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coefficients are evaluated, the subroutine Polarmix puts together the magnetic dipole 
polarization matrix using the dot product calculations performed in Polarmat. Polarmix 
returns an array, E, to the calling subroutine, Initialize. This multidimensional array, as 
explained earlier, is proportional to the scattering tensor given by Eq. 7-2.1, and it carefully 
tracks which nuclear sites and energy levels were involved in the scattering process for 
each scattering tensor element and for various incident and scattered photon directions 
(EWALD only does a two-beam calculation in which there is a forward and only one 
reflection scattering channel). These terms vary insignificantly over the hyperfine 
resonance energy range and can therefore also be calculated just once (as was the case for 
photoelectric scattering). 

Once Initialize is finished with its calculations, the subroutine Dispersion will 
be ready to solve the linearized dispersion relation given by Eq. 7-4.19 where, in the most 
general case, G,i, is given by 7-8.1. When called by Dispersion, subroutine StrFact 

- constructs the G,, matrix as a function of energy and angle. Then, by making a call to 
Cgg of the EIS-LIN-PACK code, Dispersion finds both the eigenvalues and 
eigenvectors of G,,. Next, a thick crystal approximation is applied if the crystal is thick 
enough to cause floating point overflow problems. Then, subroutine TandR-coeff is 
called to solve the boundary value relation, Eq. 7-4.30, where, in general, B, is not 
decoupled. These last two steps are explained in more detail in the next section. Clineq 
of EIS-LIN-PACK is used to solve the simultaneous equations represented by the 
boundary value equation. 

Once the boundary value equation is solved, the reflected and transmitted 
amplitudes are constructed. Dispersion then proceeds to calculate the reflected and 
transmitted electric field intensities by summing the square moduli of the sigma and pi 
electric field amplitudes. The amplitude and intensity calculations are finally sent to the 
main calling program, Ewald, for further analysis such as computing energy averaged 
angular spectra, angle averaged energy spectra, time spectra, or fitting to experimental data 
(none of these detailed calculations are shown here). 

For the EWALD code below, program Ewald and subroutines Dispersion and 
TandR-coeff are combined in one Fortran code called EWALD.FOR. Subroutines 
Initialize, Strfact, Polarmat, Polarmix, YIG-basis, FeB03_basis, and Cdot are 

combined in another Fortran code called NUCLEAR.FOR. 
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Program Ewald 
c This Program Uses the Ewald-Laue Dynamical Diffraction Theory to Compute the Reflection and 
c Transmission Coefficients from a Crystal. 
c In this Program : x = sigma polarization component ; y = pi polarization component 
c VARIABLES: (See INITIALIZE Subroutine for more comments on variables) 
c devE = (incoming photon energy) - (Bragg energy) (eV) ; devB = (incoming angle) - (Bragg angle) (radians) 
c fconv = conversion factor from Energy to Frequency (/IeV-set]) 
c Rx,Ry = Bragg reflected amplkudes ; Rxm,Rym = Laue transmitted amplitudes 
c Txm,Tym = Transmission amplitudes ; R,T P reflected and transmitted field intensities 
c LINK TO: NUCLEAR, EIS-LIN-PACK 
c D.E.Brown 1990 (SSRLSTANFORD) 

Complex Txm(6OO),Tym(6OO),Rx(~O),Ry(soo),Rxm(6~),Rym(6OO),uin(4,l) 
Real Freq(600),T(600),R(600) ; Complex zo,xpol;ypol ; Real’6 b 
Common uin ; Common Rsl zo,Txm,Tym,Rx,Ry,Rxm.Rym 

c Initializing Parameters 
Call Inlialize(xpol,ypol.Erange,Trange,devEO,devBO,zo,sinBragg,b,fconv,Npts,~lg) 
uin(l,l) = xpol ; uin(3,l) P ypol ; uin(2,l) = 0.0 ; uin(4,l) = 0.0 
If(iffg .Eq. 1) Then ; delE0 = Erange/(npts-1) ; devE = devE0 - ErangeQ.0 - delE0 ; devB = devB0 

E-G ’ 
delth I Trange/(npts-1) ; devB = devB0. - TrangeQ.0 - deith ; devE = devE0 

Do 1 KK=l ,npts 
lf(ilg .Eq. 1) Then ; devE = devE + delE0 ; Freq(kk) I devPfconv 

Else ; devB = devB + detth 
Endif 

1 Call Dispersion(devB.devE,R(kk),T(kk),b,kk) 
I==> Call a Fast Fourier Transform Routine to take the Fourier Transform of Rx,Ry having abscissa 

points contained in the array Freq ===> This gives the Reflected Time Spectrum 
End .t*t..*~*****.t.*tt**..*******.***.*~”*~*~****.**...***.......*.~*.**.~*~.********~*~.*.*..**~***~***...~.***.** 

Subroutine Dispersion(devB,devE,R,T,b,i) 
c This subroutine solves the Dispersion equation for Dynamical Diffraction 

Parameter (nl = 600) 
Complex w(4),g(4,4),e(4),Txm(nl),Tym(nl),Rx(nl),Ry(nl),Rxm(nl),Rym(nl),Tx(nl),Ty(nl) 
Real gr(4,4),gi(4,4),vr(4,4),vi(4,4),wr(4),wi(4),fvl (4),fv2(4),fv3(4),thick(4) ; Complex zo ; Real’8 b 
Common nsl zo,Txm,Tym,Rx,Ry,Rxm,Rym ; Common ldispl e,g,thick 

c Initializing Parameters 
n = 4 !order of g matrix ; nm = 4 !rows of g matrix ; matz = 1 !compute eigenvalues and eigenvectors 

===> Set Tx(i),Ty(i),Rx(i),Ry(i),Rxm(i),Rym(i),Txm(i),Tym(i) to zero 
Call StrFact(devB,devE,b,g) ! Scattering Amplitude Computation 

c Computation of Eigenvalues (returned in w) and Eigenvectors (returned in g) of g-matrix. 
Call Cgg(nm,n,g,matz,w,fvl ,fv2,fv3,gr,gi,vr,vi,wr,wi,ierr) 

,Do L=l,n 
c Thick crystal approx. is used to take care of floating point overflow problem. Note that the conditional can be 
c true only in the Bragg case 

ff(Real(zo’w(l)) Gt. 72.0) Then ; thick(l) = 0.0 ; e(l) = 1.0 
Else ; e(l) = Cexp(zo’w(l)) ; thidc(l) = 1 .O 
Endif 

Enddo 
c Computation of Transmission and Reflection Coefficients 

Call TandR_coeff(Tx(i),Ty(i),Txm(i),Tym(i),Rx(i),Ry(i),Rxm(i),Rym(i),b) 
T = Txm(i)‘Conjg(Txm(i)) + Tym(i)‘Conjg(Tym(i)) 
ff(b .Lt. 0.0) Then ; R = Rx(i)‘Conjg(Rx(i)) + Ry(i)‘Conjg(Ry(i)) 
Else ; R = Rxm(i)‘Conjg(Rxm(i)) + Rym(i)‘Conjg(Rym(i)) 
Endif 
Return 

! Bragg Case 
! Laue Case 

Subroutine TandR_coeff(Tx,Ty,Txm,Tym,Rx,Ry,Rxm,Rym,b) 
Complex ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 ex(4),Tx,Ty,Rx,Ry,Txm,Tym,Rxm,Rym,atx,aty,arx,ary,norm 
Real thick(4) ; Real’8 b 
Common uin ; Common /disp/ e,v,thick 
n=4 !order of Bc-matrix ; nm = 4 !rows of Bc-matrix ; nr E 1 !columns of x and uin arrays 
If(b .Lt. 0.0) Then 

Do1 J=l,4 ! BRAGG CASE 
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1 ex(j) = e(j) 
Else 

Do5J=l,4 ! LAUE CASE 
5 ex(j) = 1 .O 

Endii 
Do 15 J=l,4 

Do K=l,4 
lf(Cabs(v(k,j)) .Gt. 1 .Oe-20) Then ; norm = v(k,j) ; GoTo 10 

Endii 
Enddo 

10 DOOxx(j) = v(1 ,j)/norm ; Dl Oxx(j) = v(2,j)lnorm ; DOOyx(j) = v(3,j)Inorm ; Dl Oyx(j) = v(4,j)Inorm 
15 Bc(l,j) = DOOxx(j)*thick(j) ; Bc(2,j) = ex(jyDlOxx(j) ; Bc(3,j) = DOOyx(j)‘thick(j) ; Bc(4,j) = ex(j)*DlOyx(j) 

c Boundary Condition Constraints--Evaluation of Simultaneous Equations: Bc*x = uin 
Call Clineq(Bc,uin,x,nm,n,nr,aa,ierr) I Bc’x = uin computation 

c Computation of Tx,Ty,Ry,Rx by adding up all eigen amplitudes 
Do 20 K=l,4 

atx = x(k,nr)‘DOOxx(k) ; arx = x(k,nr)‘Dl Oxx(k)‘thick(k) 
aty = x(k,nr)‘DOOyx(k) ; ary = x(k,nr)‘Dl Oyx(k)+thick(k) 

f(b Lt. 0.0) Then ; Rx = Rx + am ; W=RY+ary 
Else ; Ftxm = Rxm + a&e(k) ; Ftym = Rym + ary’e(k) 
Endif 

20 Txm = Txm + atx’e(k) ; Tym = Tym + aty’e(k) 
Return 

! BRAGG CASE 
! LAUE CASE 

Subroutine Initialize(xpol,ypol,Erange,Trange,devEO,devBO,zo,snBrgg,b,fconv,npts,iflg) 
c This Subroutine Receives and Computes the Initialization Factors needed to Calculate Nuclear and 
c Photoelectric Structure Factors and their associated Polarization Matrices 
c VARIABLES: (See ORIENT-CRYST Subroutine for more comments on variables) 
c U = Net Orientation Matrix ; Erange = Spread of Energy to be Examined (eV) ; Trange = Spread of Angles to 
c be Examined (radians) ; devEO,devBO = Central Deviation Energy (eV) and Angle (radians) ; Npts = # of points 
c of Angle or Energy scan ; Nptsi = # of integration points; iflg = 0 --> angular scan, 1 --> Energy scan 
c con = Relative Concentration of resonant nuclei ; DW = Debye Wailer Factor for Photoelectric Scattering 
c LM = Lamb-Mossbauer Factor for Nuclear Scattering ; efg = Electric Field Gradient direction ; to = Thickness 
c of Crystal (cm) ; Z = #of Nuclei per site per unit cell ; QQ = Quadrupole Shift (mm/set) ; isomer = Isomer 
c Shift (mm/set) Hint = Internal Magnetic Field (gauss) ; spindp = Spin Dipolar Anisotropic Field (gauss) 
c canting = canting angle (deg) ; zo = -ii’k’to/sinBragg , k = wavenumber ; xpol,ypol = Horizontal (Sigma) and 
c Vertical (Pi) Polarization factor ; Hz = magnetic field direction in Lab coordinate system 
c Pjk(x,y) = Polarization matrix for Photoelectric scattering 
c Yijk(n,x,y) = Polarization matrix element where: x,y = polarizations 
C i = mg - me = difference in quantum level between ground state and excited state 
C = 0,l ,or -1 for dipole transitions 
C j,k = 0 or 1 where 0 = transmission channel, 1 = reflection channel 
C n = 1 for incoming photon, 2 for diff ratted or scattered photon 
c Eigenvector(x,y,I,iw,isite,igmn) = Scattered Photon Amplitude 
c Eigenvalue(l,iw,isite) = Scattered Photon Energy 
C isite = Particular Cluster of atoms within unit cell that have same internal field parameters 
C I = index for ground state quantum level ; iw = index for excited state quantum level 
C igmn I 1 -> gOO,2 -> glO,3 -> gOl,4 -> gll gmn is proportional to the scattering tensor 

: NOTE: 
x,y = polarizations elements of gmn(x,y) (see comments in STRFACT) 

c (1) Incoming Beam (for Zero Bragg angle) is in the positive Lab1 direction 
C K-incident = (cosBragg)y-Lab - (sinBragg)z-Lab ; K-diffracted = (cosBragg)y-Lab + (sinBragg)z-Lab 
c (2) The Quantum axis in this program is the Internal Magnetic field direction. 
c (3) Initially, Hz is the External Magnetic Field Direction in the LAB coordinate system when hp & hs 
C directions are known. Later, Hz is changed to point in the Internal Magnetic field direction. 
c NEED: 
c (1) Data File Called nuclear.dat (see read statements for variables needed) 
c (2) Data File Called atompos.dat --this contains hyperfine information and unit cell positions of the nuclei 
c LINK: Link with EWALD, ORIENT-CRYST, ELECTSTRFACT, SPLITTING 
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Real Eigenvalue(2,4,15),fvO(4),fvl(4),fv2(4),fv3(4),dl (4,4),d2(4,4),d3(4,4),d4(4,4),d5(4),d6(4) 
Real’8 pi,rad,c,hbar,hbarc,sinBragg,Vo,phiKi,phiH,norm,beta,gamma,Ee,gammaO,psi,canting,b,rx,ry,rw 

Complex ii,Go,xpol,ypol,zo ; Real ie,lg,Lambda,isomer,LM ; Character Crystal’10 
Common /stup/ hbarc,sinBragg,Vo,phiKi,phiH,psi,Ki,Kf,gammaO ; Common /ink/ sin2Brgg,sinBrgg2_EO 
Common lstrfl POO.POl ,PlO,Pl 1 ,Go,Eigenvector,Eigenvalue ; Common /Bfield/ Hz,HzLab,Hx.Hy 
Common /conv/ rad,pi,ii ; Common /site/ isites 

===-> Read in from nuclear.dat file: Crystal; a; alpha: Ee, to; iflg, Npts; Erange, devB0; 
Trange, devE0; hp; hs; S; Hz; h; phiH, phiK, psi; con, LM; DW; 
xpolr, xpoli; ypolr, ypoli 

ii = (0.0,l.O) ; pi = Da@-1 .OdO) ; rad = pill8O.OdO ; c = 2.99792dlO !Speed of Light (cm/set) 
hbar = 6.58217d-16 !Planck Constant (eV-set) ; Re = 2.8179388-l 3 IClassical Electron Radius (cm) 
unu = 3.15245e-12 !Nuclear Magneton (eV/Gauss) ; uex = -0.1549 !Magnetic Moment of Excited State (nm) 
ugr = 0.09024 !Magnetic Moment of Ground Stats(nm) ; Ttot = 140.95e-9 !Total Lifetime (set) 
Alp = 8.23 !Internal Conversion Coefficient ; lg = 1.012.0 lGround State Nuclear Energy Level 
le = 3.0R.0 !First Excited State Nucl. Level ; CG13 = Sqrt(l.O/3.0) !Clebsch Gordan Coeff. for Lines 3,4 
CG23 = Sqrt(4.OI3.0) !Clebsch Gordan Coeff. for Lines 2,5 (Sqrt(2) Polarization Factor added) 
CGl 1 = 1 .O !Clebsch Gordan Coeff. for Lines 1,6 ; Trad = Ttot*(l .O + Alp) !Radiative Lifetime (sac) 
hbarc = hbar’c ; Go = ii+hbar/(2.0*Ttot) ; fconv = 1.0/(2.0*pi*hbar) ; Polfac = 3.0/(16.O’pi) 

c Normalizing polarizations to unity 
xpol = Cmplx(xpolr,xpoli) ; ypol = Cmplx(ypolr,ypoli) 
norm = Csqrt(xpol’Conjg(xpoI) + ypol’Conjg(ypol)) ; xpol = xpol/norm ; ypol = ypol/norm 

c Set-up Crystal Orientation for Diffraction. 
Call Orient_cryst(Ee,a,alpha,hp,hs,h,S,U,sigmai,pii,sigmaf,pif,b) 

Hzlab(1) = Hz(l) ; Hzlab(2) = HZ(~) ; Hzlab(3) = HZ(~) 
Coeff = -4.0’pi**2’LM’con’Polfac/((2.0*lg + 1 .O)‘(Trad/hbar)*(Ee/hbarc)“3’Vo) 
eCoeff 3 -2.O’pi’Re’hbarc**2/(Ee”2*Vo) 
sin2Brgg = 2.0’sinBragg’Dsqrt(l .O - sinBragg’*2) ; sinBrgg2-EO = sinBragg”2/Ee 
zo = -ii’Ee’to/(hbarc’gammaO) ; Lambda = 2.0’pi’hbarcIEe ; snBrgg = sinBragg 

===> Read in from atompos.dat file: isites 
Do 10 i&e=1 ,isites 

===> Read in from atompos.dat file: efg; 00, Hint; isomer, spindp; canting 
e2qQ = 2.0*QQ’Ee/(c’lO.O) ; isomer = isomer’Eel(c’lO.0) 

c Construct basis of quantum coordinate system where the magnetic field direction is the z-axis 
===> Call YIG-basis(Hzlab,Kf,Ki,Hint,Hx,Hy,Hz) when Crystal is YIG 

C !Incoming Beam Hits Plane from Above; Scattered beam travels in: 
Call Polarmat(pii,sigmai,pii,sigmai,Ki,Ki,YOOO,YlOO,POO) ltransmission channel. 
Call Polarmat(pii,sigmai,pif,sigmaf,Ki,Kf,YO1O,Y1lO,PlO) !reflection channel. 

C !Incoming Beam Hits Plane from Below; Scattered beam travels in: 
Call Polarmat(pif,sigmaf,pii,sigmai,Kf,Ki,Y001,Y101,P01) ltransmission channel. 
Call Polarmat(pif,sigmaf,pif,sigmaf,Kf,Kf,YOl 1 ,Yl 11 ,Pll) !reflection channel. 

c Determining Polar Angle Beta and Azimuthal Phi Angle Between Electric Field Gradient and Quantum z-axis 
Call Mv(U,efg,efgLab) !Transforming efg to Lab coord. system ; Call Dot(efgLab,efgLab,norm) 
Do 1 I=l,3 

1 efgLab(i) = efgLab(i)/Dsqrt(norm) 
Call Polar(efgLab,Hx,Hy,Hz,beta,gamma) ; Hint = Hint + spindp*(3.0’Dcos(beta)“2 - 1 .O) 

c Computation of Eigenvectors and Eigenvalues 
ng = 2.0’19 + 1 .Ol ; ne = 2.0’18 + 1 .Ol 

Call Splitting(alph,beta,gamma,eta,lg,e2qQ,Hint,ugr,unu,Eigenvaluelg,Eigenve~orlg,ng, 
+ fvO,fvl,fv2,fv3,dl.d2,d3,d4,d5,d6,4) 

Call Splitting(alph,beta,gamma,eta,le,e2qQ,Hint,uex,unu,Eigenvaluele,Eigenvectorle,ne, 
+ fvO,fvl ,fv2,fv3,dl,d2,d3,d4,d5,d6,4) 

c Nuclear Geometrical Structure Factor Calculation for H and -H 
===> Read in from atompos.dat file: Z 

Do 5 I=1 ,z 
===> Read in from atompos.dat file: rx, ry, MI !Coordinate positions of atoms in unit cell 

5 FH(isite) = FH(isite) + Cdexp(ii’2.0’pi’(h(l)‘rx + h(2)‘ry + h(3)‘rw)) 
F-H(isite) = Conjg(FH(isite)) ; FO(isite) = Z 

c Computation of Nuclear Scattering Amplitude of Photon 
Do lOiw=l,ne 

Call Polarmix(Eigenvector,Eigenvectorle,CGll ,CG23,CG13,YOOO,YlOO,Coeff’FO(isite),isite,iw,l) 
Call Polarmix(Eigenvector,Eigenvectorle,CGl 1 ,CG23,CG13,YOlO,Yll O,Coeff”FH(isite),isite,iw,2) 
Call Polarmix(Eigenvector,Eigenvectorle,CGl 1 ,CG23,CGl3,YOOl ,YlOl ,Coeff’F_H(isite),isite,iw,3) 
Call Polarmix(Eigenvector,Eigenvectorle,CGl 1 ,CG23,CGl3,YOll ,Yl 11 ,Coeff’FO(isite).isite,iw,4) 
tf(Real(Eigenvectorig(1 ,l)) .Gt. 0.0) Then 
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c +1/2 corresponds to first eigenvalue of Ground State 
Eigenvalue(1 ,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(1) + isomer 
Eigenvalue(2,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(2) + isomer 

Else 
c +1/2 corresponds to second eigenvalue of Ground State 

Eigenvalue(1 ,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(2) + isomer 
Eigenvalue(2,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(1) + isomer 

Endii 
10 Continue 

c Electronic Structure Factor Calculation 
Call ElectStrFact(Crystal,h(l),h(2),h(3),sinBragg,Lambda,DW,FH(isite),F_H(isite),FO(isite)) 

Do 15 N=1,2 
Do 15 M=l,2 !Photoelectric Scattering Amplitude 

POO(m,n) = eCoeff’FO(isite)‘POO(m,n) ; PlO(m,n) = eCoeff’FH(isite)‘PlO(m,n) 
15 PO1 (m,n) = eCoeff’F_H(isite)‘POl (m,n) ; Pl 1 (m,n) = eCoeff’FO(isite)‘Pll (m,n) 

Return 

c This Subroutine Computes the Scattering Elements of the Dispersion Equation for Dynamical Diffraction 
c For the 2x2 matrices: element (1 ,I) = xx, (1,2) = xy ; (2,1) = yx. (2,2) = yy 
c In this Program : x = sigma polarization component ; y = pi polarization component 
c VARIABLES: (see INITIALIZE comments) 
c alpha = deviation from bragg parameter ; b = asymmetry parameter 

Complex g(4,4),g00(2,2),g11(2,2),g01(2,2),g10(2,2),gg00(2,2),gg11 (2,2),ggO1(2,2),gglO(2,2),POO(2,2), 
- 1 PO1 (2,2),PlO(2,2).Pll(2,2),Eigenvector(2,2,2,4,15,4),Res,ResJ,Go 

Real’8 b ; Real Eigenvalue(2,4,15) 
Common /init/ sin2Brgg,sinBrgg2_EO ; Common lstrfl POO,POl ,PlO,Pll ,Go,Eigenvector,Eigenvalue 
Common /site/ isites 
Res = devE + Go !Resonance Denominator Term 

c Incoming Beam Hits Plane from Above; Scattered beam travels in: 
c go0 ==> transmission channel ; gl0 ==> reflection channel 
c Incoming Beam Hits Plane from Below; Scattered beam travels in: 
c go1 ==> transmission channel ; gll ==> reflection channel 

Do 1 N=1,2 
Do 1 M=l,2 

1 ggOO(m,n) = POO(m,n) ; gglO(m,n) = PlO(m,n) ; ggO1 (m,n) = PO1 (m,n) ; ggl l(m,n) = Pt 1 (m,n) 
Do 5 I-1 ,isites 

Do5iw=l,4 
Do5 J=l,2 

ResJ = Res - Eigenva!ue(j,iw,i) 
Do5 N=1,2 

Do5M=1,2 
ggOO(m,n) = gggO(m,n) + Eigenvector(m,n,j,iw,i,l)/ResJ 
gglO(m,n) = gglO(m,n) + Eigenvector(m,n,j,iw,i,2)/ResJ 
ggO1 (m,n) = ggOl(m,n) + Eigenvector(m,n,j,iw,i,3)ResJ 

