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ABSTRACT 

The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. 
From the multipole electric field expansion resulting from time-dependent nonrelativistic 
perturbation theory, a dynamical scattering theory is constructed. This theory is shown, 
in the many particle limit, to be equivalent to the semi-classical approach where a 
quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave 
equation. The Miissbauer specimen whose low-lying energy levels were probed is a 
ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. 
The hyperfine fields in YIG thin films were studied at low and room temperature using 
time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats 
were measured using a fast plastic scintillator coincidence photodetector and associated 
electronics having a time resolution of 2.5 nsec. The variation of the quantum beat 
patterns near the Bragg [0 0 21 diffraction peak gave a Lamb-Mijssbauer factor of 
8.2 + 0.4 . Exploring characteristic dynamical features in the higher order YIG [0 0 lo] 

reflection revealed that one of the YIG crystals had bifurcated into two different layers. 
The dynamics of nuclear super-radiance was explored. This phenomenon includes the 
radiative speedup exhibited by a collective state of particles, and, in striking concurrence, 
resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat 
frequency shift of 13 natural resonance linewidths were observed. Nuclear resonance 

scattering was also found to be a useful way of performing angular interferometry 
experiments, and it was used to observe the phase shift of a rotated quantum state. On the 
whole, nuclear dynamical diffraction theory has superbly explained many of the 
fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei. 
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NUCLEAR DYNAMICAL DIFFRACTION USING 
SYNCHROTRON RADIATION 



1. INTRODUCTION 

The field of nuclear resonance fluorescence has developed considerably since Kuhn 
initiated the first search for this phenomena in 1929.1 In the late 1950’s, a variety of 
techniques were developed to probe the low-lying energy levels of nuclei. One method 
used Coulomb-excitation reactions where nuclei were excited by the electromagnetic fields 
of bombarding .particles 2v3 (this later developed into the field of perturbed angular 
correlations4). Another method used nuclear reactions as a gamma ray source for exciting 
nuclei.5Jj However, it was Mossbauer’s discovery in 1958 of the recoil free resonance 
absorption of nuclei excited by radioactive sources that enabled the field of nuclear 
resonance fluorescence to blossom and to become useful in a wide variety of disciplines, 
ranging from biology to chemistry and physics.7 

The construction of man-made x-ray sources provided a new way to excite nuclear 
transitions. Use of betatron bremsstrahlung radiation as an x-ray source was first proposed 
in 1945,s but it was not until 1962 that nuclear fluorescence radiation was observed using a 
conventional x-ray tubes as a source. 9 The problem of detecting the nuclear signal resulted 
mainly from the huge photoelectric background that occurred when x-rays were 
simultaneously scattered from the electrons. For this reason, pulsed x-ray sources and 
time-gated detectors were proposed .9 Because electrons scatter x-rays promptly compared 
to nuclear lifetimes, properly gating out the effects due to electronically scattered x-rays 
leaves the nuclear signal with almost no background. The pulsed nature of synchrotron 
storage rings made them highly desirable candidates as x-ray sources for exciting nuclei. 
The first proposal for using synchrotron x-rays was made in 1974,lo and the first 
observation of nuclear fluorescence radiation using synchrotron x-rays was made in 

1978.‘l 
In this first experiment, an iron foil was used in reflection geometry as a target, and 

the foil was enriched with 57 Fe to enhance the nuclear resonance signal. The experiment 
was performed on a bending magnet beamline which produced, when using a silicon 
monochromator having a 2 eV wide bandpass, roughly lo9 electronically scattered photons 
for each nuclear scattered photon. Since the gating method was not completely effective, 
background problems produced serious difficulties limiting the usefulness of this 
technique. Crystals were introduced to further suppress the electronic background. For 

certain crystals, the 57 Fe ferromagnetic or antiferromagnetic lattice is distinct from the 

electronic lattice. This allows, for certain crystal orientations, the electronic reflection to be 

1 



2 Introduction Chapt. 1 

forbidden while the nuclear reflection is still allowed. The first observations of nuclear 
scattered radiation from perfect crystals using synchrotron x-rays were made in the early 
and mid 198O’s.l2*13 Since then, many nuclear resonance fluorescence experiments have 
followed at synchrotron radiation facilities to explore the dynamics of nuclear diffraction 
from crystals.14-l9 

The question usually arises as to why should one use multi-million dollar 
synchrotron storage rings to do Miissbauer experiments when much cheaper radioactive 
sources costing a few hundred.dollars can be used. For instance, Bragg diffraction off 
polycrystalline materials using radioactive sources was observed more than two decades 
earlier in 1960 and off perfect crystals in 1969. 20*21 As described earlier, what makes 
synchrotron storage rings useful is the pulsed nature of the photons. This allows one to 
use gated photodetectors and electronics to reduce the electronic background. Also, unlike 
a radioactive source, the energy bandwidth of the synchrotron radiation is much larger than 
the nuclear energy bandwidth. This allows all resonant nuclear hyperfine lines to be 
.excited, and results in nuclear hypefine quantum beats that reveal information about the 
internal hyperfine fields and the collective nature of the excitation. And, unlike synchrotron 
sources, time-resolved resonance fluorescence experiments using radioactive sources 
require deconvoluting out the time response of the source which can significantly alter the 
resonance signal from the target. Also, synchrotron radiation can provide radiation over a 
broad range of energies which, with present day undulators and wigglers, can be up to 
50 keV. The design of longer, high powered, undulators and wigglers can extend this 
energy range up to 250 keV, 22 thus making it feasible to perform experiments with most 
types of Mijssbauer samples. Also, synchrotron rings provide linearly polarized beams of 
x-rays that can be used for doing polarization sensitive experiments. 

However, a radioactive source can produce many more resonant photons than 
present day synchrotrons. For instance, a readily obtainable 57 Co source having a strength 
of 250 mCi produces about 10” resonant photons/set. However, these photons radiate 
into 47r steradians, so a better measure of photon production is spectral brilliance--the 
number of photons per second per square millimeter of source size per square milliradian of 
photon beam size per 0.1% frequency bandwidth. A 250 mCi source having an emission 
area of 1 mm2 produces about 250 photons/set -mm2 - mrad2. For an energy bandwidth of 

AE/E = 4.67 x 109eV/14413eV = 3 x 10-13, 
the spectral brilliance is about 1Ol2 photons/set- mm2 - mrad2 (0.1% bandwidth). 
Examining Fig. l-l, the brilliance of radioactive sources is better than x-ray tubes, but is 
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Fig. l-l. Exponential increase in the spectral brilliance from man-made sources of x- 
rays. Free electron lasers (FELs) currently in the design phase are estimated to yield a 
spectral brilliance on the order of 1031. In co?Farison, the strongest radioactive sources 
yield a spectral brilliance on the order of 10 . (Reprinted with permission from H. 
Winick)B 
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Fig. 1-2. Optimistic 1988 forcast of the spectral brilliance from the PEP synchrotron 
ring. The bending magnet and the 8 and 54 pole wigglers are insertion devices on the 
SPEAR ring. PEP parasitic and dedicated were calculated using a 2 m undulator. The 
open circles are proposed operations which never came about, and PEP was never run in a 
dedicated mode at 14 GeV. For the experiments completed in this thesis project, PEP was 
operated in a colliding beam optics mode (parasitic running), and a 2 meter undulator was 
used. (Reprinted with permission from H. Wiedemann)24 
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only comparable with synchrotron beamlines having bending magnet sources. However, 

when wigglers and undulators are used, dramatic increases in the brilliance many orders of 
magnitude greater than radioactive sources can be achieved, thus making synchrotron 
sources much more desirable than radioactive sources. 

In this thesis, synchrotrons having wiggler and undulator devices were used for the 
first time to do nuclear diffraction experiments. For bending magnet beamlines, the nuclear 
counting rate is no more than a few counts/set. Onwiggler and undulator beamlines, the 
counting rate increased by a factor of 100 (for the 10-2 wiggler at the 3 GeV SPEAR 
storage ring, counting rates of 80 counts/set were observed, and for the PBFl undulator at 
the 15 GeV PEP storage ring, counting rates as high as 800 counts/set were obtained, but 
these rates are highly dependent upon the quality of the monochromator (heating problems 
occur at high x-ray intensities), the x-ray beam optics, the detector efficiency, and the 
electron beam current and optics). As seen in Figs. l-2 and l-3, the SPEAR 54 pole 
wiggler has a spectral brilliance of about lOI photons/set . mm’. mrad2(0. 1% bandwidth) 

- at 14.4 keV, while the brilliance of the 2 meter PEP undulator is a factor of 10 greater when 
run in parasitic, or colliding beam, mode (When run in a dedicated, or nonparasitic, low 
emittance optics mode, the brilliance of the PEP undulator is expected to be 10,000 times 
greater than the SPEAR wiggler. Unfortunately, before PEP could be run at 14 GeV in 
this low emittance optics mode, PEP was decommissioned by the Stanford Linear 
Accelerator Center (SLAC) for fiscal reasons).24-26 

The development of high energy storage rings specifically dedicated for 
synchrotron experiments- is expected to push counting rates even higher. Already, the 
6.5 GeV Accumulator Ring at the KEK high energy facility in Japan that has recently been 
outfitted with a 3.6 meter undulator, and there are reports of nuclear signal rates as high as 
10,000 counts/sec.z 7*2* The 7 GeV APS ring under construction at Argonne, the 6 GeV 
ESRF ring under construction in France, and the 8 GeV Spring-8 ring under construction 
in Japan will have beamlines equipped with 4 to 5 meter long undulators that are expected 
to be 1000 times more brilliant (see Fig. l-4) than the PEP undulator (when, that is, PEP is 
operated in colliding beam mode--the brilliance would be comparable to PEP were it to be 
operated in a very low emittance optics mode). A feasibility study under way at KEK is 
looking into the possibility of converting the electron-positron Tristan Collider Main Ring 

into a dedicated, exceptionally intense, synchrotron light source called the TSLF (Tristan 
Super Light Facility). 29 The TSLF, with a 6 meter undulator operating at 10 GeV, is 
expected to provide an extremely brilliant source of x-rays that is 3 orders of magnitude 
greater than the third generation synchrotron sources under construction described above 
and 6 orders of magnitude greater than PEP (The design of TSLF envisages using damping 



Chapt. 1 7 

wigglers to reduce the electron beam emittance. If PEP were outfitted with damping 

wigglers, its brilliance would be comparable to TSLF--see Figs. l-2 and l-4). Also in the 
conceptual design stage is an effort to insert a 50-60 meter FEL undulator into the SLAC 
linac.25 If the technical difficulties of operating FELs near 1 A are overcome (such as 
modulating the electron bunch structure to a 1 A periodicity), the SLAC FEL is expected to 
have an extraordinary brilliance of 1031 photons/set- mm2.mrad2 (0.1% bandwidth)--this is 
15 orders of magnitude brighter than PEP and makes the nuclear photon flux alone (from 
nuclear resonance scattering experiments) greater than the photon flux generated by present 
day synchrotron light sources! The prospects of doing useful physics across many science 
disciplines using the highly monochromatic (micro eV energy width), very collimated 
(20 prad or 4 arcsec angular spread), extremely coherent (30 m coherence length) 
fluorescence radiation from nuclear systems looks very encouraging. 

10" 
! ! i 

10 12 14 16 18 20 

Photon Energy (keV) 
Fig. 1-4. Spectral brilliance curves for various synchrotron storage rings. MIX-short 
and MR-long correspond to a 6 m short undulator and a 70 m long undulator on the TSLF 
ring. The APS and ESRF calculations were done for a 4.5 m undulator, a 5 m undulator 
was used for the Spring-8 calculations, and all calculations used an electron beam current 
of 100 mA. (Reprinted with permission from T. Jshikawa)29 
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This thesis is organized in the following manner. In Chapters l-4, elementary 
scattering theory is reviewed, culminating in the construction of the spherical multipole 
electric fields scattered by resonant particles. In Chapter 5, I have constructed the complete 
form of the multipole polarization tensor for magnetic dipole scattering in a linear 
polarization basis. Nuclear level mixing is reviewed, and I give several interesting 
examples of magnetic dipole scattering. In Chapter 6, I have worked out a novel 
formulation of dynamical scattering from resonant systems using the principles of linearity 
and time invariance present in system theory. This theory is used to examine the interaction 
between two resonant particles, and it reveals that superradiance is due to very elementary 
multiple scattering effects. I also show that the dynamical scattering equations, in the many 
particle limit, give the same results as the Maxwell equations for a medium, thus connecting 
quantum mechanics with classical electrodynamics. Chapter 7 reviews nuclear dynamical 
diffraction theory, with an emphasize on the. superradiant effects of radiative speedup and 
resonance frequency shifts. Chapter 8 describes the EWALD computer code I wrote to 
perform the numerically intensive nuclear dynamical diffraction theory calculations. The 
program is written generally enough to handle any crystal type, to handle reflections from 
multiple crystals, and can be used for systems containing nuclei other than 57 Fe. Chapter 9 
describes the general experimental setup along with details about the detector and fast 
timing electronics. 

Chapters 10 and 11 summarize my analysis of the results of the experiments carried 
out by the Stanford nuclear resonance scattering group composed of myself along with 
Dr. G. S. Brown (my thesis advisor), Dr. S. Ruby, Dr. J. Arthur, and A. Q. R. Baron. 
The experiments done on the SPEAR and PEP rings were done in collaboration with Dr. E. 
Alp and Dr. G. K. Shetioy of Argonne National Labs, and S. Sastri from the Cornell High 
Energy Synchrotron Source (CHESS) collaborated in experiments done on the CESR ring. 

In the Appendices, a copy of a Physical Review Letter article titled “Phase Shift of a 
Rotated Quantum State Observed in an X-Ray Scattering Experiment” is given. Also given 
are two time domain calculations using the dynamical scattering equations I formulated. 
These calculations illustrate that the dynamical scattering equations can be used to examine 
and understand the physics behind multiple scattering in a way that is not possible using the 

conventional, index of refraction, approach where the Maxwell equations for a medium are 

solved in the frequency.domain and Fourier transformed into the time domain. 
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2. TIME DEPENDENT NONRELATIVISTIC 
PERTURBATION THEORY 

2.1 Perturbation Theory 

The essential problem in nuclear dynamical diffraction is to adequately describe the 
interaction of a charged particle with an electromagnetic field. This chapter will develop the 
fundamentals of a time dependent perturbation theory that will be used to explore this 
interaction process. l-* The following approach leads to a direct form of a scattering 

amplitude in terms of a series expansion. Once the scattering amplitude is formulated, 

many types of scattering processes can be examined. 
In determining the quantum mechanical behavior of a charged particle in the 

presence of a time-varying interaction potential, V( x, t), the time independent part, Ho(X), 
is separated from the total Hamiltonian, 

H(x,t)= H,(x)+V(x,t). (2-1.1) 

If the solution of the time independent Schriidinger equation can be found, then the 
time dependent solution can be written in terms of a perturbative expansion of the known 
solution. The time independent Schrodinger equation obeys the relation 

won, = E,(x)7 (2- 1.2) 

where 4, are the stationary eigenstates of the unperturbed Hamiltonian and satisfies the 
orthonormal relation 

I, 9:(xk(x)d’x = %n- 
The solutions of the time dependent Schrodinger equation, 

(2-l -3) 

ih$ v(x,t) = [H,(x)+ V(x,t)]v(x,t), (2-1.4) 

expressed in terms of an expansion of the stationary states are 

Iy(X,t) = ~nan(t)$8(X)e-iE~f’n. (2-1.5) 

To determine the coefficients, a,,(t), this solution is inserted back into the Schrijdinger 

equation. The result of this operation is 

ittC,ci,(t)~,(X)e-“n’/” = V(X,t)~na,(t)@,(x)e-“~““. 

Multiplying both sides of the equation above by q?;(x) and integrating over all space gives 

11 
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where 

(2-1.6) 

(2-1.7) 

and @f” = (Ef - E,)/fi. (2-l .8) 

So far, this formalism is exact, and solving the coupled differential equations, 
Eq. 2-l-6, is equivalent to solving the Schrodinger equation. However, in general, an 
analytical solution to a,(t) cannot be found, and thus a,(t) must be expressed in terms of a 
series expansion. The convergence of this series will be determined by whether the 
perturbation V(x,t) is small enough. The series expansion of a,(t) will be defined as 

a,(t) = a?‘(t) + a:‘(t) + aj2)(t)+.=.+a@-‘) f w. (2- 1.9) 
Using the information that the system is definitely in a stationary eigenstate, ~i( X), 

attime t= -00, the zeroth order term in the expansion can be found. At time t = -00, the 
solution to Eq. 2- 1.5, 

y(w = --) = 4; (X)e+“* I,=-- = Cn a,( t)@,( X)e-iEm”n~,=__, 

is a,(--) = 6,. The ze rot h d or er term in the expansion is the solution to the Schrijdinger 
equation when the perturbation is absent: 

dO)( t) = 0 f (2-1.10) 

a(‘)(t) = S f Ill- (2-1.11) 

The next order term in the expansion is obtained by substituting the zeroth order 
term into the relation for (i/(t), Eq. 2-1.6: 

by)(t) = (-i/A)Vti(t)eimfi’ (2-1.12) 

a:‘(t) =(--i/~)J~~Vfi(t’)ei”~“dt’. (2-1.13) 

This substitution process can be done recursively to obtain all the other higher orders. The 
second order terms are: 

$1(t) = (-+)*Cvf,,(t)eiofir J’ Vti(t’)eimti”dt’ -m 
n*i 

(2.1-14) 

ay’(t) = (-i/A)*C II,dt,Vf,(t,)eiah” J~Bdt2Vk(t2)eim*12 . 
n*i 

(2.1-15) 

The constraint on the sum, n f i, forces any intermediate state, In), to be different from the 
initial state (there is also the constraint that n # f). Thus the intermediate state transitions 
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do not conserve energy: wf,, f 0 and W, + 0. The self energy terms, V&, will be partially 
ignored. They are described by single particle scattering loops in Feynman scattering 
diagrams, and, when they are more carefully evaluated in a covariant perturbation theory, 
they will only contribute energy shifts to the scattering amplitude. No attempt will be made 
to calculate such energy shifts--they will simply be lumped with the experimentally 
measured isomer shifts and appropriately inserted into the scattering amplitude. 

The third order amplitude is listed below: 

(2-1.16) 

(2-1.17) 

2.2 The Scattering S and T Matrices 

After the interaction perturbation ceases, the system resides in a definite stationary 
state, $Jx,t). Then the transition amplitude for a transition from an initial state to a final 
state can be defined in terms of the elements of a scattering operator S, 

= q(t) (2-2.1) 

The S-operator is then a unitary operator that describes the evolution of an initial state, 
l$i(x,t)), to a final state, 1 v(x,f)), during the action of the perturbation: 

S14i(x,f)) = 1 V(x7f>)- (2-2.2) 

The unitarity of S can be seen by noting that 

(~lW)=l=(@ilS+Sl~i)* (2-2.3) 

This is true only if S’S = 1. Summing over all the possible final states gives a total 
probability for a scattering event to occur of unity, 

(2-2.4) 

The matrix elements of the scattering operator can be found by evaluating the 

perturbative expansion terms of a,(t), Eqs. 2-1.10 to 2-1.17. The transition probability is 
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I I sfi2- and the transition probability per unit time, or transition rate, is the time rate of 
change of the transition probability,5 

r P = qs 12 = s;;$ + s;is,. Of fi (2-2.5) 

The other interesting quantity desired is the T-matrix element, Tfi , which should be 
differentiated from the transition probability in that it describes the amplitude of a scattered 
wave rather than the probability for a transition from-an initial state to a final state. The 
structure of the T-matrix can be seen by evaluating the transition rate for the simple case of 
a constant interaction perturbation, 

0 fj--oo 
V(x,t) = 

VW - 
(2-2.6) 

The zeroth and first order terms of the S-matrix elements can be found using the 
perturbative expansions of Eqs. 2-1.10 to 2-1.13: 

Sfi = ljfi + (-i/li)lf_Vfieimfif’ dt’ 

jfi = (-i/h)Vfie+. 

The transition rate is then 

(2-2.7) 

(2-2.8) 

+(-i/lZ)Vfieiofif S, + (i/h) J’ Vie-‘“” dt’ 
[ 

. .-an I 
The a-function terms yield 

(~/~)[V:-~]=(i/~)[(~i~v+~~i)-(~i~v~~i)]=o 

since the interaction perturbation Hamiltonian, V(x,t), is Hermetian: Vt = V. Then, 

rfi = (l/ti2)vivfi[ J~_eiou~(r’-r) dt’+ Il_eiol~“+‘) df]. 

Making the change of variables u = t’ - t for the first integral and u = t - f’ for the second 
integral results in 

(2-2.9) 

where the following relations were used: 
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J 
-Leih dx = 2&(k) 
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(2-2.10) 

(2-2.11) 

Equation 2-2.9 is the Fermi Golden Rule to first order. Also the S-function 
preserves the conservation of energy condition--this is usually termed in the scattering 
language as the on-energy-shell condition. -- - 

To obtain the Fermi Golden Rule to second order, the S-matrix elements must be 
evaluated to second order: 

sfi = &fi + (-i/R> II_ vfieiofir’ dt’ + (-i/A)2 C If, dtlVfneiB”’ JTm dt2vtiei’uti’2 - (2-2.12) 

Inserting a small positive imaginary quantity, i.s where E > 0, into the exponent of the last 
integral allows one to perform the integral to get a meaningful result. After integration, 
taking the limit as & + 0 gives the final result. This procedure, though seemingly ad hoc, 
is very important in ensuring that the S-matrix obeys the accepted rules of causality for 
incoming and outgoing particles. The last integral in the third term above then integrates to 

J 
r1 dt2Vniei%” = ‘,‘,“. J; df2vtie’Pm -Ei -% /fi = #iv, e i(E,-Ei)f, /A 

-_ Ei - E,, . 

Then, 

Sfi =ljfi+(-i/ti) [ fi V +C nti En] J:weio”it’ dt’ 

and jfi = (-i/h) Vfi + C vmvn; eiofif. 
nti Ei - En 1 

Sr; and Sfi have the same form as their first order expressions for the substitution 

vfi + vfi + c v/nvni 
n+i Ei. - En * 

Then employing the same techniques as before gives 

(2-2.13) 

(2-2.14) 

(2-2.15) 

This gives the on-energy-shell T-matrix elements to second order, 
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where 

Time Dependent Nonrelativistic Perturbation Theory (2.3) 

Tfi = VJ + c v/,vti 
n+i Ei - En * 

The Fermi Golden rule to all orders can now be written in a compact form: 

Tfi = Vfi + c vfnvi + c c -- v.vmvd 
n#i Ei - Ea mti nrtm (Ei - E,)(E, -E,) +“” 

(2-2.16) 

(2-2.17) 

(2-2.18) 

2.3 Ttie Scattering Amplitude 

In dealing with scattering problems, knowledge of the total cross section of a 
scattering event is very useful. The total cross section can be evaluated from the transition 
rate using the following definition: 

all scattered photons/set = Ffi c 
0,‘ = flux of incident photons n,v,/v, ’ 

(2-3.1) 

where ni and vi are the number and velocity of the incident particles, and V, is the volume 
of space enclosing the interaction region. Summing over all the possible final states gives 
the total cross section.- Using the Fermi Golden rule, the total cross section can be 
expressed in the form 

(2-3.2) 

Notice that Tfi in the expression above is in units of energy. The expression for a 
scattering amplitude in units of length can be obtained by showing that a,,, satisfies the 
optical theorem. To do so, first note that the S-matrix elements, for t + 00 , follows the 
relation 

Sfi = s, -2niTfiS(Ef - Ei). (2-3.3) 

Using the unitarity properties of the S-matrix yields 
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Then, 

+ (~K)~T;T,~(E/ - En)6(En - Ei)]. 

[(Ti-Tfi)-2nixnT;Tti6(E,,-Ei)]6(E,-E,)=O, 

where the identity S(Ef - E,)c?(E,, - Ei) = S(E, - Ei)6(En -.Ei) has been used. The 

above expression is true on the energy shell if -- - 

(T; - Tfi) - 2ticnT;Tti6(E,, - Ei) = 0. (2-3.4) 

This is simply an equivalent expression of the unitary condition expressed in terms of the 
scattering amplitude. The diagonal elements yield the meaningful result 

Tti - q,y = 2iIm{Ti} = -2?ri~llT’,126(E,, - E). 

The total cross section is then 

a,, = --llhIm(T,}. 
Anivi 

(2-3.5) 

(2-3.6) 

This is the optical theorem, and it relates the total cross section to the imaginary part of the 
scattering amplitude. The photons have been elastically scattered since the final state of the 
system is identical to the initial state. 

A normalized scattering amplitude in units of length can then be defined as 

‘J(k,>ki)=-/bTB, (2-3.7) 

where 1 Wf f&Z.-- 
d- n, 27rhvi ’ 

(2-3.8) 

The factor l/c n, normalizes the square modulus of the scattering amplitude to the number 
of incoming particles, and ki and k, are the incoming and outgoing photon wavectors 
respectively. Then, for one incoming particle undergoing elastic scattering 

cr,ot = FIm{&(kf,ki)}. 
f 

(2-3.9) 

This is the familiar form of the optical theorem seen in classical electrodynamics. 
However, when many scatterers are present, the total cross section is proportional to the 

forward scattering amplitude, F(k, = k,). Th is multiparticle scattering behavior will 
explored later. 
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Basic assumptions about certain symmetry laws in physics have been made in the 
constructi,on of a,, . For instance, a generalized scattering cross section cm be constructed 
from Eq. 2-3.4 

or= -~[~~(k,,ki)-F;(ki,k,)]. 
f 

(2-3.10) 

This expression can be put in a form similar to Eq. 2-3.9 by applying the law of reciprocity 
for systems possessing space-inversion symmetry. --9 The law of reciprocity states that a 

scattering event in which an incoming particle scatters from k, to k, is identical to a 
scattering event in which the particle scatters in the reverse direction from -k, to -ki. 

Then 

‘,(k,>ki)= %(-ki>-k,) (2-3.11) 

satisfies the principle of reciprocity (see Fig 2-3.1). As long as one remains on the energy 
shell, reciprocity is simply another way of stating that time reversal invariance ho1ds.l’ 

>A2 =; 1 1 
~(k/~ki) = F,(-ki,-k,) 

Fig. 2-3.1. Illustration of reciprocity where the scattering amplitudes for a scattering 
process and its time reversed process are equivalent. 

Fig. 2-3.2. Illustration of space inversion symmetry. Photons traveling in the X 
direction sees the same interaction as those traveling in the -X directon. 



