solutions.1 In the so-called “top-down” approach, the decay products of

massive particles produced in the early universe could account for the ob-

served UHECRs, especially those above the GZK cutoff. Certain “grand-
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unification” theories predict the existence of particles with mass around

1016 GeV. Particles more massive than this, if they were to explain super-

GZK events, would have to be produced continuously since their lifetimes

would be extremely short. In some theories these particles can be emit-

ted from topological defects created between causally disconnected regions

during early epochs of cosmological phase transitions.

In the “bottom-up” approach, conventional particles accelerated in pow-

erful astrophysical systems are thought to be responsible for the observed

UHECR spectrum. The acceleration mechanisms are complex, involving

strong magnetic fields and nonlinear plasma effects. Diffusive shock accel-

eration has been the generally accepted model.14 More recent ideas include

unipolar induction acceleration15 and high gradient plasma acceleration

in wakefields created by Alfvén shocks16. Possible acceleration sites are

AGNs and gamma-ray bursts where typically relativistic plasma outflows

are present. The key observational feature of UHECR is the power-law

spectrum. The appropriate spectral index is predicted by existing models.

Our goal is to experimentally test some of these models in the laboratory.

Typical beams delivered for experimentation in the FFTB are in short

pulses pico-seconds long, 10 µm in radius, and consists of 1010 particles.

Thus, the pulse power is approximately 40 Petawatts, and the intensity

is ∼1020 W/cm2. The energy density in the bunch is on the order of

1013 J/m3. For comparison, the threshold for high-energy-density condi-

tions, the energy density in a hydrogen molecule or the bulk moduli of

solid-state materials, is 1011 J/m3 The strong nonlinear and collective re-

sponses of a bunched relativistic particle beam to external stimuli are some

of the important characteristics of a high-energy-density system relevant

for astrophysical studies. Here we discuss possible relativistic plasma ex-

periments. In particular, we explore the possibility of merging electron

and positron beams to form a kinetically relativistic plasma, allowing the

laboratory investigation of cosmic high-energy acceleration and radiation

production phenomena.

4.1. e+e− Beams as Relativistic Plasma

Neutral co-moving e+e− beams have been investigated in an effort to im-

prove the luminosity limit in high energy e+e− storage ring colliders. The

disruptive effect of one beam’s electromagnetic fields on the other can be

compensated, in principle, by colliding neutral beams. This idea had been

studied using two pairs of 0.8 GeV beams.17 The experiment demonstrated
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Figure 3. Combining electron and positron bunches to form a relativistic plasma.

beam-charge compensation with improved luminosity.

For our purpose, the 1-GeV electron and positron beams emerging from

the damping rings at the beginning of the SLAC linac (see Figure 1) could

be combined, forming an e+e− plasma streaming at relativistic velocity.18

The transverse positions of the two beams would be aligned to micron preci-

sion using high resolution beam position monitors. The temporal locations

would be synchronized using the damping rings’ RF phase control, which

is stable at the sub-picosecond level. This level of precision beam con-

trol has been demonstrated in measurements of wake-fields in accelerator

structures.19 The concept is illustrated in Figure 3.

For a relativistic bunched beam, temperature can be defined in terms

of its emittance. Analogous to entropy, emittance is a measure of disor-

der. The discussions here follow those in Lawson20. The beam’s transverse

temperature is given by

kT
⊥

=
β2γmc2ε2

4σ2
r

(1)

where ε is the beam’s emittance, γ the Lorentz factor, and σr the transverse

beam size. The longitudinal temperature due to energy spread is negligible

for relativistic beams.

The other plasma parameters can now be calculated. Results are shown

in Table 1, using typical SLAC parameters at the exit of the damping rings.

Plasma parameters are given in the frame co-moving with the beams. As

can be seen, the number of particles inside a “Debye sphere” (ND) is much

greater than one, so that the effects of individual particles on each other

are negligible compared to the collective effects, and the plasma description

is indeed appropriate.
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Table 1. Beam parameters in the laboratory frame and corresponding plasma param-
eters in the co-moving frame.

Beam Plasma

Parameters Parameters
(Lab frame) Value (Co-moving frame) Value

Energy (E) 1.19 GeV Density 4 × 1011 cm−3

σE/E 10−3 Debye Length (λD) 1.7 mm

Bunch Length 600 µm Plasma Parameter (ND) 6 × 106

Bunch Radius 50 µm Frequency (ωp/2π) 6 × 109 (Hz)

Intensity 2 × 1010 Wavelength (λp) 50 mm
Density 1015 cm−3 Skin depth (c/ωp) 8 mm

Emittance: Temperature:

εx 1.3 × 10−8 m-rad Transverse (kT
⊥

) 23 keV
εy 6.4 × 10−10 m-rad Longitudinal 0.3 eV

For typical AGN jet parameters, the plasma length scales are much

smaller than the jet dimensions. Thus, the AGN jet plasma is usually

treated as having infinite extend. For typical relativistic bunched beams,

however, the Debye radius (λD) is smaller than the bunch length but larger

than the transverse beam size. As a consequence, the perpendicular plasma

waves (involving particle motion in the transverse direction) have differ-

ent properties compared to those excited in an infinite plasma. However,

properties of the parallel propagating waves remain the same as those in

an infinite plasma. The laboratory e+e− plasma discussed here can thus

model the parallel propagating waves in an infinite plasma. As discussed

below, this mode is most relevant for AGN jet dynamics.

So far our discussion have concentrated on neutral plasmas. The compo-

sition of astrophysical jets is, however, far from being understood. Magnetic

confinement is generally accepted as the collimation mechanism, but it is

also highly unstable. Models of current-carrying jets provide a possible al-

ternative mechanism where the self-magnetic fields create a pinching force.

This is very similar to the plasma-lens effect familiar to the beam-plasma

physics community. Non-neutral plasma instabilities relevant for AGN jets

could be studied using charged beams readily available at a facility such as

SLAC. Possible experiments are under study.

4.2. Scaling Laws and Relevance to Astrophysics

The challenge for laboratory astrophysics is to create a terrestrial setting

which can be scaled to the astrophysical environment. Magnetohydrody-

namic (MHD) models have been used to describe many astrophysical pro-

cesses such as bow-shock excitation in AGN jets or supernova explosions.
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The MHD equations have the property that they are invariant under the

appropriate scale transformations. This has been the basis, for example,

for designing laser experiments to simulate supernova remnants.2,21,22

The MHD models are applicable when certain assumptions are satisfied.

These, however, may not be applicable to the astrophysical conditions of

interest here. In the following, we discuss a more general approach based

on kinetic plasma theory. In particular, we concentrate on astrophysical

plasma processes that might be investigated using high-energy-density par-

ticle beams.

The observed non-thermal radiation spectrum from AGNs is the subject

of many recent studies. In some models, broad-band Blazar emission has

been attributed to synchrotron radiation and/or various forms of Comp-

ton processes.23 While in other models, it is described by the production

of photon-pairs from the decay of mesons produced via the interaction of

energetic protons with ambient photon and/or matter.24 These models suc-

cessfully describe various features in the observed spectrum, and thus are

useful for understanding the radiation processes. But such phenomenolog-

ical approach does not describe details of the underlying micro-physical

dynamics of AGN jets. In particular, it does not address the issue of how

the relativistic jet gives rise to energetic electrons and/or protons which

subsequently produce the radiation. For example, these models typically

assume that diffusive shock acceleration produces the required power-law

spectrum.

In the plasma physics approach, details of the underlying dynamics for

transferring kinetic energy in the relativistic jet into radiation are described.

In the model proposed by Schlickeiser et al.
25, the jet is described by a

one-dimensional outflow consisting of electron and positron pairs with bulk

relativistic velocity, directed parallel to a uniform background magnetic

field. The pairs have non-relativistic temperature in the co-moving frame.

The e+e− jet propagates into an interstellar medium consisting of cold

protons and electrons.

This two-stream multi-fluid system is studied in the jet rest frame. The

analysis starts with a general phase space distribution, and the calcula-

tions then give the dispersion relations of the parallel propagating elec-

trostatic (longitudinally polarized) and low-frequency transverse (Alfven-

type) plasma waves. These waves are excited via a two-stream instability in

the pair plasma. For typical AGN parameters, the calculations show that

the jet kinetic energy is transferred via plasma turbulence to the initially

cold interstellar protons and electrons, which then reach a plateau distri-
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bution in momenta. The resulting radiation spectrum is consistent with

observation.26

These kinetic plasma calculations also show that the instability build-

up times and growth rates scale with the densities and the bulk relativistic

factor, while the damping rates scales also with temperature. For example,

the time it takes to build up the transverse instability in the protons is given

by tt,p ∼ (1/ωp,e)(nj/ni)(mpΓ/me)
4/3, where ωp,e is the electron plasma

frequency, nj and ni are the jet and interstellar plasma densities, and Γ

is the bulk Lorentz factor. The Landau damping rate is found to scale

with Θ3/2ωp,eΓ
2exp[−(Γ− 1)/Θ], where Θ = kT/mec

2 is the dimensionless

temperature parameter.

4.3. Parameters for Laboratory Experiments

To determine whether the parameters of the relativistic plasma created

by merging electron and positron bunches are relevant for an experimen-

tal investigation of AGN dynamics, the various dynamical time scales are

calculated. The results are shown in Figure 4 for the parameters given in

Table 1. In the setup being considered here, the pair plasma in the co-

moving frame appears to be ∼1-m long to the ambient plasma traveling

through it. As can be seen from Figure 4, all dynamical time scales are

shorter than the plasma traversal time: the time during which the rela-

tivistic plasma and the ambient plasma interact with each other. Typical

plasma time scales are shown as the inverse plasma frequency. The build-

up of the electrostatic waves is rather quick, for both the electrons and the

protons, even with a fairly thin ambient plasma. The build-up of the trans-

verse waves takes much more time, particularly for the protons, in which

case an ambient plasma density of 1015 cm−3 in the laboratory is required.

Also, the maximum growth rate of the electrostatic turbulence is much

greater than the Landau damping rate; similarly, the transverse turbulence

growth rate is much larger than the cyclotron damping rate. Thus, this set

of experimental parameters is in a regime where strong nonlinear plasma

turbulence similar to those excited in AGN jets can be created and studied

in detail experimentally in the laboratory. Further theoretical calculations

are needed to guide the design of the experiment. A detailed numerical

simulation using particle-in-cell techniques is needed as the next step.

The transverse magneto-hydrodynamic (Alfven-type) wave is especially

interesting for testing various cosmic acceleration mechanisms. This type of

turbulence is crucial in the formation of collisionless shocks and for efficient
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Figure 4. Various time scales for a laboratory experiment to test the dynamical model
of AGN jets. The scaling of the plasma wave build-up times are shown as a function of
the jet plasma density, for various interstellar medium densities – see text.

particle deflection in the diffusive shock acceleration process. The Alfven

wave is also expected to excite plasma wakefields, which can provide high

gradient particle acceleration. The spectrum and polarization properties of

the radiation produced in the interaction of this e+e− “jet” with an ambient

plasma can be measured and compared with astrophysical observations.

Detailed simulation studies for these experiments are underway.
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The laboratory experiments described here could have applications be-

yond the understanding of AGN jet dynamics. The dynamics in the polar

caps of a spinning neutron star have been studied in the context of rel-

ativistic streaming electron-positron plasma.27 Also, if GRB radiation is

beamed, its dynamics would be similar to those found in AGN jets. Thus,

our laboratory experiments would also shed light on these systems.

5. Summary and outlook

The field of laboratory astrophysics holds promise to the understanding of

some of the most exciting astrophysical observations today. We have shown

that particle accelerators are excellent tools for laboratory astrophysics,

providing calibration data for observations and bench-marking computer

models, as well as creating extreme conditions that make possible investi-

gation of astrophysical dynamics in a terrestrial laboratory. SLAC, with

the existing expertise and infrastructure, is well-positioned to contribute to

this rapidly growing field.28 The proposed ORION29 facility for advanced

accelerator research and beam physics will also be able to support dedi-

cated laboratory astrophysics experiments with its unique combination of

high quality electron beams and diagnostic lasers.
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Linear colliders (LC) on the energy 0.5–1 TeV are considered as the next step in
the particle physics. High acceleration gradients, small beam sizes, precision toler-
ances, beam collision effects are main problems for linear colliders. In this paper we
discuss physics motivation, parameters and status of current LC projects, e+e−,
γγ and γe modes of operation, physical limitations on the energy and luminosity.
Present technologies allow to reach energies about 5 TeV with adequate luminosi-
ties. Advanced technique based on plasma and laser method of acceleration can
provide much higher accelerating gradients, however, perspectives of these meth-
ods for high energy colliders are still under big question. Linear colliders with
energies above 10 TeV are hard for any acceleration technology. Speculations on
possibility of PeV linear colliders based on ponderomotive laser acceleration are
just not serious and contain several mistakes on conceptual level. It is shown that
due to radiation in the transverse laser field, methods of acceleration based on laser
bunch “pressure” do not work at high energies.

1. Introduction: next steps in particle physics

Progress in particles physics in the last several decades was connected with

the increase of accelerator energies. Historically, two types of colliders co-

existed and gave main results, pp(pp̄) and e+e−. Proton colliders give access

to higher energies, but e+e− colliders have simple initial state, smaller

background and allow much better precision. At proton colliders c, b, t

quarks and W, Z bosons have been discovered, while at e+e− colliders c-

quark, τ -lepton, gluon. In addition, at e+e− colliders c, b, W, Z, τ physics

has been studied with a high accuracy providing a precision test of the

Standard Model.

The next proton collider LHC with the energy 2E0 = 14 TeV will start

operation in about 2007. It will certainly bring new discoveries. But,

as before, for detail study of new physics and it’s understanding a e+e−

collider is very desirable. Such projects on the energy 2E0 =0.5–1.5 TeV

already exist, but, unfortunately, approval is delayed due to a high cost and

necessity of international cooperation. According to present understanding

1
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the construction can start in about 2007.

As for long-term perspectives of particle physics, the future is even less

clear. Three kind of facilities are under discussion: Very Large Hadronic

Collider (VLHC) with pp beams on the energy up to 200 TeV, Compact

e+e− Linear Collider CLIC on the energy 2E0 = 3–5 TeV and muon col-

liders which potentially can reach a c.m.s. energy even higher than in pp

collisions.

Physics motivation for next generation of colliders (LHC, LC) is very

strong, two examples are given below.

If the Standard Model is valid a new particle, the Higgs boson, should

exist. Direct search at LEP and measurements of loop corrections indicate

that the Higgs boson mass lays in the region 115–200 GeV. Such a particle

should have very special properties, their coupling constants with other

particles are proportional to particle masses. Linear colliders allow us to

measure Higgs branchings with a high accuracy, So, experiments at LHC

and LC can shed a light on the origin of particle masses.

The second physics goal is a search of a supersymmetry which assumes

the existence of a new class of particles, superpartners of known particles

but with different spins: particles with the spin 1/2 have partners with the

spin 0 and vice versa. It is possible that the dark matter in the universe

consists of the lightest neutral supersymetrical particles. At colliders, one

could produce any kind of such particles, charged and neutral. A discovery

of a “parallel” world (which according to astronomical data has a density

even higher than that of the barionic matter) would mean a new revolution

in physics.

Below we consider existing projects of linear colliders, their problems,

energy and luminosity limitations, prospects of advanced accelerator meth-

ods.

2. Projects of linear colliders

It was realized already 30 years ago that the energy of circular e+e− linear

colliders is limited by synchrotron radiation losses at a level of 100–200 GeV

and further progress is only possible using linear e+e− colliders 1. At the

end of 1980-th the 2-mile electron linac at SLAC has been transformed into

a (semi)linear collider SLC with the c.m.s. energy of 90 GeV. It gave nice

physics results and a great experience of work at the first linear collider.

At the same time an international study on linear collider lead by SLAC,

KEK, DESY, CERN and BINP has been launched with ambitious goal to
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develop a linear collider with an energy about one TeV and a luminosity by

a factor of 103–104 higher than it was at the SLC. Since that time a lot of

developments have been done and now three projects TESLA (Europe),2

NLC (US),3 JLC (Japan)4 are almost ready for construction. A fourth

project CLIC(CERN)5 is focused on multi-TeV energies and is considered

as the next-to-next linear collider. Schemes of colliders are shown in Fig. 1,

main parameters are presented in Table 1.

Table 1. Parameters of linear colliders

TESLA JLC/NLC CLIC

2E0 GeV 500 800 500 1000 500 3000

Site L km – 33 – 32 – 40
Two linac L km 30 30 12.6 25.8 5 27.5
Beam del. L km 3.2 3.2 3.8 3.8 5 5
G(un.l/load) MeV/m 23.4 35 70/55 70/55 172/150 172/150
Total AC MW 95 160 120 240 100 300
AC-beam eff. % 23 21 10 10 8.5 8.5
RF freq. GHz 1.3 1.3 11.4 11.4 30 30

Rep. rate Hz 5 4 120 120 200 100
bunch/train 2820 4886 192 192 154 154
Coll. rate kHz 14.1 19.5 23 23 30.8 15.4
Bunch separ. ns 337 176 1.4 1.4 0.67 0.67
Train length µsec 950 860 0.267 0.267 0.1 0.1

Part./bunch 1010 2 1.4 0.75 0.75 0.4 0.4
σz µm 300 300 110 110 30 30
εnx/εny mm·mrad 10/0.03 8/0.015 3.6/0.04 3.6/0.04 2/0.02 0.68/0.02
βx/βy mm 15/0.4 15/0.4 8/0.11 13/0.11 10/0.15 8/0.15
σx/σy nm 553/5 391/2.8 243/3 219/2.3 200/2.5 43/1

Dx/Dy 0.2/25 0.2/27 0.16/12.9 0.08/10 0.12/7.9 0.03/2.7
Υ0 0.06 0.09 0.14 0.29 0.3 8.1
δ % 3.2 4.3 4.7 8.9 3.8 31
nγ/e 2 1.5 1.3 1.3 0.7 2.3
n
e+e−

/e 0.17

L(with pin.) 1034 cm−2s−1 3.4 5.8 2 3 1.4 10.3

L(w/o pin.) 1034 cm−2s−1 1.6 2.8 1.2 1.9 ? ?
L(1%)/L % 66 64 67 25.5
L(5%)/L % 91 85 86 40.8
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1.2 General Layout II-7
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Each project has some distinctive features:

• TESLA: L band, 1.4 GHz, superconducting, Gmax ∼ 35 MeV/m, a good

efficiency, a low wakefield, a relaxed alignment tolerances, a large distance

between bunches;

• NLC/JLC: X-band, 11.4. GHz, warm cavities, a high gradient (55 MeV/m

loaded);

• CLIC: 30 GHz, a two-beam accelerator (one of beams produces RF

power), a very high gradient, 150 MeV/m, cost effective at multi-TeV en-

ergies.

So, there are three main technologies for LC developed by large teams,

each project have certain advantages. It would be good to built two colliders

almost simultaneously: TESLA for energies below 0.5 TeV, NLC/JLC for

the energy region up to 1.5 TeV and a third collider, CLIC, on the energy

3–5 TeV one decade later. However, due to a high cost only one global

linear collider is seen in the visible future.

3. General features of linear colliders

At storage rings, each bunch collides many times, the RF power is spent

mainly for compensation of synchrotron radiation losses. At linear colliders,

each bunch is used only once, radiation losses during the acceleration are

negligible, but a lot of energy is needed for production and acceleration of

bunches with a high rate. The total RF power consumption at LEP and at

0.5 TeV linear colliders are comparable, of the order of 100 MW from the

wall plug.

The number of accelerated particles is limited by total AC power which

is proportional to the beam power P . Due to the dependence of cross

sections on the energy as σ ∝ 1/E2 the luminosity should increase as E2,

as a result the required transverse beam sizes at TeV energies should be

very small.

Beams with small sizes have very strong fields that lead to large radi-

ation losses during beam collisions (beamstrahlung). This effect does not

allow us to use beams with simultaneously small horizontal and vertical

beam sizes (σx, σy) (only very flat beams) and to get the required lumi-

nosity the beam power should be additionally increased. This leads to the

“energy crisis” at the beam energy of about 2E0 ∼ 5 TeV, see Sec. 4. In the

γγ mode of operation (Sec. 5) only somewhat higher energies are possible

due to conversion of high energy photons to e+e− pairs in the field of the

opposing beam (coherent pair creation).
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Beside traditional linear accelerators, there are ideas of using plasma

and laser high gradient accelerator techniques for linear colliders. There

are some speculations about colliders with 100 TeV and even PeV energies.

Certainly, development of these techniques will lead to some practical appli-

cations, but obtaining colliding beams is very problematic due to required

quality of beams and collision effects. Some considerations and critical

remarks on plasma and laser acceleration are given Sec. 6.

