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Measurements have been made of the scaled jet energies (51, x:2, 

x3) and the Ellis-Karliner angle (COS~EK), which are sensitive to the spin of 

the gluon, in the s-jet hadronic events from the eSe- annihilation at the 2’ 

resonance. The experiment is performed with the SLD detector at the Stanford 

Linear Accelerator Center (SLAC). The data used in this analysis was collected 

during the 1992 physics run, which includes 10,252 hadronic 2’ events that - 

have CDC information written out. Only charged tracks measured in the 

central drift chamber are used for the measurements of the above variables. 

The raw data are found to be in good agreement with the Monte 

Carlo simulations passing the same set of track and event selection cuts. A 

bin-to-bin correction is done for the distributions of x1, x2, x3, and COS~EIC to 

account for the effects of hadronization, detector acceptance and resolution. 

The corrected data is compared to the parton level distributions of 51, x2, 

x3, and cos0~~ simulated from the vector QCD model and the scalar gluon 

model respectively. The systematic errors, calculated for all the bins in these 

distributions, are obtained by comparing the results from different sets of 

track and event selection cuts, from different hadronization models and from 

different Monte Carlo programs. Good agreement is found between data and 

the vector QCD model. The scalar gluon model strongly disagrees with the 

‘data. 
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CHAPTER1 

THEORY 

1.1 Introduction 

The theory of quantum chromodynamics (QCD) postulates that the 

gluon, the gauge boson of the strong force, is self-interacting and has spin 

one. In the past ten years, numerous experiments have been carried out 

and the results have been seen to agree well with this theory. The special 

properties of three-jet hadronic events from eSe- annihilation, where one of the 

quark-antiquark pairs radiates a gluon, are also well described by QCD theory. 

However, the existing experimental data hardly provide any direct evidence for 

the value of the gluon spin. Several groups at PETRAIl-” measured three- ’ “,- 

jet distributions sensitive to the gluon spin at energies around 30 GeV. The -‘i. 

effect was relatively small due to lower statistics and larger hadronization 

backgrounds, and the conclusions were based solely on the first order theory. 

The analysis of the decay of the Y resonance into three gluons’51 can also 

provide direct evidence for the gluon spin. In addition, the gluon spin affects 

the spatial orientation of the three-jet events with respect to the beam axis in 

eSe- annihilationL8”’ , but the discriminating power is small. In p-p collisions, 

- the angular distribution of jets shows evidence for the gluon spin”‘, and the 

distribution of high pi leptons is also predicted to depend on it”‘. For the 

process of e+e- collisions at the 2’ resonance, because of the higher C.M. 

energy, the quark and gluon jets are more separated from each other than 

in e+e- collisions at lower energies. The hadronization effects become less 

important. Distributions of jet variables which are sensitive to the gluon spin, 

namely 21, x2, 23, and cos6g~ (see section 1.5), should give us a better 
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understanding about the spin of the gluon. Similar analyses have also been 

done by L3”’ and OPAL[“‘. 

1.2 The e+e- Collision at The Z” Resonance 

In the lowest order of perturbative electroweak theory, the process 

e+e- + ff is shown in Fig. 1.1. The final fermion f can be a 

lepton (e, p, r), neutrino (ve, vcL, vr) or quark (~1, d, s, c, b). Two basic types 

of interactions contribute to this process: the exchange of a virtual photon - 

the electromagnetic interaction; and the exchange of a vector boson 2’ - the 

weak interaction. 

Figure 1.1 The Feynman diagrams for eSe- + r/.2’ -+ ff 

At center of mass energies close to the mass of the Z”, fi z Mz, the 

weak term dominates the process of e+e- annihilation, forming a resonance 

near fi = Mz with a width I’z. Neglecting the initial and final state particle 

masses, one can write the lowest order cross section in the form: 

da -= 
dz 
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where z = co&, and ve, a,, of, ai are the vector and axial vector couplings for 

the initial state electrons and final state fermions respectively. If f is a quark, 

the cross section must be multiplied by a factor of 3 for the color factor. This 

formula is derived in Appendix A. 

1.3 Quantum Chromodynamics 

The QCD theory was developed to describe the strong interactions 

between quarks and gluon. The idea of quarks first came from the observatjon 

of the structures of mesons and baryons [ll’. Five flavors of quarks (u,d,s,c,b) 

have been found experimentally. From the measurements of loop corrections 

in eSe- .annihilation, a sixth quark (top quark) is suggested to exist with a 

mass within the range of 140 - 200 GeV. Quarks are defined to be spin 3 

particles (fermions) with fractional electrical charges of +$e for u,c,t and -$e 

for d,s,b. In order to explain the baryon states, such as A++ (U T u t u r) 

and R- (s T s t s t), which seemingly violate the Pauli Exclusive Principle [ill 

(fermi statistics), the quantum number color (c= R,B,G) is assigned to the 

quarks. The interaction between quarks occurs through the intermediate boson 

- gluon. Gluons are massless and expected to have spin 1. There are eight 

kinds of gluons, each carries a color and an anticolor or their combinations: 

RG, RI?, GR, GB, BR, BG, &(RR-GG),&RR+GG-2BB) (1.2) 

Color interactions are assumed to be similar to the electromagnetic 

interactions. The quark-gluon interactions are defined by the rules of QED with 

the substitution fi + 6 at each vertex (see Fig. 1.2) and the introduction of 

a color factor. Gluons themselves carry color charge, so they can interact with 

other gluons, which differentiates QCD from QED where there is no photon 

triple interaction vertex. The ggg vertex as well as the qqg vertex is shown in 

Fig. 1.2. At short distance, LY S is sufficiently small so that one can compute 



Figure 1.2 (a) Electromagnetic interaction by photon exchange. (b) Strong 
interaction by gluon exchange. (c) Self-coupling of gluons. (d) Flow of color in 
(b). (e) Flow of color in (c). 

Figure 1.3 The processes e+e- -3 qqg. (a) The quark radiates a gluon, (b) 
The anti-quark radiates a gluon. 

color interactions in a perturbative way. 

To 1st order O(os), the QCD correction to the ese- annihilation 

process is where one of the final state quarks radiates a gluon (See Fig. 1.3). The 

’ differential cross section for eSe- _t qijg with arbitrarily polarized electrons 



and positrons may be written as: 

dn=&x c IM,+Mz12dP 
f color 

polarization 

(1.3) 

Here Q2 is the square of the center of mass energy and d’P is the differential 

phase space element, which can be expressed as: 

dp - (27r)5 32 
- ~~Q2dxdzd(cosO)d~dc$ (i.4) 

Here x - 2E,/E,,, ii I 2E,-/EC, are the scaled energies of quark and 

antiquark. The matrix element M can be written as: 

M=M,tMz= 
-ie2g,Ta 

Q2 
"(e+)(-Qf7P)~(e-)U(q)l(i)(98~~)27yw(~) 

1 
+ Q2 

4sin20w Q2 - Adi + ikfzI?z 
V( e+)yp (1.5) ~-... 

+ crossed terms (q radiates the gluon). 

where gS is the QCD coupling constant, 0~ is the weak mixing angle and T, 

is the color matrix in the fundamental (quark) representation, normalized such 

that 

C Tr(TaZ’b) = 4 
ah 

P-9 

Integrating over all the angles in Eq. (1.4), the differential cross 

section can be reduced into a simple form P41. . 

1 &V(t,e) N x2 + z2 - 
60 dxdz = Z(1 - z)(l - 5) (l-7) 

where cro is the total cross section for e+e- --$ qgg, and n//2 is the 

normalization factor. For the cut off value of ycUl = 0.02 in the JADE jet 
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finding algorithm (which will be described in section 1.8) , N = 0.109207. x 

and 2 are the scaled energies of the quark and antiquark, x = 2E,/E,, and 

a: = 2Eq/Ec,. 

1.4 The Scalar Gluon Model 

The scalar gluon model is a theory that copies all the assumptions 

from QCD except that the colored gluons are assumed to have spin 

0. Although such a theory is not asymptotically free it is nevertheless 

renormalizable. The cross section in this case (see Appendix A) is: 

1 d2aS(x, z) - 
o. dxda: 

(2 -x - Z)2 
(l-x)(1-5) 

-q3-x-z) 
5 I 

where 9 is the normalization for the scalar gluon case, which equals to 0.942944 

at yc = 0.02, and 

R= 
lOC,2 

q t c: 

where Ci and C,” are the axial and vector couplings for u,d,s,c,b quarks. 

w 

1.5 The Jet Variables in a Three-jet Hadronic Event 

In a three-jet event, we order the jets according to their energies -. 

jet 1 is the most energetic and jet 3 is the least energetic. The scaled energies 

of the three jets are: 

2Ei i= 12 3 Xi=-’ 
E ’ , , 

cm 

where EC, is the total energy of the event. z;‘s have the relations: 

x1+22$23 = 2 (1.11) 

x1 > x2 > 23 (1.12) 

Making a Lorentz boost of the three-jet event into the rest frame of the jet 
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2 and jet 3 combined system, the Ellis-Karliner angle f?EK is defined to be 

supplementary to the angle between jet 1 and 2 in this frame (Fig. 1.4). For 

massless partons: 

2Si?d; 
Xi = 

si7& $ sin02 + sin& 
(1.13) 

COS~EK = 
22 - x3 

Xl 
(1.14) 

where 8; is the angle between the two neighboring jets of jet i as illustrated 

in Fig. 1.4. Both equations (1.13) and (1.14) are derived in Appendix B. 

Distributions of xi calculated by these two equations are less sensitive to 

the energy and/or track loss in jets than those calculated directly from the 

measured jet energies and momenta (this will be further discussed in section 

1.8). 

Lorentz Boost 

1 92 1 
c: 4 ------------ 

83 

Figure 1.4 The three-jet event and the Ellis-Karliner angle. 

Since any one of the jets 1,2 or 3 could be the gluon, one has to sum all 

the three cases in which the gluon is jet 1,2 or 3 in order to get the differential 

cross section in terms of x1 and x2. The resultant formula for the vector gluon 

theory, which is derived in Appendix B, is given as: 

.- - 

1 d2+v2) = N xi + x; + (2 - Xl - x2)3 - 
a0 dxldx2 (1 - X1)(1 - Q)(Xl t x2 - 1) 

(1.15) 



The same formula for the scalar gluon theory is: 

1 d20S(x,, x2) - 
cro dxldx2 = 

M x:(1 - Xl) t x:(1 - x2) t (2 - Xl - X2)2(Sl t x2 - 1) _ R 1 
(1.16) 

(1 - x1)(1 - x2)(x1 + x2 - 1) 

where R is given in Eq. (1.9). 

Integrating Eq. (1.15) over x2, leads to the distribution of x1 for the , 
vector gluon model: 

fv(xl) = 11’, d2;;L;x;2)dx2; 
2 

(1.17) 

The limits of integration are discussed in Appendix B. One can also get 

the distributions of x2, x3 and C0.56~~ by similar integrations. A detailed 

derivations and resultant analytical expressions of $1, x2, x3, and COS~EK 

distributions for both the vector gluon model and the scalar gluon model can be 

found in Appendix B. Fig. 1.5 gives the plots of these distributions at the cut 

off value of yc = 0.02. All the distributions are normalized to 1. The difference 

between the vector gluon model and the scalar gluon model is quite obvious in 

x2, 23, and COS6)EK distributions, yet not so clear in the x1 distribution since 

jet 1 usually originates from the quark (or antiquark) that did not radiate a 

gluon. 

1.6 The Hadronization and Monte Carlo models 

The process of e+e- annihilating into multihadronic events at the 2’ 

resonance can be characterized by 4 phases, as shown in Fig 1.6. At the first 

phase the electron beam and the positron beam collide into each other and 

produce a virtual photon y or a virtual 2’ boson, which decays into a quark- 

antiquark pair qQ. This is a pure electroweak process as described in section 1.2. 

The total energy of the primary quarks may be less than the sum of the beam 

energies due to the initial state radiation from individual electron/positron. 
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Figure 1.5 The first order calculations for (a). 21 distribution, (b). x7, 
distribution, (c). 23 distribution and (d). COS~EK distribution. The solid 

- lines are from the vector gluon model calculation, while the dashed lines are 
from the scalar gluon model. The cut off value of yc = 0.02 in the JADE 
jetfinding algorithm is used. All the distributions are normalized to 1. 

At the second phase, the primary qij pair may radiate gluons, which 

in turn may radiate more gluons or quark-antiquark pairs. These are strong 

interactions. The perturbative QCD theory must be used to describe this 

process (section 1.3). Here the spin of the gluon is a dominating factor in 
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I I I 

Figure 1.6 A schematic illustration of the multihadronic 2’ event. 

determining the production rate of the secondary quarks and gluons and in 

determining the energy distributions between them. The first/second matrix 

element calculations from perturbative QCD give a fairly reasonable description 

of this process. The parton shower model is another approach to describe the 

process. 

The theory of quantum chromodynamics requires that colored quarks 

and gluons can not exist in free form. A third phase is needed, in which partons 

fragment into a number of colorless hadrons -the hadronization process. 

Because the strong coupling constant a, is no longer small at the energy scales 

as low as 1 GeV, the fragmentation process can not be predicted by perturbative 

QCD, but must instead be explained by phenomenological models. The string 

fragmentation, the cluster fragmentation and the independent fragmentation 

are three popular fragmentation models. 