(2.3) The Scattering Amplitude 19 

If the scattering system possesses space inversion symmetry (that is, the interaction 
perturbation satisfies V(X) = V(-X) ) then, from Fig 2-3.2, the scattering amplitude obeys 
the relation 

Ff(-ki,-k,) = Ff(ki,kf). (2-3.12) 

This makes the scattering amplitude (and the scattering T-matrix) symmetric 

Tf = Tfi or Fq(ki,k,)= 5 (k,,ki)* (2-3.13) 
-_ - 

Under such conditions, the generalized cross section reduces to 

c = FIm(F’(kf,ki)}. 
/ 

(2-3.14) 

The generalized cross section reduces to the elastic cross section, Eq. 2-3.9, when the 
initial and final states are identical. This also shows that the elastic cross section is valid 
only when the scattering system possesses space-inversion symmetry and time reversal 
invariance holds. 
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3. SCATTERING THEORY 

3.1 Semiclassical Wave Theory 

So far, a quantum mechanical, microscopic description of the scattering amplitude 
has been derived for a single incoming particle interacting with a scatterer. The goal is to 
derive a macroscopic description of the scattering amplitude for one or more incoming 
particles interacting with many scatterers. And, if the scatterers are densely distributed in 
space such that their inter-particle separation is on the order of or less than the wavelength of 
the incoming particle, multiple scattering events must be taken in to account. Purely 
quantum mechanical calculations become quite difficult to compute when dealing with the 
interaction of more than two particles, and are, in many cases, impossible to compute when 
the number of particles exceeds several hundred. A small solid target with interatomic 
distances on the order of 1 A and that is 10 pm thick with a surface area of 1 mm will have 
on the order of lOI scatterers. Clearly, a purely quantum mechanical approach toward 
solving the scattering problem is not possible. 

One must therefore rely upon some other approach, such as a semiclassical theory, 
to obtain a macroscopic scattering amplitude. Fortunately, the inhomogeneous classical 
wave equation inherently describes multiple scattering--it describes the propagation of a 
wave (a packet of many incoming particles) in a many particle medium. Its superb success 
in describing wave phenomena in classical physics is why the semiclassical framework is 
commonly used to make the bridge between classical and quantum physics. 

From here on, the emphasis will mainly be on scattering processes in which 
photons are the incoming particles (with the knowledge that inhomogeneous wave 
equations can be constructed for other particles, such as electrons). In the classical picture, 
their interaction with matter is adequately described by the Maxwell equations. Jackson’ 
shows how to go from the microscopic Maxwell equations, 

V-b=0 lab Vxe+--=0 
c at 

V-e=4q 

where e and b are the microscopic electric and magnetic fields and 77 and j are the 
microscopic charge and current densities, to the macroscopic Maxwell equations, 

20 
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V-B=0 VxE+l*=O 
c at 

V-D=47cp VxH laD ---= %!J 
cat c ’ 

(3- 1.2) 

where p and J are the macroscopic free charge and current densities. The transition from 
the classical microscopic equations to a semiclassical macroscopic description is done by 
taking the expectation values and spatialiy averaging over all microscopic quantities. 
Spatially averaging over the microscopic fluctuations due to thermal motion, zero point 
fluctuations, and orbital motion, gives the smooth, slowly varying macroscopic quantities 
present in the Maxwell equations for a medium. The macroscopic picture is taken to be on 
the order of Avagadro’s number of atoms per cubic centimeter, 10% atoms/cm3, where the 
length scale, 100 A, is taken as an absolute lower limit to the macroscopic domain. The 
macroscopic electric displacement, D, and magnetic field, H , come from the spatial 
average over the microscopic charge and current densities 

> (3-1.3) 

H,=B,-4n(M,++ (3-1.4) 

where P( X, t) , Q’ ( X, t), and M( X, t) are the macroscopic electric polarization, quadrupole 
density, and magnetization. For a substance that has a linear response (that is, any induced 
electric or magnetic polarization is proportional to the magnitude of the applied field), 

D=EE (3-1.5) 

H = p-‘B (3-1.6) 

where E and p are the dielectric and magnetic permeability tensors. Note that the dielectric 
and permeability tensors are proportional to the electric and magnetic multipole moments. 

As a simple example, let both tensors be diagonal, with all diagonal elements equal, 
as for an isotropic medium. Then 

D, = E,,E, , Ha = &-‘Ba (3- 1.7) 

and thus 

(3-1.8) 
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and PO 
-1 =1-4n (3-1.9) 

For multipole moments small in comparison to the electric and magnetic fields that generate 
them, the quantity E,P~, which is the square of the index of refraction, is then 

+( 4 a)” x Multipole Mixtures. (3-1.10) 

This shows that the index of refraction of a medium is proportional to the electric and 
magnetic multipole moments generated by that medium, and it also has terms proportional 
to mixtures, or products, of electric and magnetic multipoles. The quantum mechanical 
expectation value of this quantity will be taken to produce a semiclassical theory for the 
scattering amplitude. 

3.2 Inhomogeneous Wave Equation 

The inhomogeneous wave equation can be constructed from the Maxwell 
macroscopic equations. However, one must note that the relationship between D and E 
can be nonlocal. In other words, D at time c and position x can depend upon E at times 
and positions other than t and X. The relationship between the sources, E(X, t), and the 

fields they generate, D(x,t) , must be causal to ensure that the fields do not instantaneously 
propagate from one point in space to another. For the electric displacement’ 

D,(x,t) = C,ld’x’fdt’E,(x’,t~)E,(x - x’,f - t’). (3-2.1) 

In frequency space, 

D&w)= &~,~(km)E#w) (3-2.2) 

and similarly 

f&&o) = &~:;(k~)B&~) (3-2.3) 

where the Fourier transform is defined as 

f(k, w) = j d3xI dtf(x, t)e-‘k.x+ior. (3-2.4) 
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The inhomogeneous wave equation in frequency space can now be constructed. 
The Fourier transform of the E and B fields in the second relation of Eq. 3-1.2 gives 

VxE(x,w)-igB(x,w)=o. (3-2.5) 
c 

Doing the same for the fourth relation of Eq. 3- 1.2, for no free current, gives 

~&,&mjd3x’e”.x’ Vx[p-‘(x’,w)B(y’,w)]+i;@x’,o)E(x-x’,u)}=O. 
{ 

The dielectric and permeability tensors depend upon the observation point x since they may 

have an overall spatial distribution throughout the interaction volume. If the spatial 
frequencies of the inverse magnetic permeability are far smaller than those of the magnetic 
field, spatial derivatives of the inverse permeability tensor can be neglected. If the sources 
that generate the multipole fields have dimensions that are small compared to the spatial 
variation of the E and B fields in the medium, then they can be considered to be sharply 
localized around the points X’ with negligible effects outside a small volume around x’. 
Then, for particles such as electrons and nuclei that have diameters much smaller than the 
spatial variation of light down to X-ray wavelengths, the tensor quantities can be 
approximated as 

(3-2.6) 

E(X’,O)= 6(x-X’)&(X,W). 
Then the expression above reduces to 

(3-2.7) 

VxB(x,w)+i~p(x,co)~(x,w)E(x,w)=o. (3-2.8) 

Taking the curl of Eq.3-2.5 and substituting the results into Eq.3-2.8 give the 
Maxwell wave equation for a medium: 

V2E(x,w)+(w/c)2p(x,w)~(x,w)E(x,w)=0 (3-2.9) 

where the observation point has been placed far from the scatterer to make the longitudinal 
components of the E field negligible so that V - E = 0. 

A quantity 2~~ will be defined where 

n2 = 1+2&,(X,@) = p(X,co)tz(x,m). (3-2.10) 

The quantity 2~~ carries all the information about the electric and magnetic multipoles. 
This leads to an expression of the inhomogeneous wave equation for transverse electric 
fields within a medium 

(V’ + ko”y + ~,~,[~E~(x,w)])E(x,w) = 0, (3-2.11) 
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where 

and 
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k = co/c 

vko. 

(3.3) 

(3-2.12) 

(3-2.13) 

3.3 Integral Scattering Equation 

There is a scalar wave equation for each component of E. Let IJI be one of those 

components of the E field in a basis that diagonalizes the index of refraction tensor. Also 
define 

U(x,w) = k;&E,(x,~)]. (3-3.1) 

The scalar wave equation is then 

(V” + k,$p(w)= -U(x,~)q(w). (3-3.2) 

The Green function techniques can be used to solve this inhomogeneous scalar 
wave equation. Constructing a Green function that satisfies 

(V” + k;,)G(x,x’) = -&6(x-x’) (3-3.3) 

leads to the solution of Eq.3-3.2: 

~(x,~)=$i(X,~)+JG( X,X’)u(X’,W)qJ(X’,0)d3X’, (3-3.4) 

where & (x, w) is the solution to homogeneous wave equation 

(V” + k,$#+(x,a) = 0. (3-3.5) 

Thus @;(x, t) represents the state of the system, or the wavefield in the medium, before the 
perturbation U(x,t) exists -- & (X,t) is the initial, or incoming, wavefield. 

Equation 3-3.4 is commonly referred to as the integral scattering equation or the 
Lippmann-Schwinger integral equation. 24 The second term describes the scattered part of 

the incoming wave. To see this more clearly, note that the Green function for outgoing 

spherical waves is’ 

G(x,x')= e 

ikovlX-X’I 

4nlx - X’J - 
(3-3.6) 

For observation distances far from the scatterer, Ix[>> Ix’I, then 
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Fig. 3-3.1. Scattering Geometry 

Also note that x is approximately the direction of the fields emanating from the scatterer. 
Defining a propagation vector 

k, = kO”(W)~ (3-3.7) 

gives 

q(x,w)= ~i(x,o)+-&~je’f’xfU(Xr,~)q(Xt,C0)d3xt. (3-3.8) 

Letting the final wavefunction, ,which exists when the perturbation U(X, w) ceases, be a 
normalized plane wave state 

eikf” 
@/w4 = (2z)K 7 

and, assuming that q(x, w) will also have a normalized plane wave structure, then 

(3-3.9) 

ik x 

q(‘Yw)= #i(x,w)+ +f(k,,ri) (3-3.10) 

where a scattering amplitude, f( k,, ki) , has been defined as 

f(k,,ki)=21r2f~,(x’,w)U(~‘,w)~(X~,~)~3x~, (3-3.11) 

and the incoming wavector is defined as 
k; = koy(x’/x). (3-3.12) 

So far, only a classical approach towards scattering has been followed. To obtain a 

semiclassical formalism that is general enough to deal with many types of incoming 
particles and scatterers, the scattering amplitude is related to the expectation value of a 
perturbation operator 

f(kf~ki)=2K2(@/.IUIW) (3-3.13) 
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where l@J is the total final quantum state of the system which includes both the incoming 
particle and the scatterer, and 1 w) is the total quantum state of the system during the 
perturbation. 

The form of the operator U(X, W) can easily be obtained from quantum mechanics. 
For instance, nonrelativistic particles with mass obey the S&&linger equation which can 
be put into the form of a scalar inhomogeneous wave equation. In frequency space the 
SchrWnger equation can be written in the form 

(V’ +k;$y(xm) = (2mlh’)V(w,o)y(w) (3-3.14) 

where k& = 2mE/h2. (3-3.15) 

The scattering amplitude for particles with mass is then 

f(kf7ki)=-(4n2m/A2)(~f(VIyl)’ (3-3.16) 

3.4 Scattering Amplitude for Photons 

To derive the scattering amplitude for massless incoming particles, a relativistic 
Schrijdinger equation must be developed. This can be done by utilizing the Schriidinger 
time dependent equation 

ih$ y(x,t) = Hy(x,t). (3-4.1) 

The relativistic energy-momentum equation allows the construction of a Lorentz invariant 
Hamiltonian for the photon: 

HZ = p2c2 (3-4.2) 

where p = -iAV and, from the S&r&linger time dependent equation, 

H=ih$. (3-4.3) 

Then Eq. 3-4.2 reduces to 

(3-4.4) 

when it operates on a wavefunction y(X,t). 

Define the space-time 4-momentum operator product as 
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where 

(3-4.5) . 

(3-4.6) 

and pP = iJP. (3-4.7) 

Then, the relativistic operator wave equation for a photon can be written in the form - - 
d’d,ly(x,t) = 0. (3-4.8) 

The first quantization condition instructs one to perform a gauge transformation on the 
4-momentum 

p” -+ pP + (e/c)A” (3-4.9) 

where A” is the 4-vector potential, Ap = (@,A), and 0 and A are the scalar and vector 
potentials of the state consisting of both the photon and the scatterer. The gauge 
transformation then results in 

Then 

~yN(x,r)= V(X,f)~(X,f) (3-4.10) 

where V(x,t)= i(e/c)[dpAp +~~d~]~(e/c)~A’A,. (3-4.11) 

Equation 3-4.10 is the Klein-Gordon wave equation for a massless particle. Written out 
explicitly, it has the form of an inhomogeneous wave equation 

c v2--$$+V(x,r) yf(x,t)=O. 1 (3-4.12) 

This expression can be written in frequency space by using the same methods as in Section 
3.2 where, to maintain causality between sources and the fields they emit, the product 
V(x,t) ty(x,t) is more accurately expressed as the convolution in space and time of the two 
quantities. The frequency space representation of the Klein-Gordon wave equation is then 

[v2+k~“+v(x,w)]~(x,w)=o. (3-4.13) 

This equation has the same form as the classical wave equation, Eq. 3-2.11. Both 
equations must be equivalent in, the many particle limit where the quantum and classical 
pictures converge. Thus, the index of refraction effect is the physical observable found by 
taking the expectation value and spatially averaging over the interaction volume of the 
interaction perturbation Hamiltonian 
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k,2,[2E,(x,w)] = co~~+,plv). (3-4.14) 

The constant can be determined though the optical theorem. From the Maxwell 
equations the exponential decay of the intensity of a field traversing a distance d through a 
medium is related to a macroscopic total cross section 

I = Zoe -4 b,ld/“o (3-4.15) 

where nr is the number of scatterers, I0 is the incoming field intensity, and the 

macroscopic total cross section is the spatial average of the microscopic cross section 
derived in Section 2.3. But, 

= Zoe -k,dIm{2&,} . 

Then, for one scatterer 

Im{2E,} = z/kfVo = $ 
/ 0 

Im{F(k,,ki)). 

(3-4.16) 

(3-4.17) 

If the imaginary parts of the two quantities are related by the expression above, then by 
analytical continuation both the real and imaginary parts are related by 

2qJ(x, 0) =. k2V %(kf,ki)=-$A&. 
f 0 I 0 

(3-4.18) 

This is a form of the Lorentz relation seen in classical electrodynamics5 The 
constant in Eq. 3-4.14 has then been determined along with a direct form of the T-matrix 
elements 

Tfi =(#,plw)- 
(3-4.19) 

The T-matrix elements on the energy shell are given in Eq. 2-2.18. A more general 
expression can now be derived by making use of the series expansion of the perturbed 
wavefunction, Eq. 2- 1.5 

(el(x,f)lv(x,f)J y(x,f)) = C~u,(t)e-iE”IFeiE’f’~~“~ $(x)v(xyf)k(x)d3X 

= itki,(f). (3-4.20) 

Thus, the T-matrix elements are proportional to the time rate of change of the transition 

amplitude from the final to the initial state. Also note that 

(@flvlW)=(@f~Tl~i) (3-4.21) 

which leads to T14i)=VIV)=vsl#i) (3-4.22) 

and thus T=VS. (3-4.23) 
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The T-operator is then a scattering operator that describes the combined effect of a 
perturbation and an S-scattering operator. 

3.5 Coherence Properties of the Scattering Amplitude 

An examination of the S-matrix elements for a constant perturbation will yield 
useful information about the coherence properties of the scattering amplitude. From 
Eqs. 2-l. 10 to 2-1.17 in the section on perturbation theory, and using the i.c convergence 
factor to do the integrals as was done in Section 2.2, gives an expression for Tfi up to third 
order for the constant perturbation, Eq. 2-2.6: 

T’ = iefi (t) = ih[ (-i/Fz)V,eiafit + (-i/h)“c Vz,eimfif J:_ Vtieionir’ df’ 
n+i 

r =e iO/if vfi + c VrnL + cc Qxmvmi 
n#i Ei - En mtin+m (Ei - E,)(E; -Em)+“’ 1 - 

(3-5.1) 

The variable t in the expressions above is simply a parameter that indicates when 
the perturbation is turned off. Since the lower limit of the integral in the evaluation of Tfi 
was f =--06, an assumption was made that the perturbation was left on for a time long 
compared to the period of the oscillator (many oscillations occured during the perturbation) 

f>>L (3-5.2) 
% 

The coherence properties of Tfi are now readily evident. On the energy shell, or for 

energy conserving transitions where Ei = Er, the overall phase factor disappears and gives, 

as expected, the on-energy-shell T-matrix elements expressed in Eq. 2-2.18. Off the 

energy shell, or for non-energy conserving transitions where Ei # E,, the overall phase 

factor remains attached to Tfi . At this point one should note that there are no physical 

systems that can instantaneously turn off a perturbation--sources have an effective decay 
time associated with the lifetime of the atomic systems comprising the sources. There is 
then an uncertainty relation associated with when the perturbation is turned off which will 
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Fig. 3-5.1. Uncertainty, Afj, in when constant perturbation ceases. 

- be called a jitter, Afi. The jitter should be on the order of the inverse spontaneous 
linewidth, or decay rate, of the source 

A.tj - l/r. (3-5.3) 

Typically r is on the order of or greater than lO’/sec (for atomic sources). Photons with 
frequencies in the visible to X-ray regime have .energies E > 0.1 eV or frequencies 
v > 1014 cycles/set. Thus, for X-ray photons, the jitter will cover many periods of 
oscillation. Since the time parameter, t, is uncertain to within Ati, the phase is then 
essentially random. If wfi # 0, then Tfi will exhibit a type of temporal incoherence. 

The coherence properties can be observed in the definition of the differential 
scattering cross section 

g=lF(k,,k,)r = A,jTfif. (3-5.4) 

If there is more than one final and initial state, then the total differential cross section is the 
sum over all possible states 

2 

(3-5.5) 

where Bfi is some complex scattering factor for the transition from i + f and qp = afit is 

a random phase factor. For the example in this section, 

B,=V,+~=+~~ yLJLi 
n+i Ei - En mzi n*tm (E,- E,)(E~-EJ+" 

(3-5.6) 
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Since Gfi is a random phase, all the interference terms average to zero and 

(3-5.7) 

The total differential cross section is composed of two terms. The first term is a 
coherent sum of amplitudes that have the same temporal phase factor: efi = 0. Since each 
amplitude always lies on the energy shell, the-scattering is elastic. The second term is an 
incoherent sum of amplitudes with nonzero random temporal phase factors. Since each 
amplitude always lies off the energy shell, the scattering is inelastic. Imbedded within each 
of the terms in Eq. 3-5.7 is a coherent sum over all possible intermediate states as 
represented by the expression for Bfi in Eq. 3-5.6. For this reason, calling the scattering 
process represented by each term in Eq. 3-5.7 as either a coherent or an incoherent process 
is misleading and ambiguous. For elastic scattering all scattering amplitudes are coherent 
with each other, whereas for inelastic scattering the scattering amplitudes may or may not 
be coherent with each other. This discussion is summarized below : 

Transition 1: i + f, 

I 

Amplitudes q and T2 are incoherent with respect to each other for 

Transition 2: i + f, f, # fi- If A f f, # i the scattering amplitudes are inelastic 

(up *o). If wkj = w,+ then T, and T3 are coherent with respect to 
Transition 3: j + k each other (and inelastic if f, f i and k f j) 

Transition 1: i + n, -+ f Amplitudes q and T, are coherent with respect to each other, 

Transition.2: i + n, + f and if f # i the scattering is inelastic. If wmi = wf; then T3 is 
coherent with respect to both T, and T2. 

Transition 3: 

Transition 1: i -+ n, -+ i Amplitudes T , T2 , and T3 are all coherent with respect to 

Transition 2: i + 4 + i each other and the scattering is elastic. 

Transition 3: j + k -+ j 

3.6 Harmonic Perturbation 

The interaction of a photon with a scatterer is modeled in perturbation theory by 

forcing the interaction perturbation to be a harmonic potential. Before second quantizing 
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the scattering theory, important information can be extracted by examining the semiclassical 
perturbation of a monochromatic harmonic potential 

1 0 t+--00 
V(x,t) = . 

2V(x)cos wr 
(3-6.1) 

The T-matrix elements, to second order, are then 

ei(op+O)’ + e i(~fi-+ 

e’%* + e i(ay2o)r 

7” = V/ 
Ei - (En - fiw) 1 * (3-6’2) 

Examining only the T-matrix elements that lie on the energy shell reveals that there can be 
both elastic and inelastic scattering processes (in the constant perturbation case of the last 
section only elastic scattering processes existed on the energy shell). These processes are 
summarized in the diagrams below. 

(1). Single photon absorption (inelastic scattering): 
El 

w,-w=o 5 = vfi 
Ei 

Qji =Wki 
Fig. 3-6.1. Single photon absorption. 

(2) Single photon emission (inelastic scattering): 

o,+w=o 

Et % 
I- Ei 

Fig. 3-6.2. Single photon emission . 
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(3) Two photon absorption (inelastic scattering): 

w,-2w=o qi=c v&i 
nti Ei - E,, + Iii-l, 

-- - 
Ei+2Ao=Ef R, = co,. 

2w = w,; + WLi %n = WLi 

For monochromatic incoming beam: wki = wii 

-1 Ei 

Fig. 3-6.3. Two photon absorption. 

(4) Two photon emission (inelastic scattering): 
Et “f. 

w,+20=0 Tfi = 5 E. -;;fiQ En Qli 
1 n #II 

Ei=Ef+2hw Q, = -co,, 3x Ei 

2w= co,, +o,: Fig. 3-6.4. Two photon emission, 
/ n, = -w; / 

For monochromatic outgoing beam: CO, 
J 

= 0; 
I 

(5) Absorption reemission (elastic if wki = ok, ): 

Qti En Sz; 

w,=o ‘f’=;E -ztfi*. 
---II- 

Ei 

i n N 

Ei = E/ Qti = w,; 
Fig. 34.5. Absorption reemission. 

i-2; =-w, 
J 
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(6) Emission reabsorption (elastic if COG,, = COG,): 

Ei = Ef $2, = -co, ._ 
I 

Fig. 3-6.6. Emission reabsorption. 

Notice that even though the harmonic potential describes a single incoming particle, 
some of the processes (and all of the higher order terms) have more than one photon 
interacting with the oscillator. Perturbation theory then allows for many photon transitions 

- to occur. Even though the semiclassical perturbation was not second quantized, it must 
consist of many discrete photons in order for the perturbation expansion to make sense. 
This is then a reconfirmation of what a classical field is--a distribution of quantum particles. 

Note that the emission reabsorption case is simply the time reversed process of the 
absorption reemission case. There are also time reversed processes for the two photon 
absorption and emission cases that have been omitted. Performing a coherent sum over all 
these different processes leads to a total scattering amplitude which is similar to that derived 
in the constant perturbation case restricted to the energy shell 

Tr; = Vr; + c vfnv’ v,fJLvti 
n+i Ei - (En - Anti> +cc m.il~m[Ei-(E,-rinM,][Ei-(E,-fiRi)]””’ ‘3-6.3’ 

3.7 Resonant Transitions 

The expression in Eq. 3-6.3 is valid as long as all possible time ordered events are 
included. However, there appears to be a major problem for resonant transitions. For 

instance, for resonant two-photon processes, Ati, = E,, - Ei, thus the second and all 
higher order terms in Eq. 3-6.3 go to infinity--the expansion appears to diverge. To keep 
the perturbation expansion convergent, a sum over many higher order terms must be 
performed. To do this, note that Tfi can be rewritten in a form similar to the Lippman- 
Schwinger equation 
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5 = VJi + c V/,L 
nti E,-E,+AQ,’ 

(3-7.1) 

For instance, the third order term can be constructed by inserting the second order term in 
for Tti. Doing so results in Eq. 3-6.3 when Tti is set equal to V,. This procedure can be 
done indefinitely to obtain all the higher order terms. 

Another problem that must be properly dealt with is the correct expression for l/x. 
From Dirac one finds that6 -_ - 

l/x = P{ l/x} - in6( x) (3-7.2) 

where P is the principal value and 6(x) is a Dirac delta function. This relationship can be 
inferred from noting that one would usually expect that 

glnx = l/x. (3-7.3) 

However, upon integrating both sides of the expression near x = 0 gives 

jI?(lnx)= ln(-1) and jT>/xdr = 0, 

where the second integral is zero because l/x is a well behaving odd function. The 
integration then leads to the contradiction: ln(-1) = 0. 

Using the relation for the log of a complex number 
lnx = lnlxl+ iarg(x) (3-7.4) 

allows the correction of Eq. 3-7.3 by setting l/x to its expression in Eq. 3-7.2. This is the 
justification for Eq 3-7.2 (Note that arg(-1) = 5-n. The minus sign was chosen for 
Eq. 3-7.2 because l/x - l/( Ei - E,, + Ati, + ie) . The k factor discussed in Section 2.2 
has been suppressed in all preceding equations for convenience, but when it is considered 
in the integration above, one finds the minus sign to be the appropriate sign for Eq. 3-7.2. 
The i& factor, as discussed earlier, ensures that causality is obeyed.). For compactness 
define, as Heitler does, a c -function:7 

c(x) = l/x = P{l/x} - id(x). (3-7.5) 

If only two photon processes are of interest, then the second order term in 
Eq. 3-6.3 must be split from all the other terms. This is accomplished by summing up two 
photon and all higher two photon scattering processes. Noting that there is no first order 

term, VJ, for two photon processes gives (converting Eq. 3-7.1 to operator form) 
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T=VLT 
E-H, 
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1 l v l v+v- - 
1 =v- -v+ . . . 

E-H, E-H,, E-H/E-H,, 

where HoIn) = E:jn) = (En -ha,)(n) go ‘ves the energy of the intermediate state. 

(3-7.6) 

+ . . . 

Fig. 3-7.1. Two photon absorption reemission scattering diagrams to all orders. The 
sum of all the scattering diagrams gives the total two photon scattering T-matrix elements. 

This expansion is equivalent to summing two photon processes to all orders as 
shown in Fig.3-7.1 (for absorption reemission). This is a common procedure in quantum 

field theory, and there are plenty of tools available for performing the infinite sum 
(yielding, unfortunately, the same problems with ultraviolet divergences that must be dealt 
properly kith renormalization theory). Using the identity8 

1 
-Llyl+-y-y 

1 1 1 
--... 

X+Y x x x x x x 
gives 

T=V 
1 

l vv E-H,+V--- 
E-H, 

or, in matrix element form, 

(3-7.7) 

(3-7.8) 

Ei _ E, + hQti - c (nlV~f)(f~vln) 
/ +n E” - E, + fiQ, 
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= c VfJti 
ei Ei - E, + F&l, - qE4) (3-7.9) 

2 
When adding up all higher order terms (as shown in Fig. 3-7.1), the two photon 

T-matrix elements acquires a term, T,(E,), in the denominator which prevents it from 

diverging on resonance ( Ei = E,, -hQ,). lQ,(Eti) h is t e sum of all transitions from some 

intermediate state, In), to all possible final states, If). It is therefore usually called a 
complex spontaneous transition rate. Its real and imaginary parts can be examined in more 
detail by using the c-function in Eq. 3-7.5: 

For absorption reemission, the resulting photon, Sz,, is an emitted photon, -We,. 

Then 

r”(E$)=rh(Ek,)=p ‘$ -bL,, -2ni~~V$c$E,, - Ef -hw,,). (3-7.11) 

TheEdpmOf$(Ek,) is a level shift which is due to the self-energy of the scatterer and 

has a magnitude on the order of the natural linewidth. The imaginary part corresponds to 
the natural linewidth and is a damping term caused by the effect of the emitted radiation on 
the oscillator--the oscillator produces its own damping self-force. This expression can be 
rewritten by substituting the non-physical, infinitely sharp 6-function by a density of 
states. 

