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Measurements have been made of the scaled jet energies (z1, 2,
z3) and the Ellis-Karliner angle (cosfgg ), which are sensitive to the spin ;)f
the gluon, in the 3-jet hadronic events from the ete™ annihilation at the Z°
resonance. The experiment is performed with the SLD detector at the Stanford
Linear Accelerator Center (SLAC). The data used in this analysis was collected
during the 1992 physics run, which includes 10,252 hadronic Z° events that
have CDC information written out. Only charged tracks measured in the

central drift chamber are used for the measurements of the above variables.-

The raw data are found to be in good agreement with the Monte
Carlo simulations passing the same set of track and event selection cuts. A
bin-to-bin correction is done for the distributions of z;, z9, z3, and cosbgy to
account for the effects of hadronization, detector acceptance and resolution.
The corrected data is compared to the parton level distributions of z1, z2,
z3, and cosfpg simulated from the vector QCD model and the scalar gluon
model respectively. The systematic errors, calculated for all the bins in these
distributions, are obtained by comparing the results from different sets of
track and event selection cuts, from different hadronization models and from
different Monte Carlo programs. Good agreement is found between data and
the vector QCD model. The scalar gluon model strongly disagrees with the

*data.
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CHAPTER 1
THEORY

1.1 Introduction

The theory of quantum chromodynamics (QCD) postulates that the
gluon, the gauge boson of the strong force, is self-interacting and has spin
one. In the past ten years, numerous experiments have been carried out
and the results have been seen to agree well with this theory. The special
properties of three-jet hadronic events from e*e™ annihilation, where one of the
quark-antiquark pairs radiates a gluon, are also well described by QCD theory.
However, the existing experimental data hardly provide any direct evidence for
the value of the gluon spin. Several groups at PETRA"™ measured three-
jet distributions sensitive to the gluon spin at energies around 30 GeV. The
effect was relatively small due to lower statistics and larger hadronization
backgrounds, and the conclusions were based solely on the first order theory.
The analysis of the decay of the T resonance into three gluons'™ can also
provide direct evidence for the gluon spin. In addition, the gluon spin affects
the spatial orientation of the three-jet events with respect to the beam axis in
ete™ annihilation™”, but the discriminating power is small. In p— p collisions,
- the angular distribution of jets shows evidence for the gluon spin', and the
distribution of high pr leptons is also predicted to depend on it'™. For the
process of ete™ collisions at the Z° resonance, because of the higher C.M.
energy, the quark and gluon jets are more separated from each other than
in ete™ collisions at lower energies. The hadronization effects become less
important. Distributions of jet variables which are sensitive to the gluon spin,

namely zi, z, z3, and cosfgg (see section 1.5), should give us a better



understanding about the spin of the gluon. Similar analyses have also been

done by L3" and OPAL".

1.2 The ete™ Collision at The Z° Resonance

In the lowest order of perturbative electroweak theory, the process
ete” — ff is shown in Fig. 1.1. The final fermion f can be a
lepton (e, p,7), neutrino (ve,vy,vr) or quark (u,d,s,c,b). Two basic types
of interactions contribute to this process: the exchange of a virtual photon —
the electromagnetic interaction; and the exchange of a vector boson Z% — the

weak interaction.

Figure 1.1 The Feynman diagrams for ete™ — ~/Z% — ff

At center of mass energies close to the mass of the Z°, /s & Mz, the
weak term dominates the process of e*e™ annihilation, forming a resonance
near /s = Mz with a width I'z. Neglecting the initial and final state particle
masses, one can write the lowest order cross section in the form:

do 7TQ2Q%
dz ~ 2s

G M2(s — M?)

L4 2 OQsGrM; z

G = o (s - M2y 1 2T
G’%M;‘s

 T6x](s — M2)2 § M2TY]

[vevs(1 + 2%) + 2acas2]

(v’ + a?)(v; + a})(l + 2%) + 8veacvsayz]
(1.1)



where z = cosf, and ve, a, vy, ay are the vector and axial vector couplings for
the initial state electrons and final state fermions respectively. If f is a quark,
the cross section must be multiplied by a factor of 3 for the color factor. This

formula is derived in Appendix A.

1.3 Quantum Chromodynamics

The QCD theory was developed to describe the strong interacti?ns
between quarks and gluon. The idea of quarks first came from the observation
of the structures of mesons and baryons[”]. Five flavors of quarks (u,d,s,c,b)
have been found experimentally. From the measurements of loop corrections
in ete” annihilation, a sixth quark (top quark) is suggested to exist with a
mass within the range of 140 — 200 GeV. Quarks are defined to be spin %
particles (fermions) with fractional electrical charges of +§e for u,c,t and ——%e
for d,s,b. In order to explain the baryon states, such as ATt (u Tu T u 1)
and 7 (s T s 71 s 1), which seemingly violate the Pauli Exclusive Principle[“]
(fermi statistics), the quantum number color (c= R, B,G) is aésigned to the
quarks. The interaction between quarks occurs through the intermediate boson

— gluon. Gluons are massless and expected to have spin 1. There are eight

kinds of gluons, each carries a color and an anticolor or their combinations:
- _ _ - _ ~ _ ~ 1 _ = _
RG,RB,GR, GB, BR, BG, \/g(RR ~GG), \/g(RR-k GG —2BB) (1.2)

Color interactions are assumed to be similar to the electromagnetic
interactions. The quark-gluon interactions are defined by the rules of QED with
the substitution v/a — /a5 at each vertex (see Fig. 1.2) and the introduction of
a color factor. Gluons themselves carry color charge, so they can interact with
other gluons, which differentiates QCD from QED where there is no photon
triple interaction vertex. The ggg vertex as well as the qqg vertex is shown in

Fig. 1.2. At short distance, a; is sufficiently small so that one can compute



e —P —> q—> P
\Qﬁqva,
< < e < < q

va
(a) (b) (c)
R
R —> >— B
(BR) |
R —4}1 \—«— B
(d) B/vz)\\ G

Figure 1.2 (a) Electromagnetic interaction by photon exchange. (b) Strong
interaction by gluon exchange. (c) Self-coupling of gluons. (d) Flow of color in
(b). (e) Flow of color in (c).

e (b) q

Figure 1.3 The processes e*e™ — ¢gg. (a) The quark radiates a gluon, (b)
The anti-quark radiates a gluon.

color interactions in a perturbative way.
To 1st order O(a;), the QCD correction to the eTe™ annihilation
process is where one of the final state quarks radiates a gluon (See Fig. 1.3). The

- differential cross section for ete™ — ggg with arbitrarily polarized electrons



and positrons may be written as:

da=-1—2z ST Myt Mg|'dP (1.3)
2Q°

color
polarization

Here Q? is the square of the center of mass energy and dP is the differential

phase space element, which can be expressed as:

11
T (27)5 32

Q%dzdzd(cosh)dxds (L4)

Here z = ZEQ/Ecm, Z = 2E;/E.n are the scaled energies of quark and

antiquark. The matrix element M can be written as:

M =M, + Mz = :}_e;_gzl
< {oten=0 e )
1 Q2 ( +).Y;t : (1'5)

T Tsint0y Q7 = ML+ iMzT7

X (v —avys)ule™ )u () é+é
(v - @l )l VT

+ crossed terms (¢ radiates the gluon).

w@f—w%w@ﬁ

where g, is the QCD coupling constant, 8y is the weak mixing angle and T,
is the color matrix in the fundamental (quark) representation, normalized such

that

> TH(TLTy) = 4 (1.6)
a,b
Integrating over all the angles in Eq. (1.4), the differential cross

. . . 14
section can be reduced into a simple form"*!:

_l_dzav(:c,:z':) N 2?4zl

oo dzdz = 2 (1—z)(1—1%)

(1.7)

where og is the total cross section for efe™ — ¢dg, and AN/2 is the

normalization factor. For the cut off value of ycyt = 0.02 in the JADE jet



finding algorithm (which will be described in section 1.8) , A" = 0.109207. z
and Z are the scaled energies of the quark and antiquark, z = 2E,/FEcm and

z =2E;/Ecm.

1.4 The Scalar Gluon Model

The scalar gluon model is a theory that copies all the assumptions
from QCD except that the colored gluons are assumed to have spin
0. Although such a theory is not asymptotically free it is nevertheless

renormalizable. The cross section in this case (see Appendix A) is:

1 d?05(z, ) M (2~z-%)? R _
e iz 2 |0-oi-z po-eTd) (18)

where —/‘24 is the normalization for the scalar gluon case, which equals to 0.942944

at yo = 0.02, and

10C?

R=gryce

(1.9)

where C? and C? are the axial and vector couplings for u,d,s,c,b quarks.

1.5 The Jet Variables in a Three-jet Hadronic Event
In a three-jet event, we order the jets according to their energies —
jet 1 is the most energetic and jet 3 is the least energetic. The scaled energies

of the three jets are:

zi = L 5= 1,23 (1.10)

cm

where E.n, is the total energy of the event. z;’s have the relations:

T1+zTo0+13=2 (1.11)

1> T2 > I3 (1.12)

Making a Lorentz boost of the three-jet event into the rest frame of the jet



2 and jet 3 combined system, the Ellis-Karliner angle gk is defined to be
supplementary to the angle between jet 1 and 2 in this frame (Fig. 1.4). For

massless partons:

2s1n0;
;= — - _ 1.13
o sinfy + sinfy + sinfs ( )
cosfpk = —2— s (1.14)

z)

where 6; is the angle between the two neighboring jets of jet ¢ as illustrated
in Fig. 1.4. Both equations (1.13) and (1.14) are derived in Appendix B.
Distributions of z; calculated by these two equations are less sensitive to
the energy and/or track loss in jets than those calculated directly from the

measured jet energies and momenta (this will be further discussed in section

1.8).

Lorentz Boost

_ Figure 1.4 The three-jet event and the Ellis-Karliner angle.

Since any one of the jets 1,2 or 3 could be the gluon, one has to sum all
the three cases in which the gluon is jet 1,2 or 3 in order to get the differential
cross section in terms of 1 and z5. The resultant formula for the vector gluon
theory, which is derived in Appendix B, is given as:

1 dzav(ml,mg) _ x§+w%+(2—$1 —332)3
oo dzidzo - (1- 231)(1 —z9)(z) + 3 — 1)

(1.15)



The same formula for the scalar gluon theory is:

1 dzas(:cl,mz) _

:7_0 dridzy

31— 21) + 23(1 — 22) + (2 — 21 — 22)}(z1 + 22 — 1)
(1—z1)(1 —z2)(z1 + 22— 1)

(1.16)

M - R

where R is given in Eq. (1.9).
Integrating Eq. (1.15) over z9, leads to the distribution of z; for the
vector gluon model:

v, [P oV (z1,72) ,
o= [ e (117)

The limits of integration are discussed in Appendix B. One can also get
the distributions of z2, z3 and cosfpg by similar integrations. A detailed
derivations and resultant analytical expressions of zj, z2, 73, and cosfgg
distributions for both the vector gluon model and the scalar gluon model can be
found in Appendix B. Fig. 1.5 gives the plots of these distributions at the cut
off value of y. = 0.02. All the distributions are normalized to 1. The difference
between the vector gluon model and the scalar gluon model is quite obvious in
z9, z3, and cosfpy distributions, yet not so clear in the z; distribution since
jet 1 usually originates from the quark (or antiquark) that did not radiate a

gluon.

1.6 The Hadronization and Monte Carlo models

The process of eTe™ annihilating into multihadronic events at the Z°
resonance can be characterized by 4 phases, as shown in Fig 1.6. At the first
phase the electron beam and the positron beam collide into each other and
produce a virtual photon‘ ~ or a virtual Z° boson, which decays into a quark-
antiquark pair ¢q. This is a pure electroweak process as described in section 1.2.
The total energy of the primary quarks may be less than the sum of the beam

energies due to the initial state radiation from individual electron/positron.
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Figure 1.5 The first order calculations for (a). z; distribution, (b). =2
distribution, (c). z3 distribution and (d). cosdpk distribution. The solid
- lines are from the vector gluon model calculation, while the dashed lines are
from the scalar gluon model. The cut off value of y. = 0.02 in the JADE
jetfinding algorithm is used. All the distributions are normalized to 1.

At the second phase, the primary ¢ pair may radiate gluons, which
in turn may radiate more gluons or quark-antiquark pairs. These are strong
interactions. The perturbative QCD theory must be used to describe this

process (section 1.3). Here the spin of the gluon is a dominating factor in
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Figure 1.6 A schematic illustration of the multihadronic Z° event.

determining the production rate of the secondary quarks and gluons and in
determining the energy distributions between them. The first/second matrix
element calculations from perturbative QCD give a fairly reasonable description
of this process. The parton shower model is another approach to describe the
process.