4. Collision effects restricting luminosity and energy of

linear colliders

In order to obtain a sufficient luminosity at linear colliders the beam sizes

should be very small. This causes two sorts of problems: a) generation and

acceleration of beams with very small emittances and focusing to a tiny

spot, b) beam-beam collision effects which lead to degradation of the beam

quality.

The first problem is very difficult but not fundamental, in principle, one

can obtain emittance smaller than give damping rings using, for example,

laser cooling. The second problem is even more severe: beam collision

effects put restrictions on attainable luminosity and, correspondently, on

the maximum energy of linear colliders.

In the absence of collision effects the luminosity of a collider

L ≈
N2f

4πσxσy
=

P

4πE0

×
N

σxσy
. (1)

For 2P = 20 MW(200 MW AC power), N = 2 × 1010, σx = σy = 1 nm

L = 1037/E0[TeV], cm−2s−1, this luminosity is sufficient for production of

103 lepton pairs per 107 sec up to 2E0 = 25 TeV. Below we consider several

limitations due to collisions effects.

4.1. Pinch effect and instability of beam collisions

During the collision beams attract (e+e−) or repulse (e−e−) each other.

The characteristic disruption parameter6,7

Dy =
2Nreσz

γσxσy
. (2)

For flat beam and Dy ∼ 10, the attraction leads to increase of the e+e−

luminosity by a factor of HD ∼ 2. At Dy ≥ 25 beams become unstable,
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the corresponding luminosity

L ∼
P

mc2reσz
. (3)

For P = 10 MW and σz = 100 µm L ∼ 5 × 1034 cm−2s−1. So, this put

limit on the luminosity for a given beam power and bunch length.

4.2. Beamstrahlung

A strength of a beam field is characterized by the parameter Υ 8,7

Υ =
2

3

~ωc

E
= γ

B

B0

, B0 =
αe

r2
e

= 4.4 · 1013G. (4)

For flat beams

Υav ≈
5Nr2

eγ

6ασxσz
. (5)

The maximum value of σz is determined by disruption. Ideally, increasing

σx to infinity and simultaneously decreasing σy to zero one can get arbitrary

small Υ for any luminosity. However, if σy has some minimum value (there

are many reasons), then Υ ∝ L2γ2σy/P 2Dy. As P is always limited, Dy <

25 and the required L increases with the energy as γ2, the value of Υ

increases rapidly with the energy. In the current LC projects at 1 TeV

Υ = O(1), at higher energies inevitably Υ � 1.

Synchrotron radiation of electrons in the field of the opposing beam

(beamstrahlung) put severe limitations on performance of linear colliders.

Energy losses are given by approximate formulae: 7

dNγ

dt
=

5

2
√

3

α2cΥ

reγ
U0(Υ), U0 ≈

1

(1 + Υ2/3)1/2
, (6)

−
dE

Edt
=

2

3

α2cΥ2

reγ
U1(Υ) U1 ≈

1

(1 + (1.5Υ)2/3)2
, (7)

< ω >

E
=

4
√

3

15
Υ

U1(Υ)

U0(Υ)
= 0.462Υ (Υ → 0), 0.254 (Υ → ∞), (8)

δE =
∆E

E
= 1.24

[

α2σzΥ

reγ

]

ΥU1(Υ); (9)

Υ � 1 is the “classic” regime; Υ ∼ 0.2–200 the “transition” regime

(ΥU1(Υ) ≈ 0.1–0.2 ∼ 0.15); Υ � 200 the “quantum” regime. Collid-

ers in the TeV region belong to the transition regime, multi-TeV LC with

dense short bunches can reach the quantum regime.



8

The luminosity (1) can be expressed via δE . In the transition regime it

does not depend on σz:

L ∼
6.45δE

4παreγσy

(

P

mc2

)

= 1.5 × 1034
P [MW]δE

E0[TeV]σy[nm]
cm−2s−1; (10)

In the quantum regime

L ∼
1.95

4πα2σy

√

δ3

E

reσzγ

(

P

mc2

)

= 5 × 1034
P [MW]

σy[nm]

√

δ3

E

E0[TeV]σz[µm]
. (11)

For example, for P = 10 MW per beam (about 200 MW from wall plug)

σy = 1 nm, 2E0 = 5 TeV, δE = 0.2 we get (accuracy is about factor of

2–3) L = 1.2 × 1034 cm−2s−1 in the transition regime (does not depend on

σz) and L = 3 × 1034 cm−2s−1 in the quantum regime (for σz = 1 µm),

an additional factor of ∼ 1.5 can give the pinch effect. We see that the

quantum regime (short bunches) helps but not too much.

In order to produce 103 characteristic reactions e+e− → µ+µ− per 107

sec at the energy 2E0 = 5 TeV the required luminosity is 3 × 1034, that

is close to the above limit due to beamstrahlung. So, if σy,min ∼ 1 nm

(see Sec. 4.5), the maximum reasonable energy of linear colliders is about

2E0 ∼ 5 TeV.

In principle, there is a possibility to cancel beam fields by colliding four

beams (e+e− from each side), then beamstrahlung is absent. The beams

instability threshold remains at the same level of luminosity or may be

only somewhat higher. This scheme can give some gain in luminosity, but

technically it looks unrealistic.

4.3. Coherent e+e− pair creation

At κ = (ω/E0)Υ > 1 a beamstrahlung photon can convert into e+e−

pairs in the field of the opposing beam.9 At κ � 1 the ratio of beam-

strahlung/pair creation probabilities is about 3.8. The number of beam-

strahlung photons at linear colliders Nγ ∼ Ne (in order to increse lumi-

nosity the horizontal size is decreased until each electron emit about one

photon). Therefore the number of e+e− pairs at κ � 1 (or Υ � 1),

Ne+e−/Ne = O(0.1). For example, at CLIC(3000) Ne+e−/Ne ∼ 0.085.

The minimum energy of produce particles (important from a background

point of view) Emin ∼ 0.05E0/Υ.
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4.4. Deflection of soft particles

The lowest energy charged particles produced in process of coherent pair

creation with the same sign of the charge as that of the opposing beam are

deflected by the opposing beam on the angle 9

θ ∼

(

4πNe2

σzEmin

)1/2

∼ 170
N

σz

(

r3

e

σx

)1/2

. (12)

For example, at CLIC θ ∼ 15 mrad. To avoid background from these large

angle particles one should use the crab-crossing scheme.10 Below we will

see that crab-crossing angles below 20–30 mrad are acceptable, but larger

angles lead to the increase of the vertical beam size.

So, deflection of soft particles put an additional constraint on the beam

parameters. Beamstrahlung and instabilities may be OK (in case of very

short bunches), but disruption angles are too large.

4.5. Minimum value of σy

The minimum vertical beam size at the interaction point (at βy ∼ σz)

σy =
√

εnyσz/γ. Limitations:

a) Attainable value of the normalized vertical emittance from an injector;

b) Radiation in final quadrupoles (Oide effect). 11 Minimum achievable

beam size σmin[m] ≈ 1.7×10−4εny[m]5/7. For εny considered in the current

LC projects σmin ∼ 0.5 nm.

c) Radiation in the detector solenoid field due to the crab crossing12,13,14

σ2

y =
55r2

e

480
√

3 α

(

eBsθcL

2mc2

)5

. (13)

For Bs = 4 T, L = 4 m σy = 0.74 nm for θc = 20 mrad and 2 nm

for θc = 30 mrad. More accurate simulation of this effect (the number of

emitted photon is about one) was done in Refs 13, 14. As a linear collider

without a detector has no sense this effect put a limit on a minimum vertical

beam size at the interaction point at the level of 0.5 nm at θc = 20 mrad.

4.6. Resume on maximum energies of linear colliders.

For a reasonable wall plug AC power 100–300 MW the maximum energy of

linear e+e− colliders with a luminosity sufficient for experiments, according

to present understanding, is limited by collision effects at the level of 2E0 =

5–10 TeV.
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5. Photon colliders

In addition to e+e− physics, linear colliders provide a unique opportunity

to study γγ and γe interactions at high energies and luminosities.15,16 High

energy photons can be obtained using Compton backscattering of laser

light off high energy electrons. This option is foreseen in all other project

of linear colliders.2,3,4,5,18 The maximum energy of photons after Compton

scattering

ωm =
x

x + 1
E0; x ≈

4E0ω0

m2c4
' 15.3

[

E0

TeV

]

[ ω0

eV

]

. (14)

For example: E0 = 250 GeV, ω0 = 1.17 eV (λ = 1.06 µm) ⇒ x = 4.5 and

ωm = 0.82E0 = 205 GeV. The value x = 4.8 is the threshold for the process

γγL → e+e− in the conversion region. This determine the optimum laser

wavelength: λopt ∼ 4E[TeV] µm.19 Nonlinear effects in Compton scattering

increase the threshold value of x by a factor of (1 + ξ2), where a parameter

of nonlinearity ξ2 ∼ 0.5 is acceptable. 18 Most powerful solid state laser

with λ ∼ 1.05 µm can be used upto the energies 2E0 ∼ 800 GeV. Detailed

discussion of physics, and technical problem of photon colliders can be found

elsewhere.18,3,28 Below we consider only the most critical issues: luminosity,

energy, laser system.

5.1. Current projects of photon colliders

Parameters of the photon colliders at TESLA18 (as an example) are pre-

sented in Table 2, for comparison the luminosity in e+e− collisions is also

given. Other parameters, constant for all energies, are: λ = 1.06 µm, N =

2 × 1010, σz = 0.3 mm, frep × nb = 14.1 kHz, εnx/εny = 2.5/0.03 ×

10−6 m·rad, βx/βy = 1.5/0.3 mm. For the same energy the γγ luminosity

Table 2. Parameters of the photon collider at TESLA, see
also some fixed parameters above Table.

2E0 , GeV 200 500 800

Wγγ,max 122 390 670
Wγe,max 156 440 732
σx/y [nm] 140/6.8 88/4.3 69/3.4

b [mm] 2.6 2.1 2.7
Lee(geom) [1034] 4.8 12 19
Lγγ(z > 0.8zm,γγ )[1034] 0.43 1.1 1.7
Lγe(z > 0.8zm,γe )[1034] 0.36 0.94 1.3
Lee(z > 0.65)[1034] 0.03 0.07 0.095

Le+e−
, [1034] 1.3 3.4 5.8
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in the high energy peak of the luminosity spectrum

Lγγ(z > 0.8zmax) ≈ (1/3)Le+e− , (15)

where z = Wγγ/2E0. Note, that cross sections in γγ collisions are typically

larger then in e+e− by one order of magnitude. A more universal relation

Lγγ(z > 0.8zm) ≈ 0.1Lee(geom) (for k2 = 0.4). Expected γγ, γe luminosity

spectra at TESLA can be found elsewhere.20,18,21

The γγ luminosity at TESLA is limited by attainable electron beam

sizes. Having beams with smaller emittances (especially the horizontal

one) one would get a higher luminosity. In order to increase the geometric

luminosity one should decrease the β-functions as much as possible, down

to about a bunch length. In the current scheme of the final focus it was not

possible to make βx below 1.5 mm due to chromo-geometric abberations.18

It is not clear whether this is a fundamental or just a temporary technical

problem.

5.2. Ultimate luminosity of photon colliders

Though photons are neutral, γγ and γe collisions are not free of collision

effects. Electrons and photons are influenced by the field of the opposite

electron beam that leads to the following effects:19

• in γγ: conversion of photons into e+e− pairs (coherent pair creation);

• in γe: coherent pair creation; beamstrahlung; beam displacement.

Beam collision effects in e+e− and γγ, γe collisions are different. In

particular, in γγ collisions there are no beamstrahlung and beam instabili-

ties which limit the horizontal beam size in e+e− collisions on the level 550

(350) nm for TESLA (NLC/JLC). A simulation, which includes all collision

effects has shown that in γγ mode at TESLA one can use beams with the

horizontal size down to σx = 10 nm (at smaller σx may be problems with

the crab–crossing scheme) and influence of collision effects will be rather

small.22,20,18 The γγ luminosity (in the high energy part) can reach 1035

cm−2s−1. Note that now in TESLA project σx ≈ 500 nm in e+e− colli-

sions and about 100 nm in the γγ collisions. Having electron beams with

much smaller emittances one could build a photon collider factory with

production rate of new particles by a factor of 10–50 higher than at e+e−

colliders. A laser cooling of electron beams is one of the possible methods

of reducting beam emittances at photon colliders,23,24 but this method is

not easy.

Note that small rate of coherent e+e− pair production at TESLA ener-

gies is partially explained by the beam repulsion which reduces the field act-
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ing on the photons. For multi-TeV energies and short bunches such suppres-

sion is absent and photon colliders reach their energy limit (with adequate

luminosity) approximately at the same energies as e+e− colliders.25,26,27

5.3. Technical aspects of photon colliders

A key element of photon colliders is a powerful laser system which is used

for the e → γ conversion. Required parameters are: a few Joules flash

energy, a few picosecond duration and 10–20 kHz repetition rate.

To overcome the “repetition rate” problem it is quite natural to consider

a laser system where one laser bunch is used for the e → γ conversion many

times. At the TESLA, the electron bunch train contains 3000 bunches with

337 ns spacing, here two schemes are feasible: an optical storage ring and

an external optical cavity.20,18,21 With the optical cavity a required laser

power can be lower than in the case of a one-pass laser by factor of 50–100.

There is no detailed scheme of such laser system yet.

At NLC, the electron bunch train consists of 96 bunches with 2.8 sec

spacing therefore exploiting of the optical cavity is not effective. A current

solution is a one-pass laser scheme based on the Mercury laser developed

for the fusion program. The laser produces 100–200 J pulses which after

splitting to 96 pulses can be used for e → γ conversion of one train.3,21

A laser system for a photon collider can certainly be built though it is

not easy and not cheap.

6. Advanced accelerator schemes

Conventional RF linear colliders have accelerating gradients up to 150

MeV/m, corresponding lengths about 30–40 km and attainable energies

up to 5 TeV (Sec.2). On the other hands, people working on plasma and

laser methods of acceleration have obtained gradients of 100 GeV/m! Some

people are thinking already about 100 TeV and even 1 PeV linear colliders

or about 1–5 TeV LC with less than one km length.

Certainly, new methods of acceleration will make further progress and

find certain applications, but it is less clear about possibility of super high

energy colliders based on these technologies.

First of all, collision effects restrict the energy of linear colliders at about

10 TeV (Sec.4); secondly, the quality of electron beams should be very high;

and thirdly, it is very likely that in considerations of very high acceleration

gradients some important effects are just missed. Driven by my curiosity

and for self-education I have spent some time for random check of these
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conceptions and some remarks are presented below. Situation in this field

is not bad, but some of existing proposals are certainly wrong.

6.1. Plasma acceleration

Laser or particle beams can excite waves in plasma with a longitudinal

electrical field 29. The accelerating gradient

G ∼ mcωp ∼ 10−4

√

np[cm−3]

(

MeV

m

)

. (16)

Typical parameters considered: np ∼ 1015 cm−3, G ∼ 2 GeV/m.

6.1.1. Multiple scattering

Let us consider the case nb � np when all plasma electrons are pushed out

from the accelerated beam. The beams travel through ions with density np

and experience a plasma focusing with the β-function30 β ∼
√

2πγ/renp =
√

2γλp. The r.m.s. angle due to multiple scattering

∆θ2 ≈
8πZ2r2

endz

γ2

dρ

ρ
, ρmin ∼ RN , ρmax ∼ RD, (17)

where RD = (kT/4πne2)1/2 is the Debai radius. The increase of the nor-

malize emittance ∆εn
2 = γ2r2∆θ2 = εn γβ∆θ2. After integration on the

energy we get the final normalized emittance

εn ∼ 8π
√

2πZ2(npr
3

eγf )1/2(mc2/G) L, (18)

where L = ln ρmax/ρmin ∼ 20. Substituting n = 1015 cm−3, G = 2 GeV/m,

Z = 1, γf = 5×106 (2E0 = 5 TeV) we get εn ∼ 3×10−7 cm. Note that the

result does not depend on the plasma density because G ∝
√

np (Eq.16).

In present LC designs the minimum vertical emittance εny = 2 × 10−6 cm,

so multiple scattering in an ideal plasma accelerators look acceptable. It

is assumed that sections with plasma have small holes for beams since any

windows will give too large scattering angles.

6.1.2. Synchrotron radiation

Due to a strong focusing by ions (plasma electrons are pushed out from the

beam), beam electrons lose their energy to radiation, the radiation power

P = (2/3)cr2

eγ2E2

⊥

, where E
⊥

= 2πenpZr (as before we assume nb � np),

r ∼
√

εnβ/γ, β =
√

2πγ/renp. After integration on the energy we find



14

the difference of energies for the particle on the axis (no radiation) and one

at the r.m.s distance form the axis

∆E/E ∼ 25r5/2

e n3/2

p Z2γ
3/2

f (mc2/G)εn . (19)

For G = 2 GeV/m, np = 1015 cm−3, εnx ∼ 10−4 cm (emittance from

damping rings or from photo-guns), γf = 5 × 106 (2E0 = 5 TeV) we get

∆E/E ∼ 10−3, that is acceptable. For several times larger energy spreads

there are chromaticity problems in final focus systems. Note, that G ∝
√

np,

therefore the energy spread is proportional to the plasma density. In Ref. 31

the case of the overdense plasma (nb < np) was also investigated with the

conclusion that it is not suited for TeV colliders.

So, synchrotron radiation puts a limit on a maximum plasma density

(and acceleration gradient). A 10 TeV collider with a gradient 10 times

larger that at CLIC is still possible.

6.1.3. Some other remarks on plasma acceleration

Though plasma accelerators pass the simple criteria discussed above, there

are many other question.

At E0 = 1 TeV, np = 1015 cm−3, εny=10−6 cm the transverse electron

beam size in plasma is about 0.1 µm ! This means that the accelerating

sections should have relative accuracy better than 0.1σy ∼ 10−6 cm !

The beam axis is determined in large extent by the drive beam. The

transverse size of the drive beam (of it’s head which is focused by external

quadrupoles) is of the order of 10−2 cm. Small fluctuations in the beam

profile will lead to dilution of the accelerated beam emittance.

To avoid radiation of the high energy accelerated beam in the field

of kickers during the injection of the drive beam, the kickers should be

very fast, in 100 GHz frequency range.32 Then the required stability of the

horizontal angle is about ∼ 0.1σx/L ∼ 0.1 × 10−4/100 ∼ 10−7 rad. If the

kick angle is 10−2 rad, the required time stability is about ∼ ∆x/c×10−5 ∼

10−16 sec.

In summary: a plasma acceleration is a perspective technique, it can

find certain applications, but technical feasibility of plasma based linear

colliders is not clear now.
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6.2. Laser acceleration in vacuum

There are many ideas on this subject. a In general, in a space with some

boundaries the accelerating gradient is proportional to the electric field,

G ∝ E, and G ∝ E2 in an open space. This is because the charged particle

extracts the energy from the field due to interference of the external and

radiated field:

∆E ∝

∫

(E + Erad)
2 dV − E2 dV ∝ EErad dV, (20)

where Erad ∼ const when a particle radiates in a given structure without

any field and in a free space the radiated field is proportional to a particle

acceleration: Erad ∝ E.

6.2.1. G ∝ E

In this case, a particle is accelerated by the axial electrical field Ez of a

focused laser. For a radially polarized Gaussian beam Ez ∼ E(λ/πw0),

where E is the transverse laser field, w0 is the radius of the focal spot.

The electron is in the accelerating phase of the wave on the length ∼ ZR

(Rayleigh length). In order to get a net acceleration one has to put some

screen with a small hole to restrict the interaction length. The damage

threshold of the optical components is a limiting factor of the method. For

the damage threshold 5 TW/cm2 the maximum energy gain ∆E(MeV) ∼

20[P (TW)]1/2, that is about 50 MeV for P = 10 TW.33 There is a proposal

to study this method at SLAC.34

One of the other approaches uses small cavities pumped by a laser. 35

This method needs very small beam sizes (emittances) and severe toler-

ances.

There are many laser accelerating schemes of such kind under develop-

ment.

6.3. G ∝ E2

There are many fantasies on this subject.

1. Light pressure. If an electron is in the rest, a plane electromagnetic

wave pushes it with a force F = σT × (E2/4π), where σT is the Thomson

cross section. This is because laser photons scatter isotropically and mo-

menta of laser photons incident onto σT are transfered to the electron. At

I = 1028 W/cm2 (in Ref.36), the accelerating gradient dE/dx = 1 TeV/cm.

aIn Secs 6.2, 6.3 E denotes an electron energy and E is the strength of a laser field.
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Unfortunately, in a real wave, laser photons have the divergence θ ∼
√

λ/4πZR. Therefore, if the electron has E/mc2 > 1/θ, then in the electron

rest frame laser photons come from the forward hemisphere and therefore

the electron is deaccelerated! For λ = 1 µm and ZR = 100 µm, Emax ∼ 15

MeV only!