5 ggl 1 (m,n) = ggl 1 (m,n) + Eigenvector(m,n,j,iw,i,4)/ResJ 
alpha = -2.O’sin2Brgg*devB ; el = b’alpha12.0 

c Construction of g-matrix pertaining to dynamical diffraction formula 
g(l,l) =ggOW,1) ; g(1,2)=ggOl(l,l) ; g(1,3) = ggOO(l,i) ; g(l A = ggO1(1,2) 
g(2,l) = b’gglO(l.1) ; g(2,2) = b’ggll(l,l) - el ; g(2,3) = b*ggl0(1,2) ; g(2.4) =b’ggll(l,2) 
g(3,l) = ggOW1) ; g(32) = ggOlP.1) ; g(33) = ggOO(22) ; g(W) = ggOl(Z2) 
g(41) = b’ggl 0(2,1) ; g(42) = b’ggl 1 (Z1) ; g(4,3) = b’gglO(2,2) ; g(4,4) = b’ggl 1(2,2) - el 
Return 

Subroutine Polarmat(pii,sigmai,pif,sigmaf,Ki,Kf,YO,Yl,P) 
c Polarmat Computes Polarization Mixing Matrices 
c VARIABLES: (See INITIALIZE subroutine for more comments on variables) 
c Ki(f) = incoming(diffracted) photon direction (k-unit vector) 
c coski(kf) = angle between incoming(diffracted) photon direction and quantum axis 
c phiki(kf) = azimuthal phi angle of incoming(diffracted) photon direction in quantum spherical coord. system 
c thetai = theta unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system 
c phii = phi unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system 
c sigmai = sigma polarization unit vector of incoming(diffracted) photon ; pii I pi polarization unit vector of 
c incoming(diffracted) photon ; Hx,Hy,Hz = Quantum Basis unit vectors in Lab coord. system 
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c YlOi(f) = Vector Spherical Harmonic for J=l ,L=l ,M=O ; Yl 1 i(f) = Vector Spherical Harmonic for J=l ,L=l ,M=l 
c P = Polarization matrix for Photoelectric scattering 

Complex YO(2,2,2),Yt (2,2,2),Yl Oi(3),YlOf(3),Yll i(3),Yl lf(3),P(2,2),ii 
Real’8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 HzLab(3),rad,pi,norm,Pss,Psp,Pps,Ppp,phiki,phikf,theta,sinki,sinkf,coski,~skf 
Common /Bfiefd/ Hz,HzLab,Hx,Hy ; Common /site/ isites ; Common Iconvl rad,pi,ii 

c Nuclear Angular Factors 
Call Dot(Hz,Ki,coski) ; Call Dot(Hz,Kf,coskf) ; sinki - Dsqrt(1 .OdO - coski”2) 
sinkf = Dsqrt(1 .OdO - coskf”2) ; Call Polar(Ki,Hx,Hy,Hz,theta,phiki) 
Call Polar(Kf,Hx,Hy,Hz,theta,phikf) ; Call Cross(Hz,Ki,phii,norm) 
lf(norm .Gt. 1 &f-30) Then ; Call Cross(phii,Ki,thetai,norm) 
Else 

Do 1 I=l,3 !If Ki //-H then phi and theta unit vectors 
1 phii = sigmai ; thetai = pii !are set to sigma and pi polarizations 

Endif 
Call Cross(Hz,Kf,phif,norm) 
If(norm .Gt. 1 .Od-30) Then ; Call Cross(phif,Kf,thetaf,norm) 
Else 

Do 5 I-l ,3 
5 phif(i) = sigmaf(i) ; thetaf(i) = pif(i) ! If Kf // H then do the same as stated above 

Endif 
Do 10 lz1.3 

YlOi(i) = ii’sinki’phii(i) ; YlOf(i) = ii*sinkf”phif(i) ; Yl 1 i(i) = (thetai + ii’coski’phii(i))‘Cdexp(ii’phiki) 
10 Yl If(i) = (thetaf(i) + ii’coskf’phif(i))‘Cdexp(ii*phikf) 

c Construction of Polarization Matrices 
cM=O 

Call Cdot(YlOi,sigmai,YO(l ,l ,l).l) ;. Call Cdot(YlOi,pii,YO( 
Call Cdot(YlOf,pif,Y0(2,1,2),0) 
YO(2,2,2) = YO(2,1,2) 

:1,2,1),1) ; Call Cdot(YlOf,sigmaf,Y0(2,1 ,l),O) 
; Y0(1,1,2)=Y0(1,1,1) ; YO(1,2,2)=YO(1,2,1) ; YO(2,2,1)=YO(2,1*1) 

cM=l‘ ’ 
Call Cdot(Y11i,sigmai,Yl(l,l,l),1) ; Call Cdot(Ylli,pii,Y1(1,2,1),1) ; Call Cdot(Yllf,sigmaf,Y1(2,1,1),0) 
Call Cdot(Y1 lf,pif,Y1(2,1,2),0) ; Y1(1,1,2)=Y1(1,1,1) ; Yl(1,2,2)=Y1(1,2,1) ; Y1(2,2,1) =Yl(2,1,1) 
Y1(2,2,2) = Y1(2,1,2) 

c Ele&onic.Anguiar Factors 
Call Dot(sigmai,sigmaf,Pss) ; Call Dot(sigmai,pif,Psp) ; Call Dot(pii,sigmaf,Pps) ; Call Dot(pii,pif,Ppp) 
P(l,l)=Pss ; P(1,2) = Psp ; P(2,l) = Pps ; P(2,2) = Ppp 
Return .***.*~.t*t***..*t**ttt********~.**********.*~****,*~*.*~****.*~**....*~*..**********************~*~*.*****.*..*** 

Subroutine Polarmix(E,Ele,CGl ,CGO,CG-1 ,YO,Yl ,F,isite,iw,igmn) 
c Polarmix Computes Scattering Tensor Elements of Dispersion Equation 
c VARIABLES: (See Comments in Subroutine INITIALIZE) 
c NOTE: (1) Spherical Harmonic Yl = Y(M=+l) I Complex Conjugate Y(M=-1) 

Complex E(2,2,2,4,15,4),Ele(4,4),Y0(2,2,2),Y1(2,2,2),F,Eil,Efl,Ei2,Ef2 
Do 1 N=1,2 ! M I Q Not allowed for magnetic dipole scattering 

Do 1 M=1,2 
c +1/2 ground state amplitudes 

Eil = CGl’Conjg(Ele(1 ,iw))‘Yl (l,m,n) + CGO’Conjg(Ele(2,iw))*YO(l ,m,n) + 
+ CG lConjg(Ele(3,iw))‘Conjg(Yl (l,m,n)) 

Efl = CGi*Ele(l ,iw)‘Y1(2,m,n) + CGO’Ele(2,iw)‘Y0(2,m,n) + CG-1 l Ele(3,iw)‘Conjg(Yl (2,m,n)) 
c -l/2 ground state amplitudes 

Ei2 = CG l’Conjg(Ele(2,iw))‘Yl(l ,m,n’) + CGO’Conjg(Ele(3,iw))*YO(l,m,n) + 
+ CG?Conjg(Ele(4,iw))‘Conjg(Yl(l ,m,n)) 

Ef2 = CG t’Ele(2,iw)‘Y1(2,m,n) + CGO’Ele(3,iw)‘Y0(2,m,n) + CGl’Ele(4,iw)‘Conjg(Y1(2,m,n)) 
E(m,n,l&isite,igmn) = F’(Eil*Efl) ! +1/2 

1 E(m,n,2,iw,isite,igmn) = F’(Ei2’Ef2) ! -l/2 
Return .*****~***~.*****t.**~****~***~~*****.~***.****.*.**~*****.~.~**.*~*****.*.~~**““**.~~“~*~**~*.~**.***~**...**.* 

Subroutine YIG-basis(Hzlab,Kf,Ki,Hint,Hx,Hy,Hz) 
c This subroutine Constructs the Quantum Coordinate System for YIG or similiar systems 
c The Hxdirection is perpendicular to both Hz and the diffracted wavevector. 

Real”8 Hzlab(3),Hx(3),Hy(3).Hz(3),Kf(3),Ki(3),norm 
ff(Hint .Lt. 0.0) Then 

Do 1 1=1,3 
1 Hz(i) = -Hzlab(i) 
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Hint = -Hint 
Else 

Do 5 I=1,3 
5 Hz(i) = Hzlab(i) 

Endif 
c Hx is perpendicular to Hz and Kf; however if Hz is parallel to Kf, Hx is perpendicular to Hz and Ki. 

Call Cross(Hz,Kf,Hx,norm) ; If(norm .Lt. 1 .Oe-3) Call Cross(Hz,Ki,Hx,norm) ; Call Cross(Hz.Hx,Hy,norm) 
Return **..**t.******~.***t*****~*.*****.*.,.****************..~.*.*.~**.**..*~****~*****~****.***.***************~**** 

Subroutine FeB03_basis(U,canting,Hzlab,Kf,Ki,Hint,Hx,Hy,Hz) 
c This subroutine Constructs the Quantum Coordinate System for FeB03 or similiar systems *,**.*~*,*.*tt.*.*.*.*~*****,***,*.~***..***.*.*~*~***...*.*****.~...****.*****~.~***.**~***~*~.******~~.***~**~ 

Subroutine Cdot(u,v,w,i) -- 
c This Subroutine computes the Dot product of a Complex vector “u” and a real vector “v”. lt returns the dot 
c product “w”. 
c i = 0 ==> w = u*ComplexConjugate(v) = u’v for v real 
c i = 1 =-r> w = v’ComplexConjugate(u) 
****~**..~t*~~~**.****.**~*****~.*..*..***.******~.**“*.*~***~*~.*********~***..*****~*~~~****~***.**********~** 

Subroutine Splitting(alpha,beta,gamma,eta,I,e2qQ,Ho,u,un,Val,Ham,nH,M,fvl ,fv2,fv3,hr,hi,vr,vi,wr,wi,L) 
c This Subroutine determines the Energy Eigenvalues and Eigenvectors for a Nuclear State that has both Static 
c Electric Quadrupole and Magnetic Dipole Interaction 
c VARIABLES: 
c Ham Contains the Eigenvectors -- original Hamiltonian matrix is destroyed by Subroutine CGG 
c Val Contains the Eigenvalues ; nH = Order of Hamiltonian Ham(i,j) ; I = Nuclear Energy Level 
c un = Nuclear Magneton (Ev/Gauss) ; beta = angle between Electric Field Gradient and Magnetic Field 
c gamma = azimuthal angle between Electric Field Gradient and Magnetic Field (radians) 
c alpha = Third Euler Angle needed when the Electric Quadrupole Interaction is non-axially symmetric (radians) 
c eta = (Vxx - Vyy)Nzz --a the asymmetry parameter which describes the deviation of the Electric Field 
c Gradient from axial symmetry. ; e2qQ = Electric Quadrupole Splitting Factor e”2’q’Q (eV) 
c Ho = External Magnetic Field Strength (Gauss) ; u = Magnetic Moment (nuclear magnetons) 
c LINKING: Need to link with Subroutine EIS-LIN-PACK 

Complex Val(L),Ham(L,L),ii,exp2a,expg,exp2g,Hmml ,Hmm-1 ,Hmm2,Hmm-2 
Real M(L),fvl (L),~2(L),fv3(L),hr(L,L),hi(L,L),vr(L,L),vi(L,L),wr(L),wi(L),l 

ii = (O.O,l .O) ; nlevels = 2.0’!+ 1 .O ; WE = 0.0 ; wH = Ho’u’un/l 
lf(l .Ne. 0.5) WE = e2qQ/(4.0’1’(2.0’1 - 1 .O)) 
Cos2a = Cos(2.0’alpha) ; Cosb = Cos(betaj ’ = wH. Sinbz z %&eta) 
Exp2a = Cexp(ii*2.O’alpha) ; Expg = Cexp(ii’gamma) : Exp2g = Cexp(ii*2.0*gamma) 
Hmm = 0.5’z”(3.0’cosb”2 - 1 .O + eta*sinb”2’cos2a) 
Hmml = 1 .tj’z’sinb’(cosb - (eta/6.0)‘((1 .O + cosb)‘exp2a - (1 .O - cosb)‘Conjg(exp2a)))*expg 
Hmm-1 = 1.5’z’sinb’(cosb + (eta/6.0)‘((1 .O - cosb)*exp2a - (1 .O + cosb)‘Conjg(exp2a)))‘Conjg(expg) 
Hmm2 = 0.75’z’(sinb’*2 + (eta/6.0)*((1 .O + cosb)‘*2*exp2a + (1 .O - cosb)*YConjg(exp2a)))‘exp2g 
Hmm-2 = 0.75’z’(sinb**2 + (eta/6.0)*((1 .O - cosb)“2’exp2a $ 

+ (1 .O + cosb)‘Y?Conjg(exp2a)))*Conjg(exp2g) 
Do 10 J=l ,nlevels 

M(j)=!-(j-1) 
Do 10 K=l ,nlevels 

10 Ham(k,j) = 0.0 
N=l 
Do 15 K=N,nlevels 

15 Ham(k,k) = -y’M(k) + Hmm’(3.O’M(k)“2 - I*(! + 1.0)) 
N=N+l 
Do 20 K=N,nlevels 

Ham(k-1,k) = Hmm_;l*(2.0’M(k-1) - l.O)‘Sqrt((l+ M(k-l))‘(I - M(k-I) + 1.0)) 
20 N HaN-r$k-1) = Hmml (2.O’M(k) + l.O)*Sqrt((l - M(k))*(l+ M(k) + 1.0)) 

& 25 K=N,nlevels 
Ham(k-2,k) = Hmm 2’Sqrt((l- M(k-2) + 2.0)‘(! - M(k-2) + 1 .O)‘(I + M(k-2))*(1+ M(k-2) - 1.0)) 

25 Ham(k,k-2) = HmmZ’Sqrt((l + M(k) + 2.0)‘(1+ M(k) + 1 .O)*(I - M(k))*(l - M(k) - 1.0)) 
matz = 1 ! Eigenvalue and Eigenvector Calculation 
Call Cgg(L,nH,Ham,matz,VaI,fvl ,fv2,fv3,hr,hi,vr,vi,wr,wi,ierr) 

Return 
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YIG ! Crystal Type 
12.3797e-6,12.3797e-6,12.37978-8 !Lattice spacings a,b,c (cm) 
90.0,90.0,90.0 !Lattice angles alpha,beta,gamma (deg) 
14412.5,5.0e-4 ! Incoming photon energy(eV),Crystal thickness(cm) 
1,400 I (iflg=l-Energy scan,iflg=O=Angle scan) ; # points 
1 O.Oe-7,65.08-6 ! Energy range (Ev),deviation from Bragg (rad) 
2O.Oe-6,-0.08-7 ! Angle range (rad),deviation from incoming Energy (eV) 
TWO RECIPROCAL LATTICE VECTORS, 1st is in LAB-z direction, 2nd is in the SCATTERING PLANE where 
hs(dot)Kf > 0, Kf(dot)LAB y > 0. LAB,” is perpendicular to SCATTERING PLANE. 
0. 0. 2. ! Hp Kp Lp Reciprocal Lattice vector in LAB-z direction 
1. 0. 0. ! Hs KS Ls Reciprocal Lattice vector in scattering plane 
0. 0. 2. ! Outward Surface Direction (in Reciprocal coordinates) 
0. 1. 0. ! External Magnetic Field Direction (in LAB coordinates) 

RECIPROCAL LATTICE VECTOR of desired reflection 
0. 0. 2. I H K L Desired Reciprocal Lattice Vector 

AZIMUTHAL ROTATIONS that preserve Bragg Condition. Two Rotations are made. The 1st is about H = 
Reciprocal Lattice Vector, the 2nd is about Ki, and the 3rd is about H again 
o.o,o.o,o.o I Azimuthal rotation about H,Ki,H=(H,K,L) (deg) 
0.67,0.6 ! Nuclear: Relative Concentration; Lamb-Mossbauer factor 
0.967 ! Electronic: Debeye Wailer factor 
1 .o,o.o ! Horizontal Polarization of incoming Photon (realjmag) 
0.0,o.o I Vertical Polarization of incoming Photon (realjmag) 

! See INITIALIZE subroutine for a more detailed description of these parameters 
***~*****~***t***t**.*.**...*.**~.*~*~***.*.*~*~*************~.~~..*.**~.**********.*~****.**.**.****~*********. 

DATAFILE ATOMPOS.DAT 
This Data file contains the positions of the Fe57 atoms corresponding to various sites in YIG and the 

EFG directions of the iron atoms in the sites, and also associated hyperfine field parameters 
(Winkler, Phys.B,Condensed Matter,49,331,63) 

$ 
7 ! Number of Sites within Unit Cell 
Dl -SITE Fe57 ATOMS [loo] SYMMETRY AXIS 
1. 0. 0. ! Electric Field Gradient Direction [h k I] 
-0.69dO,-3.66d5 !Quadrupole Shift (mm/sec),,Magnetic Field (gauss) 
O.OdO,O.OdO !Isomer Shift (mm/sec),Spin Dipolar Anisotropy (gauss) 

O.OdO !Canting Angle (deg) ; 6 ! # of atoms in this site 
Coordinate of Fe57 atoms within unit cell: 
0.375 0.0 0.25 ; 0.675 0.5 0.75 ; 0.625 0.5 0.25 ; 0.125 0.0 0.75 
0.625 0.0 0.75 ; 0.125 0.5 0.25 ; 0.375 0.5 .0.75 ; 0.675 0.0 0.25 
D2-SITE Fe57 ATOMS [OlO] SYMMETRY AXIS 
0. 1. 0. ; -0.69d0,;3.66d5 ; O.OdO,O.OdO ; O.OdO ; 6 
0.25 0.375 0.0 ; 0.75 0.125 0.0 ; 0.75 0.675 0.5 ; 0.25 0.625 0.5 
0.75 0.625 0.0 ; 0.25 0.675 0.0 ; 0.25 0.125 0.5 ; 0.75 0.375 0.5 
D9SITE Fe57 ATQMS [OOl] SYMMETRY AXIS 
0. 0. 1. ; -0.69dO,-3.66d5 ; O.OdO,O.OdO ; O.OdO ; 6 
0.0 0.25 0.375 ; 0.5 0.25 0.625 ; 0.0 0.75 0.125 ; 0.5 0.75 0.675 
0.0 0.75 0.625 ; 0.5 0.75 0.375 ; 0.0 0.25 0.675 ; 0.5 0.25 0.125 
Al -SITE Fe57 ATOMS [I 11) SYMMETRY AXIS 
1. 1. 1. ; -0.41d0,4.4Od5 ; 0.226dO,-0.035d5 ; O.OdO ; 4 
0.00 0.00 0.00 ; 0.25 0.25 0.25 ; 0.50 0.50 0.50 ; 0.75 0.75 0.75 
A2-SlTE Fe57 ATOMS [-11 l] SYMMETRY AXIS 

-1. 1. 1 . ; -0.41d0,4.4Od5 ; 0.226dO,-0.035d5 ; O.OdO ; 4 
0.50 0.50 0.00 ; 0.75 0.25 0.75 ; 0.00 0.00 0.50 ; 0.25 0.75 0.25 
A3-SlTE Fe57 ATOMS [l-l l] SYMMETRY AXIS 
1.-l. 1 . ; -0.41d0,4.4Od5 ; o.226dO,-0.035d5 ; O.OdO ; 4 
0.00 0.50 0.50 ; 0.75 0.75 0.25 ; 0.50 0.00 0.00 ; 0;25 0.25 0.75 
A4-SITE Fe57 ATOMS [-l-l l] SYMMETRY AXIS 

-1.-l. 1. ; -0.41d0,4.4Od5 ; 0.226dO,-0.035d5 ; O.OdO ; 4 
0.50 0.00 0.50 . 0.25 0.75 0.75 ; 0.00 0.50 0.00 ; 0.75 0.25 0.25 

.*t*.~*t*tt***t**t~~~*.**~*~*****.**~*.~..**~~~..***~*.**.~~~~.*~**~**********~***.*.**~.~~****~*******.*..***~~ 
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8.4 Boundary Conditions and the Thick Crystal 
Approximation 

Since in general the linearized dispersion relations are not decoupled, the dispersion 
relation given by Eq. 7-4.1 must be modified to 

(G,,-2&,1)-v=O (g-4.1) 

where G, is given by Eq. 7-8.1. Finding the four eigenvectors 

(e = 1,...,4) (8-4.2) 

allows the boundary condition equation, Eq. 7-4.30, to be solved by setting 

T,’ = D;T,L, R,’ = D;T,‘, T; = D’T’ 3 x’ Ry’ = D,‘T,’ (8-4.3) 

where 

0,’ = ( v’)“/(ql (8-4.4) 

and (v’), is the nfh component of v’. If ( v’)* is zero, then all of the eigenamplitudes can 

be expressed in terms of one of the nonzero eigenamplitudes in a similar fashion (that is, in 
terms of an amlitude other than TX’). The boundary condition equation can then be 
explicitly written out as (for ( v’)1 f 0) 

I 
1 

D:eiK’d 
0: 

D.kiK’d 

1 
DzeiK2d 

2 

032 
DzeiK2d 

4 

1 

wK’d 
033 

wK’d I (8-4.5) 

where K’ = ka.t$/yo. This equation is solved by the subroutine TandR-coeff in the 
EWALD Fortran code. 

When the exponential factor eidd in Eq. 8-4.5 becomes very large (for instance, too 
large for a computer to handle), numerical solutions can be found by applying a thick 

crystal approximation. Note that at the exit surface, the transmission channel field is 

T(h. r = d) = eiko~‘r~~T~eiK’d&~. 
I=1 a 

(8-4.6) 
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Then, if eiKfd + 00, in order for the transmitted field to stay finite, T,’ must go to zero. 
This is the heart of the thick crystal approximation: 

e irfd 
+O”, T,’ + 0 

ceiK’d 
. (8-4.7) 

+ a finite quantity 

This approximation can then be used to modify the boundary condition equations. For 
instance, let K’ be the complex eigenwavenumber that gives rise to exponentially large 
numbers. Then the boundary value equation-to be solved is 

In the subroutine Dispersion and TandR-coeff, the arrays thick and e keep track 
of which elements in the boundary condition matrix must be modified. 
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9. EXPERIMENTAL PROCEDURES 

9.1 YIG Epitaxial Films on GGG 

NaI photodetector - - 

Slits (3 x 3) mm 
Si [3 3 31 asymmetric reflection 

Bragg angle = 47.5” 

YIG [00 121 
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Fig. 9-1.1 Experimental arrangement for high resolution measurements of the YIG 
Darwin width. 