The theory of quantum chromodynamics requires that colored quarks -
and gluons can not exist in free form. A third phase is needed, in which partons
fragment into a number of colorless hadrons —the hadronization process.
Because the strong coupling constant oy is no longer small at the energy scales
as low as 1 GeV, the fragmentation process can not be predicted by perturbative
QCD, but must instead be explained by phenomenological models. The string
fragmentation, the cluster fragmentation and the independent fragmentation
are three popular fragmentation‘models.

The forth phase, where unstable hadrons decay into more stable
ones and track through the detector, is a rather empirical process. All

the experimentally determined decay branching ratios and particle-material
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interactions are the main input here. Although this is also a complicated
process, and very sophisticated Monte Carlo programs are employed for
simulations, there is little to be understood from this process in the SLD

experiment.

1.6.1 Parton Shower model

q
0 8
7K 0 O —
7, 4 q
e s q
5 8§ 6 8 O ;
A 0
! 00y
ZO g ...“«'"iti
25 “l " ¢
+ ¢ &
e i —
() ) A q
0 )
0 q
O“
q

Figure 1.7 A schematic view of parton shower in an ete™ annihilation event.

The Parton Shower model (PS) is based on the leading logarithm

approximation (LLA), where only the leading logarithm terms in the
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perturbative expansion of the ggg and ggg cross sections are kept. This PS
approach provides an approximate treatment of multijet configuration, also for
parton multiplicities where explicit matrix elements become too lengthy to be
useful. It is based on the iterative use of basic branchings ¢ — qg, ¢ — g9,
g — q@ as shown in Fig 1.7. With the definition of the evolution parameter
t = In(Q?/A?), where Q is the invariant mass of the parton a, A is the QCD
scale parameter for the parton shower process, the probability that parton a

will branch a — bc is given by the Altarelli-Parisi evolution equation[m:

zrna:r(t)

dPg_pe _ as(t)
T - or Py_pe(2)d2 (1.18)
zmin(t)

where z is the fraction of parton momentum shared by parton b. And P,_p.(2),
called the Altarelli-Parisi splitting kernel, is the probability that parton a
branches into b, ¢ with b having fraction z of the total momentum and ¢ having
fraction 1 — z of the total momentum, which can be written explicitly (see

reference 15 ) as:

41+ 22
P =37
61 —2(1-2))? 119
Pyogg = 07 (1.19)
1
FPygg = 5[22 +(1-2)7

Starting at the maximum allowed mass for parton a, the evolution parameter
t will be successively degraded until a branching occurs. The resultant partons
b and c are allowed to branch in their turn, and so on. This whole iteration
process terminates when parton mass is evolved below the cut off value Q, ¢.e.
tmin = In(Q3/A%). The parton shower model neglects the coherence between

different parton branchings. The total cross section is therefore proportional

to the product of the probability of each individual branching.
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1.6.2 The String Fragmentation Model

The string fragmentation model"*"" is based on the concept of linear
confinement of partons. Due to the gluon self-coupling, the color flux lines do
not spread out in all space, as does the electromagnetism, but is rather confined
to a thin tubelike region. The field inside the color tube is uniform along its
length, which leads to a potential which is proportional to the distance between
quarks. As the partons move apart, the color potential energy inside the tube
- increases like a stretched elastic string. The string can break into new quark
pairs ¢/q/ when the color potential energy is large enough. This fragmentation
process continues, and more quark pairs are produced, until the energy in the
string is not enough to produce a new quark pair. Fig 1.8 gives an illustration
of the breaking of these color tubes in a 2-jet ¢§ event. These new produced
quarks and antiquarks pair up to form hadrons within a narrow cone about the

direction of the parent quarks — jets.

q
O

Xl
@

q q q q q
® O—® O ®

q
O

Figure 1.8 A color tube representation of a 2-jet g7 system. As the g and the
g separate, the potential energy in the tube increases and a secondary ¢/¢/ pair
may be created.

The probability that a color string will break is given by the Lund
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symmetric fragmentation function:

f(2) = ~(1 — 2)%ezp (—5’31;"-’1) (1.20)

(S I

where mr = 4/p% + m? is called the transverse mass of the hadron, pr is
the momentum of the hadron transverse to the parent quark direction, and
variables a and b are to be tuned to better describe the experimental data.
The parameter z is defined as the energy and momentum parallel to the parent
quark direction carried by the primary hadron divided by of the energy and

momentum of the parent quark.

(E+ P“)hadron
= 1.21
i (E + P”)quark ( )

The parent quark may be different from the primary quark, because quarks can
radiate gluons before fragmentation. Because of the mass term in the exponent
of Eq (1.20), heavy quark production is expected to be very low when compared

to light quarks.

1.6.3 The Cluster Fragmentation Model

The cluster fragmentation scheme™ characterizes the clusters by
their total mass and color charge, with no internal structures. Each gluon
is forced to split into a ¢§ pair at the end of the parton shower. Every
final cluster is assumed to decay isotropically (in its CM frame) into the
observable hadrons. In the Webber Cluster model™™, which is implemented
in the HERWIG Monte Carlo program, two hadrons are produced from each
final cluster, with the relative probability for different decay channels given by
the phase space and spin counting factors. The transverse momentum of these
hadrons are assumed to be generated by the cluster decays. In recent versions

of cluster fragmentation models however, the string fragmentation schemes are
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employed to break heavy clusters into smaller clusters™®*” . The cutting line

between these two schemes is no longer solid.

1.6.4 The Independent Fragmentation Model

The independent fragmentation model™*” is another simplification
of the string fragmentation model. In the CM frame of an event, the outgoing
partons are assumed to fragment independently. An iterative scheme is
assumed for the fragmentation of each quark, which is similar to the case of
string fragmentation but without the interference from other partons. Gluons
split into a pair of parallel ¢ and §, and the resultant quarks and antiquarks
fragment on their own. This straight forward approach inevitably leads to the
non-conservation of flavour, momentum and energy during the fragmentation
process. Special treatments have to be made to the primary hadrons, to ensure
the conservation of the above mentioned properties after the fragmentation

process.

1.6.5 Monte Carlo Programs ‘
The JETSET programml is a widely used Monte Carlo (M.C.)

simulation program in the study of ete™ annihilation physics. Partons can
be generated according to the first order O(a;) or second order O(a?) matrix
element (ME) calculations or according to the parton shower (PS) calculation
as described above. The 1st order ME can only generate 2 or 3 parton events
) (9d, 93g), and the 2nd order ME can generate 2, 3 or 4 parton events (¢g, ¢qg,
9399, 939'q!), while PS can generate many more partons in an event (~ 9 at the
cutoff value of Qg = 1 GeV). The string fragmentation model is the default for
the simulation of the hadronization process in JETSET, while the independent
fragmentation model is also available in JETSET. All the parameters are well
tuned to best describe the experimental data at the Z° resonance.

The JETSET 6.3 is a fully implemented generator in the SLD
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environment. However, it does not have the scalar gluon model calculation.
The JETSET 7.3 has all the calculation for the scalar gluon model and the
abelian vector gluon model. Nevertheless, it is not fully implemented for the
detector level simulation in SLD. In the following, JETSET 7.3 is used in the
generator level study and JETSET 6.3 is used for the detector level simulation
and data correction.

The HERWIG program”" is another M.C. program used in this
analysis. It adopts the parton shower calculation as the default for parton
generation and the Webber cluster fragmentation model for the hadronization

process. Version 5.7 is used for both parton and detector level simulations.

1.7 Event Shape Variables and Jet-finding Algorithms

In order to better describe the geometries of the ete™ events, a
number of collective variables have been introduced. Many of these, such as
the thrust and sphericity variables, have become the standard measure of the
hadronic event shape. They don’t explicitly reconstruct any jet axis, which is
the job of the various jet-finding algorithms. The YCLUS and LUCLUS are

two of the most popular jet cluster algorithms to date.

1.7.1 Thrust
The thrust T is defined as:

T = maz (—ZLI—p’:ﬂ) (1.22)
E,‘ lPil
where 7 runs over all the tracks in an event , and 7 is the unit vector used to

maximize the value of 7. The thrust axis is the direction of 7 that gives the

maximum value of T in Eq. (1.22).
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1.7.2 Sphericity
The sphericity axis is defined as the direction which yields the

minimum of the total transverse momentum squared. Starting from the

momentum tensor
Mij = paiPajl/ Y P} (1.23)
[s4 o

where poi is the 7’th component of the momentum of the a’th particle.
Diagonalizing the momentum tensor M;;, one get three three eigenvalues
A1,A2,A3, with A3 > A2 > Ay > 0, and corresponding eigenvectors v;, 03,

v3. The physical meanings are:
M =min) (Fa-5)2/ > ph (1.24)
" o a
gives the flatness of the event,
A3 = m:XZ(ﬁa 221> ph (1.25)
o [+3

gives the length of the event. The symbol max(z) means to maximize the value
x by varying the direction n and similar fornrnﬁin(m). The direction which gives
the maximum value of 3 (5, - 7)%/ 3 p2 is defined as the sphericity axis 7.
The sphericity value (S) and the aplanarity value (A) are defined as:

A= %)\1 and  S= g-(xl + ) (1.26)

S determines whether the event is collinear (i.e. a two jet event) or not. A

determines whether the event is coplanar (i.e. a two or three jet event) or not.
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1.7.3 YCLUS

The YCLUS algorithm (also called the JADE jet-finding algorithm ")
is an iterative process. It defines a scaled invariant mass yi; as the square of
the invariant mass of two particles (z and ;) divided by the square of the total

visible energy Eyis. Assuming all particles are massless, one can write y;; as:

2E;E;(1 — cosbij)
E2

vis

Yij = (1.27)
where E; and Ej are the particle energies and 6;; is the angle between them.
The algorithm first finds the two particles with smallest invariant mass yij,
and combines them into one cluster by adding up the four-momenta of the two
particles. It then repeats the above procedure to the remaining particles (or
clusters), until all the scaled invariant mass left have yi; > ycut, where ycyt 15 a
user defined cut off value. The clusters (or particles) at the end of this process
are called jets, which depend on the cut off value ycut. The measurement of
number of jets as a function of ycu: is a direct measure of the strong coupling
constant a,. Jan Lauber’s thesis”® has a more detailed discussion of jet-finding

algorithms and the measurement a.

1.7.4 LUCLUS

The LUCLUS algorithm[m is based on the observation that particles
in a jet have limited transverse momenta with respect to the jet axis and hence
also with respect to each other. A distance measure d;; between two particles
with momenta F; and 7; is introduced, which does not depend critically on the

longitudinal momenta but only on the relative transverse momenta.

-

; dpip;  4pEp}sin®(0i/2)
(pipj — Pi - Pj)( =

4% = =
H pi + p;)? (pi + pj)?

(1.28)

N -

Here 6;; is the angle between the two particle momentum directions. For small
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angle of 0y, d;; can be written as:
dij = |pi x pj|/|Bi + Bl (1.29)

which can be interpreted as the transverse momentum of either particle with
respect to the direction of the combined vector momentum.

The LUCLUS algorithm works as follows. Treat each particle as a
single cluster initially. Then find the two clusters with the smallest relative
distance d;j, and combine them into one cluster with a vector momentum
equal to the sum of the two old clusters. This procedure is repeated until
the smallest relative distance between any two clusters is > djoin, a preset
value to terminate the procedure. The remaining clusters are called jets, which
represent the reconstruction of the primary partons. The definition of d;; is
not invariant under a Lorentz transformation. This scheme is therefore not

calculable in perturbative QCD.



CHAPTER 2
THE SLD DETECTOR AND THE SLC

The data used in this analysis are taken with the collision; of ete™
beams of 45 GeV each, produced by SLC, while the resultant Z9 events
are recorded by the high precision tracking system of the SLD detector.
This chapter describes briefly the characteristics of the SLC machine, the
polarization and in some detail the elements of the SLD detector and their

performances.

2.1 The SLC

The SLAC Linear Colh’derm](SLC) was build for the express purpose
of creating Z%bosons from ete™ annihilation. The construction started in 1983
and formally ended in July 1988. After two years of running for the Mark II
detector, with about 850 Z%vents recorded, it started producing Z%’s for SLD
in the summer of 1991.