The forth phase, where unstable hadrons decay into more stable 

ones and track through the detector, is a rather empirical process. All 

the experimentally determined decay branching ratios and particle-material 
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interactions are the main input here. Although this is also a complicated 

process, and very sophisticated Monte Carlo programs are employed for 

simulations, there is little to 

experiment. 

be understood from this process in the SLD 

1.6.1 Parton Shower model 

Figure 1.7 A schematic view of parton shower in an e+e- annihilation event. 

The Parton Shower model (PS) is based on the leading logarithm 

approximation (LLA), where only the leading logarithm terms in the 
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perturbative expansion of the qqg and ggg cross sections are kept. This PS 

approach provides an approximate treatment of multijet configuration, also for 

parton multiplicities where explicit matrix elements become too lengthy to be 

useful. It is based on the iterative use of basic branchings q ---t qg, g t gg, 

g + qq as shown in Fig 1.7. With the definition of the evolution parameter 

t = h(Q2/A2), where Q is th e invariant mass of the parton a, A is the QCD 

scale parameter for the parton shower process, the probability that parton a 

will branch a ---t bc is given by the Altarelli-Parisi evolution equation WI. . 

&nor(t) 
dk-+bc 44 

dt =- 27r s 
Pa+bc(z)dz 

&m*(t) 

(1.18) 

where z is the fraction of parton momentum shared by parton b. And Pa-b,(Z), 

called the Altarelli-Parisi splitting kernel, is the probability that parton a 

branches into b, c with b having fraction z of the total momentum and c having 

fraction 1 - z of the total momentum, which can be written explicitly (see 

reference 15 ) as: 

P !l-+QS = 

P P-+99 = 

P 9-H = 

41+.2 -- 
3 l-z 
S[l - ~(1 - %)I2 

z(l - 2) 

$2 + (1 - z)2] 

(1.1’9) 

Starting at the maximum allowed mass for parton a, the evolution parameter 

t will be successively degraded until a branching occurs. The resultant partons 

b and c are allowed to branch in their turn, and so on. This whole iteration 

process terminates when parton mass is evolved below the cut off value Qs, i.e. 

t min = ln(Q;/A2). Th e parton shower model neglects the coherence between 

different parton branchings. The total cross section is therefore proportional 

to the product of the probability of each individual branching. 
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1.6.2 The String Fragmentation Model 

The string fragmentation model[‘e”71 is based on the concept of linear 

confinement of partons. Due to the gluon self-coupling, the color flux lines do 

not spread out in all space, as does the electromagnetism, but is rather confined 

to a thin tubelike region. The field inside the color tube is uniform along its 

length, which leads to a potential which is proportional to the distance between 

quarks. As the partons move apart, the color potential energy inside the dube 

increases like a stretched elastic string. The string can break into new quark 

pairs q/Q/ when the color potential energy is large enough. This fragmentation 

process continues, and more quark pairs are produced, until the energy in the 

string is not enough to produce a new quark pair. Fig 1.8 gives an illustration 

of the breaking of these color tubes in a 2-jet qij event. These new produced 

quarks and antiquarks pair up to form hadrons within a narrow cone about the 

direction of the parent quarks -jets. 

Figure 1.8 A color tube representation of a 2-jet qtj system. As the q and the 
q separate, the potential energy in the tube increases and a secondary q/q/ pair 
may be created. 

The probability that a color string will break is given by the Lund 
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symmetric fragmentation function: 

; f(z) = i(l - z)‘ezcp -e 
( > 

(1.20) 

where mT = II p$ + m2 is called the transverse mass of the hadron, pi is 

the momentum of the hadron transverse to the parent quark direction, and 

variables a and b are to be tuned to better describe the experimental data. 

The parameter z is defined as the energy and momentum parallel to the parent 

quark direction carried by the primary hadron divided by of the energy and 

momentum of the parent quark. 

(E + qhdron z = (E + q~)puark (1.21) 

The parent quark may be different from the primary quark, because quarks can 

radiate gluons before fragmentation. Because of the mass term in the exponent 

of Eq (1.20), heavy quark production is expected to be very low when compared 

to light quarks. 

1.6.3 The Cluster Fragmentation Model 

The cluster fragmentation schemel”’ characterizes the clusters by 

their total mass and color charge, with no internal structures. Each gluon 

is forced to split into a qQ pair at the end of the parton shower. Every 

final cluster is assumed to decay isotropically (in its CM frame) into the 

observable hadrons. In the Webber Cluster model”“‘, which is implemented 

in the HERWIG Monte Carlo program, two hadrons are produced from each 

final cluster, with the relative probability for different decay channels given by 

the phase space and spin counting factors. The transverse momentum of these 

hadrons are assumed to be generated by the cluster decays. In recent versions 

of cluster fragmentation models however, the string fragmentation schemes are 
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employed to break heavy clusters into smaller clusters t19,w . The cutting line 

between these two schemes is no longer solid. 

1.6.4 The Independent Fragmentation Model 

The independent fragmentation model’2”221 is another simplification 

of the string fragmentation model. In the CM frame of an event, the outgoing 

partons are assumed to fragment independently. An iterative scheme is 

assumed for the fragmentation of each quark, which is similar to the case of 

string fragmentation but without the interference from other partons. Gluons 

split into a pair of parallel Q and Q, and the resultant quarks and antiquarks 

fragment on their own. This straight forward approach inevitably leads to the 

non-conservation of flavour, momentum and energy during the fragmentation 

process. Special treatments have to be made to the primary hadrons, to ensure 

the conservation of the above mentioned properties after the fragmentation .- 

process. 

1.6.5 Monte Carlo Programs 

The JETSET program[231 is a widely used Monte Carlo (M.C.) 

simulation program in the study of eSe- annihilation physics. Partons can 

be generated according to the first order U(os) or second order O(CY~) matrix 

element (ME) calculations or according to the parton shower (PS) calculation 

as described above. The 1st order ME can only generate 2 or 3 parton events 

(qq, qqg), and the 2nd order ME can generate 2, 3 or 4 parton events (qg, qqg, 

qijgg, qgqfqf), while PS can generate many more partons in an event (- 9 at the 

cutoff value of Qo = 1 GeV). The string fragmentation model is the default for 

the simulation of the hadronization process in JETSET, while the independent 

fragmentation model is also available in JETSET. All the parameters are well 

tuned to best describe the experimental data at the 2’ resonance. 

The JETSET 6.3 is a fully implemented generator in the SLD 
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environment. However, it does not have the scalar gluon model calculation. 

The JETSET 7.3 has all the calculation for the scalar gluon model and the 

abelian vector gluon model. Nevertheless, it is not fully implemented for the 

detector level simulation in SLD. In the following, JETSET 7.3 is used in the 

generator level study and JETSET 6.3 is used for the detector level simuIation 

and data correction. 

The HERWIG program’241 is another M.C. program used in this I 

analysis. It adopts the parton shower calculation as the default for parton 

generation and the Webber cluster fragmentation model for the hadronization 

process. Version 5.7 is used for both parton and detector level simulations. 

1.7 Event Shape Variables and Jet-finding Algorithms 

In order to better describe the geometries of the e+e- events, a 

number of collective variables have been introduced. Many of these, such as 

the thrust and sphericity variables, have become the standard measure of the 

hadronic event shape. They don’t explicitly reconstruct any jet axis, which is 

the job of the various jet-finding algorithms. The YCLUS and LUCLUS are 

two of the most popular jet cluster algorithms to date. 

1.7.1 Thrust 

The thrust T is defined as: 

(1.22) 

where i runs over all the tracks in an event , and 6 is the unit vector used to 

maximize the value of 2’. The thrust axis is the direction of fi that gives the 

maximum value of T in Eq. (1.22). 
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1.7.2 Sphericity 

The sphericity axis is defined as the direction which yields the 

minimum of the total transverse momentum squared. Starting from the 

momentum tensor 

Mij = C Paipajf C Pi (1.23) 

where pa; is the i’th component of the momentum of the cr’th particle. 

Diagonalizing the momentum tensor Mij, one get three three eigenvalues 

X1, X2, X3, with X3 > X2 1 X1 2: 0, and corresponding eigenvectors 171, G”, 

53. The physical meanings are: 

(1.24) - 

gives the flatness of the event, 

gives the length of the event. The symbol max(z) means to maximize the value 
fi 

x by varying the direction ti and similar for min(z). The direction which gives 
ti 

the maximum vaIue of C(& + +L)~/ C pi is defined as the sphericity axis hi. 

The sphericity value (S) and the aplanarity value (A) are defined as: 

A = ix, and SC $1 + A2) (1.26) 

S determines whether the event is collinear (i.e. a two jet event) or not. A 

determines whether the event is coplanar (i.e. a two or three jet event) or not. 



18 

1.7.3 YCLUS 

The YCLUS algorithm (also called the JADE jet-finding algorithm[251) 

is an iterative process. It defines a scaled invariant muss yii as the square of 

the invariant mass of two particles (; and j) divided by the square of the total 

visible energy Evis. Assuming all particles are massless, one can write yij as: 

Yij = 
2EiEj(l - cesOij) 

E,2is ’ 
(1.27) * 

where Ei and Ej are the particle energies and Oij is the angle between them. 

The algorithm first finds the two particles with smallest invariant mass yij, 

and combines them into one cluster by adding up the four-momenta of the two 

particles. It then repeats the above procedure to the remaining particles (or 

clusters), until all the scaled invariant muss left have yij > yCut, where ycvt is a 

user defined cut off value. The clusters (or particles) at the end of this process 

are called jets, which depend on the cut off value yCZLt. The measurement of 

number of jets as a function of yczLl is a direct measure of the strong coupling 

constant crs. Jan Lauber’s thesis’261 has a more detailed discussion of jet-finding 

algorithms and the measurement CY~. 

1.7.4 LUCLUS 

The LUCLUS algorithm[271 is based on the observation that particles 

in a jet have limited transverse momenta with respect to the jet axis and hence 

also with respect to each other. A distance measure dij between two particles 

with momenta Fi and p’; is introduced, which does not depend critically on the 

longitudinal momenta but only on the relative transverse momenta. 

d~j = k(PiPj -p’i ’ p’jj> 4PiPj 4pfp+z2(f+j/2) 

(Pi+Pj)2 = (pi+pj)2 
(1.28) 

_- 
.-- 

Here Oij is the angle between the two particle momentum directions. For small 
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angle of 6ij, dij can be written as: 

dij M Ip’i x p’jl/l~‘; +~‘jl (1.29) 

which can be interpreted as the transverse momentum of either particle with 

respect to the direction of the combined vector momentum. 

The LUCLUS algorithm works as follows. Treat each particle as a 

single cluster initially. Then find the two clusters with the smallest relative 

distance dij, and combine them into one cluster with a vector momentum 

equal to the sum of the two old clusters. This procedure is repeated until 

the smallest relative distance between any two clusters is > djoin, a preset 

value to terminate the procedure. The remaining clusters are called jets, which 

represent the reconstruction of the primary partons. The definition of dij is 

not invariant under a Lorentz transformation. This scheme is therefore not 

calculable in perturbative QCD. 



CHAPTER 2 

THE SLD DETECTOR AND THE SLC 

The data used in this analysis are taken with the collisions of e+e- 

beams of 45 GeV each, produced by SLC, while the resultant 2’ events 

are recorded by the high precision tracking system of the SLD detector. 

This chapter describes briefly the characteristics of the SLC machine, the 

polarization and in some detail the elements of the SLD detector and their 

performances. 

2.1 The SLC 

The SLAC Linear Collider’281(SLC) was build for the express purpose 

of creating Z’bosons from eSe- annihilation. The construction started in 1983 

and formally ended in July 1988. After two years of running for the Mark II 

detector, with about 850 Z’events recorded, it started producing 2”s for SLD 

in the summer of 1991. 

Fig 2.1 shows the layout of the SLC. It consists of a 3 km long 

accelerator, which accelerates both electron and positron in a straight line 

to an energy of up to 50 GeV, and two arcs which separate the electron 

positron beams and bend them around to collide at the interaction point (IP). 

Bunches of electrons from the source are first accelerated to 1.2 GeV and 

stored in the north damping ring, where their momentum spread is reduced 

by synchrotron radiation. Sets of quadrupole magnets are used to ‘cool’ the 

transverse momentum spread. The cooled electron bunches are then directed 

back to the main accelerator and get accelerated up to the Beam Switch 

Yard. Before that, at the 33 GeV point, every alternate bunch of electrons 

r- 
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Figure 2.1 The layout of the SLC. North is toward left of the page. 
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is diverted onto a fixed target, where the resulting positron shower is collected 

and transported back to the beginning of the linac. The positron bunches then 

undergo a journey similar to the electrons - getting ‘cooled’ down in the south 

damping ring and getting accelerated along with the electron bunches up to the 

Beam Switch Yard. The electron and positron beams are then separated by 

a dipole magnet and transported through two arcs, approximately 1 km long 

each, (electrons through the north arc, position through the south arc). Before 

reaching the IP, each beam is focused down to a diameter of 2 pm by a set 

of superconducting final focusing quadrupole magnets (SCFF). With a typical 

energy loss of 1 GeV in the arcs, the final beam energies at the IP is about 45.7 

GeV. 

Compared to a circular storage ring, the linear collider has the 

advantages of small energy loss from the synchrotron radiation, small beam 

spot size and of being able to deliver longitudinally polarized beams. A slight 

disadvantage is that the beams can only be used for one crossing, while they 

can be used repeatedly for a long time in a storage ring. 