Let dp(E)dE be the number of states in the interval E to E + dE. The density of 

states, dp( E), can be obtained by solving for a particle in a box with sides of length L and 
imposing periodic boundary conditions. This gives rise to a discrete set of modes within 

the box: 
e ik-x = eik-(x+L) (3-7.12) 

This is satisfied if 
ki = (2fr/L)ivi i=x,y,z; N=O,fl,ti ,... . (3-7-13) 

The number of modes in the interval N, + dN,, NY + a!NY, and N, + a?/, is then 

dN = dN$h’+iN, = (L/2x)3dk,dk,dk, = [V,/(2n)3]k2dkdR (3-7.14) 
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where V, is the vohrme of the box. The number of states in the wavector interval k and 
k+dk is then 

dp(k)dk = [V,l(2~)3]k2dkdQ. (3-7.15) 

Since dp( E)dE = dp( k)dk , then for E = hck the density of states is 

2 dQ -- @(E) - c2;,3 (E/h) F- (3-7.16) 

Notice that dp( E) is defined only within a narrow cone of angles da. For a single isolated 
oscillator, the emitted photon can travel in any direction, thus the spontaneous transition 
probability is obtained by integrating over all the possible final photon states and all 
possible final photon directions 

re(Ek,) =’ 2cjdEk, 
f*n 

E 
n 

-‘:‘; E 
f kl I 

where, 

= 2D;(Ek,)-ir~(Ek,) 

cldEk,d(2k, 
f- 

E, ‘2’; E 
f k/ 

r:(Ek,) = 21Fcjdszk, IvfnrP(Eg) 
f+n 

(3-7.17) 

(3-7.18) 

(3-7.19) 

and P(E) = (2n7hc3 wfE)2. (3-7.20) 

The energy level shift is 20, Ek +( , ), I’:( Ek, ) is the natural linewidth, and p(E,, - Ef = Eg) 

is the density of states. Note that I?,’ is independent of the.outgoing photon energy-- 

this is because the Ij-function is infinitely sharp at Ek = E,, - E,. Broadening out the delta 
function will yield a natural linewidth that slowly vkes with the photon energy. 
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In the case of emission reabsorption (Fig. 3-6.6), T,(Eki) is now a spontaneous 
absorption probability 

where 

D;(Eki) =’ cjdEkidQici E -2 + E 
I I 

2 P(Eki) 
f*n n f ki 

ri(Eki)= 2nCld~kiIvf~1zP(Ef~). 
f+n 

(3-7.21) 

(3-7.22) 

(3-7.23) 

The first order two photon T-matrix element is the sum of all allowable two photon 
processes (absorption reemission, emission reabsorption, two photon absorption, two 
photon emission) 

Tfi = c v;v; v;v,4 
n+f E,-E,,+Aw,. -0,’ +il-i/2+ E,-E,-ho,, -Di(Eki)+ir;/2 

+ v-p; v;v; 
-D;(Ek~)+ir,$+ E,-En-f&O,, -D;(&;)+ir,$z 

.(3-7.24) 
Ei -E,, +ft@,. 

When i = f, elastic scattering occurs and the last two terms become zero. When i f f, the 
’ first two termsdescribe inelastic spin-flip scattering since usually the exiting photon has a 

different spin that the incoming photon. However, in such a case, the scattering process is 
off the energy shell, and one would therefore have to multiply the two terms by a random 
phase factor as described in Section 3.5. When i f f, the last two terms describe an 
inelastic scattering process than can still lie on the energy shell if energy conservation is 
satisfied, tt( wk + W;) = +( Ef - Ei) as d escribed in Figs. 3-6.3 and 3-6.4. For instance, 
the third term conserves energy as long as the oscillator stays in the excited state for the 
duration of one’s observation. However, when both of the last two terms are considered 
on the energy shell, they describe a scattering process that appears elastic since now two 
photons enter and leave the system. 

Finally, notice that the natural linewidth, Ii, is the sum of all transitions from an 
intermediate state to all possible final states. Thus rz contains contributions from both 
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elastic and inelastic transitions. Then, I,’ can be described as the sum of the transitions 
rates for all the elastic and inelastic channels 

(3-7.25) 

The level shift 0,” is discussed in Goldberger and Watson.5 It linearly diverges 
since the limits of integration in the expression is taken from Ek = = + 0. This is an 
example of the common problem of ultraviolet divergences found in quantum field theory. 
Through renormalization of the scatterer’s mass when taking care of the scatterer’s self- 
energy, the divergence can be eliminated. In doing so one will find that the level shift is on 
the order of a natural linewidth, I-,‘. 
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4. MULTIPOLE FIELDS 

4.1 Interaction Perturbation Hamiltonian 

A multipole scattering amplitude can be constructed through evaluating the T-matrix 
elements described in Section 3.4.1s In that-section the T-matrix elements were shown to 
be proportional to the inhomogeneous term in the Klein-Gordon wave equation, or the 
interaction perturbation Hamiltonian described by Eq. 3-4.11, which describes the 
interaction of the electromagnetic field of a photon with a charged scatterer. Noting that the 
total wavefunction includes both the photon and the scatterer’s wavefunction, the following 
decomposition can be made: 

I@> = I$“;V) (4-1.1) 

where 14’) is the photon wavefunction, I$“) * is th e scatterer’s wavefunction, and 14) is the 
total stationary state wavefunction. 

To compute Tfi the expectation value of the interaction perturbation over the initial 
and final stationary states must be evaluated. The contribution from only the scatterer’s 
part of the total wavefunction is 

V; = jvo i$;‘V@i” d3x . (4-1.2) 

Then inserting Eq. 3-4.11 yields 

Vi =(ie~~)f”~d3x{~~[~~(A~~:)]+~~AP(a,$l)}+(e/c)’~”~d3x~~A~A~9: . (4-1.3) 

Integrating the first term by parts leads to 

I, G;[~~(A~c)]~~x = $;Aw~~~ - Jvo (~p~;‘)Apc d3x - 
The surface term goes to zero as the volume expands to infinity since the potential varies as 
1/1x1. Then 

(4- 1.4) 

where 

and j: is the electromagnetic current of the charged spinless scatterer. 

(4-1.5) 

41 
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The Dirac equation can be used to evaluate $ for a charged particle with spin: 

( w” ) -m If=0 (4-1.6) 

where rfi is a Dirac y-matrix and m is the mass of the particle. Applying a gauge 
transformation on the 4-momentum, Eq. 3-4.9, leads to the expression 

[ yPp’ -m+(e/c)y,A”]W” = 0. (4-1.7) 

Defining the perturbation as9 -_ - 

y”V(w) = (e/c)y,A”(w) (4-1.8) 

leads to an interaction perturbation term similar to Eq. 4-1.4: 

(4-1.9) 

where j: = @Yp Yi” (4-1.10) 

and the quadratic potential term obtained from the Klein-Gordon equation has been simply 
added on (the Dirac equation is simply a linearized form of the Klein-Gordon equation and 
therefore does not yield this quadratic term). In this formalism, the wavefunction, v, of a 
charged particle is a 4-component spinor where each component satisfies the Klein-Gordon 
wave equation. The covariant normalization of fermions is usually defined as 

I yt vd3x = 2E = 2m (4-1.11) 

where, in the nonrelativistic case, E = m. 
When the photon wavefunctions are included, the matrix elements of the interaction 

perturbation becomes 

(4-1.12) 

The timelike component of A’, or the scalar electrostatic potential, will be partially 
ignored. The scalar electrostatic potential contributes to an energy level shift called the 
isomer shift, and its effect will be included in the scattering amplitude where appropriate. 
Therefore, when computing the scattering amplitude, the 4-potential will be assumed to be 

AP = (0,A) (4-1.13) 

where A is the magnetic vector potential. 
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4.2 Second Quantization 

To conveniently manipulate the photon wavefunctions, the technique of second 

quantization will be applied. Here, the fields are quantized in a Hilbert space in which the 
basis states are the eigenstates of the number operator 

NkA = a;fA (4-2.1) 

Nk&lcJ = S&k%> (4-2.2) 

%I%) = &&a -1) (4-2.3) 

4$kJ=~ixllllrl+1) (4-2.4) 

q(, =0,1,2 ,.... 

The operators Q and u:, are the familiar annihilation and creation operators, k is a photon 

propagation vector, A is a polarization index, Q is an occupation number, and i, is the 
polarization of the photon of frequency w, . 

In this notation (the notation used in Weissbluth7 ), the vector potential is the sum 
over all the normal modes and polarizations of the system 

A(x, t) = ; 

The basis states for the system will be written, for the sake of clarity, as 

(4-2.5) 

(4-2.6) 

(4-2.7) 

The T-matrix elements, Eq. 2-2.18, can now be evaluated with the help of the 
scattering diagrams shown in Fig. 4-2.1. 

Examining just the quadratic A2 term in the interaction perturbation, Eq. 4-l. 12, the 
T-matrix elements, up to first order, are 

T/ = 

=92 
2m,c2 

i(k'.x-a+f) 
+ u&,.e -i(k’.x-w,.f) ,Fj 

I 
(4-2.8) 
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(h) 

I > F2 

I > L5 

II) 

(k) 0) 

Fig. 4-2.1. Scattering diagrams: (a) and (b) single photon absorption and emission, (c) 
and (d) prompt two photon scattering [that the diagrams for prompt scattering and its time 
reversed process are the same can be seen by shrinking the intermediate state lifetime of 
diagrams (g) and (h) to zero], (e) and (f) prompt two photon absorption and emission 
[omitted the time reversed process since it corresponds to an equivalent diagram], (g) 
absorption teemission, (h) emission reabsorption [the time reversed diagram of (g)], (i) and 
(j) two photon absorption and its time reversed diagram, (k) and (1) two photon emission 
and its time reversed diagram. 
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Let the initial state of the system have occupation numbers sX and +,,: 

II) = I$&$&,). (4-2.9) 

For prompt scattering the final state of the system has occupation numbers +,, + 1 and 
%, - 1 where one photon mode has gained a photon (the scattered photon) and another 
mode has lost a photon (the incoming photon): 

IF)=l%, -&.,.+l;fr). (4-2.10) 

The diagrams for this process and its time reversed process are shown in Figs. 4-2.1 (c) 
and (d). 

The bilinear combinations of %, and c+*, and their Hermetian conjugates in 
Eq. 4-2.8 gives 

($2 - hc’,’ + ‘~%~“k&k,~~~,~) = ’ 

($1 - l,$y + ll&&+$&*,J = 0 

($A -l,~l,+lla,la:.,.l~l~“k,l.)=~~. 
Acknowledging that prompt scattering and its time reversed process are equivalent and 
associating k with the incoming photon ki, and k’ with the outgoing photon k,, leads to 
the scattering amplitude 

F(k,,k,) = -rqdm,/w(6; - &)(L le-i(kf-ki”xlis) 

q2 rq = - 
mqc2 

(4-2.11) 

(4-2.12) ’ 

and q is the charge of the scatterer with mass mq. For electrons rq = r, -- the electron 
radius. The minus comes from the optical theorem, Eq. 2-3.6, and it is expected since an 
oscillator tends to resist driving fields by producing induced fields that partially cancel the 
incoming fields--the induced fields are 180” out of phase with the driving fields. 

The differential scattering cross section is related to the scattering amplitude by the 
relation shown in Eq. 3-5.4. It has a term proportional to the number of scattered photons 
nf. This term is the result of stimulated scattering and is only significant at high intensities. 
For elastic scattering ki = kf and, in the dipole approximation, the differential scattering 
cross section reduces to the familiar Thomson cross section 

where f. = (isle-i(kJ-ki)~xli,) 

(4-2.13) 

(4-2.14) 
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and f. is a scattering angle dependent form factor. 
There is also a T-matrix element term for prompt two-photon absorption and 

emission arising from the bilinear combinations %u,,~, and &&. of the interaction 

perturbation [see Figs. 4-2.1 (e) and (f)]. The final state occupation numbers for prompt 
two photon absorption are n, - 1 and +L, - 1, and for prompt two photon emission the 
occupation numbers are Q + 1 and $,A, + 1. Each mode k and k’ in the final state have 
either simultaneously lost or gained a photon. The scattering amplitude is then 

F(k[,ki) = -rqmfi(6y yi$ j(~~t?(k~+ki)‘xlis) (4-2.15) 

for prompt two photon absorption, and 

F(k;,k/)= -remJ(kT -~,)(f,Ie-i(ki’k,).xl~=) (4-2.16) 

for prompt two photon emission. Since prompt two photon absorption and emission are 
inelastic processes, they can be safely ignored when considering only elastic processes. 

Second order A2 scattering gives rise to scattering of more than two photons and 
will therefore not be investigated. 

For the current-vector potential coupling term in the interaction perturbation, 
Eq. 4- 1.12, the T-matrix elements, up to second order, are 

+c (b;;fa~~~~~d3xi,~A~~~;~a)(~.;~a~~~~~d3xiU-Ald’;~a) 

II 4-44 
. (4-2.17) 

States with the in&.x a have been added to include quantum processes not described so far 
(such as phonon scattering). The scattering diagrams (along with their time reversed 
processes) are shown in Figs. 4-2.1 (g) through (1). 

For the absorption reemission and its time reversed emission reabsorption process, 
the initial, final, and intermediate states shown in Figs. 4-2.1 (g) and (h) are 

I1>=l%~?c*~*;ia) 

IL,) = 1% - l~?t*l*;Cla) 

lL2)=(%~%tl* +';!,a) 
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Since these scattering events have intermediate states, they am properly described only by 
the second order T-matrix element term 

F(k,,ki)=-A,Ct 
(F@” d3X j, - A lL)(J.$~ d3X j, -A II) 

a E E ’ “’ 
I- L 

(4-2.18) 

where 

(4-2.19) 

and 
Aa = (&k-x , & = &e-&-x. (4-2.20) 

One must now find those combinations of the matrix elements of A that yield 
nonzero values for each scattering process. For the case where IL1) is an intermediate 
state, AA must be used to decrease the number of k photons by one in the state IL,), and 
A&, must be used to increase the number of k’ photons by one in the state IF). Thus, the 
only nonzero matrix element combination is 

The initial and intermediate state energies can be read right off the scattering diagram, 
Fig. 4-2.1 (g). 

E,=E,+tiw, (4-2.21) 

EL, = Et,. (4-2.22) 

Then the scattering amplitude is 

4, (kIrki) = -@i/F 
(f,Il/cjd3X2/- jfl, ,-“‘-Xleln)(e,,11/cId3X~i. jt,idki~xli,) 

Ei -(EtI -Awki) 

. 

(4-2.23) 
For the emission reabsorption case, there is a loss of a k photon in the state IF) and 

a gain of a k’ photon in the state ILJ. From the scattering diagram, Fig. 4-2.1 (h), the 
initial and intermediate state energies am 

E,=Ei+Aok (4-2.24) 

EL2 = Et, + fit& + h0,. (4-2.25) 
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The scattering amplitude for this process is then 

(4-2.26) 
For the other scattering events in Fig. 4-2.1: 

II,) = I%&) 
-_ - 

IF,,) = 14, -‘da) 

IFoe) = I%* + kca) 
IL3) = IsI - l,~+~,;!~~) ; E;, = Et, + Ao,, ; EI = Ei + tzw, + ho,, 

IL4) = IsA, I&,,, - I;&,) ; EL, = Et, + hw, ; El = Ei + hw, + ho,, 

IL~)=I~, +l,~,~,;‘sn) ; Ed, =E~, “wk ; EI =Ei 

IL,)=~QQ,,,+~;&~) ; EL, =Et, +Aw,, ; E,=E, 

19)=l~z-L+,.-1&) 

lF2)=l~ +L+n~+l;fa) 

and their scattering amplitudes are found to be 

Fo,(ki) = --~~(f,~~/~~d~~i,- jfiehi.‘lia) 

4, (k;, ki) = -,/m@ 

4, (k,,k;) = -dmJ1;1; 

(4-2.27) 

(4-2.28) 

(4-2.29) 

(4-2.30) 
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x (fa II/C Jd3x6;- jf15 e-iki.xlt50)(t5a II/c Jd3xef- jlsi e-ikfsx(ia) 

Ei - ( Ef, + hmk, ) 

(4-2 31) 

When considering only elastic scattering, the inelastic scattering amplitudes expressed by 
Eqs. 4-2.27 to 4.2-32 can be ignored. 

For resonant transitions, all of the higher order terms of all the on-energy-shell 
scattering amplitudes must be taken into account as was done in Section 3.7. Following 
precisely the same procedures used in that section produces a natural linewidth that 
prevents the scattering amplitudes from becoming infinite on resonance. 

4.3 Multipole Scattering Amplitude 

The next step needed to be taken in investigating the scattering amplitude is the 
examination of its multipole structure. Following Frauenfelder’s approach,2 this can be 

accomplished by applying a spherical wave expansion on the plane wave 

e “.’ = 4xci’j,(kr) ~&;(e,,$,)y,(e,.&) (4-3.1) 
f=O m=-f 

where 

&(W = (Jw~)“J,tt(w (4-3.2) 

and jc(kr) is a spherical Bessel function, the coordinate (Ok,@,) is the direction of the 
wavector k, and the coordinate (r,&,&) is the location of the observation point in a 

coordinate system attached to the scatterer. The sum over 1, as will be shown later, gives 
the various multipole components of the plane wave (for instance, the dipole field 

corresponds to the ! = 0, 1, and 2 terms, the quadrupole field corresponds to the ! = 1, 2, 
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and 3 terms, etc.) A matrix element U, defined as (temporarily dropping the f, and n, 
quantum numbers) 

U, = l/c Jd3xt- jnieh’x 

can then be expressed as 

where the current jd of the scatterer has been expressed in a spherical basis 

j, = i(-‘)‘jt6-, 
q=-I 

where 

and 

is*, = Tl/JZ(6, L!z &J 

6, = ii, 

(-l)“i-, = 6; 

g,(kr) = 4dj,(kr) 

(4-3.3) 

(4-3.4) 

(4-3.5) 

(4-3.6) 

(4-3.7) 

(4-3.8) 

(4-3.9) 

The notation used in this section will closely follow the notation used by Weissbluth and 
Edmonds.7v lo 

Note that the tensor product of two tensor operators of rank I and I’ can be 
expressed as 

(4-3.10) 

The spherical harmonic Y,( 8,, 0,) is a component of an irreducible tensor operator of rank 
1. Then, since jti is a vector and therefore an irreducible tensor operator of rank 1, 

(4-3.11) 

where the ni index on jti is momentarily suppressed. Using the orthogonality relation for 
Clebsch-Gordan coefficients, 

gives 
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~[Y(Oj(l)]~‘(~~lq~~lLM) = ~Y~~)j~!~~(~rn’l~‘~LlLM)(~rnl~~~lLM) 
LM m’q’ LA4 

Using this relation U, becomes 

F Y(‘) j(l) 
m ‘I * (4-3.13) 

uti =i-g i i C~~(a,)i;(Pmlqlll~r(j,,m,Il/cldr [Y(‘)j(‘)]~‘g,(kr)lj,,m,) 
f=O m=-f q=-1 LU 

(4-3.14) 
where the matrix elements of the current are defined in terms of the scatterer’s spin and 
angular momentum components 

i, =(~:lil~~)=(j,,m,ljlji,mi). (4-3.15) 

Note that the tensor product in Eq. 4-3.13 can be written in terms of a dot product 
of a vector spherical harmonic with the current. A vector spherical harmonic of rank J 
follows the relation 

v,,,=~Yh6,(LmSqlLSJM). 
“4 

(4-3.16) 

The vector spherical harmonic is proportional to the amplitude of the incoming particle. 
The total angular momentum of the particle is the sum of the orbital and spin angular 
momentum 

J=L+S, (4-3.17) 
and the vector spherical harmonic is the simultaneous eigenfunction of J2, L*, S2, J,, L,, 
and S,. The numbers M, m, and 4 are the projection quantum numbers of the total 
orbital, orbital, and spin angular momentum vectors respectively. For a photon vector 
field, S = 1, and the photon vector spherical harmonic, with the S subscript suppressed, is 

Y,~=~Y~,~,(L~QILIJM). (4-3.18) 
v 

The tensor product in Eq. 4-3.14 can be written in the more convenient form of a 
dot product between a vector spherical harmonic and the current 

Y LLM - j = ~Y,(~~l~~~lLM)~&~, - ba,. 
“4 Q8 

But, unit vectors in the spherical basis follow the orthogonality rule 

6,-6;=s,, 

(4-3.19) 

(4-3.20) 
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so 

YuM - j = ~Y,jq(~mlqlllLM) = [Y(f)j(l)]i) (4-3.21) 

by comparison with Eq. 4-3.11. 
Applying the Wigner-Eckart theorem, 

and using the relation in Eqs. 4-3.18 and 4-3.21, the matrix elements can be written in 
terms of its reduced matrix elements 

where 

(4-3.23) 

(4-3.24) 

and &t&A) = L&4)&4 (4-3.25) 

The quantity x( L, 1) with phase q( L, C) is a reduced matrix element that no longer depends 
upon m, or 172/. Note that the z-axis of the coordinate system in which the angles 
(Ok, 0,) = R, are measured is now the quantum axis of the scatterer (such as an electron or 
.nucleon). 

Since 

ym@k) = ~Y,~,(~mlqlJlLM), (4-3.26) 
q 

the Clebsch-Gordan coefficient gives a constraint on the possible values of .! due to the 
selection rules for the coupling of two angular momentum 

(e-lI<L5!+1. (4-3.27) 

Then, the only possible values of ! for a given L m 
e= L,Lkl (4-3.28) 

The selection rules also constrain the possible values of M 
M=m+q. (4-3.29) 

The expression for U, in Eq. 4-3.23 contains information about transverse electric 

and magnetic and longitudinal multipole fields. To see this, first examine the 1= L 
component of YuM : 
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yu~ = ~Y~,M-q~q(L,M-4,1,~lLlLM) 
4 

=(-l)‘+V‘ + (; :, -“M),‘. 

L 1 L 
+ M +l -1 -M 

=&Gi (-1) { gyg3,u-l~+l + J(2L+;L+l)L Y,ko 

c (4-3.30) 

where the following identity between the Clebsch-Gordan coefficients and the Wigner 3 - j 
symbol was used: 

. . 

(j,m,j2m,l j, j, jm) =(-1)“-‘I-” 2j+l 
J( 

Ic; i2 -jm 
I 

. (4-3.3 1) 

Tables , such as in Weissbluth or Edmonds,7* lo* l1 give formulas for special types of 3 - j 
symbols. The exponent 2(L + M) is an even integer because if L is either integral or half 
integral then so is M since M = L,L-l,...,- L. Utilizing the properties of the lowering 

and raising operators of angular momentum 

yields 

L*Ytm = TJ- qj Jw + 1) - dm + 1) YL.m*l (4-3.32) 

LOL = mY, (4-3.33) 

y 
LLiu 

= -(~/I&/L(L+~)-M(M-~) 
JLO 

+ (1/1/2)~L(L+i)-M(M+~) 
J-m- Lf+Ik 
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= -LJ-t?,d+, + &AM~o + L+Yf,M+li-I 
dL(L+ 1) = LL+l J77( 

l ~,W’Lq8_,)Y, 

=&j* 
The angular momentum operator can be written as 

L=rxp=-i(rxV) 
-_ 

where r a radial vector. Then 

(4.3) 

(4-3.34) 

(4-3.35) 

i.V, =(-i/Jm)i.(rxV)=(-i/$&TiJ)V-(ixr) 

=o. (4-3.36) 

Thus, Ym is a transverse vector spherical harmonic, and, since it is related to the angular 
momentum operator, it is associated with the magnetic multipole electric field. Akhiezer 
and Berestetskii* define this field as Yz and Rose5 as a magnetic multipole field YE’. 

Thus, depending upon notation 

L =y$ =y.$‘. (4-3.37) 

To obtain the electric multipole electric field, the cross product between the 
magnetic multipole field and F is taken as defined below 

iy$ = i x yCm) (4-3.38) 

Also similarly iYg’ =i,yi: (4-3.39) 

From Akhiezer and Berestetskii, the electric multipole field is related to the vector spherical 
harmonics as follows 

From the differential properties of the gradient of a scalar81 l2 

rVYjm = j 
d--- 

j+l Yj,j+,,, + (j + 1) 
2j+l /-- 

--j--‘jj-l-> 

2j+l ’ ’ 

(4-3.40) 

(4-3.41) 

one can see that the electric multipole electric field is related to the linear momentum 
operator 

y!4 = ir 
Jm riJj(j+l) P’jm (4-3.42) 

where p = -ihv . 
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The other vector field has only longitudinal components along f: 

y(-'1 = y(l) - fy - 
J’” jm - jm - J~yj,j-l,m - J$$'j,j+*.m* (4-3.43) 

These three vector fields form an orthogonal basis about which any field can be 
expanded. 

Going back to the expression for U, , there is a summation term 

L+l 

+ YL L-l M(RL)yL,L-*.M(Rr)sL-l(kr) + YL.L+*,M(~~)YL.L+I.M(SZl)gL+l(kr). 9 * 

The first term can be expressed in terms of the magnetic multipole field Y&l. The next two 
terms give the electric and longitudinal fields. First note that the vector spherical harmonics 
of angular momenta j + 1 can be expressed in terms of the multipole fields 

Yj,j+*,, =(l/~~)(~Y~~ -BYTE”) (4-3.44) 

Yj,j-,,, = (l/Jm)@Y;:J + $Y;;“). (4-3.45) 

Then 

L+1 

Cv,,(n,)V,,(n,)g,(kr) = ~wQk)AE(r~R,) (4-3.46) 
f=L-1 A=-1 

(4-3.47) 

A&+,Q,) = ~{[LpLf’(kl)+(L+l)gLrl(kT)ly~(n,) 
+ JLo[i?L-, w - gL+1 w] c!(Q,). (4-3.48) 

The matrix elements, U,, can now be expressed as a sum of the transverse and 
longitudinal multipole fields 

where x(L,A) =I( j,,il l/c jdr AE(t-,R,) - j(r) 1) ji)/?(‘“). 

(4-3.49) 

(4-3.50) 
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Another expression for the expansion of a vector field plane wave has thus been 

&rived 

1 
seJk-x = 

CCL 
ii- Y~‘(a,)]A~(r,Ci,) 

Lhi I=-1 

This shows the decomposition of a vector field into its transverse electric and magnetic 
(e and m or il = 1 and 0) and longitudinal (I or il = -1) multipole components. This is 

basically what Rose has done but in a different manner. 5 Another expression for the vector 

potential is then 

c ~(cz,$~~ .Y~(n,)]A,(r,R,)e-‘“*’ 
LM f=L-1 

-+ 41 ‘k, [^* - Y~(C2k)]A~(r,R,)ei@k’)} 

(4-3.52) 

(4-3.53) 

where the vector spherical harmonics are constructed in the quantum coordinate system of 
the scatterer. 

The scattering amplitude can now be expressed in terms of multipole fields. For the 

case of spontaneous absorption reemission (f 1 n = 0 , the scattering amplitude on the energy 

shell is 

where 

U, = (jn,m,;n,ll/cJd3Xiti- jeikiexl j,,V$;i,). 

(4-3.54) 

(4-3.55) 

(4-3.56) 
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The polarization of the scattered photon has been complex conjugated to handle complex 
polarizations. 