Fig 2.1 shows the layout of the SLC. It consists of a 3 km long
accelerator, which accelerates both electron and positron in a straight line
to an énergy of up to 50 GeV, and two arcs which separate the electron
positron beams and bend them around to collide at the interaction point (IP).
Bunches of electrons from the source are first accelerated to 1.2 GeV and
stored in the north damping ring, where their momentum spread is reduced
by synchrotron radiation. Sets of quadrupole magnets are used to ‘cool’ the
transverse momentum spread. The cooled electron bunches are then directed
back to the main accelerator and get accelerated up to the Beam Switch

Yard. Before that, at the 33 GeV point, every alternate bunch of electrons
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Figure 2.1 The layout of the SLC. North is toward left of the page.
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is diverted onto a fixed target, where the resulting positron shower is collected
and transported back to the beginning of the linac. The positron bunches then
undergo a journey similar to the electrons — getting ‘cooled’ down in the south
damping ring and getting accelerated along with the electron bunches up to the
Beam Switch Yard. The electron and positron beams are then separated by
a dipole magnet and transported through two arcs, approximately 1 km long
each, (electrons through the north arc, position through the south arc). Before
reaching the IP, each beam is focused down to a diameter of 2 pm by a set
of superconducting final focusing quadrupole magnets (SCFF). With a typical
energy loss of 1 GeV in the arcs, the final beam energies at the IP is about 45.7
GeV.

Compared to a circular storage ring, the linear collider has the
advantages of small energy loss from the synchrotron radiation, small beam
spot size and of being able to deliver longitudinally polarized beams. A slight
disadvantage is that the beams can only be used for one crossing, while they
can be used repeatedly for a long time in a storage ring.

The luminosity of SLC can be calculated as:

NtN-

droroy

L=fx

(2.1)

where NT and N~ are the number of particles in the electron/positron bunches,
about 3 x 1019 each. f = 120 Hz is the beam crossing rate. o; X oy =
2 um x 2 um give the beam spot size in z and y. The luminosity of SLC for
the 1992 run was around 0.14 - 0.23 x103° cm™2sec™?, which is equivalent to

14 - 25 Z%s per hour.
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2.2 Polarization at SLC

The longitudinal polarization of the electron beam is a remarkable
feature of the SLC, which can hardly be obtained at a circular storage ring. In
the 1992 run, a net longitudinal electron polarization of 22% was achieved at
the IP.

Longitudinally polarized -electrons are produced by shining a
circularly polarized laser beam, of wavelength A = 715 nm, to a bulk galli'um
arsenide photocathode. The polarization of the emitted electron is about
28%. With improved cathode material and the optimum laser wavelength,
polarization of more than 90% could be achieved practically. To reduce the
error in measurement due to the beam fluctuation, the helicity of the electrons
is flipped randomly from pulse to pulse by changing the bias voltage on a Pockel
cell, which flips the laser circular polarization from right to left and vice versa.

In order to preserve the spin information from the electron source
all the way to the IP, special care has to be taken at every stage of the
accelerator. A system of spin rotators are installed to rotate the electron spin
into the vertical direction before entering the da,mping ring and to control the
orientation of the spin vectors at the end of the linac for the compensation of
electron spin precession in the north arc. Depolarization effects in the north
arc reduce the polarization from 28% at the source to about 22% at the IP.

For the measurement of the beam polarization, two kinds of
polarimeters are installed along the beam line. The Mgller polarimeter is
located at the end of the linac, which is used for diagnostic purposes. It
measures the asymmetry in the cross section of the electron-electron elastic
scattering, in a thin iron foil, due to the beam polarization. The Compton
polarimeter measures the electron beam polarization right after it passes the
IP and before the beam dump. Fig 2.2 gives an overview of the Compton

polarimeter and its relative position to the SLD detector. A circularly polarized



24

Compton Polarimeter 532 nm
Frequency Doubled
YAG Laser

Mirror
Box

PockelsCCell‘ |
Lett or Right Circularly
;.? Polarized Photons

Focugng
an
T /- Steering Lens

Mirror Box

/— (preserves circular
polarization)

Compton

Analyzer and Dump Back Scattered e~

Cerenkov
Detector

“Compton 1P~ Analyzing

Bend Magnet

Tube Detector

Figure 2.2 An overview of the Compton Polarimeter.

laser beam, produced by a frequency-doubled Nd:YAG laser, is directed to
collide the electron beam after the IP. A special set of optics is installed
along the line to rotate and preserve the (left or right) circular polarization
of the photon beam. The Compton scattering cross section of the electron-
photon beams has a large asymmetry””, which depends on the photon beam
polarization, electron beam polarization and the energy of the scattered
electrons. Accurate measurements of the photon beam polarization and the
energy of scattered electrons provide a good determination of the electron
beam polarization. The Compton back scattered electron beam goes through
an analyzing bending magnet which disperses the beam horizontally according

to the momenta. A 9-channel threshold Cerenkov counter and 16 proportional
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tubes are used to measure the momentum spectrum and hence extract the
electron beam polarization. The Compton Polarimeter makes one measurement
in about every 3 minutes during data taking, with an error of ~ 1% on the net

polarization.

2.3 The SLD Overview

The SLD detector (SLC Large Detector) is designed to carry out
precision measurements of electron-positron annihilation events at the Z°
resonance. The SLC/SLD project achieved a successful engineering run in
1991, during which ~ 360 Z% were recorded. Due to the great improvement
of the SLC performance in the 1992 physics run, a rate of 10-20 Z%/hr
was achieved, SLD accumulated about 12,000 Z% with the electron beam
polarization about 22% . Substantially more improvements have been achieved
in the 1993 data run ~the Z% production rate is up to ~ 40 Z%/hr and the
electron beam polarization is above 60%. SLD is an excellent environment for
the study of electro-weak physicsm], B physicslm as well as QCD physicsm’m.
The main components of the SLD detector include: a high precision vertex
detector for track and vertex position measurement; a high resolution central
drift chamber(CDC) for track momentum measurement; 2 pairs of endcap
drift chambers (EDC) for 47 coverage of tracking; a barrel and two endcap
Cerenkov Ring Imaging Detectors (CRID) for particle identification; a liquid
. argon calorimeter(LAC) and a warm-iron calorimeter (WIC) for particle energy
measurement and electron/muon identification; and a magnet which produces
a 0.6 Tesla magnetic field inside the SLD detector. A detailed description of
the SLD detector can be found in the SLD Design Report™. Fig. 2.3 gives a
quadrant view of the SLD detector.
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VXD-2 GEOMETRY

Figure 2.4 The over view of the SLD Vertex Detector and the arrangement
of the CCD ladders.
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2.4 The Vertex Detector

The small size of the SLC colliding beams (2 x 2um? and relatively
small extension of the interaction point (~ 650 pm™ ) allow the SLD Vertex
Detector to be positioned very close to the IP and thus give a high resolution
power in distinguishing the secondary vertex from the primary vertex.

The Vertex Detector (VXD) consists of 480 charge coupled devices™
(CCD). Each CCD contains approximately 400 x 600 pixels of size 22 um
x 22 pm, which adds up to 120 Mpixels for the whole detector. Each pixel
functions as an independent particle detecting element, providing space point
measurements of charged particle tracks with a typical precision of 5 um in each
coordinate. The CCDs are arranged in 4 concentric cylinders (with radius 29.5,
33.5, 37.5, 41.5 mm respectively) just outside of the beam pipe and centered
at the IP. Fig. 2.4 shows the arrangement of the CCDs. The effective coverage
is 75% of 4n. The readout time is 160 ms (19 beam crossings).

The Vertex Detector is a powerful tool for distinguishing secondary
vertex tracks, produced by the decay in flight of heavy flavour hadrons or 7
leptons, from tracks produced at the primary event vertex, which is a great
help in the study of heavy quark physics. Fig. 2.5 shows the CDC-VXD
reconstructed tracks from a hadronic Z° event. The heavy quark decay vertices

are clearly seen.

2.5 The Luminosity Monitor

The Luminosity Monitor and Small-Angle Tagger (LMSAT), covering
the angular region between 28 and 68 mrad from the beam axis, and the
Medium Angle Silicon Calorimeter (MASC), covering the 68-190 mrad region,
provide SLD’s small angle electromagnetic coverage (Fig. 2.6). Both LMSAT
and MASC are silicon-tungsten sampling calorimeters. The LMSAT employs

23 alternating layers of tungsten radiator plates and silicon chips on G10 circuit
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Figure 2.5 A reconstructed hadronic Z% event. The two arrows indicate
two possible B/B decay vertices. All the track are CDC-VXD linked tracks
extrapolated to the IP

boards which are directly mounted on the radiator plates, with 0.86 radiation
length at each layer. The MASC consists of 10 such layers, with 1.74 radiation
length at each layer. The front face of the LMSAT is about 101 cm away from
the IP, while the MASC front face is about 31 cm from the IP.

By measuring the rate of Bhabha scattering (ete™ — e*e™) into
the LMSAT and MASC, the luminosity monitors give a precise measurement
of the integrated SLD luminosity at the IP. The estimated systematic error on
the luminosity measurement is™*" 3%. The silicon calorimeters also extend the
electromagnetic coverage down to 28 mrad. From the energy measurement of
the Bhabha events and the theoretical calculation by the EGS™ program, the
energy resolution is found to be 20%/vE. The luminosity monitors also serve

as the shielding for the inner components of the SLD detector from background
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10 CM

Figure 2.6 The Silicon-Tungsten Luminosity Monitors (LMSAT/MASC)
radiation.

2.6 The Drift Chambers

There are 5 drift chambers on the SLD detector — one central drift
chamber and 4 endcap drift chambers. A set of high voltage wires divide each
drift chamber into a number of cells that provide a uniform electric field inside
the drift cells. A charged particle passihg through the cell leaves a track of
ionized electrons which drift towards the sense wires at a constant velocity as
defined by the direction of the electric field. From the time signals on the sense
wires and the drift velocity, one can find the space points where the ionization
took place and thus reconstruct the trajectory of the charged particle. The
curvature of the track in the magnetic field is used for the measurement of the

particle momentum.
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2.6.1  The Central Drift Chamber

H [N F id [
Bovsmy  Meweanq oot e )

Figure 2.7 A section of the central drift chamber. The notation A, U and V
refer to the axial and two stereo layers.

The central drift chamber (CDC) is a cylindrical barrel with an
inner radius of 20 cm, an outer radius of 100 c¢m, and a length of 200 cm.
There are ten superlayers inside the CDC, each with a number of cells (Fig.
2.7). Each cell has eight sense wires. Between every two axial superlayers,
in which wires run parallel to the beam axis, there are two stereo layers, in
which wires run at angles of 4+ 50 mrad with respect to the beam axis. The
eight sense wires of a cell lie within a plane. Track hits from one side of the
sense wire plane can not be distinguished from those on the other side of this
plane. The axial-stereo-stereo-axial arrangement of the superlayers can help
solve this two fold ambiguity. Both ends of each sense wire are instrumented
with read out electronics, so that the z coordinate of the hit can be obtained

through charge division, with an expected resolution of 1% of the wire length.
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Figure 2.8 Schematic drawing of readout of CDC wires by waveform samplers
(WSM). Pulses for two track, 1 and 2, are shown for the ith sense wire. The
times of arrival are different and the ratios of the charges on the two ends reflect
different z coordinates. Multiple hits on the wire can be distinguished in this
system.
Fig. 2.8 is a schematic drawing of the readout of CDC wires by the waveform
sampling module (WSM). The ratios of the charges at the two ends reflect the
z coordinate of the hits.

For the 1992 physics run, the measured momentum resolution is
o(p) ~ 0.0081p? GeV (p in GeV/c) for high momentum tracks (p > 5), and
a(p) =~ 0.010p (GeV) for low momentum tracks™. Table 2.1 is a list of the

CDC parameters.



Table 2.1 Parameters of the central drift chamber.

2.6.2

Inner/outer radius

Length

Innermost /outermost wire layer radius
Wire lengfh

Number of superlayers

Number of sense wire per cell

Number of axial/stereo sense wire layers
Number of vector cells

Stereo angle

Average drift field

Gas composition

Average drift velocity
Charge division resolution
Drift distance resolution
Track pair resolution
o(p)/p at low momentum
o(p)/p at high momentum
Polar angle o(6)
Azimuthal angle o(¢)
Longitudinal Coord. o(zg)

20/100 cm

200 cm

23.8/96.1 cm

180 cm

10

8

32/48

640

+50 mrad

1.3 kV/cm
CO;-argon-isobutane
5% - 21% - 4%

9 pm/ns

1.0% of length

100 gm

0.1 cm

1.0%

.81p% (p in GeV/c)
1.5 - 2.5 mrad

0.3 - 1.5 mrad

1.0 mm

The End Cap Drift Chambers
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The SLD Endcap Drift Chambers (EDC) system comprise 4 planar,

circular modules, 2 at each end of the detector which provide charged particle

tracking between 10° and 40° to the beam direction. Fig 2.9 gives an overview

of one of the endcap drift chambers. In the angular range between 20° and 40°

charged tracks are also detected by the SLD Central Drift Chamber. Each EDC
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Figure 2.10 A cut view of an EDC drift cell.
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Table 2.2 Main parameters of the endcap drift chambers (design). All
dimensions are in mm.