The yttrium iron garnet (YIG) crystals were grown by Gualtieri at Allied-Signal’s 
Electronic Materials and Devices Lab. Each sample was grown using a liquid phase 
epitaxy method where a (0 0 1) oriented gadolinium gallium garnet (GGG) substrate was 
inserted into a heated platinum crucible (= 89O’C) containing yttrium and enriched iron 
oxides dissolved in a lead oxide-vanadium oxide flux (the isotopic composition of the iron, 

as measured by Oak Ridge National Lab, was 0.79% 54Fe, 18.24% s6Fe, 80.97% 57Fe, 
and 0.0% “Fe). Using techniques very similar to those applied towards growing magnetic 
bubble memory layers, Gaualtieri was able to epitaxially grow nearly perfect (0 0 1) 

183 
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oriented YIG crystal films of various thicknesses (2.7 to 9.5 pm) onto six 5 mm thick 
GGG circular substrates having a diameter of 3 cm. The formula unit for the YIG films, 
obtained from lattice constant data and Faraday rotation measurements, is 

The lead was incorporated into a few dodecahedra lattice sites normally occupied by 
yttrium atoms. This was done to alleviate crystal strains by matching the YIG to the GGG 
lattice spacing. The YIG films are basically .free of dislocations and other surface defects 
(they cover much less than 1% of the surface area), and the films have a thickness variation 
of only about 0.15 pm (the edges are slightly thicker than the center).l 

A major area of concern was the degree of crystal perfection of the films--whether 
the films were composed of a mosaic of small crystal domains or were composed of just a 
few large crystal domains. Rocking curve measurements were performed to ascertain how 
perfect the crystal films were using the setup shown in Fig. 9-1.1. An x-ray generator 

- provided a CuKcc, x-ray source beam (8048 eV) for the measurements. An asymmetric Si 
[3 3 31 crystal was used as a nondispersive monochromator (the surface normal pointed in 
the [2 2 0] direction). By reflecting from the (3 3 3) planes in asymmetric geometry, the 
monochromator produced a highly collimated beam having an angular divergence of about 
4.3 prads. This collimated beam was used to measure any small features in the rocking 
curves of the YIG films that may be due to crystal imperfections, 

Fig. 9-1.2 show the [0 0 121 rocking curves for the six YIG crystals labeled 57-l 

to 57-6. The rocking curves are only for YIG films on the side of the GGG substrate that 

was facing downwards in the crucible melt. The YIG [0 0 121 reflection was chosen so 

that the incident beam would penetrate deep into the film allowing the entire thickness of the 
film to be probed (Rocking curve measurements were initially done when the crystals were 
first received from Gualtieri. However, in these measurements the YIG crystals were 

rocked against each other for the [0 0 41 reflection. Thus, the angular resolution was 25 to 

50 prads depending upon which YIG crystal was used as the monochromator rather than 

the 4.3 prads resolution of the asymmetric Si [3 3 31 crystal, and the YIG [0 0 41 

reflection enabled an examination of only the first 2 pm of the YIG film due to primary 

extinction effects). The GGG substrate reflection, which is less prominent for thick films, 
is the peak at the lowest angle (which has been set at a deviation angle of 0 pi-ads) since 

GGG has a larger lattice spacing than YIG. The figures show that the attempt at matching 
the YIG to the GGG lattice spacing by substituting a few yttrium atoms with lead has 
produced unexpected problems. The difference in lattice spacing between bulk GGG 
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Fig. 9-1.2 Rocking curves for six YIG films 2.7 pm to 9.5 pm thick. 
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(12.384OA) and bulk YIG (12.3780A) is 6 x 10T3 A. For the crystals 57-6, 57-5, and 

57-3 where the lead had the smallest effect, the lattice mismatch was successfully reduced 
by 30% without significantly distorting the rocking curves. For the other crystals where 
the lattice mismatch was reduced by 50-60%, the YIG films separated into two or more 
regions, or sublayers. Substituting too many yttrium atoms with lead to further increase 
the YIG lattice spacing appears to lead to the formation of composite YIG films having 
crystal layers with different lattice spacings. The-remarkable feature about this effect, 
which is noticeable for crystal 57-2, is the tendency for the YIG crystal to form nearly 
perfect crystals for each sublayer rather than a single layer composed of a homogeneous 
distribution of mosaic crystals or lattice spacings which would form a single broadened 
rocking curve. 

The difference between the perfect crystal rocking curve and the measured rocking 
curve gives the degree of crystal perfection of the crystal sample. The silicon crystal used 
as the monochromator in the rocking curve measurements is of the same stock as those 
used as SSFU beamline monochromators. They generally have Darwin widths (full width 
at half maximum) that are not more than 10% greater than the ideal perfect crystal Darwin 
width--the silicon monochromators are essentially perfect crystals. The YIG crystal films, 
on the other hand, are not as perfect. The Ewald computer code discussed in Chapter 8 
was used to evaluate the rocking curve for a perfect YIG crystal rocked against a fixed 
asymmetric Si [333] perfect crystal (the asymmetry parameter is b = -4.7). For perfect 
YIG crystals having thicknesses of 4.7, 3.3, and 2.7 pm, the Darwin widths were 24,34, 
and 39 prads respectively. The measured Darwin widths were 43,. 55, and 60 prads. 
Thus, the Darwin widths for the YIG films were roughly 13 to 2 times greater than the 
ideal widths. The YIG crystal perfection, though not up to par with the silicon crystals, is 
still quite good. One cause for the rocking curve broadening may be due to the 
incorporation of lead into the crystal in the attempt to create strain free films. The lead 
increases the lattice constant of the unit cell, and, with lead atoms interspersed throughout 
the YIG film, this would lead to a nonuniform lattice constant throughout the film which 
would contribute towards broadening the rocking curve. 
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9.2 General Experimental Setup 

Time resolved nuclear resonance experiments were done at three different 
beamlines: a 15 period 1.05 m wiggler beamline 10-2 at the 3-3.5 GeV SPEAR storage 
ring, a 26 period 2 m undulator beamline PBF 1 at the 5-15 GeV PEP storage ring, and a 

Experimental Setup 
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Fig. 9-2.1. General experimental setup. Mirror focusing was done in the horizontal 
(perpendicular to this page), not vertical, direction. 

48 period wiggler beamline F2 at the 5.5 GeV CESR storage ring. The experimental setup 
at each of these.beamlines was similar to that shown in Fig. 9-2.1. 

The wiggler or undulator consisted of a periodic dipole arrangement of permanent 
magnets (Nd-Fe-B magnets for the beamline at SPEAR and Sm-Co magnets for the 
beamlines at PEP and CESR). The arrangement of magnetic dipoles forces any electron 
that travels down the axis to oscillate (or wiggle) about the nominal orbit and emit radiation 
with a range of frequencies that is tunable by varying the magnetic field strength or the 
dipole period length. The deflection parameter, K , is a measure of this tunability, 

K = eB,;1,/2mn,c, (9-2.1) 

where $ is the magnetic field strength at the nominal electron orbit, and ;1, is the dipole 

period length. For K > 5 the magnet dipole array is considered to operate as a wiggler, and 
the characteristic energy spectrum of the wiggler radiation is broadband up to the critical 
energy 
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E, = 0.665E2[GeV]$[T] (9-2.2) 

where E is the electron beam energy. For K 5 2 the array is considered to operate as an 
undulator, and the energy spectrum is composed of harmonics that are narrowband for the 

odd harmonics. By changing K one of the narrowband harmonics can be tuned to a 
desired operating energy and, to a degree, achieve energy monochromatization. 

Tuning was done for the permanent magnetic arrays by changing the magnet gap 
spacing which changes the magnetic field strength at the nominal electron orbit. For 
instance, the desired operating energy at PEP was 14.4 keV. Placing the first harmonic at 
an energy slightly greater than 14.4 keV ensured operation on the safe low energy side of 
the harmonic peak that varied more slowly with energy than the edge-like high energy side. 
A magnetic gap spacing of 5.5 cm resulted in a magnetic field of 1.4 kG, a K value of 1.0, 
and placed the first harmonic at 14.8 keV. 

150 

100 

50 

0 

-50 

-1 oo- 

-150 

18~ rads 

-15 -10 -5 0 5 10 15 20 
Deviation Energy from Bragg (eV) 

Fig. 9-2.2. DuMond diagram for the Si [1 1 l] monochromator at the SPEAR 10-2 
beamline. The angular divergence of the photons arriving at the monochromator spans the 
300 prad range in the figure (the energy ranges over thousands of eVs), but the 
monochromator allows only those photons having angles and energies lying within the 
narrow strip having a width of 18 prads and 1.9 eV. 

A double crystal Si [l 1 l] monochromator was used to provide a source beam 
having a 2 eV wide bandwidth for a given scattering angle (two crystals were used to 
produce an output beam parallel to the incident beam). The DuMond diagram for such a 
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crystal arrangement is shown in Fig. 9-2.2. Since the energy spectrum of the radiation 
impinging upon the monochromator covers thousands of eVs, the monochromator 
substantially reduces the photoelectric background. However, a Si monochromator has the 
shortcoming of having a narrow vertical angular acceptance of 18 pracls at a given energy. 

Electrons traversing a synchrotron bending magnet or a wiggler emit radiation in a 
narrow cone having a half angle of l/y where y = ,!?/m,c2. Depending upon the lattice 
design of the synchrotron, the electrons also have a vertical angular divergence at the 
wiggler of 2 as . The net vertical angular divergence of the photons at the beamline is then 
the quadrature of the synchrotron radiation and electron half widths 

20, = 2@G5 (9-2.3) 

For a bending magnet or a wiggler 

q=2/y&i (9-2.4) 
is the effective rms half width of the synchrotron radiation. For the beamlines used at 
SPEAR and CESR, the net photon angular divergence was about 300 and 150 prads 
respectively (for electron vertical half widths of roughly 50 and 30 prads respectively for 
the high energy physics colliding beam mode of running). Clearly the Si monochromator, 
having an angular acceptance of 18 prads, blocks out, in angular space, a sizable portion 
of the beam and, thereby, reduces the beam intensity by a factor of 15 to 73. The 
undulator beamline at PEP produces somewhat better results because an undulator 
collimates the harmonics. The first harmonic lies in a cone with a half angle of 

where N is- the number of periods. For PEP the electron beam energy was 13.5 GeV, thus 
a, = 5 prads (N = 26 and K = 1). The net photon angular divergence of about 100 prads 
is then dominated by the electron angular divergence (the vertical half width is roughly 
40 prads for colliding beam operation). The monochromator then reduces the beam 
intensity by a factor of 5. If PEP were operated in a dedicated low-emittance lattice mode, 
the electron beam vertical half width could be reduced to as low as 5 prads. The net 
photon divergence would then be only about 15 pi-ads, and all of the beam would pass 
through the monochromator. Unfortunately, PEP was mothballed before such remarkably 
brilliant beams could be used for experiments, and it is expected to be replaced by an 

asymmetric B factory for studying the possibility of CP violation in the B meson system. 
At the PEP and SPEAR beamlines, a bent cylinder, fused quartz, platinum coated 

mirror was a standard instrument positioned upstream of the monochromator. The 
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cylindrical mirror provided focusing in the horizontal direction to increase the photon flux. 
The mirror could also be used to focus the photon beam in the vertical direction, however, 
because this would increase the angular divergence of the beam and result in less photons 
passing through the narrow vertical angular acceptance width of the Si monochromator, 
vertical focusing was avoided. 

Unfortunately, the monochromator also allowed higher order harmonics from the 
[3 3 31, [5 5 51, [7 7 71, etc., reflections to pass through. The mirror again proved useful -_ 
in eliminating these higher order harmonics through grazing angle scattering. By setting 
the grazing angle of the mirror to be near the critical angle of the [3 3 31 harmonic (29 keV), 
the intensity of all the harmonics was significantly diminished. The mirror then acts as a 
low pass filter. At the CESR beamline, there was no standard mirror upstream of the 
monochromator, so a portable, flat, gold coated mirror was placed downstream of the 
monochromator (inside the experimental hutch station). Without the mirror the 

_ photoelectric background from the harmonics overwhelmed the photodetector, thus making 
the mirror a critical component to do experiments. 

Another typical piece of equipment was a 4 circle diffractometer. The crystals were 
attached to the @  circle of the diffractometer which in turn was attached to a x circle which 
in turn was attached to a 8 circle. The $-axis could be rotated by rotating the x circle, and 
the x-axis could in turn be rotated by rotating a 0 circle. The detector was attached to the 
28 circle which rotates independently of the other circles. These combinations of possible 
rotations allowed the crystals to be oriented for precision diffraction experiments.2 

For low temperature experiments a cryogenic refrigerator assembly was attached to 
the 4 circle. The assembly consisted of a two stage displex expander (Air Products DE202 
expander) that cools by decompressing helium gas. On the tip of this displex unit sat the 
YIG crystal, and the unit was covered by a vacuum shroud having a cylindrical beryllium 
window. A water-cooled rotary compressor (Air Products HC-2 compressor) supplied 
high pressure helium gas to the displex expander. Before the refrigerator was turned on, a 
roughing pump was used to get the expander down to a low vacuum (= 10” torr). A 
temperature controller along with a thermistor for feedback and a small heater coil inside the 
shroud was used to fix the temperature to a desired operating point. 

Also attached to the @  circle was a magnet assembly that provided a uniform 
magnetic field of about 100 Gauss across the crystal. At the PEP and SPEAR beamlines a 
pair of Helmholtz coils provided the uniform magnetic field (the coils were actually attached 
to an unused 9 circle on the opposite side of the x circle). At the CESR beamline a set of 
Sm-Co permanent bar magnets provided the uniform magnetic field. In all cases, the 
magnetic field was parallel to the (0 0 1) planes (that is, parallel to the crystal surface). 
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9.3 Detector and Fast Timing Electronics 
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Fig. 9-3.1. General schematic of the coincidence photodetector. 

Fast plastic coincidence photodetectors were used to measure the scattered x-rays. 
Each photodetector consisted of two head-on photomultipliers coupled to a fast plastic 
scintillator material (Bicron 420) via an index of refraction matching layer of silicon grease 
(GE Viscasil 600M silicone fluid) as shown in Fig. 9-3.1. ,: The fast plastic is a 
polyvinyltoluene based organic scintillator that fluoresces with a lifetime of 1.5 nsec. An 
early photodetector used RCA 8575 photomultipliers borrowed from the Stanford Linear 
Accelerator Center’s (SLAC) high energy physics group (these tubes were leftover 
photomultipliers used for the SLAC Mark II detector). They were old tubes, and they had 
significant afterpulses (possibly due to a small amount of residual gases leaking into the 
tubes) 460 and 540 nsecs after a prompt pulse. Even in coincidence geometry, for every 
10 prompt pulses there was 1 afterpulse. However, the tubes could still be used by 
carefully subtracting out the afterpulse background or by ensuring that the delayed resonant 
signal was examined in a time window well short of the after-pulses. These 

photomultipliers were later abandoned in favor of mu-metal shielded Hamamatsu R329 
photomultipliers having 12 dynode stages and a rise time of 2.6 nsecs. These tubes had an 
insignificant afterpulse rate. As measured against a NaI detector, they also had an 

efficiency for detecting 14.4 keV radiation of about 40%. 
The fast electronics signal processing circuitry for a general experiment is shown in 

Fig. 9-3.3. The electronic modules were capable of processing nanosecond pulse width 
signals. After the amplified photomultiplier pulses pass through discriminators properly 
biased to reject low level background, a 2-way logic module examines the signals to see if 
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they are coincident (it has a double-pulse resolution of 3.3 nsecs). If the pulses are 
coincident, another logic module checks to see whether the coincident pulses are prompt 
pulses. 

The timing pulse is appropriately delayed or advance in time (using cables lengths 
or electronic circuitry not shown in the figure) so that it corresponds to the prompt pulse 
that initiated the nuclear resonant response. The timing pulse is sent to a gate generator 
which responds by sending out a fixed 10 nsec wide delayed pulse. This 10 nsec wide 
pulse is the prompt window, and it is sent to veto the l-way coincidence logic module. 
Thus, if a coincidence occurs within the prompt time window, it is vetoed and no further 
action occurs. This was done to prevent the TAC from being triggered by every prompt 
pulse which would overwork the TAC and lower its performance. Performing this check 
improved the time resolution of the resonance signal from 5 nsec to 2.5 nsec. 

The prompt window is then further delayed by 250 nsec to act as the stop input to 
- the TAC. Thus, the delayed nuclear resonance signal starts the TAC anytime from 10 nsec 

_ .to 250 nsec after the prompt pulse, and the TAC is always stopped 250 nsec after the 
prompt pulse (see Fig. 9-3.2). The TAC sends out a signal between 0 to 10 volts that is 
proportional to the time difference between the stop and start signals. The MCA receives 
this output signal for data analysis and storage. 

Ring Pick-off 
(Prompt) Pulse 

Stop pulse 
\ 

window resonant signal 
Fig. 9-3.2. Timing structure. A 10 nsec prompt window electronically gates out the 
prompt pulses. A 250 nsec window is constructed for measuring delayed resonant counts, 
and the same 10 nsec prompt window delayed by 250 nsec is used as the stop pulse to the 
TAC. 
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9.4 Miissbauer Experimental Setup 
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Fig. 9-4.1. General schematic of the Mossbauer experimental setup. 

The general setup for doing Mossbauer experiments is shown in Fig. 9-4.1. The 
hollow core Wissel motor drive was well adapted for doing experiments on synchrotron 
beamlines. A conventional motor drive is usually designed for moving radioactive sources 
against a stationary absorber, and it does not need a hollow core. For synchrotron 
experiments hollow core drives were quite convenient because absorbers must be vibrated 
against a fixed source. The drive works by vibrating a hollow cylinder using 
electromagnetic driver coils. Attached to the end of the hollow cylinder is a sturdy 

diaphragm onto which an absorber can be mounted 
A synchrotron experiment was performed to measure the energy spectra of the 

hyperfine YIG resonance. To do this a single’line sodium ferrocyanide, Na,Fe(CN),, 
absorber was used as an analyzer. In Fig. 9-4.1 the incident beam is the YIG diffracted 
beam. The electronics set up to measure both the time spectra and the energy spectra is 
shown in Fig. 9-4:2. The TAC and MCA for measuring the time spectra are taken from 
Fig. 9-3.3. To measure the energy spectra, a gate having a time window of 250 nsec 
(positioned 10 nsec after the timing signal) activated the MCA for measuring resonant 
photons. For each valid start signal, the velocity of the motor drive was measured. 

To calibrate the YIG energy spectra, Mossbauer spectroscopy was performed on an 
enriched 57Fe thin foil using a 57Co radioactive source. Obtaining the well known 
positions of the Fe hyperflne lines gives the calibration of the velocity drive and enables 
one to determine the energies of the YIG resonances. The energy spectra of the 
ferrocyanide absorber was also analyzed to get information on how the absorber disturbs 

the YIG resonant time signal. The electronics for doing these measurements is shown in 
Fig. 9-4.3. The transmitted beam through the absorbers was measured by a NaI inorganic 
scintillator detector, and the resulting signal was sent to a pulse height analyzer. The 
analyzer output signal was amplified (x20) and sent to the input of the MCA. The pulse 
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height analyzer was selected to provide an energy window for only 14.4 keV photons. If a 

photon had the right energy to lie within the window, the analyzer sent a gate signal to the 
MCA to enable it for receiving the valid input signal (along the way the pulse is shaped to 
be about 1.5 p set long and 5 V high by a gate generator so that the MCA could easily 
handle it). 
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Fig. 9-4.2. General schematic of the electronics for simultaneous measurements of both 
Mbssbauer velocity spectra and quantum beat time spectra. The start and stop signal come 
from the schematic in Fig. 9-3.2. 
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Fig. 9-4.3. General schematic of the electronics for Mbssbauer spectroscopy 
measurements using a radioactive source. 

An early Miissbauer experiment is shown in Fig. 9-4.4. This was a push-pull 
experiment where two black, single line, ammonium lithium ferroflouride absorbers 
enriched to 91.2% 57Fe were used as notched filters having approximately a 2.5 mm/set 
wide absorption line (They were made by Gopal Shenoy and Ersin Alp at Argonne 
National Labs--they were close collaborators on this experiment). The absorbers were 
Doppler shifted to filter out the inner two lines (lines 3 and 4) of YIG. To accomplish this, 
a function generator sent square wavetrains to the Miissbauer drivers. The peak-to-peak 
amplitude of the square waves was adjusted so that, at any instant of time, one absorber 
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was Doppler shifted to filter out one of the inner two lines while the other was shifted to 
filter out the other. The square waves arriving at the drives were in phase, so in order to 

make the drives operate in an antiphase, or push-pull, mode, the absorbers were fixed onto 
the opposite ends of the drives (one absorber was fixed to the end where the driver coil was 
[labeled DC in Fig. 9-4.41 and the other was fixed to the end opposite the driver coil). In 

this early experiment, Elscint solid core motor drives were used. Therefore, to do 
transmission experiments they were equipped with long paddles attached to the driver 
shaft. At the tips of the paddles were attached the Mijssbauer absorbers. This arrangement 
was awkward to do synchrotron experiments, and the instrumentation was susceptible to 
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Fig. 9-4.4 Push-pull Miissbauer experiment designed to filter out the inner two 
hyperline lines of YIG 
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Fig. 9-4.5 Associated electronics for the push-pull Mijssbauer experiment. 
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extraneous vibrations arising from the slippage of the paddles at the joint where they were 
attached to the driver shaft, the flexure of the paddles themselves, and the movement of the 
mount holding the absorbers to the paddles. These drives were later abandoned in favor of 
the hollow core Wissel motor drives. 

9.5 Energy Cali bration Techniques 

The energy width of each of the hyperfine lines of 57Fe is 4.67 x 10q eV with the 
outer two lines separated by about 6 x 10v7 eV (excluding dynamical effects such as 
linewidth broadening and energy shifts). The 2 eV wide energy bandpass at a given angle 
from the Si [1 1 l] monochromator easily covers the full range of the hyperfine spectrum. 
The huge photoelectric scattering (or prompt) background of around lOi counts/set 
resulting from the wide bandpass is reduced by 7 orders of magnitude by using a forbidden 
electronic but allowed nuclear reflection from the YIG crystal. The photomultipliers are not 
shielded from the resultant prompt pulses (the prompts are gated out electronically from 
triggering the TAC). Prompt rates greater than lo6 counts/set tend to blind the 
photomultipliers preventing them from seeing the delayed resonant signals--the fluorescent 
tails of the plastic scintillator combined with the recovery period of the photomultipliers 
start to become a major problem. For prompts rates of lo5 counts/set and nuclear signal 
rates of 10 to 100 counts/set, the nuclear resonance is found by performing a 
monochromator energy scan. This scan is simply a measurement of the coincident delayed 
resonant counts (the starts in Fig. 9-3.3) versus the monochromator energy setting--the 
prompts time window in Fig. 9-3.2 is still used to electronically gate out the prompt signal. 