The natural linewidth, I,,, described in Section 3.7, can be readily evaluated in 
terms of the reduced matrix elements x( L, 1). In terms of the matrix elements Uf,, , 

(4-3.57) 

where A, is given by Eq. 2-3.8, and the density of states, p(E,), is given by Eq. 3-7.25. 
Ufn = Ui with the interchange of indices i + f , and U, is given by Eq. 4-3.23 or 4-3.49. 
The sum over all final states is the sum over all final angular momentum, spin, photon 
modes, and polarization states: c,,. = c,, c, I . For only one photon mode, k,, 
the sum over photon modes can be ignored. With thd help of the orthogonality of spherical 
harmonics, 

J~wm)r,,@) = 6,,* 6,,,, 

the angular integral in r,, is then 

(4-3.58) 

CY,.,,(l’m’lq’ll’lL’M’)~; -6,, 
m’q’ 1 

= Sf f’6LL’6MM’. 

The natural linewidth then reduces to 

rn =(kf,2a)C~ c (i.miLMljiLj.n;:lji~~+~L’M’lj,L’j~m~) 

jfm,UM f’L’hi’ II 

x x(L,L)x’(L’,e’)6,,,6,,.6,,. 

= (w4CC c (jimiLMlj,Lj,m,)(j,mlLMlj,Lj,m,) 
(2i, + 1) l.xWY 41 

if U mfM 
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= CT(L,C) (4-3.60) 
LA 

The multipole linewidth, T(L,t), is a function of the multipole index L and an index ! 
which determines whether the process is transverse magnetic, transverse electric, or 
longitudinal scattering (see Table 4-3.1). Then, the-reduced matrix element expressed in 
terms of the multipole linewidth is 

For a two level 

&J.mf = (2qk,)(2j, + 1)wd). 
system the sum over jr can be ignored. 

(4-3.61) 

Multipole 
index 

Electric: 
a=1 

Magnetic: 

a=0 

L=l 

1 
L=2 

L=3 

- i 
L=l 

e=0,2 e=0,2 i I dipole dipole 
A!=1 A!=1 dipole diDole 

L=2 
1 

e = 1,3 quadrupole quadrupole 
1=2 quadrupole quadrupole 

L=3 
1=2,4 sextupole sextupole 
k!=3 sextupole sextupole 

Table 4-3.,l. Multipole fields designated by multipole index L. 

The spontaneous absorption reemission on-energy-shell scattering amplitude can now be 
expressed in terms of the multipole spontaneous radiative linewidthlm3 

F,(k,,ki,X,)=-(2~/k,)e-i(k’-k’)‘XoC c [i;-Y,‘~(~k,)][~~.~‘~.(~k~).~i] 
fix f’L’M’ 

X ~~eil"(L'f)-"(L"f')l (j m LM(j, L j m )(ji m,L'M'I j. L'j m ) (4-3.62) 

Ei-E,+liwki +1Tn/2 ' ' 
It II 1 1 nn 
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or 

x ~~ei[S(L.a)-rl(L’.a’)l 

Ei - E,, + fitiki + ire/2 
(j,m,LM~jfLj,~,)(ji~iL’M’~j~L’jn~,) (d-3.63) 

For convenience of notation in later sections, F,(k,,ki) = Fn(k,,ki,x, = 0). If the 
scattering process preserves time reversal invariance, the phase difference, 
q(L,A)- q(L’,A’), between two multipoles is zero or n.13* l4 The spatial phase factor, 
@, = -(k, - ki) - x,, comes from shifting the scatterer from the origin by the displacement 
x, as shown in Fig.4-3.1. 

Fig. 4-3.1. Incoming transverse plane waves with direction ki scatterers off particle 
located at x, to produce outgoing transverse plane waves traveling m direction k,. 

In general, the scattering is usually expressed as 

(4-3.64) 

where the matrix elements of F, must be summed over other quantum states not discussed 
so far (such as phonon states) to arrive at a final value for the scattering amplitude. For 
instance, in phonon scattering,3v 6v 15p l6 he 1 t p ane wave can be approximated as having an 
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additional oscillatory spatial function, U, that describes displacements about an equilibrium 
position X of a scatterer 

e k-x ~ eik-(x+u). (4-3.65) 

In such a case, the scattering amplitude changes to 

(4-3.66) 

The vibrational factor usually lead to a diminution in- the scattering amplitude, and, for 
nuclear scattering, is called a Lamb-Miissbauer factor, or, for electronic scattering, a 
Debye-Waller factor. The resonant denominator of F, also changes to include frequency 
terms that give rise to frequency sidebands. 

4.4 Spherical Multipole Electric Fields 

In the computations done so far, the incoming and exiting waves have been 
described as plane waves. Such a description is inadequate for a single scatterer since it 

usually scatters waves spherically that fall off as l/R where R is the distance from the 
scatterer to an observation point. To include this effect, the incoming and outgoing vector 
fields of the photon are described as spherical Green functions 

eiktX-X'I 
AAJ') = t; Ix _ x'I 

ik(X,+X’l 

Ai,(xo,x’) = ki e Ix0 + X’I 

(4-4.1) 

(4-4.2) 

where the incoming spherical wave originates at point X, in Fig.4-3.1, the scattered 
spherical is observed at point X, and X’ are the internal coordinates of the scatterer. 
Inserting these vector potentials into the expressions for Urn and U, in Eqs. 4-3.55 and 
4-3.56 will give the spherical multipole electric field amplitudes scattered from a particle. 

The spherical wave expansion of the spherical Green function is17 

(4-4.3) 
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where @)(kr) is a spherical Hankel function 

h,(‘)( kr) = d [ & Jf+l&) + iNc+l/zb)]. (4-4.4) 

Inserting the spherical wave expansions into the expressions for Uf,, and U, and carrying 
out computations similar to those performed in Section 4.3 leads to the spherical multipole 
electric fields in a form very similar to Eq. 4-3.62 

E,(k~,ki)=B,~~(k,,ki)=S,F,(k,,ki)l,_(~~~-r~*~’.,*.) (4-4.5) 

where F$k,, ki) is similar to Fn(kf,ki) in Eq. 4-3.62 but with the substitution 
YUM(Qk) + Z,(r,,Q,) (the spatial phase is now contained in the spherical Hankel 
functions). The spherical Hankel harmonics follow the relation 

zLt.M(rk~Rk) = kf,(krk)yL.tm(ek~~k) (4-4.6) 

f,(kr,) = i(-i)-’ hf (krk) (4-4.7) 

rk, = IX-X,1 for IX - X,1 >> IX’1 (4-4.8) 

‘ki = x0 I I for lx01 >> Ix’1 (4-4.9) 

One can also construct magnetic, electric, and longitudinal multipole electric fields 
in a manner similar to that in the last section:12 

zp = zjjm = kfj(kr-)Yjjm (4-4.10) 

I&.“) = -$v x tg) = i(-i)-j 
j+l 

I” 
M-- 

-hj-l ckr>‘j j-1 m 2j+l * ’ 
-{&j+lCkrJyj,j+*,m} (4-4*1 l> 

= i(-Q-j 

The magnetic multipole field is still a transverse field, but, since the electric and 
longitudinal multipoles now have spherical Hankel functions multiplying the vector 
spherical harmonics, they are no longer purely transverse or longitudinal fields--they both 
now have mixtures of transverse and longitudinal field components. The spherical 
multipole electric field expressed in terms of these multipoles can still be cast in a form very 

similar to that in Eq. 4-3.63 

(4-4.13) 
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Typically the approximation is made that the incoming fields are plane waves and 

the scattered fields are spherical waves. Also, if the observation point is far from the 
scatterer compared to a wavelength, a far field approximation can be made for the scattered 
spherical field. The spherical Hankel functions, to all multipoles, approaches 

and 

(4-4.14) 

(4-4.15) 

In the far field limit, the electric and magnetic multipoles now become purely transverse 
fields, and the longitudinal multipoles are purely longitudinal fields. The total electric field 
at the point x is then 

k, 
E(X)= kiEoeiki-’ +ii,E, ~e"i~xoF,,(kf,ki) 

5, 
(4-4.16) 

where the first term is the incoming plane wave field of amplitude E,, the second term is 
the spherically scattered multipole electric field with F, given by Eq. 4-3.62 or 4-3.63, and 
rk, is given by Eq. 4-4.8. Notice that the expression for each transverse electric field 
component is now equivalent to the solution of the integral scattering equation discussed in 
Section 3.3 (see Eq. 3-3.10) when Ix~>> 1x,(. N ow that the scattered fields from a single 

particle have been found, one can then go on to solve for the net field scattered from several 
particles (this is done in Chapters 6 and 7). When there are many particles and frequent 
multiple scatterings, the computations become too time consuming, and one must rely upon 
the Maxwell inhomogeneous wave equation for transverse electric fields. Fortunately, a 
wide range of problems involving many particle media can be handled well by the Maxwell 
inhomogeneous wave equation (as shown in Chapters 6 and 7). 
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5. DIPOLE POLARIZATION PROPERTIES AND 
STATIC FIELD INTERACTIONS 

5.1 Polarization 
Scattering 

Properties of Electric and Magnetic Dipole 

For the case of Thomson scattering, the scattering amplitude, Eq. 4-2.11, can be 
written in tensor form where a polarization matrix contains all the polarization information 
about the scattering process 

FT(k,,ki)=-rqfoPT (5-1.1) 

where (5-1.2) 

Since there are two directions corresponding to the incoming and outgoing photons, 
there are two separate polarization bases for each direction, and the orientation of each basis 
with respect to one another is arbitrary. Usually a convenient orientation is chosen that 
diagonalizes the polarization matrix and simplifies calculations. Constraining one 
polarization component, say the x-component of both the incoming and outgoing fields, to 
be perpendicular to the scattering plane--k, = & = sigma polarized--forces the other 
component to lie in the scattering plane--k, = k = pi polarized--(see Fig. 51.1). Under 
such conditions the polarization matrix diagonalizes to 

(5-1.3) 

where 28, is the scattering angle between ki and k,. The polarization matrix reveals that 
Thomson radiation has an angular distribution commonly associated with electric dipole 
scattering--horizontally polarized fields are reflected by the same amount regardless of 
scattering angle while vertically polarized fields suffer a decrease in amplitude proportional 
to the cosine of the scattering angle between the incoming and outgoing wave directions. 

64 
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Fig. 51.1. Scattering geometry for a particle at the origin. Sigma (pi) polarizations are 
perpendicular (lkt.rallel) to the yz scattering plane. Q, is the quantization axis direction 
with polar and azimuthal angles C! and x. 20, is the scattering angle. 

For dipole scattering (and no polarization mixing), the tensor form of the scattering 
amplitude is (from Eq. 4-3.63) 

F(k,,k,,x,,) = -(2~/k~)e-i(k’-ki’.xo c P” E _ E yf’f)+ir ,2(j’“LMl&Li.m.)2 
LLM i n ki n 

(5-1.4) 
where the p&rization matrix is of the form 

P$ = 2 - Y~y$JY&p2,,) - 2’ 

and A. = 1~ e for electric dipole scattering, A = 0 i m for magnetic dipole scattering, and 
L = 1 for dipole scattering. The vector spherical harmonics for dipole (and also 
quadrupole) scattering are given in Table 5-l. 1. The scattering geometry presented in 
Fig. 5-1.1 will be used to examine the structure of the dipole polarization matrix. 
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e 

-cos8 

-1 

cos 9 

cos e 

l- 2cos* 8 

-cost3 

2cos* e-1 

cos 8 

-i 

0 

-i 

i 

-icos8 

0 

-icosO 

-i 

ii 

1 

0 

1 

-1 

cos 9 

0 

cos e 

1 

4 
ices 8 

i 

-icosO 

-ices 8 

i(2cos2 8 - 1) 

ices 8 

i(l- 2cos* 19) 

-icosO 

Table 5-1.1. Electric and magnetic dipole, j= 1, and quadrupole, j= 2, vector 
spherical harm0nics.l 

Fig. 51.2. Wavector in quantization system defines the spherical coordinates and unit 
vectors of a vector spherical harmonic. 
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The dipole direction, or quantization axis &, points in some arbitrary direction 
specified by the polar and azimuthal angles Sz and x: 

6, = cosXsinQEi + sinXsin9jj + cosL!i. (5-l .6) 

Recall that the spherical coordinate system for the vector spherical harmonics is defined by 
the quantum axis of the scatterer. The polar angle, O(i,J), is the angle between the incoming 

or outgoing photon and the quantization axis--see Fig. 5- 1.2. 
a ,. 

cos 8(i,f) = Q, - k(,,/) = cos O8 sin Xsin L2 T sin 8, cosn (5-l .7) 
,. c. 

where kti,fl = cos ffl,? ? sin 0, Z, (5-1.8) 

and the top sign in the T corresponds to ki and the bottom sign corresponds to I;,. Since 
the (6x,6y) b asis can be arbitrarily oriented in a plane perpendicular to the quantization 
axis, only the azimuthal phase difference, A$ = er - &, is meaningful. This phase 
difference can be found through the angle addition rule 

cos 20, = cos Of cos 0, + sin OI sin Oi cos( $r - Gi). (5-1.9) 

To perform the dot products in the polarization matrix, Eq. 5- 1.5, the spherical unit 
vectors must be transformed into Cartesian unit vectors. This transformation can be 
accomplished by noting that the azimuthal unit vector, 4, is perpendicular to both k and 6, 

jdi, Xi+& Xiii, (5-1.10) 

and the polar unit vector, i,is perpendicular to both 4 and k 

(5-1.11) 

After some algebra, the spherical unit vectors can be written down as 

i 
-( cos 6, cos Cl + sin 0, sin x sin Q) Ei- + cosx sin R(cos 0, i: * sin 8,G) 

Lf) = 
d-- N(Lf) 

(5-1.12) 

‘(i.1) = 

-cos~sinRir-(sin8,sin~sinSZ~cos8,cos~)(sin8,~cos8,i:~cos6~~) 

d--- N(Lfl 
where (5-1.13) 

NV,,) = (cos eB cos Q z!z sin 0, sin x sin a)’ + (cos x sin a)‘. (5-1.14) 
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The polarization vector directions can be read directly from Fig. 5-l. 1 

&I E & . L hf) 
=i (5-1.15) 

$4 A 
Y E %(i.f) =fsinOBi+cosOBi. (5-1.16) 

Then, all of the dot products in the dipole polarization matrix can be put in the form (see 
Fig. 5-1.3) 

, .  
.T  A 

A 

O(i,f) * 4i.f) = %(i,f) - ‘(i,f) = cosP(i.f) = -(c0seBc0s9-+_sinOBsin~sinn)/.J~ (5-1.17) 

,. 
o(L/) - ‘(Lf) A =-(i(i,/)-ii,r))=Sin~~i,l, =-cosjysinQ/JG. (5-1.18) 

k 

Fig. 5-1.3. Orientation of polarization vectors with respect to spherical unit vectors 
lying in the (6, ;) plane and the wavector direction. 

There is now enough information to construct the dipole polarization matrix. For 
magnetic dipole scattering, the M = 0 term is 

3 p,b”)=- sin ei sin of cosp, cos /?, -sin Bi sin of c0s pi sin & 

8~ -sin 0, sin of Sin/$ COSP, sin 0, sin of Sin pi sin P, ’ 
(5-1.19) 

theM=ltermis 

jy+-.-- 3 ei(Cf-Oi) 
16~ 

x (sinpi - icoS0, cos/$)(sinp/ + iCOSIYf COSP,) (Sin& - icos8i cos~i)(cos/3~ -icos~f-sinp~) 
(cos& -ices ei sin&)(sinPf + ices Of CosS,) (cosp, - icos8, Sinpi)(COSpf + icosOJ sinpf ) 

(5-1.20) 
and the M = -1 term is obtained by taking the complex conjugate of the M = 1 term 

because a linear polarization basis was chosen 

f$J) = pc4 
( 1 

* 11 - (5-1.21) 
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For electric dipole scattering, the polarization matrices are equivalent except for the 

substitution p + p - n/2 since the electric dipole vector fields are orthogonal to the 
magnetic dipole vector fields. For simple orientations of the quantization axis with respect 
to the photon directions, three examples illustrating the structure of polarization matrices are 
given below. 

CASE 1: Quantization axis is perpendicular to the scattering plane: 6, = i. 

R = n/2, x= 0, 0, f-of-= ~12, @f--4+=2& 
A 

‘(i,/) = -‘(i,f)) ‘(i,f) = *i,f)> p(i,J) = - n’2 

Then, (5-1.22) 

(5-1.23) 

iii ii cii ii iti iii 

(a> (b) 
Fig. 5-1.4. For a dipole transition M = m, -m,, incoming linearly polarized fields 
scatter into outgoing linearly polarized fields: (a) magnetic dipole transitions, (b) electric 
dipole transitions . 

The polarization matrices show that the M = 111, - m, transitions emit only linearly , 
polarized light. For M = 0, the scattered magnetic dipole radiation is vertically, or pi, 
polarized while for M = fl the scattered radiation is horizontally, or sigma, polarized. For 
scattered electric dipole radiation the situation is opposite to that of magnetic dipole 
radiation as shown in Fig. 5-1.4. 

CASE 2: Quantization axis is parallel to the scattering plane but vertically 

oriented: ijZ = i. 

112=x=0, O(i,fj = 0, + n/2, @f - Gi = n 

A L) A A 

O(Q) = -+(i.f)y %(i.f ) = -‘(i.f) 7 p(i,f) = z 

Then 
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M= 

(a) (b) 
-i 

=+ 

M= 

(5.1) 

(5-l .24) 

(5-1.25) 

^i e- 

M= 1 -1 

Fig. 5-1.5. For forward scattering (28, = 0) incoming fields scatter into outgoing 
linearly polarized’fields: (a) magnetic dipole transitions, (b) electric dipole transitions. For 
backscattering (20B = 180’) polarization reversal occurs for circularly polarized fields: (c) 
magnetic and electric dipole transitions. 

For M = 0, the scattered magnetic (electric) dipole radiation is horizontally 
(vertically) polarized. For M = +_l, the scattered dipole radiation is generally elliptically 
polarized--this is an example of polarization mixing where an incoming polarized field can 
be scattered into an outgoing field of a different polarization. However, for forward 
scattering, (20B = 0), the scattered field is linearly polarized (no polarization mixing 
occurs), and for backscattering, (2&, = 1800), the scattered field is circularly polarized. 

For backscattering the polarization matrix for both magnetic (upper sign) and 
electric (lower sign) dipole radiation is (for M = 1) 
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If the incoming field is left circularly polarized 

ci = $1 = -‘(iii +i$), 
a 

-- - then the scattered field has polarization 

(5-1.26) 

(5-1.27) 

This shows that left circularly polarized fields scatter into right circularly polarized fields 

for M = 1. However, right circularly polarized fields do not scatter since 

This is an extreme case of polarization mixing--it corresponds to complete polarization 
reversal. 

For M = -1, the converse happens--incoming right circularly polarized fields 
scatter into left circularly polarized fields whereas incoming left circularly polarized 
radiation does not scatter at all. This is all shown schematically in Fig. 5-1.5 (c). 

CASE 3: Quantization axis is parallel to the scattering plane but horizontally 
oriented: 6, = 9. 

n=x=n/2, ‘(i,f) = ‘Bv @f-@izn 

iii =-4, iif =$, it; =-ii, ii, = i$, pi =n, pf =o 

Then 
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M= 1 0 -1 M= 1 0 -1 

A A ,. 
5 Q/ - - QJ 

(a> 

^i 
e+ 

^i 
e- 

(b) 

M= 1 -1 

Fig. 51.6. For backscattering (2eB = 180”) incoming fields scatter into outgoing 
linearly polarized fields: (a) magnetic dipole transitions, (b) electric dipole transitions. For 
forward scattering (2eB = 0) incoming fields scatter into outgoing circularly polarized 
fields: (c) magnetic and electric dipole transitions. 

For M = 0, the scattered magnetic (electric) dipole radiation is horizontally 
- (vertically) polarized. For M = +l, the scattered dipole radiation is generally elliptically 

polarized. However, for forward scattering the scattered field is circularly polarized, and 
for backscatteringthe scattered field is linearly polarized (this the reverse of Case 2). 

For forward scattering the polarization matrix for both magnetic and electric dipole 
radiation is the same: 

(51.30) 

and for M = 0 the polarization matrices are zero. For M = 1, incoming left circularly 

polarized fields scatter into outgoing left circularly polarized fields since 

while incoming right circularly polarized fields do not scatter. Similarly, for M = -1, the 
converse occurs (see Fig. 5- 1.6). No polarization reversal occurs as happened in Case 2. 
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There can be no polarization reversal for sigma or pi polarized fields because 
scattering can only change the amplitude or phase of the incoming field. There is no way a 
phase change can transform a sigma polarized field to a pi polarized field. However, by 
introducing an additional quantization axis, and arranging a set of scatterers in a convenient 
lattice structure, this limitation can be overcome. This is discussed in Section 5.2 and 5.3. 

The scattering amplitude, Eq. 5- 1.4, can be greatly simplified for those cases in 
which all the angular momentum spin states am degenerate, or when operating far from any 
dipole resonance. The scattering amplitude can then be spin averaged by summing over all 
intermediate, final, and initial state projection quantum numbers, or spins, mr, m,, m,, and 
averaging over all initial state spins 

F,(v;J(k,,ki) = cF(‘) 
vvi 

( I/’ k,,ki 2ji + 1) (5-1.31) 

where 2ji + 1 is the number of initial state spins, mi. 
For elastic scattering jr = ji and mJ =mi, and thus the sum over mi in the triple 

sum above can be omitted. Since all of the angular momentum spin states are degenerate, 
or nearly degenerate, the energy, E,,, of the state with spin m, is the energy of the unsplit 
angular momentum state with angular momentum quantum number jn 

En=Ein. (5-l .32) 

The resonance denominator of the scattering amplitude is then the same for all spins m, and 
can therefore be pulled out of the sum (assuming also that the total decay rates, r,, from 
each state with spin m, are all the same). Since the quantization axis is now unimportant--it 
can point in an arbitrary direction--let it point in the same direction as in Case 3: 

ii, =t. (5-1.33) 
Then the polarization matrices of Case 3, Eqs. 5- 1.28 and 5- 1.29, can be used to perform 
the spin average. 

Concentrating on just magnetic dipole scattering, the main part of the spin average 
calculation involves the term 

c&(,“)(j,m,l Mlj,lj,,m,)z=& , 
mp,M 

where (since m, = mf + M the sum over m, can be suppressed) 

s,, = s,, ~0~2 eB - C2sin2 &(i,,m,J,O/ j,,l, j,,mJ2 

9 

(5-1.34) 

(5-l .35) 
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SIZ = Cicos8, 
( (j,,m,,L- l~j,J9jn9mf -1)’ -(i,, m,,l,ll jf,l,j,,mf + 1)‘) P-1.36) 

ml 
L 

$21 = s12 (5-1.37) 

s22 = jf,mf,l,lJ j,,l, ja,mf +1>2 +(j/,m,,l,llj,,l,j,,ml +lr) (5-1.38) 
ml 

Since, for dipole transitions, jn = jr + 1, the-klebsch-Gordan coefficients reduce to 

simple relations2 

(jf,mf,l,O( j,,Lj, + l,m,)' = ( jl-m,+l)(&+q+l) 

(2j/ +I)(& +l) 
(5-1.39) 

(jf,mf,l,+l(jf,l, jr +l,q +1)2 = 
(jr + mr + l)( j, f mf + 2) 

2(2j/ + !)(j, + 1) * 
(5-1.40) 

Then the off-diagonal elements sum to zero since 

ices 8,(2 jr + 3) 4 

s12=-(2jl+l)(j,+l)~~~Zo+ 
(5-1.41) 

This result already shows that polarization mixing is not possible for the spin averaged 
scattering amplitude since the polarization matrix is diagonal. 

For the diagonal element su : 

s22 = 2(2jf +ii(jf +l) 
(2 i/’ + 6 jJ + 4)(2 jr + 1) + 2xrn/2 

m/ 1 
= 2(2j, +i)(/i +l) [ 

2(i, + 2)(i, + $2, + 1) + 4 
i,( jf + 1)(2j, + 1) 

6 I 

=i(2jI+3)=i(2j,+1). 

Noting that 

~(jl,mf,Wli,,Ljf +AmJ2 = 
m/ (2jf+:)(if+l) 

(5-1.42) 

(j,Z+2jf+1)(2j,+1)-Cm: 
[ mr 1 
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= $j, +l) 
gives 

sll =c0s2~B[~(2j,+l)]-2sin28B[$?j.+l)] 

= +(2j, + l)c0s28,- - 

(5-1.43) 

(5-1.44) 

The spin average scattering amplitude is then 

(5-1.45) Fiz)(k,,k,) = -1 t2jn + ‘)&p(m) ’ 
4kj (2 ji + 1) A ‘“’ CO,~ - CO, + iT/2A 

where (5-1.46) 

and I-‘,, = IY(l,m), and r is the total decay rate from the angular momentum state with 
angular momentum number j,,. For electric dipole scattering, the average scattering 
amplitude is of the same form as EQ. 5-1.45 except that the polarization matrix is now 

(5-1.47) 

Note that the polarization matrix for spin averaged electric dipole scattering is 
equivalent to that for Thomson scattering--this is one reason why Thomson scattering is 
sometimes called electric dipole scattering at high photon energies. The scattering 
amplitude for dipole radiation can then be written (in nontensor form) in a manner similar to 
that for Thomson radiation 

p’v;‘(kf,ki) = -1 c2ja + ‘&d(~~~ _ $a’) ’ 
4kf (2ji+l) A W,, - W, + iT/2A 

(5-1.48) 

where for electric dipole scattering 
p = & , (5-1.49) 

and for magnetic dipole scattering 
~‘“‘&&j& (5-1.50) 

If the polarization of an electric field is 6, then the polarization of the corresponding A 
magnetic field is h. Then, the scattering amplitude reveals that magnetic dipole electric 

fields have the same polarization characteristics as electric dipole magnetic fields. 
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The total cross section for electric or magnetic dipole scattering is, from the optical 

theorem, 

where o, is the total cross section on resonance -. 

(5-1.51) 

(5-1.52) 

This is the familiar form for the spin averaged total cross section for dipole scattering.3 
For nuclear scattering, the ratio of the radiative decay rate to the total &cay rate is a 

measure of how dominant the internal conversion rate is 

r rad 1 -=- 
r l+a,’ 

(5-1.53) 

where ah is the internal conversion coefficient. In nuclear scattering, since the photon 
energy is so high, the probability that the nuclear excited state will emit an electron, rather 
than a photon, to decay back to the ground state (that is, will result in internal conversion) 
can be quite high. For instance, for 57Fe, a common Miissbauer isotope, a, =8.23, 
thereby limiting to 11% the chance that an isolated atom will scatter a photon instead of 
emitting an electron. 4 However, when there is a collection of atoms, this limitation can be 
overcome and there can be more than an 11% chance of photon emission through a 
collective phased excitation effect. This is discussed in the dynamical scattering theory of 
Chapters 6 and 7. 