Parameter Inner Outer
Chamber Chamber

z location + 1020 + 1974

Radii (*min, Tmaz) 202.5, 970  202.5, 1630

Number of cells/superlayer 22 34

Number of superlayers/module 3

Number of sense wires/cell 6

Number of guard wires/cell 14

Number of high voltage wires/cell 15

Number of dummy sense wires/cell 2

Number of filed shaping strips/cell 40

Drift cell cross section 50.8 x 100

Sense wire diameter 25 pum

Guard wire diameter 200 pm

Sense to sense wire spacing 6.20

Sense wire stagger + 0.15

Gas CO3 - Argon - Isobutane

5% - 21% - 4%

Average drift velocity 10 um/ns

Track pair resolution 2 mm

Si‘ngle—hit drift resolution 120 pm

module consists of 3 superlayers, each rotated by 60° relative to each other,
with each superlayer consisting of many jet cells (22 for inner chambers and 34
for outer chambers), each cell consisting of 6 sense wires providing 6 position
measurements at a given z coordinates. Unlike the CDC cells, the sense wires

within an EDC cell are staggered 150 um offset in either direction from the
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central plane. The hits coming from one side of the plane have a different drift
time response than those coming from the other side of the plane (see Fig2.10 ).
This allows us to resolve the left right ambiguity. Due to the space limitation in
the endcap region of the SLD detector, only one side of every sense wire has the
readout electronics. The hit position measurement along the wire direction has
to rely on the reconstruction of the vector hits from all the three superlayers.
Table 2.2 lists the main parameters for the endcap drift chambers. '
Calculations predict an average position measurement resolution of
~ 120um. Our initial result, using cosmic ray data is & 150 gm. Fig 2.11 gives
the measured position resolution as a function of the distance from the sense

wires.

The EDC Gas system

-Both CDC and EDC use the same composition of gas, which is
75% CO2 plus 21% dry argon and 4% isobutane. The gas is constantly
flowing throuth the chambers at a rate of ~ 1.0 liters/minute for each inner
chamber and ~ 3.0 liters/minute for each outer chamber. This is achieved
by maintaining an input gas pressure 0.5 - 1.0 inch-water higher than the
atmospheric pressure, while the output is kept below or slightly above the
atmospheric pressure. The oxygen inside the drift chambers will absorb the
ionized electrons before they hit the cathode and therefore degrade the size
_ of the readout signal. A great deal of effort was made by this author, in leak
detecting the chambers and the gas supply system, to make sure the system is
air tight and hence to keep the O level inside the chambers as low as possible.
After the engineering run of 1991, a few big leaks from the chambers were fixed
and the O3 level has been kept at 35 - 70 PPM (part per million in volume)
ever since. The electron drift velocity inside the cells, which is typically about
10 pm/nsec, varies according to the variations in the gas temperature and

pressure. Fig 2.12 shows the typical variations of gas temperature and pressure
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for several days. In data taking, information such as temperature, pressure and
high voltage readings is written out to tape after a number of trigger events.
The variation of drift velocity can thus be calibrated offline.

The Drift Field Simulation and the High Voltage Setting.

Table 2.3 The best voltage values from the simulation.

Name Voltage (V)
High Voltage (Cathode Wires) 7700
High Voltage Field Shaping (510) 7581
Low Voltage Field Shaping (S1 ) 2850
Voltage Step Field Shaping 525.7
Guard Wires Voltage (G) 2900
Copper Strip Low Voltage (S0) 1950
Dummy Sense (DS) 898
Steel Mesh 2850

The high voltages are applied to the edc cells through a series of
Cathode wires (high voltage wires), Guard wires, Dummy sense wires and field
shaping strips (see Fig 2.10). All voltages are negative. The sense wires are held
_ at zero voltage, acting as collecting anodes. The field shaping strips (510, S9,
S8, ..., S1) are connected through a chain of equal resistors, so that the voltage
drop between adjacent strips is a constant, while the voltage on the low voltage
strip (S0) is held independently. The stainless steel mesh plane is electrically
connected to the strip S1 —they will always share the same voltage. The
strength of the electric field E, is mainly determined by the voltage difference
between the Cathode wires and the guard wires, while uniformity of the field

is largely determined by the field shaping strips.
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An extensive study of the drift field inside the chambers was carried
out to determine the best voltage configuration that provides the most uniform
drift field*”. The computer program, that is used for the drift field simulation,
was developed at SLAC"® and was modified for the study of the sense wire
stability. We input the position, size, tension and voltage of each wire for a

drift cell and its adjacent cells. Each field shaping strip, which is 2.5 mm wide,

same voltage. The program then calculates the drift field, electron drift velocity
- and the wire displacements. By varying the voltages on different wires, we are
able to obtain the optimal voltage setting that yields the smallest transverse
electric field and the smallest wire displacements. Table 2.3 lists such a voltage
setting while resultant electron drift map and the z/y components of the electric
field are shown in Fig 2.13 and Fig 2.14 respectively. The z coordinate is the
direction along the sense wires and the y coordinate is the direction from sense
wires to the high voltage wires, with the zero point (z = 0;y = 0) at the middle
of the cell. All the simulations are done at ATM pressure with the actual gas

composition and zero magnetic field.

2.7 The CRID
The particle identification at SLD is carried out by the Cerenkov Ring
Imaging Detectors (CRID). The barrel CRID was commissioned during the
engineering run in 1991 and was operational during the 1992 physics run". It
- contains 40 liquid radiator trays filled with CgF14 and 40 drift boxes. A vessel
filled with 70% CsFi2 + 30% N, serves as a gas radiator. Fig. 2.15 gives a
schematic view of the SLD barrel CRID.
 When a charged particle passes through a medium with a speed
greater than the speed of light in that medium, it excites the atoms as it

pass by which in turn emit coherent photons. Because of the interference, the
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emitted photons travel only at a constant angle relative to the charged track.

For a particle of velocity v, the angle of emission is given by:

cosO, = £ (2.2)

nv

where n is the index of refraction of the medium and ¢ is the speed of light
in vacuum. This phenomenon is called the Cerenkov effect, which was first
observed by P.A. Cerenkov in 1937"". The Cerenkov photons emitted from
the liquid radiator travel some distance and hit the drift box as a ring of
photons, which get converted into electrons by photon-ionization of gaseous
TMAE (Tetrakis Dimethyl Amino Ethylene). The drift box is similar to a drift
cell in the CDC, with “x—y-z pixel” resolution of ] mm x 1.5 mm x lmm. The
wire address, drift time, and charge division give an accurate measurement of
the position of the electrons. The Cerenkov photons from the gas radiator hit
the mirror and get focused back onto the drift box also as a ring. The radius of
the circle is a measure of the Cerenkov angle (O.), which in turn is a measure
of the velocity of the particle. Combining this result with the momentum
measurement from the CDC, one can determine the mass of the particle and
hence the particle ID. Fig. 2.16 shows integrated gas rings for cosmic ray
muons, Bhabha electrons and hadronic tracks. A preliminary resolution of
AO, =~ 20 - 25 mrad has been achieved. By making use of both the liquid and
" gaseous radiators, 7/K/p separation will be possible up to 30 GeV/c, and e/x
separation up to 6 GeV/c.

The construction of the Endcap CRIDs are similar to the barrel CRID.

They were not operational during the 1992 physics run.
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Figure 2.16 Integrated gas rings observed in (a) cosmic rays, (b) Bhabhas and
(c) hadronic events for p>7GeV/c

2.8 The Calorimeter
2.8.1 The Liquid Argon Calorimeter

The Liquid Argon Calorimeter (LAC) is composed of a cylindrical
barrel and two endcap calorimeters, forming three distinct mechanical and
cryogenic systems. The barrel and endcap calorimeter system cover 98% of the
full solid angle for both electromagnetic and hadronic showers. The LAC is
designed to contain about 85% of the energy of the jets in a hadronic 79 decay.

The barrel LAC, which extends from 177 cm to 291 c¢m in radius and
from —3.i0 m to +3.10 m in axial (z) direction, is composed of 288 modules
mounted within a large cylindrical cryostat and sharing a common liquid argon
volume. The full azimuth of the cylinder is spanned by 48 modules of width
~ 30 cm. The axial (z) direction is spanned by 3 modules of length ~ 2
m, attached to and separated by annular “washers” which are integral parts
of cryostat structure. In the radial direction, two separate type of modules,

electromagnetic models (EM), covering the radial region of 193 cm - 222 cm,
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and hadronic models (HAD), covering the radial region of 222 cm - 271 cm,
are mounted on top of each other (Fig. 2.17).

The two endcap sections of the LAC, which extend from 0.33 m
to 1.60 m in radius and from 2.32 m to 3.10 m in axial direction at both
sides, are each composed of 16 wedge shaped modules, again mounted within a
common cryostat and sharing a common liquid argon volume. Endcap modules
incorporate both EM and HAD sections in one mechanical unit. They are
functionally identical to barrel modules but different in module design and
construction.

LAC modules consist of alternate planes of large lead sheets (plates)
and segmented lead tiles, with liquid argon filling gaps between the planes. The
lead plates are grounded, while the tiles are held at negative high voltage and
serve as the charge collecting electrodes. The EM calorimeter modules consist
of lead plates and tiles, each of 0.2 c¢m thick, ~ 200 cm long and 25 - 29 cm
wide, separated from each other by 0.275 ¢m with liquid argon in between.
The EM calorimeter is divided radially into two separate readout sections
to provide information on longitudinal shower development for electron/pion
discrimination. The front section (EM1) contains 6 radiation lengths of
material, while the back section (EM2) contains 15 radiation lengths. The total
of 21 radiation lengths in the EM calorimeter is sufficient to contain 50 GeV
electrons, with leakage of 1-2%. The lead plates and tiles in the HAD modules
" are 0.6 cm thick, ~ 200 cm long and 29 - 35 cm wide, and are separated by 0.275
cm gaps filled with liquid argon. The HAD calorimeter is also divided into two
separate read out sections (HAD1 and HAD?2), each has one interaction length
in thickness. The total LAC thickness of 2.8 interaction lengths is enough to
contain 80 ~ 90% of the hadronic shower energy. Energy leaking out of the
LAC is measured in the WIC (which is described in next subsection). The

energy resolution for electromagnetic showers is expected to be 10-12%, while
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the energy resolution for hadrons is expected to be approximately 60%/v & “l,

2.8.2 The Warm Iron Calorimeter

The Warm Iron Calorimeter (WIC) is the outermost component of

the SLD detector. The WIC acts both as a supplementary calorimeter to catch
the leak-out energy from the LAC and as a muon identification and tracking
detector. The iron plates that form the WIC also serve as the return path-for
the magnetic field generated by the solenoidal coil (which will be described in
the next section).

The WIC consists of 14 layers of 5 cm thick iron plates in almost
any direction. These plates are separated by 3.2 cm gaps instrumented with a
system of plastic streamer tubes™”. The tubes are filled with gas — a mixture
of roughly 25% argon and 75% isobutane. At the center of each tube there is
a 100 pm Be-Cu wire with a high voltage of 4.4-4.7 kV on it. Signals induced
by the streamers can be read out from the conductive pads and strips on the
sides of the streamer tubes.

The barrel WIC is 6.8 m long with an inner radius of 3.3 m and
an outer radius of 4.5 m. It is divided into 8 sections (octant), forming an
octagonal structure. There are 17 planes of tubes in between the 14 iron plates
in each octant. At two radial positions, halfway through and at the outside, the
detectors consist of a double layer of tubes, with strip readout both parallel and
- perpendicular to the tube axis. This double layer structure gives the position
information of a tracking point in both the z and the azimuth direction, which
is crucial to the measurement of muon tracks. In all the other detector layers
the strips run parallel to the tubes as shown in Fig. 2.18, which only give the
one-dimensional information of tracking points.