The luminosity of SLC can be calculated as: 

L=fXEY; = Y 
(24 

where N+ and N- are the number of particles in the electron/positron bunches, 

about 3 x lOlo each. f = 120 Hz is the beam crossing rate. cZ x cry x 

2 pm x 2 /.MZ give the beam spot size in x and y. The luminosity of SLC for 

the 1992 run was around 0.14 - 0.23 ~10~’ cm-2sec-‘, which is equivalent to 

14 - 25 2”s per hour. 
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2.2 Polarization at SLC 

The longitudinal polarization of the electron beam is a remarkable 

feature of the SLC, which can hardly be obtained at a circular storage ring. In 

the 1992 run, a net longitudinal electron polarization of 22% was achieved at 

the IP. 

Longitudinally polarized electrons are produced by shining a 

circnlarly polarized laser beam, of wavelength A = 715 nm, to a bulk gallinm 

arsenide photocathode. The polarization of the emitted electron is about 

28%. With improved cathode material and the optimum laser wavelength, 

polarization of more than 90% could be achieved practically. To reduce the 

error in measurement due to the beam fluctuation, the helicity of the electrons 

is flipped randomly from pulse to pulse by changing the bias voltage on a Pockel 

cell, which flips the laser circular polarization from right to left and vice versa. 

In order to preserve the spin information from the electron source 

all the way to the IP, special care has to be taken at every stage of the 

accelerator. A system of spin rotators are installed to rotate the electron spin 

into the vertical direction before entering the damping ring and to control the 

orientation of the spin vectors at the end of the linac for the compensation of 

electron spin precession in the north arc. Depolarization effects in the north 

arc reduce the polarization from 28% at the source to about 22% at the IP. 

For the measurement of the beam polarization, two kinds of 

polarimeters are installed along the beam line. The Mprller polarimeter is 

located at the end of the linac, which is used for diagnostic purposes. It 

measures the asymmetry in the cross section of the electron-electron elastic 

scattering, in a thin iron foil, due to the beam polarization. The Compton 

polarimeter measures the electron beam polarization right after it passes the 

IP and before the beam dump. Fig 2.2 gives an overview of the Compton 

polarimeter and its relative position to the SLD detector. A circularly polarized 
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Figure 2.2 An overview of the Compton Polarimeter. 

laser beam, produced by a frequency-doubled Nd:YAG laser, is directed to 

collide the electron beam after the IP. A special set of optics is installed 

along the line to rotate and preserve the (left or right) circular polarization 

of the photon beam. The Compton scattering cross section of the electron- 

photon beams has a large asymmetryy12”, which depends on the photon beam 

polarization, electron beam polarization and the energy of the scattered 

electrons. Accurate measurements of the photon beam polarization and the 

energy of scattered electrons provide a good determination of the electron 

beam polarization. The Compton back scattered electron beam goes through 

an analyzing bending magnet which disperses the beam horizontally according 

to the momenta. A g-channel threshold Cerenkov counter and 16 proportional 
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tubes are used to measure the momentum spectrum and hence extract the 

electron beam polarization. The Compton Polarimeter makes one measurement 

in about every 3 minutes during data taking, with an error of N 1% on the net 

polarization. 

2.3 The SLD Overview 

The SLD detector (SLC Large Detector) is designed to carry out 

precision measurements of electron-positron annihilation events at the 2’ 

resonance. The SLC/SLD project achieved a successful engineering run in 

1991, during which N 360 Z’s were recorded. Due to the great improvement 

of the SLC performance in the 1992 physics run, a rate of lo-20 Z’s/hr 

was achieved, SLD accumulated about 12,000 Z’s with the electron beam 

polarization about 22% . Substantially more improvements have been achieved 

in the 1993 data run -the 2’ production rate is up to N 40 Z’s/hr and the 

electron beam polarization is above 60%. SLD is an excellent environment for 

the study of electro-weak physics1301, B physics’“” as well as QCD physics’32’2e1. 

The main components of the SLD detector include: a high precision vertex 

detector for track and vertex position measurement; a high resolution central 

drift chamber(CDC) for track momentum measurement; 2 pairs of endcap 

drift chambers (EDC) for 471. coverage of tracking; a barrel and two endcap 

Cerenkov Ring Imaging Detectors (CRID) for particle identification; a liquid 

_ argon calorimeter(LAC) and a warm-iron calorimeter (WIC) for particle energy 

measurement and electron/muon identification; and a magnet which produces 

a 0.6 Tesla magnetic field inside the SLD detector. A detailed description of 

the SLD detector can be found in the SLD Design ReporttS3’. Fig. 2.3 gives a 

quadrant view of the SLD detector. 
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Figure 2.4 The over view of the SLD Vertex Detector and the arrangement 
of the CCD ladders. 
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2.4 The Vertex Detector 

The small size of the SLC colliding beams (2 x 2pm2 and relatively 

small extension of the interaction point (m 650 prn13”) allow the SLD Vertex 

Detector to be positioned very close to the IP and thus give a high resolution 

power in distinguishing the secondary vertex from the primary vertex. 

The Vertex Detector (VXD) consists of 480 charge coupled devices I351 

(CCD). Each CCD contains approximately 400 x 600 pixels of size 22 pm 

x 22 pm, which adds up to 120 Mpixels for the whole detector. Each pixel 

functions as an independent particle detecting element, providing space point 

measurements of charged particle tracks with a typical precision of 5 pm in each 

coordinate. The CCDs are arranged in 4 concentric cylinders (with radius 29.5, 

33.5, 37.5, 41.5 mm respectively) just outside of the beam pipe and centered 

at the IP. Fig. 2.4 shows the arrangement of the CCDs. The effective coverage 

is 75% of 47r. The readout time is 160 ms (19 beam crossings). 

The Vertex Detector is a powerful tool for distinguishing secondary 

vertex tracks, produced by the decay in flight of heavy flavour hadrons or r 

leptons, from tracks produced at the primary event vertex, which is a great 

help in the study of heavy quark physics. Fig. 2.5 shows the CDC-VXD 

reconstructed tracks from a hadronic 2’ event. The heavy quark decay vertices 

are clearly seen. 

2.5 The Luminosity Monitor 

The Luminosity Monitor and Small-Angle Tagger (LMSAT), covering 

the angular region between 28 and 68 mrad from the beam axis, and the 

Medium Angle Silicon Calorimeter (MASC), covering the 68-190 mrad region, 

provide SLD’s small angle electromagnetic coverage (Fig. 2.6). Both LMSAT 

and MASC are silicon-tungsten sampling calorimeters. The LMSAT employs 

23 alternating layers of tungsten radiator plates and silicon chips on GlO circuit 
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Figure 2.5 A reconstructed hadronic .ZO event. The two arrows indicate 
two possible B/B decay vertices. All the track are CDC-VXD linked tracks 
extrapolated to the IP 

boards which are directly mounted on the radiator plates, with 0.86 radiation 

length at each layer. The MASC consists of 10 such layers, with 1.74 radiation 

length at each layer. The front face of the LMSAT is about 101 cm away from 

the IP, while the MASC front face is about 31 cm from the IP. 

By measuring the rate of Bhabha scattering (e+e- -+ e+e-) into 

the LMSAT and MASC, the luminosity monitors give a precise measurement 

of the integrated SLD luminosity at the IP. The estimated systematic error on 

the luminosity measurement is136’371 3%. The silicon calorimeters also extend the 

electromagnetic coverage down to 28 mrad. From the energy measurement of 

the Bhabha events and the theoretical calculation by the EGSl”“’ program, the 

energy resolution is found to be 20%/a. Th e 1 uminosity monitors also serve 

as the shielding for the inner components of the SLD detector from background 
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2.6 The Drift Chambers 

There are 5 drift chambers on the SLD detector - one central drift 

chamber and 4 endcap drift chambers. A set of high voltage wires divide each 

drift chamber into a number of cells that provide a uniform electric field inside 

the drift cells. A charged particle passing through the cell leaves a track of 

ionized electrons which drift towards the sense wires at a constant velocity as 

defined by the direction of the electric field. From the time signals on the sense 

wires and the drift velocity, one can find the space points where the ionization 

took place and thus reconstruct the trajectory of the charged particle. The 

curvature of the track in the magnetic field is used for the measurement of the 

particle momentum. 
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2.6.1 The Central Drift Chamber 

A VUAVUAVUA 

Figure 2.7 A section of the central drift chamber. The notation A, U and V 
refer to the axial and two stereo layers. .e 

The central drift chamber (CDC) is a cylindrical barrel with an 

inner radius of 20 cm, an outer radius of 100 cm, and a length of 200 cm. 

There are ten superlayers inside the CDC, each with a number of ceils (Fig. 

2.7). Each cell has eight sense wires. Between every two axial superlayers, 

in which wires run parallel to the beam axis, there are two stereo layers, in 

which wires run at angles of f 50 mrad with respect to the beam axis. The 

eight sense wires of a cell lie within a plane. Track hits from one side of the 

sense wire plane can not be distinguished from those on the other side of this 

plane. The axial-stereo-stereo-axial arrangement of the superlayers can help 

solve this two fold ambiguity. Both ends of each sense wire are instrumented 

with read out electronics, so that the z coordinate of the hit can be obtained 

through charge division, with an expected resolution of 1% of the wire length. 
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Chorge Division 

Figure 2.8 Schematic drawing of readout of CDC wires by waveform samplers 
(WSM). Pulses for two track, 1 and 2, are shown for the jlh sense wire. The 
times of arrival are different and the ratios of the charges on the two ends reflect 
different z coordinates. Multiple hits on the wire can be distinguished in this 
system. 

Fig. 2.8 is a schematic drawing of the readout of CDC wires by the waveform 

sampling module (WSM). Th e ratios of the charges at the two ends reflect the 

z coordinate of the hits. 

For the 1992 physics run, the measured momentum resolution is 

U(P) M 0.0081~~ GeV (p in GeV/c) for high momentum tracks (p > 5), and 

O(P) M 0.010~ (GeV) for low momentum tracks’381. Table 2.1 is a list of the 

CDC parameters. 
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Table 2.1 Parameters of the central drift chamber. 

Inner/outer radius 

Length 

Innermost/outermost wire layer radius 

Wire length 

Number of superlayers 

Number of sense wire per cell 

Number of axial/stereo sense wire layers 

Number of vector cells 

Stereo angle 

Average drift field 

Gas composition 

Average drift velocity 

Charge division resolution 

Drift distance resolution 

Track pair resolution 

c(p)/p at low momentum 

a(p)/p at high momentum 

Polar angle a(6) 

Azimuthal angle ~(4) 

Longitudinal Coord. a(q) 

20/100 cm 

200 cm 

23.8/96.1 cm 

180 cm 

10 

8 

32/48 

640 

f50 mrad 

1.3 kV/cm 

COa-argon-isobutane 

75% - 21% - 4% 

9 pm/ns 

1.0% of length 

100 pm 

0.1 cm 

1.0% 

.8lp% (p in GeV/c) 

1.5 - 2.5 mrad 

0.3 - 1.5 mrad 

1.0 mm 

2.6.2 The End Cap Drift Chambers 

The SLD Endcap Drift Chambers (EDC) system comprise 4 planar, 

circular modules, 2 at each end of the detector which provide charged particle 

tracking between 10’ and 40’ to the beam direction. Fig 2.9 gives an overview 

of one of the endcap drift chambers. In the angular range between 20’ and 40” 

charged tracks are also detected by the SLD Central Drift Chamber. Each EDC 
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Figure 2.10 A cut view of an EDC drift cell. 
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Table 2.2 Main parameters of the endcap drift chambers (design). All 
dimensions are in mm. 

Parameter Inner Outer 

Chamber Chamber 

2 location f 1020 f 1974 

Radii (rnzin, rmaz> 202.5, 970 202.5, 1630 

Number of cells/superlayer 22 34 

Number of superlayers/module 3 

Number of sense wires/cell 6 

Number of guard wires/cell 14 

Number of high voltage wires/cell 15 

Number of dummy sense wires/cell 2 

Number of filed shaping strips/cell 40 

Drift cell cross section 50.8 x 100 

Sense wire diameter 25 pm 

Guard wire diameter 200 pm 

Sense to sense wire spacing 6.20 

Sense wire stagger f 0.15 

Gas CO2 - Argon - Isobutane 

75% - 21% - 4% 

Average drift velocity 10 pm/ns 

Track pair resolution 2mm 

Single-hit drift resolution 120 pm 

module consists of 3 superlayers, each rotated by 60” relative to each other, 

with each superlayer consisting of many jet cells (22 for inner chambers and 34 

for outer chambers), each cell consisting of 6 sense wires providing 6 position 

measurements at a given z coordinates. Unlike the CDC cells, the sense wires 

within an EDC cell are staggered 150 pm offset in either direction from the 
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central plane. The hits coming from one side of the plane have a different drift 

time response than those coming from the other side of the plane (see Fig2.10 ). 

This allows us to resolve the left right ambiguity. Due to the space limitation in 

the endcap region of the SLD detector, only one side of every sense wire has the 

readout electronics. The hit position measurement along the wire direction has 

to rely on the reconstruction of the vector hits from all the three superlayers. 

Table 2.2 lists the main parameters for the endcap drift chambers. 

Calculations predict an average position measurement resolution of 

x 120pm. Our initial result, using cosmic ray data is z 150 ,um. Fig 2.11 gives 

the measured position resolution as a function of the distance from the sense 

wires. 