2. Ponderomotive acceleration. In a strong laser field an electron

experiences a collective force from the whole laser bunch, so called a pon-

deromotive force,37,38,39

Fi ∼
mc2

γ

dξ2

dxi
, ξ2 =

e2E2

m2c2ω2

0

=
2nγr2

eλ

α
. (21)

This opens a way to transfer the energy from large body (laser beam) to

one microscopic particle (electron). There is an idea 40 to collide the laser

pulse propagating in a rare gas (to have v∗ < c, large effective γ∗) with the

oncoming electron bunch with a relativistic factor γ0, so that after elastic

reflection the electron will have γ = (γ∗)2/γ0. According to above Refs,

for the laser power 4.3 EW (EW=1018 W) γ∗ = 1.6 × 106 and γ0 = 1400,

the energy of reflected electrons in the laboratory system is 1 PeV ≡ 1000

TeV! The length of the collider is the laser bunch length or almost ZERO!

Unfortunately, the idea is wrong due to many reasons:

• The interaction length is not the bunch length but Lint ∼

llaser/(1 − v∗/c) ∼ llaser × (γ∗)2 ∼ 10−2 × 1012 ∼ 105 km !

• Radiation of electrons (see below), and many other “NO”.

6.3.1. Radiation during a ponderomotive acceleration

During the ponderomotive acceleration electrons radiate in the transverse

laser field. This can be treated as Compton scattering. Radiated energy

per unit length: dE
dx ∼ ε̄ n(1 − cos θ)σT . Substituting θ2 ∼ λ/(2πZR),

ε̄ ∼ ω0γ
2θ2, n = αξ2/(2r2

eλ) we get

dE

dx
∼

ξ2γ2re

Z2

R

mc2. (22)

For example: E0 = 1 TeV, ZR = 100 µm, and ξ2 = 100 (flash energy

∼ 100 J), dE/dx = −200 GeV/cm. For the mentioned 1 PeV project with

ξ2 = 2 × 106, dE/dx = −109 PeV/cm!

So, ponderomotive acceleration can be useful for low energy application,

but not for linear colliders due to the decrease of the force with the increase

of the energy and a huge radiation.
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7. Conclusion

Linear e+e−, e−e−, γγ, γe colliders are ideal instrument for study of matter

in the energy region 2E0 ∼ 100–1000 GeV. Three projects are almost ready

for construction, a wise choice and political decision are needed.

A linear collider is not a simple machine, very high accuracies, stabilities

and cleaver beam diagnostics are needed. Many critical elements have been

tested experimentally.

According to present understanding a maximum attainable energy of

linear colliders with adequate luminosity is about 2E0 ∼ 5 TeV. There is

technology for such “last” LC, that is CLIC.

Advance technologies (plasma, laser) can give higher accelerating gra-

dients but their application for high energy linear colliders is under big

question. Further complex studies of new accelerating methods in this con-

text are needed.
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Photon colliders have been studied for years as an option of future linear colliders.
The studies revealed that physics in the high energy photon-photon interaction is
attractive and the facility has to be ready not too much later than the e+e−collider.
In this talk, we report recent status of technical aspect of development of the photon
collier as an option of the future linear collider.

1. Introduction

The idea of converting the electron beam to the photon beam to was first

proposed in 19811. Since then, the idea has been discussed by many au-

thors. Particularly, in the last decade, the understanding of photon collider

has been grown very much both in physics opportunities and technical fea-

sibility. So that the photon collider option is included all of linear collider

projects as an important option which has to be started not too much later

than the e+e−options. Activities and status of the photon colliders were

reported from all linear collider groups, i.e., Asia , North America and

Europe2,3,4,5. In Fig. 1, the JLC accelerator complex is illustrated as an

example of the linear collider with the second interaction point. Thanks to

these effort, general understanding for the photon collider is clear in both

physics and technical aspect. Thus the R&D for the photon collider is in

the stage that how we can really construct photon collider facility in the

linear collider project.

In this talk, we briefly review principle and future of the photon collider

and issues issue to be solved, then, report status and future prospect of the

R&D effort toward the realization of the photon collider.
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Figure 1. JLC schematic with the second interaction point.
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Figure 2. Kinematics of backward Compton scattering.

2. Principle of the Photon Collider

In the Photon collider, high energy photons are generated by the backward

Compton scattering of the intense laser off the electron beam provided by

the linear accelerator. The scheme of the backward Compton scattering

is illustrated in Fig. 2. The maximum energy of the generated photon is

expressed as;

Eγ

∣

∣

max
=

x

x + 1
Ee. (1)

Here, x is a kinematics parameter of the Compton scattering, defined as

x =
4EeωL

m2
e

cos2(θ/2), (2)

where Ee, ωL and θ are the electron energy, laser photon energy and angle

between the electron beam and the laser beam as shown in Fig. 2.
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Figure 3. Calculated energy(a) and polarization(b) of back-scattered photons by laser-
Compton scattering. Three lines are for different combination of the election and the
laser polarization, i.e., PePL = −1(solid), PePL = 0(dash) and PePL = +1(dots),
respectively.

A calculated photon energy spectra and polarization generated by the

backward Compton scattering is shown in Fig. 3. The energy distribution

of the photons depends on the polarization of the electrons(Pe) and the

laser(PL)beam, i.e., one can obtain a broad (PePL = +1) or peaked energy

distribution(PePL = −1) by controlling the polarization. It is also found

that the generated photon beam is highly polarized and is 100% polarized

at the highest energy edge.

According to equation (1), the maximum photon energy increases as x

becomes higher. However, when x exceeds 2(1 +
√

2) ≈ 4.83, the energy of

a Compton-scattered photon and a laser photon system exceeds the thresh-

old of e+e− pair creation. This pair-creation process could waste generated

high-energy photons and could be an additional source of detector back-

ground so that, at least as the first assumption, x parameter is restricted

to be smaller than 4.83, corresponding to the maximum photon energy of

about 80% of the electron energy. In the case that the electron beam en-

ergy of 250 GeV, laser wave length of 1µm, which matches wave length of

typical solid state lasers, makes x ≈ 4.7.

Ideally, we want to convert all electrons in an electron beam to photons,

however, it requires infinite energy for the laser pulse. Therefore, in a typi-

cal parameters of the photon collider, the Compton-conversion probability

for an electron, i.e., mean number of Compton interactions of an electron

in a laser pulse, is assumed to be 1. Even for this assumption, the required

energy for the laser system exceeds 1J/pulse and is still a key issue for the
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Table 1. Proposed electron beam parameters of the γγ collider options
for the JLC, NLC and TESLA

Parameter set JLC NLC TESLA

e−

Beam energy Ee GeV 250 267.5 250

Particles/bunch N 0.95@10 1.5@10 2.0@10
Repetition rate frep Hz 150 120 5
bunches/pulse nb 95 95 2.5k

bunch spacing t ns 2.8 2.8 ≈ 300
Bunch length σz µm 120 156 300

Bunch sizes at IP σ∗

x
/σ∗

y
nm 67.8/12.8 166/3.0 88/4.3

Beta func. at IP β∗

x
/β∗

y
mm 0.5/0.8 4.0/0.065 1.5/0.3

Norm. emittance εxn/εyn nm·r 4500/100 3600/71 2500/30

CP-IP distance d mm 7.0 1.0 2.1
Geom. luminosity Lee cm−2s−1 11.8@33 41.0@33 118@33

photon collider project. By this assumption, the conversion efficiency k, is

calculated as;

k =

∞

∑

n=1

P 1

n = 1 − e−1 ≈ 0.63 (3)

where P 1

n is a probability that an electron encounters n laser photons when

its average is one. Thus the number of scattered photons (Nγ) is 0.63N ,

where N is the number of electrons in a bunch. As we are usually interested

in the high energy part of the spectrum, we define effective conversion

efficiency k′ ≈ 0.3 for the photons of its energy Eγ > 0.65Ee. Therefore,

the luminosity of the γγ collider is expressed approximately as;

Lγγ = k′2Lee ≈ 0.32Lee ≈ 0.1Lee, (4)

where Lee is the geometric luminosity of e−e− collisions defined as;

Lee =
N2f

4πσe
xσe

y

(5)

with N , f , σe
x and σe

y being number of electrons in a bunch, its repetition

rate, horizontal and vertical bunch size at the interaction point, respectively.

More precise estimation for the spectrum of the high energy photon

and for luminosity spectrum can be performed using numerical simulation

with specific parameters of the electron and the laser beam. Parameters of

proposed photon colliders are summarized in table 1.

The energy spectrum for generated photon is shown in Fig.4. To simu-

late the distribution, CAIN, a program for the numerical simulation of the

Compton scattering and the beam-beam simulation, is used7.



5

Eγ(GeV)

N
um

be
r 

of
 P

ho
to

ns
/b

un
ch

/5
G

eV

0

200

400

600

800

1000

1200

x 10 6

0 25 50 75 100 125 150 175 200 225 250

Figure 4. Simulated photon energy spectrum.

The simulated luminosity distributions simulated using CAIN is shown

in Fig. 5. Since we are not going to sweep out used electrons from the

interaction point, we have γγ, eγ and e−e− interaction simultaneously as

well as low energy interaction caused by beamstrahlung photons.

3. Technical Issues

3.1. Lasers

To convert the electron beam to the photon beam effectively, the laser

photon density nlaser has to satisfy

σComptonnlaser ≈ 1.

It could be achieved using ultra-short pulse laser with relatively small flush

energy. However, if the photon density of the laser, i.e., field strength of

the laser pulse is too high, the non-linear effect in Compton scattering is
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Figure 5. Luminosity distributions simulated by CAIN7 for collisions, the solid, dashed
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their center-of-mass energies.

not negligible. To suppress non-linear effect with in tolerable level, the

laser field strength parameter ξ2 has to be less than ≈ 0.3 which eventually

results in longer O(ps) laser pulse with the energy of O(J/pulse) . Since

the laser pulse must be synchronized with the electron bunch structure, the

repetition of the laser pulse will be ≈ 15kHz and therefore the average laser

power will be ≈ 15kW.

Although, number of pulse per second is more or less same for JLC/NLC

and TESLA design, the difference in the bunch structure reflects design of

the laser system. The bunch spacing of JLC/NLC design is 2.8 ns and the

number of bunches in a bunch train is about 100 makes a bunch train of

about 300ns. An important fact from this number is that 300ns is shorter

than the life time of upper level state of lasing material of solid state laser.

Therefore the laser system can be an extension of current LD pumped solid

state laser technology.

A possible design of the laser system based on Mercury laser is dis-

cussed in [9]. The Mercury laser is 100J/pulse, 10Hz with 2-10ns pulse

length which is now under development at Lawrence Livermore National

Laboratory. In their scheme, a pulse train consists of 95 pulses with 2.8



7

ns spacing is formed before the amplification. Each pulse is chirped and

overlapped temporarily so that the envelop is a ≈ 300ns pulse. However

each pulse can still be identified because they are not overlapped in fre-

quency. This pulse are put into the main amplifier and then high power

laser pluses are compressed to 95 of 1ps pulses. Since the Mercury laser is

design to operate 10Hz, it only needs 12 systems to provide the laser pulses

to 95 × 120Hz electron bunches.

The other alternative is to develop the laser system which is capable to

operate 150Hz with 1J/pulse energy2. Each laser is responsible for one of

the bunch in a bunch train so that entire electron bunches can be covered

if one can prepare the same number of laser system with the bunches in

a train (200 in total for two beams). One of the issue to be solved for

this scheme is a way to combine 100 laser pulses to a single pulse train of

2.8ns spacing. As each laser pulse is 1J/1ps, it requires high power/high

speed Pockels Cells. Development of the Pockels Cells is still not trivial by

current laser technology and more R&D is necessary for this point.

While the laser system for JLC/NLC scheme may be possible by exten-

sion of conventional laser technology, TESLA may need more sophisticated

laser handing. The pulse structure of the TESLA system is 3000 bunch

with 337ns spacing, resulting in length of a train of ≈ 1ms. The length of

the pulse is longer than the life time of the upper level of the lasing ma-

terial. Therefore, pumping power of the laser system will be too large to

make 3000 of 1J pulse. To reduce pulse energy from the laser system, they

designed a ring resonator at the interaction region of the detector4. The

system aims to build up laser power of 100 in the resonator so that laser

power can be reduced to 1/100 (≈ 0.05J/pulse).

3.2. Interaction Region

The basic requirement for the interaction region is the same as those of

e+e− collider, i.e.,

• Protect detectors from the beam-beam backgrounds.

• Extract spent electron beam.

However, for the photon collider, we have to satisfy these requirement with

the optical system for the TW laser pulse. The beam related background

is more or less similar to the e+e− collider except for the energy spectrum

of the spent electron. Since the electron beam already interacted with the

laser pulse at the conversion point, energy of the electron beam is widely
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spread and hence its disruption angle is larger than the e+e−collider as

shown in Fig. 6. Due to the large disruption angle, the beam crossing

Ee(GeV)

θ(
m

ra
d)

Figure 6. Disrupition angle of spent electrons.

angle have to be larger than the e+e−collider and the beam extraction line

must have larger aperture to accommodate the spent electrons.

The engineering level design of the interaction region including the laser

optics and masking system are still under consideration. A design close to

the engineering level at this moment is shown in Fig. 710.

In this design, the aperture of the electron beam exaction line is about

10mr to accommodate the spent electrons and the beam crossing angle

is enlarged to 30mr to avoid interference between the extraction line and

the final focus magnet. The laser path is also shown in Fig. 7. The final

focus mirror is mounted on the tungsten mask(M1) which is 3 m from the

interaction point. The mirror is 38cm in diameter with a hole of 15 cm

diameter for the electron lines. The detail description of this design is

found in [10].

4. Prospect and Plan

According to the studies in the last decade, physics opportunities and

technical feasibility of the γγ collider have been understood. Community
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Figure 7. A schematic of the interaction region of the γγ collider.

reached consensus that this option has to be build. In technical aspect, we

now have a realistic design of the laser system and the interaction region.

The R&D effort is now in the phase to consider systematic and collaborative

way to construct the photon collider in the e+e−collider project including

possibility of a demonstration of photon-photon collision with a prototype.
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The smallness of the transverse dimensions of the colliding beams leads to sup-
pression of bremsstrahlung cross section. This beam-size effect was discovered and
investigated at INP, Novosibirsk. Different mechanisms of radiation are discussed.
Separation of coherent and incoherent radiation is analyzed in detail. For linear
collider this suppression affets the whole spectrum. It is shown that objections to
the subtraction procedure in 9 are groundless.

1. Introduction

The bremsstrahlung process at high-energy involves a very small momen-

tum transfer. In the space-time picture this means that the process occurs

over a rather large (macroscopic) distance. The corresponding longitudinal

length (with respect to the direction of the initial momentum) is known

as the coherence (formation) length lf . For the emission of a photon with

the energy ω the coherence length is lf (ω) ∼ ε(ε − ω)/m2ω, where ε and

m is the energy and the mass of the emitting particle ( here the system

~ = c = 1 is used).

A different situation arises in the bremsstrahlung process at the electron-

electron(positron) collision. For the recoil particle the effect turns out to be

enhanced by the factor ε2/m2. This is due to the fact that the main contri-

bution to the bremsstrahlung cross section gives the emission of virtual pho-

ton with a very low energy q0 ∼ m2ω/(ε(ε−ω)) by the recoil particle, so that

the formation length of virtual photon is Lv(ω) = lf (q0) = 4ε3(ε−ω)/m4ω.

This means that the effect for the recoil particles appears much earlier than

for the radiating particles and can be important for contemporary colliding

beam facilities at a GeV range 1.

∗This work is partially supported by grant 03-02-16154 of the Russian Fund of Funda-
mental Research.
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The special experimental study of bremsstrahlung was performed at

the electron-positron colliding beam facility VEPP-4 of Institute of Nu-

clear Physics, Novosibirsk 2. The deviation of the bremsstrahlung spec-

trum from the standard QED spectrum was observed at the electron en-

ergy ε = 1.84 GeV. The effect was attributed to the smallness of the

transverse size of the colliding beams. In theory the problem was in-

vestigated in 3, where the bremsstrahlung spectrum at the collision of

electron-electron(positron) beams with the small transverse size was cal-

culated to within the power accuracy (the neglected terms are of the order

1/γ = m/ε). After the problem was analyzed in 4, and later on in 5 where

some of results for the bremsstrahlung found in 3 were reproduced.

It should be noted that in 3 (as well as in all other papers mentioned

above) an incomplete expression for the bremsstrahlung spectrum was cal-

culated. One has to perform the subtraction associated with the extraction

of pure fluctuation process. This item will be discussed in Sec.2. In Sec.3 an

analysis is given of incoherent radiation in electron-positron linear collider.

2. Mechanisms of Radiation

2.1. Dispersion of momentum transfer

We consider the radiation at head-on collision of high energy electron and

positron beams. The properties of photon emission process from a particle

are immediately connected with details of its motion. It is convenient to

consider the motion and radiation from particles of one beam in the rest

frame of other beam (the target beam). In this case the target beam is an

ensemble of the Coulomb centers. The radiation takes place at scattering

of a particle from these centers. If the target consists of neutral particles

forming an amorphous medium, a velocity of particle changes (in a random

way) only at small impact distances because of screening. In the radia-

tion theory just the random collisions are the mechanism which leads to

the incoherent radiation. For colliding beams significant contributions into

radiation give the large impact parameters (very small momentum trans-

fers) due to the long-range character of the Coulomb forces. As a result, in

the interaction volume, which is determined also by the radiation formation

length (in the longitudinal direction), it may be large number of target par-

ticles. Let us note that in the case when the contribution into the radiation

give impact parameters comparable with the transverse size of target, the

number of particles in the interaction volume is determined by the ratio of

the radiation formation length to the mean longitudinal distance between
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particles.

However, not all cases of momentum transfer should be interpreted as

a result of random collisions. One have to exclude the collisions, which are

macroscopic certain events. For elaboration of such exclusion we present the

exact microscopic momentum transfer to the target particle in the form:

q =< q > +qs. Here < q > is the mean value of momentum transfer

calculated according to standard macroscopic electrodynamics rules with

averaging over domains containing many particles. The longitudinal size

of these domains should be large with respect to longitudinal distances

between target particles and simultaneously small with respect to the ra-

diation formation length. The motion of particle in the averaged potential

of target beam, which corresponds to the momentum transfer < q >, de-

termines the coherent radiation. While the term qs describes the random

collisions which define the process of incoherent radiation (bremsstrahlung).

Such random collisions we will call “scattering” since < qs >= 0.

We consider for simplicity the case when the target beam is narrow,

i.e.when the parameter 1/qmin characterizing the screening of Coulomb po-

tential in bremsstrahlung is much larger than the transverse dimensions

determining the geometry of problem. When a particle crosses the men-

tioned domain the transverse momentum transfer to particle is

q =

N
∑

a=1

qa, qa = 2α
% − %a

(% − %a)2
, (1)

where α=1/137, N is the number of particles in the domain under consider-

ation of the counter-beam, % is the impact parameter of particle, %a is the

transverse coordinate of Coulomb center. The mean value of momentum

transfer is

〈q〉 = N 〈a|qa|a〉 , 〈a|qa|a〉 =

∫

qawc(%a)d2%a, (2)

here wc(%a) is the probability density of target particle distribution over

the transverse coordinates normalized to unity. Then

〈

q2

s

〉

= N
〈

a|q2

a|a
〉

+ N(N − 1) 〈a|qa|a〉
2
− 〈q〉

2
= N(

〈

a|q2

a|a
〉

− 〈a|qa|a〉
2
).

(3)

The same expression for the dispersion of transverse momentum gives

the quantum analysis of inelastic scattering of emitting particle on a sepa-
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rate particle of target beam in the domain under consideration

q2

in =
∑

n6=a

| 〈n|qa|a〉 |2 =
∑

n

〈a|qa|n〉 〈n|qa|a〉 − 〈a|qa|a〉
2

=
〈

a|q2

a|a
〉

− 〈a|qa|a〉
2
. (4)

Granting that N = nz∆z we find for the mean value of transverse

electric field of target beam

E
⊥

(%, z) = 2enz(z)

∫

% − x

(% − x)2
wc(x)d2x (5)

For the rate of variation of function
〈

q2

s

〉

we get

d
〈

q2

s

〉

dz
= 4α2nz(z)

[

∫

wc(x)d2x

(% − x)2
−

(
∫

% − x

(% − x)2
wc(x)d2x

)2
]

. (6)

We don’t discuss here applicability of Eq.(6) at |%−x| ≤ λc (see e.g. Sec.III

in 9)

It should be noted that in the kinetic equation which describes the

motion of emitting particle

∂f

∂t
+ v

∂f

∂r
+ ṗ

∂f

∂p
= Stf (7)

the value of electric field E
⊥

(5) determines the coefficient ṗ in l.h.s of

equation (7) while r.h.s of equation arises due to random collisions and is

determined by Eq.(6). The kinetic equation for description of radiation was

first employed in 6 and later in 7 and 8. We consider the case when the

mean square angle of multiple scattering during the whole time of beams

collision is smaller than the square of characteristic radiation angle. It

appears, that this property is sufficient for applicability of perturbation

theory to the calculation of the bremsstrahlung probability.