The 14 iron plates in each endcap WIC is 5 cm thick and octagonal

shaped with a maximum height between 7.8 to 9 m. There are 16 layers of
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streamer tubes in the gaps, again with two double layers, one in the middle
the other on the outside. Due to the orientation of the tubes in the barrel
and the endcaps, the solid angle coverage of the outer double layer has a gap
in the region § =~ 45°. A set of chambers is built on the support arches to
cover this gap, each chamber has 44 x 8 tubes with both longitudinal and
perpendicular stripes. Along each side of the octagon there is a double layer
of these chambers, 120 cm x 375 cm in size, staggered by half a cell from each
other for better angular coverage.
In addition to being a ‘tail-catcher’ calorimeter, the WIC is a powerful
muon identification detector. Muons with energy of 2 GeV or more will
| penetrate the entire WIC with a small deflection and displacement from the
ideal trajectory due to multiple Coulomb scattering. Facing a total of 7.5
interaction lengths from the LAC plus WIC and the magnetic coil, hadrons can
rarely ‘punchthrough’ the WIC. The tracks comprising the hadronic shower will
be much more widely dispersed in position and angle than the muons céming
from the interaction region. This kind of punchthrough hadrons in the muon
sample can thus be easily identified. A reconstructed charged track from the
CDC and vertex detector is extrapolated and associated to the space points of
the double layers in the WIC. Pattern recognition of the hits within the WIC
will further discriminate the faking hadrons. Muon identification is limited
by such punchthrough hadrons, as well as unresolved or undetected 7 and K
decays into muons in the drift chambers or the CRIDs. Monte Carlo studies
indicate that hadrons faking muons can be reduced to the level of 2 x 1073,
The contamination from 7 and K decays in flight in the drift chambers and

CRIDs is expected to be 5 x 1072 at 10 GeV/c and 1.7 x 1073 at 30 GeV/c.
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2.9 The Magnet

In order to separate and detect the charged tracks from the Z° decay,
and to determine the momenta of these tracks accurately, a constant, uniform
magnetic field inside the central4drift chamber is desired. This is realized by
the magnet coil located between barrel LAC and barrel WIC. The SLD magnet
consists of a cylindrical aluminum coil of 5.9 m in diameter by 6.4 m long and
29 cm thick. About 10 km of 5 x 5 ¢cm? aluminum conductor is wound into
four 127-turn layers. The iron structures of the barrel and endcap WICs serve
as a magnetic flux return path, which ensure the uniformity of the magnetic
field inside the coil.

The lowest order polynomial approximation to the field that satisfies

Maxwell’s equations can be written as:

B, =Bl =
" rozo
2_ 9,2 (2.3)
B, =B +05B° [ — 2%
z T 020

Where the scale parameters are chosen to be r9p = 1.2 m and 2z = 1.5 m.
At the designed current of 6600 A, the measured values are: B? = 0.0203T;
B? = 0.613T. Fig. 2.19 shows the measured axial field (B;) in the central
region of the solenoid. The magnetic field described by Eq (2.3) agrees with
the measured field to within 0.05% in the CDC region and to within 0.4% in the
EDC region. The field variation within the CDC is less than 3% which can be
calibrated during the offline reconstruction. A 0.6 Tesla field gives a momentum
resolution at 90° to the beam direction of o(1/p) < 0.13% (GeV/c)™! in the
high momentum region where multiple Coulomb scattering is negligible. The
SLD magnet produces 6600 amps x 750 volts =~ 5 megawatts of heat, which

must be removed by water flowing at a rate of about 50 liters/sec.
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Figure 2.19 The measured axial field (B;) in the central region of the solenoid

plotted versus r2 — 222, the first term in the polynomial expansion of a field
satisfying Maxwell’s equations.

2.10 The SLD Data Acquisition System

The relatively sophisticated SLD detector requires a vast amount of
"data processing electronics. A schematic diagram of the SLD data acquisition
system is shown in Fig. 2.20. At each beam crossing, detector signals are
amplified, shaped, and stored in analog form waiting for the slower read out.
For the drift chambers and the CRIDs, 512 wave form points are stored in
Analog Memory Unit"" (AMU) chips. The Calorimeter Data Unit"™ (CDU),
which measures the baseline and peak of each channel, is employed in the

calorimeter. The vertex data is read out through CCDs. The WIC strip
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readout stores a discriminated signal digitally. The multiplexed data from the
AMUs and CDUs is then digitized by the local Analog-Digital Convertor (ADC)
and transmitted by optical fibers to FASTBUS modules for data correction
and compaction, and to the Aleph Event Builders"® (AEB) for further data
organization before transmission to the host computer —the VMS system.
Synchronization of the data acquisition is provided by a Timing and Control

Module (TCM) for each subsystem.

Detector .
Analog ..} Analog Analog Optical
? . FrontEnds| 7 | Storage o Digital Drivers

[Sys!em Gontrollerl

Fastbus System

Fastbus | Timing & | Command . Fastbus

Optical Optical
- mg,:' Clocks | Drivers | | Receivers| oM of COM fe—w-

!

n SLC SYNC

Figure 2.20 A block diagram of the SLD Data Acquisition System



CHAPTER 3
DATA ANALYSIS

3.1 Data Selections

The SLD physics run of 1992 started in March 1992 and ended in
September 1992, with a production rate of typically ~20 Z%/hr and a electron
beam polarization of around 22%. The analysis presented here is based on the

10,252 hadronic Z° events recorded in this run.

3.1.1 Online Event Trigger

Several types of online triggers are used to select the events to be
written to tape:

(a) The Random trigger records events at the time of a beam crossing at a
fixed rate of 1/20 Hz for the purpose of background study.

(b) The luminosity trigger requires a minimum deposited energy of 10 GeV in
each of two back-to-back towers in the luminosity monitor.

(¢) The tracking trigger requires two or more tracks to be detected in the CDC
with one pair of the tracks having an opening angle larger than 20°.

(d) The energy trigger requires a minimum deposited energy of 8 GeV in the
Barrel and endcap LAC with an individual tower threshold of 60 ADC
counts in the EM section and 120 ADC counts in the HAD section.

(e) The hadron trigger is a combination of energy trigger and tracking trigger
(with a requirement of at least 1 CDC track).

To reduce the event read time and hence to increase the livetime of
the detector, the tracking information in an event, that has an energy trigger

only, is not read out to tape. The trigger rate is typically 0.5-2 Hz, depending
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on the SLC beam conditions.

3.1.2 Hadronic Z° Event Selection

The raw data events that satisfied the trigger conditions are run

through several offline filter programs to select hadronic Z°candidates, 7-pairs,

wide angle Bhabhas, Luminosity Bhabhas and p-pairs. The following criteria

are used for the hadronic Z° filter:

(a)

(6)

(c)

The total energy in the barrel and endcap LAC must be larger than 14
GeV (Epac > 14 GeV).

To veto the events with excessive muon showers parallel to the beam axis,
the energy in the endcap WIC is required to have Ewjc < 11 GeV.

The energy imbalance (E;mnpq1.) defined below and the sphericity (S) are
required to have Fippa. < 0.9 and (Ejpper. +S) < 1.0. Events are divided
into two hemispheres by the plane perpendicular to the sphericity axis.

The energy imbalance is defined as:

Ehem(l) - Ehem(2)
Ehem(]) + Ehem(2)

Eimpar. = (3.1)

Here Epepm(1) is the total energy of particles at one side of the plane
perpendicular to the sphericity axis and Ej.., () is that of particles at the
other side of the plane. The choice of hem(1) and hem(2) is arbitrary and
it should not effect the value of E;npe. These criteria are used to filter out
the s;)—called monojet events which are caused by the beam-related events
such as beam-wall interactions and beam muon backgrounds. These events
are usually quite asymmetric in shape.

Wide angle Bhabha events are selected by requiring back to back clusters
in the EM section of the LAC, each with energy of more than 10 GeV.
Since the electrons are unlikely to pass the whole EM section (6 radiation

lengths), there is very little or no energy in the HAD section of the LAC
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for Bhabha events.

(e) The ete™ — utu~ events are selected by requiring two back-to-back

tracks in the CDC with corresponding extrapolated tracks in the WIC
pads. In addition, the two tracks are required to have momentum larger
than 10 GeV and the distance of closest approach to the IP along the beam
direction to be smaller than 1 c¢m. "

Events passing the above cuts are mostly hadronic events and tau

pairs decaying into hadrons with very few background events.

For the purpose of this physics analysis, an additional set of track and

event selection cuts are applied:

(a)
(8)

(d)

Only charged tracks are included in this analysis.

The transverse momentum of each track, with respect to the beam
direction, is required to have P; > 150 MeV. This cut is used to cut off
the low energy backgrounds such as conversions and multiple scattering
particles. Fig. 3.1 shows the distribution of P for both the 92 data
and the Monte Carlo simulation. In this and the following five plots,
the JETSET6.3 Monte Carlo with detector level simulations are used.
The detector level simulations of HERWIGS5.7 are also presented for
comparison. The M.C. data is smoothed out and is represented by dashed
lines.

The polar angle of tracks with respect to the beam axis must be i.n the
range‘ 37° < Oppack < 143°, or |cosOirack] < 0.80 . This cut ensures that
tracks are within the effective region of the CDC. As shown in Fig 3.2 ,the
track reconstruction efficiency drops off rapidly outside the cut region, at
which the Monte Carlo does not simulate well.

Each track must have a distance of closest approach (d.o.c.a.) to-the IP
less than 25 cm. This is a very loose cut. Most tracks have d.o.c.a. withina

few centimeters. Only those poorly reconstructed tracks or tracks resulting
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from the beam-wall interactions may be cut off.
Each event must have at least 5 charged tracks (Fig 3.3). The low
multiplicity 7 events are mostly removed by this cut.
The total visible energy of charged tracks in an event must be larger than
20 GeV (Fig 3.4). Part of events that have total visible energy less than
20 GeV is due to the multiple track loss along the beam pipe or into the
non-sensitive regions of the detector. Some of those low energy events are
background events caused by the beam-gas or beam-wall interaction.
The polar angle of thrust axis must be in the range 45° < Oypryqr < 135°,
or |cosbypryst| < 0.71 . Similar to cut (c), this cut is to make sure that the
events are well contained in the active region of the CDC detector. Events
with a thrust axis close to the beam direction are not well reconstructed
due to the inefficiency of the CDC in that region. As indicated in Fig 3.5,
the M.C. simulation does not agree well with the data in the region
cosOiprust > 0.8 . It is a natural choice to exclude those events from
this analysis.
Events in this analysis must have three well defined jets as determined by
the JADE jet-finding algorithmlzs), at ycut = 0.02. Jan Lauber’s thesis"®
has a detailed description of the jet-finding algorithms.

Starting with 10,252 hadronic Z° events recorded in the 1992 physics
that have CDC information written out, there are total of 2,887 3-jet

" hadronic events that passed all the event selection cuts.

3.2

1.

Monte Carlo Simulations

Several Monte Carlo programs have already bean described in chapter

The JETSET6.3 does not have the scalar gluon model implemented.

The JETSET?7.3 is therefore used in the generator level simulation for the

comparison between scalar gluon model and vector gluon model. However
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the JETSET7.3 Monte Carlo is not fully implemented for the detector level
simulation. We still use the JETSET®6.3 in the detector level simulation. Major
changes from JETSET6.3 to JETSET7.3 include™**” :
o Program internal structural changes, such as particle naming scheme,
commonblock structure, as well as calling sequence changes.
e Particle data update according to the 1988 Review of Particle Property[“].
e Inclusion of the scalar gluon model and the Abelian vector gluon model.

e More detailed information about tau and heavy quark decay process.

Table 3.1 Main parameters of JETSET6.3 and JETSET7.3 which control the

momentum distribution of hadrons

Parameter JETSET®6.3 JETSET7.3 Optimized
Name Default Name Default Value
Agcp |Pare(21)| 0.25 GeV |Parj(81)| 0.40 GeV | 0.29 GeV
Qo Pare(22)| 2.0 GeV |Parj(82)| 1.0 GeV 1.0 GeV
oq Par(12) | 0.4 GeV |Parj(21)| 0.35 GeV | 0.37 GeV
a Par(31) | 050  |Parj(41)|  0.50 0.18
b Par(32) |0.90 GeV~2 | Parj(42) | 0.90 GeV~2]0.3¢ GeV~2

Table 3.1 is a list of the main parameters, which control the
momentum distribution of hadrons, in both JETSET6.3 and JETSET7.3. The
parameter Agep is the QCD scale parameter, whose value determines the
extent to which partons will branch. @y is the invariant mass cutoff of the
parton shower, below which partons are not assumed to radiate. o, corresponds
to the width of the Gaussian transverse momentum distributions, with respect
to the underlying string direction, for the primary hadrons. a and & are the

parameters of the symmetric Lund fragmentation function as described in
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chapter 1. The optimized values are obtained by the OPAL collaboration™ in
such a way that the Monte Carlo best describes the experimental distributions

from the data at the Z° resonance.