To reduce the range in energy that must be searched to locate the resonance, an 
energy calibration is done using the krypton absorption edge. Since the krypton edge is 
rather broad (see Fig. 9-5. l), the monochromator can be initially calibrated to only within 
+ 10 eV. For experiments having a counting rate of 10 to 100 counts/set, searching over 
20 eV for the resonant signal can take a few hours. For low count rate experiments of one 
count/set or less and for background rates of the same order of magnitude, a 20 eV search 

can take an excessive amount of time. However, once the resonance has been found, the 
krypton edge energy is known precisely. The krypton edge energy of 14326 eV is 
demarcated in Fig. 9-5.1 where the uncertainty comes from the 2 eV resolution of the 
monochromator. Gold also has an edge near the iron resonance. The position of its 14353 
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eV edge is shown in Fig. 9-5.2 and was also calibrated using the 57Fe resonance. Gold 

also has some near edge oscillatory structure which can be useful for calibration purposes. 
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Another method of obtaining an energy calibration is to use noticeable features (or 
glitches) in the energy spectrum of the monochromator. The silicon monochromator has a 
strong primary reflection off a particular set of similar crystal planes. From two or more 
sets of crystal planes, it also has simultaneous weaker reflections that travel in the same 
direction as the primary reflection. Interference between these simultaneous, or 
umweganregung, reflections and the primary reflection-results in noticeable glitches in the 
energy spectrum of the monochromator. Since the lattice spacing of Si is known very well 
(to within 2 x lOA A), these glitches can be used as accurate energy markers. The intensity 
of the umveg reflections, however, is small compared to the primary reflection, so the 
glitches show up as small dips in the primary energy spectrum. Finding prominent, 
narrow glitches at high energies near 14.4 keV is also a problem. Fig. 9-5.3 shows a good 
candidate near 5931 eV along with its azimuthal 4 plot. The nearly vertical reflection at 

- 5931 eV in Fig. 9-5.3 (a) corresponds to the deep central 2 eV wide glitch in Fig. (b). This 
glitch actually consists of two umveg reflections lying on top of each other: the [2 2 - 41 
and [3 3 -33 reflections. The [2 2 - 41 umveg reflection dominates though since it has a 
larger structure factor. Another good candidate closer to the resonance energy is shown in 
Fig. 9-5.4. The nearly vertical reflection at 11358 eV in Fig. 9-5.4 (a) corresponds to the 
small central dip in Fig. (b). The width of this glitch is about 8 eV--four times wider than 
the 5931 eV glitch. This 11358 eV glitch consists of four umveg reflections: the 
[-l-l - 3], [4 4 - 81, [5 5 -71, and [6 6 -41 reflections. The [-1 - 1 - 31 umveg 
reflection dominates because of its larger structure factor. A major source of broadening of 
the glitches comes from the nature of the monochromator. Since the monochromator 
consists of two parallelSi crystals, there are always two sets of umveg reflections, and this 
serves to broaden the glitches for Si crystals that are misoriented azimuthally in Q . 

One of the first tries at finding the nuclear resonance signal was attempted at the 
SPEAR beamline 10-2. The 11358 eV glitch was used as the energy calibration even 
though this glitch had a broad energy width. The 5931 eV glitch was too far from the 
resonance to be reliable for energy calibration. A krypton edge energy scan was done to 
check the calibration results. The nuclear resonance was precisely right where it was 
expected to be (Unfortunately, by accident the glitch was labeled an 11364 eV glitch, so the 

first search was off by precisely the 6 eV error. This mistake was uncovered only after 

analyzing the beamline experiment results). 
The YIG crystal produces much more noticeable umveg reflections since only 

forbidden reflections are used--they show up as prominent peaks rather than small dips (see 
Fig. 9-5.6). These umveg reflections are a major problem when searching for the nuclear 
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resonance because they contribute to the prompt background (the forbidden reflection is 
only nearly forbidden), and the strong umveg reflections easily Each the saturation limit of 
5.12 x lo6 counts/set (the frequency of the electron pulses in the SPEAR storage ring). At 
high energies, they densely pack @  - E space as shown in Fig. 9-5.5 (Only the largest 
umveg reflections are shown where F,F,-, 2 10,000 (F, is the structure factor described in 
Section 7.10). Had all nonzero reflections been drawn, the figure would be nearly black). 
Searching for the resonance then involves finding a good, deep valley in 4 - E space. 

The YIG crystals can also be used for energy calibration by making q-cuts and 
E-cuts in 4 - E space and accurately mapping out the contours of all the prominent umveg 
reflections. An attempt was made to do this, but, because of the dense thicket of umveg 
reflections, more confusion resulted than progress. Of all the ways of making energy 
calibrations, using the krypton edge (after it was calibrated once and for all using the 
nuclear resonance line) was the simplest and fastest way of finding the 57Fe resonance 

- energy. 
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Energy (ev) 

112SQ 

Fig. 9-5.4 (a) Phi plot of Si [l 111. These plots become more densly populated with 
umveg reflections as the energy increases. However, occasionally there are reasonable 
clearings having a vertical umveg reflection surrounded by only a few nearby reflections. 
Vertical umveg reflections are desirable because their energy widths are narrow and give 
good energy markers. (b) Phi scan of the 11358 eV glitch of Si [l 111. The small central 
dip at 11358 eV is mainly due to the [-1 - 1 - 31 
reflection in Fig. (a). 

umveg reflection--this is the nearly vertical 
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1’4380 14400 14420 14440 

Energy (ev) 

Fig. 94.5 e-plot for YIG [0 0 21 reflection. There are no longer any convenient 
vertical umveg reflections to serve as energy markers (the vertical line in the figure is a 
marker for the 14412.5 eV nuclear resonance energy). Only the most intense umveg 
reflections are shown (if-all nonzero reflections were shown, they would cover the figure 
so densly that it would be nearly black). Trying to navigate across such a terrain to find the 
nuclear resonance becomes a difficult task because most of the reflections are nearly 
horizontal. 
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(a) e-plot for the YIG [O-O 21 reflection. (b) Phi scan of the [0 0 21 
reflection. For forbidden primary reflections the umveg reflections show up as peaks 
(sometimes called antiglitches) rather than as dips (or glitches) typical in energy scans of 
allowed primary reflections. The markers where the umveg reflections lie are shown as 
sharp triangles. The position of these markers indicate that the energy of the incident beam 
is 14411+ 1 eV (the dotted line). However, phi angles near 45” are not good operating 
points because the diffracted nuclear signal goes to zero there (the quadrupole splitting 
between the different iron sites in YIG goes to zero). 
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10. KINEMATICAL EFFECTS 

10.1 Nuclear Hyperfine Structure Quantum Beats 

The kinematical effects described in this chapter can be understood without a 
thorough knowledge of dynamical diffraction-theory. They can be adequately described by 
single particle interactions rather than by the many particle, collective interactions occuring 
in the dynamical effects. One such striking kinematical effect is the quantum beat patterns 
that show up in the nuclear resonant, time-resolved measurements. These quantum beats 
arise from the interference between a coherent superposition of quantum states. For the 
case of 57Fe,- the coherent states are the set of hyperfine states excited when the nucleus is 
bombarded with an intense, broadband x-ray pulse. These excited states then fall back to 
the ground state and emit photons that coherently interfere with each other to produce the 
quantum beats. The coherence results from the scattering process remaining upon the 
energy shell--the nuclear state before and after the photon-nucleus interaction is identical. 

Quantum beats were first observed in the early 1960’s independently by 
Alexandrov and Dodd in the Zeeman beats arising from a superposition of electronic 
quantum states.13 Here an external magnetic field was applied to split excited states and 
produce Zeeman components which could interfere with each other. Hyperfine structure 
beats arising from excited states naturally split by an internal magnetic field were observed 
in the early 1970’s.by Haroche. 4* 5 Also in this same time period, fine structure beats were 

seen by Haroche and Fabre, 6l 7 and in the late 1970’s Hese used an electric field to split 

excited states to produce Stark quantum beats. * The first observation of nuclear hyperfine 
structure beats resulting from the excitation of nuclear quantum states was made by Gerdau 
in the late 1980’~.~ One should note that all of the electronic quantum beats described 
above were measured using gas samples while all measured nuclear quantum beats were 
done using solid samples. Thus the dynamical collective effects, such as resonance 
frequency shifts and decay rate speedups, present in nuclear systems have not been 
observed in electronic systems. 

Nuclear hyperfine structure quantum beats are dramatic features in all of the time- 
resolved measurements of 57Fe enriched YIG. Recall from Section 8.1 that YIG has a 
complicated antiferrimagnetic sublattice structure capable of producing 7 sets of 6-line 
hyperfine spectra (42 lines altogether). By using [0 0 (4n-2)] YIG reflections 
(n = 1,2,3,. . .), electronic reflections are forbidden along with nuclear reflections from all 
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the u-sites and the d3-site. The hyperfine spectra then simplifies to 2 sets of 6-line spectra 
from the dl and d2-sites. 

_------ __---- 
ki k, 

b-4 ’ I 7 

I 

_ - I 

I 

I 
/ 

GGG substrate 
6.7 pm thick 

5 mm thick 
Fig. 10-1.1. Scattering geometry for nuclear resonance diffraction. The electric field 
gradients in the YIG crystal lie in the cubic (10 0) s y mmetry directions. When the applied 
magnetic field is perpendicular to the scattering plane formed by ki and k,, it lies in the 
[l 0 0] direction parallel to the electric field gradient of the nuclear dl-site. When the 
applied magnetic field is parallel to the scattering plane, it lies in the [0 lo] direction 
parallel to the electric field gradient of the nuclear d2-site. The incident beam is 
horizontally polarized perpendicular to the scattering plane. 

For incident horizontally polarized x-rays and for an applied magnetic field 
perpendicular to the scattering plane (parallel to the polarization direction), each 6-line 
spectrum reduces to a a-line spectrum (Case 1 in Section 5-l). Under such conditions, the 
M = +l transitions are allowed (see Fig. 5-3.1) and the M = 0 transitions are not allowed-- 
they would be if the incident x-rays were vertically polarized. The scattering geometry is 
shown in Fig. 10-l .l, and a simplified hyperfine diagram along with the polarization of 
each line is shown in Fig. 10-1.2. Since the emitted x-rays from each line all have the 
same polarization, there will be quantum beats resulting from the interference of x-rays 
from all the resonance lines. The possible combinations of pairing the 8 lines in 

Fig. lo-l.2 gives 8 choose 2, or (t)= 28, possible beat frequencies. The corresponding 

beat periods are given in Table lo- 1.1. 
An experimentally measured time-resolved spectrum for such a scattering geometry 

is shown in Fig. lo-l.3 (using the YIG [0 0 21 reflection). Since lines 1 and 6 have the 
largest Clebsch-Gordan coefficients, the amplitude of their beats dominate the overall 
quantum beat pattern--the beating between lines 1 and 6 gives rise to the fast 7 nsec 
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Fig. 10-1.2. Hyperfine energy spectrum illustrating the case where the applied magnetic 
field is perpendicular to the scattering plane. Each hyperfine line is horizontally, or sigma, 
polarized: 6. 

Table 10-1.1. ‘Hyperfine structure quantum beat periods (in nsecs) for the case of an 
applied magnetic field perpendicular to the scattering plane. Lines 1, are from the nuclear 
dl-site, and the primed lines 1: are from the d2-site. The internal magnetic field strength 
is - 3.69 x 10’ Gauss and the electric quadrupole splitting is -0.89 mm/set. The dominant 
quantum beats are in bold face. The average fast magnetic quantum beat seen in 
Fig. lo- 1.3 is 7.2 nsec and the average slow electric quadrupole quantum beat is 130 nsec. 

magnetic beat period seen in Fig. 10-1.3. There is also a quadrupole beat period of 130 
nsec due to the electric quadrupole splitting between lines 1, and 11 of the dl and d2-sites 
(and also between lines I, and 1: of the two sites). This gives rise to the overall slow 

modulation of the beat pattern in Fig. 10-1.3. All of the other quantum beats show up as 
small perturbations upon the overall quantum beat pattern. The fit to the data in Fig. lo-‘1.3 
utilizes the full dynamical diffraction theory for resonant scattering, but it relies heavily 
upon the energy separation of the hyperfine lines that gives rise to the quantum beat periods 
given in Table lo- 1.1. The dynamical resonance frequency shifts discussed in Sections 
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0 50 100 150 200 250 
Time (nsecs) 

Fig. 10-1.3. Hyperfine structure quantum beat pattern for the case where the applied 
magnetic field is perpendicular to the scattering plane. Full dynamical diffraction theory 
has been applied to obtain the fit using the quantum beat periods given in Table lo- 1.1. 
The operating angle was set at -25 prads below the Bragg peak. Operating off the Bragg 
peak lessens the decay rate speedup and allows the slow electric quadrupole quantum beat 
to be seen. 

7.6 and 7.7 slightly change these quantum beat periods--these small changes can lead to 
drastic changes in the quantum beat patterns and are further examined in Chapter 11. 

When the applied magnetic field is parallel to the scattering plane and parallel to the 
crystal surface, all 12 lines from the d-sites are allowed (Case 3 in Section 5-l). For small 
Bragg angles, the M = 0 lines can be neglected, and the 12 lines reduce to 8 (the magnetic 
field is then nearly parallel to the incident and scattered photon directions). The simplified 
hyperfine diagram for such a case was discussed earlier and is shown in Fig. 8-1.4. The 
M = +l lines emit left circularly polarized photons (polarization i,) while the M = -1 lines 
emit right circularly polarized photons (polarization G-). Since photons of orthogonal 
polarizations do not interfere with each other, the total number of beat frequencies is twice 

4 choose 2 combinations of pairs of lines, or 12 possible beat frequencies. The beat 
periods for such a case are given in Table 10-1.2. 

The experimentally measured time-resolved spectrum for such a scattering geometry 
is shown in Fig. 10-1.4. There are far fewer different beat periods than in the previous 
case where the magnetic field was perpendicular to the scattering plane. However, there is 
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Table 10-1.2. Hyperfine structure quantum beat periods (in nsecs) for the case of an 
applied magnetic field parallel to the scattering plane. Lines L,, are from the nuclear dl -site, 
and the primed lines ~!l, are from the d2-site. The internal magnetic field strength is 
- 3.69 x 10’ Gauss and the electric quadrupole splitting is -0.89 mm/set. The upper left- 
hand and lower right-hand sections of the table represent quantum beats for right and left 
hand circularly polarized x-rays respectively. The average fast magnetic quantum beat in 
Fig. lo-l.4 is 12.2 and 13.0 nsec for right and left circularly polarized x-rays respectively. 
The slow electric quadrupole quantum beat is 135 and 124 nsec for right and left circularly 
polarized x-rays respectively. 

the additional complication of two superimposed quantum beat patterns of two different 
polarizations (right and left circular polarizations) having slightly different beat periods 
(about 12 nsec for the right and 13 nsec for the left circular polarization). Due to the 
slightly different beat periods for the two overlapping beat patterns, they go into and out of 
phase as time goes on. In Fig. 10-4.1, the point in which the overlapping beat patterns get 
out of phase is around 60 to 70 nsec and gives rise to the anomalous feature present there 
where the overall beat pattern is nearly washed out. This null point is one of the most 
difficult features of the beat pattern to fit because it is very sensitive to a wide host of 
kinematical and dynamical effects. 

In the sections to follow, the quantum beat patterns will be examined to investigate 
interesting physical properites such as the polarization of the incident beam, the Lamb- 
Miissbauer factor, and the internal hypefine crystalline fields at room and low temperatures. 
In the final section angular interferometry is used to explore the phase shift of a rotated 
quantum state. Quantum beats are seen to be a very useful effect that can be used to 

understand and explore many fascinating physical phenomena in resonant scattering 
physics. 
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Fig. 10-1.4. Hyperfine structure quantum beat pattern for the case where the applied 
magnetic field is parallel to the scattering plane. Full dynamical diffraction theory has been 
applied to obtain the fit using the quantum beat periods given in Table 10-1.2. The 
operating angle was set at -20 prads below the Bragg peak. 

10.2 Analysis of Internal Hyperfine Fields 

Time and frequency lie in dual spaces that are the reciprocal of each other. The 
decision to examine a scattering process in either temporal or frequency space will not 
change the underlying physics of that process. A Mossbauer velocity measurement should 
yield the same information as a time-resolved measurement. However, the collected 
information may be more difficult or easier to interpret depending upon what type of 
measurement is made. For instance, the phase information in a scattering process is more 
easily seen in a time-resolved measurement while the hyperfine resonance energies are 
more easily seen in a Mijssbauer velocity measurement. 

In this section, the internal magnetic dipole and electric quadrupole fields are 

investigated through time-resolved spectroscopy. The main utility this method has over 
Mossbauer velocity spectroscopy is the length of time needed to take sufficient data for low 
count rate experiments. For counting rates of around 100 counts/set, the time spectra can 
be collected in about 1 minute to get enough statistics to determine the hyperfine field 
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parameters adequately, while a Mossbauer velocity spectra would need several hours of 
collection time to get the same information. One reason for this is because the velocity 
measurement is an absorption measurement collecting information about missing resonant 
photons, and it therefore has a larger background problem. Also, the velocity analyzer 
must be a reasonably thin-line absorber in order to scan the hyperfine spectra of the sample 
without significantly distorting, or modifying, the sample’s spectra--this further increases 
data collection times. - 

To acquire an intuitive grasp of how the time spectra vary with changing hyperfine 
field parameters, multiple graphs are given in Figs. 10-2.1, 10-2.2, and 10-2.3. Each plot 
is normalized to unity and covers the first 250 nsec after the prompt excitation. The YIG 
[0 0 21 spectra were calculated at an angle -40 prad below the Bragg peak in order to 
clearly show the electric quadrupole quantum beat. The higher order YIG [0 0 lo] spectra 
were calculated at an angle right at the Bragg peak. The difference in operating angles 
gives rise to the difference in intensities between the [0 0 21 and [0 0 lo] reflections-- 
operating far off the Bragg peak significantly reduces the reflected intensity. The spectra 
were calculated for an internal magnetic field, Biti, perpendicular and parallel to the 
scattering plane. When the internal magnetic field strength was varied in steps of 2 kGauss 
from 364 to 374 kGauss, the electric quadrupole splitting, e”qQ/2, remained fixed at 
0.89 mm/set. When the electric quadrupole splitting was varied in steps of 0.02 mm/set 
(or 1 neV) from 0.84 to 0.94 mm/set (or 40 to 45 neV), the internal magnetic field strength 
remained fixed at 369 kGauss. The incident x-rays were fixed to be 100% horizontally 
polarized, and the full dynamical diffraction theory was used to perform the calculations. 
(The curve in bold-face in the figures is pointed to by the graphic arrow 8 .) 

Increasing the internal magnetic field strength increases the magnetic energy level 
splitting thus forcing the hyperfine lines to be spaced further apart in energy. Increasing 
the energy spacing between the hyperfine lines decreases the beat period and causes the 
beat pattern to be compressed in time. This accordion effect is clearly shown in 
Fig. iO-2.1 where increasing the internal magnetic field strength compresses the beat 
pattern and decreasing the field strength expands the pattern. The accordion effect is most 
dramatic during the second peak of the electric quadrupole beat occurring after 130 nsec. 
When operating far off the Bragg peak, changes in the internal magnetic field strength of 
2 kGauss can be unambiguously seen in the time spectra (this is even more revealing in the 

fast beat spectra where the internal magnetic field is perpendicular to the scattering plane). 
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Fig. 10-2.1, YIG [0 0 21 t ime spectra for various internal magnetic field strengths. 
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Fig. 10-2.2. YIG [0 0 23 t ime spectra for various electric quadrupole energy level 
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Changes in the internal magnetic field strength dramatically affects the fast magnetic 
beat pattern. Changes in the electric quadrupole splitting factor, e2qQ/2, dramatically 
affects the slow electric quadrupole beat pattern. Increasing the quadrupole splitting 
increases the energy spacing between lines !, and 4’: of the dl and d2 iron sites (and also 
between lines es and e: of the two d-sites). This leads to a decrease in the quadrupole beat 
period, and this shows up in Fig. 10-2.2 as a compression of the modulation envelope over 
the fast magnetic beats. Again, when operating far off the Bragg peak, small changes in 
e2qQ/2 lead to striking changes in the overall beat pattern. Changes in the beat pattern due 
to changes in e2qQ/2 of 1 neV are quite evident. 

Many other factors can play a role in modifying the quantum beat patterns: variation 
of the magnitude of the internal hyperfine fields throughout the crystal film, nonuniformity 
of the applied magnetic field, depolarization of the magnetic dipoles, nonuniformity of the 
electric field gradient directions at each nuclear site, nonuniformity of the lattice spacing 
within the crystal film, the mosaic crystal spread, and the polarization of the incident field 
to name a few. One could probably fit any set of experimental data by varying an unlimited 
number of parameters. So, only a few factors that were known to have a significant effect 
were considered. 

The polarization of the incident beam had to be considered in certain cases. Since 
the experiments were done on wiggler or undulator beam lines, elliptically polarized beams 
were not a problem (Furthermore, there was no strong evidence for elliptically polarized 
beams in the data. The result may have been different if a bending magnetic beam line was 
used since elliptically and even circularly polarized x-rays exist when operating above or 
below the plane of the electron orbit.). A partially unpolarized mix of horizontally 
polarized x-rays with a small amount of uncorrelated vertically polarized x-rays was 
considered in the hyperfine field analysis. A few examples of such a mixture containing 70 
to 100% horizontally polarized x-rays is shown in Fig. 10-2.4. When the internal magnetic 
field is parallel to the scattering plane, an admixture containing up to 30% vertically 
polarized x-rays barely changed the beat pattern--only the sensitive null region near 70 nsec 
is affected. The beat pattern is significantly affected when the magnetic field is 
perpendicular to the scattering plane. This is not an unexpected result. When Binl is 
parallel to the scattering plane, both horizontally and vertically polarized x-rays can excite 

lines 1,3,4, and 6 which in turn radiate circularly polarized x-rays--horizontally and 
vertically polarized x-rays do about the same thing. When Bin, is perpendicular to the 
scattering plane, horizontally polarized x-rays can excite lines 1,3,4, and 6, but vertically 
polarized x-rays can excite only lines 2 and 5. The beat period between lines 2 and 5 
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The other major factors considered were the mosaic spread of the crystal film and 

the angular distribution of the incident beam. Both of these factors were treated in a simple 
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Fig. 10-2.4. Time spectra for various amounts of horizontally and vertically polarized 
x-rays. 
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The other major factors considered were the mosaic spread of the crystal film and 

the angular distribution of the incident beam. Both of these factors were treated in a simple 
fashion by performing a Gaussian angular average centered over the incident angle. 

Multiple time spectra were calculated at various incident angles, and the final fit was a 
Gaussian weighted average of each spectrum. This method takes into account both the 

angular divergence of the incident beam and the mosaic crystal spread of the YIG thin film. 
The time resolution of the detector apparatus was handled by convolving a 

Gaussian pulse with the beat patterns. This is simply a Gaussian weighted time average, 

and its main effect is to partially wash out the oscillations in the beat pattern. 
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Fig. 10-2.5. Time spectrum along with the background. The background measurement 
was taken 5 eV above the 14412.5 eV nuclear resonance energy. The YIG [0 0 21 time 
spectrum was taken about 10 prad above the Bragg peak with Bin, parallel to the scattering 
plane. This is the second time spectrum ever to be taken at the PBFl beamline at PEP (the 
very first was a rough demonstration measurement and was not used in the hyperfine field 
analysis). 