2.2. Main characteristics of particle motion and radiation

One of principal characteristics of particle motion defining the properties

of coherent radiation (the beamstrahlung) is the ratio of variation of its

transverse momentum to the mass during the whole time of passage across

the opposite beam T

∆p
⊥

m
∼

eE
⊥

σz

m
∼

2αNcλc

σx + σy
≡ δ, (8)
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where Nc is the number of particles in the opposite beam, σx and σy is

its transverse dimensions (σy ≤ σx), σz is the longitudinal size of oppo-

site beam. The dispersion of particle momentum during time T is small

comparing with m. It attains the maximum for the coaxial beams:
〈

q2

s

〉

m2
= γ2

〈

ϑ2

s

〉

∼
8α2Ncλ

2

c

σxσy
L � 1, (9)

here ϑ2

s is the square of mean angle of multiple scattering, L is the charac-

teristic logarithm of scattering problem (L ∼ 10). This inequality permits

one to use the perturbation theory for consideration of bremsstrahlung, and

to analyze the beamstrahlung independently from the bremsstrahlunga.

Another important characteristics of motion is the relative variation of

particle impact parameter during time T

∆%i

%i
∼

eE
⊥

σ2

z

εσi
∼

2αNcλcσz

γ(σx + σy)σi
≡ Di, (10)

here i is x or y. When the disruption parameter Di � 1, the collision

doesn’t change the beam configuration and the particle crosses the opposite

beam on the fixed impact parameter. If in addition the parameter δ � 1

(this situation is realized in colliders with relatively low energies) then the

beamstrahlung process can be calculated using the dipole approximation.

The main contribution into the beamstrahlung give soft photons with an

energy

ω

ε
≤

γλc

σz
� 1. (11)

In the opposite case δ � 1 the main part of beamstrahlung is formed

when the angle of deflection of particle velocity is of the order of character-

istic radiation angle 1/γ and the radiation formation length lm is defined

by

eE
⊥

lm
m

∼
2αNcλclm

(σx + σy)σz
= 1, lm =

σz

δ
; (12)

and the characteristic photon energy is

ω ∼ ωm =
γ2

lm
= εχm, χm ≡ 2αNcγ

λ2

c

(σx + σy)σz
(χm � 1). (13)

aActually more soft condition should be fulfilled:
〈

q
2

s
(lf )

〉

/m2 =
〈

q
2

s

〉

/m2 lf /σz � 1
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Here χ = |χ| is the invariant parameter

χ =
γ

E0

[E
⊥

+ v × H] , E
⊥

= E − v(vE), (14)

where E0 = m2/e = 1.32 · 1016V/cm, which defines properties of magnetic

bremsstrahlung in the constant field approximation (CFA). For applicabil-

ity of CFA it is necessary that relative variation of E
⊥

in Eq.(5) was small

on the radiation formation length lm. As far lm is shorter than σz in δ � 1

times the characteristic parameter becomes

Dmi = Di
lm
σz

=
Di

δ
=

σz

γσi
, (i = x, y) (15)

to that extent. The condition Dmi � 1 is fulfilled in all known cases. The

mean number of photons emitted by a particle during the whole time of

passage across the opposite beam T is 〈Nγ〉 ∼ αδ, it include the electro-

magnetic interaction constant. Using the estimate (13) we get an estimate

of relative energy loss

∆ε

ε
∼ αδχm (χm � 1) (16)

In the case χm � 1 (this condition is satisfied in all existing facilities and

proposed collider projects) the soft photons with energy ω ∼ ωm = εχm �

ε are mainly emitted. For ω � ωm the emission probability is exponen-

tially suppressed. So, such photons are emitted in the bremsstrahlung

process only. The boundary photon energy ωb, starting from which the

bremsstrahlung process dominates, depends on particular parameters of

facility. If χm ∼ 1/10 the energy is ωb ∼ ε. The formation length for

ω � ωm is much shorter than lm. On this length the particle deflection

angle is small comparing with 1/γ and one can neglect the variation of

transverse beam dimensions (see Eq.(15)). This means that all calculations

of bremsstrahlung characteristics can be carried out in adiabatic approxi-

mation using local beam characteristics σx,y(t),v(t) etc, with subsequent

averaging of radiation characteristics over time. Note that actually we per-

formed a covariant analysis and the characteristic parameters are defined

in a laboratory frame.

2.3. Separation of coherent and incoherent radiation

As an example we consider the situation when the configuration of beams

doesn’t change during the beam collision (the disruption parameter D � 1),

and the total particle deflection angle during intersection of whole beam is
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small comparing with the characteristic radiation angle 1/γ (the dipole

case). The target beam in its rest frame is the ensemble of classical poten-

tials centers with coordinates ra (xa, za) and the transverse coordinate of

emitting particle is r
⊥

. In the perturbation theory the total matrix element

of the radiation process can be written as

M(r
⊥

) =

Nc
∑

a=1

m(r
⊥

− xa) exp(iq
‖
za) (17)

We represent the combination MiM
∗

j in the form

MiM
∗

j =
∑

a=b

mi(r⊥
− xa)mj(r⊥

− xb)

+
∑

a6=b

mi(r⊥
− xa)mj(r⊥

− xb) exp(−iq
‖
(za − zb)) . (18)

In the expression Eq.(18) we have to carry out averaging over position of

scattering centers. We will proceed under assumption that there are many

scattering centers within the radiation formation length lf = 1/q
‖

Nf = nzlf � 1, (19)

where for the Gaussian distribution

nz =
Nc

√
2πσz

exp

(

−
z2

2σ2
z

)

, (20)

here Nc and σz are introduced in Eq.(8). Note that in the situation under

consideration %max = |r
⊥

− xa|max ≥ σt, where σt is the characteristic

transverse size of target beam. Let us select terms with approximately fixed

phase q
‖
(za − zb) = φab in the sum with a 6= b in Eq.(18). If the condition

(19) is fulfilled, there are many terms for which the phase variation is

small (∆φab � 1). For this reason one can average over the transverse

coordinates (xa,xb) of target particles in Eq.(18) without touching upon

the longitudinal coordinates (za, zb)

MiM
∗

j = Nc 〈mimj〉
⊥

+ 〈mi〉
⊥

〈mj〉
⊥

∑

a6=b

exp(−iq
‖
(za − zb))

= Nc

(

〈mimj〉
⊥

− 〈mi〉
⊥

〈mj〉
⊥

)

+ 〈mi〉
⊥

〈mj〉
⊥

∣

∣

∣

∣

∣

∑

a

exp(iq
‖
za)

∣

∣

∣

∣

∣

2

, (21)
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where

〈mi〉
⊥

=

∫

mi(r⊥
− x)wc(x)d2x,

〈mimj〉
⊥

=

∫

mi(r⊥
− x)mj(r⊥

− x)wc(x)d2x, (22)

here wc(x) is the probability density of target particle distribution over

the transverse coordinates normalized to unity. In Eq.(21) in the sum

with a 6= b we add and subtract the terms with a = b. The first term

(proportional to Nc) on the right-hand side of Eq.(21) is the incoherent

contribution to radiation (the bremsstrahlung). The second term gives the

coherent part of radiation. For Gaussian distribution Eq.(20) performing

averaging over the longitudinal coordinate za one has
∣

∣

∣

∣

∣

∑

a

exp(iq
‖
za)

∣

∣

∣

∣

∣

2

→

∣

∣

∣

∣

∫

∞

−∞

nz exp(iq
‖
z)dz

∣

∣

∣

∣

2

= N2

c exp(−q2

‖

σ2

z). (23)

3. Incoherent Radiation

The correction to photon emission probability due to the small transverse

dimensions of colliding beam for unpolarized electrons and photon was cal-

culated in 9 basing on subtraction procedure as in Eq.(21). It is obtained

after integration over the azimuthal angle of the emitted photon

dw1 =
α3

πm2

ε′

ε

dω

ω
U(ζ)F (ω, ζ)dζ, ζ = 1 + γ2ϑ2, (24)

where ϑ is the photon emission angle, ε′ = ε − ω,

U(ζ) = v −
4(ζ − 1)

ζ2
, v =

ε

ε′

+
ε′

ε
, F (ω, ζ) = F (1)(ω, ζ) − F (2)(ω, ζ),

F (1)(ω, ζ) =
η2

ζ2

∫

[

K0(η%)K2(η%) − K2

1
(η%)

]

%
dΦ(%)

d%
d2%

F (2)(ω, ζ) =
2η2

ζ2

∫
(
∫

K1(η%)
%

%
wc(x − %)d2%

)2

wr(x)d2x, (25)

here

η = qminζ, qmin = m3ω/4ε2ε′, Φ(%) =

∫

wr(x + %)wc(x)d2x, (26)

where wc(x) is defined in (22), wr(x) is the same but for the radiating beam,

value qmin is defined in c.m.frame of colliding particles. The term F (2)(ω, ζ)

is the subtraction term. The total probability is dwγ = dw0 + dw1, where
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dw0 is standard QED probability. The analysis in 9 was based on Eqs.(24)-

(25).

We considered in 9 the actual case of the Gaussian beams. The Fourier

transform was used

w(x) =
1

(2π)2

∫

d2q exp(−iqx)w(q);

wr(q) = exp

[

−
1

2
(q2

x∆2

x + q2

y∆2

y)

]

, wc(q) = exp

[

−
1

2
(q2

xσ2

x + q2

yσ2

y)

]

, (27)

where as above the index r relates to the radiating beam and the index c

relates to the target beam, ∆y and ∆x (σy and σx) are the vertical and

horizontal transverse dimensions of radiating (target) beam. Substituting

(27) into Eq.(26) we find

Φ(%) =
ΣxΣy

π
exp[−%2

xΣ2

x − %2

yΣ2

y]; Σ2

x =
1

2(σ2
x + ∆2

x)
, Σ2

y =
1

2(σ2
y + ∆2

y)
.

(28)

Using the relation dσ1 = Φ−1(0)dw1 the following expression for the cor-

rection to spectrum was found in 9 starting from (24)

dσ
(1)

1
=

2α3

m2

ε′

ε

dω

ω
f (1)(ω), f(s) =

√
π

2s
(v − 8s2)erfc(s) + 4e−s2

+ 2Ei(−s2),

f (1)(ω) = −
1

πΣxΣy

∫

2π

0

dϕ

Σ−2
x cos2 ϕ + Σ−2

y sin2 ϕ

∫

∞

0

F2(z)f(s)sds, (29)

z2 =
s2q−2

min

Σ−2
x cos2 ϕ + Σ−2

y sin2 ϕ
, F2(x) =

2x2 + 1

x
√

1 + x2
ln(x +

√

1 + x2) − 1,

where Ei(x) is the exponential integral function and erfc(x) is the error

function. This formula is quite convenient for the numerical calculations.

The subtraction term (F (2)(ω, ζ) in (25)) gives for coaxial beams

dσ
(2)

1
= −

2α3

m2

ε′

ε

dω

ω
J (2)(ω), (30)

where

J (2)(ω) =

√
ab

ΣxΣy

∫

∞

0

ds1

∫

∞

0

ds2g

(

qmin
√

s

2

)

G(s1, s2),

G(s1, s2) =
1

2

(

a1a2b1b2

AB

)1/2 [

a1a2

A
+

b1b2

B

]

(31)

Here the function g(q) is:

g(q) =

(

v −
2

3

)

e−q2

− 2q2

[√
π

2q

(

v −
8

3
q2

)

erfc(q) +
4

3
e−q2

+ Ei(−q2)

]

.

(32)
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In (31) we introduced the following notations

a =
1

2∆2
x

, b =
1

2∆2
y

, a1,2 =
1

s1,2 + 2σ2
x

, b1,2 =
1

s1,2 + 2σ2
y

,

A = a1 + a2 + a, B = b1 + b2 + b, s = s1 + s2. (33)

In the case of narrow beams one has qmin/(Σx + Σy) � 1. In this case

of coaxial beams dσγ = dσ0 + dσ1 is

dσγ =
2α3

m2

ε′

ε

dω

ω

{

(

v −
2

3

)

[

2 ln
m

Σx + Σy
+ C + 2 − J

−

]

+
2

9

}

, (34)

where

J
−

=

√
ab

ΣxΣy

∫

∞

0

ds1

∫

∞

0

ds2G(s1, s2) (35)

The dimensions of beams in the experiment 2 were σy = ∆y =

24 µm, σx = ∆x = 450 µm, so this is the case of flat beams. The esti-

mate for this case gives J
−

' (4/3
√

3)πσy/σx � 1. This term is much

smaller than other terms in (34). This means that for this case the cor-

rection to the spectrum calculated in 3 is very small. The parameters of

beam in the experiment 11 were (in our notation): σy = ∆y = (50÷58)µm,

σx = ∆x = (250 ÷ 290)µm. Since the ratio of the vertical and the hori-

zontal dimensions is not very small, the contribution of subtraction term

(Eq.(30)) is essential (more than 10%). For details of comparison of exper-

imental data 2, 11 with theory see 9, where we discussed also possible use of

beam-size effect for linear collider tuning. It should be noted that for linear

collider the condition of strong beam-size effect σyqmin � 1 (σy � σx) is

fulfilled for the whole spectrum. This can be seen in Fig.1, where the lower

curve is calculated using Eq.(29) and the subtraction term is very small

since σy/σx < 0.01. As far as the narrow beams are considered in Fig.1,

the lower curve is consistent also with Eq.(34). This curve depends on the

energy and the transverse sizes of beams. It will be instructive to remind

that the analysis in 9 (see Eq.(2.8)) and here is valid if χm/u � 1 (see

Eq.(13), u = ω/ε′). The parameter χm depends also on number of parti-

cles Nc and the longitudinal beam size. So, for low Nc Fig.1 is valid for

any x, but for TESLA project (χm=0.13) it holds in hard part of spectrum

only. In fact, the probability of incoherent radiation becomes larger than

the probability of coherent radiation only at x > 0.7 where the lower curve

in Fig.1 is certainly applicable.

Beam-size effect was considered using different approaches which are

more or less equivalent formulations of QED perturbation theory where the
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Figure 1. The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr2

0
versus the

photon energy in units of initial electron energy (x = ω/ε) for linear collider with beam
energy ε = 250 GeV. The upper curve is the standard QED spectrum. The curve below
is calculated with the beam-size effect taken into account for σx = 553nm, σy = 5nm.

incident particles consists of wave packets. In 3 the universal method was

used which permits to obtain any QED cross section within the relativistic
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accuracy (up to terms ∼ 1/γ). A “general scheme” in 5 doesn’t fall out

the scope of 3 and particular derivation follows method used in 4. As it

was shown above, the subtraction procedure is necessary to extract pure

fluctuation process, this was done in 9.

Recently in 10 this subtraction procedure was questioned. An objec-

tion is based on correlator Eq.(28) in 10. If one takes integrals over r

and r′ from both sides of this correlator, one obtains using Eq.(21) in
10:N2

p = Np(Np + 1). It is evident that the last relation as well as cor-

relator Eq.(28) in 10 are not adequate for the discussed problem since the

subtraction term is of the same (∝ Np)as the relation error. According to 10

(see text before Eq.(19)) the correlator Eq.(28) is obtained as result of “the

averaging over fluctuation of particle in the field connected, for example,

with the fluctuations of particle positions for many collisions of bunches

in a given experiment” (our italics BK). This statement has no respect to

the problem under consideration. As it is shown in Secs.2.1 and 2.3 the

main aspect is the presence of many scattering centers within the radia-

tion formation length. An analysis in Appendix A confirms this conclusion

for radiation in crystals. The reference (Ref.21 in 10) to the textbooks is

senseless because different problems are discussed in these books.

The only correct remark in 10 is that in 9 there was no derivation of

the starting formulas. This derivation is given here above. In Sec.2.1 a

generic picture of particle motion in the field of counter-beam (in its rest

frame) is given. A smooth variation of transverse momentum in an aver-

aged field of counter-beam is considered. It determines the coherent ra-

diation (the beamstrahlung). Along with smooth variation there are the

fluctuations of particle velocity due to multiple scattering on the forma-

tion length. Just these fluctuations ensure the incoherent radiation (the

bremsstrahlung). The mean square of transverse momentum dispersion at

multiple scattering on the formation length (see Eqs.(3), (4), (6)) deter-

mines the bremsstrahlung probability. The mentioned equations contain

both the singular and the subtraction terms accordingly to 9. In Sec.2.3 we

separated the coherent and incoherent parts of radiation explicitly just un-

der the same conditions as in 10. The result (Eq.(21)) agrees with Eq.(3.6)

in 9 which is input formula for analysis in 9.

Appendix A. Radiation in crystals

Separation of coherent and incoherent radiation in oriented single crystals

was considered using different approaches in 12,13 and in 14, 15. We give here
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a sketch of the analysis in one-chain approximation neglecting correlations

due to collision of projectile with different chains. In this case
〈

∑

a6=b

mi(r⊥
− xa)mj(r⊥

− xb)e
−iq‖(za−zb)

〉

= 〈mi〉
⊥

〈mj〉
⊥

e−q2

‖
u2
∑

a6=b

e
−iq‖

(
z(0)

a
−z

(0)

b

)

, (A.1)

where u is the amplitude of the thermal vibrations, in averaging over the

thermal vibrations we used the distribution

w(za) =
1

√
2πu

exp

(

−
(za − z

(0)

a )2

2u2

)

. (A.2)

The sum in the r.h.s. of (A.1) one can present as

∑

a6=b

exp(−iq
‖

(

z(0)

a − z
(0)

b )
)

= −Nc +

∣

∣

∣

∣

∣

∑

a

exp(iq
‖
z(0)

a )

∣

∣

∣

∣

∣

2

, (A.3)

where

∑

a

exp(iq
‖
z(0)

a ) =

∞

∑

n=−∞

exp(inq
‖
d) = 2π

∞

∑

k=−∞

δ(q
‖
d − 2πk),

∣

∣

∣

∣

∣

∑

a

exp(iq
‖
z(0)

a )

∣

∣

∣

∣

∣

2

=
Nc

d
2π

∞

∑

k=−∞

δ(q
‖

− 2π
k

d
), (A.4)

where d is the distance between atoms forming the chain. Substituting

Eqs.(A.1)-(A.4) in Eq.(18) we get

〈

MiM
∗

j

〉

= Nc

(

〈mimj〉
⊥

− exp(−q2

‖

u2) 〈mi〉
⊥

〈mj〉
⊥

)

+Nc
2π

d
exp(−q2

‖

u2) 〈mi〉
⊥

〈mj〉
⊥

∞

∑

k=−∞

δ(q
‖

− 2π
k

d
). (A.5)

This expression agrees with Eq.(11) in 12. The incoherent term in Eq.(A.5)

(∝ Nc) coincide with the incoherent term in Eq.(23) if q
‖
u � 1. This is

true if the condition Eq.(19) (lf/d � 1) is satisfied.
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CRITICAL ISSUES FOR VACUUM LASER ACCELERATION* 
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Recent technological progress in lasers has renewed interest in applying high 
power lasers to accelerate charged particles. Outstanding gains in efficiency 
and power, and the first demonstration of optical phase-locking have moved the 
laser closer to competitive standing with microwave vacuum tubes as power 
sources for accelerators. We explore some of the questions that will determine 
the suitability of both low-field (ao«1) and high-field (ao>1) acceleration 
methods, and identify some of the challenges ahead. Possible applications 
include a laser-driven linear collider and novel, compact particle and radiation 
sources, each with its own performance requirements. 

1. Introduction 

The acceleration of charged particles by laser radiation has long been a 
dream for accelerator designers [1]. Achieving the correct conditions to permit 
efficient acceleration over long distances has been and remains the primary 
challenge in using lasers to accelerate particles. The extraordinary electric fields 
laser can produce make this a challenge worth pursuing. 

Several applications drive the exploration of laser-driven particle 
acceleration. Future generations of linear colliders will be required to attain 
successively higher energies and higher luminosities and will place a premium 
on accelerating gradient, power efficiency, and the ability to preserve excellent 
emittances. Compact particle and radiation sources for university and industry 
generally operate at much lower energies and beam powers, but find a broad 
spectrum of applications with wide ranging requirements, hence laser 
accelerators built for this purpose will instead have low cost and versatility as 
key attributes. 