The EDC Gas system 

Both CDC and EDC use the same composition of gas, which is -- 

75% CO;! plus 21% dry argon and 4% isobutane. The gas is constantly 

flowing throuth the chambers at a rate of N 1.0 liters/minute for each inner 

chamber and = 3.0 liters/minute for each outer chamber. This is achieved 

by maintaining an input gas pressure 0.5 - 1.0 inch-water higher than the 

atmospheric pressure, while the output is kept below or slightly above the 

atmospheric pressure. The oxygen inside the drift chambers will absorb the 

ionized electrons before they hit the cathode and therefore degrade the size 

of the readout signal. A great deal of effort was made by this author, in leak 

detecting the chambers and the gas supply system, to make sure the system is 

air tight and hence to keep the 02 level inside the chambers as low as possible. 

After the engineering run of 1991, a few big leaks from the chambers were fixed 

and the 02 level has been kept at 35 - 70 PPM (part per million in volume) 

ever since. The electron drift velocity inside the cells, which is typically about 

10 pm/nsec, varies according to the variations in the gas temperature and 

pressure. Fig 2.12 shows the typical variations of gas temperature and pressure 
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Figure 2.11 The position resolution of different EDC sense wires. Wires 0, 1, 
2 have the x positions of 0.31, 0.93, 1.26 cm respectively. 
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for several days. In data taking, information such as temperature, pressure and 

high voltage readings is written out to tape after a number of trigger events. 

The variation of drift velocity can thus be calibrated offline. 

The Drift Field Simulation and the High Voltage Setting. 

Table 2.3 The best voltage values from the simulation. , 

Name Voltage (V) 

High Voltage (Cathode Wires) 7700 

High Voltage Field Shaping (SlO) 7581 

Low Voltage Field Shaping (Sl ) 2850 

Voltage Step Field Shaping 525.7 

Guard Wires Voltage (G) 2900 

Copper Strip Low Voltage (SO) 1950 

Dummy Sense (DS) 898 

Steel Mesh 2850 

The high voltages are applied to the edc cells through a series of 

Cathode wires (high voltage wires), Guard wires, Dummy sense wires and field 

shaping strips (see Fig 2.10). All voltages are negative. The sense wires are held 

at zero voltage, acting as collecting anodes. The field shaping strips (SlO, S9, 

S8 , "'7 Sl) are connected through a chain of equal resistors, so that the voltage 

drop between adjacent strips is a constant, while the voltage on the low voltage 

strip (SO) is held independently. The stainless steel mesh plane is electrically 

connected to the strip Sl -they will always share the same voltage. The 

strength of the electric field E, is mainly determined by the voltage difference 

between the Cathode wires and the guard wires, while uniformity of the field 

is largely determined by the field shaping strips. 
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Figure 2.12 The the typical variations of EDC gas temperature and pressure. 
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Figure 2.14 The (a) x and (b) y components of the electric field across the 
EDC drift cell. See text for the definitions of z-y coordinates. 
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An extensive study of the drift field inside the chambers was carried 

out to determine the best voltage configuration that provides the most uniform 

drift fieldf3’]. Th e computer program, that is used for the drift field simulation, 

was developed at SLAC”“] and was modified for the study of the sense wire 

stability. We input the position, size, tension and voltage of each wire for a 

drift cell and its adjacent cells. Each field shaping strip, which is 2.5 mm wide, 

is imitated by a series of 7 cylindrical wires of radius 100 pm each with the 

same voltage. The program then calculates the drift field, electron drift velocity 

and the wire displacements. By varying the voltages on different wires, we are 

able to obtain the optimal voltage setting that yields the smallest transverse 

electric field and the smallest wire displacements. Table 2.3 lists such a voltage 

setting while resultant electron drift map and the z/y components of the electric 

field are shown in Fig 2.13 and Fig 2.14 respectively. The z coordinate is the 

direction along the sense wires and the y coordinate is the direction from sense 

wires to the high voltage wires, with the zero point (;c = 0; y = 0) at the middle 

of the cell. All the simulations are done at ATM pressure with the actual gas 

composition and zero magnetic field. 

-- 

2.7 The CRID 

The particle identification at SLD is carried out by the Cerenkov Ring 

Imaging Detectors (CRID). The barrel CRID was commissioned during the 

engineering run in 1991 and was operational during the 1992 physics run “‘I. It 

- contains 40 liquid radiator trays filled with c6Fl4 and 40 drift boxes. A vessel 

filled with 70% C5Fl2 $ 30% N2 serves as a gas radiator. Fig. 2.15 gives a 

schematic view of the SLD barrel CRID. 

When a charged particle passes through a medium with a speed 

greater than the speed of light in that medium, it excites the atoms as it 

pass by which in turn emit coherent photons. Because of the interference, the 
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Figure 2.15 The CRID gas and liquid radiator systems (a), and the CRID 
photon detector (b). 
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emitted photons travel only at a constant angle relative to the charged track. 

For a particle of velocity U, the angle of emission is given by: 

cosoc = -5 
nv (2.2) 

where n is the index of refraction of the medium and c is the speed of light 

in vacuum. This phenomenon is called the Cerenkov effect, which was first 

observed by P.A. Cerenkov in 1937”21. The Cerenkov photons emitted from 

the liquid radiator travel some distance and hit the drift box as a ring of 

photons, which get converted into electrons by photon-ionization of gaseous 

TMAE (Tetrakis Dimethyl Amino Ethylene). The drift box is similar to a drift 

cell in the CDC, with “x-y-z pixel” resolution of 1 mm x 1.5 mm x lmm. The 

wire address, drift time, and charge division give an accurate measurement of 

the position of the electrons. The Cerenkov photons from the gas radiator hit 

the mirror and get focused back onto the drift box also as a ring. The radius of 

the circle is a measure of the cerenkov angle (O,), which in turn is a measure 

of the velocity of the particle. Combining this result with the momentum 

measurement from the CDC, one can determine the mass of the particle and 

hence the particle ID. Fig, 2.16 shows integrated gas rings for cosmic ray 

muons, Bhabha electrons and hadronic tracks. A preliminary resolution of 

no, M 20 - 25 mrad has been achieved. By making use of both the liquid and 

- gaseous radiators, r/K/p separation will be possible up to 30 GeV/c, and e/x 

separation up to 6 GeV/c. 

The construction of the Endcap CRIDs are similar to the barrel CRID. 

They were not operational during the 1992 physics run. 
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Figure 2.16 Integrated gas rings observed in (a) cosmic rays, (b) Bhabhas and 
(c) hadronic events for p>7GeV/c 

2.8 The Calorimeter 

2.8.1 The Liquid Argon Calorimeter 

The Liquid Argon Calorimeter (LAC) is composed of a cylindrical 

barrel and two endcap calorimeters, forming three distinct mechanical and 

cryogenic systems. The barrel and endcap calorimeter system cover 98% of the 

full solid angle for both electromagnetic and hadronic showers. The LAC is 

designed to contain about 85% of the energy of the jets in a hadronic 2’ decay. 

The barrel LAC, which extends from 177 cm to 291 cm in radius and 

from -3.10 m to $3.10 m in axial (z) direction, is composed of 288 modules 

mounted within a large cylindrical cryostat and sharing a common liquid argon 

volume. The full azimuth of the cylinder is spanned by 48 modules of width 

- 30 cm. The axial (z) direction is spanned by 3 modules of length - 2 

m, attached to and separated by annular “washers” which are integral parts 

of cryostat structure. In the radial direction, two separate type of modules, 

electromagnetic models (EM), covering the radial region of 193 cm - 222 cm, 
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and hadronic models (HAD), covering the radial region of 222 cm - 271 cm, 

are mounted on top of each other (Fig. 2.17). 

The two endcap sections of the LAC, which extend from 0.33 m 

to 1.60 m in radius and from 2.32 m to 3.10 m in axial direction at both 

sides, are each composed of 16 wedge shaped modules, again mounted within a 

common cryostat and sharing a common liquid argon volume. Endcap modules 

incorporate both EM and HAD sections in one mechanical unit. They’are 

functionally identical to barrel modules but different in module design and 

construction. 

LAC modules consist of alternate planes of large lead sheets (plates) 

and segmented lead tiles, with liquid argon filling gaps between the planes. The 

lead plates are grounded, while the tiles are held at negative high voltage and 

serve as the charge collecting electrodes. The EM calorimeter modules consist 

of lead plates and tiles, each of 0.2 cm thick, N 200 cm long and 25 - 29 cm 

wide, separated from each other by 0.275 cm with liquid argon in between. 

The EM calorimeter is divided radially into two separate readout sections 

to provide information on longitudinal shower development for electron/pion 

discrimination. The front section (EMl) contains 6 radiation lengths of 

material, while the back section (EM2) contains 15 radiation lengths. The total 

of 21 radiation lengths in the EM calorimeter is sufficient to contain 50 GeV 

electrons, with leakage of l-2%. The lead plates and tiles in the HAD modules 

are 0.6 cm thick, N 200 cm long and 29 - 35 cm wide, and are separated by 0.275 

cm gaps filled with liquid argon. The HAD calorimeter is also divided into two 

separate read out sections (HAD1 and HAD2), each has one interaction length 

in thickness. The total LAC thickness of 2.8 interaction lengths is enough to 

contain 80 - 90% of the hadronic shower energy. Energy leaking out of’ the 

LAC is measured in the WIC (which is described in next subsection). The 

energy resolution for electromagnetic showers is expected to be lo-12%, while 
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Figure 2.17 Barrel LAC electromagnetic (EM) and hadronic (HAD) modules 



49 

the energy resolution for hadrons is expected to be approximately 60%/@431. 

2.8.2 The Warm Iron CaIorimeter 

The Warm Iron Calorimeter (WIC) is the outermost component of 

the SLD detector. The WIC acts both as a supplementary calorimeter to catch 

the leak-out energy from the LAC and as a muon identification and tracking 

detector. The iron plates that form the WIC also serve as the return pathafor 

the magnetic field generated by the solenoidal coil (which will be described in 

the next section). 

The WIC consists of 14 layers of 5 cm thick iron plates in almost 

any direction. These plates are separated by 3.2 cm gaps instrumented with a 

system of plastic streamer tubes 14”, The tubes are filled with gas - a mixture 

of roughly 25% argon and 75% isobutane. At the center of each tube there is 

a 100 pm Be-Cu wire with a high voltage of 4.4-4.7 kV on it. Signals induced 

by the streamers can be read out from the conductive pads and strips on the 

sides of the streamer tubes. 

The barrel WIC is 6.8 m long with an inner radius of 3.3 m and 

an outer radius of 4.5 m. It is divided into 8 sections (octant), forming an 

octagonal structure. There are 17 planes of tubes in between the 14 iron plates 

in each octant. At two radial positions, halfway through and at the outside, the 

detectors consist of a double layer of tubes, with strip readout both parallel and 

- perpendicular to the tube axis. This double layer structure gives the position 

information of a tracking point in both the z and the azimuth direction, which 

is crucial to the measurement of muon tracks. In all the other detector layers 

the strips run parallel to the tubes as shown in Fig. 2.18, which only give the 

one-dimensional information of tracking points. 

The 14 iron plates in each endcap WIC is 5 cm thick and octagonal 

shaped with a maximum height between 7.8 to 9 m. There are 16 layers of 



Figure 2.18 Details of the layer construction of the barrel WIC. 
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streamer tubes in the gaps, again with two double layers, one in the middle 

the other on the outside. Due to the orientation of the tubes in the barrel 

and the endcaps, the solid angle coverage of the outer double layer has a gap 

in the region 6’ M 45’. A set of chambers is built on the support arches to 

cover this gap, each chamber has 44 x 8 tubes with both longitudinal and 

perpendicular stripes. Along each side of the octagon there is a double layer 

of these chambers, 120 cm x 375 cm in size, staggered by half a cell from each 

other for better angular coverage. 

In addition to being a ‘tail-catcher’ calorimeter, the WIG’ is a powerful 

muon identification detector. Muons with energy of 2 GeV or more will 

penetrate the entire WIC with a small deflection and displacement from the 

ideal trajectory due to multiple Coulomb scattering. Facing a total of 7.5 

interaction lengths from the LAC plus WIC and the magnetic coil, hadrons can 

rarely ‘punchthrough’ the WIC. The tracks comprising the hadronic shower will 

be much more widely dispersed in position and angle than the muons coming 

from the interaction region. This kind of punchthrough hadrons in the muon 

sample can thus be easily identified. A reconstructed charged track from the 

CDC and vertex detector is extrapolated and associated to the space points of 

the double layers in the WIC. Pattern recognition of the hits within the WIC 

will further discriminate the faking hadrons. Muon identification is limited 

by such punchthrough hadrons, as well as unresolved or undetected x and K 

decays into muons in the drift chambers or the CRIDs, Monte Carlo studies 

indicate that hadrons faking muons can be reduced to the level of 2 x 10S3. 

The contamination from x and K decays in flight in the drift chambers and 

CRIDs is expected to be 5 x low3 at 10 GeV/c and 1.7 x low3 at 30 GeV/c. 

I 



52 

2.9 The Magnet 

In order to separate and detect the charged tracks from the 2’ decay, 

and to determine the momenta of these tracks accurately, a constant, uniform 

magnetic field inside the central drift chamber is desired. This is realized by 

the magnet coil located between barrel LAC and barrel WIC. The SLD magnet 

consists of a cylindrical aluminum coil of 5.9 m in diameter by 6.4 m long and 

29 cm thick. About 10 km of 5 x 5 cm2 aluminum conductor is wound into 

four 127-turn layers. The iron structures of the barrel and endcap WICs serve 

as a magnetic flux return path, which ensure the uniformity of the magnetic 

field inside the coil. 