No background subtraction was done to the data. The data was analyzed at a time 
long enough after the prompt excitation that the fluorescent signal from the photodetector’s 
plastic scintillator was negligible--this was ensured by analyzing the data 25 nsec from the 
prompt pulse. Fig. 10-2.5 shows a typical beat pattern together with the prompt pulse. 
The width of the prompt pulse is quite wide (FWHM = 4.3 nsec), but this was later found 
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out to be due to the TAC being overworked trying to process data at a prompt rate of 
12,000 counts/set. When the prompt rate fell to around 5,000 counts/set, the prompt 
pulse width fell to a more respectable 2.5 nsec. The background run was done by tuning 
the monochromator energy 5 eV above the nuclear resonance energy. The background rate 
beyond 25 nsec was about 0.23 counts/set. Compared to the delayed nuclear signal rate of 
roughly 190 counts/set, the background can be safely ignored. 
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Fig. 10-2.6. Dramatic improvement in the time resolution of the measurements. 
Fig. (a) is a measurement without the veto signal in Fig. 9-3.3 to the coincidence logic unit; 
Fig. (b) is a measurement with the veto signal. By not overworking the TAC the time 
resolution was improved by a factor of two from 5 nsec to 2.5 nsec. 

The data shown in Fig. 10-2.5 was taken without the veto signal to the coincidence 
logic unit shown in Fig. 9-3.3. This resulted in the TAC being overworked at high 
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counting rates and contributed towards broadening the time resolution of the 
measurements. By using the veto signal which allowed the TAC to be triggered only at 
times 10 nsec after the prompt pulse, the TAC could be used at high prompt rates without 
worsening the inherent time resolution of the photomultipliers. In such an arrangement, 
data as far back as 10 nsec after the prompt pulse can be measured with very low 
background rates, and the time resolution improves to around 2.5 nsec. This is shown in 
Fig. 10-2-6. The improvement in time resolution by a factor of two, however, did not 
change the values of the hyperfine field parameters used to fit the data. The improvement 
enabled small subtle effects to be seen in the time distribution. For instance, for data 
having a 7 nsec beat pattern blurted with a 5 nsec time resolution (see Fig. lo-2.6), the 
polarization content of the incident beam could not be determined when the crystal was 
positioned at the Bragg peak. However, he incident polarization content could be measured 
when the time resolution was reduced to 2.5 nsec. 

For the hyperfine field parameters given in Tables 10-2.1 and 10-2.2 (Bi,, is the 
internal magnetic field strength and e2qQ/2 is the electric quadrupole splitting factor), x2 
fits were performed. Using a Fortran subroutine, VA02A, acquired from the Argonne 
National Labs computer center, a grid-gradient search algorithm for minimizing x2 was 
employed by varying 5 to 7 parameters: B,, , e2qQ/2, the incident polarization distribution, 
the Gaussian angular and time resolution, the deviation angle from Bragg, and the starting 
time. 

An analysis of 25 time spectra (from the Run #l set in Table 10-2.1) where the 
deviation angle from the Bragg peak was less than +20prad and where 6 parameters were 
varied (the incident polarization was fixed to be 100% horizontally polarized) resulted in a 
Gaussian angular width (FWHM) of 21+3 prad--about 17% greater that the perfect Si 
crystal Darwin width. The fitting routine had a difficult time determining the angular 
resolution for time spectra taken at deviation angles greater that 20 prad beyond the Bragg 
peak giving angular widths of up to 50 prad, thus these spectra were omitted. The net 
angular resolution appears to be largely limited by the Darwin width of the Si 
monochromator (which is 18 prad for perfect crystals) rather than by the mosaic spread of 
the YIG crystal. 

For fits to all of the data in the tables below, the Gaussian angular resolution was 

fixed at 20 prad, and only 6 parameters were varied (Except for the case where Bi, was 
parallel to the scattering plane. The incident polarization was simply fixed to be 100% 
horizontally polarized since, as shown in Fig 10-2.4, such time spectra are insensitive to 
the polarization distribution). There was little coupling between the parameters--the 
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variation of one parameter to minimize x2 had little effect upon the value of the other 

parameters that minimized x2. 
For data taken without the coincidence logic veto signal blocking out the prompt 

signal from the TAC, the time resolution was 4.1kO.8 nsec (This was compiled from the 
Run #l data in Table 10-2.1 and from some of the Run #2 data in the same table. The Run 
#2 data was taken during a beamline run were the improvement in time resolution was 
tested and implemented). When the coincidence logic veto signal was used, the time 
resolution improved to 2.4fO. 1 nsec (This was compiled from the data in Tables 10-2.1 
and 1 O-2.2). 

The polarization of the incident radiation differed at the PEP and CESR synchrotron 
ring beamlines. The polarization of the incident beam at the PBFl undulator beamline at 
PEP was found to consist of 93+3% horizontally polarized radiation (the data in 
Table 10-2.1 taken during the two different runs gave the same result). At the F2 wiggler 
beamline at CESR the incident beam consisted of 84f2% horizontally polarized radiation. 
This decrease in polarization of the source beam may be due to the use of a wiggler rather 
than an undulator, and because the electron beam energy was lower at CESR than at PEP 
(5.5 GeV versus 14 GeV). 

The hyperfme field parameters for the crystals labeled 57-2 and 57-6 are given in 
the Tables 10-2.1 and 10-2.2. An extensive investigation of the combined hyperfine 
interactions in YIG was made by Winkler through Mijssbauer transmission spectroscopy 
measurements.tO He found that for YIG single crystals 60 pm thick: 

Bint = -399.9 f 1.5 kGauss and e”qQ/2 = -0.89 310.01 mm / sec. 

The YIG thin crystal films exhibit somewhat different hyperfine properties. For crystal 
#57-2, Bi,, is roughly 6% to 8% less than Bi,, for a pure single crystal, and, for crystal 
#57-6, Bi,,, is smaller by 4%. The reduction in B,, is primarily due to the films being 
impregnated with a small amount of lead occupying the yttrium lattice sites. This has 
changed the local electrostatic and magnetostatic environment around the iron atoms and 
has resulted in a decrease in the internal magnetic field at the iron nuclei. 

There is an interesting problem with crystal #57-2. For two different beamline runs 
different hyperfine fields were measured. Big has increased by 2% and e2qQ/2 has 
increased by 6% between Runs #l and #2. Recall from Section 9.1 (see Fig. 9-1.2) that 

crystal #57-2 is a 6.7 pm thick crystal consisting primarily of 2 layers of YIG films having 
different lattice spacings. However, the data indicates that this crystal nonuniformity is not 
the reason for the difference in hyperfine fields between the two runs. The [0 0 21 

reflection has a primary extinction length of 1.1 pm, thus these reflections probe only the 
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first micron of the crystal film. The x2 fits to the higher order reflections in both runs 
found that these reflections were probing a crystal film sublayer roughly 2.6 pm thick (see 
Section 11.4). Crystal #57-2 is then composed of two films 2.6 and 4.1 pm thick. Since 

the first micron of the crystal is uniform, the difference in B,, between Runs #l and #2 for 
the [0 0 21 reflections is not due to thickness nonuniformity. 

There is also reason to believe that a nonuniformity in the local hyperfine field 
environments across the surface area of thecrystal is not responsible for the differences. 
As a result of the focusing properties of the upstream cylindrical mirror and the small Bragg 
angle, the incident beam lit up a stripe across the crystal 3 mm wide by 3 cm long for the 
[0 0 21 reflection. For the higher order reflections the area of this stripe substantially 
decreases--the [0 0 141 reflection lights up a stripe 3 mm wide by 1 mm long (the incident 
beam area was roughly 3x0.5 mm). However, the higher order reflections scanning ever 
smaller sections of the crystal area gave the same hyperfine parameters as the [0 0 21 
reflection (as shown in Run #2). Nonuniformity of hyperfine fields across the crystal 
surface area is not evident in the data. 

What may have occurred between the runs (which occurred 13 years apart) is that 
the crystal deteriorated to some degree. Some of the iron may have oxidized to become 
Fe,O,. The change in Bi, is in the right direction (Bi, for pure Fe,O, is -515 kGauss) but 
the change in e’qQ/2 is in the wrong direction (e”qQ/2 for pure Fe,O, is -0.12 mm/set). 
The reason for the change remains unclear, but what is impressive is that 2% changes in the 
hyperfine field parameters is easily detectable through examining the quantum beat patterns. 

Unlike crystal 57-2, crystal 57-6 is composed of a single layer of YIG (see 
Fig. 9-1.2). The x2 fit to the data yielded a thickness of 4.3kO.4 pm which is reasonably 
close to the. expected value of 4.7 pm. The difference in hyperfine parameters between 
crystal 57-2 and 57-6 should be mainly due to the difference in lead concentrations in the 
two crystals. As a result of the odd behavior displayed by the other crystal, the effect of 
the lead upon the local electric quadrupole field is not readily determinable. e2qQ/2 is 4% 
greater than Winkler’s value for YIG, but there are large variations in this value stated 
throughout the literature (measured values varied from 0.78 to 1.03 mm/sec).*1-14 

Time-resolved spectroscopy is just as sensitive as Mijssbauer velocity spectroscopy 
towards measuring hyperfine field parameters. They both can measure the hyperfme field 

values to within l-2%. As a result, time-resolved spectroscopy was able to reveal subtle 
differences in the hyperfine properties of YIG between various thin film samples, and that 
these properties may slightly change over time for each thin film. Time-resolved 
spectroscopy using synchrotron x-rays may become more useful than Miissbauer 
spectroscopy when trying to measure the hyperfine fields of extremely small or very thin 
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Reflection Binl 

direction 
PEP Beamline Run #l 

Bin8 

(kGauss) 
e2qQ/2 

(mm/s@ 

lo 0 21 II -369+2 -0.88f0.02 27 

P O 21 I -369&l, -0.88f0.02 9 

10 0 61 II -373+3 -0.87kO.02 1 

[o 0 lo] II -373+2 -0.881kO.02 1 

[o 0 lo] I -37022 -0.87+0.02 1 

All reflections -369f2 -0.88kO.02 39 

PEP Beamline Run #2 
-377+4 -0.93kO.04 1 P 021 II 

10 0 21 I -377+2 -0.941to.01 7 

[o 0 61 II -374+_3 -0.93zko.03 1 

10 0 61 I -376+2 -0.91f0.03 1 

[o 0 lo] II -377f2 -0.92+0.01 2 

[o 0 lo] I -376f 1 -0.93zkO.02 1 

[o 0 141 II -376+2 -0.92kO.02 1 

[o 0 141 .I -376+ 1 -0.94f0.02 1 

All reflections 1 -376f 1 1 -0.93+0.01 ) 15 
Table 10-2.1. F$perfine field parameters for crystal # 57-2. The uncertainties for eat _ _ . _ __ - h 
set of data represent the square root of the variance in the data using a weighted average tar 
the mean. For each individual time spectrum the uncertainty in the parameters represents 
what it takes to produce a 10% change in the x2 minima. Bint is either parallel or 
perpendicular to the scattering plane. 

Reflection I e2qQ/2 ]#oftimespectraI 

direction (kGauss) (mm/s@ 
P 0 21 II -384+2 -0.95+0.01 2 

P O 21 1 -384+4 -0.96f0.04 1 
[o 0 lo] I -383+ 1 -0.96+0.01 2 

All reflections -383+ 1 -0.95+0.01 5 
Table 10-2.2. Hyperfine field parameters for crystal # 57-6. The data was taken at the 
CESR F2 wiggler beamline. 
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materials consisting of just a few nuclei or a few layers of nuclei. Such materials would 
produce signals that are too weak to be measurable by MGssbauer spectroscopy techniques. 
However, time-resolved spectroscopy performed at future third generation synchrotrons 

having high powered undulator or wiggler insertion devices will provide way of probing 
such exotic materials. 

-_ 

10.3 Low Temperature Measurements 

A low temperature experiment was performed to examine the scattering and 
hyperfine properties of YIG. l5 The crystal was mounted in a cryostat centered on a four 
circle diffractometer as explained in Section 9.2. Measurements were made at room 
temperature and at 150” K . A temperature controller was used to stabilize the temperature 
during the course of the measurements. The results are shown in Fig. 10-3.1. 

One unexpected result can be quickly noticed in the two measurements shown in 
Fig. 10-3.1. Both measurements were taken for the same length of time, but the low 
temperature measurement has a much lower count rate than the room temperature 
measurement (17 counts/set versus 110 counts/set, or a factor of 63 times less). What 
was expected was an increase in counting rate as the temperature decreases because the 
Lamb-Mossbauer factor, or recoilless fraction of resonant nuclei, increases to the limit of 
unity as the number of phonon modes goes to zero. A cause for this discrepancy may be 
because the YIG crystal is a thin film epitaxially grown on a GGG substrate. There is 
naturally some strain in the film since YIG and GGG have different lattice constants. 
Going to low temperatures may have magnified these strains and caused the film to distort, 
or warp, resulting in the much lower counting rates. The measurement was done with 
crystal #57-2 before having any accurate knowledge of its structure. During or after the 
fabrication process, the crystal bifurcated due to lattice mismatching problems. What these 
results suggest is that YIG films thinner than 2.5 pm grown on GGG are not good 
samples to do low temperature perfect crystal diffraction experiments. 

Though the crystal diffracts poorly at low temperature, the hyperfine parameters 
could still be measured and were found to be very different than the room temperature 
values. The internal magnetic field strength increased by 15% to 429 It 4kGauss when the 
temperature was lowered to 150°K. The value of Bin, at low temperatures does not 
significantly depart from measurements made by others--Mossbauer transmission 

measurements at 85’IS yielded values of Bi, ranging from 460 to 467 kGauss, and a 
nuclear magnetic resonance measurement at 77” K yielded 468 kGauss (these were all done 
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on pure YIG polycrystalline samples). “-‘* Extrapolating to 150°K using the careful 

NMR measurements of Ogawa gives a value of 452 kGauss.18 This is about 5% greater 
than the thin film measurement, and, since the room temperature measurements are about 
7% greater than the thin film measurements, this difference is not unreasonable. 
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Fig. 10-3.1. Time spectra for [0 0 lo] reflection at (a) room temperature and at (b) 
15OOK. B, is parallel to the scattering plane and the crystal surface. At room temperature 
B,, =- 373 + 2 kGauss and e”qQ/2 = -0.88 Z!I 0.02 mm / sec. At 150°K IBiMI increased 
15% to 429 + 4 kGauss and le*qQ/21 decreased 61% to 0.54 z!z 0.04 mm / sec. 
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The electric quadrupole splitting factor decreased almost by half (61%) to 
0.54 +, 0.04 mm/set when the temperature was lowered to 150°K. The temperature 
dependence of e”qQ/2 has apparently not been explored in detail experimentaIly since there 
is little information about it in the literature. Most early temperature dependence 
experiments have been done with polycrystals since they were easier to obtain, and these 
experiments examined the behavior of only the internal magnetic field. Since the direction 
between the electric field gradient and the-magnetic field is completely random for a 
polycrystal, the electric quadrupole splitting should average to zero, thus no reliable value 
of e*qQ/2 can be measured. This problem can be overcome by applying a sufficiently 
strong external magnetic field to remagnetize the polycrystal--in this case the angle between 
Binr and the electric field gradients is random and can be averaged over to obtain fits to the 
data. This was done to YIG polycrystals at room temperature (the external magnetic field 
strength was 20 kGauss), and quite accurate values of e*qQ/2 were extractable from the 

- data.13 However, there is no account in the literature of using this procedure to find the 
temperature dependence of e”qQ/2. 

10.4 Angular lnterferometry: Observation of the Phase 
Shift of a Rotated Quantum State 

Scattering angle dependent quantum beat interference has been used to examine the 
phase shift of a quantum state that has undergone a rotation. A physical interpretation of 
this effect using the scattering theory formalism developed in Chapter 4 is given in Section 
5.5. From a different perspective, the angular phase shift can be understood from basic 
rotational and mirror symmetry properties of free space19 (see Appendix A.l). 

The YIG [O 0 lo] reflection was chosen to get the maximum effect. In the 
experrment at the CESR beamline, the internal magnetic field was oriented, by using an 
external guide field, in the two antiparallel directions perpendicular to the scattering plane, 
and the net phase difference between the time beat patterns for the two orientations of the 
magnetic field was measured. Changing the direction of the magnetic field was equivalent 

to performing a [0 0 + lo] and a [0 0 -lo] reflection. This was observed during 
experiments at the PEP beamline where upward and downward reflecting experiments 
(without changing the direction of the magnetic field) gave phase shifts equivalent to 
orienting an internal magnetic field in the two antiparallel directions perpendicular to the 
scattering plane (without changing the orientation of the crystal). 
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Fig. 10-4.1. Quantum beat patterns of YIG [0 0 lo] reflections for (a) right-handed 
scattering and (b) left-handed scattering. (b) Calculated fits to the data are shown 
superimposed and expanded. The nearly 180” phase shift is clearly evident. 
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The results of the CESR beamline experiment is shown in Fig. 10-4-l. Note that in 
the diagram in Fig. 10-4.1 (a) the incident photon is rotated in a right-handed sense in 
going from ki to k, --this will be called right-handed scattering. Left-handed scattering is 
illustrated in the diagram in Fig. (b) where the incident photon is rotated in a left-handed 
sense in going from ki to k,. The Bragg angle for the YIG [0 0 lo] reflection is about 
20”. Diffraction from this reflection results in a net phase difference, Ay, = Se,, of 160” 
between the quantum beat patterns of left and right-handed scattering. As can be seen in 
Fig. 10-4.1 (c), the peaks of one beat pattern lie almost in the valleys of the other beat 
pattern. This dramatically illustrates the angular phase a photon acquires upon undergoing 
an angular momentum conserving rotation. l9 

As can be seen in Fig. 10-4.1, more is going on than the phase shifts discussed 
above, for the overall shapes of the beat patterns for left and right-handed scattering are not 
the same. The reason for this can be understood by examining Table 10-1.2. The quantum 
beats with the largest amplitudes comes from the interference between lines 1 and 6 having 
a beat period of 7 nsec (averaging over the two iron d-sites in the crystal). Since these 
lines have a total angular momentum component of M = +l, they contribute to the 40, 
phase shift of the right or left-handed scattered photons that is observed in the experiment. 
However, there are 24 other beats affecting the net quantum beat pattern. Of these, 12 
occur from pairs of lines having the same value of M. There is no phase shift for pairs of 
lines having identical M values, thus the phase shifted, dominant 7 nsec beat pattern is 
modulated by unshifted, though less dominant, beat patterns (having an average beat period 
of 130 nsec and 11 nsec). This additional unshifted amplitude modulation causes the 
difference in the shape of the beat patterns for right and left-handed scattering. For the 
[0 0 21 reflection where the net phase shift is negligible (80, = 32’ corresponds to a shift 
in time of 3 nsec which is unobservable for detectors having a resolution of 2.5 nsec), 
these amplitude variations are the only predominant differences between left and right- 
handed scattering (see Fig. 10-4.2). 

In addition to the perturbations upon the 7 nsec beat pattern, there are dynamical 
effects, such as resonance frequency shifts and decay rate speedups, that modify the beat 
pattern. Thus, to get good fits to the data, the full nuclear dynamical diffraction theory was 
applied. However, as can be noticed in Section 5.5, the angular phase shifts can be 
calculated using kinematical, or single particle, scattering theory. 

Note that the scattering diagram in Fig. 10-4.1 (a) shows a scattering interaction 
that appears to be time reversed from that shown in the scattering diagram in 
Fig. 10-4.1 (b). A physical process and its time reversed process should give identical 

experimental results unless time reversal symmetry is broken. Since the time beat patterns 
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for the two scattering processes are different, time reversal symmetry appears to be 
violated. This perplexing problem is resolved by noting that the magnetic field behaves as 
a pseudovector that is odd under time reversal. Thus, the actual time reversed process of 
the diagram in Fig. (a) is the diagram in Fig. (b) with the magnetic field changed in sign to 
point in the opposite direction (into the page instead of out of it)--this gives back the 
scattering diagram in Fig. (a), and time reversal invariance is upheld. 
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Fig. 10-4.2. Quantum beat patterns of YIG 
scattering and left-handed scattering. The phase shi 

0 0 2, 
is imperceptible, but thgamplitude 

.l reflections for right-handed 

variations between the patterns are noticeable. 

This characteristic of magnetic fields makes them a common source of problems when 
trying to investigate the breaking of time reversal symmetry in physical interactions. 

One interesting result from these angular interferometry experiments is that the sign 
of the internal magnetic field can be uniquely determined. Right-handed rotations of the 
photon quantum state about the quantization axis .(which is the internal magnetic field 
direction) gives rise to quantum interference patterns that are phase retarded by 40,. Left- 
handed rotations lead to quantum interference patterns that are phase advanced by 40,. 
Finding which pattern is advanced or retarded in phase immediately gives the sign of the 
internal magnetic field. Upon careful examination of the [0 0 lo] data in Fig. 10-4.1, the 
internal magnetic field at the iron d-sites was verified to be oriented antiparallel to the 
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externally applied magnetic field (this would have been more easily seen by going to a 
reflection that did not give nearly 180’ net phase shifts). 
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11. DYNAMICAL EFFECTS 

11.1 Radiative Speedup 

The nuclear hyperfine quantum beats are one of the most striking kinematical effects 
seen in the nuclear resonance time spectra. Similarly, one of the most dramatic dynamical 
effects seen in the nuclear resonance time spectra is the nuclear decay rate speedup. Rather 
than decaying with the lifetime of an isolated excited-state 57Fe nucleus (which is 
141 nsec), a group of 57Fe nuclei, for a single photon interaction, behaves as an excited 
collective state that decays much faster than an isolated nucleus. This single photon 
quantum effect has been discussed in Sections 7.6 and 7.7. 

. 

As shown in Figs. 7-6.6 to 7-6.8, the collective total nuclear decay rate varies as a 
function of time. This is due to the non-Lorentzian nature of the collective nuclear 
resonance frequency response. Actually, there are two decay rate speedup factors: I, 

resulting from forward scattering in the crystal and is important at early times, R,, 

resulting from Bragg diffraction and is important at intermediate times, and both speedup 
factors are important at later times. Also, the definition of short, intermediate, and long 
times varies as a function of the deviation from the Bragg diffraction peak. An additional 
complication arises from hyperfine split nuclei. As shown in Fig. 7-7.1, the speedup 
factors are different for lines possessing different Clebsch-Gordan coefficients (see 
Eqs. 7-7.1 and 7-7.2). Thus, in the frequency domain, different lines can be 
homogeneously broadened in a non-Lorentzian fashion by different amounts at different 
deviation angles from Bragg. 

The YIG crystal increases the complexity one notch further. Even for the simplest 
scattering geometries described in Section 10.1, there are up to 8 different resonance lines. 
Unambiguously clear dynamical speedup effects are therefore unobtainable from the YIG 
quantum beat spectra (to date, no single line crystals have been fabricated--such crystals 
would enormously simplify the task of observing clear dynamical effects). 

Rather than trying to extract dynamical speedup factors such as a,, or r, from the 

data, an effective average speedup rate is determined. To do this, the time spectra for YIG 

[0 0 21 reflections at different deviation angles were fitted with a simple function 

I(t) = Zoe-(“+r)‘p sin’( Aw,,t/2) (11-1.1) 

232 
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where s/A is the effective average speedup rate, and Aw,c is the average electric 

quadrupole beat frequency due to the electric quadrupole splitting between the dl and d2- 
sites (scattering geometries, described in Section 10.1, were chosen to make these the only 
sites contributing to a diffracted field). In this simple approximation to the time spectra, the 
magnetic hyperfime quantum beats are averaged away. 