For nuclei having simple two-level systems, the total decay rate and the internal 
conversion coefficient can be easily measured, and the total cross section, Eq. 5-1.51, can 
be readily computed. However, electronic systems usually have many level systems with 
many radiative decay schemes and cascades of Auger emissions from many different 
angular momentum states. Performing a spin average over all the possible transitions is a 
formidable task for multielectron systems (recall Eq. 5-1.48 was only for a two level 
system with initial and intermediate states specified by ji and j,,). Therefore, the total cross 
section is usually decomposed into a sum of all the possible types of scattering processes, 

and the dominant processes are selected 

(5-1.54) 
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The photoelectric cross section describes a scattering event in which an incoming 

photon causes an electron to be ejected into the continuum, and the atom subsequently 
decays to a final state through radiative or Auger emissions. If the final state is identical to 
the initial state, the scattering is “elastic” even though the incoming and outgoing particles 
are different particles--energy conservation still holds. The Compton cross section 
describes elastic or inelastic absorption reemission for a multilevel system (these are bound 
state transitions)--the elastic, or Rayleigh, part is expressed in Eq. 5-1.51 for a two level 
system. Pair production, where an incoming photon scatters into an outgoing photon but 
changes the electron into its antiparticle in the process, becomes important at energies 
greater than one MeV. In the dipole approximation, the Thomson cross section is zero 
since the scattering amplitude is real. Cases for nonzero Thomson cross sections are 
discussed later in this chapter. 

As will be shown in the next chapter, the elastic cross sections are greatly enhanced 
over the inelastic cross sections in scattering channel directions, such as in the forward 
direction. When operating far from any bound state resonances, mainly photoelectric 
scattering occurs, and Compton scattering can be neglected. Cromer and Liberman have 
made self-consistent Hartree Fock calculations of the relativistic photoelectric cross section 
of individual atoms for scattering into the forward direction.5 The imaginary part of the 
scattering amplitude is proportional to the total cross section, and the real part of the 
scattering amplitude can be obtained by using the Kramer-Kronig relations (which is 
equivalent to performing a Hilbert transform). Cromer and Liberman have made these 
calculations along with a computation of the nonrelativistic Thomson scattering amplitude 
and tabulated them in the form of parameters f,, f’ , and f r’.5 Their parameters are related 
to the scattering amplitude as follows: 

(5-1.55) 

where e-2w is a Debye Waller factor that takes into account the vibrations of the atoms 
about their equilibrium positions. The major contribution to f, comes from Thomson 
scattering described by Eq. 5-1.1 with small relativistic corrections from the photoelectric 
cross section. The Debye Waller factor is essentially the form factor, Eq. 4-2.14, modified 
to take into account vibrating scatterers 

e -2w -i(k,-k,).u . 
I > 4 ’ 

where u is a displacement vector describing the vibrations of the atoms about their 
equilibrium positions. The factor W turns out to be proportional to the mean square 
displacement of the atom from equilibrium in the direction of the momentum transfer 6 
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H=(k,-k,) (51.57) 

W = 8w2(G)(sin OB/A). (51.58) 

The form factor is essentially the Fourier transform of the charge density 

f,(H) = jd’xp,(~)e.-‘~.~, (5-1.59) 

where H is given by Eq. 5-l .57, and p,(X) = #I,‘( x)#,(x) . Since the charge density is a -_ . 
real function of the spatial coordinates, the form factor is in general Hermitian 

f,(H) = X(-H). (5-1.60) 

If the charge density has space inversion symmetry (the assumed case for all Cromer and 
Liberman calculations), the form factor is real and symmetric 

P,(x)=~,(-x)~f,(H)=~(H)=f,(-H). (5-1.61) 

However, when atoms are brought together into a solid, the electronic charge distributions 
of an atom may be distorted by the electronic and magnetic potentials of nearby atoms, 
thereby, possibly breaking space inversion symmetry.7 

5.2 Hyperfine Interactions for Magnetostatic and 
Electrostatic Fields 

If the incoming electric field is a small perturbation, too small to significantly shift 
energy levels or cause level splitting of those states that existed before the perturbation, the 
eigenenergies during‘ the perturbation can be approximated as being the eigenenergies 
before the perturbation. The major effect of the perturbation will then be to cause 

transitions’between the various energy levels as described by the transition probability, or 
S-matrix elements. In this approximation, the resonant frequencies, w, = (E, - E,)/h, in 
the multipole scattering amplitude are simply the eigenvalues of the constant perturbation, 
H, , in Eq. 2- 1.1. For magnetostatic and electrostatic interactions, the constant perturbation 
can be written in the form 

Ho=H;+H,,+He, 

where H;=p2/2m+H,,,, 
and HI,,, includes other possible interactions not discussed so far. 

(5-2.1) 

(5-2.2) 



(5.2) Hyperfine Interactions for Magnetostatic and Electrostatic Fields 7 9 

Under the assumption that a nucleus is a pointlike magnetic dipole, H,, can be 
constructed by examining how the nuclear dipole interacts with the magnetic dipole field of 
the electron 

H,,=-~-B,.,+,JL-B~. (5-2.3) 

The first term represents the dipole interaction between an electron’s orbital and spin 
momentum with the magnetic moment of the nucleus8 

- - 

kipde =-2p - 
[ 

L-S + 3r(S-r) 
r3 r’ 1 (5-2.4) 

where L and S are the orbital and spin angular momenta of an electron, and p is the 
electron Bohr magneton 

/? = ehJ2m,c. (5-2.5) 

Only the orbital electrons that do not lie in an s-state, I # 0, contribute to the dipolar 
magnetic field. 

The second term in Eq. 5-2.3 represents the Fermi contact interaction between an s 
orbital electron and the nucleus’ 

(5-2.6) 

The computation of the total magnetic field at the nucleus can be quite involved for 
multielectron atoms embedded in a medium because one must take into account the 
exchange interactions among all the internal electrons and between the internal and external 
conduction electrons9* lo For example, examination of Eq. 5-2.6 will show that the net 
Fermi contact field is zero for a filled s shell because the two electrons in that shell have 
opposite spin.. The exchange interaction between electrons from outer unfilled shells and 
the filled s shells polarizes the s shell electrons to produce a nonzero net Fermi contact 
field at the nucleus.” The polarization of s electrons is a small effect, but since the Fermi 
contact field for an unpaired 1 s electron can be hundreds of megagauss, the polarization 
effect can easily produce sizable fields on the order of hundreds of kilogauss. The field 
strength of the dipole fields is an order to two orders of magnitude smaller that the net 
Fermi contact field, and there is also a contribution from the polarization of the conduction 
s electrons that can also produce Fermi contact fields on the order of a hundred kilogauss.9 

For the purpose of constructing the magnetostatic interaction Hamiltonian, the 
detailed structure of the dipole and Fermi contact fields will be not be investigated, and the 
magnetostatic interaction Hamiltonian will simply be expressed as 

HMB = -p -B,, (5-2.7) 
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where B,, is the total magnetic field at the nucleus. 
The electrostatic interaction Hamiltonian is 

(5-2.8) 

where rp is the position of a proton within the nucleus, and r, is the position of an electron 
outside the nucleus (including those from surrounding atoms). Expanding l/I$ - r,l in 
terms of spherical harmonics enables H,, to be rewritten as”* l2 

H,, = zT(‘) . v(‘) (5-2.9) 
l=O 

where T(l) and V(‘) are nuclear and electronic multipole electrostatic operators 

T(l) = Q (5-2.10) 

v(I) = - J 
4n - 

Q c eLy (%@c) 2Z+ 1 c r-f+’ Iq 
(5-2.11) 

Since the nuclear states have a well defined parity, the odd nuclear multipole 
operators (those with odd Z) give vanishing matrix elements. The even nuclear operators 
yield nonvanishing matrix elements, and the major contribution come from the lowest order 
multipoles--the Coulomb and electric quadrupoles (I = 0 and 2). 

The Coulomb interaction is 

H coul = -ZepC: 
c 

(5-2.12) 

where Z is the number of protons within the nucleus. To this a correction term must be 
added that is due to the finite size of the nucleus--the isomer shift’ 

4.-r = 5 7re2Z1t#(0)12(R2) (5-2.13) 

where (R’) is the mean square charge radius of the nucleus and e’I@(O)r is the electronic 

charge density at the nucleus. 
The introduction of the electric quadrupole interaction produces additional 

complexities. The electric quadrupole Hamiltonian has matrix elements that are 
proportional the electric field gradient at the nucleus. However, the electric field gradient 

tensor has a principal axis that may not be aligned with the quantum axis of the nucleus. 
Then, there are two possible quantum axes. This arrangement gives rise to nuclear level 
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mixing (a competition between quantum axes towards defining the state of the system) in 
which there no longer exists any well defined, or “good”, quantum numbers describing the 
nuclear or electronic states. Matthias, Schneider, and Steffen have extensively worked out 
this problem.13 

Fig. 52.1. Orientation of electric field gradient axes (primed system) to the quantization 
axes (unprimed system).13 

Fig. 5-2.1 shows the orientation of the electric field gradient system, system S’ 
with principal axes (ii’, j?, 2) , with respect to the nuclear quantum axis system, system S, 
in which the magnetic field direction specifies the quantum i axis. The Euler angles, 
(a,P, r), specify how to rotate system S’ so that it coincides with system S. For an 
electric field gradient that has axial symmetry with respect to the i’ axis, the angle a can be 
set to zero. For nonaxial symmetry, an asymmetry parameter 77 is introduced 

(5-2.14) 

2 I 
where v: - y; -- u,v=x,y,z. (5-2.15) 

Using the rotation matrix, DE,( a,& y), to rotate the electric field gradient principal 
axis system upon the quantum axis system gives the matrix elements of the quadrupole 
electrostatic Hamiltonian. (The nuclear dipole magnetostatic matrix elements are also 
included below. Also, nuclear total angular momentum quantum numbers are 

conventionally represented as I .) 
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fLl = --ti~,m + AU, - 1+ ~sin2jIcos2a~3m2 - I(I + 1)] (5-2.16) 

H m.mfl = ftw, +sinp 
1 

cosp T :[(l+ COSP)ei2a - (1 T COS/3)t?-i2a] 
1 

(ZTm)(Zfm+l) (52.17) 

H m.mf2 

where 

Aw, = e2qQ 
41(2Z- 1)’ 

The magnetic moment of the nucleus has been defined as 

(5-2.18) 

(5-2.19) 

(5-2.20) 

(5-2.21) 

the nuclear electric quadrupole moment has been defined as 

eQ/2 = (Z,m, = Z17’,‘,2)lZ,m, = Z) = (: ; :)w~211~~ 
Z(2Z- 1) = 

~(2Z+3)(Z+1)(2Z+1)2Z(2Z- 1) 
(11 T’Z’IIZ), (5-2.22) 

and the electronic electric quadrupole has been defined as (averaging over space) 

eq/2 = (v;(2)) (5-2.23) 

where I$*) = I$,/2 (5-2.24) 

(5-2.25) 

(5-2.26) 

and a coordinate system has been chosen so that VMi = 0 when u f v. The angular factors 

come from the rotation relation 
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(5-2.27) 
k-2 

When the electric quadrupole interaction is small compared to the magnetic dipole 
interaction, a first order approximation can be made by dropping all of the off diagonal 
matrix elements of the total Hamiltonian. In such a first order approximation, the 
eigenvalues are given by H,, and the eigenfunctions can be written in column form as 

gp = (0,0,0,-~~,1,*~~,0) (5-2.28) 

where the unity factor is in the n* place for 1 I n I 21+ 1, and 21+ 1 is the number of 
eigenvalues. Each quantum number m is then a “good” quantum number in that they all 
define a unique state of the system--the n”’ state is specified by only one number: m . 

When no approximations are made to the total Hamiltonian, the eigenfunctions 
become a linear combination of the first order states of the system 

(5-2.29) 

where c, is a complex number and m' ranges from the minimum to the maximum possible 
value of m. Each quantum number m is now a “poor” quantum number since they no 
longer well define the states of the system--the n* state is now specified by a sum over all 
possible m quantum numbers. 

The polarization matrix of Eq. 5-1.5 must now be modified to include these 
changes 

where &,,, - @ in”’ = c, of Eq. 5-2.29, M=q-mJ, and M’ = q’- mf (the scattering 
amplitude in Eq. 5-1.4 must now be summed over L and n rather than L and M as 
before). Examples of magnetic dipole scattering for S7Fe are given in the following 
sections. 
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5.3 Linear Polarization Reversal of Fields Scattered from a 
Ferromagnetic Lattice 

The hyperfine energy level diagram for 57Fe is shown in Fig. 5-3.1 (all energy 
shifts are greatly exaggerated). The isomer shifts for the excited and ground states are 
designated by AE:= and AE,& The excited and ground state magnetic splittings are 
tz~;,=2~~B,/3 and Awn = 2cL,Bi,. The ground and excited state quadrupole shifts are 
AE;=Oand 

4 5 6 

(5-3.1) 

'm,=3/2 
. m, = l/2 

.m,=-l/2 

I me=-312 

mg =-l/2 

I 

I m, =1/2 
1 

Fig. 5-3.1. Hyperfine energy levels of 57Fe of d-sites in a YIG crystal. Quadrupole 
shift for ground states is zero, and pL, < 0 and Bi,, c 0. 

where the electric field gradient tensor is assumed to be axially symmetric so that 77 = 0. 

The electric quadrupole shift is small compared to the magnetic dipole shift for 
57Fe, so in most cases first order perturbation theory is adequate. The excited states are 
then labeled by good quantum numbers, and the unitary eigenvector matrix (whose 
columns are the eigenfunctions) that diagonalizes the Hamiltonian is diagonal 
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(5-3.2) 

When the full theory is employed, the unitary eigenvector matrix that diagonalizes the 
Hamiltonian is no longer diagonal - - 

L 5-j c2.-$ c3.-3 C4*-* I 
Since the ground states have no electric quadrupole interaction, their eigenvector 

matrix is always diagonal. The Q-matrix elements for the excited states are found by 
diagonalizing the full Hamiltonian matrix to get the eigenvectors. The magnitude of the 
diagonal elements are close to unity, and the off diagonal terms are small (magnitudes on 
the order of 0.1 or less). The energy level diagram is negligibly changed (the energy levels 
change by about 1% of a natural linewidth). The change in the nuclear states, though, is 
large enough to produce noticeable effects. 

One interesting effect is the case of complete polarization reversal of the linear 
polarization basis of an incoming electric field. In Section 5.1, where nuclear level mixing 
was neglected, incoming right circularly polarized fields could be scattered into left 
circularly polarized fields and visa-versa for a convenient orientation of the quantization 
axis. Nuclear level mixing now enables vertically polarized fields to scatter into 
horizontally polarized fields and visa-versa. 

For example, for the [0 0 21 reflection of a YIG crystal, two 57Fe sublattices within 
the unit cell, called d 1 and d2 sites, contribute to a nonzero diffracted beam. The iron in 
these sites have identical hyperfine environments except that the electric Geld gradients 
lying in the [0 0 21 plane are oriented 90” with respect to each site. Also, the two 
sublattices are situated such that the reflected wave from each site is 180” out of phase. 

Each site produces a six line emission pattern which will be labeled (11,!2,!3,!4,!5,&-) for 
the d 1 sites and (1;,1~,1~,1~,.!~,1~) for the d2 sites (see Fig. 5-3.1). In first order 
perturbation theory, if the internal magnetic field was oriented by an external magnetic field 
so that it bisected the angle between the electric field gradients, see Fig. 5-3.2, the 
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quadrupole shifts of the iron atoms in the two sites would be identical for each pair of lines 
(ei,el) since p = Z!I 45” and (3~0s’ p - 1)/2 = l/4, Then, to first order, no net reflected 
intensity is possible because the reflected field amplitudes from each site would cancel as a 
result of the 180’ phase difference and because each pair of lines lie at the same energy. 

Fig. S-3.2. Orientation of YIG electric field gradient directions for d 1 and d2 sites 
lying in the xy plane. Internal magnetic field direction bisects angle between them. 

However, when nuclear level mixing is accounted for, there is no complete 
cancellation. For instance, the polarization matrix of line A!, is (using Eq. 52.30 for the 
case where n = 1, keeping only terms that satisfy the dipole selection rules M = O,+l , and 
knowing that s7Fe radiates only magnetic dipole fields) 

(5-3.4) 

The scattering geometry is exactly that of Case 1 in Section 5.1. Then, using Eqs. 51.19 
to 5-1.21 and the results of Case 1 gives the polarization matrix elements: 

( 1 p,i”’ 3 
=- -e 

= 167~ ( 
i28, 

5.j - e 
428, 

Cl.-, -e I( 

i26, * C 1,s - eei2’n c* 
L-f 1 (5-3.5) 

(@y)), = $--(iJZcl,i)(-ei2eV;t - e-i28dC:,-t) 

( 1 p,i”’ = 3 -ei2ey 
Y= 167~ ( 1.3 -e -i2ea cl,J( --ifi c;+) 

(5-3.6) 

(5-3.7) 

(5-3.8) 
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Note that the Euler azimuthal angle for I, is y1 = - 7r/2 and for !i is rl= n/2. 
Applying a unitary transformation upon the Hamiltonian, Eqs. 5-2.16 to 52.18, gives in 
matrix form l2 

f@bO)= A(y)fJ(a$,y)A-l(y) (5-3.9) 

where A, ( y ) = 6,ei’y (k,Z=I,Z-l,..., -I). (5-3.10) 

The eigenvectors can then be written in the form 

@P(aJt r) ~9@m)A(r> - (5-3.11) 

Since a = 0, @(a = O,p,O) is a real matrix. So, when y-+-y, the eigenvectors 
transform into their complex conjugates. Therefore, the eigenfunction associated with e, is 
the complex conjugate of the one associated with C,l 

CL = CL. (5-3.12) 

Attaching a minus sign to the amplitude of line J: to take care of the phase 
difference of the reflected fields from each sublattice, and summing the polarization 
matrices for lines 1, and II gives 

where c=22/2 -& ( ei2e” Im{ ci,+“l:;j +‘eei2’” Im{ cl,ic;,-t}). 

(5-3.13) 

(5-3.14) 

Because the polarization matrix has only off diagonal matrix elements, complete 
linear polarization reversal occurs. For example, 

_ (i ;)+(; ~).(~)=c(pf. 
This shows that incoming horizontally polarized fields scatter into vertically polarized fields 
with an amplitude proportional to C. However, since the off diagonal elements of the 
eigenvector matrix are small, ICI is small, and thus the scattered intensity is very low. The 
nuclear resonance scattering group at Hamburg 14v l5 has observed the effect of nonzero 
cancellation, but to date no polarization analysis has been done to observe the effect of 
polarization reversal. 
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5.4 Linear Polarization Reversal of Fields Scattered from 
an Antiferromagnetic Lattice 

The added complexity of nuclear level mixing is not needed to produce linear 
polarization reversal for scattering from an antiferromagnetic lattice. However, similar to 
the case for a ferromagnetic lattice, one still relies upon the phase difference between the 
reflected fields from different iron sites within the lattice. 

For this example, take the case of s7FeB0,: It has a rhombohedral unit cell 
structure containing two iron atoms located at two different b-sites. For certain reflections, 
such as [n n n] reflections where n is an odd integer, the reflected fields from the two sites 
are 180” out of phase. However, because of the antiferromagnetic structure of the crystal 
lattice (further explained in Chapter S), the electric fields scattered from the nuclei do not 
cancel out. 

Let the internal magnetic field at each nuclei at the two b-sites be parallel to both the 
scattering plane and the [n n n] planes (this corresponds to Case 3 in Section 5.1). The 

- polarization matrices for the iron site in which the internal magnetic field lies in the 9 
direction (see Fig. 5-l. 1) is given by Eq. 5- 1.28, and the polarization matrices for the other 
site in which the internal magnetic field lies in the -9 direction is given by the complex 
conjugate of Eq. 5-1.28: 

4(z) _ --os2 0, Ticos 8, 3 

c ’ 167r +icosf3, -1 
(5-4.1) 

For incident horizontally polarized fields, the polarization of lines ii for the case 
Ii;, = +ji is: 

1, and !, 3 &(ssi,,, z)(J=-&sin20B(:), 

-cos2 0, +icos OB 
-1 

and 
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The polarization of lines er for the case kiti = -9 is the complex conjugate of the 
expressions above. Pictorially, the polarizations the lines for the two b-sites are shown in 
Fig. 5-4.1 where, for the lines !i, a minus sign was included to take into account that the 
fields reflected the iron sites giving rise to these lines are 180” out of phase with those 
fields reflected from the other iron sites giving rise to the lines ei. 

Since pairs of resonance lines lie at the same energy, the superposition of each pair 
of lines .fi and .!: gives the net amplitude. As shown in Fig. 5-4.1, the net resultant field is 
completely vertically polarized. Incident horizontally polarized fields are scattered into 
outgoing vertically polarized fields, and visa-versa. Unlike the case for a ferromagnet, 
linear polarization reversal of fields scattered from an antiferromagnet is a strong effect and 
has been clearly observed in an experiment using 57Fe20,. 1 6 

cos 2 e&i + 2 sin2 0,s ~0~2 e,ii - cos 2 e,ii + 2sin2 eBii cos 2 e,ii - 
ices t3$ ices tlBk i cos tl$ ices f&k 

- cos2 6,ti + - 2 sin2 6,s - ~0~2 e,ii - - cos2 e,ci + - 2 sin2 e,ii - cos2 e&i - 
ices OBie iC0s OBic ices O,it i cos O,ic 

2i(k i 

I I 
I I 
0 -ii} cos 6, 

Energy 
------------------------------------ 

Fig. 54.1 Demonstration of linear polarization reversal. An incident 6 polarized field 
is scattered by iron nuclei in an antiferromagnetic lattice. The sum of the scattered fields is 
a resultant field that is i polarized. 
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5.5 Angular lnterferometry 

As shown in Section 5.1, the direction of the quantization axis strongly influences 
the nature of the scattered fields. Major differences in the spectra of scattered fields can 
also be seen when the internal magnetic field is oriented to lie in an antiparallel direction. 

This phenomena allows one to do angular interferometry where quantum beat interference 
patterns depend not upon the spatial distances photons travel such as in a Michelson- 
Morley interferometer, but upon the angles through-which photons are rotated. The 
example below describes this type of interferometry using the scattering theory developed 
in this chapter. An alternate description of this phenomena utilizing the rotational symmetry 
properties of free space is given in Appendix A.17 

1.0 

0.8 
I 

.z? 
3 0.6 

i 0.4 
.H 

2 0.2 
2 

4 4 
M=-1 M= +l 

4 4 
M=+l M=-1 

A I, 0.0 - - 
WO, 003 %4 06 

-0.2 I I I I I I 
T150 -100 -50 0 50 100 150 

Energy (in units of linewidths r) 

Fig. 5-5.1. Four line magnetic dipole energy spectrum when incoming field is 
horizontally polarized. 

As an example, consider just one site in YIG, such as the d l-site discussed in the 
last section. When the internal magnetic field is oriented perpendicular to the scattering 
plane (see Fig. 5-l. 1 where I$,,, is now the quantization axis 6,), 

&=i, (5-5.1) 

and, for incoming horizontally polarized fields, the intensity of the scattered fields exhibits 
the 4-line spectrum shown in Fig. 55.1. The orientation corresponds to Case 1 in 

Section 5.1, and thus lines e2 and e, arc forbidden by polarization selection rules. 
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In the kinematical limit, the total electric field amplitude scattered from the crystal is 
simply the sum of the amplitudes from each particle within the crystal. Since the scattered 
field from each particle is proportional to the scattering amplitude, the field amplitude of the 
four allowed lines for a single particle are as follows (from Eqs. 5-1.4, 5-1.22, and 
51.23): 

1, ( W ) = 4e-i2ea /(w - w,, + ir/2fi) (5-5.2) 

1, (0) = u3ei2*~/(fro-- w,, + ir/2fi) (5-5.3) 

l,(w) = %emi2’” /(w - 0, + ir/2ti) (5-5.4) 

P,(o) = qei2’“/( w - w, + zT/2A) (5-5.5) 

where u, = c, - 1, a3 = c, - l/3, and c, is a quantity proportional to the incoming field 
amplitude. The factors multiplying c, are the squares of the Clebsch-Gordan coefficients 
for those lines (see Eqs. 5-1.39 and 5-1.40). 

When the internal magnetic field is oriented into an antiparallel direction, 

ii,, =--ii:, (5-5.6) 

the phase of the amplitudes will change, but their magnitudes stay the same. For such an 
orientation; from Fig. 5-5.2, the conditions in Case 1 in Section 5.1 change to 

e, = IT+ = ?r/2, #f -4; =-28B, 

Because the azimuthal phase difference is now minus the scattering angle, the polarization 
matrices in Eqs. 5-1.22 and 5-1.23 change to their complex conjugates. As a result, the 
amplitudes of the -lines for this new orientation are 

ll( w) = qei2’” /(co - co,, + ir/2fi) (5-5.7) 

.tg (0) = a3emi2’n /(a - w,, + iT/2A) (5-5.8) 

-!i (w) = u3ei2’, /(w - w, + il?/2A) (5-5.9) 

J; (0) = qfi2@, /(w - w, + ir/2tz). (5-5.10) 

Far off resonance where w - wOi >> r/2fi, the amplitudes for the two inverted 

orientations of the internal magnetic field are the phase conjugates of each other: 1: = e;. 

This is so because the amplitudes IZ~ are real. This calculation has neglected nuclear level 

mixing, however, if it were included the amplitudes would still be the complex conjugates 
of each other even though the amplitudes a, are now complex (this is because the Euler y 

angle undergoes the transformation y + -y upon an inversion of the quantum axis, and 
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Fig. 5-5.2. Scattering geometry for inverted quantization axis. Wavectors ki and k, lie 
in the Q,Q,-plane. 

‘by Eqs. 5-3.10 and 5-3.11 the amplitudes ai change to their complex conjugates). Because 
of the resonant denominator, resonant systems cannot experience true phase conjugate 
scattering. 

In frequency space this phase effect is not easily observed for spectra having 
resonance lines separated by many natural linewidths--one would have to carefully examine 
.the interference between widely spaced lines that have little overlap. However, in the time 
domain the effect stands out more because the phase of the beat patterns due to the 
interference of two oscillators with different frequencies can be more easily measured. 

This can be seen by examining the beating between the two dominant resonance 
lines 1, and &. The Fourier transform of their frequency amplitudes gives the familiar 
damped sinusoidal expressions 

e,(f) = _i4e-LTr/2ne-i(0,,l+2ea) (5-5.11) 

e,(t) = -i4e-rTr/2ne-i(m,f-28a). 

For just these two lines, the kinematic intensity from crystal is then proportional to 

m) - [w + m][af) + ad] 

= &ge-ro {l+cos[(w,-w,,)t-48/J}. 

(5-5.12) 

(5-5.13) 

When the internal magnetic field is inverted, the phase of the intensity pattern changes sign 

so that 

Z’(f) -2f$e-““*{l+cos[(o,,-w,,)l+48,]}. (5-5.14) 
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Thus, adjusting the Bragg angle tunes the phase difference, Aq = Se,, between the beat 
patterns of the two intensity distributions. For Bragg angles near 22.5” this is a very 
noticeable effect. For instance, if 20, = n/4 then the intensity distributions are 180’ out of 
phase and, therefore, the the peaks of one intensity pattern will lie in the valleys of the 
other. This is one of the kinematical effects investigated experimentally in this thesis, and 
the results are given in Chapter 10. 
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6. DYNAMICAL SCATTERING BY 
RESONANT SYSTEMS 

6.1 Kinematical Scattering Theory 

In kinematical scattering a photon scattered from one particle does not interact with 
other particles-multiple scattering is nonexistent. The field amplitude at a point X is then 
just the sum of the individually scattered fields emanating from each scatterer within the 
medium. From the spherical multipole electric field equation, Eq. 4-4.16, this sum (over 

N identical particles) is 

Z(x) = zo~F(k,,ki)~2p-i~kf-kii..~ 
#Xl 

(6.1-1) 

where X is far from any scatterer, I,, is a constant proportional to the incoming beam 
intensity, and the incoming field term has been excluded so that only the properties of the 
scattered fields are examined. The scattering amplitude is given by Eq. 4-3.63 or 4-3.64 
with X, =O. 