The lowest order polynomial approximation to the field that satisfies 

Maxwell’s equations can be written as: 

B, =B,O= 
w0 

2 
B, =B,O+0.5B,O ( r2?.-2 ) (2.3) 

Where the scale parameters are chosen to be rg = 1.2 m and zo = 1.5 m. 

At the designed current of 6600 A, the measured values are: Bi = 0.0203T; 

B,O = 0.613T. Fig. 2.19 shows the measured axial field (B,) in the central 

region of the solenoid. The magnetic field described by Eq (2.3) agrees with 

the measured field to within 0.05% in the CDC region and to within 0.4% in the 

EDC region. The field variation within the CDC is less than 3% which can be 

calibrated during the offline reconstruction. A 0.6 Tesla field gives a momentum 

resolution at 90” to the beam direction of a(l/p) 5 0.13% (GeV/c)-’ in the 

high momentum region where multiple Coulomb scattering is negligible. The 

SLD magnet produces 6600 amps x 750 volts M 5 megawatts of heat, which 

must be removed by water flowing at a rate of about 50 liters/set. 
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Figure 2.19 The measured axial field (B,) in the central region of the solenoid 
plotted versus r2 - 2z2, the first term in the polynomial expansion of a field 
satisfying Maxwell’s equations. 

2.10 The SLD Data Acquisition System 

The relatively sophisticated SLD detector requires a vast amount of 

‘data processing electronics. A schematic diagram of the SLD data acquisition 

system is shown in Fig. 2.20. At each beam crossing, detector signals are 

amplified, shaped, and stored in analog form waiting for the slower read out. 

For the drift chambers and the CRIDs, 512 wave form points are stored in 

Analog Memory Unit14E1 (AMU) chips. The Calorimeter Data Unit”‘] (CDU), 

which measures the baseline and peak of each channel, is employed in the 
calorimeter. The vertex data is read out through CCDs. The WIC strip 
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readout stores a discriminated signal digitally. The multiplexed data from the 

AMUs and CDUs is then digitized by the local Analog-Digital Convertor (ADC) 

and transmitted by optical fibers to FASTBUS modules for data correction 

and compaction, and to the Aleph Event Builders”” (AEB) for further data 

organization before transmission to the host computer -the VMS system. 

Synchronization of the data acquisition is provided by a Timing and Control 

Module (TCM) for each subsystem. 

optical 
toDigital Drivers - 

b 

=?-I System Controller 

^---------------------T ---- --- ,““““‘-““‘--- 

Fastbus System 
I. I 

c SLC SYNC 

Figure 2.20 A block diagram of the SLD Data Acquisition System 



CHAPTER3 

DATA ANALYSIS 

3.1 Data Selections 

The SLD physics run of 1992 started in March 1992 and ended in 

September 1992, with a production rate of typically -20 Z”/hr and a electron 

beam polarization of around 22%. The analysis presented here is based on the 

10,252 hadronic 2’ events recorded in this run, 

3.1.1 Online Event Trigger 

Several types of online triggers are used to select the events to be 

written to tape: 

(a) The Random trigger records events at the time of a beam crossing at a 

fixed rate of l/20 Hz for the purpose of background study. 

(b) The luminosity trigger requires a minimum deposited energy of 10 GeV in 

each of two back-to-back towers in the luminosity monitor. 

(c) The tracking trigger requires two or more tracks to be detected in the CDC 

with one pair of the tracks having an opening angle larger than 20”. 

(d) The energy trigger requires a minimum deposited energy of 8 GeV in the 

Barrel and endcap LAC with an individual tower threshold of 60 ADC 

counts in the EM section and 120 ADC counts in the HAD section. 

(e) The hadron trigger is a combination of energy trigger and tracking trigger 

(with a requirement of at least 1 CDC track). 

To reduce the event read time and hence to increase the livetime of 

the detector, the tracking information in an event, that has an energy trigger 

only, is not read out to tape. The trigger rate is typically 0.5-2 Hz, depending 
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on the SLC beam conditions. 

3.1.2 Hadronic 2’ Event Selection 

The raw data events that satisfied the trigger conditions are run 

through several offline filter programs to select hadronic Z”-candidates, r-pairs, 

wide angle Bhabhas, Luminosity Bhabhas and p-pairs. The following criteria 

are used for the hadronic 2’ filter: 

(a) The total energy in the barrel and endcap LAC must be larger than 14 

GeV (J!?LAC > 14 GeV). 

(b) To veto the events with excessive muon showers parallel to the beam axis, 

the energy in the endcap WIC is required to have Ewrc < 11 GeV. 

(c) The energy imbalance (Eimbal.) defined below and the sphericity (S) are 

required to have Eirnbal. < 0.9 and (Einbal. + S) < 1.0. Events are divided 

into two hemispheres by the plane perpendicular to the sphericity axis, 

The energy imbalance is defined as: 

E. tmbal. = 
Ehem(1) - Ehemp) 

Ehem(l) + Ehem(Z) 
(34 

Here %m( 1) is the total energy of particles at one side of the plane 

perpendicular to the sphericity axis and Ehernca) is that of particles at the 

other side of the plane. The choice of hem(l) and hem(Z) is arbitrary and 

it should not effect the value of Eimba/. These criteria are used to filter out 

the so-called monojet events which are caused by the beam-related events 

such as beam-wall interactions and beam muon backgrounds. These events 

are usually quite asymmetric in shape. 

(d) Wide angle Bhabha events are selected by requiring back to back clusters 

in the EM section of the LAC, each with energy of more than 10 GeV. 

Since the electrons are unlikely to pass the whole EM section (6 radiation 

lengths), there is very little or no energy in the HAD section of the LAC 
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. 

for Bhabha events. 

(e) The e+e- + p+p- events are selected by requiring two back-to-back 

tracks in the CDC with corresponding extrapolated tracks in the WIC 

pads. In addition, the two tracks are required to have momentum larger 

than 10 GeV and the distance of closest approach to the IP along the beam 

direction to be smaller than 1 cm. 

Events passing the above cuts are mostly hadronic events and tau 

pairs decaying into hadrons with very few background events. 

For the purpose of this physics analysis, an additional set of track and 

event selection cuts are applied: 

(a) Only charged tracks are included in this analysis. 

(b) The transverse momentum of each track, with respect to the beam 

direction, is required to have Pt > 150 MeV. This cut is used to cut off 

the low energy backgrounds such as conversions and multiple scattering 

particles. Fig. 3.1 shows the distribution of Pt for both the 92 data 

and the Monte Carlo simulation. In this and the following five plots, 

the JETSET6.3 Monte Carlo with detector level simulations are used. 

The detector level simulations of HERWIG5.7 are also presented for 

comparison. The M.C. data is smoothed out and is represented by dashed 

lines. 

(c) The polar angle of tracks with respect to the beam axis must be in the 

range 37’ < Otrack < 143’, or jco~etr~~k 1 < 0.80 . This cut ensures that 

tracks are within the effective region of the CDC. As shown in Fig 3.2 ,the 

track reconstruction efficiency drops off rapidly outside the cut region, at 

which the Monte Carlo does not simulate well. 

(d) Each track must have a distance of closest approach (d.0.c.a.) to the IP 

less than 25 cm. This is a very loose cut. Most tracks have d.0.c.a. within a 

few centimeters. Only those poorly reconstructed tracks or tracks resulting 
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Figure 3.1 The transverse momentum of charged tracks. The M.C. events are 
smoothed out 
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Figure 3.2 The polar angle cos0 of charged tracks with respect to the beam 
axis. 
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Figure 3.3 Number of charged tracks per event. The low multiplicity peak in 
data is from the 7 events, which are not simulated in the Monte Carlo. 
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Figure 3.4 The total visible energy per event. 
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from the beam-wall interactions may be cut off. 

(e) Each event must have at least 5 charged tracks (Fig 3.3). The low 

multiplicity T events are mostly removed by this cut. 

(f) The total visible energy of charged tracks in an event must be larger than 

20 GeV (Fig 3.4). P ar o events that have total visible energy less than t f 

20 GeV is due to the multiple track loss along the beam pipe or into the 

non-sensitive regions of the detector. Some of those low energy events” are 

background events caused by the beam-gas or beam-wall interaction. 

(9) The polar angle of thrust axis must be in the range 45' < Othrusi < 135', 

or IcosOlhrustl < 0.71 . S’ ‘1 t rrnl ar o cut (c), this cut is to make sure that the 

events are well contained in the active region of the CDC detector. Events 

with a thrust axis close to the beam direction are not well reconstructed 

due to the inefficiency of the CDC in that region. As indicated in Fig 3.5, 

the M.C. simulation does not agree well with the data in the region 

COSeth,.ust > 0.8 . It is a natural choice to exclude those events from -- 

this analysis. 

(h) Events in this analysis must have three well defined jets as determined by 

the JADE jet-finding algorithm”51, * WI at yclll = 0.02. Jan Lauber’s theses 

has a detailed description of the jet-finding algorithms. 

Starting with 10,252 hadronic Z” events recorded in the 1992 physics 

run that have CDC information written out, there are total of 2,887 3-jet 

- hadronic events that passed all the event selection cuts. 

3.2 Monte Carlo Simulations 

Several Monte Carlo programs have already bean described in chapter 

1. The JETSET6.3 does not have the scalar gluon model implemented. 

The JETSET7.3 is therefore used in the generator level simulation for the 

comparison between scalar gluon model and vector gluon model. However 
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the JETSET7.3 Monte Carlo is not fully implemented for the detector level 

simulation. We still use the JETSET6.3 in the detector level simulation. Major 

changes from JETSET6.3 to JETSET7.3 include’4Q’501 : 

l Program internal structural changes, such as particle naming scheme, 

commonblock structure, as well as calling sequence changes. 

l Particle data update according to the 1988 Review of Particle Property1511. 

a Inclusion of the scalar gluon model and the Abelian vector gluon model. 

l More detailed information about tau and heavy quark decay process. 

Table 3.1 Main parameters of JETSET6.3 and JETSET7.3 which control the 
momentum distribution of hadrons 

Parameter 

AQCD 

Qo 
I QP 

a 

b 

JETSET6.3 I JETSET7.3 1 Optimized 

Par( 12) 0.4 GeV Parj(21) 0.35 GeV 0.37 GeV 

Par(31) 0.50 Parj(41) 0.50 0.18 

Par(Z) ) 0.90 GeVv2 1 Parj(42) ) 0.90 GeVs2 IO.34 GeVe2 

Table 3.1 is a list of the main parameters, which control the 

momentum distribution of hadrons, in both JETSET6.3 and JETSET7.3. The 

parameter AQCD is the QCD scale parameter, whose value determines the 

extent to which partons will branch. Qo is the invariant mass cutoff of the 

parton shower, below which partons are not assumed to radiate. op corresponds 

to the width of the Gaussian transverse momentum distributions, with respect 

to the underlying string direction, for the primary hadrons. a and b are the 

parameters of the symmetric Lund fragmentation function as described in 
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chapter 1. The optimized values are obtained by the OPAL collaboration I521 in 

such a way that the Monte Carlo best describes the experimental distributions 

from the data at the 2’ resonance. 

Table 3.2 Main parameters of HERWIG version 5.7 which control the 
momentum distribution of hadrons 

Parameter M.C. name Default value Optimized value 

AQCD QCDLAM 0.18 GeV 0.11 GeV 

mg RMASS(13) 0.75 GeV 0.65 GeV 

M ma2 CLMAX 3.35 GeV 3.0 GeV 

Table 3.2 lists the main parameters of HERWIG for the control of 

the momentum distribution of hadrons. The parameter AQCD is the same as 

in JETSET6.3 which control the branching in the shower. mg is the effective 

gluon mass which serves as a limit in the parton show evolution. Mmax is the 

maximum allowed mass of a cluster made from two quarks. 

- 

3.2.1 The Generator Level M.C. simulations 

The M.C. distributions of 21, x2, 23, and COS~EK at the parton 

level are shown in Fig 3.7, 3.8, 3.9 and 3.10 respectively, where plots (a) 

- in these figures are the vector QCD simulations and plots (b) are the scalar 

gluon simulations. Most of the plots are generated by the JETSET 7.3 Monte 

Carlo where the scalar gluon model is available. The first order, second order 

matrix element simulation, the parton shower simulation, as well as the first 

order theoretical calculation are all plotted here as a comparison. The second 

order matrix element simulation is not available for the scalar gluon model in 

JETSET 7.3, The parton shower simulations by HERWIG5.7 Monte Carlo, 
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Figure 3.7 The parton level M.C. simulations of x1 distribution for (a) vector 
QCD model, and (b) scalar gluon model. Solid hist.: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; + points: the parton shower in HERWIG5.7; 
solid curve: the 1st order calculation. 
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0.5 0.6 0.7 0.8 0.9 1 
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Figure 3.8 The parton level M.C. simulations of x2 distribution for (a) vector 
QCD model, and (b) scalar gluon model. Solid hist.: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; + points: the parton shower in HERWIG5.7; 
solid curve: the 1st order calculation. 
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Figure 3.9 The parton level M.C. simulations of 23 distribution for (a) vector 
QCD model, and (b) scalar gluon model. Solid hi&: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; + points: the parton shower in FIERWIG5.7; 
solid curve: the 1st order calculation. 
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Figure 3.10 The parton level M.C. simulations of COSOEK distribution for (a) 
vector QCD model, and (b) scalar gluon model. Solid hist.: the 1st order matrix 
in JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; + points: the parton shower in HERWIG5.7; 
solid curve: the 1st order calculation. 
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for the case of vector gluon model, are also presented in these plots. All the 

histogram plot are normalized in such a way that the sum of all the bins in the 

plot times the bin width equals to 1. In other words, the integration of any 

distribution over the plotted range equals unity. 