A natural consequence of using optical wavelengths for acceleration is that 
conditions can be arranged such that the accelerated beams will be bunched at 
the optical wavelength. The resultant sub-femtosecond particle bunches will 
produce ultrafast radiation pulses that are tunable in energy, and sufficiently 
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short in duration to permit the study of attosecond phenomena, such as the 
rearrangement of atomic electron distributions that occurs as chemical bonds are 
formed. 

2. Coupling Mechanisms 

The primary challenge in using lasers for particle acceleration is in devising 
means to couple energy efficiently over macroscopic distances. Efficient use of 
laser power requires strong focusing of the laser, making diffraction effects 
important. Some means to guide the laser, either with a series of focusing optics, 
or with a continuous waveguide is therefore required. 

. The available methods for coupling radiation to charged particles are quite 
different depending on the strength of radiation fields. The methods divide into 
two groups, “low-field”, for which the normalized vector potential of the 
radiation ao=eE/2ωmc«1 is sufficiently small that the oscillatory motion of 
electrons responding to the alternating optical fields remains subrelativistic, and 
“high-field”, for which ao>1 and electrons acquire relativistic velocities during 
each half cycle of the optical fields. At optical wavelengths ao~1 corresponds to 
very high laser intensities, ~1018 W/cm2 which, roughly speaking, is possible for 
lasers in the ���������	

���
��	�����
�	��������
�	��
����zR=πwo

2/λ∼ 30 µm. 
 
Generally speaking, low-field accelerators must rely on material (metals, 

dielectrics, gases) placed within a few wavelengths of the particle beam to 
sufficiently diffract the optical waves to produce an axial electric field 
component that has a phase velocity somewhat below the speed of light [2]. The 
exception to this rule is the inverse free electron laser (IFEL), which achieves 
synchronous interaction by bending the particle trajectories in a periodic manner 
such that the transverse motion permits energy transfer directly from transversely 
polarized fields. As such, most low-field accelerators will be limited in gradient 
by the voltage breakdown characteristics of the materials used, which is unlikely 
to exceed the atomic binding fields, ~1010 V/m. The interaction between fields 
and particles is exclusively linear in the field strength, and particles must remain 
in phase synchronism with the optical wave to receive continuous acceleration. 
Further, there is no requirement (except for the IFEL) that the particles deflect 
from straight-line trajectories to achieve coupling to the fields, so there is no 
high-energy limit to the maximum energy that can be attained. 

Material damage is a key issue determining what accelerating gradients are 
possible. At present, energy fluences above ~2 J/cm2 cause damage to surfaces 
made of fused silica [3,4], an excellent candidate material for its ease of handling 



 

 
 

3

by lithography and resistance to radiation damage. Crystalline materials perform 
marginally better, potentially due to their improved strength and thermal 
conductivity. The damage threshold exhibits a τp

1/2 dependence on pulse length 
above 10 picoseconds, but is insensitive to pulse length below about 1 psec, 
motivating the use of very short laser pulses. For ~100 fsec laser pulses, 2 J/cm2 
corresponds to field levels approaching the atomic binding limit, 1010 V/m. 
Much can be gained by designing efficient structures that tightly couple the 
particles to the radiation fields, permitting lower fields on the structure surfaces 
for a given accelerating gradient. 

The structures used to couple the particles and radiation fields will generally 
have geometric features at or somewhat smaller than the radiation wavelength. 
For laser-driven structures, this means features on the order of microns or less. 
Making such tiny structures with the required accuracy from materials with good 
optical properties is a challenge, but a similar task is accomplished by the 
semiconductor industry using lithographic techniques. Present UV lithography 
techniques can mass produce feature sizes as small as ~107 nm [5] with critical 
dimensions held to ±5.3 nm (3σ) in silicon and silica. Next-generation XUV 
lithography promises to reduce both feature size and absolute dimensional 
tolerances significantly. Learning the capabilities of the lithography process and 
the implications for structure design will be key steps to making laser accelerator 
structures. 

For high energy physics machines, the overall power efficiency is very 
important. Present collider designs call for 9.6 MW of beam power (total) at the 
collision point, which with ~8% overall power efficiency wall-plug-to-beam 
requires 121 MW total AC power, which is already a significant fraction of the 
power output of even the largest power plants[6]. Lasers have made significant 
progress in total efficiency both from high efficiency pumping with diode lasers, 
and through the engineering of materials with very small energy differences 
between the pumping and lasing transitions. High power diode bars with 50% 
electrical-to-light efficiency are commercially available [7], with further 
improvement possible. Lasing media with 86.9% slope efficiencies 
(Yb:KY(WO4)2 [8], λ=1.025 µm) have already been used to make high average 
power lasers achieving better than 10% wall-plug-to-light efficiencies [9], with 
limiting efficiencies approaching 40% possible. 

Strongly coupling the radiation to the particles is essential to getting good 
power efficiency, but strong coupling means structures must place material 
within a wavelength or so of the beam. The particles beams must pass through 
these very small holes, which presents a number of challenges. Long-range 
wakefields must be carefully managed with a combination of very small bunch 
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charges and aggressive suppression of the most dangerous higher-order modes. 
Additionally, the beam must be kept in alignment with these tiny structures to 
very tight tolerances (less than an optical wavelength) over the entire accelerator 
length. With noise and ground motion constantly shifting the accelerator 
components, this will be very challenging.  

 
High-field accelerators generally produce acceleration through the 

combined action of the electric and magnetic fields, with the requirement that the 
particles must deflect appreciably within each optical cycle to obtain strong 
coupling to the fields. This requirement makes accelerating very high-energy 
particles problematic, with the deflection resulting in rapidly growing 
synchrotron radiation losses with increasing particle energy.  However, there is 
no rigid requirement that the particles remain in phase synchronism with the 
wave to receive acceleration. Instead, particles experience force arising from 
several mechanisms, including the usual first-order force, second-order E×B 
forces, and possibly higher-order terms, depending on the field intensity.  

 Optics must still be used to direct and focus the laser light, but may be 
placed many Rayleigh ranges from the interaction point, permitting a significant 
reduction in field strengths. As laser power grows, the optics must also grow in 
size and be moved still further from the focus, making the problem of obtaining 
sufficient surface accuracy to achieve diffraction-limited focused spot sizes 
rapidly more challenging. 

A number of lasers exist worldwide that produce focused energy densities 
high enough for high-field acceleration. Many of these lasers are primarily 
intended for inertial confinement fusion research, but with suitable broadband 
seed lasers and appropriate optics, are also used for high field physics. These 
lasers operate in the near infrared, and are mostly optical parametric chirped-
pulse amplifier (OPCPA) based systems employing large energy-storage 
volumes of flashlamp-pumped Nd:glass. The GEKKO XII laser at ILE Osaka 
[10] is a petawatt-class laser and the Vulcan laser at Rutherford Appleton 
Laboratory [11] will soon complete upgrades to operate at the petawatt level, 
with each laser storing several kilojoules of energy. The High Peak Power T3 
Laser at Jaeri-Kansai [12] is a Ti:sapphire system, and will also shortly complete 
upgrades to operate at the petawatt level. These kilojoule-class petawatt systems 
are capable, in principle, of producing fields in the ao~10 range (assuming twice 
the diffraction-limited spot size for f/2 optics), making them suitable for a range 
of high-field experiments. Two megajoule-class facilities are under construction, 
the National Ignition Facility (NIF) at Livermore Laboratory [13], and the Laser 
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MegaJoule (LMJ) facility at CEA-Limeil [14]. These are also Nd:glass systems, 
which in principle could reach fields strengths beyond ao~100. 

These megajoule class flashlamp-pumped glass lasers are very large, 
complicated systems, occupying several hundred square meters of floor space. 
They are also not power-efficient, with most of the pump power dissipated as 
heat in the lasing media. For the NIF and LMJ facilities, the total weight of 
lasing media (a glass, and hence a poor heat conductor) is over 150 tons, and 
consequently requires long cooling periods (8 hours for the megajoule lasers 
listed here) between successive shots. Ti:sapphire offers some improvement over 
Nd:glass both through its broader bandwidth (and hence shorter ultimate pulse 
lengths) and through its higher heat conductivity, but has a significantly lower 
saturation fluence (1 J/cm2 vs 7 J/cm2 for Nd:glass) requiring physically large 
transverse dimensions to produce high powers, is crystalline, requiring large 
crystals to be grown, and has a large difference between the pumping wavelength 
(532 nm) and lasing wavelength (800 nm), resulting in poor optical efficiency. 
Even so, Ti:sapphire systems offer shorter laser pulses and much higher 
repetition rates (e.g. 10 Hz for the Jaeri-Kansai system) making them attractive 
for this application. The development of better lasing media (e.g. Yb:LiYF4) 
with high saturation fluence, good thermal properties, better efficiency, and the 
capability of being produced in very large, optical quality volumes will greatly 
improve the utility of these laser systems. 

Focusing and steering such large energy laser pulses requires that very large 
optics (with apertures in the 1 m2 range) be used to avoid damage. The surfaces 
of the optics must be accurate to produce an aberration-free focus, and hence the 
highest fields. Significant advances in the production of large, highly accurate, 
actively stabilized optics for telescopes and advances in adaptive optics have 
made the production of such optics possible.  

3. Future Research 

Rapid progress in laser technology, driven by a $5 billion/year market, has 
led to a number of exciting developments [15]. High power diode pumping at 
high efficiency is continually evolving, and offers to replace flash lamp pumping 
for many applications. Advances in solid-state lasing media have produced 
highly efficient media with good thermal conductivity that together allow very 
high average powers to be produced. Carrier phase locking has been 
demonstrated [16], a key step towards synchronizing two or more lasers at the 
optical level to drive multiple acceleration stages. 
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Experimental demonstrations of low-field laser acceleration [17] and high-
field laser acceleration [18] have been made. Experiments to explore different 
coupling mechanisms are needed to establish the most efficient methods that are 
within reach of fabrication technologies. Expanded experimental efforts will be 
needed to understand the impact of technical issues on ultimate gradient and on 
the quality of accelerated beams that may be produced. Material science 
advances, and improvements in the accuracy with which optical components may 
be produced will impact both low- and high-field efforts. A handful of 
laboratories are pursuing experiments to explore these issues, including CEA-
Limeil-Valenton, and Brookhaven National Laboratory, and two more are under 
construction: the Relativistic Photon-Electron Dynamics Lab at National 
Tsinghua University, Taiwan, and the ORION facility at SLAC.  

Remarkable progress over the last decade in laser technology has brought 
the possibility of laser driven acceleration closer to reality. Dedicated efforts to 
identify and test the most promising acceleration methods, and to characterize 
their impact on beam quality are the next steps towards realizing the promise of 
laser acceleration. 
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Updated achievements and critical issues in plasma accelerators are summarized
As to laser plasma accelerators, we cover the results of plasma cathodes by
U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of
accelerated electrons have been reported, the electrons do not yet form a bunch
with narrow energy spread. Several injection schemes and measurements to verify
ultrashort bunch (tens fs) with narrow energy spread, low emittance and many
charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly
proposed experiment on density transition trapping are introduced for electron
beam driven plasma accelerators. Their main purpose is realization of GeV
plasma accelerator, but application to pump-and-probe analysis for investigation
of ultrafast quantum phenomena is also promising.

1. Introducton

Acceleration of electrons by plasma wave is of current interest because
the acceleration gradient of ~100GV/m is much larger then conventional RF
linac. Several methods have been proposed for driving a large amplitude plasma
waves, such as plasma wakefield accelerator (PWA), the beat wave accelerator
(PBWA), the self-modulated accelerator (SMLWFA), and the laser wakefield
accelerator (LWFA).  The LWFA and SMLWFA have rapid progress due to
recent development of intense ultra-short pulse lasers. On the other hand, the
electron driven plasma accelerators are also at an exciting stage of development.
E-162 experiments by UCLA/USC/SLAC and a newly proposed experiment on
density transition trapping are introduced for electron beam driven plasma
accelerators.

2. Laser plasma accelerator

2.1. Injection Schemes
Injection of energetic electrons into wakefields for their further

acceleration is a crucial part of LWFA. Usually the injection of a high quality
electron beam from a RF accelerator is assumed [1]. Another way for electron
injection exploits an injection produced by the laser pulse itself, so-called ‘self-
injection’. There are three major injection schemes of LWFA. In these schemes
not only single but also two or several laser pulses are employed for the
injection, which called the transverse optical injection[2], colliding pulse
injection [3], and injection by wavebreaking of plasma waves [4,5] respectively.
Figure 1(a)-(c) shows the major schemes of the injection of LWFA. First, in the
transverse optical injection shown in (a), a transverse pulse injects energetic
electrons into a longitudinal wakefields excited the pump pulse. Second, in the



Fig.1  Injection scheme of LWFA
(a) Transverse optical injection
(b) Colliding optical injection
(c) Injection by wavebreaking of plasma waves

colliding optical injection shown in (b), the collision of two counterpropagating
laser pulses produce the beat wave which traps background elecrons and put into
wakefields excited by the pump laser pulse. Third, in the injection by
wavebreaking of plasma waves  shown in (c),  the plasma wave produced by a
single intense laser pulse breaks at a steep change of plasma density with
ejection of plasma electrons, which is injected into further wakefield. These
injection schemes are described in the next sections in details.

2.2.University of Michigan
 

As shown in Fig.1(a), the transverse optical injection method uses two
laser pulses; one pump pulse and one injection pulse. The two pulses cross at a
focal point. This method was proposed by D.Umustadter of University of
Michigan as the laser injected laser accelerator concept (LILAC).[2] The basic
idea is that once a laser wake field is excited by the longitudinal ponderomotive
force of one laser pulse (the pump pulse), the momentum kick due to a second,
orthogonally directed, laser pulse (the injection pulse) can then be used to
locally alter the trajectories of some of the plasma wave electrons such that they
become in phase with the wave's electric field and thus accelerated to the
trapping velocity [2]. In the original concept, it was the transverse
ponderomotive force of the injection pulse that delivered the required kick.

The experiment has been done with a Ti:sapphire/Nd:glass laser system.
It delivered short pulses (400 fs, 1.053 µm) in a single shot with high-peak-
power (~10 TW). The laser beam was split to two beams by a beam splitter. The
20% beam was used as the pump pulse in the experiment and the 80% beam as
the injection pulse. In the experiment these two beams were focused with two f
/3 parabolic mirrors. The laser intensities were about 3x1017-5x1017 W/cm2 for
pump beam and 1.2x1017-2x1018 W/cm2 for injection (corresponding to the laser
powers were about 1.0-1.5 TW for pump beam and 4.0-6.0 TW for injection.
These two laser beams were perpendicularly overlapped onto the edge of a
supersonic helium gas jet. The pressure of the helium gas was 800 psi and the



Fig.2  Profiles of pump and injection
electron-beams on the LANEX screens.
(a) with injection pulses (b)without

injection pulses (by D.Umstadter)

gas was fully ionized by the laser beams all above 1017 W/cm2) and the
corresponding plasma density was about 4x1019/cm3. The background air
pressure in the experiment was less than 100 mTorr. The electron beams were
observed by LANEX scintillating screen with CCD camera. Figures 2 and 3
show the spatial profile and electron spectrum of the electron beam with and
without injection pulses, at a pump laser power of 1.0 TW respectively. As
shown in Figure 2 the divergence angle decreased with injection, indicating an
improvement in transverse geometrical emittance. From Fig.3 it can be seen that
with injection there was an increase in the number of the electrons whose
energies are greater than 400 keV. Multi-temperature components were observe
in the electron spectra. For the low temperature part, the temperature of the
electrons increased from 240 keV (without injection) to 390 keV (with injection),
>60% increase.  The increase of electron temperatures was 30% to 70%.

2.3. Lawrence Berkeley National Laboratory

As shown in Fig.1(b), the colliding pulse injection method uses three
laser pulses ; a pump pulse for wakefield excitation and two injection pulses for
trapping electrons in plasma. This method has been proposed by E.Esary of
Lawrence Berkeley National Laboratory (LBNL)[3], which based on the beat
wave produced by the collision of two counterpropagating laser pulses.  In beat
wave injection, injection is the result of the ponderomotive force associated with
the slow beat wave of two intersecting pulses. Colliding pulse injection uses
three short laser pulses: an intense (a0

2~ 1) pump pulse (denoted by subscript 0)
for plasma wake generation, a forward going injection pulse (subscript 1), and a
backward going injection pulse (subscript 2). The frequency, wavenumber, and
normalized intensity are denoted by wi, ki, and ai (i=0,1,2).  Furthermore, it is

Fig.3 The longitudinal electron energy
spectrum in the direction of the low
power beam with and without the
injection beam. (by  D.Umstadter)



Fig.4 Electric field Profiles and corresponding
wakefields.
(by W.Leemans and E.Esarey)

Fig.5  Result of electron beam charge
measurement at LBNL.
 (by W.Leemans and E.Esarey)

assumed that k1 ~ k0, k2 ~ k0,
and w1 - w2  = D w  >> wp.
The pump pulse generates
a plasma wake with phase
velocity near the speed of
light (vp0 ~ c ).  The
forward injection pulse
travels at a fixed distance
behind the pump pulse,
which determines the
position (i.e., phase) of the
injected electrons.  The
injection pulses are
orthogonally polarized to
the pump laser pulse, such
that the pump pulse and
backward going injection
pulse do not beat.  When
the injection pulses collide
some distance behind the
pump, they generate a slow
ponderomotive beat wave
of the form a1 a2cos(D k z-
Dw t) (here D k =k1-k2 ~
2k0) with a phase velocity
vpb ~ | Dw |/2k0 << c.
During the time in which
the two injection pulses
overlap, a two-stage
acceleration process can
occur, i.e., the slow beat
traps and heats background plasma electrons which, as a result of shifts in their
momentum and phase, can be injected into the fast wakefield for acceleration to
high energies. This three pulses scheme require highly precise At LBNL, the
colliding pulse experiments have been underway with only two pulses: a pump
pulse for wakefield generation and a single backward propagating injection
pulse [6]. Fig.4 shows the electric field profiles and corresponding wakefields
plotted during collision of the drive pulse and colliding pulse versus x and z-ct
(were z is the drive pulse propagation direction), for the two-pulse configuration
with 30 degree interaction geometry.  Here the pump and injection pulses have
the same polarization such that injection results from the slow ponderomotive
beat wave that is produced when the injection pulse collides with the tail of the
pump pulse.  Two intense short laser pulses were produced by a 10,Hz,
Ti:Sapphire CPA laser system( l=800nm,45fs). The pulse split into two, and



Fig.6 Electron spectra obtained in the
experiment. (by V.Malka)

Fig.7 FWHM of the angular
distribution of the generated electrons.
(by  V.Malka)

then amplified to 1J/pulse and 0.3J/pulse, respectively. The main drive laser
pulse was focused  to a 6µm spot size with a 30cm focal length F/4off-axis
parabola (OAP) onto the pulsed gas jet. The colliding pulse was focused to a
8µm spot size with an identical OAP onto the pulsed gas jet with a 30 degree
angle with respect to the drive beam.  The total charge per bunch and spatial
profile of the electron beam were measured using an integrating current
transformer (ICT) and phosphor screen imaged onto a 16 bit CCD camera,
respectively. Figure 5 shows preliminary experimental results, which indicate
electron yields have been affected by the second laser beam which intersected
the forward going drive laser beam at 30 degrees. Note that the peak power in
the drive beam was lowered to reduce the charge production to about 0.1,nC.
The charge enhancement resulting from the second pulse could be due to several
mechanisms, such as generation of a beat wave (i.e., colliding pulse injection),
heating of the background electrons, or other stochasticprocesses.

2.4. Laboratoire d’Optique Appliquée ( LOA )

Very recently LOA group demonstrated the first experimental evidence
for the relativistic electrons due to wavebreaking in a laser wakefield
acceleration (LWFA). [7]. The detection of electrons accelerated up to a
maximum beyond 200MeV in a well-collimated beam. The measured emittance
of the high-energy electron is small, comparable to those found in conventional
rf accelerators. The experiment was performed with Ti:Sapphire laser based on
CPA technique generates 30TW, 30fs pulses at 820nm with a 10 Hz repetition
rate. The laser beam was focused with a long-focal-length optics of an f/18 off
axis parabolic mirror onto the edge of a supersonic helium gas jet. The focusing
intensity of the pulse is order of 3x1018 W/cm2 and the gas density is between
2x1019 and 3x1019 cm-3. Energy and angular distributions of the generated
electrons from gas jet are characterized by electron energy spectroscopy and
nuclear activation technique. Figure 6 shows electron spectra obtained in the
experiment. An effective longitudinal electron temperature of 18 MeV is



Fig..8  Density distributions of He-jet after the laser pre-pulse calculated by 2D (r,x)
hydrodynamic simulation [8]. The power density of the pre-pulse is 1013 Wcm-2, and
Rayleigh length is 50 mm. (a) Radial direction (x= 0), (b) Longitudinal direction (r = 0).

obtained from an exponential fit for 130MeV (solid line). Figure 7 shows the
collimation of the electrons as a function of the energy. The high-energy part of
the beam is shown to be well-collimated, whereas the low-energy electrons are
accelerated broader cone in the forward direction.