. 

Typical fits for deviation angles below, at, and above the Bragg diffraction peak are 
shown in Fig. 1 l-l. 1 where the internal magnetic field was oriented perpendicular to the 
scattering plane. The full nuclear dynamical diffraction theory was used to get the best fit 
to the data, and the fit is shown by the solid curve that closely follows the fast magnetic 
beats in the data. The modulation envelope that is characterized by a slow electric 
quadrupole beat is the fit of Eq. 1 l- 1.1 to the data. The third curve presented in each figure 
characterizes what would happen if there, were no magnetic dipole or electric quadrupole 
beats and no speedup. This curve is essentially the resonance exponential decay curve for 
an isolated nucleus: 

Z(t) = Zoe-r”n. (11-1.2) 

When there is no speedup, the single nucleus decay curve is tangent to the peaks of the 
electric quadrupole beat curve, Eq. 11-1.1. This can be almost seen in Fig. 11-1.1 (a) 
where the speedup is only about a third of the single nucleus total decay rate. 

All of the curves have been normalized to the data closest to the Bragg peak 
(Fig. 11-1.1 (b) where 68 = +2prad). At the Bragg peak, the diffracted intensity and the 

speedup maximizes. This is where the spatial phases of the electric fields scattered from 

the lattice of nuclei are all the same, and thus the collective, cooperative effect becomes 
prominent. As the crystal is rotated off the Bragg peak, spatial dephasing among the 
scattered fields ‘occurs, and this results in diminishing the collective, cooperative effect 
among the nuclei--the speedup is therefore reduced. 

The variation of speedup with angle is shown in Fig. 11-1.2 for the scattering 
geometries where the internal magnetic field is parallel and perpendicular to the scattering 
plane. The decay rate speedup tends to be greater when Binr is parallel to the scattering 

plane rather than perpendicular to the scattering plane. This occurs because the polarization 
matrices for the two orientations are different and give a larger nuclear structure factor 
when B,, is parallel to the scattering plane (see Eqs. 7-2.1,5- 1.22, and 5- 1.28). 

Since, in theory, the dynamical speedup factor follows a Lorentzian distribution as 
a function of deviation angle from Bragg, the data was fitted with a Lorentzian function. 
For the perpendicular (parallel) case the fit yielded a Bragg peak at 68_+8prad 
(67 + 3prad) which, within the uncertainty, agrees with the predicted value of 68prad-- 
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Fig. 11-1.1. 
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YIG [0 0 21 quantum beat pattern! for various angles near!he Bragg 
peak: (a) -26prad (b) +2prad, and (c) +20Brad from the angle corresponding to the 
Bragg peak. The exponential decay curve is Eq. 11-1.2, the curve with slow beats is Eq. 
11-1.1, and the data is fit using the full nuclear dynamical diffraction theory. The average 
electric quadrupole quantum beat period is AT&, and s is the average decay rate speedup. 
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A plot of the average speedup, s, versus the deviation angle from Bragg. _ _ Fig. 11-1.2. Fig. 11-1.2. 

At the Bragg peak, when B,, is parallel to the scattering plane, the average total decay rate At the Bragg peak, when B,, is parallel to the scattering plane, the average total decay rate 
is roughly 4 times as fast, and it becomes 3 times as fast when Binr is perpendicular to the is roughly 4 times as fast, and it becomes 3 times as fast when Bin, is perpendicular to the 
scattering plane. All data was fitted with a Lorentzian function. scam&g plane. All data was fitted with a Lorentzian function. 

this is the position of the nonresonant Bragg peak. The angular linewidth was measured to 
be 32 f 20prad (36 + 1 lprad). The large uncertainties for the perpendicular case result 

from collecting too few data points on the low angle side of the peak. On the basis of the 
tits, one can assume that s follows a Lorentzian angular distribution centered at the Bragg 
peak. 

The average speedup, s , is not to be confused with the dynamical speedup factors. 
Even when factoring in the 20prad angular resolution in the data, the dynamical speedup 

factors are much greater than the average speedup. This can be seen by examining 
Fig. 7-1.7 (c) (one can neglect lines 3 and 4 since they have small scattering amplitudes 
compared to lines 1 and 6). Thus, near the Bragg peak, the dynamical speedup factors &. 

and r, do not describe the effective speedup of the quantum beat spectra (one could have 

inferred this from examining the collapse in the resonance width near the Bragg peak as 

shown in Fig. 7-6.4). At the Bragg peak the effective speedup is considerably smaller than 
the dynamical speedup factors. Also, the effective speedup may only increase marginally if 
the angular divergence of the incident beam is decreased significantly from the 20prad that 

existed for these measurements. 



236 Dynamical Effects (11.2) 

11.2 Resonance Frequency Shifts 

The other remarkable feature that stands out in the nuclear hyperfine quantum beat 
patterns are resonance frequency shifts. As discussed in Section 3.7, a single nucleus 
interacting with its own self-fields gives rise to frequency shifts. In a similar manner, the 
collective state of a distribution of nuclei interacts with its own self-fields which, in this 

case, are the multiply scattered fields in the medium. This cooperative interaction among 
the nuclei gives rise to a collective resonance frequency shift. This effect has been 
observed in the frequency domain through careful Miissbauer experiments by van Btirck.’ 
In the time domain, this effect is much more dramatic and significantly modifies the time 
spectra. 

The same problems encountered in trying to examine the dynamical speedup factors 
Sz,, and l?, discussed in Section 11.1 are present when trying to extract the characteristics 

- of the dynamical frequency shift factor, CO,, from the quantum beat data (except, 

fortunately, that the collective resonance frequency shift does not vary with time)--the non- 

._ Lorentzian resonance behavior, the variation of CO, with the deviation angle from Bragg and 

for lines with different scattering amplitudes, and the plethora of hyperfine lines from YIG. 
Determining the precise behavior of the collective resonance frequency shift 

becomes even more intractable because there are a myriad of other effects that can cause the 
resonance lines to shift about. For instance, the theory that gave rise to CO, in Section 7-6 

and 7-7 had some approximations made: that the crystal was infinitely thick and had a 
- single resonance line. Neither of these cases hold for the YIG crystals used in the 

experiments. The effects of crystal thickness are discussed in Section 1 l-4. When there 
are two or more resonances, coupling can occur between them and produce phase shifts in 
the time spectrum 2* 3(see Appendix B.2), and, when the resonances are close together, the 
resonant lines can interfere with each other enough to shift the peak intensities of each 
resonance line. 

The spectator iron atoms occupying the a and d3-sites also modify the frequency 
and time spectra. The u-sites have little effect upon the time spectra since, because their 
internal magnetic field strengths are much larger that those for the d-sites, their resonance 
lines interact little with the d-site resonance lines. However, the resonance lines of the d3- 
site lie at the same energies as the lines of the d2-site because they have the same 
quadrupole energy shifts. Because the geometrical structure factor for the d3-site is zero, 

this site does not reflect any fields and only transmission can occur. This transmission 
channel opens up another avenue for an incident photon to escape through rather than 
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traveling in the reflection channel of the d2-site. The interaction between the d2 and d3- 
sites in the frequency domain is shown in Fig. 1 l-2.1. In the figure the reflected fields 
from the dl and d2-sites are shown--their hyperfime resonance lines are shifted from each 
other because they have different electric quadrupole energy shifts. However, the 
amplitude of each pair of lines should be identical. Yet the figure shows that for each pair 
of closely spaced lines the d2-line typically has a smaller amplitude. The reduction in 
amplitude of the d2-line is the result of photons being diverted into the transmission ._ - 
channel opened up by the d3-site. This interaction between the d2 and d3-sites 
significantly alters the shape and slightly shifts the position of the d2 -resonance lines. 
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Fig. 11-2.1. YIG [0 0 21 energy spectrum for fields reflected from the dl and d2_- 
sites. The incident angle is +20prad from the Bragg peak. The incident field is Q 
polarized and the internal magnetic field is parallel to the scattering plane and crystal surface 
(that is, nearly in the photon direction). The d2-lines suffer a diminution in amplitude 
because of additional absorption from the nonreflecting d3-site that has resonance lines 
coincident with the d2-lines. 

The d2-d3 interaction is not the only effect that can cause frequency shifts. 
Nuclear level mixing resulting from two competing quantization axes (the magnetic field 
and electric field gradient directions) changes the scattering amplitudes of each hyperfine 

line. Since the resonance frequency shifts are proportional to the scattering amplitude, they 
will vary depending upon the amount of nuclear level mixing. When the electric field 
gradient axis is parallel to the internal magnetic field direction, there is no nuclear level 
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mixing since there is only one clearly defined quantization axis. When the two axes are 
perpendicular, the amount of nuclear level mixing maximizes. However, since the electric 
quadrupole interaction is small compared to the magnetic dipole interaction, this effect is 

small. Fig. 11-2.2 h s ows that shifts of up to 1.5 neV (or 0.3lY) can occur when nuclear 
level mixing is included (for the case in which the internal magnetic field is parallel to the 
dl -electric field gradient and perpendicular to the d2 -electric field gradient). 
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Fig. 11-2.2. Lines e,. and e: for the dl and d2-sites. Same scattering geometry as that 
used in Fig. 1 l-2.1 except that the incident angle is + 40prad from the Bragg peak. The 
solid curve is calculated using the full dynamical diffraction theory including nuclear level 
mixing while the dotted curve excludes nuclear level mixing. Nuclear level mixing causes a 
shift in the d2-line of 1.5 neV (or 0.3r) _ 

All the additional effects that cause apparent shifts in the resonant frequency 
increases the difficulty of conclusively stating anything about the dynamical resonance 
frequency shifts discussed in Chapter 7. And the multiplicity of hyperfine lines for 
complicated systems such as YIG can make life even harder. For instance, one would be 
hard pressed to say anything about dynamical resonance frequency shifts for the quantum 
beat data exhibited in Fig. 1 l-l. 1 (the magnetic field, in this case, is perpendicular to the 

scattering plane). The asymmetry in the beat patterns for reflections on both sides of the 
Bragg peak is due to resonance frequency shifts and a host of other dynamical factors in a 
way that is not clearly apparent. This is because all of the hyperfine lines beat with each 
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other with the beating between the strongest lines, lines 1 and 6, dominating the pattern. 
Since lines 1 and 6 have the same scattering amplitude, these lines are frequency shifted by 
the same amount. Thus, to first order, the beat pattern will look the same between two 
angular positions symmetric about the Bragg diffraction peak even though the resonance 
frequency shift is antisymmetric about the Bragg diffraction peak (see Fig. 7-2.7). The 
differences in the beat patterns comes about because of the beating between lines 1 and 6 
with the weaker lines 3 and 4, and due to the -dynamical effects described earlier in this 
section. 

Going to the scattering geometry where the magnetic field is parallel to the 
scattering plane simplifies matters. For this geometry the pair of line l&4 and 3&6 beat 
with each other (see Fig. g-1.4), and, most importantly, each pair of lines beats with the 
same amplitude. If lines 1 and 6 are frequency shifted by 6 and lines 3 and 4 are 
frequency shifted by A, then the two possible beat frequencies are shifted by the difference 
between these individual frequency shifts: 

where Aw is the beat frequency shifted by f = (6 - A). Going from one side of the Bragg 

peak to the other side causes f to change sign, and each beat frequency shifts in the 
opposite direction. For large enough f this results in clearly visible effects that can 

dominate other effects caused by all other possible sources of frequency shifts. 
An illustration of how resonance frequency shifts modify quantum beat patterns is 

given in Figs. 1 lL2.3 and 1 l-2.4. They were calculated at symmetric positions about the 
Bragg peak for a horizontally polarized field incident at 40prad from the Bragg peak. 

Since the incident and scattered field directions are nearly parallel to the magnetic field, the 

scattered fields can be approximated as both left (g+) and right (C-) circularly polarized for 

the pair of lines l&4 and 3&6 respectively. The i, fields interfere producing the shifted 

beat frequency AU,, - f, and the i- fields interfere producing the shifted beat frequency 

Aw,, + f . The quantum beat patterns of each polarized field is shown in (a) of Figs. ll- 

2.3 and 1 l-2.4. The sum of these beat patterns is shown in (b) of each figure. Because f 
changes sign on opposite sides of the Bragg peak, the total field intensity differs on 
symmetrical sides of the Bragg peak. These patterns were calculated only for reflections 
from the dl and d2 sites. The effect of adding absorption from the d3 is shown in (c) of 

each figure--small additional frequency shifts results. 
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[0 0 21 beat patterns for a 6 field incident - 40prud from the Bragg 
peak. B,, is parallel to scattering plane and crystal surface (nominally in the incident and 
scattered photon directions). The 6, and 6- field interisities in (a) are summed to produce 
the net field intensity in (b) when only scattering from the dl and d2-sites. The effect of 
including the d3-site is shown in (c). 
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Fig. 1 l-2.4. Same as Fig. 11-2.3 except that the 6 polarized field is incident 
+ 40prrad from the Bragg peak. 
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To get a handle on understanding the resonant frequency shifts, a simple semi- 
kinematical theory based on average beat frequencies and frequency shifts can be applied. 
This is justified because the 4 magnetic beat periods are all nearly equivalent (the same goes 
for the 2 electric quadrupole beats) as illustrated in Table 10-1.2. The net intensity of the 
diffracted fields can be approximated as 

Z(t) = lot? -ts+rjtP{ sin2[ (Aal~sf)r]+ sin2[iAf)%l fJf]}sin2(E$) (11-2.1) 

where A’o14, AU,,, and Aw, are average magnetic and electric quadrupole beat 

frequencies, s is the average speedup discussed in Section 11.1, and f is an average beat 

frequency shift. 
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Fig. 11-2.5. As a demonstration, the semi-kinematical formula, Eq. 11-2.3, was fit to 
the dynamical diffraction calculation (shown in Fig. 11-2.3 (c)). The best kinematic fit 
gave an average beat frequency shift of f = 3.4f. 5 neV, or 0.7 + 0. 1JY. 

This formula was fitted to the quantum beat pattern shown in Fig. 1 l-2.3 (c). The 
average magnetic beat periods used were AT4 = 12.2nsec and ATs6 = 13.Onsec. The 

values s, AU,, and f were allowed to vary to get the best x2 fit. The results of the fit, 

shown in Fig. 11-2.5, gave s=O.3~!1O.ll?, ATEe =138f2nsec, and f =3.4+.5neV, or 

0.7kO.K where I? is the natural linewidth (r= 4.67 x10v9 eV). What this fit 
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demonstrates is how closely semi-kinematical diffraction theory parallels dynamical 
diffraction theory when a few dynamical quantities are inserted into kinematical 
expressions. When using Eqs. 7-6.30 and 7-7.1, the collective dynamical frequency shift 
4Oprad below the Bragg peak (taking the difference in w, between lines I&4 or 3&6) is 

1.1 neV (0.23I’) which is the same order of magnitude as the average beat frequency shift. 
The discrepancy between the two values shows that there are other frequency shifts that 
must be taken into account. 

For f = 3.4neV (at 60 = -4Oprad), the beat period between lines 1 and 4 

decreases by 0.1 nsec and the beat period between lines 3 and 6 increases by 0.1 nsec--the 
beat periods then diverge by an extra 0.2 nsec forcing the beat pattern of the C+ fields to be 

more out of phase with the pattern of the G- fields. This causes the beat pattern to become 

washed out as shown by the diminished peak to valley contrast in Fig. 1 l-2.3 (b). 
Symmetrically on the other side of the Bragg peak (at 68 = +40prad), the beat period 
between the two circularly polarized fields should converge by 0.2 nsec making the beat 
patterns more in phase and increasing the peak to valley contrast as shown in Fig. 1 l-2.4 
(b), The effect of the d3-site causes additional frequency shifts that are not symmetrical on 
both sides of the Bragg peak--they appear to cause more drastic effects on the positive side 
of the Bragg peak (as shown in (c) in Figs. 1 l-2.3 and 1 l-2.4). 

The striking changes in the quantum beat patterns as a function of the deviation 
angle from the Bragg peak are presented in Fig. 1 l-2.6. Full nuclear dynamical diffraction 
theory was used to obtain the fits (Eq. 1 l-2.1 was not used). As can be clearly noticed, in 
going from the low angle side of the Bragg peak to the high angle side, the i, and e- time 

beat patterns progress from nearly out of phase to nearly in phase. In other words, the 
contrast improves as the deviation from Bragg increases over the angular range given in the 
figure. 

The data in Fig. 1 l-2.6 was also fit using the simple semi-kinematical formula 
described by Eq. 11-2.1. The average beat frequency shift as a function of angle is shown 
in Fig. 1 l-2.7. On the low side of the Bragg peak, the parameters AU,, and AU,, were 

fixed (their periods were set at AT4 = 12.2 nsec and AT% = 13.0 nsec). However, on the 

high angle side of the Bragg peak, because of the drastic effects by the d3-site which 

played havoc with the fits, these parameters were varied. An attempt was made to fit the 
data with a Lorentzian dispersion curve noting that, since the angular divergence in the data 
was 20prad, semi-kinematic fits near the Bragg peak become difficult to interpret since 

both positive and negative frequency shifts can exist simultaneously. The fit shows that, 
like the dynamical resonance frequency shift, the average beat frequency shift follows a 
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dispersive relationship. The data also reveals that it is possible to easily 
frequency shifts smaller than a linewidth. 
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Fig. 11-2.6. 
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Nuclear hyperfine quantum beat patterns as a function of the deviation _ _ _ . . 
from the Bragg peak. Measurements for (a), (b), and (c) were taken on the low angle side 
of the Bragg peak at -34, -20, and 0 prad respectively. Measurements for (d) and (e) were 
taken on the high angle side of the Bragg peak at 21 and 40 prad. Note that the contrast 
improves when going from the low angle side to the high angle side of the Bragg peak. 
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._ Fig. 11-2.7. 
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The average beat frequency shift versus the deviation angle from Bragg 
appears to follow a Lorentzian dispersive curve. Average beat frequency shifts of up to 13 
linewidths occurred near the Bragg peak. The dispersion curve is centered at 67 z!z 5prad 
and has a 17 + 7prad linewidth. 

Dynamical Effects (11.3) 

11.3 The Lamb-Miissbauer Factor 

The change in the quantum beat patterns as a function of the deviation angle from 
Bragg provides a unique opportunity to measure the Lamb-Miissbauer factor. This 
opportunity comes about because the angular independent part of the structure factor, 

Eq. 7-2.10, is directly proportional to the Lamb-Miissbauer factor, LM(ki)LM(kf), and 

three well known experimentally measured quantities: I( L, a) is the radiative decay rate 

r ,ad = r/(1 + a) where fi/ilr = 140.95 nsec and a = 8.23 for 57 Fe, and C is the isotopic 

concentration which has been accurately measured to be 0.8097 for the YIG crystal 
samples. Since changes in the quantum beat patterns are directly correlated with the 
strength of the scattering amplitude, information can be extracted from these changes to 
determine the Lamb-Mossbauer factor. 
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Fitting the data in Fig. 11-2.6 by allowing the Lamb-Miissbauer factor to vary 
produces new fits that are precisely the same as the old fits except that the value of 68 
giving the best fit is different. This results because increases in the Lamb-Miissbauer factor 
only serves to increase the nuclear Darwin width (see Fig. 11-3.1). If the Lamb- 
Miissbauer factor is increased to a new value, the new beat pattern can be made identical to 
the old pattern by simply going to a point further from the Bragg peak (a horizontal line 
drawn in Fig. 11-3.1 intercepts the curves having a larger Lamb-Miissbauer factor further 
out from the peak). Thus, by precisely measuring the difference in angle between two 
reflections, the Lamb-Miissbauer factor that most closely results in describing these 
differences can be found. 
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Fig. 11-3.1. Darwin curves for a 2.6pm thick YIG crystal for the [0 0 21 reflection 
and for a magnetic field parallel to the scattering plane. The Lamb-Mossbauer factor for the 
top curve was set at unity, and the lower curves illustrate what happens when this factor is 
decreased to 0.6 in steps of O.l--the peak intensity decreases and the Darwin width 
narrows. The Bragg peak is centered at 65prad, and the Darwin width is 4lprad for a 
Lamb-Miissbauer factor of 0.82 (this is the value used in all the previous fits in this and the 
preceding chapter). 

Two experimental runs were made in which the YIG crystal was rotated in steps of 

1 millidegree (17.4prad). The crystal was centered on a Huber 4-circle diffractometer 

having a o-circle consisting of a Huber 430 goniometer connected with a 2O:l gear 
reducer. As a result, the e-circle was able to make step sizes of $ millidegrees. 
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Unfortunately, because these measurements were made without the intention of measuring 
the Lamb-Mossbauer factor (the possibility of doing this was discovered only after the 
measurements), the experiment was not carefully tailored for this application. Any 
backlash problems in the e-circle would show up as large 4.4prad discrepancies because 

of the large stepping size. For each run 4 measurements were taken at one and two 
millidegrees above and below the Bragg peak, and one measurement was taken at the 
Bragg peak. Before each off-Bragg measurement was made, a rocking curve measurement 
was performed to re-determine the position of the Bragg peak. This additional check was 
done because the synchrotron beam direction stability and the backlash problems of the 
Huber goniometers caused real or apparent shifts in the position of the Bragg peak. 

The results are shown in Fig. 1 l-3.2. Plotted is the standard deviation, a,, 

between the actual and measured angle (obtained by the best fit to the data) versus the 
Lamb-Miissbauer factor 

a, = ,/(AOa, - A0mem)2/N. (11-3.1) 

. The quantity A6,, is either + 1 or + 2 millidegrees, and A8,, is the difference in angle 

between the angle measured at the Bragg peak and the angle measured off-Bragg. The 
minimum standard deviation for two sets of runs lie at different Lamb-Mossbauer factors--a 
parabolic fit to the data yielded Lamb-Mossbauer factors of 0.78 and 0.86 at the minima. 
Thus, the Lamb-Miissbauer factor could be determined to only with 5%: 

LM(ki)LM(k,)=0.82f0.04. 

On the agenda were improvements to the experimental apparatus in order to perform 

more sensitive measurements about the YIG Bragg peak, A Si [IO 6 41 channel cut 

monochromator having a Darwin width of 2prad was built and attached to an Ishikawa 
sine-bar rotation stage capable of making 0.05prad steps. This system would have greatly 

improved the angle measurements, but, unfortunately due to lack of time, this system was 

never used (the Si [lo 6 41 reflection reduces the nuclear counting rate by a factor of 10 

forcing one to count 10 times longer to get the same statistics as before). 
Also, of major interest would be to perform these measurements at other reflections 

than the YIG [0 0 21 reflection. Little is known about how the Lamb-Mossbauer factor 

varies with the order of reflection (or the scattering angle). 
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11.4 Crystal Thickness Effects 

The time. evolution of radiation scattered by a collection of resonant particles can be 
significantly influenced by the total number of resonant scatterers. This property provides 
the opportunity to infer the thickness of a medium of scatterers directly from the time 
distribution of the scattered radiation. 