As described in the previous section, the three jet events are 

determined by the JADE jet-finding algorithm, which is also called the YCLUS 

algorithm, at the cut value of yctll = 0.02. The differences between various 

order of simulations show up largely in the upper ends of the 21, 22, COS~EK 

distributions and in the lower ends of the 23 distribution, where the effect of 

soft gluon dominates. 

Hadron level M.C. simulations for ~1, x2, x3, and cos0~~ distributions 

are shown in Fig 3.11, 3.12, 3.13 and 3.14 respectively. In the vector QCD 

case, the hadron level distributions are not so different from the parton level 

distributions, which indicates that the hadronization effect is marginal in this 

analysis ( N 20% ). In the scalar gluon simulation, the hadron level and parton 

level distributions of xl, x2, x3, and COS~EK are quite different, especially in the 

upper ends of the x2, COS$EK distributions and lower end of the x3 distribution. 

Further study reveals that these differences are not the result of the 

hadronization effect but rather the effect of the jet-finding algorithm. In a 

two-parton hadronic event, the YCLUS algorithm tend to combine some soft 

particles, which are perpendicular to the original parton direction, to form a 

third jet.‘This third jet is very soft in energy, and will pile up at the lower end of 

the x3 distribution (and at the upper ends of the xl, x2, COSOEK distributions). 

The rate of the two parton event being identified as a three-jet event is about 

3%. This is not a problem in the vector gluon case, where the 3-parton hadronic 

events are about 55% of the total events. The production rate of 3-parton 

hadronic events in the first order scalar gluon simulation is about 4.3%. The 

2-to-3 jet misidentification of 3% causes a contamination of 41% in the final 
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Figure 3.11 The hadron level M.C. simulations of x1 distribution for (a) vector 
QCD model, and (b) scalar gluon model, Solid hist.: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; $ points: the parton shower in HERWIG5.7. 
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Figure 3.12 The hadron level M.C. simulations of x2 distribution for (a) vector 
QCD model, and (b) scaIar gluon model. Solid hist.: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; $ points: the parton shower in HERWIG5.7. 
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Figure 3.13 The hadron level M.C. simulations of 23 distribution for (a) vector 
QCD model, and (b) scalar gluon model. Solid hist.: the 1st order matrix in 
JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hist.: 
the parton shower in JETSET6.3; + points: the parton shower in HERWIG5.7. 
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Figure 3.14 The hadron level M.C. simulations of COSeEh- distribution for (a) 
vector QCD model, and (b) sea ar 1 gl uon model, Solid hist.: the 1st order matrix 
in JETSET6.3; dashed hist.: the 2nd order matrix in JETSET6.3; dotted hi&.: 
the parton shower in JETSET6.3; $ points: the parton shower in HERWIG5.7. 
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3-jet events in the scalar gluon simulation, That is the reason for those peculiar 

peaks in the 21, x2, 53, and COSOEK distributions. Table 3.3 lists the sumrrrary 

of parton to jet correspondence at the YCLUS algorithm, with ycvt = 0.02, as 

applied to 20,000 of vector QCD events and 60,000 of first order scalar gludn 

events. The JETSET7.3 Monte Carlo is used for both simulations. 

Table 3.3 Summary of the parton to jet correspondence at the JADEfijet- 
finding algorithm, with yclll = 0.02, for vector and scalar gluon models. Events 
with more than 3 jets are not listed here. 

20k vector events 60k scalar events 

2-jet s-jet total rate 2-jet 3-jet total rate 

2-parton 7,800 239 40.2% 55,775 1,635 95.7% 

3-parton 1,218 9,721 54.7% 251 2,325 4.3% 

Other jet-finding algorithms can not eliminate this 2-parton to 3- 

jet misidentification either. Table 3.4 lists the summary of parton to jet 

correspondence at the LUCLUS algorithm, with Adjoin = 2.5 (see section l.S), 

as applied to 20,000 of first order scalar gluon events. The 2-parton to 3-jet 

misidentification is also about 3%. 

Table 3.4 Summary of the parton to jet correspondence at the LUCLUS 
- algorithm, with D+,in = 2.5, for the scalar gluon model 



74 

3.2.2 The Detector Level MC simulations 

The SLD detector level simulation is based on the CERN developed 

GEANT package’531 version 3.11. A detailed model of the SLD detector, 

which imitates the geometry and materials of the real SLD detector in 

the best way possible, is implemented into GEANT. The GEANT program 

simulates the process of all the final state particles passing through the 

detector, taking into account the effect of energy loss, secondary decays, 

bremsstrahlung, Compton scattering, multiple scattering, delta-ray production, 

gamma conversions, h d a ronic interactions, photoelectric interactions, and 

electron-position annihilation. A great deal of effort has been made to ensure 

that the M.C. simulations give a good description of the SLD data”“. We 

use the measured resolutions in the drift chamber, such as the charge division 

resolution and drift time resolution, to reconstruct the simulated M.C. data. 

Some hardware malfunctions, such as some readout electronics being non 

operational during part of the run or high voltages being off for one superlayer 

of the CDC, are also simulated in the Monte Carlo. Fig 3.15 shows the thrust 

distribution for the raw data and the M.C. simulations. Good agreement is 

obtained between the data and the M.C. simulations. 

Fig 3.16 and Fig 3.17 are the distributions of x1, x2, x3, and COS~EK 

after the detector level M.C. simulations and after passing all the data selection 

cuts as compared to the hadron level simulations with no cuts. The JETSET6.3 

and HERWIG5.7 Monte Carlos are used here. 

3.3 Corrections for Hadronization and Detector Effects 

As shown in Table 3.3, the production rate of 3-jet events in the 

scalar gluon model is a factor of 10 smaller than in the vector QCD model. 

It is therefore not practical (CPU 1 imited) to do a detector level simulation 

that yields a compatible number of 3-jet hadronic events in the scalar gluon 
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Figure 3.15 The thrust (T) distribution of raw data and Monte Carlos. 

model. In the following, I correct the data for hadronization and detector 

effects according to the vector QCD simulations. I compare the corrected data 

with the parton level simulations from vector gluon and scalar gluon models, 

assuming that the hadronization and detector effects are independent of the 

models. The commonly used bin-by-bin correction method is employed here 

to obtain the correction factors for hadronization effects and detector effects 

separately. 

For the parton-to-hadron level corrections, each bin in plot (a) of 

Fig 3.7, 3.8, 3.9 and 3.10 is divided by each bin in plot (a) of Fig 3.11, 3.12, 

3.13 and 3.14. 

(3.2) 

Where i is the bin number, V,,,t,,(i) is the value in the ith bin of the parton 

level histogram and Vhadron( i is the value in the ith bin of the hadron level ) 
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Figure 3.16 The detector level M.C. simulations of (a) 21 distribution and 
(b) 22 distribution. Solid hist.: detector level simulation of JETSET6.3 with 
all cuts; Dashed hist.: detector level simulation of HERWIG5.7 with all cuts; 
Dotted hist.: hadron level simulation of JETSET6.3 with no cut -all the final 
state particles included. 
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Figure 3.17 The detector level M.C. simulations of (a) x3 distribution and (b) 
COSeEK distribution. Solid hist.: detector level simulation of JETSET6.3 with 
all cuts; Dashed hist.: detector level simulation of HERWIG5.7 with all cuts; 
Dotted hist.: hadron level simulation of JETSET6.3 with no cut -all the final 
state particles included. 
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Figure 3.18 The hadronization correction factors for (a) 21 distribution, and 
(b) x2 distribution. 
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Figure 3.19 The hadronization correction factors for (a) x3 distribution, and 
(b) COS~EK distribution. 
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Figure 3.20 The hadron-to-detector level correction factors for (a) zl 
distribution, and (b) x2 distribution. 
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Figure 3.21 The hadron-to-detector level correction factors for (a) 23 
distribution, and (b) COS~EK distribution. 



histogram. All the plots are normalized to 1. Fig 3.18 and 3.19 give the 

parton-to-hadron correction factors for 21, x2, x3, and c0.d~~ distributions. 

The corrections are within 20% from unity. Similar procedure applies to the 

hadron-to-detector level corrections. 

q&d(i) = Vhadron 6) 

Vdetector (i) 
(3.3) 

Where i is the bin number, Vhadron (i) is the value in the ith bin of the hadron 

level histogram with no cuts and Vd&&,r(i) is the value in the ith bin of the 

detector level histogram which passes the same data selection cuts as does 

the SLD data. Fig 3.20 and 3.21 give the hadron-to-detector level correction 

factors for the xl, x2, x3, and COS~EK distributions. Here the JETSET6.3 and 

HERWIG5.7 are used in the M.C. simulations. 

These two correction factors are multiplied together with the number 

of entries D(i) in the experimentally measured distributions, to give the 

corrected value V,,,,. (i) at the parton level: 

(3.4) 

3.4 The Raw Data and Corrected Data 

With a total of 10,252 hadronic 2’ events recorded in the 1992 physics 

run that have CDC information written out, there are total of 2,887 3-jet 

hadronic events that passed all the event selection cuts. 

Fig 3.22, 3.23 are the raw data distributions of 21, x2, x3, and 

COS~EK compared with the full detector level M.C. simulations (JETSET6.3 

and HERWIG5.7). Both the raw data and the M.C. distributions pass the 

same data selection cuts. The good agreement between the data and the Monte 

Carlo is evident. 
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Figure 3.22 The raw data distributions of (a) x1 and (b) x2 compared with 
full detector level M.C. simulation. They all pass the same data selection cuts. 
Cross points: raw data; Solid histo: JETSET6.3 M.C. simulation at detector 
level. dashed histo: HERWIG5.7 M.C. simulation at detector level. 
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Figure 3.23 The raw data distributions of (a) x3 and (b) c0.d~~ compared 
with full detector level M.C. simulation. They all pass the same data selection 
cuts. Cross points: raw data; Solid histo: JETSET6.3 M.C. simulation at 
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Figure 3.24 The corrected 92 data of (a) 21 and (b) 22 distributions compared 
with parton level simulations for vector QCD model and scalar gluon model. 
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Figure 3.25 The corrected 92 data of (a) 23 and (b) COSOEK distributions 
compared with parton level simulations for vector QCD model and scalar gluon 
model. 
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Performing a bin-to-bin correction to the raw data as described in 

the previous section, Eq (3.4), we get the corrected data at the parton level 

(Fig 3.24 and Fig 3.25). Here the first order matrix element simulation 

of JETSET7.3 is used in calculating the parton-to-hadron correction factors 

&h(i), and the parton shower simulation of JETSET6.3 is used for the hadron- 

detector level correction factors &d(i). The errors on these plots are statistical 

errors only. Al so shown in Fig 3.24 and Fig 3.25 are the first order M.C. ” 
simulations for vector QCD model and scalar gluon model as a comparison. 

The corrected data clearly favours the vector QCD model. 

3.5 Systematic and Statistical Errors 

The systematic errors of a measurement can be divided into two 

categories: experimental systematic errors and theoretical errors. The 

experimental systematic errors come from the detector acceptance, efficiency 

and resolution, the detector simulation and reconstruction programs, and from 

the track and event selection cuts applied to the data in this analysis. The 

theoretical errors arise from the choice of hadronization schemes, the higher 

order corrections, etc. In this analysis, the data is compared with different 

theoretical models in terms of distributions of measured variables. I calculate 

the systematic errors for all the bins in the histogram plots. In the end, all 

systematic errors are added in quadrature for each bin and plotted on top of 

the the statistical errors. 

The following set of variations are applied to data and Monte Carlo 

in order to estimate the experimental systematic errors from various sources: 

QUD Loosen the cuts on the polar angle of track and thrust axis: co&t,,,k < 1.0, 

co&th,,,~ < 0.8. This and the next variation is to estimate the error due 

to the detector acceptance cuts. 

abD Tighten the cuts on the polar angle of track and thrust axis: COS~~,,,I, < 



0.71, cd~hrus~ < 0.6. 

am Loosen the energy, momentum and impact parameter cuts: Impact < 100 

cm, .Pt > 0.0 GeV and Evis > 0.0 GeV. 

adD Tighten the energy, momentum and impact parameter cuts: Impact < 7.5 

cm, Pt > 0.2 GeV and Evis > 25.0 GeV. 

aeD To estimate the errors due to the momentum resolution, the absolute 

momentum of each track is smeared by 3%x a random number, which , 
is uniformly distributed between -1.0 and 1.0. 

afD Since momentum resolution of the CDC is worse in the z direction, we 

smear only the z component of the momentum by 3%x a random number 

as in variation e. 

agD The effects of the track reconstruction inefficiency is estimated by 

randomly removing 15% of the track in M.C. events, and calculate the 

change in the correction factors. 

Variations a-d are applied to both the Monte Carlo (JETSET6.3) and 

the raw data. The hadron-to-detector level correction factors Chd are calculated 

for each case and the raw data passing cuts a - d are corrected accordingly. 