2.5. University of Tokyo

At University of Tokyo, similar experiment of the wavebreaking
scheme has been performed with a short Rayleigh length optics. However, the
prepulse can be used to form a proper condition for the wave-breaking injection
of electrons to the wake-field while the main pulse can produce injection by
itself due to relativistic effects. At real condition, a laser prepulse, with
approximately a few ns duration, precedes the main laser pulse [7,8]. If the
Raleigh length, LR, is short enough, the prepulse can form a cavity with a shock
wave in the front of laser propagation. In contrast to the plasma channel
produced by long Raleigh length laser beam [7], the length of the cavity is
determined by this small LR, because the energy is deposited in the plasma
mostly near the focus point x=0 as W(x)~1/(1+(x/LR)2).

If the shock wave relaxation depth Dx ~(M/m)1/2 li (M is the ion mass, li the
ion free path) less than the plasma wave wavelength lpl, the strong wave-
breaking of wake-field produced by the main pulse there can be a good source of
injection. A typical calculated distribution of the plasma density after the laser
prepulse is shown in Fig.8. A strong shock wave is clearly seen. The density
gradient at the shock wave is steep and effective wave-breaking is expected. The
above conditions has been achieved in the experiments [8]. In the experiment,
spatial and energy distribution of energetic electrons produced by an ultra-short,
intense laser pulse with short focal length optical system (Ti:Sapphire, 12 TW,
50 fs, l= 790 nm, f /3.5) in a He gas jet are measured. They are shown to depend
strongly on contrast ratio and shape of the laser pre-pulse. Figure 9(a)-(c) show



Fig.9 IP image of ejected electrons for the prepulse
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spatial distribution of electrons deposited on a bottom plate of the cup-shaped
I.P. obtaind for different pre-pulse conditions. The wave-breaking of the plasma
waves at the front of shock wave formed by a proper laser pre-pulse is found to
make a narrow-coned (0.1p mm mrad) electron injection (Fig.9(a)).

These electrons are further accelerated by plasma wake-field generated
by the laser pulse up to tens MeV forming a Maxwell-like energy distribution. In
the case of non-monotonic pre-pulse (Fig.9(c)), hydrodynamic instability at the
shock front leads to a broader, spotted spatial distribution. The numerical
analysis based on a 2D hydrodynamic (for the laser pre-pulse) and 2D particle-
in-cell (PIC) simulation justify the mechanism of electron acceleration. The PIC
calculation predict that electrons with energy from 10 to 40 MeV form a bunch
with pulse duration about 40 fs. In Fig.10 energy distribution of electrons
accelerated by the laser wake field after wave-breaking injection in a cavity
formed by the laser prepulse is shown. The self-injection of plasma electrons
which have been accelerated to relativistic energies by a laser pulse moving with
a group velocity less than the speed of light appears when 3/2

0 )/(2 pla ww≥

where a0 is normalized laser field.

Fig. 10 The measured and calculated
time-integrated energy distribution of
electrons in the bunch for the laser
power of 4TW.

Fig.11  Electron energy distribution in
2D PIC simulation; I=1020 W/cm2, t=20
fs, wt=6000 (b) wt=12000 (b) at the
plasma density Ne=1019 cm-3



Fig.12 Illustration of transition trapping obtained by PIC simulation.
(by H.Suk et al)

In contrast to the injection due to wave-breaking processes, self-injection allows
extraction of a beam-quality bunch of energetic electrons. This injection is also
expected to be useful in generation of very short pulse, ~10 fs, electron beams
with the charge ~100 pC. A typical energy distribution of electron self-injected
in the wake field by the main pulse obtained by 2D PIC simulation is given in
Fig.11. A peaky distribution is clearly seen. The energy spread is less than 5%..
Formal calculation of the emittance in the bunch gives that of 0.1 p mm mrad at
total charge Q~100 pC. [9]

3. Highlights of electron driven plasma wakefield accelerator

3.1. E-164 experiment by USC / UCLA / SLAC
A new imaging spectrometer eliminating the effect of beam

divergence was developed and used at SLAC wakefield experimental line (E-
162) under collaboration of USC/UCLA/SLAC/etc. Here, the Cherenkov
radiation by the electro beam in air after the achromatic optics was imaged by
the CCD camera. As results the energy loss/gain of 15 GeV beam with
several charges were successfully obtained as 159+/-40, 156+/-40 MeV with
the resolution of ~10MeV, respectively.

3.2. Density transition trapping by UCLA

M.Thompson et al. of UCLA is working for the plasma density
transition trapping as a possible high brightness electron beam sources. The
plasma density transition trapping is a recently purposed self-injection scheme
for plasma wake-field accelerators. It has a new self-trapping scenario that uses
the rapid change in the wakefield wavelength at a steep drop in the plasma
density to diphase plasma electrons into an accelerating phase of wake. This
technique uses a sharp downward plasma density transition to trap and to
accelerate background plasma electron in a plasma wake-field. They examined



Table 1 Typical electron beam parameters obtained by LPWA.

the quality of electron beams captured using this scheme in terms of emittance,
energy spread, and brightness. Two-dimensional Particle-In-Cell (PIC)
simulations show that these parameters can be optimized by manipulation of the
plasma density profile [10]. Figure 12 illustrates the transition trapping obtained
by the PIC simulation. It clearly shows automatic injection of substantial charge
of ~100pC into an accelerating phase. They also develop, and support with
simulations, a set of scaling laws that predict how the brightness of transition
trapping beams scales with the plasma density of the system. These scaling laws
indicate that transition trapping can produce beams with brightness > 5x1014

Amp/(m-rad) 2. A proof-of-principle transition trapping experiment is planned
for the UCLA Neptune Laboratory in the near future.

4. Critical Issues

As described above experiments on laser injection methods using
multiple laser pulses are being pursued at several laboratories world-wide. As a
summary of previous section typical electron beam parameters achieved in the
laser plasma wake field acceleration experiments are shown in table 1.

The laser plasma wakefield acceleration (LPWA) have rapid progress
because of recent development of intense ultra-short pulse lasers. However it is
still in the stage of  proof-of-principle. Though several injection schemes using
multiple laser pulses are being demonstrated at many laboratories, there are
several critical issues. First, the injections give a broad Maxwell-like energy
distribution of accelerated electrons. This is because some fraction of the
background electrons are continually being swept up and trapped in the
wakefield as the laser pulse propagates into fresh plasma, and typically the self-
guided propagation distance of the laser pulse is much greater than the detuning
length for trapped electrons. This implies that deeply trapped electrons will



circulate many revolutions within the separatrix, again resulting in a large
energy spread. Second, experimental result shows that spatial and energy
distribution of the trapped electrons depend strongly on  the laser prepulse. It
means proper prepulse control is essential for the high quality electron beam.
Third, adding plasma channel for further acceleration is necessary for
acceleration into higher energy. It means extending the acceleration distance
larger than the vacuum diffraction length by plasma channels. Several methods
for production of plasma channel have been proposed:  relativistic self-guiding
in a plasma and guiding in preformed plasma channels generated by a focused
laser pulse or by slow discharge through a capillary in vacuum. or fast Z-pinch
discharge through a gas-filled capillary.

The electron driven plasma wakefield accelerator is also still in the
stage of  proof-of-principle. More new ideas ( plasma density transition trapping,
THz acceleration, etc ), numerical simulations, experiments (at USC / UCLA /
SLAC, Fermi ) and new diagnostics ( imaging spectrometer, etc ) are needed.
The linear scaling law should be checked and up-graded.
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Accelerating gradient field can be guided in a waveguide made out of a photonic
band gap structure. The electron beam which has the same velocity as the phase
velocity of the guided accelerating field can be accelerated during passing the
photonic band gap accelerator structure. A ratio of the surface electric field to
the central accelerating gradient field can be made low because the field does not
penetrate into the photonic band gap structure composed of the dielectric material
and the vacuum. Calculated maximum accelerating gradient is 150 MeV/m for the
1 cm accelerating structure.

1. Introduction

Photonic crystals (PCs) with an artificially constructed periodic structure

inhibit the electromagnetic radiation with a frequency inside the photonic

band gap (PBG).1 A central defect which is carefully made inside the PBG

structure makes it possible to induce the radiation corresponding to the

defect modes.1 The vacuum-guiding becomes possible when the central vac-

uum defect is surrounded by the 2D PBG structure and the defect modes

satisfy the vacuum-guiding condition.2,3

In the photonic band gap accelerator (PBGA), the 2D PBG structure

blocks a leakage of the electromagnetic radiation and the central vacuum

defect guides both the radiation and the charged particle beams. A funda-

mental TE11-like mode generally used in communication is useless for the

charged particle acceleration, but the TM01-like mode with the longitudinal

electric field gains an attention in the PBGA. Tuning of the guided mode

is carried out by changing the size and the shape of the central defect and

the PBG structure geometry.

The acceleration mode guided in the PBGA structure propagates with

the longitudinal phase velocity greater than the speed of light, c. Synchro-

1
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nization between the phase velocities of light and the propagation velocity

of the electron beam is achieved by inserting the iris which is made by

partly building a wall in the defect region as shown in Fig. 1. In this paper,

we introduce an effective geometry of the PBG structure with large out-

of-plane PBG composed of GaAs and a vacuum. Then the PBGA which

is composed of the 2D PBG structure, a central vacuum defect and dielec-

tric irises is presented. The proposed PBGA will be able to accelerate the

electron beam in a straight way because of the rigid well-aligned structure.

Laser beam introduced
by an axicon

Electron beam

PBG stucture composed of
the GaAs and the vacuum

Vacuum

Diamond iris
la l li

Figure 1. Schematic of proposed laser driven PBGA

2. Design

2.1. Accelerating Frequency and Materials

The power of acceleration is increased with the square of the laser

wavelength.4 On the other hands, the electromagnetic radiation with the

wavelength longer than 10 µm is hardly transmitted through most dielec-

tric materials. The CO2 laser with the wavelength of 10.6 µm may be a

solution as an acceleration field source because the CO2 laser is the longest

wavelength source among conventional laser sources and can be easily made

to the high power source with the pulse length of hundreds picoseconds.

Dielectric materials constructing the frame of the PBGA must have a

good transmission property and the high laser induced damage threshold

(LIDT) at given wavelength. In addition, the frame material should satisfy

high thermal conductivity, appropriations for precise fabrication, and the

mechanical strength enough for maintaining PBG architecture when the

high intensity laser field is loaded.

In this study, the GaAs with the refractive index of 3.12 at 10.6 µm was

selected as the frame dielectric material of the PBGA because its properties

fairly well satisfy previously discussed demands for 10.6 µm wave.5 Due to
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high LIDT, heat capacity, and hardness, the diamond is selected as the iris

material.5,6

2.2. Calculation Method

To calculate the properties of the accelerating gradient field guided in the

PBGA, the absolute PBG map for a unit lattice of the PBG structure

is configured as a function of the variation of the normalized propagation

constant, βa, where a is a lattice constant, assuming the perfect periodicity.

Then the normalized frequency, ka, and the field profile of defect modes at

the given βa are calculated for the entire two-dimensional PBGA structure

including the PBG structure and the central defect.

We use the MIT Photonic-Bands (MPB) package7 to obtain the disper-

sion relation in the first Brillouin zone of the PBG structure and to calcu-

late the physical properties of the accelerating mode of the entire PBGA

structure by using supercell approximation. One unit lattice of our PBG

structure has the values of 12.45 µm horizontally (a) and 24.9 µm vertically

(2a) and the dielectric-filling fraction of 21.7 %. The width of horizontal

and vertical slabs are 0.1a and 0.13a, respectively.

Normalized propagation constant
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Figure 2. Variations of the radiation modes. (a) is the line corresponding to the speed
of light, (b) and (c) are upper and lower photonic band gap boundaries, (d) is the TM01-
like mode formed in the region without iris, (e) is the TM-like mode formed in the region
with iris, and (f) indicates the operating frequency.
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3. Acceleration Process in PBGA

3.1. Accelerating Structure

The band gap is positioned to cross the line corresponding to the speed

of light because the longitudinal phase velocity of the guided accelerating

gradient mode settled in the gap must equal to the propagation velocity

of the electron beam. Strong confinement of the guided-mode is the key

to raise the acceleration gradient field against the maximum electric field

of the dielectric limited by the LIDT. Confinement is roughly dependent

on the photonic band gap size and the position of the defect mode. The

position of the acceleration mode has to be settled in the middle of the

gap boundaries for strong confinement. Figure 2 shows the absolute PBG

map of the out-of-plane 2D PBG structure, where the variation of the gap

is represented as the function of the normalized propagation constant. As

can be seen in Fig. 2, only one gap exists, and higher-order modes are

suppressed.

As mentioned above, the defect breaking the perfect symmetry of the

PBG structure can induce the defect modes. The size and the shape of the

defect determine the properties of the defect modes. The size of the defect

is large enough to guide almost all electromagnetic field inside the defect.

As can be seen in Fig. 3, the central vacuum defect consists of the vacuum

area corresponding to 9.5 unit lattices.

3.2. Description on Accelerating Field

The accelerating mode, the second-order TM01-like mode, has a Bessel

function-like distribution in the vacuum defect region and the central ac-

celerating gradient field is 0.762 times the peak electric field inside the GaAs

frame. The phase velocity of the accelerating mode is 1.047 c. Therefore,

the phase slippage becomes π/11 per one accelerating mode wavelength,

10.6 µm. In the waveguide region with the iris, most electric field is con-

centrated to the iris. Because the refractive index of diamond is 2.39, the

phase velocity of the accelerating wave becomes slow down. According to

our simulation, the phase velocity of the waveguide region with the iris is

0.930 c. The longitudinal length of the iris, li, is chosen to 0.373 l for the

synchronization, where a unit length, l, is chosen to be four wavelength

(42.4 µm). The fundamental TE11-like mode, which is composed of two or-

thogonal, quasi-linear polarization states, does not contain the longitudinal

component of the electric field.
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3.3. Calculation of the Maximum Accelerating Gradient

The velocity of the relativistic electron beam is equivalent to the speed of

light, c, otherwise the energy of the accelerating gradient field propagates

with the velocity slower than c. Therefore, the electron beam can expe-

Vacuum

GaAs

(a)

GaAs

(b)

Diamond

Vacuum

Figure 3. Acceleration field profiles. (a) and (b) show the longitudinal electric field
profile in the region without iris and with iris, respectively.
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rience the acceleration throughout the entire waveguide length only when

the pulse length is larger than n[(c − vag)la + (c − vig)li]/c2, where n is

the number of the sections composed of no iris and iris region, vag and vig

are the group velocities, and la and li are the length in each regions as

shown in Fig 1. Our calculation shows vag = 0.738 c and vig = 0.217 c.

When a four-inch GaAs wafer is used, we can get the 10 cm long accel-

eration structure and the minimum pulse length is 144 ps. For the laser

pulses of hundreds pico seconds or less, the laser-induced material damage

can be caused by a mixture of the joule heating, the avalanche ionization,

and the multiphoton and the tunneling ionization. Therefore, the damage

threshold is determined by both the laser-pulse width and the peak laser

field6 and in our case, about 4.83 J/cm2.5 The peak electric field at the

GaAs which composes PC structure, is 271 MV/m and the corresponding

peak acceleration field at the center of the vacuum defect is 207 MV/m

for the 10 cm accelerating structure. Because the maximum acceleration

gradient is a half of the peak accelerating field8 and the la/l is 0.627, the

proposed PBGA with the 10 cm structure have a gradient of 64.8 MeV/m.

The pulse length can be shortened by dividing the accelerating structure

into several serial arrays. The LIDT of the frame material can be raised

by shortening the pulse length. When one accelerating structure is set to 1

cm, the minimum pulse length is 14.4 ps and LIDT is 1.53 J/cm2 and the

expected gain is 150 MeV/m.

4. Proposed Fabrication Procedure

In order to fabricate the discussed structure, we propose to use a con-

ventional semiconductor microfabrication technique.9 When a wafer-fusion

and alignment technique is used, one long PBGA structure with the length

equivalent to the diameter of a GaAs wafer or a serial array of sev-

eral short PCA structures may be constructed on the wafer substrate.

A pattern of the diamond iris to carry out the synchronization can be

etched by synchrotron10 or focused-ion-beam.11 The diamond layer on the

GaAs structure may be grown by the chemical vapor deposition (CVD)

technique.12 In the process of the PBGA fabrication, the surface roughness

of the dielectric materials is not crucial.13

5. Conclusion

We have designed the PBGA with a rigid and accurately machinable struc-

ture which has a large absolute band gap. To synchronize the phase veloc-



7

ity of the accelerating mode to the velocity of the electron beam, we have

adopted the diamond iris with higher refractive index than the vacuum.

Introducing the iris in the defect region have made it possible to enlarge

the transverse area of the waveguide also. In our simulation, the diameter

of the defect is set to 26.5 µm, and it can be expanded to the diameter of

50 µm or more. Calculated maximum accelerating gradient is 150 MeV/m

for the 1 cm accelerating structure.
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Use of structures of a solid in accelerators is discussed, which have sizes around
the wavelength of lasers. An example is a photonic band-gap crystal, an artifi-
cial periodic structure made from two materials with different dielectric constants.
Another simpler example is a fine hole in a solid, in which electromagnetic waves
transmit as low-dimensional waves. One of the applications of the photonic band-
gap crystal is guiding of laser pulses over a Rayleigh length. The hole in a metal
holds plasmons on the inner wall, whose electric fields can accelerate charged par-
ticles. A plasmon linac, a linac based on this principle, can realize an emittance
on the order of nm.

1. INTRODUCTION

Size of structure of a solid is characterized by a lattice constant. Use of such

structures has once been proposed to hold the electric field to accelerate

charged particles,1,2 but no experiments have been performed so far. This

is mainly because the power source has not been readily available in the

form of a wave with wavelength around the lattice constant. The present

paper proposes use of an artificial macroscopic structure whose lattice con-

stant is around the laser wavelength, 1µm or less, but much larger than the

real lattice constant. An example of such structures available is a photonic

band-gap crystal.3 Another simpler example is a hole in a solid whose di-

ameter is around the laser wavelength4. Their applications to accelerators

have already been discussed in several papers.5,6,7,8

The next section of this paper reviews the photonic band-gap crystal

and its application to accelerators. The electromagnetic waves with the

∗Present address : Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hi-
roshima 730-8670, Japan.
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Figure 1. Dispersion curves of (a)bulk solid, (b)one-dimensional periodic structure from
homogeneous material, and (c)one-dimensional periodic structure of two materials with
different dielectric constants.

band-gap frequencies are channeled, which property is useful to lengthen

the acceleration distance of a laser-plasma accelerator. Group velocity of a

light decreases in the crystal, which could be used in the laser acceleration

of ”slow” particles such as ions. The third section first reviews a low di-

mensional light, which is realized in a hole in a metal with diameter around

the laser wavelength. A specific application of the low dimensional light, a

plasmon linac, is then described. The last section contains conclusion.

2. PHOTONIC BAND GAP CRYSTAL

Photonic band-gap crystals (often called simply photonic crystals) are regu-

lar array of materials with different refractive indices. Their spatial periods

(lattice constants), can be on the order of any electromagnetic wave. It is

about 1µm or less for visible lasers. The two features of the photonic crystal

are channel guiding of a light and slowing down of the group velocity of a

light.

Another topic is generation of radiation in the interaction between

charged particle beams and a photonic crystal. If charged particle beams

run close to a surface of the periodic structure such as the photonic crys-

tal, Smith-Purcell radiation is generated.7 We experimentally measured the

intensities of the visible radiation and depicted them on the k − ω plane,

which will be published elsewhere.9

2.1. use of band-gap for channel guiding

Figure 1(a) shows the dispersion diagram or the Brillouin diagram of a bulk

solid with the dielectric constant ε. It is of two straight lines ω = ±vpk,
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Figure 2. Brillouin diagrams of two-dimensional triangular photonic crystals schemati-
cally given in (d), made of columns with radius r = 0.3a, where a is the lattice constant,
from materials with ε = 8(a), ε = 10(b) and ε = 12(c). Lines show those in the TE mode
and broken lines show those in the TM mode.

where vp = c(ε0/ε)1/2. If a single material has a periodic structure like

a grating, the dispersion is folded at the periods of the wave-numbers as

shown in (b). Usually only the part indicated by the arrow is depicted.