Table 3.2 Main parameters of HERWIG version 5.7 which control the
momentum distribution of hadrons

Parameter | M.C. name | Default value | Optimized value

Agep QCDLAM 0.18 GeV 0.11 GeV
mg RMASS(13) | 0.75 GeV 0.65 GeV
Moz CLMAX 3.35 GeV 3.0 GeV

Table 3.2 lists the main parameters of HERWIG for the control of
the momentum distribution of hadrons. The parameter Agcp is the same as
in JETSET6.3 which control the branching in the shower. my is the effective
gluon mass which serves as a limit in the parton show evolution. M is the

maximum allowed mass of a cluster made from two quarks.

3.2.1 The Generator Level M.C. simulations

The M.C. distributions of zy, z2, =3, and cosfpg at the parton
level are shown in Fig 3.7, 3.8, 3.9 and 3.10 respectively, where plots (a)
- in these figures are the vector QCD simulations and plots (b) are the scalar
gluon simulations. Most of the plots are generated by the JETSET 7.3 Monte
Carlo where the scalar gluon model is available. The first order, second order
matrix element simulation, the parton shower simulation, as well as the first
order theoretical calculation are all plotted here as a comparison. The second

order matrix element simulation is not available for the scalar gluon model in

JETSET 7.3. The parton shower simulations by HERWIG5.7 Monte Carlo,
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Figure 3.7 The parton level M.C. simulations of z; distribution for (a) vector
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JETSET®6.3; dashed hist.: the 2nd order matrix in JETSET®6.3; dotted hist.:
the parton shower in JETSET6.3; + points: the parton shower in HERWIGS5.7;
solid curve: the 1st order calculation.
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for the case of vector gluon model, are also presented in these plots. All the
histogram plot are normalized in such a way that the sum of all the bins in the
plot times the bin width equals to 1. In other words, the integration of any
distribution over the plotted range equals unity.

As described in the previous section, the three jet events are
determined by the JADE jet-finding algorithm, which is also called the YCLUS
algorithm, at the cut value of ycyy = 0.02. The differences between various
order of simulations show up largely in the upper ends of the a:l., T, cosOpx
distributions and in the lower ends of the z3 distribution, where the effect of
soft gluon dominates.

Hadron level M.C. simulations for z7, z3, 3, and cosfgg distributions
are shown in Fig 3.11, 3.12, 3.13 and 3.14 respectively. In the vector QCD
case, the hadron level distributions are not so different from the parton level
distributions, which indicates that the hadronization effect is marginal in this
analysis ( ~ 20% ). In the scalar gluon simulation, the hadron level and parton
level distributions of z1, z2, 23, and cosf gk are quite different, especially in the
upper ends of the z2, cosfg g distributions and lower end of the z3 distribution.

Further study reveals that these differences are not the result of the
hadronization effect but rather the effect of the jet-finding algorithm. In a
two-parton hadronic event, the YCLUS algorithm tend to combine some soft
particles, which are perpendicular to the original parton direction, to form a
third jet. This third jet is very soft in energy, and will pile up at the lower end of
the z3 distribution (and at the upper ends of the 1, z3, cosfgg distributions).
The rate of the two parton event being identified as a three-jet event is about
3%. Thisisnot a problerﬁ in the vector gluon case, where the 3-parton hadronic
events are about 55% of the total events. The production rate of 3-parton
hadronic events in the first order scalar gluon simulation is about 4.3%. The

2-t0-3 jet misidentification of 3% causes a contamination of 41% in the final
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Figure 3.11 The hadron level M.C. simulations of z; distribution for (a) vector
QCD model, and (b) scalar gluon model. Solid hist.: the 1st order matrix in
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3-jet events in the scalar gluon simulation. That is the reason for those peculiar
peaks in the z1, 72, =3, and cosfpk distributions. Table 3.3 lists the suminary
of parton to jet correspondence at the YCLUS algorithm, with ycy: = 0.02, as
applied to 20,000 of vector QCD events and 60,000 of first order scalar gluon
events. The JETSET?7.3 Monte Carlo is used for both simulations.

Table 3.3 Summary of the parton to jet correspondence at the JADE jet-
finding algorithm, with ycy: = 0.02, for vector and scalar gluon models. Events
with more than 3 jets are not listed here.

20k vector events 60k scalar events

2-jet | 3-jet | total rate| 2-jet | 3-jet |total rate

9-parton | 7,800 | 239 | 40.2% |55,775(1,635| 95.7%
3-parton | 1,218 {9,721 | 54.7% | 251 (2,325 4.3%

Other jet-finding algorithms can not eliminate this 2-parton to 3-
jet misidentification either. Table 3.4 lists the summary of parton to jet
correspondence at the LUCLUS algorithm, with Djein = 2.5 (see section 1.8),
as applied to 20,000 of first order scalar gluon events. The 2-parton to 3-jet

misidentification is also about 3%.

Table 3.4 Summary of the parton to jet correspondence at the LUCLUS
" algorithm, with Djoin = 2.5, for the scalar gluon model

2-jet | 3-jet

2-parton | 18,489 | 597
3-parton 3 834
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3.2.2 The Detector Level MC simulations

The SLD detector level simulation is based on the CERN developed
GEANT package(w version 3.11. A detailed model of the SLD detector,
which imitates the geometry and materials of the real SLD detector in
the best way possible, is implemented into GEANT. The GEANT program
simulates the process of all the final state particles passing through the
detector, taking into account the effect of energy loss, secondary decays,
bremsstrahlung, Compton scattering, multiple scattering, delta-ray production,
gamma conversions, hadronic interactions, photoelectric interactions, and
electron-position annihilation. A great deal of effort has been made to ensure
that the M.C. simulations give a good description of the SLD data®. We
use the measured resolutions in the drift chamber, such as the charge division
resolution and drift time resolution, to reconstruct the simulated M.C. data.
Some hardware malfunctions, such as some readout electronics being non
operational during part of the run or high voltages being off for one superlayer
of the CDC, are also simulated in the Monte Carlo. Fig 3.15 shows the thrust
distribution for the raw data and the M.C. simulations. Good agreement is
obtained between the data and the M.C. simulations.

Fig 3.16 and Fig 3.17 are the distributions of z1, z2, x3, and cosfgk
after the detector level M.C. simulations and after passing all the data selection
cuts as compared to the hadron level simulations with no cuts. The JETSET6.3
and HERWIG5.7 Monte Carlos are used here.

3.3 Corrections for Hadronization and Detector Effects

As shown in Table 3.3, the production rate of 3-jet events in the
scalar gluon model is a factor of 10 smaller than in the vector QCD model.
It is therefore not practical (CPU limited) to do a detector level simulation

that yields a compatible number of 3-jet hadronic events in the scalar gluon
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Figure 3.15 The thrust (T) distribution of raw data and Monte Carlos.

model. In the following, I correct the data for hadronization and detector
effects according to the vector QCD simulations. I compare the corrected data
with the parton level simulations from vector gluon and scalar gluon models,
assuming that the hadronization and detector effects are independent of the
models. The commonly used bin-by-bin correction method is employed here
to obtain the correction factors for hadronization effects and detector effects
separately.

For the parton-to-hadron level corrections, each bin in plot (a) of
Fig 3.7, 3.8, 3.9 and 3.10 is divided by each bin in plot (a) of Fig 3.11, 3.12,
3.13 and 3.14.

_ Vparton ('l-)

B Vhadron(i) (32)

Cph(i)

Where ¢ is the bin number, Vparion(f) is the value in the ith bin of the parton

level histogram and Vj,4,0n(?) is the value in the ith bin of the hadron level
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histogram. All the plots are normalized to 1. Fig 3.18 and 3.19 give the
parton-to-hadron correction factors for z;, z3, z3, and cosfgg distributions.
The corrections are within 20% from unity. Similar procedure applies to the

hadron-to-detector level corrections.

Vhadron (z)
Vdetector (z)

Cha(i) = (3.3)
Where ¢ is the bin number, Vy44r0,(¢) is the value in the ith bin of the hadron
level histogram with no cuts and Vietector(2) is the value in the sth bin of the
detector level histogram which passes the same data selection cuts as does
the SLD data. Fig 3.20 and 3.21 give the hadron-to-detector level correction
factors for the z1, z2, 3, and cosfgk distributions. Here the JETSET6.3 and
HERWIGS.7 are used in the M.C. simulations.

These two correction factors are multiplied together with the number

of entries D() in the experimentally measured distributions, to give the

corrected value Viorr. (2) at the parton level:

Veorr. (1) = Cyn (%) - Cha(i) - D(3) (3.4)

3.4 The Raw Data and Corrected Data
With a total of 10,252 hadronic Z° events recorded in the 1992 physics
run that ilave CDC information written out, there are total of 2,887 3-jet
hadronic events that passed all the event selection cuts.
~ Fig 3.22, 3.23 are the raw data distributions of z;, z2, z3, and
cosfpy compared with the full detector level M.C. simulations (JETSET6.3
and HERWIG5.7). Both the raw data and the M.C. distributions pass the
same data selection cuts. The good agreement between the data and the Monte

Carlo is evident.
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full detector level M.C. simulation. They all pass the same data selection cuts.
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level. dashed histo: HERWIG5.7 M.C. simulation at detector level.
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cuts. Cross points: raw data; Solid histo: JETSET6.3 M.C. simulation at
detector level. dashed histo: HERWIG5.7 M.C. simulation at detector level.
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Performing a bin-to-bin correction to the raw data as described in
the previous section, Eq (3.4), we get the corrected data at the parton level
(Fig 3.24 and Fig 3.25). Here the first order matrix element simulation
of JETSET7.3 is used in calculating the parton-to-hadron correction factors
Cpr(), and the parton shower simulation of JETSET®6.3 is used for the hadron-
detector level correction factors Crq(¢). The errors on these plots are statistical
errors only. Also shown in Fig 3.24 and Fig 3.25 are the first order M.C.
simulations for vector QCD model and scalar gluon model as a comparison.

The corrected data clearly favours the vector QCD model.

3.5 Systematic and Statistical Errors

The systematic errors of a measurement can be divided into two
categories: experimental systematic errors and theoretical errors. The
experimental systematic errors come from the detector acceptance, efficiency
and resolution, the detector simulation and reconstruction programs, and from
the track and event selection cuts applied to the data in this analysis. The
theoretical errors arise from the choice of hadronization schemes, the higher
order corrections, etc. In this analysis, the data is compared with different
theoretical models in terms of distributions of measured variables. I calculate
the systematic errors for all the bins in the histogram plots. In the end, all
systematic errors are added in quadrature for each bin and plotted on top of
the the statistical errors.

The following set of variations are applied to data and Monte Carlo
in order to estimate the experimental systematic errors from various sources:
<a> Loosen the cuts on the polar angle of track and thrust axis: cos8;,4ck < 1.0,

c080;1,ust < 0.8. This and the next variation is to estimate the error due
to the detector acceptance cuts.

ab> Tighten the cuts on the polar angle of track and thrust axis: coslyqcr <
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0.71, cosOiprust < 0.6.

<c> Loosen the energy, momentum and impact parameter cuts: Impact < 100
cm, P; > 0.0 GeV and F,;; > 0.0 GeV.

<d> Tighten the energy, momentum and impact parameter cuts: Impact < 7.5
cm, P, > 0.2 GeV and Eyis > 25.0 GeV.

<e> To estimate the errors due to the momentum resolution, the absolute
momentum of each track is smeared by 3%Xx a random number, which
is uniformly distributed between —1.0 and 1.0.

af> Since momentum resolution of the CDC is worse in the z direction, we
smear only the z compohent of the momentum by 3% x a random number
as in variation e.

ag> The effects of the track reconstruction inefficiency is estimated by
randomly removing 15% of the track in M.C. events, and calculate the
change in the correction factors.

Variations a—d are applied to both the Monte Carlo (JETSET6.3) and
the raw data. The hadron-to-detector level correction factors Cyy are calculated
for each case and the raw data passing cuts a — d are corrected accordingly.
Variations e, f, g are only applied to the JETSET6.3 Monte Carlo. The hadron-
to-detector level correction factors Chq are calculated accordingly to correct the
raw data that passes the standard data selection cut (as described in section
3.1). In the above seven cases, the parton-to-hadron correction factors Cpn
are obtained from the 1st order matrix element simulation of JETSET7.3 as
shown in Fig 3.18 and Fig 3.19. Fig 3.26 gives the hadron-to-detector level
correction factors Cy4 for the above seven cases. Errors from other experimental
uncertainties, such as the error in the measurement of the magnetic field in
the CDC region and the contamination from background beam-gas, beam-wall
events are estimated to be negligiblem] .

The theoretical errors are estimated as following:
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Figure 3.26 The hadron-to-detector level correction factors for different

a - d; (b) z3 with cuts e - g. These plots should be compared with Fig 3.20.