For scattering into the forward direction, k, = ki, all spatial phases, 
9, = -(k, - ki) - x , axe zero. This is a scattering channel direction--a scattering direction in 
which the scattered fields from all the particles in a medium have the same spatial phase. In 
the forward direction, the intensity is proportional to the square of the number of scatterers. 
To find the scattered intensity in other directions, the second term in Eq. 6-1.1 must be 
evaluated. As N + = this term, for an isotropic medium, can be approximated as a sum 
over a random distribution of spatial phases which averages to zero--in such a case, the 
nonforward scattered field intensity is formed from an incoherent sum of the scattered 
fields from each scatterer. Then, the nonforward scattered intensity is proportional to the 
number of scatterers, and the net intensity for elastic scattering is 

Z”“(x) = Z,,NIF(kt # k,)l + I,NZJF(k, = ki)r. (6-l .2) 

For off-energy-shell inelastic scattering where k, f ki, a random temporal phase, 

0:. must be added to the field as discussed in Section 3.5. Because of this factor, 

94 
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irrespective of the scattering direction, the scattered intensity is formed from an.incoherent 
sum over all the scattered fields from each scatterer 

P=‘(x) = ~~~~~~(k~,ki)~z~~~i(k~-ki).xn~i~~/2 = I,N1F_,(k,,k,)( 
n=l 

(6-1.3) 

where em,(k,,ki) is an inelastic scattering amplitude. 
For an anisotropic medium, such as a crystal, there can be many scattering channel 

directions (such as those resulting from Bragg diffraction in a crystal) in addition to the 
forward direction. Normally, a structure factor for a unit cell is constructed to calculate the 
total field scattered from a crystal. 

The structure factor is the sum of the scattering amplitudes from all of the particles 
in the unit cell. For electronic. scattering (operating far from any any bound state 
resonances or absorption edges) or for nuclear scattering the structure factor of a unit cell 
with scatterers of type a located at mm is 

FH = -r, (k; - ii) c (Czwa f,, + f; - .‘)e-iH-r“u 
ana 

(electronic scattering) (6- 1.4) 

FH = ~Fa(k,,ki)e-iH.r”” 
an, 

(nuclear scattering) (6- 1 S) 

where H = k, - ki, (6- 1.6) 

and the scattering amplitudes ate given by Eq. 51.55 (electronic scattering) and Eqs 4-3.62 
or 4-3.63 (nuclear scattering). If the origin is placed at the comer, x,, of one of the unit 
cells in the crystal, then any other unit cell can be found through an integral number of 
lattice displacements 

x’ = x, + f+a, + ka, + nja,. (6-1.7) 

After calculating the structure factor for one unit cell, then, for one scattering channel, the 
total scattering amplitude from the whole crystal is constructed by summing the scattering 
amplitude from each cell multiplied by a phase factor, e -iH-(niai) (ni = 0,1,2 ,..., Ni - 1 and 
i = 1,2,3), each cell acquires. The resulting scattered intensity is given by** 2 

The reflectivity is maximized at the Bragg peaks according to the Laue equation 
H-ai =2dfi 

where Hi are integers and H is a reciprocal lattice vector 

H=hb,+kb,+!b,. 

(6-1.8) 

(6-1.9) 

(6-1.10) 
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When the Bragg condition is satisfied, the scattered fields travel mainly in scattering 
A 

channel directions, H , and have narrow angular spreads. At the Bragg peaks, the intensity 
is again proportional to the square of the number of scatterers 

I(x) = I,N2(F”(2 (6-1.11) 

where N = N,N,N, is the total number of unit cells within the crystal. The angular width 
of an outgoing beam is inversely proportional to the number of scatters. Since most -_ - 
materials studied are macroscopic in size (as discussed in Section 3.1)--their dimensions 
are much greater than 100 8, and N >> 106--the angular widths are essentially delta 
functions at the scattering angle 20,. Examination of Eq. 6-l .8 shows that the average 
intensity off the Bragg peaks is half the scattered intensity from a single unit cell--this 
extremely small factor can be safely ignored. 

In the kinematic domain, crystalline and isotropic media give reflectivities 
- proportional to the square of the number of scatterers when examining fields traveling in 

scattering channel directions. However, when examining fields not traveling in scattering 
channel directions, isotropic media give intensities proportional to the number of scatterers, 
while crystalline material give intensities that are essentially zero. Inelastic scattering in 
crystalline media is identical to that in isotropic media because of the effect of the random 
temporal phase factors of the scattering amplitude. 

6.2 Dynamical Scattering Theory 

Dynamical scattering includes the multiple scattering effects that are ignored in 
kinematical scattering theory. For linear time-invariant causal systems, multiple scattering 
can be handled by linear system theory. In such a theory, if the impulse response of a 
system is known (that is, the response of a system to a delta function in time), then the 
response of the system to any arbitrary analytic function is known (this is proved by 
imposing linearity, or using superposition arguments).3 The frequency response of a 
scatterer to an incoming plane wave is described by the spherical multipole electric field in 
Eq. 4-4.16 

H,(w,x,a,x) = $ Fa(kfvki) 

“. 

(6-2.1) 
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where x,,. is the position of scatterer of ,type a, and ma = b - x,,~ 1 is the distance from the 

scatterer to an observation point. 
In multiple scattering, the spherical wave generated by a scatterer can interact with 

all other scatterers which in turn produce spherical waves that can interact with the original 
scatterer and all other scatterers. This multiple scattering behavior can be investigated by 
examining each step in the scattering process. For instance, for an incoming wave (the -_ - 
zeroth order scattered wave) 

a&w0 = E&w), (6-2.2) 

the response of the system (first order, or single scattering), is 

(6-2.3) 
a=1 Ita =l 

where N, is the number of scatterers of type a, and A’, is the number of different types of 
scatterers. Note that Eq. 6-2.3 represents a symmetric state of excited scatterers since 
interchanging the indices of identical scatters, xi. t) xi., does not change the final sum. 
Double scattering (second order scattering) occurs when the single scattered wave interacts 
with all the particles 

a,(w,x)=~%a,(w,x”~)H(o,x”=,x). 
a=1 8. =l 

(6-2.4) 

By iteration, one can determine the amplitudes for triple and all higher order scattered fields 

(m>l). (6-2.5) 
a=1 ?I. =l 

For some problems, working in the time picture rather than in frequency space may be 
more convenient or illustrative. In the time picture multiple scattering involves the 

convolution of the frequency response with the incoming wave 

a,(t,x)= 2 ~~~a--~(f’,x”~)H(f-f’,x”=,X)dr’ 
a=1 “. =I 

(m 2 1) (6-2.6) 

where the limits of the convolution integral were constrained by assuming the functions are 
causal: 

a&,x) = 0 for t’c 0 (6-2.7) 

H(t-r’,x”m,x)=O for t-t’<0 or t’>t. (6-2.8) 
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Working in the time domain, the multiple scattering formalism can be shown to be 
equivalent to a Feynman path integral approach where a sum is made over all the possible 
scattering paths of a collection of scatterers.” 

The total scattered wavefield emanating from the medium is the sum of all the 
multiply scattered fields 

E,(w,x)= ga,(-w,x). (6-2.9) 
m=O 

Note that Eq. 6-2.9 is still a quantum mechanical expression (the multipole scattering 
amplitude was obtained by finding matrix elements of quantum mechanical operators). No 
connection with classical electrodynamics has been made yet. The connection comes when 
the number of scatterers becomes so large (N >> 106) that computing Eq. 6-2.9 becomes 
too time consuming. In certain cases, however, such as for an isotropic medium, one can 
show that summing up an infinite number of scattering diagrams leads to the Maxwell 
equations for a medium (this is done in Section 6.5). 

6.3 Two Coupled Oscillators 

Observation 
Point 

particle # 2 

Fig. 6-3.1. Scattering geometry for two coupled oscillators. 

For a simple example of multiple scattering scattering, consider the case of two 
identical particles situated a distance q2 = Ix1 - x21 apart as shown in Fig. 6-3.1. Assume, 

for further simplicity, that at some time t = 0 both particles are in the excited state and 



(6.3) Two Coupled Oscillators 99 

decay with a probability amplitude F,(t). This allows the zeroth order scattering term, 
%(t), to be ignored along with all the spatial phase factors associated with it. 

Then, for the frequency response given by Eq. 6-2.1, all of the higher order 
scattering terms can be computed through the use of the multiple scattering equation, 
Eq. 6-2.5. (Below, 5 = Ir - x,1, r2 = Ir- x,1, and the polarization matrix describing 
scattering from particle #l to r has been assumed to be equal to the polarization matrix 
describing scattering from particle #2 to r) __ - 

q(o,r) = f@$$- + Fo(co)F 

= Fo@of$b(kf,ki)][~+~) 

+wr) = F&o )[$F(kf,ki)r[F+$) 

q,,(W) = F,(a [$F(ki.ki)r(F+$). 

The total scattered electric field is then 

&k&r) = Fe(o) ($+F)$L$b(kf,ki)] 

= 
1 e -$F(k,,ki) . 

(6-3.1) 

(6-3.2) 

Evaluating this expression for dipole scattering using the spin averaged scattering 

amplitude, Eq. 5-1.48, gives interesting results. Eq. 6-3.2 is then valid for sigma 
polarized electric dipole fields or pi polarized magnetic dipole fields. Assuming F,(W) has 

the same resonance characteristics as the scattering amplitude 

Fo(w)=Fo/(o-w,+ir/2h), (6-3.3) 
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and for r >> Ix1[,Ix21 Eq. 6-3.2 reduces to 

E,(w,r) = 
2Fo(eib/r)e’*.(x1+x’)‘2 cos[k* (x, -x2)/2] 

m-(0,-q)+i(r+$)/2A 

(6.3) 

(6-3.4) 

where k = k(r/r), and w, and f, are a coupled oscillator frequency shift and decay rate 
speedup factor 

(6-3.5) 

(6-3.6) 

This result shows that a pair of coupled oscillators will radiate fields with a natural 
. frequency and natural linewidth that is different from an isolated oscillator. This is not 

surprising since, as shown in Section 3.7, a single oscillator interacting with its own 
electromagnetic field results in a frequency shift and a natural linewidth. In this problem 
there are two oscillators interacting with the electromagnetic fields 

oscillators. 
For two 57Fe nuclei, the coupled frequency shift and 

(jn = 3/2,j, = l/2) 

r, = Ld 
sin( kq2) 

h2 * 

As kl;, -+ 0, the speedup rate goes to 

r, -+ Ld- 

generated by both 

speedup rate are 

(6-3.7) 

(6-3.8) 

(6-3.9) 

Since r = r, + r,,, where l?, is the decay rate due to internal conversion, then, when the 

separation between the oscillators is small compared to a wavelength, the radiative decay 
rate doubles. This confirms Dicke’s supperadiant result that a symmetric state of two 
coupled oscillators has a radiative decay rate that is double that of a single oscillator.5 

However, as kr,, + 0 the frequency shift becomes infinite. This is understandable 
because the electric field amplitude varies as l/kr,, . The particles are then bathed in a very 

high intensity electric field which will induce extremely large energy level shifts. 
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The frequency shift and speedup rate are also affected by the spatial separation of 
the particles--by increasing or decreasing the separation produces negative or positive 
frequency shifts and results in an increase or decrease of the the natural frequency. There 
is also an effect due to the angular momentum states of the particle. For very high angular 
momentum states and as kq2 + 0, the speedup rate approaches I+, --+ 3F,,/2. 

If the two particles are excited by an plane wave, the problem becomes slightly 
more complicated because the spatial phase of the plane wave must be taken into account. 
Performing computations similar to before, except now with an incoming plane wave 

q(w,r) = EoftFr (6-3.10) 

yields 

(6-3.11) 

where ~+(w)=w-(w,-w,)+i(r+r~)/2fi (6-3.12) 

R-(w)=w-(w,+w,)+i(r-rs)/2ti, (6-3.13) 

and k, = k(r/r), H = k, - ki, x,, = X, -x,, and w, and Qi.re given by Eqs. 6-3.5 and 
6-3.6 . For this arrangement there are two normal modes that can exist. There is one mode 
in which there are -negative frequency shifts and decay rate speedups, and another with just 
the reverse-positive frequency shifts and decay rate slowdowns. 

6.4 Scattering Channel Fields 

Multiple scattering computations can be simplified if scattering is examined only 
along the highly directional scattering channels where most of the radiation exits a medium 
(such as in the forward or Bragg directions for an isotropic medium or a crystal). For 

example, consider the case of a one dimensional line of scatterers, as shown in Fig. 6-4.1, 

where there is an incident plane wave traveling parallel to the line of scatters. The forward 
direction is a scattering channel direction since the spatial phase of a scattered wave from a 
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particle located at zll, 4, = H-Z,, is always zero. The single scattered field observed at a 
distance far from any scatterer, r >> z,, , is then 

q(w,r) = C(EoePi’z~ 
f 

)[ $P(k, = ki)] = -f( Eoeiki’+)[ ‘-,-f’-” F(k, = k,.)] 

= N,,Eo FF(k, =ki) (6-4.1) 

where r,, = r - zs, and N, is the number of scatterers. -All the single scattered fields have 
the same overall spatial phase factor, and therefore the net scattered field is a coherent sum 
of all of the single scattered fields. 

ki 
------- 

. * 

-. i-l++ + + 
z=o z= zq z=L z=r 

Fig. 6-4.1. Plane wave field incident upon a line of scatterers of length L. 

For the double scattered fields, 

q’F(k, = ki)][ FF(k, = ki)] (6-4.2) 

where rVtl, =IZg-Z$.J. Since double scattering has been constrained to occur only in the 
forward direction (backscattering is ignored), z1 > z9, and thus rrlrl, = z9 - z,,, . Then all of 

the doubled scattered fields also have the same overall spatial phase factor 

ib 
a&&r) = E&x 

[F(k, = ki)] 

r VI’ zq -zq, - 
(6-4.3) 

By iteration, the total forward scattered electric field at the observation point is 

E,(w,r) = Eoeh + E, cF(kf = k,)x 
F(k, = ki) [F(kf = ki)] 

- r 
1+x 

11 ?’ z1 - ZS’ 
+ c 

rl’tl” z , - z ( 11 n,,)(zl -zJ + -** 

(6-4.4) 

This infinite series expression is equivalent to the sum of an infinite number of 
scattering diagrams where the vector potential of each photon, except the incoming photon, 
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is defined as a spherical wave (see Fig. 6-4.2). All photons travel in the same direction, 
and each photon can either exit the medium or scatter with a downstream particle. As seen 
before for a single particle, the sum over an infinite number of scattering diagrams can lead 
to frequency shifts and to changes in the natural radiative decay rate. 

z=zl =o z=z2 z= z3 z= z, 
Fig. 6-4.2. Scattering diagram for multiple scattering along a scattering channel 
direction. All wavectors have the same magnitude and are in the same direction. The first 
four particles are shown with time represented by the vertical axis and intermediate states 
by Zi. (For convenience, the photon arrival time at each scatterer is not correctly drawn. 
Actually, photon k, strikes all scatterers at the same time, photon k, strikes all scatterers 
located at z 2 z2 at the same time, etc.) 

When there are many scatterers with an interparticle separation comparable to or 
less than the wavelength of the incoming field, the discrete line of particles can be 
approximated as a continuous linear distribution of particles. Eq. 6-4.4 can then be 
rewritten as 

(6-4.5) 
where s = z/L, s’= z’/z, s” = z”Jz’, etc., n is the number of particles per unit length, and 
F, = F(k, = ki). Th e small parameters in the upper limits, 6 = d/z, 6’ = d/z’, 8” = d/z”, 

etc., are included to prevent the integrals from diverging. The quantity d is the average 
inter-particle separation. The integral series can be evaluated to first order by making the 
approximation 6 = d/L. For such a case 
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E,(w,r) = Eoeib + 
E, $nF(k, = ki)L 

l+rzF(k, = k,)ln6 * 
(6-4.6) 

Inserting the dipole scattering amplitude, Eq. 5- 1.48, into the expression above gives 

where 0, =+-($+$)(+)ln6. 

This shows that, for forward scattering from a line of particles, there is no change 
in the natural linewidth, but there is a shift from the natural frequency of an isolated 
particle. The frequency shift diverges logarithmically with decreasing interparticle 
separation rather than linearly as was the case for the two particle system, but the reason for 
the divergence is the same--the electric field strength of spherical waves is very intense at 
small distances from the scatterer. 

So far only scattering purely in the forward direction has been mentioned. Another 
way a wave can scatter and end up in the forward direction is to scatter in the backward 
direction and then scatter again into the forward direction. In doing so, the scattered wave 
can pick up a nonzero phase factor. For instance, for double scattering where the wave 
backscatters and then scatters into the forward direction, the field amplitude is that of 

I@. 6-4.3 multiplied by the spatial phase factor: -e i2L(zq-zq’) . For n* order scattering there 
are n! - 1 ways a field can scatter away and then back into the scattering channel direction-- 
all of the amplitudes and associated phase factors for each order must then be evaluated. 
For an ordered line of scatterers (such as a linear lattice), all types of multiple scattering 
must be computed to determine the total scattered field--an extremely tedious task since all 
orders of scattering must be computed, and each order has n! terms. However, if the line 

of scatterers is randomly ordered (such as an isotropic distribution of a large number of 
scatterers), the phase factors of fields scattered back into the scattering channel direction 
will be essentially random. In such a situation, these fields can be neglected because their 
contribution to the total scattered intensity will be down by a factor of l/N compared to the 

intensity of the scattering channel fields (fields scattered purely in the scattering channel 
direction). 

A plane or volume of a large number of ordered scatterers (such as a planar lattice 
or a crystal lattice) has more degrees of freedom than a line of scatterers. Because of the 
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extra degrees of freedom, the intensity of scattering channel fields is a factor of N times 
greater than of multiply scattered fields scattered in directions other that the scattering 
channel direction--the nonscattering channel fields fields pick up additional phase factors 
that are essentially random for a many particle medium. Therefore, mainly the scattering 
channel fields will be investigated, and all other types of scattered fields will be neglected. 

6.5 Plane Parallel Slab of Scatterers 

Fig. 64.1. Plane wave field incident upon a plane parallel slab of thickness L.6 

The sum over the infinite number of scattering diagrams in Fig. 6-4.2 should, in the 
continuous limit, lead to a description of a scattered electric field that converges to the 
expression obtained by solving the Maxwell equations for a medium. This will be shown 
to be true for a plane parallel slab where boundary conditions are neglected. 

In the continuous limit, the multiple scattering equations, Eq. 6-2.5, can be written 
in the form (for identical particles and for scattering channel fields) 

q(w,z,)dz = u,(w,z,z,)H(o,z,z,)dz (6-5.1) 

a,(w,z,z,)dz= j;dz’am~,(u,z’,z) H(w,z,z,)dz 1 (6-5.2) 

where z,, is the observation point. This gives the m”’ order field amplitude for a slice 
within the slab at position z of thickness dz by summing up all of the lower order field 

amplitudes of all preceding slices and multiplying by the frequency response at point z. 
The net scattering channel field at the position z in the medium is then 
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Esc/(w,z,z,)= U~(~,z,z,)+C~~dz’a,(o,z’,z~) * (6-5.3) 
m=l 

For forward scattering within a line of scatterers, the frequency response observed 
at point z for a segment of thickness dz’ located at point z’ is 

H(w,z’,z)dz’= F(k, = k,)s (6-5.4) 

where n, is the number of particles per unit length..-The frequency response for a slice of 
thickness dz’ within a plane parallel slab is simpler. Consider a slab of thickness L and 
infinite in the dimensions transverse to the beam propagation direction as shown in 
Fig. 6-5.1. Jackson has shown that the sum of single scattered fields from a slice of 
thickness dz within the slab yields a net field with an amplitude that is independent of the 
distance from the slice6 

dEs,ice = yF(kf = ki)Eoeibo(ndz) (6-5.5) 

where n is the number of scatterers per unit volume, and the incident field was a plane 
wave. The frequency response for a slice is then 

H(co,z’,z)dz’= $%zF(k, = k;)dz’. (6-5.6) 

For forward scattering, the plane wave incident field can be written as 

uo(w,z,zo) = u,(~,z,) = E,,(m)eibo (6-5.7) 

where the amplitude E,(w) is independent of z and zO. The spatial phase factor eLtz is 
ignored because, recalling from the previous section, for forward scattering the spatial 
phase of a scattered wave is zero. However, an overall phase factor eikO must be attached 
to the net scattering channel field to include the phase the field picks up in traveling from 
the slab to the observation point zO. For such an incident plane wave field, using the 

multiple scattering equations for a medium, Eq. 6-5.2, the scattering channel field within 

the medium is 

1 + [i% (w)k] j; 5 
m=O 

where Eo(N = $nF(k, = k,). 

(6-5.8) 

(6-5.9) 
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This is precisely the solution to the Maxwell equations when neglecting boundary 
conditions (and it also agrees with the semiclassical results of Section 3.4). For instance, 
for a plane parallel slab of thickness L, the solution to the inhomogeneous wave equation 
for transverse electric fields, Eqs. 3-2.9 and 3-2.10, is 

E,,(w,L,z,)= Eo(w)ein(%~(',-L) = E,/(w,L,z,) (6-5.10) 

where the quantity n(w) = 1 + Ed is the index of refraction of the medium, and the last 
phase factor, ei’(ZO-L), takes care of propagation through free space to the point zO. Since, 
in the many particle limit, the multiple scattering equations for scattering channel fields give 
the same answer as the inhomogeneous wave equation, for more complicated problems, 
such as including boundary conditions or examining dynamical diffraction in crystals, the 
inhomogeneous wave equation will be used for constructing the scattering channel fields. 
No attempt will be made to examine the multiple scattered fields not traveling in scattering 
channel directions--full dynamical scattering theory will not be investigated any further than 
the discussion in this chapter. 

The frequency shifts and speedup rates are no longer clearly observable in 
Eq. 6-5.8. In some cases, calculating the scattered fields in the time domain allows these 
effects ‘to be seen more clearly. One can then either take the Fourier transform of 
Eq. 6-5.8, or, equivalently, express the multiple scattering equations for scattering channel 
fields in the time domain 

q(t,z,z,)dz = jjz,(r’,z,z,)H(r -f’JJ&f~~ 

a,(t,z,z,)dz= j;[j; dz’u,&‘,z’,z) H(t-t’,z,z,)dt’dz 1 
(6-5.11) 

(6-5.12) 

and (6-5.13) 
m=l 

As an example, multiple scattering of dipole fields will be examined where the 
incident plane wave field is a synchrotron pulse 

a,(w, z, zO) = E,eihO or in time, a,(r,z,z,)= E,e’““S(r) . (6-5.14) 

For dipole fields 

&,(w)kL= -(ry4h)/(w- 8, +ir/2q (6-5.15) 

where r,/tl=no,(rp)L, (6-5.16) 

L is the thickness of the slab, and a,, is the resonant cross section given by Eq. 5-1.52 
(with the polarization factor set to unity). Inserting this factor into Eq. 6-5.8 and taking the 

Fourier transform will give the scattering channel field in the time domain. A contour 
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integral must be performed to complete the Fourier transform, and Lynch, Holland, and 
Hamermesh have carefully described how to do this.7 

The other approach involves evaluating the time response of the system. Taking the 
Fourier transform of the forward scattering amplitude (Eq. 5- 1.48 with the polarization 
factor set to unity) by performing a simple contour integral where there is only one pole in 
the lower half complex z-plane gives 

H(~,z’,z)= -(r,/4fiL,)e-~~~‘-~“2nB(t) (6-5.17) 

where (6-5.18) 

The multiple scattered field amplitudes are then 

= -E,+ (r, /4ttL)e-i~~t-r~~2nJo (@i/E) e( t) (6-5.19) 

where the following Bessel function identity was used 

3 

J,(2$)=1-y+L-- 
(2!)2 & + **-* 

(6-5.20) 

Then, using the integral relationship for a Bessel function of order zero 

juI,(u) = 464 

yields the scattering channel field 

(6-5.21) 

E,,(t,i,z,)= EoPo 
1 

l 6(f)-e-imol-ry2*-J muJo e(t) 
2t 0 > 

= Eoeibo {l?(t) - e-imof-r’i2n( 2) I’~-)JB(t). (6-5.22) 

This is the same result Lynch, Holland, and Hamermesh would get if they were to 
substitute their s7Co source with a broadband frequency source (such as a synchrotron 
pulse).7* 8 There happens to be no frequency shifts for forward scattering through a plane 
parallel slab, but the natural decay rate is modified by a Bessel function (see Fig. 6-5.2). 
As I’, + 0 the collection of particles within the slab behave independently instead of 
cooperatively, and the collective state decays with the natural lifetime of an isolated particle 
(kinematical scattering occurs). As r, increases the lifetime of the collective state 
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decreases. Thus, r, indicates the extent a system has undergone homogeneous line 
broadening. The homogeneous broadened linewidth can be approximated as (after 
examining Eq. 6-5.8 more carefully) 

I r , for r, << r 

rbm=\r~~ _ ,for r8>>r’ 
(6-5.23) 

Note that r, in Eq. 6-5.16 depends upon a thickness parameter T = no&. T must 
also be multiplied by an enrichment factor for samples that contain nonresonant particles 
and by a Lamb-Mossbauer factor to take into account vibrating scatterers.9 The graphs 
below were calculated for a 100% enriched slab of 57Fe nuclei with a Lamb-Mossbauer 
factor of unity and for no photoelectric absorption. If the photoelectric frequency response 
is constant over the frequency range of the dipole resonance, then Eq. 6-5.22 need only be 
multiplied by the factor e C. (00 K/2 where p, (w,) is the photoelectric absorption coefficient 
at the resonant frequency. The time spectra in Fig. 6-5.2 ignores the prompt delta-function 
pulse. 