If two or more materials make a period, the dispersion becomes such that

shown in (c), which has band-gaps.

Figure 2 shows Brillouin diagrams of real two-dimensional photonic crys-

tals, made of columns with radius r = 0.3a where a is the lattice constant,

from materials with ε = 8(a), ε = 10(b) and ε = 12(c). The figures were

depicted by the MIT program.10 The eigenmodes are classified into two cat-

egories according to the polarization of the optical waves; that is, the TE

mode for which the electric field is perpendicular to the 2D plane and the

TM mode for which the magnetic field is perpendicular to the 2D plane.

These definitions are common in solid-state physicists but different from

those of accelerator scientists. Three diagrams in Fig. 2 looks same except

their aspect ratios. It is found that existence of the bandgaps is different

between the TE and the TM modes. Careful inspection finds that the TE

mode has a band-gap only in (c) and has not in (a) and (b).

Existence of band-gaps enables the channel guiding of light waves.

Waves with frequencies in the band-gaps cannot exist in the photonic crys-

tal. If defects are introduced into the crystal, such waves are localized in the
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Figure 3. Three dimensional photonic crystal(a), and its Brillouin diagram(b).
12

defects. A line defect thus guides waves with the band-gap frequencies.11

This phenomenon can be used to guide lasers in the laser wake-field acceler-

ation to lengthen the acceleration distance far over a Rayleigh wavelength.

A three dimensional photonic crystal shown in Fig. 3(a) has the Brillouin

diagram of (b), in which both the TE and TM modes have a band-gap in all

directions of the crystal.12 Let us assume use of a Ti:Sapphire pump laser

and a crystal made from Si; i.e., laser wavelength is 800nm and refractive

index of the crystal is 3.2. We specify the thickness of the stripe as 0.2a.

The a value should be designed so that the laser wavelength exists in the

band-gap, 416nm< a <496nm in these conditions. The thickness of the

defect should be a bit larger than the waist size of the laser, say 4µm, so

we have to pull out about 10 stripes to make the waveguide.

In order that the line defect is used as a waveguide of a plasma accel-

erator, the Debye length, λD = (λp/2πc)(kBTe/me)
1/2, should be small

enough compared with the size of the defect, where λp is the plasma wave-

length, Te is the plasma electron temperature and kB is the Boltzman con-

stant. In the mechanism of linear laser wake-field acceleration using laser

pulses with longitudinal width σz, the plasma wavelength should be around

πσz to maximize the acceleration gradient.13 If we assume use of 40fs laser

pulses in a plasma with Te = 1eV, these relations specify λp = 47.1µm and

λD = 10.5nm. The Debye length is thus small enough than the defect size.

Though the plasma wavelength is larger than the defect size, excitation of

the plasma wave in such situation has already been verified.14

2.2. use of slow group velocity

Group velocity is indicated by a gradient of the dispersion curve in a Bril-

louin diagram. Curves in Fig. 2 and Fig. 3(b) have a lot of points with slow

group velocities. The slow group velocity in a photonic crystal is because of

two reasons. First is a so-called whispering gallery mode, in which photons
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repeat random reflection inside the bulk solid and do not come out immedi-

ately. Second is the macroscopic Bragg reflection. Photons turn to and fro

in the structural layers and cannot go straight. Experiments have measured

the velocity of a laser pulse propagation in the crystal and verified that it

was lowered down to c/20.15

The state density of photons becomes large as the group velocity de-

creases, so the slow group velocity enhances the electric field. Such proper-

ties could be useful in energy manipulation of heavy particles, not only ions

but also neutrals. The idea is to confine particles by the ponderomotive

force of a laser pulse, or load the laser pulse with particles. The particles

consequently have to move in the speed of the laser pulse. Further calcula-

tions show, however, this method can hardly accelerate the heavy particles

in MeV range. This is because the ponderomotive force is given by

f =
1

4

e2

Mω2
∇E2, (1)

with ω, the laser frequency and M , the ion mass, which is at least ∼2,000

times larger than the electron mass. A rough estimation shows that a

laser power density of 1015 W cm−2 gives a ponderomotive force of 3.27

10−12 N or a ponderomotive potential of ∼20eV, assuming the electric field

enhancement due to the small group velocity as 20. This method is rather

useful to manipulate the particle energies in keV range.

In the acceleration of heavy particle beams, velocity of the laser pulses

has to increase along the beam path. Figure 2 gives a hint, showing that

the higher dielectric constant gives smaller group velocity. If the dielectric

constant of the material was controlled so that its value at the particle

entrance is larger than that at the exit, the group velocity could be increased

with the particle acceleration. Both change of a value and change of the

r/a ratio could fulfill the same requirement.

3. LOW-DIMENSIONAL LIGHT

3.1. low-dimensional light

A plane wave in a material with dielectric constant ε is expressed by

k2

x + k2

y + k2

z = εω2/c2. (2)

If one is real among kx, ky and kz, we call the wave one-dimensional, and

if two are real, we call it two-dimensional. These two are low-dimensional

waves. Because the dielectric constant of a metal is negative in visible-IR

range, the light in the metal has to be low-dimensional. Imagine a boundary
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between a metal and vacuum. If a condition k
‖

> (ε0ω/c)1/2, k
‖

being the

wave number along the boundary, is satisfied, k
⊥

is imaginary and the wave

becomes two dimensional in both sides. Dispersion of the light becomes

k
‖

= ω/c[εε0/(ε + ε0)]
1/2, which mode is called surface plasmon-polariton

or simply surface plasmon. If we replace ε0 by 1 and ε by 1 − (ωp/ω)2, ω

approaches ωp/(21/2), as k
‖

gets ∞.

The low-dimensional light can transmit in a waveguide with a diameter

much smaller than its wavelength in a free space. It will enable construction

of optical integrated circuits with sizes smaller than the wavelength used in

them. Its another feature is a slow phase velocity,16 which could be useful

in acceleration of heavy particles.

3.2. plasmon linac

A plasmon linac is a miniature linac that uses a hole in a metal as an ac-

celeration tube. A laser pulse excites plasmons, the low-dimensional waves,

along the inner wall of the tube, whose radius is around the laser wave-

length. Test beams are then accelerated by the potential of the plasmons.

One can regard this method as a laser wake field acceleration in a hollow

channel,17 though it uses an overdense metal plasma instead of an under-

dense gaseous plasma. The structure resembles that of a dielectric linac,18

which has once been studied as a rival of a linac with periodic structure. It

features beam size in the nanometer range and good conversion efficiency

from laser power to acceleration gradient; it attains a GeV/m gradient by

a MW laser instead of a TW one, though the current is very small.

Suppose a hole with radius a in a medium with dielectric function ε1(ω).

Axial symmetric components of electric and magnetic fields inside the hole

(r ≤ a) are

Er = −(ik/K0)A0J1(K0r),

Ez = A0J0(K0r), (3)

Bθ = −[i(K2

0
+ k2)/ωK0]A0J1(K0r),

and those in the medium (r > a) are

Er = −(ik/K1)A1H
(1)

1
(K1r),

Ez = A1H
(0)

1
(K1r), (4)

Bθ = −[i(K2

1
+ k2)/ωK1]A1H

(1)

1
(K1r),

where

K2

i = ω2εi(ω)/c2 − k2, i = 0 or 1, (5)
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and Jn(x) and H
(1)

n (x) are Bessel function and Hankel function of the first

kind, respectively.19

Using the boundary conditions at r = a, we obtain a so-called transcen-

dental equation. Inserting the dielectric functions of vacuum ε0 = 0 and

that of the medium

ε1 = 1 − [ω2

p/ω(ω + iγ)], (6)

with ωp and γ being plasma frequency and relaxation constant, respectively,

into the transcendental equation, we obtain the dispersion relation,

K1H
(1)

0
(K1a)J1(K0a) − [1 − ω2

p/ω(ω + iγ)]K0H
(1)

0
(K1a)J1(K0a) = 0. (7)

Figure 4. Real part of the dispersions of the plasmons inside the hole. Straight lines
give those of particle beams with various velocities.

Figure 4 shows the real part of the dispersion relations for various kpa

values. Frequencies in time and space are normalized by ωp and kp = ωp/c,

respectively. All ω values approach ωp/
√

2, the surface plasmon-polariton

frequency, with increasing k. Straight lines show particle beams with var-

ious velocities. Lasers with frequencies at the crossing points between

straight lines and curves are able to excite the plasmons mating with the

relativistic beams in Fig. 4(a). Figure 4(b) suggests acceleration of slow

heavy particles. If we use a laser with a single frequency throughout the

acceleration, we have to increase the hole radius along the particle orbit in

accordance with the increase of the particle velocity.

One of the features of the dispersions in Fig. 4(b) is in their negative

group velocity, ∂ω/∂k < 0. Laser pulses and test beams should have counter

directions each other in the accelerator configuration. A backward-wave

tube produces similar waves, in which a forward-flowing electron beam

converts its energy into a backward wave.20
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Integration of Poynting vector gives the laser power transmitting along

the hole. Using the boundary conditions of the field components, and by

inserting Ez in Eq. (4), we find that the accelerating field Ez inside the

hole is proportional to the square root of the laser power P ;

Ez(0) = αkpP
1/2. (8)

The kpa dependency of the coefficient α of the above equation is numerically

calculated and given in Fig.5 for various particle velocities, vp = c in (a)

and slower velocities in (b).

Figure 5. Conversion coefficient α between kpP 1/2 and the acceleration field Ez(0), as
a function of kpa for various phase velocities, vp = c (a) and vp < c (b).

Use of silver (ωp = 13.2 × 1015 s−1 and γ = 68.9 × 1012 s−1) under

the design conditions kpa = 10 and vp = c give a = 227 nm and the laser

wavelength as 344 nm. According to Fig.5(a), a laser with a power of 1

MW attains an acceleration gradient of 45.0 GeV·m−1. The acceleration

length ∼ c/γ is, however, only 4.32 µm, giving an energy gain of 194 keV.

This short length is due to the ohmic loss, which raises the temperature

and destroys the accelerator structure. The solution is to keep the structure

at a low temperature. The resistivity ρ is in proportion to γ. That of silver

at 300 K, 16.29×10−9 Ω·m, is reduced to 0.0115×10−9 Ω·m at 10 K.21 The

acceleration length and the energy gain at 10K instead increase to 6.11 mm

and 273 MeV, respectively, with the same 1 MW laser. The laser intensity

at the inner wall is 1 MW/(2×π× 227 nm × 6.11 mm) = 11.48 × 109

Wcm−2. This value can be below the damage threshold of silver, if the

laser repetition rate is moderate.

This linac with a fine acceleration tube is capable of producing so-called

nano electron beams. Reiser expressed normalized emittance of an electron
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beam as a function of T and κ,22

ε =
kBT

κmec2
, (9)

where T is the beam temperature, kB is the Boltzman’s constant, me is the

electron mass. A transverse linear restoring force F on an electron at r is

expressed by using κ,

F = −γmec
2κ2r. (10)

In the case vp = c, Eq. (4) gives J0(0) = 1 and Ez = A1. The accelera-

tion field is therefore independent of the radial position in the hole. The

transverse field contains J1(K1r). Since K1r << 1, we can make approx-

imation J1(K1r) ∼ (K1r/2)(1/Γ(2)) = K1/2, to obtain Er = −ikA1r/2.

The transverse force F thus becomes F = eEr = −iekEzr/2. We can

express κ as

κ =

(

ekez

c2ekpme

)1/2
kBT

E
1/2

z

. (11)

Substituting the result in eq.(9), we find that the emittance is inverse-

proportional to the square root of Ez,

ε =

(

2

c2ekpme

)1/2
kBT

E
1/2

z

. (12)

In the case of a silver tube with kpa = 10, this becomes

ε =
4.61 × 10−7 × kBT [eV]

(Ez[eV])1/2
.

If Ez=45GeV/m and kBT =1keV, we have ε =2.1nm.A carbon-nanotube

electron source will provide source beams for this linac.23 Such beams with

nanometer emittances will contribute to further investigation, manufacture

and measurement in the nanometer range.

Acceleration of ions in the plasmon linac is more difficult than accel-

eration of electrons. Certainly, Fig. 4(b) tells that plasmons can interact

with beams with a slow phase velocity, and we can even calculate the ac-

celeration gradient based on Fig. 5(b). We, however, have no practical way

to excite the plasmons by lasers with vp = c. The present trend of low-

dimensional wave generation is not to transfer them from outside but to

excite them directly in a fluorescent material. It is reported that a high

k wave is experimentally excited in two-dimensional geometry.16 However,

this method may not excite waves with power high enough for the particle

acceleration.
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4. CONCLUSION

Use of photonic band-gap crystals and holes in a metal in accelerators is

discussed, which have sizes around the wavelength of lasers. The pho-

tonic band-gap crystal can guide laser pulses over a Rayleigh length to

lengthen acceleration length of a laser-plasma accelerator. The fine hole in

a metal holds plasmons on the inner wall, whose electric fields can accel-

erate charged particles. A plasmon linac, a linac based on this principle,

can realize an emittance on the order of nm. A light wave in the photonic

crystals have slow group velocity, while a plasmon has slow phase velocity.

Such properties could be useful in acceleration of heavy particles, though

further studies are necessary.
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Recently, crystalline ion beams have been realized and systematically studied in
the table-top rf quadrupole storage ring PALLAS by means of laser cooling. Here,
the phase transition of a longitudinally modulated, bunched ion beam in the regime
of a linear string of ions is followed monitoring the full spatial distribution of the
ion bunch. Structural transitions are investigated as a function of the ratio of
the transverse to the longitudinal confinement strength. Surprisingly, the length
of crystalline ion bunches was found to be shorter by a factor of up to three with
respect to dedicated models, considerably increasing the luminosity of such beams.

1. Introduction - Crystalline Ion Beams

The phase transition of an ion beam to the Coulomb-ordered “crystalline”

state, the state of ultimate brilliance and stability, can occur when the mu-

tual Coulomb-energy of stored ions overcomes their mean kinetic energy by

about two orders of magnitude 1,2,3. As typical inter-ion distances of stored

singly charged ions amount to of the order of 10 µm, beam temperatures in

the range of mK are required to fulfill this condition.

The first experimental evidence of this phase transition was recently

observed at the table-top storage ring PALLAS with a laser cooled beam of

low-energy 24Mg+ ions 4. Meanwhile, PALLAS has been used as a model

system for synchrotron storage rings mapping the focusing parameters re-

quired to attain and maintain crystalline ion beams 4,5,6 and for the detailed

investigation of heating mechanisms specific to crystalline beams. These re-

sult from envelope modulations due to the strong focusing 5, from bending

shear when the beam is cooled to constant linear velocity, but also from

longitudinal laser cooling itself due to the inevitable random scattering of

photons 7.

∗New address: NIST Boulder, CO, USA
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Figure 1. Sketch of the rf quadrupole storage ring PALLAS. Four ring electrodes enclose
the ion orbit in quadrupole geometry. For the storage of 24Mg+ ion beams voltages
between Urf = 150 and 450 V are applied at a fixed radio frequency of Ω = 2π ×

6.3 MHz. Additionally, sixteen segmented drift tubes are distributed around the ring.
The accented tubes are used to localize ions in the laser cooling section during loading,
for taking images of stationary ion crystals, or to bunch an ion beam. The scheme for the
measurement of the longitudinal spatial ion distribution of bunched beams is indicated,
details are explained later in the text.

Here, we focus on systematic measurements on bunched crystalline ion

beams in PALLAS 8,9, where the ion current is additionally modulated by a

harmonic pseudo-potential in the co-moving system, the so-called “bucket”

potential, thereby splitting and compressing the beam into short “bunches”.

On the one hand, this technique offers further control over the longitudinal

phase space. Except for the collective motion of the ions in the beam, the

situation is equivalent to the situation commonly found in linear Paul traps.

Yet, the length of the bunches can be considerably larger as compared to the

typical situation of a stationary ion crystal in a linear Paul trap, challenging

theoretical models as will be discussed. On the other hand, laser cooling

of bunched beams facilitates the cooling of high energy ion beams 10,11, as

discussed in the outlook.

2. Experimental Techniques - the PALLAS Storage Ring

In the table-top storage ring PALLAS 4,5,6,12 ion beams are guided on a

closed orbit of circumference C = 2π × 57.5 mm by the circular quadrupole

electrode structure sketched in Fig. 1. Similar to the more common case of

strong magnetic focusing in large-scale storage rings, an electric quadrupole

field alternating at the radio-frequency Ω results in a bound transverse

motion of the particles at the secular or betatron frequency ωsec. In terms

of the stability parameter q = 2eUrf/(mΩ2r2

0
) of the underlying Mathieu
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differential equation 13, this frequency amounts to ωsec = qΩ/
√

8, where

e and m stand for the charge and mass of the stored ion, Urf for the

voltage applied between the quadrupole electrodes, and r0 = 2.5 mm for

the aperture radius.

After the loading of the ring with a cloud of 24Mg+ ions, the resonant

light pressure of the co-propagating laser beam, addressing the Doppler-

shifted optical 3s2S1/2−3p2P3/2 transition of the 24Mg+ ion, is used for the

acceleration of the stored ions 4,5,7. The frequency of this laser beam ω1(t) is

continuously increased, while the frequency of a second counter-propagating

laser beam ω2 is maintained at a constant detuning that determines the final

beam velocity to v ≈ 2600 m/s, typically. The longitudinal velocity spread

of the ion beam is efficiently reduced by the friction force that results from

the combination of both accelerating and decelerating laser forces, sketched

in the right graph of Fig. 2. Providing sufficient confinement, the transverse

ion motion can be coupled to the longitudinal and thus be indirectly cooled.

This point turned out to be delicate 4,5,7 as dissipative hard Coulomb-

collisions are strongly suppressed in the crystalline state 14,15, where ions

reside on well-separated lattice positions. The resonance fluorescence is

recorded either with a fast photo-multiplier or imaged with an intensified

CCD video camera. From the latter images time averaged vertical beam

profiles can be deduced with a spatial resolution of σres ≈ 5 µm.

For the bunching of the ion beam 8,9, discussed in more detail, a small

alternating voltage U0 cos(2πνbt) that is tuned to a harmonic h of the

revolution frequency

νb = hνref = hv/C (1)

is applied to one of the 16 drift tubes sketched in Fig. 1. In the co-moving

frame, the ions experience a position dependent longitudinal force, depicted

in the upper graph of Fig. 2. The corresponding longitudinal pseudo-

potential, the bucket, can be characterized by the synchrotron frequency

νsyn =

√

eUb h

2πC2 m
, (2)

or directly by its velocity acceptance ∆vsep = 2vνsyn/νb. Here, eUb

amounts to the maximum energy change per passage of an ion through

a drift tube of length L = 22 mm

eUb = 2eU0 sin

(

πhL

C

)

. (3)
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Figure 2. Illustration of the motion of a single ion in the bucket (co-moving frame).
The ion experiences the velocity dependent accelerating force of the co-propagating laser
beam and the position dependent restoring force of the bucket, as indicated in the right
and the upper graph, respectively. The sample phase space trajectory starts 25 m/s
below the synchronous velocity vs = Cνb/h and the force of the scanning co-propagating
laser beam first damps, then inhibits (over-damps), and finally drives the synchrotron
oscillation of the ion. Note, that for the overdamped case, which represents optimum
cooling, the ions are shifted out of the bucket center as a consequence of the required
equilibrium of forces. For technical reasons, the decelerating force of the second counter-
propagating laser beam (dashed line), acting on ions with a velocity slightly above the
synchronous velocity, is used for long-term cooling.

This energy change does not lead to a considerable displacement of an ion

from its lattice position in a string, although the multiple passage in phase

leads to the bunching of the beam.

As illustrated in Fig. 2, the synchrotron oscillation of a singe particle in

the bucket can be efficiently damped by the velocity dependent force of only

one laser beam 10,11,8, counteracted by the restoring force of the bucket. A

stable over-damped situation at v = vs is achieved when the decelerating

force of the counter-propagating laser beam (dashed line in Fig. 2) is tuned

into resonance with a velocity class slightly above the synchronous velocity

vs. The decelerating laser force at vs is then compensated by the restoring

pseudo-force (accelerating phase) of the bucket which leads to a shift of the

ion out of the bucket center. A modification of the longitudinal cooling

strength can thus be achieved by a fine-tuning of the bunching frequency.