The fields reflected from a thin crystal have characteristics that are similar to the 
fields transmitted through a thin isotropic slab (that is, a thin absorber) except that there are 
small resonance frequency shifts and small increases in the decay rate (see Section 7-6). 
For a thick crystal, because many more scatterers contribute to the scattered fields, there 

can be substantial frequency shifts and increases in the decay rate (as seen in Sections 1 l-l 
and 1 l-2). Simply due to speedup effects, as the thickness of a crystal increases, the time 
distribution of the scattered radiation is squeezed into earlier times. 

Care must be taken when trying to determine the thickness of crystals when Bragg 
scattering is used. This is because primary extinction can severely limit the depth that fields 
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can penetrate into the crystal. If the crystal is thicker that the extinction length for a 
particular order of reflection, then information about the crystal thickness cannot be 
extracted because changes in the time distribution saturate at the extinction length. 

A YIG thickness greater than lprn cannot be measured using the [0 0 2] reflection 

because the penetration depth for 14.413 keV radiation is about l.lpm. However, the 

penetration depth for the [0 0 lo] reflection is roughly six times greater giving the 

possibility of measuring crystal thicknesses up to 6.-4ptn. 

Calculations of YIG [0 0 lo] quantum beat patterns for various crystal thickness are 

shown in Fig. 11-4.1. The area of each curve is normalized to the area of the data 
presented in (a) in Figs. 10-3.1 and 10-4.1 for the case in which the internal magnetic field 
is parallel and perpendicular to the scattering plane (the intensity variation with thickness 
was normalized away because this information is absent in the data). From the figures, one 

_ can see that the second peak (past 150 nsec) of the electric quadrupole beat is much more 
prominent for thin crystals than for thick crystals. For the thicker crystals, the beat pattern 
is squeezed towards earlier time giving prominent peaks below 50 nsec. 

. 
Using the result that the quantum beat patterns were sensitive to thickness variations 

produced surprising results. One of the crystals grown by Gualtieri, crystal #57-2, was 

stated to have a thickness of 6.7 pm .4 The YIG [0 0 21 quantum beat patterns were not 

sensitive to crystals this thick since the penetration depth is only 1.1 pm, thus the 

calculations showed no discrepancy. However, a significant discrepancy existed for the 

YIG [0 0 lo] quantum beat patterns. The YIG [0 0 lo] data (together with lower order 

YIG [0 0 61 and higher order [0 0 141 data) yielded a thickness for crystal #57-2 of 

2.6f 0.2pm rather than the expected 6.7 pm. This unexpected result precipitated a 

second set of rocking curve measurements to understand more about the structure of this 
particular crystal. These precision rocking curve measurements are discussed in Section 
9.1, and the results are shown in Fig. 9-1.2. The rocking curve for crystal #57-2 showed 
that the YIG film had bifurcated into two separate layers having slightly different lattice 
spacings. The YIG reflections were probing only one of these layers--the one 2.6pm 

thick. 
No attempt was made in further experiments to investigate the second 4.1 pm thick 

layer of crystal #57-2. Instead, the crystal having the best crystal perfection, crystal #57-6, 

was used in further experiments. This determination was made using the data in 

Fig. 9-1.2. The YIG [0 0 lo] quantum beat data for crystal #57-6 was consistent for a 
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crystal having a thickness of 4.3 AZ 0.4pm. Within the uncertainty, this value agrees with 

Gaultieri’s measured value of 4.7pm . 
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Fig. 11-4.1. YIG [0 0 10 quantum beat patterns for various crystal thicknesses (from 
0.5 to 8.5 pm in steps of 2. m). The bold-faced curve represents the 8.5 pm thick 
crystal and is pointed to by the If arrow. 
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11.5 Miissbauer Filter Experiment 

Quantum beat patterns can be drastically modified by inserting x-ray optical 
elements in the beam path. For instance, consider the case when the magnetic field applied 
across a YIG crystal is parallel to the scattering plane. The net reflected field will then have 
a four line spectrum (see Fig. 8- 1.4) composed of right and left circularly polarized fields. 
The lines havivg the same polarization interfere with each other to produce the typical 
quantum beat pattern having a 12 to 13 nsec beat period. However, this magnetic beating 
can be completely eliminated by inserting in the beam path a “black” Mossbauer absorber 
that completely absorbs all resonant photons of the inner lines (lines 3 and 4). With the 
inner two lines blocked out, the only beating that can occur is the electric quadrupole 
beating between the two d-site lines. 

An experiment was performed to eliminate the magnetic hyperfine beats present in a 
- quantum beat pattern. The experimental setup is described in Section 9.4. The “black” 

Mossbauer absorbers used in the push-pull arrangement shown in Fig. 9-4.4 were 91.2% 
enriched ammonium lithium ferrofluoride absorbers having a single line resonance energy 
spectrum. The push-pull arrangement ensures that both inner lines of YIG are filtered out 
simultaneously. 

Figure 1 l-S.1 shows the YIG [0 0 21 quantum beat pattern without the “black” 

absorbers in the beam path. This figure requires some explaining. This experiment was 
the first time-resolved Miissbauer measurement made by the Stanford nuclear resonance 

- group (in collaboration with Ercan Alp and Gopal Shenoy from Argonne National Labs). 
In this first successful search for the nuclear resonance signal, many problems were 
encountered that were unanticipated. 

One problem is clearly shown in Fig. 11-5.1 (a) and (b). The nuclear resonance 
signal sat on top of a large undulating background that was later found out to be due to 
after-pulses in the phototubes of the detector. They had a large 1 in 10 after-pulse rate with 
the afterpulses occurring 460 and 540 nsec after a prompt pulse. The experiment was done 
on the 10-2 beamline at SSRL. This storage ring operated in a timing mode where electron 
pulses were separated by 195 nsec (unlike CESR and PEP where pulses were separated by 
400 nsec and 2 p set respectively). Thus, the oscillations seen in the background time data 

were due to after-pulses initiated by prompt pulses occurring well before the prompt pulse 
giving rise to the nuclear resonance signal. Fortunately, by using background runs, the 
background could be adequately subtracted from the nuclear resonance time data. The 
results of such a background subtraction is shown in Fig. 1 l-5.1 (c). 
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Fig. 114.1. Nuclear resonance signal for a scattering geometry that produces 
significant nuclear level mixing. Total signal plus background is in (a), background due to 
phototube afterpulses is in (b), and (c) is the result after background subtraction. Nuclear 
scattering counting rate was about 3.6 counts/set. (Lines are drawn though data in (a) and 
@)I. 
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The other problem resulted from a confusion about the crystallographic directions in 
the YIG crystal samples. The YIG crystal #57-2 was aligned so that its flat was 

perpendicular to the incident beam. The flat turned out to be the YIG [l lo] direction. For 

this orientation of the YIG crystal, the internal magnetic field (which was nominally parallel 

to the incident beam direction) bisects the electric field gradient [lo 0] and [0 lo] 

directions. When the angle between the magnetic field and both electric field gradients is 
45”, the electric quadrupole splitting between the dl and d2-sites is identical. The lines 
from each site then lie at the same energy, and, because of the crystallographic 180” phase 
difference between the two sites, the reflection becomes forbidden for nuclear diffraction. 
In the experiment, the crystal was set at an azimuthal angle of 44’ thus making the 
reflection nearly forbidden. At this orientation, the nuclear signal is reduced by a factor of 
15 over the optimum orientation (that is, for an azimuthal angle of OO). An extremely 
painstaking and time consuming effort was undertaken to find the nuclear resonance signal 
under such low counting rates (= 3.6 counts/set). 
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Fig. 11-5.2. Comparison between the full nuclear dynamical diffraction theory and 
when the theory neglects nuclear level mixing. 

Sometimes accidents, as in this situation, can lead to some interesting physics. 

When the angle between the internal magnetic field and the dl and d2-site electric field 
gradients is at 45’, the nuclear reflection is forbidden only to first order, and second order 
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effects come into prominence. Nuclear level mixing, which is almost negligible for other 
angles between the magnetic field and electric field gradients, becomes quite significant at 
the 45” angle. As described in Section 5.3, the mixing of nuclear states becomes so strong 
that linear polarization reversal occurs--incident 6 polarized fields are scattered into 
outgoing ‘IL polarized fields. Including nuclear polarization mixing in the nuclear dynamical 
diffraction theory was necessary to fit the data. Fig. 11-5.2 shows the effect of nuclear 
level mixing for the fit in Fig. 11-5.1. This-phenomena of strongly mixed nuclear states 
where each resonant line amplitude results from superpositions of all possible nuclear 
quantum states was later investigated more carefully by the Hamburg nuclear resonance 
scattering gro~p.~v 6 

._ 

The result of inserting the “black” Mossbauer absorbers in push-pull mode is 
shown in Fig. 11-5.3. Magnetic hyperfine beats are no longer visible--the “black” 
absorbers were successful in significantly filtering out the inner resonant lines. What is left 
is the slow electric quadrupole beat between the two d-sites. The data was fitted with the 
simple kinematic formula given by Eq. 1 l-l. 1 to illustrate that the time distribution follows 
an expected slow beat pattern on top of an exponential decay curve. The data exhibited a 
speedup of s = 2.9 f 0.3 which is consistent for fields reflected at an angle near the Bragg 

Fig. 114.3. Time 
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distribution for an experiment where “black” Mossbauer absorbers 
filter out hypexfine lines to eliminate magnetic beats. Only the electric quadrupole beat is 
evident. The counting rate was about 1.3 counts/set. 
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peak (the data in Fig. 11-5.1 indicates the reflection was about -5prad from the Bragg 

peak). The precise quadrupole beat period was indeterminable due to the lack of good 
statistics in the data, so the theoretical value of 3.7 p set was used in the fit. 

11.6 General Dynamical Scattering 

Nuclear dynamical diffraction theory has been quite successful in explaining all the 
data obtained by scattering resonant x-rays off 57 Fe enriched YIG crystals. The fits have 
not been perfect, but this problem may be due to crystal imperfection, nonuniformities in 
the hyperfine fields throughout the crystal, or the inability to accurately characterize the 
polarization of the field incident upon the crystal. Even certain physical interactions that 

- one would neglect upon first thought because their effects are small can produce noticeable 
perturbations in the quantum beat patterns. For instance, even though the u-sites have 
much larger internal magnetic fields that the d-sites, and the a-sites do not reflect any 
fields for the scattering orders considered in the experiments, these sites can produce small, 
noticeable effects for incident angles near the Bragg peak. This is shown in Fig. 11-6.1 for 
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Fig. 11-6.1. Small perturbations upon the time beat patterns due to the presence of 
57 Fe occupying the u-sites in YIG. The dotted curve shows the effect of eliminating the 
u-sites. The incident angle is -1prad from the Bragg peak. 
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a case in which the internal magnetic field is parallel to the scattering plane. The major 
effect of the u-sites shows up in the null region where the i$+ and i- polarized field 
intensities are out of phase. Yet, theses effects are too small to yield any meaningful 
information about the u-sites in the data collected. 

One interesting problem that was analyzed was whether there was any additional 
dephasing in the scattering process that would cause the quantum beats to wash out earlier 
than expected. To see this effect required a long count rate experiment that covered a range 
of several lifetimes. Two TACs were used to perform this experiment--one measured time 
spectra from 0 to 250 nsec, and the other measured spectra from 200 to 450 nsec. The 
TACs could be put in synch by using the overlapping measurement (the TACs were 
actually found to be in synch making time corrections between TACs unnecessary). The 
results are shown in Fig. 1 l-6.2. Clear, unmistakable beats can be seen up to 23 lifetimes 
(340 nsec), and beyond that time both data and theory start to become washed out--natural 
dephasing due to the decay of the nuclear excited state makes it necessary to perform 
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Fig. 11-6.2. Three hour measurement of YIG [0 0 21 time spectrum covering over 3 
natural lifetimes. The incident angle is -9prad from the Bragg peak, the internal magnetic 
field is parallel to the scattering plane, and a background of 1.5 counts/set was used in the 
fit. Data collected over a long time is typically more difficult to fit than data collected over a 
short time. This is probably because there is more time for settings to change during the 
experiment (such as the incident beam direction). Ringing can be seen up to 2+ lifetimes 
revealing that the crystal operates similar to a set of oscillators having a high Q. 
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measurements lasting longer than 3 hours to find out what is happening beyond 23 

lifetimes. 
The only difference between the scattering amplitudes for the YIG [0 0 2n] (where 

n is odd) reflections is that the angular factors in the polarization matrices change and that 
the real part of the photoelectric scattering amplitude decreases as the Bragg angle increases 
(that is, f, + 0 in Eq. 7-2.2 as the scattering angle approaches 90”). The decrease in the 

real part of the photoelectric scattering amplitude only serves to decrease the index of 
refraction shift and the Darwin width of the Bragg peak. This makes the peak speedup and 
frequency shifts occur at a smaller deviation angle from Bragg, and it causes the reflected 
intensity to decrease. What significantly changes the shape of the beat patterns between the 
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Fig. 11-6.3. YIG [0 0 61 quantum beat patterns for the cases in which the internal 
magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally 
polarized field is incident at an angle (a) -2prad (b) -1prad from the Bragg peak. 
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various YIG reflections are the differences in the polarization matrices (Eqs. 5-1.22 and 
5- 1.28 for the common scattering geometries used in the experiments). 

Time spectra for the YIG [0 0 21 and [0 0 lo] reflections have already been shown 

in Figs. 10-1.3, 10-1.4, 10-3.1, and 10-4.1 for the two cases in which the magnetic field 
is parallel and perpendicular to the scattering plane (the incoming field was incident at an 
angle from the Bragg peak of -3prad for Fig. 10-3.1 (a) and -4prad for Fig. 10-4.1 

(a)). To complete the set, YIG [0 0 61 and [O 0 141 are shown in Figs. 1 l-6.3 and 1 l-6.4. 
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Fig. 11-6.4. YIG [0 0 141 quantum beat patterns for the cases in which the internal 
magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally 
polarized field is incident at an angle (a) -6prad (b) +2prad from the Bragg peak. 
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Nuclear dynamical diffraction theory should hold equally well for multiple crystal 
reflections. The only change comes in the boundary conditions in which the incident field 
on the proceeding crystal is the reflected field from the preceding crystal. Double crystal 
diffraction experiments were performed by the nuclear resonance scattering group at 
Hamburg,’ but only for the case in which both YIG crystals were operated identically. In 
contrast, double crystal diffraction experiments were performed for various orientations of 
the internal magnetic field across the two crystals -and for various combinations of 
reflections. Fig. 1 l-6.5 shows the results of a double reflection from two YIG crystals 

oriented for the [0 0 21 reflection. In Fig. (a) and (b) both crystals have their internal 

magnetic fields parallel and perpendicular, respectively, to the scattering plane. In Fig. (c) 
the first crystal has its internal magnetic field oriented parallel to the scattering plane, while 
the second crystal has its field oriented perpendicular to the scattering plane. The very 
noticeable difference between the single and double reflection measurements is an overall 
shift in the quantum beat patterns. This shift results because the double crystal reflection 

- performs a convolution of two single crystal beat patterns. 
. Another experiment was performed in which the first crystal was oriented for the 

[0 0 21 reflection and the second crystal was oriented for the [0 0 41 reflection (the internal 

magnetic field for both crystals was oriented parallel to the scattering plane). The results 
are shown in Fig. 1 l-6.6. The [0 0 41 reflection allows both photoelectric and nuclear 

diffraction. The double crystal beat pattern should then, to first order, show a YIG [0 0 21 

beat pattern since the YIG [0 0 21 diffracted field should reflect promptly from the electrons 

in the second crystal. To second order, a convolution of single crystal YIG [0 0 23 and 

YIG [0 0 41 beat pattetis should be present. 

Double crystal experiments allows one to probe the hyperfine structure of crystals 
for allowed photoelectric reflections. For instance, observing the quantum beat signal from 

a YIG [0 0 41 reflection is not possible with the present detector because of the intensity of 

the allowed photoelectric reflection (unless one uses a narrow bandpass crystal 
monochromator, but these monochromators also drastically reduce the nuclear signal 

intensity). The YIG [0 0 2]-[0 0 41 double crystal reflection allows one to get around this 

problem and to extract information about the photoelectrically allowed [0 0 41 reflection. 

Using the first crystal as a monochromator produces extremely monochromatic 
x-rays to be used in further experiments involving not only crystals but other types of 
samples. Unfortunately, YIG is a hyperfine split crystal, and its complicated time response 
must be deconvolved from any experimental results--its time response must, therefore, be 
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Fig. 11-6.5. Double crystal YIG quantum beat patterns. Both crystals are-oriented in 
the [O 0 2] direction. The internal magnetic field is oriented parallel or perpendxular to the 
scattering for each crystal separately. In (c), the magnetic field is parallel to the first crystal 
and perpendicular to the second crystal. 
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Fig. 1 l-6.6. Double crystal YIG quantum beat pattern. Both crystals have their 
- internal magnetic fields oriented parallel to the scattering plane, but the first crystal is 

oriented in the [0 0 21 direction and the second crystal is oriented in the [0 0 41 direction. 

well known. However, there is a possibility of constructing single line YIG crystals by 
impregnating them with certain elements. Even so, the linewidth would not be broad 
enough to eliminate the necessity of performing deconvolutions to erase the effects of the 
monochromator when it is used for experiments involving 57 Fe enriched samples (even 
using the properties of the decay rate speedup does not help because speedups, or, in 
frequency space, an increase in the linewidth, of only as great as 3 have been observed for 

- YIG). 
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12. CONCLUSION 

The theory of the scattering of x-rays by resonant nuclei is, in principle, much 
simpler that the theory describing the scattering.of x-rays from electrons. This is because 
electronic dynamical diffraction theory requires relativistic Hartree-Fock calculations to 
determine the resonant or nonresonant photoelecthc scattering amplitude for many 
electron atoms. Because nuclei can be approximated as point particles, such calculations 
for nuclear systems are unnecessary. A simple nonrelativistic perturbation theory, 
treating the nuclei as point particles, can be used to understand the nature of 
electromagnetic fields scattered from nuclei. 

Once the spherical multipole scattering amplitude, whether for nuclear or 
_ electronic interactions, has been formulated, the differences between nuclear and 

electronic scattering theory disappear. The electromagnetic fields scattered from particles 
can then be expressed in terms of spherical multipole fields. In this thesis, a dynamical 

. 
scattering theory has been developed where spherical multipole fields interact with a 
system of particles and undergo multiple scattering. When elastic scattering is assumed, 
there is no way to determine which photon scattered off which particle since the state of 
the particle before and after the scattering process is the same. Thus, to describe the 
scattering interaction, one must coherently sum up all the probability amplitudes of 
scattering from all of the particles in the system. This sum forms a collective state of 
many particles--the system of particles acts collectively as an entirely different particle. 

Dynamicalscattering theory reveals that a collective state has properties similar to 
a single particle. A single particle interacting with a photon undergoes frequency shifts 
and has a resonance linewidth due to its interaction with the generated self-fields. 
Similarly, when the collective state interacts with a photon, it interacts with its generated 
self-fields which, in this case, are the multiply scattered fields in the medium. These 
interactions are shown to also lead to resonance frequency shifts and linewidth 
broadening (or radiative speedup). 

The connection between quantum mechanics and classical mechanics was bridged 
by performing a sum over all of the multiply scattered fields in a medium. What was 

found was interesting but not surprising. The net electric field multiply scattered from a 
phased collection of particles was found to be identical to the solution of the Maxwell 

equations for a medium when the quantum mechanical form of the scattering amplitude is 

264 
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used in the inhomogeneous wave equation. This semi-classical result confirms that 
dynamical diffraction theory rests on solid ground. 

Nuclear dynamical diffraction effects were strongly evident in the time-resolved 
Miissbauer spectra measured in synchrotron x-ray diffraction experiments involving 57 Fe 
enriched YIG films. In the time domain, resonant frequency shifts and decay rate 
speedups were observed, and they were seen to vary as a function of the deviation from 
the Bragg angle of a YIG crystal. The average decay rate speedup varied in a Lorentzian 
fashion with the deviation angle, and the peak was centered at the nonresonant Bragg 
peak. The average resonant frequency shift was seen to vary in a Lorentzian dispersive 
fashion. Both effects were predicted by nuclear dynamical diffraction theory. A peak 
speedup of 3l? and a peak frequency shift of 1.5r (where r = 4.67 neV is the natural 

linewidth) was measured for YIG. The incident beam from a monochromator had an 
angular divergence of about 20prad, and should this divergence be reduced in future 

experiments, larger peak speedups and frequency shifts should be obtainable. 
By measuring the variations in the quantum beat patterns as a function of the 

. deviation angle from the Bragg peak, the Lamb-Mijssbauer factor was deduced. A Lamb- 

Miissbauer factor of 0.82 with a 5% uncertainty was measured for the YIG [0 0 21 

reflection. Of interest would be to repeat these measurements for other orders of 
reflection. How this factor depends with scattering angle or upon the order of reflection 
is not well known. 

Another nuclear dynamical effect observed was the variation in the quantum beat 
patterns due to the thickness of the crystal film. In one measurement using the YIG 

[0 0 lo] reflection, the nuclear dynamical theory gave a thickness (2.6pm) that was 

inconsistent with a measurement made during the fabrication of the crystal film (6.7pm). 

With more careful diffraction experiments to measure the rocking curve of the crystal, the 
dynamical theory was vindicated--the rocking curve measurements showed that the 
crystal had bifurcated into two layers having different lattice constants. Thus, dynamical 
effects were shown to be sensitive to thickness variations in a crystal. 

Nuclear dynamical diffraction theory was also tested in a double crystal reflection 
experiment. In this case, the idea of a collective state must be extended to two crystals 
separated in space. However, since diffraction is essentially a phased scattering 

phenomena, the separation of two crystals poses no problem as long as all of the 
diffracting particles have the same spatial phases (modulo 2n). The two crystal YIG 

[0 0 2]- [0 0 21 reflection data was well explained by dynamical diffraction theory for 

different orientations of the internal magnetic field across each crystal. A double crystal 
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YIG [0 0 2] - [0 0 41 reflection experiment was also done. This experiment showed that, 

using the first [0 0 21 crystal as a monochromator source, an electronically allowed 

[0 0 41 reflection could be probed. Without the YIG [0 0 21 crystal, the photoelectric 
prompt reflection would have overwhelmed the detector (a scintillator coincidence 
photodetector where the scintillator is a plastic material possessing a short fluorescent 
lifetime). 

Nuclear dynamical scattering theory is necessary to describe the results of time- 
resolved Mossbauer spectroscopy principally because multiple scattering is no longer 
insignificant. However, there remains a whole host of physical phenomena that have 
nothing to do with multiple scattering (such as nuclear hyperfine structure quantum beats, 
the orientation and strength of the various hyperfine fields, nuclear level mixing, 
polarization and angular scattering characteristics, and angular interferometry) which 

. were also investigated in this thesis. 
One such kinematic effect investigated involved a dual time and frequency 

. 
experiment that utilized information from both frequency and time space. A “black” 
Mijssbauer absorber was used to completely filter out the inner two lines of a hyperfine 
split YIG spectrum. The inner magnetic field was oriented nominally parallel to the 
incident and outgoing photon directions. For such a case, filtering out the inner two lines 
prevents any magnetic beating. The time-resolved experiment showed no fast magnetic 
hyperfine beats--only a slow electric quadrupole beat remained (due to the beating 
between lines from iron nuclei lying in different crystallographic sites). 