Two more examples of multiple scattering worked out in the time domain are given 

in Appendix B. In Appendix B.l, Lynch, Holland, and Hamermesh’s solution is 
rederived for the problem where a 57Co source excites a plane parallel slab of resonant 
scatterers. In Appendix B.2, the time domain multiple scattering equations are used for a 
case in which they turn out to be more convenient to use than the Fourier transform 
method. In this problem the dynamical phase between two widely separated resonance 
lines excited by a synchrotron pulse is examined. 
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Fig 6-5.2. Time spectra of 57Fe for various speedup rates: (a) linear scale, (b) log scale. 
The presence of dynamical beats becomes evident in the log plot for large speedups. 
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Fig 6-5.3. The decrease in the lifetime of the collective state, as shown in Fig 6-5.2 (a), 
corresponds, by the uncertainty principle, to a broadening of the linewidth in frequency 
space: (a) homogeneous line broadening due to multiple scattering, (b) homogeneous 
linewidth as a function of the speedup rate. 
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7. DYNAMICAL DIFFRACTION 
BY CRYSTALS 

The underlying theory of the principles of dynamical diffraction in crystals was 
developed in the early 1900’s independently by Darwin and Ewald. The two theories are -_ - 
quite different explanations of the same phenomenon. The Darwin-Prin’s theory carefully 
examines the reflected and transmitted field amplitudes from each plane of atoms within a 
crystal in order to build up a total diffracted and transmitted amplitude (one ends up solving 
a set of coupled difference equations). On the other hand, the Ewald-Laue theory solves 
the Maxwell equations for a medium having a periodic index of refraction (one ends up 
solving a set of coupled dispersion equations). A well written discussion of both 
treatments can be found in James (as well as almost anything one desires to know about 
X-ray diffraction). ’ A good discussion of the Darwin-Prins treatment can be found in 
Warren2 and the Ewald-Laue approach is well discussed in Zachariason3 and in a paper by 
Batter-man and Cole.4 In the field of nuclear dynamical diffraction, the Darwin-Prins 
method has been extended by Hannon and Trammel,5-8 and the Ewald-Laue approach has 
been utilized by Kagan and Afanas’ev. 9-11 The discussion in this chapter will concentrate 
on the Ewald-Laue method of dynamical diffraction theory. 

7.1 Dispersion Relations for a Medium having a Tensor 
Index of Refraction 

Solving the inhomogeneous wave equation for transverse electric fields in a 
medium, Eq. 3-2.11, gives insight into the nature of fields propagating through materials 
along scattering channels. Recall that the index effect, 2&,,, is a tensor quantity 
proportional to the multipole scattering amplitude developed in Chapter 4. Thus, the 
inhomogeneous wave equation is also a tensor wave equation. 

For an anisotropic medium, the spatially averaged index effect can be modeled as a 

continuous periodic function of the spatial coordinates (see Eqs. 3-4.18,6-l .4, and 6- 1.5): 

~E,(x,w) = $xHFHeiHx 
ov 0 

(7-1.1) 

113 
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where a sum over all the possible scattering channels denoted by the index H is performed, 

and the magnitude of the scattered wavector within the medium is assumed to be 
approximately equal to the vacuum wavenumber: kf = k,,. The expression above shows 

that the index effect can be written as a Fourier series of the spatial frequency components 
of the scattering amplitude (the multipole scattering amplitude is given by Eq 4-3.63 or 
4-3.64 with X, = 0). Similarly, the electric field can be expressed as a sum of Fourier 
components. When this is done, the inhomogeneous wave equation transforms to 

V-V-+ kiv+kiy ( ~)~H,FH,e’*~.x]~HEHe”“.’ = 0, 

and thus 

eikH.x + 4n cc F,,E,e i(k,+H’).x 

k;& s H’ 
=o. (7-1.2) 

The above equation can be satisfied if, term by term, the arguments of the 
exponentials are the same. They will be if one remains on the energy shell: 

k,+H’= k,. (7-1.3) 

This can also be seen through examining the Ewald sphere (or energy shell) construction in 
reciprocal lattice space, Fig. 7-1.1. The reciprocal lattice points, H and S, lie on the 
Ewald sphere, k, is the forward scattered beam within the medium (reciprocal lattice vector 
is H = 0), and k, and k, are outgoing scattering directions. To satisfy Bragg’s law, the 
incoming and outgoing wavectors must lie on the Ewald sphere. The relation in Eq. 7- 1.3 
shows that there are fields within the medium traveling in S-channels that are scattered by 
the spatial distribution of the index of refraction having spatial frequency components 
denoted by H’, and these scattered fields end up traveling in the outgoing H-channel. 

H 

Fig. 7-1.1. Ewald sphere construction for scattering. k, is the forward 
wavector for fields scattering off crystal planes having reciprocal lattice vectors H 
produce fields with wavectors k, and k,. 

scattered 
and S to 
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From the Ewald sphere construction, one can see that S + H’ = H. Then, Eq. 7- 1.2 
reduces to 

g$E; =0 

where, using terminology similar to Kagan’s,9 the scattering tensor is defined as 

’ 

(7-1.4) 

(7-1.5) 

and CL! and p are polarization indices of the electric field. Equation 7-1.4 is the dispersion 
equation for a medium having a tensor index of refraction. 

7.2 The Scattering Tensor 

The scattering tensor contains important polarization information about scattering 
processes. For the case of photoelectric scattering far from any bound state resonance or 
absorption edge, the scattering tensor is 

(7-2.1) 

where the polarization independent part of the structure factor is, from Eq. 6-1.4 for n 
identical particles, 

fH-“=-r,C(Q+,(H-S)fo+f’-if”)e-‘(H-S)~r~, 
II 

(7-2.2) 

and the polarization matrix is defined as 

(7-2.3) 

where it and 6; are the two transverse polarizations of the scattered electric field with 
wavector k, , and the other two polarizations correspond to the wavector k, . The Debye- 
Waller factor, D,(H), is a function of the scattering vector and is given by Eq. 5-1.56. 

The structure of the scattering tensor can be understood by examining some simple 
cases. For instance, for scattering from a transmission channel (S = 0) to a reflection 
channel (H) , 
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(7-2.4) 

For the reverse process, scattering from a reflection channel (S = H) to a transmission 
channel (H = 0), 

* (7-2.5) 

For scattering from a transmission channel (S = 0) to a transmission channel (H = 0) 
[normal transmission through a material], or, for scattering from a reflection channel 
(S = If) to a reflection channel (H) [normal transmission in the diffraction direction], 

9-=9-=(gjfo g. (7-2.6) 

Since the polarization basis of an electric field is orthonormal, the polarization matrices for 
transmission are diagonal. The polarization matrices for diffraction are diagonal only if a 
convenient polarization basis is chosen such as the sigma-pi basis used in Section 5.1 and 
shown in Fig. 5-l. l--in such a basis polarization mixing is no longer possible. 

When the sigma-pi polarization basis discussed in Section 5.1 is used, the two 

electric field components completely decouple in the dispersion relation, and the dispersion 
relation reduces to two independent relations for each electric field component 

(7-2.7) 

For the electronic scattering described above or for spin averaged dipole scattering, the 
polarization matrices, PoH and PHo, are equivalent, and they are given by Eq. 5-1.47 for 

electric dipole scattering or Eq. 5-l .46 for magnetic dipole scattering. For spin averaged 
dipole scattering from ~7 identical particles 

f”-” = - LM(ki)LM(kf)C 
e -i(H-S)srq . (7-2-g) 

4kO" 

The quantities LM(ki) and LM (kf) are the Lamb-Mossbauer factors that take into account 

the vibrations of the scatterers. From Eq. 4-3.66 

LM(ki) = (fa(eiki‘“lin), LM(kf) = (fale-ikfeUlia) (7-2.9) 
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where Ii=) and Ifa) are initial and final phonon states. The quantity C is the enrichment 

factor describing the concentration of resonant scatterers at the lattice sites. 
In general, when multipole scattering is included, polarization mixing occurs in 

both the transmission and reflection channels. For nuclear scattering the scattering tensor 
in Eq. 7-2.1 has an angular independent structure factor defined as (from Eq. 5-l .4 for Q 

identical particles and averaged over the initial state spins) 

f”-” = -(2x/k,,) 
L,(ki)L,(k,)C’(‘,‘) (jf~,~~~.&U,~n)2 
Ei - E, + hki + ir,/2 (2ji + 1) c e -i(H-Sk , (7-2.10) 

9 

and the polarization matrix is given by Eq. 5-1.5 with the substitution e/, + kz and 

2: +kz, where a=x,y. 

7.3 Linearized Dispersion Equations 

The dispersion equations, Eq. 7-1.4, are a set of homogeneous nonlinear coupled 
field equations. The nonlinearity comes from the quadratic term ki and the polarization 
directions of the fields inside the medium represented in the polarization matrices. 
However, for X-ray photons, the dispersions equations can be linearized because most 
materials are essentially transparent to such photons. Since incoming X-ray photons are 
only slightly affected by the presence of a medium, the polarization directions of the fields 
inside a medium can be approximated as the polarization directions of the fields in vacuum. 
This is a common approximation used in dynamical diffraction theory. 

If the index of refraction in the H channel is &?& where E, is a small 
complex number, then the quadratic term in the dispersion equation is ki = (1+ 2.sH)k,fv 
where key is the vacuum wavenumber. The dispersion equation, IQ. 7-1.4, then reduces 
to the simpler form 

Making the further approximation that 

kH = (l+EH)kO, (7-3.2) 

completes the linearization of the dispersion equations. This is shown for a two-beam (or 
two-channel) example in the following section. 
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7.4 Two-Beam Analytical Solution 

In certain situations reasonably simple analytical expressions can be constructed for 
the scattered fields within a medium. This occurs for electronic scattering with a wise 
choice of the sigma and pi polarization vectors that diagonal& the scattering tensor. The 
multipole scattering tensor can also be diagonalized for certain orientations between the 
quantization axis of the scatterer and the scattering plane. For the two beam case where 
there are only two scattering channels, S = 0 and S = H, along which travel a forward 

scattered and a diffracted electric field, the decoupled dispersion relations can be written in 
the form 

(7-4.1) 

where 
T = Es=0 (transmitted field) (7-4.2) 

R = ES=H (diffracted, or reflected, field) . (7-4.3) 

H E 1, and x,y denote the two transverse polarizations of the electric field (in the sigma 
and pi polarization basis shown in Fig. 5-l. 1, x = cr, and y = n). 

To solve the dispersion equation, a relationship between E, and E, must be found. 
This can be done’by noting that refraction occurs for a wave entering a medium from free 

space 

k, = k,, + koy6fi (7-4.4) 

where k,, is the vacuum wavector in the forward direction (all vacuum quantities will have 

the index v), fi is an interior normal to the crystal surface, and 6 is a quantity describing 
how much refraction has taken place. 

Using Eqs. 7-3.2 and 7-4.4, to first order in 6 and E, (to linearize the dispersion 

equations), one finds that 

6 = &o/Y0 (7-4.5) 

where r,=ii,;ii. (7-4.6) 

Applying Bragg’s law, 
k, =k,+H, (7-4.7) 
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yields, to first order in E,, co ,and 6, 

k&(1 + 2~~) = k&(1 + 2~~) + H2 + 2(k,, + koJii) 

which reduces to 

&I = E, + 
H.(H+2kOY) 

WV 
+s(ii, -I;,).ii 

= a,/2+ co/b -- - (7-4.8) 

where a, is a deviation from Bragg parameter 

a, = H. (H + 2ko,)/ktV. (7-4.9) 

The parameter b is an asymmetry factor 

b = Yoh (7-4.10) 

where “/1 =ii, -ii. (7-4.11) 

The a, parameter describes how close a reciprocal lattice point must be to the 
Ewald sphere in order to still satisfy the Bragg condition. The parameter can be evaluated 
by examining how Bragg’s law varies near the Ewald sphere 

H = Ikl - k,l= ,/k: + k,2 - 2&kocos28, 

(7-4.12) 

where 28, is the scattering angle between k, and k,, and 0, is the Bragg angle. Also note 
that 

H-k,, = -Hk,, sin 8, (7-4.13) 

where 0, +.x/2. is the angle between H and k,, (see Fig. 7-4.1). When the Bragg 

condition is satisfied, 0, is nearly equal to 0,. Defining a deviation angle 

A9=t?,--& (7-4.14) 

that is a measure of the angular deviation from Bragg gives 

a, = -2A9sin28, - 4(AE/E)sin2 0, (7-4.15) 

where E is the incoming photon energy, and AE is the deviation of the Bragg energy from 
the incoming photon energy 

AE = E - E, = Ac[k,, - (4 + k,)/2]. (7-4.16) 

The Bragg energy has been defined to be proportional to the average wavenumber inside 
the medium. To remain close to the Bragg condition, either an angular or energy constraint 
must be satisfied: A8 or AE must be close to zero. For instance, when examining the 
angular spectrum of a scattered field, the Bragg energy is set equal to the incoming photon 
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Fig. 7-4.1. Diffraction from crystal planes. The g-plane is the crystal surface, and H 
is a reciprocal lattice vector perpendicular to the crystal planes. Present geometry shows a 
symmetric Bragg reflection (b = -1). Incoming beam from vacuum, koV, strikes the 
surface, and refraction produces outgoing beam, k,, shifted by A8, from the incident 
angle 0,. 

energy, E, = E or AE = 0, and the Bragg angle is obtained through Bragg’s law and 
aB = -2Aesin28,. When examining the energy spectrum of a scattered field, the Bragg 
angle is set equal to the incoming photon angle, 8, = 0, or A8 = 0, and the Bragg energy 
is obtained from Bragg’s law and a, = -4(AE/E)sin* 0,. Bragg’s law, Eq. 7-4.7, can be 
rewritten as the following expression: 

where 

E, sin 8, = tick!/2 (7,-4.17) 

H = 2x/d,, (7-4.18) 

and dhkl is the lattice spacing of the [h k Z] reflection. 
The solution to Eq. 7-4.1 then reduces to solving a familiar eigenvalue-eigenvector 

problem. The characteristic equation is 

det(G,, - 2~~1) = 0 (7-4.19) 

where 
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01 
8, 

E - ba,) 0 I 

g,” 
01 I 

gyY - 

g; (bg:: -b%) J 

(7-4.20) 

The solution to the characteristic equation yields the four eigenvalues 

(14 - l 
%‘J - ,(g; + k;p - - 6s; + ba,)* + 4llg;;g; (7-4.21) 

where p = x,y. 
To complete the solution to the inhomogeneous wave equation, boundary 

conditions must be supplied. In order to obtain analytical expressions to the reflected and 
transmitted fields, interfacial reflections at the entrant and exit crystal surfaces will be 
neglected. These reflections occur when a field crosses from one medium to another (such 
as from vacuum to the crystal medium). The Bragg and Laue solutions are given below 
using this approximation. 

BRAGG CASE: At the top and bottom surfaces of the crystal (see Fig. 7-4.2), 
the boundary conditions are 

(7-4.22) 

ii-r=d: 0 = R = ,,j(h, +H).ri C &+!,dg (7-4.23) 
I=1 4 

where k, = k,, + K# (7-4.24) 

k, =kk, =k,+H (7-4.25) 

da = k,“4,/Y, (7-4.26) 

a = x,y, I= 1,2 is the eigenvector index, and E,, is the incoming electric field from the 

vacuum. For Bragg diffraction and for no interfacial reflections, all of the incoming field 
scatters into the transmission channel, and, at the exit surface there is no incoming field 
scattering into the reflection channel. 

For each eigenvalue in Eq. 7-4.21, there is a unique eigenvector 

vf = c 
(1 Rf, ’ 

(7-4.27) 
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decreases. Thus, r, indicates the extent a system has undergone homogeneous line 
broadening. The homogeneous broadened linewidth can be approximated as (after 
examining Eq. 6-5.8 more carefully) 

I r , for r, << r 

rbm=\r~~ _ ,for r8>>r’ 
(6-5.23) 

Note that r, in Eq. 6-5.16 depends upon a thickness parameter T = no&. T must 
also be multiplied by an enrichment factor for samples that contain nonresonant particles 
and by a Lamb-Mossbauer factor to take into account vibrating scatterers.9 The graphs 
below were calculated for a 100% enriched slab of 57Fe nuclei with a Lamb-Mossbauer 
factor of unity and for no photoelectric absorption. If the photoelectric frequency response 
is constant over the frequency range of the dipole resonance, then Eq. 6-5.22 need only be 
multiplied by the factor e C. (00 K/2 where p, (w,) is the photoelectric absorption coefficient 
at the resonant frequency. The time spectra in Fig. 6-5.2 ignores the prompt delta-function 
pulse. 

Two more examples of multiple scattering worked out in the time domain are given 

in Appendix B. In Appendix B.l, Lynch, Holland, and Hamermesh’s solution is 
rederived for the problem where a 57Co source excites a plane parallel slab of resonant 
scatterers. In Appendix B.2, the time domain multiple scattering equations are used for a 
case in which they turn out to be more convenient to use than the Fourier transform 
method. In this problem the dynamical phase between two widely separated resonance 
lines excited by a synchrotron pulse is examined. 
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Fig 6-5.2. Time spectra of 57Fe for various speedup rates: (a) linear scale, (b) log scale. 
The presence of dynamical beats becomes evident in the log plot for large speedups. 
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Fig 6-5.3. The decrease in the lifetime of the collective state, as shown in Fig 6-5.2 (a), 
corresponds, by the uncertainty principle, to a broadening of the linewidth in frequency 
space: (a) homogeneous line broadening due to multiple scattering, (b) homogeneous 
linewidth as a function of the speedup rate. 
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7. DYNAMICAL DIFFRACTION 
BY CRYSTALS 

The underlying theory of the principles of dynamical diffraction in crystals was 
developed in the early 1900’s independently by Darwin and Ewald. The two theories are -_ - 
quite different explanations of the same phenomenon. The Darwin-Prin’s theory carefully 
examines the reflected and transmitted field amplitudes from each plane of atoms within a 
crystal in order to build up a total diffracted and transmitted amplitude (one ends up solving 
a set of coupled difference equations). On the other hand, the Ewald-Laue theory solves 
the Maxwell equations for a medium having a periodic index of refraction (one ends up 
solving a set of coupled dispersion equations). A well written discussion of both 
treatments can be found in James (as well as almost anything one desires to know about 
X-ray diffraction). ’ A good discussion of the Darwin-Prins treatment can be found in 
Warren2 and the Ewald-Laue approach is well discussed in Zachariason3 and in a paper by 
Batter-man and Cole.4 In the field of nuclear dynamical diffraction, the Darwin-Prins 
method has been extended by Hannon and Trammel,5-8 and the Ewald-Laue approach has 
been utilized by Kagan and Afanas’ev. 9-11 The discussion in this chapter will concentrate 
on the Ewald-Laue method of dynamical diffraction theory. 

7.1 Dispersion Relations for a Medium having a Tensor 
Index of Refraction 

Solving the inhomogeneous wave equation for transverse electric fields in a 
medium, Eq. 3-2.11, gives insight into the nature of fields propagating through materials 
along scattering channels. Recall that the index effect, 2&,,, is a tensor quantity 
proportional to the multipole scattering amplitude developed in Chapter 4. Thus, the 
inhomogeneous wave equation is also a tensor wave equation. 

For an anisotropic medium, the spatially averaged index effect can be modeled as a 

continuous periodic function of the spatial coordinates (see Eqs. 3-4.18,6-l .4, and 6- 1.5): 

~E,(x,w) = $xHFHeiHx 
ov 0 

(7-1.1) 

113 
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where a sum over all the possible scattering channels denoted by the index H is performed, 

and the magnitude of the scattered wavector within the medium is assumed to be 
approximately equal to the vacuum wavenumber: kf = k,,. The expression above shows 

that the index effect can be written as a Fourier series of the spatial frequency components 
of the scattering amplitude (the multipole scattering amplitude is given by Eq 4-3.63 or 
4-3.64 with X, = 0). Similarly, the electric field can be expressed as a sum of Fourier 
components. When this is done, the inhomogeneous wave equation transforms to 

V-V-+ kiv+kiy ( ~)~H,FH,e’*~.x]~HEHe”“.’ = 0, 

and thus 

eikH.x + 4n cc F,,E,e i(k,+H’).x 

k;& s H’ 
=o. (7-1.2) 

The above equation can be satisfied if, term by term, the arguments of the 
exponentials are the same. They will be if one remains on the energy shell: 

k,+H’= k,. (7-1.3) 

This can also be seen through examining the Ewald sphere (or energy shell) construction in 
reciprocal lattice space, Fig. 7-1.1. The reciprocal lattice points, H and S, lie on the 
Ewald sphere, k, is the forward scattered beam within the medium (reciprocal lattice vector 
is H = 0), and k, and k, are outgoing scattering directions. To satisfy Bragg’s law, the 
incoming and outgoing wavectors must lie on the Ewald sphere. The relation in Eq. 7- 1.3 
shows that there are fields within the medium traveling in S-channels that are scattered by 
the spatial distribution of the index of refraction having spatial frequency components 
denoted by H’, and these scattered fields end up traveling in the outgoing H-channel. 

H 

Fig. 7-1.1. Ewald sphere construction for scattering. k, is the forward 
wavector for fields scattering off crystal planes having reciprocal lattice vectors H 
produce fields with wavectors k, and k,. 

scattered 
and S to 
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From the Ewald sphere construction, one can see that S + H’ = H. Then, Eq. 7- 1.2 
reduces to 

g$E; =0 

where, using terminology similar to Kagan’s,9 the scattering tensor is defined as 

’ 

(7-1.4) 

(7-1.5) 

and CL! and p are polarization indices of the electric field. Equation 7-1.4 is the dispersion 
equation for a medium having a tensor index of refraction. 

7.2 The Scattering Tensor 

The scattering tensor contains important polarization information about scattering 
processes. For the case of photoelectric scattering far from any bound state resonance or 
absorption edge, the scattering tensor is 

(7-2.1) 

where the polarization independent part of the structure factor is, from Eq. 6-1.4 for n 
identical particles, 

fH-“=-r,C(Q+,(H-S)fo+f’-if”)e-‘(H-S)~r~, 
II 

(7-2.2) 

and the polarization matrix is defined as 

(7-2.3) 

where it and 6; are the two transverse polarizations of the scattered electric field with 
wavector k, , and the other two polarizations correspond to the wavector k, . The Debye- 
Waller factor, D,(H), is a function of the scattering vector and is given by Eq. 5-1.56. 

The structure of the scattering tensor can be understood by examining some simple 
cases. For instance, for scattering from a transmission channel (S = 0) to a reflection 
channel (H) , 
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(7-2.4) 

For the reverse process, scattering from a reflection channel (S = H) to a transmission 
channel (H = 0), 

* (7-2.5) 

For scattering from a transmission channel (S = 0) to a transmission channel (H = 0) 
[normal transmission through a material], or, for scattering from a reflection channel 
(S = H) to a reflection channel (H) [normal transmission in the diffraction direction], 

(7-2.6) 

Since the polarization basis of an electric field is orthonormal, the polarization matrices for 
transmission are diagonal. The polarization matrices for diffraction are diagonal only if a 
convenient polarization basis is chosen such as the sigma-pi basis used in Section 5.1 and 
shown in Fig. 5-l. l--in such a basis polarization mixing is no longer possible. 

When the sigma-pi polarization basis discussed in Section 5.1 is used, the two 

electric field components completely decouple in the dispersion relation, and the dispersion 
relation reduces to two independent relations for each electric field component 

(7-2.7) 

For the electronic scattering described above or for spin averaged dipole scattering, the 
polarization matrices, PoH and PHo, are equivalent, and they are given by Eq. 5-1.47 for 

electric dipole scattering or Eq. 5-l .46 for magnetic dipole scattering. For spin averaged 
dipole scattering from CJ identical particles 

f”-” = - LM(ki)LM(kf)C 
e -i(H-S)srq . (7-2-g) 

4kO" 

The quantities LM(ki) and LM (kf) are the Lamb-Mijssbauer factors that take into account 

the vibrations of the scatterers. From Eq. 4-3.66 

LM(ki) = (fa(eiki‘“lin), LM(kf) = (fale-ik’eUlia) (7-2.9) 
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where Ii=) and 1 fa) are initial and final phonon states. The quantity C is the enrichment 

factor describing the concentration of resonant scatterers at the lattice sites. 
In general, when multipole scattering is included, polarization mixing occurs in 

both the transmission and reflection channels. For nuclear scattering the scattering tensor 
in Eq. 7-2.1 has an angular independent structure factor defined as (from Eq. 5-l .4 for Q 

identical particles and averaged over the initial state spins) 

f”-” =-(2x/k,,) L,(ki)L,(k,)C’(‘,‘) (j,~,~~~.@j,m,)* 
Ei - E, + hki + ir,/2 (2ji + 1) c e -i(H-Sk , (7-2.10) 

9 

and the polarization matrix is given by Eq. 5-1.5 with the substitution e/, + kz and 

2: +kz, where a=x,y. 

7.3 Linearized Dispersion Equations 

The dispersion equations, Eq. 7-1.4, are a set of homogeneous nonlinear coupled 
field equations. The nonlinearity comes from the quadratic term ki and the polarization 
directions of the fields inside the medium represented in the polarization matrices. 
However, for X-ray photons, the dispersions equations can be linearized because most 
materials are essentially transparent to such photons. Since incoming X-ray photons are 
only slightly affected by the presence of a medium, the polarization directions of the fields 
inside a medium can be approximated as the polarization directions of the fields in vacuum. 
This is a common approximation used in dynamical diffraction theory. 

If the index of refraction in the H channel is &?& where E, is a small 
complex number, then the quadratic term in the dispersion equation is ki = (1 + 2~)k& 
where key is the vacuum wavenumber. The dispersion equation, Eq. 7-1.4, then reduces 
to the simpler form 

Making the further approximation that 

kH = (l+EH)kO, (7-3.2) 

completes the linearization of the dispersion equations. This is shown for a two-beam (or 
two-channel) example in the following section. 
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7.4 Two-Beam Analytical Solution 

In certain situations reasonably simple analytical expressions can be constructed for 
the scattered fields within a medium. This occurs for electronic scattering with a wise 
choice of the sigma and pi polarization vectors that diagonal& the scattering tensor. The 
multipole scattering tensor can also be diagonalized for certain orientations between the 
quantization axis of the scatterer and the scattering plane. For the two beam case where 
there are only two scattering channels, S = 0 and S = H, along which travel a forward 

scattered and a diffracted electric field, the decoupled dispersion relations can be written in 
the form 

(7-4.1) 

where 
T = Es=0 (transmitted field) (7-4.2) 

R = ES=H (diffracted, or reflected, field) . (7-4.3) 

H E 1, and x,y denote the two transverse polarizations of the electric field (in the sigma 
and pi polarization basis shown in Fig. 5-l. 1, x = cr, and y = n). 

To solve the dispersion equation, a relationship between E, and E, must be found. 
This can be done’by noting that refraction occurs for a wave entering a medium from free 

space 

k, = k,, + koy6fi (7-4.4) 

where k,, is the vacuum wavector in the forward direction (all vacuum quantities will have 

the index v), fi is an interior normal to the crystal surface, and 6 is a quantity describing 
how much refraction has taken place. 