" variations. (a) z1 with cuts a - d; (b) z1 with cuts e - g; (c) z2 with cuts

ah> Use the 2nd order matrix element simulation of JETSET7.3 to calculate

the parton-to-hadron correction factors Cpp and use the parton shower

simulation of JETSET®6.3 to calculation the correction factors Crq. The

raw data passing the standard selection cuts are used here for correction.

<> Similar to variation h but use the parton shower simulation of JETSET?7.3
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Figure 3.27 The hadron-to-detector level correction factors for different
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cuts a - d; (b) cosfpg with cuts e - g. These plots should be compared with
Fig 3.21.

to calculate the correction factors Cyp.
4j> Use the parton shower simulation of HERWIG5.7 Monte Carlo to calculate
all the correction factors and correct the raw data with standard cuts.

The difference between corrected data from each variation and the
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Table 3.5 The corrected data with experimental systematic (Fezp.), theoretical

systematic (Eypeor.) and statistical(Esiqe.) errors for z; and z2. The first and
the sixth columns are the lower edges of the histogram bins.

ry |data Eezp. Etheor. Estat.| z2 |data Eexp. Eiheor. Estat.

0.6400.00 0.00 0.00 0.00 |0.475}0.00 0.00 0.00 0.00
0.66410.02 .044 .010 .009 |0.510}0.48 .077 .082 0.08
0.68810.05 .055 .005 .017 ]0.545|0.90 0.12 0.13 0.10
0.71210.15 .059 .013 .036 |0.580(1.09 0.18 0.12 0.11
0.736{0.26 0.10 .021 .052 [0.615[{1.45 0.35 0.19 0.12
0.760(0.29 0.10 .040 .051 |0.650(1.50 0.32 0.29 0.12
0.78410.66 0.21 0.12 .090 j0.685(1.65 0.30 0.13 0.13
0.808(0.63 021 0.13 .082]0.720(1.68 0.78 0.17 0.13
0.832(0.87 037 0.05 0.10 j0.755|1.96 0.18 0.31 0.14
0.856|1.62 033 0.10 0.15]0.790}2.48 0.77 0.10 0.17
0.88012.50 0.68 0.48 0.18 }10.825{2.39 0.36 0.24 0.17
0.9044.08 082 042 0.24 J0.860]2.95 0.17 0.13 0.19
09281744 163 028 0.34 10.895|3.57 0.44 0.09 0.22
0952151 130 081 0.58 |0.930(4.36 0.53 0.59 0.26
097616.82 1.09 1.72 0.39 |0.965[1.96 0.25 0.97 0.17

standard set of corrected data (as shown in Fig 3.24 and Fig 3.25) gives an
estimate of the systematic errors from each source. Errors from various sources
are ploted in Fig 3.28 and Fig 3.29. Adding up errors from variations <ap - 4gp
in quadrature gives an upper limit to the experimental systematic error at each
bin. Similarly, adding up errors from variations <h> — <jp> gives the theoretical

systematic error at each bin. They are all listed in table 3.5 and table 3.6.
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Table 3.6 The corrected data with experimental systematic (Eezp.), theoretical

systematic ( Ejpeor.) and statistical( Egsqq.) errors for z3 and cosfpg. The first
and the sixth columns are the lower edges of the histogram bins.

r3 |data Eezp. Eiheor. FEstat. | cosOgk| data Eezp. Eiheor. Estat.

0.000}0.25 0.04 053 003 | 0.00 1046 0.16 0.05 0.06
0.045|3.02 043 070 0.21 | 0.05 |0.56 0.09 0.03 0.07
0.0901297 079 0.18 0.19] 0.10 {050 0.34 0.06 0.06
01357232 035 0.13 0.15) 0.15 j0.62 0.13 0.03 0.07
0.180|2.31 055 011 0.15] 020 {062 015 0.03 0.07
0.225(1.65 0.29 017 0.12] 025 {069 0.15 0.04 0.08
0.270}1.75 0.17 039 0.12 ] 030 |0.67 0.12 0.08 0.08
0.315]1.68 023 0.17 0.12} 035 [0.68 0.15 0.05 0.08
0360|151 025 0.16 0.11 | 040 |099 0.31 0.09 0.10
0.4051.44 0.17 027 011 } 045 (094 026 015 0.10
0.450{1.16 045 0.09 0.10 } 0.50 |0.88 0.34 0.08 0.09
0.49510.98 0.12 006 0.08] 055 [1.06 0.28 0.12 0.10
0.5400.33 .064 .065 0.04 | 0.60 |[1.09 0.37 0.07 0.10
0.58510.19 .055 .098 0.03 | 0.65 |1.12 0.19 0.10 0.10
0.630.027 .024 .032 009} 0.70 |1.24 0.16 0.15 0.10
0.75 |1.67 0.36 0.13 0.13
0.80 |1.55 0.08 0.14 0.11
0.85 |1.83 0.46 0.13 0.12
090 |1.66 0.22 0.62 0.10
095 |0.13 0.05 1.47 0.01

3.6 Results and Conclusions
The corrected data with the systematic errors plotted on top of the
statistical error are shown in Fig 3.30 and Fig 3.31. The errors are assumed

to be symmetric. As one can see, the data clearly favours the vector gluon
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Figure 3.28 The systematic errors from various sources for z; and z9
distributions. Plot (a): the experimental systematic errors for z1; Plot (b):
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model. The scalar gluon model by no means can describe the data. To be
quantitative, the x? calculations between data and vector QCD simulation and
between data and scalar gluon simulation are performed, which are listed in
table 3.7. The x%’s per degree of freedom for the vector gluon case are less
than 1.0, which indicates that the systematic errors may be over estimated.
In the scalar gluon case, the x?’s per degree of freedom are all larger than
1.0 (4.5 on average). Since any two of the variables zj, z2, z3, and cosfpk
are independent of each other, we can calculate the combined x? for any two
variables. For variables z; and cosfg, the total xz is 146.7 ( with the Number
of Degreés of Freedom NDF = 32), which gives a probability™ of 1.3 x 1016
for the scalar gluon model. Similarly, from the combined variables of z; and
z3, we get a probability of 1.1 x 10717 for the scalar gluon model. We therefore

conclude that the spin of the gluon is 1.

Table 3.7 x? between data and vector/scalar gluon predictions.

z Ty z3 cosOpk
Vector Gluon 9.05 3.22 6.75 3.66
Scalar Gluon 57.1 72.0 85.5 74.7
NDF 13 13 14 19
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APPENDIX A

THE CROSS SECTIONS FOR e*e~ ANNIHILATION

Before derive the cross section for the ete™ annihilation process, a

few mathematical tool will be very helpful. First the trace of a product of

~-matrices:
Tr(v*yP777") = 4% g7 — 4°79% + g*°4"7) (A1)
\
Tr(v*y*Py77’) = — 4ie*P7° (A2)
Tr(Y*Ya87776) = — 4i€apys .
where the completely antisymmetric alternating tensor *# 7= —€qp8+6 1s equal

to +1 for (a, B,7,6) an even permutation of (0, 1, 2, 3), is equal to —1 for an
odd permutation, and vanishes if two or more indices are the same. One can

write it as a determinant of the following matrix:

& & & &
&8 & 8 &
& & 6 &

6§ & & &

eaﬁ'r& —

- where 55 is the usual Kronecker delta, which is 1 for @ =  and 0 other wise.
Using the fact that the determinant of a matrix equals to the determinant of

the rotated matrix, one can easily prove that:

62 82 62 63
B B B 8
Ea,@‘yﬁeijmn: 52' 6j bm  bn
§ & bn 6

¢ &8 &, &

(A.4)
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If two of the indices are equal, one can get:
> €9 e jmn = —2(838% - 8567) (A.5)
]

As shown in Fig 1.1, two channels contribute to the process ete™ — ff, here

f is any final state fermion. At the center of mass frame, which is also the lab.

frame in this case, the cross section can be written as:

do_ 1|
a0~ 64r2s ||

My + M.f? (A.6)

The v and Z° matrices are:”

—-efo

S

My = 5y ule)al () (A7)

_ =€) e oo R
M, = =25t (ve - 0 Ju(e ) Dwuley = o'W (AB)

where Q¢ is the charge of the fermion in the unit of e, f(s) is given as:

1 s
fls) = sin?20, s — M2 +iM,T,

(A.9)

There are three terms that contribute to the cross section {M,[?,
|M:|? and (MI,MZ + MIM7) . In calculating these terms, I will average over
the initial state spins sum over the final state spins. The 4 exchange term can

be written as:

My [P = — i L¥ L, (A.10)

where
L = (e )y v(et)v(et )y ule”)

spin

=Y Gale7 )1k ga(e )0y ) sus(e”) (A11)

8,8’

=Tr(Fy*E")
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Figure A.1 The process ete™ — ff

Ly = 3 o(Fr u(£)alf)v*v(f) |
spin (A.12)

= Tr('ni)

- here we have used following spin relations while masses are neglected:

> as(e)uale”) = (F+ msa
i (A.13)
Y y(etYvg(et) = (F —m)p,

L]

The four momenta (k, k', p,p') are defined in Fig A.1. Using Eq (A.1) one can
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get the following product:

Tr(Ev*ky") Tr(¥vopa)

=16k”"k”p’apﬁ(gm"g”” _ gm g,uu +gmu nu)(gaugﬁp _gaﬂguu +gaugﬂu)

=32[(p- k)¢’ - k) + (o' - K)(p- k)]
=45%(1 + cos?6)

(A.14)

here we have used the momentum relations (see Fig A.1): p- k' =p' -k =

2(1 —cosf) and p' - k' = p- k = §(1 + cosf). Hence we get:
M, ? = 84Q§(1 + cos®8)
The Z% channel contribution can be written as:
2 4|f ( )|
IM|* = —=—LtL,, s

where

Lyvs =Y 8(F)(vs — apy® )Y u(Na(f v (vg = apy*o(f)

spin
= Tr(# (vs + apy*)wbra(vr — as7”))
= (U% + a})Tr(;‘/’y,,m#) - 2UfafT7'(i5”75’7uI57u)

L =" (e )(ve + aer*)7 v(et) (e )r# (ve — aer®ule”)

spin

= (v + &) Tr(F+*F1") = 2veac Tr(F'v*+* ")
As demonstrated in Eq (A.14), we have:
Tr(Ev* k") Tr(wiw)

=32[(p- k)0 - k) + (¢ - K)(p- k)]
=45%(1 + cos’0)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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Using Eq (A.2) and Eq (A.5), one can simplify the following product:

Tr(Kv°v* k") Tr(fv°vobva)
=ppa k"™ k" Tr(V Yo 187s) Tr(v3 ™7 7"")
=16P:,Pﬁ klmkneauﬂyem;;nu

(A.20)
=— 16p;pﬁk'mkn€pyaﬂ€;wmn
=32[(p' - K')(p- k)= (' - k)(p- )]
=8s%cosb

By the nature of the anticommutation tensor, one can prove that the other

two terms in the product of L‘;VLWJ will vanish. Thus, we have:

4 2
IM.|? = M[‘isz(vz + a?)(v? + a?)(1 + cos?0) + 4v;a Veae(8s2cosh)]
452 PR FANC faf

= e4|f(s)|2[(v; + a?)(vz +a%)(1 + cos®8) + 8vfafveaccost]
| (A.21)

With similar procedures, the interference term can be calculated as:
(MIM, + MIM,) = 2¢* Re[f(s)l[vevs(1 + cos?0) + 2acagcosf]  (A.22)

Using the relation:

1/ 2ra

2 _
CrM: = G,

(A.23)

and putting all the contributions into Eq (A.6), we finally get Eq (1.1) of the

_text:
do 7T012Q‘2f 9 aQsGyMZ(s — M?)
—_—= 142%)— = z 1+ 2%) + 2acayz
dZ 23 ( z ) 2\/5[(3— MZ)2+M22F%] ['Uevf( z ) € f ]
G%Mﬁs

+ (v + af)(v)zc + a%)(l + 2%) + 8veacvyasz]

(1.1)

167[(s — M2)2 + M2I? [



APPENDIX B

THE NORMALIZED DISTRIBUTIONS OF z; AND cosfgg

B.1 Relations Between Jet Angles and Scaled Jet Energies

B

Figure B.1 A three-jet system.