Variations e, f, g are only applied to the JETSET6.3 Monte Carlo. The hadron- 

to-detector level correction factors Chd are calculated accordingly to correct the 

raw data that passes the standard data selection cut (as described in section 

3.1). In the above seven cases, the parton-to-hadron correction factors Cph 

are obtained from the 1st order matrix element simulation of JETSET7.3 as 

shown in Fig 3.18 and Fig 3.19. Fig 3.26 gives the hadron-to-detector level 

correction factors Chd for the above seven cases. Errors from other experimental 

uncertainties, such as the error in the measurement of the magnetic field in 

the CDC region and the contamination from background beam-gas, beam-wall 

events are estimated to be negligible[261. 

The theoretical errors are estimated as following: 



89 

0.7 ~ 0.8 0.9 1 

Xl 

I 
X: cut a 

0.5 0.6 0.7 0.8 0.9 1 

x2 

2.0 

2 
$ 1.5 

e 
g 1.0 
% 
,a 
a!! 

0.5 

0.0 
0.5 0.6 0.7 0.8 0.9 

x2 

Figure 3.26 The hadron-to-detector level correction factors for different 
- variations. (a) q with cuts a - d; (b) 21 with cuts e - g; (c) x2 with cuts 

a - d; (b) x2 with cuts e - g. These plots should be compared with Fig 3.20. 

ahr> Use the 2nd order matrix element simulation of JETSET7.3 to calculate 

the parton-to-hadron correction factors CPh and use the parton shower 

simulation of JETSET6.3 to calculation the correction factors Chd. The 

raw data passing the standard selection cuts are used here for correction. 

aiD Similar to variation h but use the parton shower simulation of JETSET7.3 
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Figure 3.27 The hadron-to-detector level correction factors for different 
variations. (a) 23 with cuts a - d; (b) x3 with cuts e - g; (c) COSOEK with 
cuts a - d; (b) cos6~~ with cuts e - g. These plots should be compared with 
Fig 3.21. 

to calculate the correction factors CPh. 

ajp Use the parton shower simulation of HERWIG5.7 Monte Carlo to calculate 

all the correction factors and correct the raw data with standard cuts. 

The difference between corrected data from each variation and the 
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Table 3.5 The corrected data with experimental systematic (,?I&,), theoretical 
systematic (Etheor.) and statistical(E,~,~.) errors for q and x2. The first and 
the sixth columns are the lower edges of the histogram bins. 

XI data Gp. Etheor. &tat. 32 data Eezp. EtheoT. &tat. 
0.640 0.00 0.00 0.00 0.00 0.475 0.00 O.OQ 0.00 0.00 

0.664 0.02 .044 .OlO .009 0.510 0.48 .0’77 .082 0.08 

0.688 0.05 .055 .005 .017 0.545 0.90 0.12 0.13 0.10 

0.712 0.15 .059 .013 .036 0.580 1.09 0.18 0.12 0.11 

0.736 0.26 0.10 .021 .052 0.615 1.45 0.35 0.19 0.12 

0.760 0.29 0.10 .040 .051 0.650 1.50 0.32 0.29 0.12 

0.784 0.66 0.21 0.12 .090 0.685 1.65 0.30 0.13 0.13 

0.808 0.63 0.21 0.13 .082 0.720 1.68 0.78 0.17 0.13 

0.832 0.87 0.37 0.05 0.10 0.755 1.96 0.18 0.31 0.14 

0.856 1.62 0.33 0.10 0.15 0.790 2.48 0.77 0.10 0.17 

0.880 2.50 0.68 0.48 0.18 0.825 2.39 0.36 0.24 0.17 

0.904 4.08 0.82 0.42 0.24 0.860 2.95 0.17 0.13 0.19 

0.928 7.44 1.63 0.28 0.34 0.895 3.57 0.44 0.09 0.22 

0.952 15.1 1.30 0.81 0.58 0.930 4.36 0.53 0.59 0.26 

0.976 6.82 1.09 1.72 0.39 0.965 1.96 0.25 0.97 0.17 

standard set of corrected data (as shown in Fig 3.24 and Fig 3.25) gives an 

estimate of the systematic errors from each source. Errors from various sources 

are ploted in Fig 3.28 and Fig 3.29. Adding up errors from variations aap - agp 

in quadrature gives an upper limit to the experimental systematic error at each 

bin. Similarly, adding up errors from variations ahD - ajD gives the theoretical 

systematic error at each bin. They are all listed in table 3.5 and table 3.6. 



Table 3.6 The corrected data with experimental systematic (Eezp.), theoretical 
systematic ( Elheor. ) and statistical(E,t,t.) errors for x3 and COS~EK. The first 
and the sixth columns are the lower edges of the histogram bins. 

x3 data Eezp. &heor. &tot. COS~EK data Eezp. Etheor. &tat. 

0.000 0.25 0.04 0.53 0.03 0.00 0.46 0.16 0.05 0.06 

0.045 3.02 0.43 0.70 0.21 0.05 0.56 0.09 0.03 0.07 

0.090 2.97 0.79 0.18 0.19 0.10 0.50 0.34 0.06 0.06 

0.135 2.32 0.35 0.13 0.15 0.15 0.62 0.13 0.03 0.07 

0.180 2.31 0.55 O.il 0.15 0.20 0.62 0.15 0.03 0.07 

0.225 1.65 0.29 0.17 0.12 0.25 0.69 0.15 0.04 0.08 

0.270 1.75 0.17 0.39 0.12 0.30 0.67 0.12 0.08 0.08 

0.315 1.68 0.23 0.17 0.12 0.35 0.68 0.15 0.05 0.08 

0.360 1.51 0.25 0.16 0.11 0.40 0.99 0.31 0.09 0.10 

0.405 1.44 0.17 0.27 0.11 0.45 0.94 0.26 0.15 0.10 

0.450 1.16 0.45 0.09 0.10 0.50 0.88 0.34 0.08 0.09 

0.495 0.98 0.12 0.06 0.08 0.55 1.06 0.28 0.12 0.10 

0.540 0.33 .064 .065 0.04 0.60 1.09 0.37 0.07 0.10 

0.585 0.19 .055 .098 0.03 0.65 1.12 0.19 0.10 0.10 

0.630 .027 .024 .032 0.09 0.70 1.24 0.16 0.15 0.10 

0.75 1.67 0.36 0.13 0.13 

0.80 1.55 0.08 0.14 0.11 

0.85 1.83 0.46 0.13 0.12 

0.90 1.66 0.22 0.62 0.10 

0.95 0.13 0.05 1.47 0.01 

3.6 Results and Conclusions 

, 

The corrected data with the systematic errors plotted on top of the 

statistical error are shown in Fig 3.30 and Fig 3.31. The errors are assumed 

to be symmetric. As one can see, the data clearly favours the vector gluon 
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Figure 3.28 The systematic errors from various sources for x1 and x2 
distributions. Plot (a): the experimental systematic errors for x1; Plot (b): 
the theoretical systematic errors for x1; Plot (c): the experimental systematic 
errors for x2; Plot (d): the theoretical systematic errors for x2. See text for the 
details of cuts a - j. 
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Figure 3.29 The systematic errors from various sources for 23 and COSOEK 
distributions. Plot (a): the experimental systematic errors for x3; Plot (b): 
the theoretical systematic errors for x3; Plot (c): the experimental systematic 
errors for COS~EK; Plot (d): the theoretical systematic errors for cos~,q~. See 
text for the details of cuts a - j. 
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Figure 3.30 The corrected 92 data of (a) xl and (b) x2 distributions compared 
with parton level simulations for vector QCD model and scalar gluon model. 
The systematic errors are plotted on top of the statistical errors. 
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model. The scalar gluon model by no means can describe the data. To be 

quantitative, the x2 calculations between data and vector QCD simulation and 

between data and scalar gluon simulation are performed, which are listed in 

table 3.7. The x2’s per degree of freedom for the vector gluon case are less 

than 1.0, which indicates that the systematic errors may be over estimated. 

In the scalar gluon case, the x2’s per degree of freedom are all larger than 

1.0 (4.5 on average). Since any two of the variables 21, x2, x3, and COS~EK 

are independent of each other, we can calculate the combined x2 for any two 

variables. For variables x2 and COS~EK, the total x2 is 146.7 ( with the Number 

of Degrees of Freedom NDF = 32), which gives a probability[541 of 1.3 x lo-l6 

for the scalar gluon model. Similarly, from the combined variables of z1 and 

23, we get a probability of 1.1 x lo- l7 for the scalar gluon model. We therefore 

conclude that the spin of the gluon is 1. 

Table 3.7 x2 between data and vector/scalar gluon predictions. 

Xl 22 23 COSeEK 

1 Vector Gluon 1 9.05 1 3.22 1 6.75 1 3.66 1 

I Scalar Gluon I 57.1 1 72.0 ( 85.5 1 74.7 1 

1 NDF 1 13 1 13 I 14 I 19 I 
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APPENDIX A 

THE CROSS SECTIONS FOR e+e- ANNIHILATION 

Before derive the cross section for the e+e- annihilation process, a 

few mathematical tool will be very helpful. First the trace of a product of 

r-matrices: 

Tr(-fa+yryd) = 4(gaPg7’ - gaygPs + ga6gPr) (A4 

\ 
Tr(y5yayPyrys) = - 4i.~~@7~ 

w757,yp7,76) = - 4Q3-ya 
(A.2) 

where the completely antisymmetric alternating tensor .?PY6 = -E~P-,~ is equal 

to $1 for (G4yJ) an even permutation of (0, 1, 2, 3), is equal to -1 for an 

odd permutation, and vanishes if two or more indices are the same. One can 

write it as a determinant of the following matrix: 

- where St is the usual Kronecker delta, which is 1 for cr = /? and 0 other wise. 

Using the fact that the determinant of a matrix equals to the determinant of 

the rotated matrix, one can easily prove that: 

(A-4) 



If two of the indices are equal, one can get: 

c 
&CE.. r3mn = -2(q& - Sf$,r) (A4 

i,j 

As shown in Fig 1.1, two channels contribute to the process e+e- + ff, here 

f is any final state fermion. At the center of mass frame, which is also the lab. 

frame in this case, the cross section can be written as: 

The y and 2’ matrices are:. 

MY = ~s(e+)r’u(e-)a(~)7~v(~) 

66) 

(A.7) 

M 
z- (A-8) 

where &r is the charge of the fermion in the unit of e, f(s) is given as: 

f(s) = l 
S 

sin220, s - M,2 + iM,I’, (A.9) 

There are three terms that contribute to the cross section (M,j2, 

lMz12 and (MfM, + MiM,) . I n calculating these terms, I will average over 

the initial state spins sum over the final state spins. The y exchange term can 

be written as: 

WI2 
-e4Q2f 

= ~L3wf 

where 

Lf” = C ii(e-)y”v(e+)C(e+)~pu(e-) 
spin 

= C ~*(e-)7~PVP(e+)2)-,(e+)y~~u6(e-) 

(A.lO) 

(A.ll) 
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Figure A.1 The process e+e- -+ fj 

- here we have used following spin relations while masses are neglected: 

C Qde%(e-) = (F + 7~2)~~ 
9 

c fir(e+M~+~ = (F’ - mh3r 

(A.12) 

(A.13) 

3 

The four momenta (k, k’,p,p’) are defined in Fig A.1. Using Eq (A.l) one can 
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get the following product: 

wjE’7P”7”) WP7d7,) 

=16k’*knp’,pa(gm~gnu _ pny + pvgw) (g&vgBp - f8g’” + p(p) 

==[(p - k’)(p’ * k) t (p’ - k’)(p - k)] 

=42( 1+ cos26) 
(A.14) 

here we have used the momentum relations (see Fig Al): p . k’ = p’ . k = 

t(l - cos0) and p’ . k’ = pa k = i(l $ co&). Hence we get: 

IM,12 = e4Q2f( 1 + cos2B) (A.15) 

The 2’ channel contribution can be written as: 

where 

L /.w,f = c mv - ~rr5)7”WWrP(q - ~rr5b(f) 
spin 

Lgv -= C G(e-)(v, t a~75)7”v(e+)5(e+)7P(ve - aer5)u(e-) 
spin 

= (v$ t &‘7@7”$7”) - 2%~~+7~7~~7~) 

As demonstrated in Eq (A.14), we have: 

T7-(F’7Pf7y) 55($7”P7J 

=32[(~ - IC’)(P’ - k) t (p’ - qp. k)l 

=42(1 + cos20) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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Using Eq (A.2) ‘and Eq (A.5), one can simplify the following product: 

WF’r57”F7”) wrr’757vz47/J 

=p’,Pplc’mIc”Tr(757~7,7~7~) T7-(757m7P7n7”) 

=16p’,ppk’mkne,,pp&mlLnv 

= - 16pbpSk’mkn&,,,pe,,mn 

=32[(p’ - k’)(p . k) - (p’ . k)(p e k’)] 

(A.20) 

=SS~COSO 

By the nature of the anticommutation tensor, one can prove that the other 

two terms in the product of L!“L,,,j will vanish. Thus, we have: 

[4s2($ + u”r)($ + a:)(1 t cos20) $4v~a~~ea,(Bs~cosO)] 

= e41f(s)12[($ + u2f)(vz + a:)(1 + cos20) + 8vppeae~~sO] 
(A-21) 

With similar procedures, the interference term can be calculated as: 

(MiM, t M!M,) = 2e4 Re[f(s)][v,vf(l + cos20) t ‘&z,apo~O] (A.22) 

Using the relation: 

GFM,2 = 
2fi?rCY 
sin220 (A.23) 

W 

and putting all the contributions into Eq (A.6), we finally get Eq (1.1) of the 

_ text: 



APPENDIX B 

. 