Another kinematic scattering phenomena investigated involved a situation in 
which time domain measurements have advantages over frequency domain 
measurements. This advantage lies in the ability to easily detect relative phase 
differences between resonant amplitudes. Since resonant lines are usually spaced far 
apart, very little phase information can be extracted from the interference between the 
lines. However, since the interference between resonant lines shows up as a beat pattern 
in the time domain, phase shifts in the amplitudes show up as clearly observable shifts in 
the beat patterns. 

An angular interferometry experiment took full advantage of the ability to observe 
purely geometrical phase changes in the time domain. In this experiment, the phase shift 

of the quantum state of a photon that has undergone a rotation was measured--these phase 
shifts are purely geometrical effects independent of dynamical, or multiple, scattering or 

the number of scatterers. By using nuclear transitions, photons could be prepared having 
a definite component of angular momentum along a quantization axis (the internal 
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magnetic field direction). These photons underwent phase shifts depending upon the 
amount of azimuthal (angular momentum-conserving) rotation about the quantization 
axis. These phase shifts were observed to be different between right-handed rotations and 
left-handed rotations about the quantization axis. For scattering angles near 45’, the 
phase difference was large enough to shift the quantum beat patterns for right and left- 
handed rotations almost 180’ out of phase. Such striking phase effects would be 
extremely difficult, if not impossible, to observe through traditional Miissbauer velocity 
experiments. 

. 

One interesting question that may be posed by Mossbauer experimentalists is 
whether measurements made in the time domain reveal any information that cannot’be 
obtained by traditional measurements in the frequency domain. For the samples used in 
this thesis, both time-resolved and conventional Mijssbauer spectroscopy would most 
likely yield the same results when analyzing the internal hyperfine fields. The hyperfine 
field values for the internal magnetic field and the electric quadrupole splitting could be 
measured to within l-2% through the analysis of quantum beat patterns. This is about as 
well as traditional Mijssbauer velocity measurements. Where time-resolved 

measurements using synchrotron x-ray sources become more useful is in hyperfine field 
measurements of samples that are not amenable to conventional Mijssbauer spectroscopy. 
For example, when using radioactive sources, the scattering intensity from extremely 
small samples is generally too small to extract information about the hyperfine fields. 
Such samples may include materials in highly pressurized diamond anvil cells where 
magnetic phase transitions can be explored, or nanostructures and micro-crystals where 
one, two, or three dimensional magnetism can be explored. For instance, one 
dimensional .magnetism can be investigated in small magnetic fibers, and two 
dimensional magnetism can be explored in the surface layer of materials or in thin 
magnetic crystal or multilayer films composed of only a few monolayers of resonant 
nuclei. When the third generation synchrotron sources are constructed, undulator 

beamlines should be able to provide the necessary high brilliance to make such 
measurements not only possible but straightforward. 



APPENDIX A 

A.1 Angular lnterferometry (Physical Review Letter) 

The discussion in Chapter 5 explored the properties of angular phase shifts from the 
perspective of the S and T-matrix scattering formalism presented in the previous chapters. 
To complement the discussion, the angular phase shifts are understood in this appendix by 
using the fundamental rotational and mirror symmetry properties of free space which leads 
to the realization that bosons, such as photons, essentially behave as three dimensional 
irreducible representations of the group O+(3). (In a similar fashion, these symmetry 

- properties reveal’that fermions, such as electrons or neutrons, can be realized as two 
dimensional irreducible representations of the group W(2) .) The following is a recently 

published journal article: D. E. Brown, 9. Arthur, A. Q. R. Baron, G. S. Brown, and S. 
Shastri, Phys. Rev. Eett. 69, 699 (1992). 
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Phase Shift of a Rotated Quantum State Observed in an X-ray 
Scattering Experiment 

D. E. Brown, J. Arthur, A. Q. R. Baron 
Stanford Synchrotron Radiation Laboratory, P. 0. Box 4349, Bin 69, Stanford, 

California 94309 

G. S. Brown 
Dept. of Physics, University of California at Santa Cruz, Santa Cruz, California 95064 

S. Shastri 
Cornell High Energy Synchrotron Source and the School of Applied and Engineering 

Physics, Cornell Univ., Ithaca NY 14853 

Abstract 

The rotation of the reference frame of a particle is known to lead to a phase change of its 
wavefunction proportional to its angular momentum. This can manifest itself as an angle- 
dependent phase shift of a photon scattered by a fixed target, when the photon state is an 
eigenstate of the component of total angular momentum perpendicular to the scattering 
plane. This phase shift has been observed in the quantum beat pattern resulting from the 
transient excitation of 57Fe nuclei by synchrotron radiation. 

PACS number: 03.65.-w,78.70.Ck,42.10.Jd,76.80.+y 



270 Appendix A (A.1) 

Quantum wavefunctions and classical wave fields reflect the symmetries of space 
and time that result in conservation laws and phase factors involving the conserved 
quantities. For example, the homogeneity of time leads to the conservation of energy and 
the uniformity of space leads to the conservation of total linear momentum for an isolated 
system. Such systems are invariant under translations in time or space, and the translated 
wavefunctions acquire phase shifts depending on the conserved values.12 For simple 
eigenstates of energy and linear momentum ._ _ 

ty( t + At) = ewNArih y(t) (1) 

y( r - Ar ) = emhrmp” y(r). (2) 

Of particular interest in this Letter are the effects of rotations on the properties of a system. 
Rotational symmetry results in the conservation of total angular momentum, J, and a 
rotated eigenstate acquires an angular phase shift: 

. 

w( q? - A@) = emiNmJp w( @ ) . (3) 
A vivid consequence of this angular phase is the 47r rotational symmetry of fermions that 
has been demonstrated in neutron interferometer experiments.3-5 The angular phases for 
photons are dramatically illustrated in this Letter in an elastic scattering experiment 
involving resonant scattering of x-rays from nuclei. 

Considering only basic symmetry properties of free space (such as rotational and 
mirror symmetry) angular momentum wavefunctions of a general particle can be 
constructed. The rotational symmetry properties lead to the formation of irreducible 

representations, D (j) ( 1 i + i: , describing rotations of a system with quantization axis k into 

a system with quantization axis i, and having rotation-angle-dependent matrix elements 
that depend only upon the geometry of space and not upon the dynamics, or interactions, in 
the system. When j (the total angular momentum quantum number) is integral, these 

irreducible representations are naturally present in classical electrodynamics in the multipole 
field solutions of the Maxwell equations. 

Consider a process that changes the direction of propagation of a photon without 
changing its total angular momentum. According to Eq.(3), a phase shift should arise 
depending on the projection of the total angular momentum along the axis of rotation. The 
angular momentum of a photon perpendicular to its direction of propagation is often not 
well-defined, but a photon state of well-defined propagation direction can be expanded in 
terms of basis states (spherical helicity states) having well-defined angular momenta about 
an axis that is not necessarily the propagation direction. Superpositions of these basis states 
form the multipole vector spherical harmonics. 6 In this case the total angular momentum 
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includes orbital angular momentum, and need not be limited to the photon spin value of 1. 
The rotated photon state has a phase factor eeMA9, and the transition amplitude for forming 
such a rotated state has the conjugate phase factor e+‘MA9. The quantity A@ is the change in 

the photon’s direction expressed as an azimuthal angle in a spherical coordinate system 
aligned along the axis of rotation, and M is the projection of the photon’s total angular 
momentum along that axis. (If expressed in a spherical coordinate system that is not 
aligned along the rotation axis, the rotated wavefunction will in general also depend on the 
values of the polar angles of the photon propagation vectors.) The phase factor eMA’ is 
independent of the polarization of the incident or rotated photon, and it is also independent 
of the dynamical details of the interaction that causes the photon direction to change. 

To measure the angular phase change of a photon, it is sufficient to prepare a 
photon state with definite angular momentum about an axis perpendicular to its propagation 
direction, cause the state to rotate about this axis through a known angle without changing 
its total angular momentum, and observe the interference between the rotated state and 
another coherent reference photon state. We realized such an experiment using elastic 
scattering of synchrotron x-rays by nuclear resonances. The photon-nuclear interaction 

served to select photon states with definite values of M . Bragg scattering served to define 
the rotation angle, and the coherent, pulsed nature of the synchrotron excitation provided 
reference photons for the interference measurement. 

For the experiment a yttrium iron garnet (YIG) crystal enriched with S7Fe was used 
in Bragg geometry to diffract an incident beam of 14.4 keV photons through a scattering 
angle, 20,, equal to twice the Bragg angle. The YIG magnetic crystal structure allowed us 

to observe pure nuclear resonant scattering from a ferromagnetically aligned subset of 57Fe 
nuclei.7 A small external magnetic field was used to orient the internal ferromagnetic field 
perpendicular to the scattering plane, so that the rotation angle of the scattered photons 
around the nuclear quantization axis was equal to 20,. 

In a magnetic field, the 14.4 keV s7Fe nuclear resonance is generally split into a 
hyperfine six line spectrum (see Fig. 1). In our experiment the incident photons, due to the 
nature of the synchrotron source, were linearly polarized parallel to the nuclear quantization 
axis. Under these conditions the transitions labeled ,2 and 5 in Fig. 1 are not allowed by 
polarization selection rules. The remaining four transitions are allowed, and the scattering 

process does not change the polarization state of the light. The two strongest transitions are 
those labeled 1 and 6 in Fig. 1. They are separated by about 6 xl Oe7 eV, and the energy 
width of each resonance is approximately 5 xl O-’ eV. When excited coherently by an 

abrupt pulse of synchrotron light, the resonant states decay with a lifetime of about 141 ns. 
Because states with different frequencies are excited coherently, the decay curve exhibits 
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interference beats, principally the 7 ns beat period due to the interference of transitions 1 

and 6. 
Transitions 1 and 6select photon states having total angular momentum projections 

along the nuclear quantization axis of h4 = -1 and M = +l. Thus, for the line with M = +l 
the angular phase shift in the scattering amplitude is 20, while for the line with M = -1 it is 
-20,. The time beat pattern resulting from the interference of the two lines is phase 
retarded by 48,: 

Z(t) - (1 + cos[Awt - 4eB]) (4) 

where Aw is the beat frequency. If the direction of scattering is reversed (see Fig. 2), the 
angular phase shifts change sign, resulting in a phase advanced time beat pattern 

Z(t)-(l+cos[A~t+48,]). (5) 

The time beat pattern contains a phase factor that is twice the scattering angle; the 
phase factor is negative for right handed rotations around the quantization axis and positive 
for left handed rotations. The net phase difference between time beat patterns with opposite 
rotation angles is four times the scattering angle: 80,. This is a very noticeable effect for 

scattering angles near 4 5 O. 
The YIG time beat pattern involves more than two resonant lines (the four lines 

mentioned above are further split by an electric quadrupole interaction giving a total of 8 
lines), so the patterns are more complicated than those described by Eqs.(4) and (5). Yet, 
since all the lines have M = fl, the 80, phase difference is the dominant effect. 

The experiment was performed at the 24 pole wiggler beamline F2 at the Cornell 

High Energy Synchrotron Source (CHESS). A double crystal Si [l 1 l] monochromator 

provided. a source beam having a 2 eV bandwidth at the nuclear resonance energy of 
14.413 keV. A gold-coated flat mirror was used in grazing incidence geometry to filter out 
the higher order harmonics coming through the silicon monochromator. The diffracted 
light from the YIG crystal was detected by a fast plastic scintillator coincidence detector, 
and the photon arrival time was recorded by fast timing electronics. Similar experimental 
techniques have been used in a number of previous resonant nuclear scattering 
experiments.8 The angular phase shift was not explicitly noted in these earlier experiments 
since they either involved small Bragg angles, or they involved antiferromagnetic samples 
from which all reflections involve both right and left handed scattering rotations. 
However, it should be pointed out that the angular phase factor is implicitly present in the 
polarization matrices for nuclear scattering described by various authors.g-13 We found it 
experimentally convenient to change the sense of the scattering angle by reversing the 
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magnetic field direction, but it is conceptually simpler to think of the scattering angle being 
reversed, as shown in Fig. 2. 

YIG [0 0 &lo] reflections have Bragg angles of zk20°, giving a net phase 

difference of 160’ between their line l-line 6 time beat patterns. The peaks of the 

[0 0 lo] pattern lie nearly in the valleys of the [0 0 - lo] pattern. This is shown in Fig. 3 

where, despite complications due to the multiplicity of hyperfine levels, the advance or 
retardation of the 7 ns beat period is clearlyvisible. To get good fits to the data, we used 
the full Ewald-Laue dynamical diffraction theory for resonant scatterers,11*1411s including 
small contributions from the electronic and nuclear index of refraction. However, the 
angular phase shift which advances or retards the observed beat pattern is a purely 
kinematical, geometrical effect. 

Recently, two resonant nuclear scattering experiments have demonstrated shifts in 
the time beat patterns due to passage of the radiation through the scattering material.16*17 
These shifts are caused by dynamical, index of refraction effects in the material, and they 
are not related to the angular phase shifts. 

The fundamental symmetry properties of wave mechanics predict that an angular 
momentum-conserving rotation of a wavefunction is accompanied by an angular phase 
shift. A dramatic way to demonstrate this phase effect involves elastic resonant nuclear 
scattering of photons. The nuclear scatterer serves as a filter, allowing only photon states 
with well-defined angular momentum components to pass. Coherent generation of more 
than one angular momentum state using synchrotron light permits the angular phase shifts 
to be clearly observed in an interference measurement. A measurement of this type may 
have practical applications: for a given scattering angle, the time beat pattern can be used to 
uniquely determine the sign of the magnetic field at the scattering nuclei. In our 
experiment, the time beat patterns indicate that for the selected s7Fe nuclei (the nuclei 
occupying the sites in YIG with local tetrahedral symmetry7), the internal magnetic field 
direction is opposite to the external guide field. 

Support for this research was provided by the U. S. Department of Energy, Office 
of Basic Energy Science, Division of Materials Sciences. CHESS is supported by the 
National Science Foundation under Award No. 90-21700. 
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Fig. 1. Hyperfine nuclear resonance of 57Fe. The magnetic quantum numbers are given 
with respect to a quantum axis oriented parallel to the internal magnetic field. When the 
magnetic field is perpendicular to the scattering plane, lines 2 and 5 are excitable by and 
radiate linearly polarized light perpendicular to the magnetic field. The other four lines are 
excitable by and radiate linearly polarized light parallel to the magnetic field. Radiated 
photons from lines 1,3,4,6 have the same polarization but different phases depending upon 
their scattering angles and angular momentum components, M . 
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Fig. 2. Complementary scattering geometries. Incident photons ki can be scattered bx 
equivalent Bragg reflections in either a right-handed sense k; or a left-handed sense k, 
about the nuclear quantization axis, i, parallel to the internal magnetic field Bi,, . 
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Fig. 3. (a) Time beat patterns for left and right handed scattering. Solid curves are 
dynamical diffraction theory calculations, including the angular phase. Because some of 
the interfering transitions share identical M values, the shifted beat patterns are modulated 
with an unshifted beat pattern of longer period, giving different heights to corresponding 
intensity peaks in the [0 0 101 and [0 0 - lo] patterns. (b) Expanded, superimposed view 
of the fits to the data. The nearly 180’ phase difference is clearly evident. 



APPENDIX B 

B.1 Time Domain Calculation for a Plane Parallel Slab of 
Resonant Scatterers Excited by a 57Co Source 

In this example, a plane parallel slab of single line resonant scatterers is excited by a 
57Co source. The field emanating from this source will be approximated as a decaying 
exponential wave Doppler shifted by Aw to take into account the relative motion between 
the source and the scatterers: 

uo ( r, z, zo) = EoeihO e-i(“o +*okW* . (B.l-1) 

Let the scatterers have the same natural frequency, o,, and linewidth, r, as the source. 
The impulse response of the scatterers is then 

H(t, z’, z) = -(r~/4~)e-iwor-rr/2ae(t) (B.l-2) 

where l?, is given by Eq. 6-5.16 
Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, first order 

scattering gives 

(emtimf -1)dz 

where . A(t) = -(r~/4fZL)Egeih~e-in~f-r’/2n. 

Second order scattering gives 

(B. l-3) 

(B. l-4) 

= W~($--)[($--)(‘-iAmf -I)-t][-(z))z- (B. l-5) 

Similarly, third and fourth order scattering gives 

u,(t,z,z,)dz = A(t) 
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a,(t,z,z,)dz = A(t) 

X-A [( r-z 31 ) 1 - dz. 
4tiL 3! (Es. 1-7) 

Adding up all the scattering terms, and ordering @em in powers of -l/iAw results in a 
comprehensible series expansion: 

(q+a,+a,+a,++dz= 

-r,z + 
4hL 

( ) g 2$ - (s&* +...I 

-- (. 
1 4 

)[ -iAw . + . ..I -... 

= A(l){ ( ~?J-KzPwwl _ (LJ 
Jo(Jmq-($&*(Jrn) 

-(-&)3$)(JFypiq- --* -(-g+l&Jo(JqqE-L)}. (B. l-8) 

Using the expression for the scattering channel field, Eq. 6-5.13, and using the 
relations 

J’Jo( Jm)dz = x$fi$) (B. l-9) 
* 
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and 

gives 

d” Jl(JGF) 
dt” Jm = ! ) 

-r, n L+1(Jmq 
2~ (JGF)“’ 

(B.l-10) 

This expression can be simplified by using the generating function for Bessel functions: 

Then 

(B. 1-12) 
m=-m 

where 
-i[&+Aciv] 

and 

Finally, after co&cting all terms, the scattering channel field can be expressed as 

Escf (t, L, zo) = Eoeik~e-iw~r-r’~2n q -i”,““)‘(JGp)“J”(J~). (B. 1-13) 
n=O s 

This result agrees precisely with Lynch, Holland, and Hamermesh’s Fourier 
transform solution using contour integral methods. ’ The obvious drawback to this time 
domain multipole scattering approach is that one must have a deft faculty towards 
massaging complicated infinite series expansions into familiar analytical functions. The 
beauty of this time domain formalism is that one may completely work out problems 

entirely in the time domain and observe how the physics evolves at each step of the 
calculation--performing Fourier transforms can obscure the actual physics behind the 
scattering process (for instance, the entire issue of multiple scattering appears to be 
completely absent in the Fourier transform method). 
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B.2 Investigation of the Dynamical Phase between Two 
Resonant Lines Excited by a Synchrotron Source 

In this example the dynamical phase between two widely spaced resonant lines is 
calculated using the time domain multiple scattering formalism. For a plane parallel slab of 
scatterers, this phase is shown to be proportional to the thickness of the slab and inversely 
proportional to the frequency separation betw-een the resonant lines. The source field ._ 
incident upon the slab is a synchrotron pulse 

uo(t,z,zo) = Eoei”OS(t), (B.2-1) 

and the impulse response of the system of scatterers is the sum of two resonant amplitudes 

H(t,z',z) = -(T,/4hL)(e-iwl’ + e-iw2’}e-r’~2*f9(t) (B.2-2) 

where I’, is given by Eq. 6-5.16, and w, and w, are the two resonant frequencies. 
Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, the first order 

scattered field amplitude is 

~,(f,~,~,)dz = 1,1[E,e”“6(t’)][-(r,/4hL){e-‘“‘(’-”) + e-iw~(‘-‘)}e-r(‘-“)/2n]d~~dz 

= A(t){ 1 + e-&“’ } dz (B.2-3) 

where A(t) = -(~~/4~)Egeih~e-iw”-rr~2n, (B.2-4) 

and Aw=w,-w,. (B.2-5) 
The second order scattered field amplitude is 

(B.2-6) 

Crunching out the convolution integrals for the third and fourth order scattered field 
ampli + udes give 

dz (B.2-7) 
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and a,(t,z,z,)dz = A(t) [-(LJf]{$l+e-iy+ (i;$Jl-e-“y 

( 1 + e-&ml > -&(l-ewamf) (B.2-8) 

The sum of the scattering terms up to fourth order can be expressed in a series 
expansion in l/iAw : 
q+++++a,+---= 

= A( t)( 1 + ebtilu’) { (Z) +($g&-(J$)& +--} (1) l- 

-zr(J-&+ . ..} (3) 

Whether this series expansion can be expressed in a compact analytical form is unknown, 
but, for widely separated lines, summing all the scattering terms is unnecessary. To first 
order in l/iAw only the first two separate series expansions labeled (1) and (2) in the 
expression above need be evaluated 

to 
Using the Bessel function identity in Eq. 65.20, the series expansion (1) reduces 

(1) ---+ A(r)(l +e-“m’)J,(,/m), 

and (2) reduces to the simpler form 

where Ho = r,/4hL. (B-2.10) 

Using the relations expressed in Eqs. B. l-9 and B. 1 - 10 and the following Bessel function 
relationships 
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d Jl(@m) 
dt @qj5i = -&J2(J;iqE) 

f J*(x) = $[J.-,w- J.,,W l 

J,,&) E $J,,(x)- J,,+l(x), 
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(B-2.11) 

(B-2.12) 

(B-2.13) 

and after a little algebra, the scattering channel field (Eq. 6-5.13) reduces, to first order in 

l/iAw, to 

,l& (f) = EoeiL”o 

i 

6(f) _ e-iwlr-r’~2n S r Jl(m) 1 +e-iAmr 

2A gqi [ 
( > 

+i -&--(l-ePtimr) 
I 

(B-2.14) 
Ignoring the prompt delta function pulse, the resonant intensity is then 

I,,(t) = lE,,(t) - Eoeibo6(l)12 

= 2E,$&J[ I+ (&,‘I( “\f$‘r(l+ cos(Awt + $))e-rfln (B-2.15) 

where @  = tan-’ (B-2.17) 

The expression above is similar to the field intensity from a plane parallel slab (described in 
Section 6-5) multiplied by a sinusoidal beating term due to the beating between lines having 
different resonant frequencies. The interesting phenomenon is the dynamical phase shift, 
@ , of the quantum beat pattern. This dynamical phase shift is related to the thickness-rate, 
Is = no&T, and the splitting between the two resonance lines, Aw. Thus, when the 
splitting is large compared to the thickness-rate, Aw >> IY,/4fi, @  is directly proportional 
to the thickness of the slab and inversely proportional to the frequency separation of the 
resonance lines: 

t$ = r,/2tzAw = rna,,L/2tzAo (B-2.18) 
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This dynamical phase shift has been seen by van Btirck et. al.,’ and, in the 
comparison of their data with Eq. B.2-15, the time domain multiple scattering formalism 
accurately describes the phase shift phenomenon for.all thicknesses of the sample. The 
calculations van Btirck et. al. performed to fit their data relied upon the frequency domain 
Fourier transform method. Unfortunately, analytically performing the Fourier transform is 
difficult, so the fits were done by numerically Fourier transforming the frequency 
response, and this prevented any insight into the physics behind the dynamical phase shift. 
(One can integrate the Fourier transform using the method of contour integration, but the 
result is a complicated series expansion requiring a laborious amount of algebra to extricate 
the results expressed by Eq. B.2-15). The beauty of the multiple scattering formalism is 
that the physics behind the scattering process can be mvestigated at each order of scattering. 
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