In the ete™ collision, the laboratory frame is also the center of mass
frame. The total momentum of the resultant three-jet event should be zero
p1+p2+p3 = 0. The three momentum vector form a triangle, triangle ABC in
Fig. B.1, with three angles labelled as w;, wy and w;3. The following relations
become obvious:

Il _ el _ _Ipsl
stnw)  Stnwg  Stnws

(B.1)

For massless partons, one has |p;| = 5 Ecr (1 = 1,2,3). It is easy to see that
wi = m — 6;, where §; is defined in Fig. 1.4. Eq. (B.1) can therefore be rewritten
as:

Z1 2 3

sinf;  sinfy,  sinbs

it

c (B.2)
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Using Eq. (1.11), one can determine the value of C as:

2

_ B.3
sinfdy + sinfy + sinbs (B.3)

Hence one come up with Eq. (1.13) of the text (: = 1,2,3).
2sinb; (1.13)

T= sinfy + sinfy + sinbs —

Now go back to Fig. 1.4. Let’s denote p; to be the vector momentum of jet
i in the Lab frame, p; to be the vector momentum of jet i in the center of
mass (C.M.) frame of jet 2 and 3. And define p; = |5:] and p; = |5;'|. Since
partons are assumed to be massless, one has E; = p; and E] = p. The theory
of special relativity requires that the invariant mass of any system should not
change after the Lorentz transformation. For the system of jet 1, 2 and 3, such

a requirement leads to:
(Ex + Ex + E3)? = (B} + By + E3)? ~ (1) (B.4)

Here we used the fact that total vector momentum is zero in the Lab frame,
and is pi’ in the C.M. frame of jet 2 and 3. Since p, = p}, the above equation

can be simplified into:

(p1+ p2 + p3)® = 4p7 + 4P\ p) (B.5)

_ For the system of jet 2 and 3, the preservation of the invariant mass under the

Lerentz transformation leads to:
(Bz + E3)? = (B2 + 53)? = (B + E})* (B.6)

which can be simplified into:

(p1 +p2 +13)(p2 + p3 — p1) = 4p (B.7)
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Subtracting both sides of Eq. (B.7) from both sides of Eq. (B.5) respectively,

and dropping the common factor of 2, one gets

(p1 +p2 + p3)m = 20 P} (B.8)

Finally, we apply the requirement of the invariant mass preservation to the

system of jet 1 and 2:
(Br+ E2) — (1 + 52)* = (By + By)” — (51 +13')° (B.9)

By definition (see Fig. 1.4), we have pi’ - 53’ = —p|phcosfgk. So Eq. (B.9)can
be simplified into:

(p1 + p2 + p3)(p1 + P2 — p3) = 2pipy(1 + cosOpk) (B.10)

Comparing with Eq. (B.8), we finally get the Eq. (1.14) of the text.

cosbpy = D2 —p3 _ 2 — I3 (

D I3

B.2 Limits on Jet Variables

For a three-jet event to pass the jet finding algorithm at a fixed value

of yc (= Ycut), the combined invariant mass of jet 2 and 3 must be greater than

VYcEem.
2B, E3(1 — costy) > y.E? (B.11)

Here 6; is the angle between jet 2 and 3. Since z; = 2E;/Ecm (i = 1,2,3), one

has:

—;-xzrrg(l —cosb1) > y. (B.12)

As indicated in Fig. B.1, the following triangular relation holds true:

costh = —coswy
_z%-’rm% -m:f (B.13)
2m2z3
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Due to the relations in Eq. (1.11) and Eq. (1.12), the condition .(B.12)become:
21 <1 -y (B.14)

Combining with the natural limit z; > 2/3, one has the limits on z; as:

Sz1<1-y (B.15)

Wl o

The maximum of z3 is when z2 = 23 = 1 — y.. So we have T2|maz = 1 — Y.
The minimum of zo is when 23 = z3 and 7 = T1|maz. Hence we have

Z2|min = (1 + yc)/2. Combining them together, we have:

1
“;yc <zp<1-ye (B.16)
Similarly, we can get the limits on z3 as:

2y. <73 < g B.17)

Letting ¢ = 21 — z2 (¢ > 0), one can obtain from Eq. (1.14):

2(1 +¢)

= B.1
=3 cosbpk (B.18)
From condition (B.14), we get the following limits on cosfgk.
1 b 3yc 2C 1 - 3yc
cosfpg < - < B.19
RS T oy 1-pe ™ 1-w (B19)
Finally, the limits on cosfgk is:
1-3
0< cosbpg < ——2° (B.20)

1 -y —
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B.3 The Normalized Distributions in Vector Gluon Model

Eq. (1.7) is the differential cross section in terms of the scaled energies
of the quark and antiquark (z Z). It needs to be written in terms of z;, z2,
which are the scaled energies of the two most energetic jets. Since Eq. (1.7) is
symmetric over the exchange of z and Z, it can also be written as:

1 d%0Y(z,z) z? + 2

oo dzdZ = N(l —z)(1 - z) (z 2 7) (B.21)

Where z and Z are the scaled energies of the quark and antiquark. Defining
Ty = %%: as the scaled energy of the gluon and considering the three cases:
T2T>ay, T 229> %, 2y 2T 2> T, one can obtain the following relational

table:

T2>2T 214 T2T327 Tg 2T 2%

T =T T =2 T =2

I =19 I=2z3 T =2z3

Ty = T3 Ty = T Ty = T1 (B.22)

The differential cross section in terms of z1, z2 is the sum of these three cases.

Ldzav(:cl,:cz) B z? + 72 ] ( T,% ) =T

oy dridzy (1-2z)(1-1x) z1, T2

LN :1:2+:i2— J(m,i) r=n

T1,T2

24 =2 = I =TI
LN T+ J<w,w)

z1,22 T=2—2x1— 19
(B.23)

One can determine that the Jacobian of z, & with respect to z;, z is £1 for

all the three cases, in other word, |J| = 1. Replacing z,Z by the appropriate

terms in 3,z as shown, one can simplify the above equation into:

_l__dzarv(zl, z2) N 23+ 23+ (2 - 21 — 22)°

oo dzidzs (1—-z)(1 - :1:2)(:1:1 +xz9—1) A




111
Since the Jacobian of z1,z2 with respect to z1,z3 is 1, one can also write the
differential cross section in terms of z;, z3.

_}_dZUV(ml,ivs) _ x§+x§+(2—m1—m3)3
oo dridzs  ~ (1—z1)(1 —z3)(z1 + 23— 1)

(B.24)

From Eq. (1.14), one can get z5 = 1 — (1 — cosfpk ). So the Jacobian of z1,z9
with respect to z1,cosfgk is:

z1,c080EK

The differential cross section in terms of 1, cosfgx can thus be written as:

Iy

5 (B.25)

_1_dzav(a;1,cos()EK) _ m%+w%+(2-—x1-—xz)3 9 Ty
oo dzideosbpx  (1—z)(1—az2)(z1+22—1) 2
_ N4z% + (2= 21)3 + 323(2 — z1)cos’ 0k
2z1(1 — z1)(1 — cos?0gk)

(B.26)

- At fixed value of z1, from the relation zz > 3, one can obtain the limits on

9 as
I
1- 5 <zo< I (B.27)
Integrating Eq. (1.15) over zz with the above limits, one get the normalized
z7 distribution:

1 daV (z1)
fv(w1)=;; -

=N/“ z:{+x%+(2——$1—x2)3 dr
1-2 (1 — .’El)(l - :vg)(zl + z9 — 1)

H h(z1) | h(z) (B.28)
_ [ T T1 T .
__/l_m<g( 1)+m1_y+ ” )dy
= o(@)(CE — 1) + (o 2EEL = z)

5 -+ h(:cl)ln-———2(1 — $1)

Here y = 1 — 2, and the functions g(z), h(z) are given as

ﬂﬂ=§ﬂ£:a (B.29)

(1-2)
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N (2 — 3z + 32?)
z(l —z)

h(z) = (B.30)

Using the relations 1 — yc > z1 > 22 > 23 > 2y., one can easily find the limits

on z; at fixed value of z2, x3 and cosfg respectively:

maz (22,2 — 2z2) < 21 <1 —yc (B.31)
T3 .
1-—- £y <z <min(l —y.,2—2z3) (B.32)
2?2 << (B.33)
3 —cosbpr — 1= TV '

Integrating equations (1.15), (B.24) and (B.26) over z; with limits given in
above three equations, one gets the normalized distributions of z2, z3 and

cosf gy respectively:

fY(es) =

g(22)(1 — 22 — ye) + h(z2)In52% + h(mz)lnl—'y'cﬂ if zg >
g(z2)(2z2 — 1 — yc) + h(z2)in P + h(:z:g)lngﬂc:l if 23 <

1—1‘2

WY Wit

Y
(B.34)

2(1— 3 T . e
g(z3)(1 = Sz3) + h(zs)in 22 4 h(zg)lngrligy if as 2 FR

g(z3) (B = yeo) + h(zs)lngﬁ%l + h(z3)ing: if 23 < 1—+2ﬂ
(B.35)

¥ (z3) = {

(1 —yc)(3 — cosfEk)
2
1 —cosbgk

Ye(3 — cosbek)

1V (cosbpx) =A(cosfpk)in

+ B(cosOpk) + C(cosfgk)

+ D(cosfpk)in
(B.36)
Where g(z) and h(z) are given in Eq. (B.29) and Eq. (B.30), and A(z), B(z),

C(z) and D(z) are given as follows.

Az) = (B.37)

1 — z?
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BNB+2%)[(1-y)(3~2) -2

B(z) = — 36— 2)(1 - 27) (B.38)
w23 — )2 —
O(z) = - M 4‘23)_(:1 = ) -4 (B.39)
2:2
D(z) = A—gg’—’:iz—)—) (B.40)

B.4 The Normalized Distributions in Scalar Gluon Model
Let’s rewrite the Eq. (1.8) with the condition z > Z.

26°(z, % —z— )2
Uiodm(di’_) — M (f_ = _):_C) - %(3-95_5) (c>2) (B4l

Summing up all the three cases as listed in (B.22), one can write the (SG

model) differential cross section in terms of zj, z7 as:

_l_dzas(azl,:z:z)

oo dridze
B (2-z-%)) R _ r=n
=M (l—m)(l—i:)—-g@—x—x)] {i:zz}
- _ ; = (B.42)
(2-z2-2)2 R _ T=n
M ———(3-z-Z
B s {izz_z,_m}

[ (2—-2-%)?° R N R
+M.(1_$)(1_E)—B—(3—CL‘—$)- { }

Here we have already taken into account the fact that |J| = 1 for the three

cases. Changing z, Z into z1, z; in the above equation, we get the Eq. (1.16)
of the text.

_l_dzas(ml,:cz)
gg dmldmg (1 16)
221 —z1) + 23(1 — 22) + (2 — 21 — 22)% (21 + 22 — 1) —

=M Q—e0( -2 123 = 1) - R
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Similar to Eq. (B.24) and Eq. (B.26) of the vector gluon case, we have the

corresponding differential cross sections of the scalar gluon case:

Ldzas(:ch z3)

oo dridzs (B.43)

- M z%(l —-z1)+ mg(l.—- z3)+(2—z1 — .'1:3)2(:E1 +z3—1) _ R,

1—z1)(1—z3)(z1 +23—1) ]

s a2 _ 2 ;
l_dza (z1,cos0EK) - M 4 — 327 + 21(3z1 — 4)cos“0pk —1?-:131 (B.44)

oo dzridcosbgk 2(1 — z1)(1 — cos?bpk 277

Integrating Eq. (1.16), (B.4‘3) and (B.44) over z; (or z3), one can then get
normalized distributions of 1, z2, z3, and cosfgg for the scalar gluon model.
Since the limits on those variables are exactly the same as in the vector gluon
model, I will not repeat the above process but write down the final expressions
of the normalized distributions of z;, 2, z3, and cosfOgk.

32)1

(ar) = (wl)(—-——l)+Ml—i2“—‘l)+Mzn 71

T1 2(1 — z1)

FS(a) = g%(22)(1 — 22 — yo) + MInZ2te 4 Minl=mz  ifzy > 2
Y7 65 (e2) (202 — 1 - yo) + MinZEEe 4 Min22=L i oy < 2
(B.46)
Sy = S(23)(1 = §a) + MIn2UZ2) 4 Mingpsars if op > M
gs(fvs)(zz - ye) + Mln—(%l + Mlnz—;: if 23 < —3&
) (B.47)
FS(cosbex) = BS(cosbpk) + C5(cosbEk) + MIn 1 = cosOpx (B.48)

2 y(3—cosbpg) —

Where functions g5(z), B(z) and C5(z) are given as:

g°(z) = M (4 —% R> (B.49)

l—-2z
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Spy_ MEB+2*)[(1—y)(3 —z) — 2]
B(e) = 23 — 2)(1 - 22

(B.50)

M3 — R)[(1 — y)*(3 — 2)° — 4]

S —
C*(e) = 43 - o)2

(B.51)
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