THE NORMALIZED DISTRIBUTIONS OF xi AND cosO,y~ 

B.l Relations Between Jet Angles and Scaled Jet Energies 
: 

B C 
c------- 

/ la2 
/ \ 

/ \ Id 
/ \ 

/ \ 
/ 

4 

A 

Figure B.l A three-jet system. 

In the e+e- collision, the laboratory frame is also the center of mass . 
frame. The total momentum of the resultant three-jet event should be zero 

pi + $2 t $3 = 0. The three momentum vector form a triangle, triangle ABC in 

Fig. B.l, with three angles labelled as WI, w2 and ~3. The following relations 

become obvious: 

Id Ii4 F3l -z-z- 
sinwl sinw2 sinw3 VW 

For massless partons, one has lp’;l = YE,, (i = 1,2,3). It is easy to see that 

Wi = r-08;, where 0i is defined in Fig. 1.4. Eq. (B.l) can therefore be rewritten 

as: 

Xl x2 x3 -=-=-= 
sin01 Cd2 sin& - 

c VW 

f 
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Using Eq. (l.ll), one can determine the value of C as: 

c= 
2 

sin01 $ sin02 $ sin03 

Hence one come up with Eq. (1.13) of the text (i = 1,2,3). 

x; = 
2sinB; 

sin01 + sin02 + sin03 

(B-3) 

(1.13) 

Now go back to Fig. 1.4. Let’s denote p’; to be the vector momentum of jet 

i in the Lab frame, ~7’ to be the vector momentum of jet i in the center of 

mass (C.M.) frame of jet 2 and 3. And define pi = lflil and pi = JP;:‘i. Since 

partons are assumed to be massless, one has Ei = pi and Ei = pi. The theory 

of special relativity requires that the invariant mass of any system should not 

change after the Lorentz transformation. For the system of jet 1, 2 and 3, such 

a requirement leads to: 

(El + E2 + E3)2 = (E; + E; + E;)2 _ (pi’)2 (13.4) 

Here we used the fact that total vector momentum is zero in the Lab frame, 

and is pi’ in the C.M. frame of jet 2 and 3. Since pi = pi, the above equation 

can be simplified into: 

(Pl + P2 t P3)2 = 4p; t 4pip; VW 

_ For the system of jet 2 and 3, the preservation of the invariant mass under the 

Lerentz transformation leads to: 

(E2 t ~93)~ - ($2 t p’3)2 = (E; t E;)2 (B.6) 

which can be simplified into: 

h + p2 t P3) (P2 $ P3 - pl ) = 44; (I3.7) 



Subtracting both sides of Eq. (B.7) f ram both sides of Eq. (B.5) respectively, 
and dropping the common factor of 2, one gets 

(Pl + P2 + P3)Pl = 2Ph.4 (B.8) 

Finally, we apply the requirement of the invariant mass preservation to the 

system of jet 1 and 2: 

(El t E2)2 -  (pi + p’2)2 = (E: t E;)2 -  (pi' t G/)2 (B.9) a 

By definition (see Fig. 1.4),,we have pi’ . p:’ = -pipbcosO~~. So Eq. (B.9)can 

be simplified into: 

h + P2 + p3)(pl + p2 - p3) = 2p:p;( 1 t coso,W) 

Comparing with Eq. (B.B), we finally get the Eq. (1.14) of the text. 

coseEK = p2 - p3 = x2 - x3 
Pl X1 

B.2 Limits on Jet Variables 

(B.lO) 

(1.14) 

For a three-jet event to pass the jet finding algorithm at a fixed value 

of yc (z ycUt), the combined invariant mass of jet 2 and 3 must be greater than 

@J&m - 

2E2E3(1 - COSOl ) L ycE& (B.ll) 

Here Or is the angle between jet 2 and 3. Since x; = 2E;/Ecm (i = 1,2,3), one 

has: _ 

:X2X3(1 - COSOl) 1 Yc (B.12) 

As indicated in Fig. B.l, the following triangular relation holds true: 

COSOl = -coswl 

x; + 5; - x4 (B.13) 
=- 

2X2X3 
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Due to the relations in Eq. (1.11) and Eq. (1.12), the condition (B.12)become: 

21 I1 -yc (B.14) 

Combining with the natural limit xl 2 2/3, one has the limits on zr as: 

(B.15) 

The maximum of x2 is when x2 = x1 = 1 - yc. So we have x2lmaz = 1 - yc. 

The minimum of x2 is when 22 = x3 and x1 = xrlmaz. Hence we have 

221 min = (1 + yc)/2. Combining them together, we have: 

1 t Yc 

2 I x2 I 1 - yc 

Similarly, we can get the limits on x3 as: 

2 
2Yc L x3 I i 

Letting c = 21 - x2 (c 2 0), one can obtain from Eq. (1.14): 

2(1 + c) 
x1 = 

3 - COSOEK 

From condition (B.14), we get the following limits on COSOEK. 

COSOEK < l- 3y, 2c -- < 1 - 3Y, 
l-y, l-yc- l-y, 

Finally, the limits on COSeEK is: 

0 < COSOEK < 
1 - 3% 
1 -Yc 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 



B.3 The Normalized Distributions in Vector Gluon Model 

Eq. (1.7) is th e d ff i erential cross section in terms of the scaled energies 

of the quark and antiquark (x 2). It needs to be written in terms of ~1, x2, 

which are the scaled energies of the two most energetic jets. Since Eq. (1.7) is 

symmetric over the exchange of x and Z, it can also be written as: 

1 d2#(x, i) 
- 
CO dxda: 

(B.21) 
A 

Where x and z are the scaled energies of the quark and antiquark. Defining 

x9 E 2 as the scaled energy of the gluon and considering the three cases: 

x > 3 2 xg, x 2 xg 2 5, xg 2 x 2 5, one can obtain the following relational 

table: 
x:2z>xg x>xg>z xg>xLZ 

x = x1 x = Xl 2 = x2 

2 = x2 z = x3 z = x3 

xg = 23 Xg = x2 zg = Xl (B.22) 

The differential cross section in terms of xl, x2 is the sum of these three cases. 

1 d2av(x1,x2) = N x2 + z2 - 
00 dxldx2 (1 -x)(1 - 5) 

X,2 
J- 

( ) Xl, x2 

X,Z 
J- 

( > x1,22 

{ 

x = x1 

z = x2 

/ 

2 = x1 

t 5=2-x1-22 1 
2 -2 

-I- y1 :x:,a- z) J 

X,3 

()I 

X = x2 

x1,x2 2’22xr-x2 1 
(B.23) 

One can determine that the Jacobian of x, 5 with respect to x1, x2 is fl for 

all the three cases, in other word, I JI = 1. Replacing x, 5 by the appropriate 

terms in xl, x2 as shown, one can simplify the above equation into: 

1 d2crV(x1,x2) =N +x;+(2-xrx2)3 
- 
u. dxldxa (1 - x1)(1 - 52)(x1 + 52 - 1) 

(1.15) 
- 
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Since the Jacobian of 21, x2 with respect to 21, x3 is 1, one can also write the 

differential cross section in terms  of xl, 573. 

1 d2,v(xl, x3) xi + x; + (2 - x1 - x3)3 
- 

=Q 
(B.24) 

00 dxldx3 - x1)(1 - 23)(x1 + 23 - 1) 

From Eq. (1.14), one can get 22 = 1- +(I- COSOEK). So the Jacobian of ~1, x2 

with respect to x1, COS~EK is: 

(B.25) 

The differential cross section in terms  of x1, COS~EK can thus be written as: 

1 d2av(xl, CO&K) 
- 
00 dxl dcos6EK 

XT t 2; t (2 - Xl - x2)3 
=Q- 

x1 

x1)(1 - x2)(21 + x2 - 1) xz 

= N4x; + (2 - ~1)~ + 3x:(2 - xl)COS2&K 
2x1(1 - x1)(1 - COS20EK) 

(B.26) 

At fixed value of x1, from  the relation x2 2 x3, one can obtain the lim its on 

x2 as 

1 
Xl -- 
2 L x2 L Xl (B.27) 

Integrating Eq. (1.15) over 22 with the above lim its, one get the normalized 

x1 distribution: 

x; t x; t (2 - x1 - x2)3 

1-7 (1 - x1)(1 - x2)(x1 t x2 - 1) 

dx2 

= S(Xl)($ - 1) +  h(x$n 
2(2x1 - ‘1 + h(xl)ln x1 

x1 31 - Xl> 

Here y = 1 - x2, and the functions g(x), h(x) are given as 

g(x) _ 3Mx - 2) - 
(1 - 4 

(B.28) 

(B.29) 
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h(x)  = 
n/(2 -  3x + 3x2) 

x(1 - 2) 
(B.30) 

Us ing the relations  1 - yC  2 x1 2 x2 _ > x  2 2y,, one can easily  find the limits  3 

on x1 at fixed value of x2, .x3 and COSeEK respective ly : 

max(x2,2-2x2) I Xl 5 1 - yc  (B.31) 

1 -- “2” 5 x1 5 min (1 - yc,  2 - 2x3) (B.32) 

2 
3 - C02.d~~ 

I Xl 5 1 - yc  (B.33) 

Integrating equations (1.15), (B.24) and (B.26) over x1 with limits  given in 

above three equations, one gets the normalized dis tributions  of x2, x3 and 

c0.d~~ respective ly : 

f%2) =  
g(xd(1 -  22 -  yc )  + h(x$nB + h(x2) lne if x2 > ?j 

g(x2)(2x2 -  1 -  yc )  + h(x2) lne t h(xz) lny if 22 < $ 
(B.34) 

fV(x3) =  
9(x3)(1 - $3) +  h(x3)ln v  $ h(x3)Zn2t2~33_1j if x3 2 y  

g(x3) (Q 2 -  yc )  -t h(x3) lnw t h(xa) ln$ 
I+ye if x3 < 2 

(B.35) 

fV(COSeEK) =A(COSeEK)h 
(1 - Y&3 -  COSeEK) 

2 
t B(COSoEK) + c(COSeEK) 

+ D(COSeEK)h 
1 -  COSeEK 

Yc(3 -  COSOEK) 
(B.36) 

W here g(x) and h(x)  are given in Eq. (B.29) and Eq. (B.30), and A(x), B(x), 

C(x)  and D(x)  are given as follows . 

(B.37) 



B(x) = - 3n/(3 t x2) [(l - yJ(3 - xc) - 21 
2(3 - x)(1 - x2) 

C(x) = - WP - Yc)2(3 - x)2 - 41 
4(3 - x)2 

D(x) = N(5 + 3x2) 
2(1 - x2) 

113 

(B.38) 

(B.39) 

Pm 

B.4 The Normalized Distributions in Scalar Gluon Model 

Let’s rewrite the Eq. (1.8) with the condition x 2 F. 

1 d20S(x,z) = M - 
a0 dxdz 

Summing up all the three cases as listed in (B.22), one can write the (SG 

model) differential cross section in terms of xl, 22 as: 

1 d2as(xl, x2) - 
a0 dxldx2 

(B.42) 

Here we have already taken into account the fact that IJI = 1 for the three 

cases. Changing x, Z into x1, x2 in the above equation, we get the Eq. (1.16) 

of the text. 

1 d20S(x1, x2) - 
uo dxl dx2 

(1.16) 
= M “~(l-rl)tx;(1-~2)t(2-zl-x2)2(~1t~2-1)-R - 

(1 - x1)(1 - x2)(x1 + $2 - 1) I 



Similar to Eq. (B.24) and Eq. (B.26) of the vector gluon case, we have the 

corresponding differential cross sections of the scalar gluon case: 

1 d20s(x1, x3) - 
u. dx1dx3 

=M x:(1 - xl)tx;(l -x3)$(2-21 - x3)2(xl +x3 - 1) 
(B.43) 

(1 -x1)(1 -x3)(x1+23 - 1) 

-R I 
i dbS(Xl,COSeEK) -M - - 

CO dX1dCOSoEK 

4 -3X+X1(3X1 -4)COS2eEK Rx1 
2(1 - X1)(1 - COS2eEK 2 1 (B.44) 

Integrating Eq. (1.16), (B.43) and (B.44) over x1 (or x2), one can then get 

normalized distributions of x1, x2, x3, and COSeEK for the scalar gluon model. 

Since the limits on those variables are exactly the same as in the vector gluon 

model, I will not repeat the above process but write down the final expressions 

of the normalized distributions of x1, x2, x3, and COSeEK. 

fS(Xl) = gs(xl)(% - 1) + MIn2(2x;l- l) $ Mln x1 (B.45) 
2(1 -x1) - 

F(x2) = 
$(x2)(1 - x2 - yc) t MlnE + Mlnv if x2 > + 

8(X2)(2x2 - 1 - yc) t MlnE + Mlnv if x2 < $ 
(B.46) 

fS(x3) = 
gs(x3)(1 - $23) -I- Mlnv + MIn2c2~~m1j if 5s 2 y 
gS(x3)( a 

2- yc) t Mlnv + Mlnz l+yc if x3 < 2 -~ 
(B.47) 

i - COSeEK 
fS(coseEK) = @@SeEK) + c%OSeEK) i- +/71y,c3 _ coseEKj (B.48) 

Where functions g’(x), B’(x) and C’(x) are given as: 

g’(x)=M(E-R) (B.49) 



@(x) = MC3 + x2) I(1 - Yd3 - 4 - 21 
2(3 - x)(1 - x2) 

CS(x) = - M(3 - R)[(l - ~~)~(3 - x)~ - 41 
4(3 - x)2 
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(B.50) 

(B.51) 
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