From the measurement of the ion fluorescence signal in coincidence with

the bunching frequency, the longitudinal shape 16 of bunched laser-cooled

ion beams can be deduced 9, as demonstrated in Fig. 1.
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3. Crystallization of Bunched Beams

The common emittance dominated (gaseous) state of a cold bunched ion

beam can be described by Gaussian distributions in the longitudinal and in

the transverse directions. From the width of the spatial profiles, depicted

in Fig. 3 (σ
‖

≈ 4 mm, σ
⊥

= ((σc)2 − (σres)2)1/2 = 8.8 µm), the following

beam temperatures can be deduced (k denoting the Boltzmann constant)

T
‖

= mω2

synσ2

‖

/k ≈ 1.5 K

T
⊥

= mω2

secσ
2

⊥

/(2k) = 2.2 K . (4)

The transverse narrowness of this cold bunched beam indicates that, in

contrast to the case of non-crystalline coasting beams, where the motion

in the transverse and the longitudinal degrees of freedom was found to

be strongly decoupled 4,5, presumably non-linear effects in the bunching

increase the coupling and thus the overall cooling efficiency 9.

A gradual increase of the cooling rate leads to a significant change in

the shape of the longitudinal profile from a broad Gaussian to an inverse

parabola, characteristic of the space-charge dominated (cold fluid as well as

crystalline) regime. In this regime, the repulsive space-charge force and the

harmonic confining forces of the bucket and the storage ring are balanced

at constant volume charge density n0
17. The shape of the bunch is not

determined by its temperature anymore. However, this distinct change in

the longitudinal profile of this specific sample beam is only accompanied

by a small change in the transverse (T
⊥

= 1.5 K).

The latter temperatures correspond to a value of the plasma parameter,

basically the ratio of the mutual Coulomb-energy of ions to their thermal

energy kT , of

Γp =
1

4πε0

e2

aws

1

kT
≈ 1 (5)

where

aws =

(

3

4πn0

)1/3

=

(

1

4πε0

3e2

2mω2
sec

)1/3

, (6)

the Wigner-Seitz radius, is used as a measure of the inter-ion distance

to account for the strength of the transverse confinement 18. The value

of Γp ≈ 1 is consistent with the observed shape and should justify the

description of the bunch as a cold fluid 17 as long as correlations between

the ions remain negligible.

Similar to the case of coasting beams 5, the phase transition to the

crystalline state (uppermost curve 19 in Fig. 3) is identified by a sudden
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Figure 3. Left: Longitudinal spatial profiles of the sample ion beam, presented in Fig. 1.
With increasing cooling strength, achieved by rising the bunching frequency νb or, in
other words, reducing the velocity detuning ∆v as explained in the text and in Fig. 2,
the profile changes from a broad Gaussian (lb ≈ 11.5 mm FWHM) to a sharp inverse
parabola. During the crystallization (from the middle to the upper black curve) the
length of the bunch again increases from lb = 3.7 → 5.3 mm. All curves are vertically
displaced for a better visibility. Right: Vertical beam profiles corresponding to the
three situations mentioned above (black curves). The width of the uppermost profile
corresponds to the formation of a linear string of ions.

reduction of the width of the transverse beam profile to the (resolution

limited) width of a string of ions 4,8. The structural formation of the string

is confirmed when the value of the dimensionless linear density λ(z) =

N(z)/∆z × aws remains below the threshold value 18 of 0.71.

The bunching compresses the linear ion density of this crystalline beam

by a factor of about 11. This compression is directly visible in Fig. 1, and,

though favorable, surprisingly high, as discussed in the next section. Yet,

for the given particle number of Nb = N/h = 500, it only leads to an

average 20 linear density of λ̄ = Nb/(
√

2lb) × aws = 0.5 < 0.71.

The fact that the non-crystalline but space-charge dominated beam (at
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∆v = −3 m/s in Fig. 3) was observed to be another factor of 2/3 shorter

may be qualitatively explained by the onset of Coulomb-ordering into a

disc-like distribution of the ions. Subjected to strong direct longitudinal

laser cooling the ions experience the diffusive transverse heating due to the

random scattering of the laser photons 19,7 that cannot be fully compen-

sated by the indirect transverse cooling. The effective longitudinal inter-ion

distance increases when the transverse localization of the ions on axis is re-

duced compared to the fully ordered string. The bunch can be further

compressed.

4. Shape and Structure of Bunched Crystalline Beams

The anisotropy of the confining harmonic well is characterized by the ra-

tio β = ω2

⊥

/ω2

‖

= ω2

sec/ω2

syn. Though in the range of β ≈ 1...25 the

shape of three-dimensional ion crystals, characterized by the aspect ratio

α∗ = lb/(2σ) of the resulting prolate spheroid, can be calculated with high

accuracy 17,21, the situation turns out to be more complicated for large

values of β. For the extreme case of a one-dimensional (1D) Coulomb-

string, where the length should intuitively not depend on the strength of

the transverse confinement, both mean-field (repulsive) and correlation en-

ergy (‘attractive’ in the sense that the sum is less repulsive) are of the same

order and thus the pure mean-field (cold fluid) description, implying con-

stant volume density, becomes inadequate 22. The inter-ion spacing varies

with the position of the ions in the string 22,24,25 especially for short strings

or close to their ends, as illustrated by the image of a stationary ion crystal

that will be presented in Fig. 5.

Two different models are compared with the experimental results. In

both models, the linear ion density is well described by the observed inverse

parabola and thus the analysis of its length is sufficient. For the full length

of a crystalline string of ions Lb =
√

2 lb, Dubin 22 derived

LDubin ≈

[(

ln(6Nb) + γ −
7

2

)

12Nb
e

ε0

R2

Ubh

]
1

3

, (7)

where γ = 0.577 denotes Euler’s constant and parameters are adopted

to the conditions at the storage ring PALLAS. This approach takes into

account the ordering of the ions, but the determination of the correlation

energy is still related to the cold fluid model. Equation 7 then results

from minimizing the total energy with respect to Lb. It comes out to be

almost identical to the 1D limit of the cold fluid approach 22. It agrees

with related MD simulations 23 and direct calculations of few-ion strings 24



8

Figure 4. Dependence of the bunch length lb of crystalline (filled stars) and hot, non
space-charge dominated (open rhombs) ion beams on the bunching voltage Ub. For the
crystalline bunch, the measured length not only deviates from the theoretical expectation
(dotted line) by a factor of 0.55, but also shows a stronger dependence on Ub. However,

the length of the non-crystalline bunch scales ∝ U
1/3

b
as expected.

and describes the length of short few-ion strings in PALLAS 25 and other

experiments. Yet, it fails to describe the length of the elongated crystalline

bunches observed in PALLAS by about a factor of up to three, which is

illustrated by the ratio of the dotted (Eq. 7) and the dashed line (Eq. 7

scaled by a factor of 0.55 to fit the first data point) in Fig. 4.

This fact becomes more evident when Eq. 7 is compared with the result

of a straight-forward calculation of the length of a space-charge dominated

bunch, treated as a charged cylinder of edge radius 2σ inside a conducting

beam pipe of radius r0, which has originally been used by Ellison et al. to

describe the length of electron cooled ion bunches 26,10,9

LEllison =

[

ln

(

r0

2σ

)

12Nb
e

ε0

R2

Ubh

]
1

3

. (8)

Though based on completely different approaches, both equations give

about equal results for Nb of the order of 1000.

The decreasing of the bunch lengths with increasing bunching voltages

is analyzed in Fig. 4. Besides the obvious discrepancy between the models

presented and the measurements concerning the absolute value of the bunch

length, also the dependence on the confinement strength (solid line in Fig. 4)

considerably deviates from the expected (dashed line). For any Coulomb-
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Figure 5. Fluorescence image of a stationary ion crystal of length Lb ≈ 1.5 mm taken
in the storage ring PALLAS. Illustrating the presently unresolvable structure of an ion
bunch, the spatial dependence of the ion density in the outer wings and the rather
constant linear density and radius in the center, where the zig-zag structure is fully
developed, are discernible. The “digital” appearance of 1/d in the lower graph is due to
the finite pixel size (approximate inter-ion distance ≈ 7 pixel) of the CCD chip.

system confined in 3D in an anisotropic harmonic well the length of the

crystalline bunch should scale as lb ∝ U
−1/3

b . The much faster shortening

(close to lb ∝ U
−1/2

b ) could be explainable with an augmenting structural

transition of the string into a 2D zig-zag, specially as the peak linear density
20 of the first data point at Ub = 31 mV already amounts to λp = 0.72. The

structure of the elongated bunched beam might gradually extend into the

transverse plane and thus shorten faster than expected for the pure string

before finally a dominant zig-zag structure is formed in the central region.

This final situation is illustrated in Fig. 5 with the image of a stationary ion

crystal stored in PALLAS (Nb = 110 � 900), that contains a large fraction

of the ions at a rather constant linear density of λzz = 0.93.

This structural transition of the bunched crystalline beam can be fol-

lowed in more detail in Fig. 6. The data points in this figure correspond

to different combinations of the transverse (Urf ) and the longitudinal (Ub)

confinement strength which had to be carefully chosen to attain and main-

tain the crystalline state. Previous systematic studies of the transverse

beam size of different crystal structures for coasting beams 5,7 allow for

for the distinguishing of three structural regimes, string, zigzag and helix,

although the transverse beam size has to be reconstructed from a time av-

eraged picture. Again, the assumption of a gradual evolution of a zig-zag

structure in the center of a dominant ion string is consistent with the mea-

surement, starting from the upper right data point. Moreover, a distinct

structural transition to a dominant zig-zag structure, identified by a sudden

broadening of the width of the beam, was observed 25 at λ̄ = 0.83, similar

to the situation in the stationary crystal.
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Figure 6. Mapping of the structural transition of a sample bunched crystalline ion beam
as a function of the anisotropy parameter of the confining potential and the resulting
aspect ratio of the ion crystal. The structure is identified by means of the transverse
profiles as explained in the text. The dashed line is meant to guide the eye.

5. Conclusion and Future Prospects of Crystalline Beams

The question now arises how these elongated crystalline ion bunches can

be properly described. Their central part behaves similar to an infi-

nite system, where the constant inter-ion distance on axis 18 is given by

d
‖
(z) = aws/λ(z). Moreover, the peak linear density seems to be always

close to the threshold value above which a structural transition should

occur. In other words, the length lb of a bunched ion string can be approxi-

mated surprisingly well by Nb ×aws/0.71. This observation cannot be fully

explained at the moment and will be further investigated at PALLAS.

More generally, bunched beam laser cooling will be the method of choice

for the anticipated attainment of dense crystalline ion strings at relativistic

energies. The huge Doppler-shift associated with these energies only allows

for counter-propagating laser and ion beams and thus the restoring force

of the bucket is required to counteract the laser force. Furthermore, the

longitudinal confinement prevents complete ion losses from the narrow-band

cooling process due to hard Coulomb-collisions. After such a collision, ions

circulate in the bucket and are recycled into the laser cooling process. A test

experiment is currently prepared for the ESR of GSI, where a beam of Li-

like C3+ ions at a velocity of v/c = 0.47 will be subjected to a combination

of transverse electron and longitudinal laser cooling 6. With the operation

of larger heavy ion synchrotrons (SIS 300 at GSI), laser cooling of Li-like
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ions of the order of uranium becomes possible with fascinating possibilities

for the forward scattering of laser light into the keV range. On the other

hand, the application of refined cooling techniques could strongly enhance

the luminosity of radioactive beam colliders, presently under discussion.
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Laser equipped Storage Ring (LSR) with the circumference and radius of
curvature of 22.197 m and 1.05 m, respectively is now under construction.
The ring has six-fold symmetry and satisfies the so-called maintenance
condition. Experimental approach to 3-D laser cooling for 24Mg+ is
planned together with the studies of 1-D string by the electron beam
cooling of highly charged ion beam.

1. Introduction

Ordering of high-energy ion beam circulating in a ring has been claimed for
proton beam with kinetic energy of 65 MeV for the first time by the electron
beam cooling at NAP-M in Budker Institute for Nuclear Physics at Novosibirsk
[1].  The momentum spread of the cooled beam is reported to suddenly jump
into a certain small level when the number of the circulating beam is reduced to
a certain level.  Recently similar phenomena are reported for highly charged ion
beam by experiments utilizing ESR and SIS at GSI, Darmstadt, Germany [2]
and CRYRING at Man Siegbahn Laboratory, Stockholm University, Sweden [3]

At Institute for Chemical Research, Kyoto University, an ion storage/cooler
ring, LSR (Laser equipped Storage Ring) is now under construction for the
purpose of compact accelerator development for charged-particle cancer-therapy,
which aims at quantitative experimental studies of beam cooling for hot beam
(beam with rather wide energy spread) peculiar to laser-produced ion beam [4].  

                                                
* The work presented here is supported by the funds of Advanced Compact
Accelerator Research Project of Ministry of Education, Sports, Culture, Science and
Technology of Japan.
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LSR is also to be utilized for the purpose of fundamental physics studies,
one of which is the pursuit of 1-dimensional string of highly charged ion beam
above mentioned with use of the electron beam cooling.  The other is 3-
dimensional laser cooling proposed by H. Okamoto and others [5].  For such
purpose, LSR lattice is designed to have a rather higher super periodicity as 6
[6].  In the present paper, the LSR project is reviewed briefly at first and then
proposed electron beam cooling and laser cooling systems are described together
with present status and future time-schedule of the project.

2. LSR Project

LSR is a storage/cooler ring to show feasibility of matching the
characteristics of laser produced ion beam with the rather limited momentum
acceptance of a pulse synchrotron [7].  Laser produced carbon ions with rather
wide energy spread is rotated in a longitudinal phase space by an RF electric
field phase locked with the pulse laser and then injected into LSR and cooled
down another one order of magnitude in energy spread by an electron beam
cooling [4].  As it aims at the realization of compact accelerator for cancer
therapy, compact size is the item to be pursued and its circumference and radius
of curvature are taken to be 22.197 m and 1.05 m, respectively.  Main
parameters of LSR are given in table 1.

In order to suppress the envelope instability, it is desirable to use the phase   

Electron Storage Ring KSR

Electron Linac

Electron Beam
Cooler

Beam Accumulation/
Cooler Ring

(Circumference-20m)

Beam Dump

Heavy Ion 4 Rod RFQ Linac

50TW Pulse Laser Room

50 TW Laser
TiSa Laser
YAG Laser

Compressor

Proton Linac

RFQ (2MeV)

Target Chamber

RF Cavity for Rotation in Longitudinal Phase
Space

DTL (7MeV)

Fig. 1 Layout of LSR
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Table 1. Parameter List of LSR
Ion Species H+, 12C6+, 24Mg+

Energy     7 MeV (2MeV), 2MeV/u, 35 keV

Radius of Curvature 1.05 m

Circumference 22.7 m

Super periodicity 6

advance of betatron oscillation per cell smaller than 90° and operation point for
beam crystallization mode is chosen at (1.43, 1.42).  For the purpose of reducing
the stop-band width of lower order resonances, the dipole and quadrupole
magnets of LSR are carefully designed and fabricated making emphasis on
suppression of nonlinear components.  In Fig. 2, the overall design of the dipole
magnet (a), fabricated coil combining usual winding and saddle shape winding
to avoid the saturation in the field clamp with a limited coil space (b), the shape
of iron core used for 3-D calculation by TOSCA (c) and obtained magnetic field
distribution by calculation for higher and lower magnetic fields (d) are given.  

                                           
(a) Designed dipole magnet             (b) Coil combining usual winding and  
                                                             saddle shape windings

(c) Shape of the iron core                (d) Calculated magnetic field distribution
Fig.2 Dipole magnet of LSR
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The coils attached to the iron poles of the lattice quadrupole magnet are
illustrated in Fig.3 (a). The end cut shape of the iron pole is given in Fig.3 (b).
An overall view of the fabricated quadrupole magnet and calculated deviation of
field gradient (central and integrated along the beam direction) are shown in
Fig.3 (c) and (d), respectively.  As is known from these figures, the nonlinear
components are expected to be well suppressed by the computer-aided design.  It
is expected by such characteristics of the ring lattice magnets free from nonlinear
components, LSR will provide us an ideal playground for beam physics mainly
related beam cooling and crystallization.   Real achieved characteristics are to be
evaluated by field measurements from now on.

 The main obstacle against the 3-D beam crystallization for the case of
storage ring, where ion beam is circulating rapidly, is the shearing force caused
by dipole magnets in the lattice.  Recently, we noticed the fact that the

           (a) Coils attached to the iron pole       　(b) End cut shape of the iron pole

     

(c) Overall view of the fabricated magnet         (d) Calculated distribution of field
                                                                    gradient

Fig.3 Quadrupole magnet of LSR
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dispersion caused by the dipole magnet could be compensated if the electric
field with certain strength to deflect ions to opposite direction is superposed [8].
It is expected that appropriate condition for 3-dimensional beam crystallization
will be possible with such compensation, which is to be studied in detail by
computer simulation including space charge forces from now on.

3. Electron Beam Cooling

An electron beam cooling is to be applied for laser-produced 12C6+ beam with
the kinetic energy of 2MeV/u.   The energy spread of ±1% after phase rotation
is to be reduced to ±0.1% with this method.  By the requirements of
compactness and high super periodicity as 6, the length of long straight section
is limited as 1.8m and installation of the electron cooler into this limited size is
the hard technical challenge, which is inevitable item for compact accelerator
development.   In table 2, main parameters of the electron cooler of LSR are
listed up.  

　

Fig. 4 Electron Cooler of LSR now under design study
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As the cooling force
of the electron cooling is
efficient only in the
limited region ~± 0.1%
of energy spread as shown
in Fig. 5, cooling time
for such a hot ion beam as
has energy spread of ±1%
becomes long usually [9].
In order to improve this
situation, we have
proposed the possibility
of energy sweep with use
of an induction accelerator
illustrated in Fig. 6.  This
scheme is tested with use
Table 2 Main Parameters of LSR Electron Cooler

Ion Species 12C6+

Ion Energy 2MeV/u

Electron Energy 1.2 keV (Max.3 keV)

Solenoid Field 500 G

Electron Current 200 mA (Max)

Length of Central Solenoid 0.8 m

Troid Radius 250 mm

of TSR at Max-Planck-Institut für
Kernphysik, Heldelberg and cooling time
of 2.8 sec without induction voltage is f
reduced to 0.6 sec by application of
induction voltage of 0.4 V (maximum
value applicable at TSR).  The scheme of
electron energy sweep is also studied at
TSR.  The cooling time is found to be
reduced to 0.35 sec for small horizontal
size beam (8mm), while it increases to
~0.8 sec for larger horizontal size beam

∆P/P=1% ∆P/P=0.1%

Injection Beam

IndAcc Acceleration

Cooling Force

Cooled Beam

Momentum

0.1%

(a) Scheme with induction accelerator

∆P/P=1% ∆P/P=0.1%

Injection Beam

Electron energy ramping Cooling Force

Captured Beam

Momentum

0.1%

(b) Scheme with electron energy sweep
Fig. 5 Cooling force of the electron cooling

Power
Supply Feedback

Circuits

Iron Core

n2

n2 Uind

n1/2 n1/2

Fig. 6 Induction accelerator
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(16mm) [10].  In these measurements, vertical size of the beam is left to be
small (a few mm).  Real evaluation of the cooling time with large transverse
temperature both in horizontal and vertical directions together with wide
momentum spread is left to be performed at LSR.

Possibility of making experiments on one-dimensional string by application
of the electron cooling to the highly charged heavy ion beam is also being
studied.  As we are now considering direct injection of extracted ion beam from
the ion source, the ion beam energy is considered to be very low except for the
case of laser produced ion beam, which will results in rather limited electron
current for electron cooling.  Careful study is needed on this approach.

4. Laser Cooling

Laser cooling of circulating ion beam in the storage ring has been limited
for 7Li+ (meta-stable state), 9Be+ and 24Mg+ due to available wavelength of the
CW laser with enough power up to now.  Because metal Be is highly
poisonous, it is difficult to handle.  So  24Mg+ is chosen as the ion to be laser
cooled.  Second harmonic of ring dye laser utilizing the dye Rhodamine
pumped by a solid state green laser is to be utilized to provide the needed

Fig. 7 Scheme of laser cooling of 24Mg+ ion
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wavelength of 280 nm. In Fig. 7, the scheme of laser cooling for 24Mg+ ion is
illustrated with the energy levels.  So as to sweep the energy region of the
initial energy spread of the stored ion beam, induction accelerator described in
the previous section is to be used following the results at TSR for cooling of
9Be+[11]..

For the purpose of cooling down transverse temperature, synchro-betatron
coupling resonance is to be utilized [5,12].  Computer simulation with use of
molecular dynamics is highly required and is now under preparation.

5. Present Status and Future Time Schedule

Main magnets of LSR lattice have been already fabricated and are now to be
evaluated in its field characteristics by field measurement in coming several
months.  The vacuum chambers are now just to be ordered, modification on
which is now seriously discussed to incorporate the dispersion compensation by
superposing the electric field [8].  The fabrication of beam injection line and
alignment of the LSR ring will be completed until the end of 2004 and early in
2005, beam commissioning is expected to be started.
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