Using Eqs. 7-3.2 and 7-4.4, to first order in 6 and E, (to linearize the dispersion 

equations), one finds that 

6 = &o/Y0 (7-4.5) 

where r,=ii,;ii. (7-4.6) 

Applying Bragg’s law, 
k, =k,+H, (7-4.7) 
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yields, to first order in E,, co ,and 6, 

k&(1 + 2~~) = k&(1 + 2q,) + H2 + 2(k,, + k,Jii) 

which reduces to 

&I = E, + 
H.(H+2kOY) 

2% 
+s(ii, -I;,).ii 

= a,/2+ co/b -- - (7-4.8) 

where a, is a deviation from Bragg parameter 

a, = H - (H + 2k,,)/ktV. (7-4.9) 

The parameter b is an asymmetry factor 

b = Yoh (7-4.10) 

where “/1 =ii, -ii. (7-4.11) 

The a, parameter describes how close a reciprocal lattice point must be to the 
Ewald sphere in order to still satisfy the Bragg condition. The parameter can be evaluated 
by examining how Bragg’s law varies near the Ewald sphere 

H = Ikl - k,l= ,/k: + k,2 - 2&kocos28, 

(7-4.12) 

where 28, is the scattering angle between k, and k,, and 0, is the Bragg angle. Also note 
that 

H-k,, = -Hk,, sin 8, (7-4.13) 

where 0, +.x/2. is the angle between H and k,, (see Fig. 7-4.1). When the Bragg 

condition is satisfied, 0, is nearly equal to 0,. Defining a deviation angle 

A9=t?,--& (7-4.14) 

that is a measure of the angular deviation from Bragg gives 

a, = -2A9sin28, - 4(AE/E)sin2 0, (7-4.15) 

where E is the incoming photon energy, and AE is the deviation of the Bragg energy from 
the incoming photon energy 

AE = E - E, = Ac[k,, - (4 + k,)/2]. (7-4.16) 

The Bragg energy has been defined to be proportional to the average wavenumber inside 
the medium. To remain close to the Bragg condition, either an angular or energy constraint 
must be satisfied: A8 or AE must be close to zero. For instance, when examining the 
angular spectrum of a scattered field, the Bragg energy is set equal to the incoming photon 
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Fig. 7-4.1. Diffraction from crystal planes. The g-plane is the crystal surface, and H 
is a reciprocal lattice vector perpendicular to the crystal planes. Present geometry shows a 
symmetric Bragg reflection (b = -1). Incoming beam from vacuum, koV, strikes the 
surface, and refraction produces outgoing beam, k,, shifted by A0, from the incident 
angle 0,. 

energy, E, = E or AE = 0, and the Bragg angle is obtained through Bragg’s law and 
aB = -2Aesin28,. When examining the energy spectrum of a scattered field, the Bragg 
angle is set equal to the incoming photon angle, 8, = 0, or A8 = 0, and the Bragg energy 
is obtained from Bragg’s law and a, = -4(AE/E)sin’ 0,. Bragg’s law, Eq. 7-4.7, can be 
rewritten as the following expression: 

where 

E, sin 8, = AcH/2 (7,-4.17) 

H = 2x/d,, (7-4.18) 

and dhkl is the lattice spacing of the [h k Z] reflection. 
The solution to Eq. 7-4.1 then reduces to solving a familiar eigenvalue-eigenvector 

problem. The characteristic equation is 

det(G,, - 2~~1) = 0 (7-4.19) 

where 
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(7-4.20) 

The solution to the characteristic equation yields the four eigenvalues 

(1.2) - l %‘J - ,(g; + b&j - - bgk + ba,)’ + 4bgiAgE (7-4.21) 

where p = x,y. 
To complete the solution to the inhomogeneous wave equation, boundary 

conditions must be supplied. In order to obtain analytical expressions to the reflected and 
transmitted fields, interfacial reflections at the entrant and exit crystal surfaces will be 
neglected. These reflections occur when a field crosses from one medium to another (such 
as from vacuum to the crystal medium). The Bragg and Laue solutions are given below 
using this approximation. 

BRAGG CASE: At the top and bottom surfaces of the crystal (see Fig. 7-4.2), 
the boundary conditions are 

ii-r=@ E,, = T = f,y,T;e: 
l=l a 

(7-4.22) 

ii-r=d: 0 = R = ,,j(h, +H).ri C &+!,dg (7-4.23) 
I=1 4 

where k, = k,, + K# (7-4.24) 

k, =kk, =k,+H (7-4.25) 

da = k,“4,/Y0 (7-4.26) 

a = x,y, I= 1,2 is the eigenvector index, and E,, is the incoming electric field from the 

vacuum. For Bragg diffraction and for no interfacial reflections, all of the incoming field 
scatters into the transmission channel, and, at the exit surface there is no incoming field 
scattering into the reflection channel. 

For each eigenvalue in Eq. 7-4.21, there is a unique eigenvector 

vf = c 
(1 Rf, ’ 

(7-4.27) 
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Fig. 7-4.2. Bragg diffraction geometry. 

The reflection amplitudes can then be expressed in terms of the transmission amplitudes 

R:, = D;T; (7-4.28) 

where Df, =(q,/(v;),~ (7-4.29) 

and (vi); is the i* component of v:. Expressing the reflection amplitudes in terms of the 
transmission amplitudes enables one to solve a decoupled boundary value equation for the 
four transmission and four reflected wavefields inside the crystal 

u, =B, -w (7-4.30) 

or, written out explicitly, 

= 

1 1 
Die&d DzgKfd 0 

0 1 1 
D;e”:d D;eiK;d 

(7-4.3 1) 

After some algebra, the solution to the boundary condition equation can be written 
in the form 

i KLz+&f) 
=e ik,;r 

c E0W-X 

e( ( gz _ 2Eia) -,‘(“:‘fKLd)(g~ - 2&b,) 
irid 00 ’ 

(7-4.32) 
a e g, ( 

- 2&J - eiKLd( gz - 2&) 
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and, at the exit surface z = d, 

T(ii . r = d) = eikoumr c Eov& 
p+4dp& _ 24 

iK.td 
a e a ( ~~ - 2&J - eiKbd( 8: - 2&J * 

(7-4.33) 

The reflection channel field is 

= ei(ko, +W 

c 

bgz e 
EO~~‘Lf irzd 

c 
i(r:d+Cfiz) _ ;(K:d+K:z) 

(7-4.34) 
a e = gZ - 2&J - eiK’“(gZ - 2&i,) ’ 

and, at the entrant surface z = 0, 

R(fi -r = 0) = ei(kow+H)‘r c E,,,k~ 
bgz (eiK$i _ eirbd) 

ir2d (7-4.35) 
a e = gz - 2&) - eiKhd(g” cm -2&J’ 

LAUE CASE: The boundary conditions for this case are (see Fig. 7-4.3) 

ii-r=O: Eov=T=i’~;d; (7-4.36) 
I=1 a 

ii-r=O: O=R=ixR;i& (7-4.37) 
I=1 a 

For Laue diffraction and for no interfacial reflections, all of the incoming field scatters into 
the transmission channel, and, at the entrant surface, there is no incoming field scattering 
into the reflection channel. 

The boundary condition matrix for Laue diffraction is 

B, = 

1 1 
0; 0,’ 

0 11. 

D; D; J 

(7-4.38) 
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Fig. 7-4.3. Laue diffraction geometry. 

Solving the boundary condition equation for the scattering channel field yields 

T(~.r=2)=e*“.rCE,,i0,e 
irtr 00 

( 
- 2&i,) - eiKygz - 2&i,) 

a 
gas 2E’ 

( 
(7-4.40) 

Oa - 2eia) 

R(fi . r = Z) = ei(kb+“)-r c E,,,&~ 
a 

(7-4.41) 

7.5 Dynamical Characteristics of Angular Spectra 

In kinematical diffraction theory the angular distribution of the scattered fields 
consists of delta function peaks situated at Bragg angles. In dynamical diffraction theory 
the angular width of the Bragg peaks are broadened due to multiple scattering. The angular 
distribution at a Bragg peak can be characterized by an 77: parameter (or a y, parameter 
described by Zachariasen)3y 4 

q, _ [Cl - ~~/21~+~) + WbB 
a- 

dq~+EJl * 
(7-5.1) 

The above formula assumes that the scatterers in the crystal have space-inversion symmetry 
and that the origin is chosen at an inversion center (that is, the crystal is centrosymmetric 
and gra = gza). Also, forward scattering in the transmission channel is assumed to be 
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identical to forward scattering in the reflection channel: gz = gya. For thick crystals most 
of the scattered intensity lies in the range l&l < 1 (see Figs. 7-5.1 and 7-5.2). Thus, an 
angular width, or Darwin width, of the diffracted beam can be defined as 

(7-5.2) 

where A6i8 is the symmetric Darwin width for a thick crystal (this definition is useful 
mainly for Bragg diffraction as can be seen by examining Figs. 7-5.1 and 7-5.2). From 
Eq. 7-5.1 note that, for Bragg diffraction, the Darwin curve is not centered at the Bragg 
angle. There is an index of refraction shift from the Bragg angle where the center of the 
Darwin curve (the point 77; = 0) now lies at 

ea = e c B 
+ [Cl - wlqdz) 

bsin28, * 
(7-5.3) 

The electric field inside the crystal consists of traveling waves propagating 
perpendicular to the scattering vector, H , and standing waves with wavectors parallel to the 
scattering vector. Whether a standing wave field has its nodes or antinodes at the scattering 
planes depends upon the scattering angle and, thus, upon the 77: parameter. When a 
standing wave has its antinodes lying at the scattering planes (that is, on the atoms) 
enhanced absorption occurs, and when it has its nodes lying at the scattering planes 
absorption processes are suppressed. . 

From the solution of the dispersion equation there turns out to be, for each 
scattering channel and for each polarization, two eigenwaves that are a function of the 
energy of the incident field and the deviation from Bragg, a, (the two eigenwaves 
corresponds’to the I = 1 and 2 solutions having eigenvalues given by Eq. 7-4.21). For 
Laue diffraction the two eigenwaves are damped exponentially with distance into the 
crystal. One wave has its nodes lying at the scattering planes (the alpha wave) and the 
other has its antinodes lying at the scattering planes (the beta wave).4 Since the beta waves 
suffer enhanced absorption, these fields die out more quickly leaving only the alpha waves 
to contribute to the total field amplitude that exits a thick crystal. Since the alpha waves 
experience suppressed absorption, these fields can travel much further through crystals 
than would be expected when only photoelectric or resonant absorption is considered. This 
phenomena is the Borrmann effect--anomalous transmission through crystals. 

For Bragg diffraction one eigenwave is damped exponentially while the other 
grows exponentially with distance inside the crystal. For photoelectric scattering they both 
have their nodes lying at the scattering planes when 77: = -1 and their antinodes lying at the 
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scattering planes when 77: = +l .** 3p 4 Thus, as 77: varies from -1 to +l , the electric field 
experiences suppressed absorption to enhanced absorption--this is the reason for the 
asymmetrical shape of the Darwin curve in Fig. 7-5.1. For resonant scattering the phase of 
the eigenwaves changes by z as the resonance curve is traversed from frequencies above 
the resonant frequency to those below the resonant frequency. Thus, the rjk points where 
suppressed and enhanced absorption occur are at opposite sides of the Darwin curve when 
operating on opposite sides of the resonant curve--this is shown in Fig 7-5.3. As the 
absorption in the forward channel, Im{gE} , b ecomes more predominant than the effective 
absorption resulting from scattering from the transmission to the reflection channel, 
Im{gz) , the peak intensity shifts from 77: = -1 to r& = 0, and the Darwin curve becomes 
more symmetrical. Since in general Im{gz} > Im(gz) , there is always a shift in the peak 
intensity towards 77: = 0. 

The Borrmann effect is of particular interest in resonant scattering because 
absorption processes are always present and are usually predominant. For instance, for an 
isolated 57Fe atom, internal conversion prevents the efficiency of photon production for a 
scattering event from being greater that 11%. However, by scattering off a lattice of 57Fe 
atoms, the efficiency can be made much greater than 11% through the Borrmann effect.12 

The figures below are rocking curves for pi polarized 14.4 keV radiation diffracting 

from a body centered cubic crystal of a- “Fes7Fe having a lattice spacing of 5 A. There 
is one 56Fe and 57Fe atom per unit cell, and the 57Fe atom lies at the center. No such iron 
crystal has yet been fabricated, but such a structure lets one examine resonant scattering by 
partially turning off the nonresonant photoelectric scattering. For instance, resonant 
nuclear diffraction is allowed for any combination of Miller indices that satisfies Bragg’s 
law, but when the sum of the Miller indices is odd (h + k +I= 2n + 1, n = 0,1,2,...) 
photoelelectric diffraction is forbidden. For simplicity the resonant 57Fe nuclei are 
assumed to have no internal hyperfine fields--they are therefore single line emitters (An iron 
crystal is inherently magnetic, but by adding impurities, such as was done for stainless 
steel or for YIG,13 the internal fields can be suppressed. a - Fe naturally has a bee crystal 
structure with a lattice spacing of 2.8665 A. The lattice spacing of 5 A is used as an 
attempt at approximating the larger unit cell constructed when impurities are added to 
produce a single line emitter.). Also, all Debye-Waller factors, Lamb-Mbssbauer factors, 
and resonant enrichment factors have been set to unity. 

Figures 7-5.1 and 7-5.2 are photoelectric rocking curves for the allowed [0 0 21 
reflection and for various thicknesses. Resonant nuclear scattering, though also allowed, is 
ignored in the calculations. In Fig. 7-5.1 the oscillations, or Pendellosung fringes, for the 
10pm thick crystal are caused by the interference of the two eigenwaves traveling in the 
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reflection channel. For d = lcm one of the eigenwaves has completely died off 
exponentially with distance which eliminates the possibility for interference between the 
eigenwaves to occur at the exit surface. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1 \ I I ----- d= 
d= 

_---me d= 

lcm 
lOj..Lm 
w m 

-10 -5 0 5 10 15 20 25 30 
Deviation Angle from Bragg: A8 = 8 - 6, (micro rads) 

Fig. 7-5.1. Bragg diffraction rocking curves for [0 0 21 reflection for various 
thicknesses. Only photoelectric scattering is being considered --resonant nuclear scattering 
is being ignored. 

For.Bragg diffraction the primary extinction length, or crystal penetration depth 
through which most of the transmission channel fields are reflected out of the crystal, can 
be approximated from Bragg’s law, Eq. 7-4.17, as 

2X 27ttan6, 
de,, z-z-- 

AH H A6, 
(7-5.4) 

where Ae, is the angular width of the Darwin curve (full width at half maximum). This 
expression describes how much of a crystal is involved in diffraction by how far a 
reciprocal lattice point can be from the Ewald sphere before Bragg’s law is seriously 

violated. For the crystal considered in this example, the Bragg angle for the [0 0 21 
reflection is 9.9” for 14.4 keV photons, and 2x/H = 5A/2. For d = lcm the Darwin 
width is 12prad, and thus d,, = 3.6pm and the crystal is several thousand extinction 
lengths thick. When d = 10pm a far less number of planes contribute toward diffraction, 
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thus the angular width is slightly broader than for the lcm thick crystal. The extinction 
length is now approximately 3.3pm, and the fields penetrate a far greater fraction of the 
crystal thickness. When d = lpm, the Darwin width is 41prad and the fields penetrate 
the entire thickness of the crystal: de,, = lprn . 

-20 -15 -10 -5 0 5 10 15 20 
Deviation Angle from Bragg: A8 = 8 - 0, (micro rads) 

Laue diffraction rocking curves for [0 0 21 reflection for various Fig. 74.2. 
thicknesses. Only photoelectric scattering is being conside-red--resonant nuclear scattering 
is being ignored. 
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The photoelectric absorption length for this crystal is roughly 0.5pm. Thus, the 
Borrmann effect is readily seen in the Laue diffraction rocking curves in Fig. 7-5.2. When 
the crystal is lOpm, or 20 absorption lengths thick, the transmitted intensity peaks at 40% 
whereas a value 9 orders of magnitude less would be expected if only photoelectric 
absorption was considered. 

For pure resonant scattering when w - W, = 0, the Darwin width goes to zero since 
the scattering tensor becomes pure imaginary. The Borrmann effect persists at the center of 
the profile because the nodes of the fields inside the crystal lie at the scattering planes. 

Increasing the crystal thickness so that more planes contribute to reflecting the field out of 
the crystal pushes the peak reflectivity closer to unity. This effect is commonly referred to 
as the suppression of the inelastic channel. 9 Because the effective transmission absorption 

length is roughly 600 8, when the incoming field is on resonance, the transmitted field is 
quite negligible for the 10pm thick crystal used in Figs. 7-5.3 and 7-5.4. 
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0.0 
-30 -20 -10 0 10 20 30 
Deviation Angle from Bragg: A8 = 8 - 0, (micro rads) 

Fig. 7-5.3. Bragg diffraction rocking curves for [0 0 l] reflection for various positions 
on the resonance curve. Only resonant nuclear scattering is being considered-- 
photoelectric scattering is being ignored. Crystal thickness is 10pm. 

----- 0 - w, = lOT/A 
1.0 1 ------ co--cow,=0 

= -lOT/A 
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Deviation angle from Bragg: A6 = 8 - 0, (micro rads) 

Fig. 7-5.4. Bragg diffraction rocking curves for [0 0 l] reflection for various positions 
on the resonance curve. Both resonant nuclear and photoelectric scattering is considered. 
Crystal thickness is lOpurn. The point A8 = 16prad occurs at 77: = +l,O for the central 
curve (this is where the central curve peaks), at 7: = -1 for the curve on the right, and at 
77; = +l for the curve on the left. 
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7.6 Dynamical Characteristics of Energy Spectra 

The expressions for the transmission and reflection channel fields are too 
complicated in their present form to see the dynamical effects of frequency shifts and 
speedup rates resulting from multiple scattering. Also, since there are now two eigenwaves 
traveling in a particular channel, ascribing a single frequency shift or speedup rate to an 
exiting field is no longer generally possible. However, in certain limiting cases in which 
only one predominant eigenwave manages to exit the crystal, one can easily examine the 
dynamical effects of multiple scattering. These limiting cases are described below. 

CASE 1: Far Off Bragg. 

When the direction of the incoming field is set to be far from any Bragg angle, 

a, >> 1gzl and Igz 1, (7-6.1) 

the eigenvalues reduce to 

(7-6.2) 

for Bragg (b < 0) and Laue (b > 0) diffraction. For both Bragg and Laue diffraction, the 

reflection channel field is negligible, R(w) = 0, since it falls off as g$/a, while the 
transmission channel field reduces to 

T@) = eik,.-r~~o~a(0)2~ei[~~(~)/21~~~L (7-6.3) 

where L=d,y,.” (7-6.4) 

For combined resonant dipole and nonresonant scattering, the scattering tensor 
element for forward scattering is (from Eqs. 5-1.48 and 7- 1.5) 

gz w/2 = $F(kf = ki)+pW(w)/2k,,. 
OV 

(7-6.5) 

The Lamb-Mbssbauer and resonant enrichment factors have been included in the scattering 

amplitude, and pw(~)/~oy = [d$(w)]_,,, is given by Eqs 7-2.1 and 7-2.2 for 

photoelectric scattering 

p(+- F 
t 1 ~r,[wM + f’W- if”(w)] (7-6.6) 

OV 

(the imaginary part of ~~(0) is the absorption coefficient). For the simple two-beam 
solution in Section 7.4, the expressions on the right side of Eq. 7-6.5 are independent of 
polarization since they describe forward scattering; Equation 7-6.3 is precisely the same 
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solution as that obtained for the transmitted field from an isotropic medium in Section 6.5. 
The dynamical effects explored in that section then also apply equally well for this off- 
Bragg case. 

CASE 2: Thin Crystal Approximation. 

For the thin crystal approximation 

(7-6.7) 

In this approximation, the transmission channel-fields for both Bragg and Laue diffraction 
are almost unity. Using the approximation eL = 1 + x for 1x1 <c 1 gives 

TB”gg (4 = e ik"v'r~EOva(w)~~ 
1+ ik,,L[gz(l+ b) - ba,]/2 

a 
1 + ik 

0" 
L(bgm _ ba 

aa B 
)/2 (7-6.8) 

T-(w) = eikop'r CE,va(w)~~[l+ikovL(g~/2)]. 
a 

(7-6.9) 

The solution for Laue transmission is equivalent to Case 1 (being far off Bragg) for 
a thin crystal, or equivalent to transmission through a thin isotropic slab. For combined 
resonant dipole and nonresonant scattering 

TLnue (w) = eikover c$.,(o)~“[ 1- w -‘T& + @(w)~/2] (7-6.10) 
a 0 

where, similar to the expression in Eq. 6-5.16 in section 6.5, 

r,” = LM(ki)LM(kf = ki)CmorL (7-6.11) 

and L=d/y,. Thus, for a thin crystal, Laue transmission channel fields exhibit no 
frequency shifts .or decay rate speedups. 

For Bragg scattering the transmission channel field is 

TBragg(w) = eikhsr ia[*b-(l+b)l ] 
w - 0, + ir/2fi - iab 

(7-6.12) 

where 

and 

rsm /4h 
a = 1+ ibp@‘(o)L/2 - iba,k,,L/2 

5= l+i(l+b)pw(w)L/2-iba,k,,L/2 
l+ibpm(w)L/2-iba,k,,L/2 ’ 

(7-6.13) 

(7-6.14) 

Since 5 = 1 in the thin crystal approximation, the transmitted field can be simplified to 
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TBmgg (o) = elkho 

(7.6) 

(7-6.15) 

where w,=Re 
ib( r,” /4A) 

1+ibpLOO(w)L/2-iba,ki,L/:! 

-- - 

b(I’sw/4tt)(Re{bp00(o)}L/2- baBko,L/2) 

= (1-Im{bpm(w)}L/2)2+(Re{bpm(o)}L/2-ba,k,,L/2)2 (7-6’16) 

and r, =-Im 
ib(rsm/2) 

1+ ibpm(w)L/2 - iba,k,,L/2 

-b(rF/2)(1- Im {bpw(w)}L/2) 

=(I-Im{bpm(o)}L/2)2+(Re{bpm(w)}L/2-ba,k,,L/2)2’ (7-6’17) 

The second term in the brackets of Eq. 7-6.15 exhibits, in contrast to the 
transmitted field through an isotropic thin slab, a frequency shift, w,, and a speedup rate, 
r,. However, since w, is proportional to the square of the crystal thickness, it is an 
exceedingly small quantity. The speedup rate is roughly proportional to the on-resonance 
thickness rate, l?, = -b(lYsm/2), for thin crystals. 

Applying the thin crystal approximation to the reflection channel field for Bragg and 
Laue diffraction gives 

R,,,(w) = ei(kov+H).r c I?,,,( w)kt 1 + ikv2$iFfa J,2 
a 0” aa B 

(7-6.18) 

R-(o)=e i~ko~+H~~r~~ova(~)~~(-iko,Lbg~~/2). 
a 

(7-6.19) 

For combined resonant dipole and nonresonant scattering the Laue diffracted field 

reduces to 

R-(w) = e i(ko~+H).r~~ova(~)i::[W~~~~,2h -ibp;(w)L/Z] (7-6.20) 
a 0 

where, for resonant dipole scattering, 



(7.6) Dynamical Characteristics of Energy Spectra 133 

(7-6.21) 

and, for nonresonant photoelectric scattering, 

&‘- iE)x[D,(H)f, + f’(w) - ifrr(w)]e-‘HwrR . (7-6.22) 
n 

Again, as was the case for the Laue transmission field, there are no frequency shifts or 
speedup rates for Laue diffraction from a thin crystal. 

The Bragg diffracted field reduces to 

RBragg b-d = e (7-6.23) 

where 

and 

r;:/4h 
a’ = 1+ ibpw(o)L/2 - iba,k,,L/2 

5: = d%wJ/2 
1+ ibpw(o)L/2 - iba,k,,L/2 

(7-6.24) 

(7-6.25) 

and a is given by Eq. 7-6.13. This expression can also be simplified under some 
assumptions about the structure of the crystal lattice. If the lattice of resonant scatterers is 
different than the lattice of nonresonant scatterers, certain reflections may be found where, 
due to the geometrical structure factor, diffraction from resonant particles is allowed 
whereas diffraction from nonresonant particles is not allowed. This holds for certain iron 
crystals such as YIG, FeBO,, and a - Fe,O, enriched with 57Fe. Under such conditions, 
c&.= 0, and the diffracted field simplified to 

RB,, @> = e 
i(ko*+H).rCEo.,(w)g (ws - iL/2fi)(c:/cq (7-6.26) 

a W-(0, +~,)+i(r+ rs)/2h 

where rS and w, are given by Eqs. 7-6.16 and 7-6.17. The frequency shift and speedup 
rate are the same as that for Bragg transmission through a thin crystal. Also note that these 
quantities are dependent upon forward scattering factors and not upon diffraction scattering 
factors, and they are polarization independent. 

A crystal will also appear “thin” when the eigenvalues are near zero: &A, = 0. The 
eigenvalues can be exactly zero for Bragg diffraction when a, = 0, gz = gza, and 

g,“,g: = s:g:. Under such conditions, an infinitely thick crystal will appear “thin” in 
the thin crystal approximation. And as d -+ =J, the transmission channel field becomes 
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negligibly small and the reflection channel field goes to unity. These are the conditions for 
the suppression of the inelastic channel. 9 They result in an interesting demonstration of the 
Borrmann effect for resonant scattering where resonant absorption is completely 
suppressed in an infinitely thick crystal. Here an infinite number of planes contribute 
toward reflecting all of the incident field back out of the crystal--the reflectivity becomes 
unity. This Borrmann effect can be seen in Fig. 5-7.3 (at A6 = 0) for a crystal 3 primary 
extinction lengths thick (unity reflectivity is nearly achieved). However, note that the 
condition gzg: = gz& cannot be met for nonresonant scattering since the Debye-Waller 
factor for forward scattering (which is unity) is never equal to that for diffraction. Thus, 
unity reflectivity through the Borrmann effect can never be achieved for nonresonant 
scattering. 

CASE 3: Thick Crystal Approximation. 

In the thick crystal approximation 1 

ko&qYo ” 1. (7-6.27) 

For Laue diffraction the two eigenwaves of each polarization in each scattering 
channel exponentially die off with distance into the crystal. Since both eigenwaves persist 
at the exit surface, ascribing a single frequency shift or speedup rate to the net exiting field 
is not possible. In addition, the analytical form of each eigenwave in Eqs. 7-4.40 and 
7-4.41 cannot be further simplified other than that they approach zero as d + 00. 

For Bragg diffraction one of the two eigenwaves exponentially dies off with 
distance while the other increases exponentially with distance. For the thick crystal 
approximation, the transmission channel field is negligibly small while the reflection 

channel field approaches 

(7-6.28) 

where the eigenvalue that yields exponentially growing waves is chosen in the 
denominator. For combined resonant dipole and nonresonant scattering, the reflected field 
reduces to 

RBragg (w) = t~~(~‘~+“)-~ c E,,,(o)i~(b/lR,) 
a 

where 

~-(w,+w,)+i(~+~~)/2li~ w - (co, +- us) + i( r + I’~)/~Fz]~ + C&/b 1 
(7-6.29) 
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0s = Re 
0 - ~qi@Yq 

(1- b)p@‘(w)L/2 + ba,k,,L/2 

=[( 

(1- b)(rF/4A)[(l- b)Re{p”(o)}L/2 + ba,ko,L/2] 

l-b Re p w L 2+ba,ko,L/2]2+[(1-b)Im{~“(~))L/2]2 ) {“o>/ (7-6e30) 

I-, = 
--Im 

(I- b)(cv) 
(1- b)pm(w)L/2 + ba,k,,L/2 

=[( 
Cl- b)(L”“/2)[(1- b)Im{~~(@)@] 

1-b Re p 1 {“o}/ o L 2 + ba,ko,L/2]2 +[(l- b)Im{pW(w)}L/2]Z (76’31) 

a2,, = (~0~ -ir,/zti)(r;;/r+Y)[2b/(l- b)]. (7-6.32) 

rSW and l-j: are given by Eqs. 7-6.11 and 7-6.21, and, as before, a reflection was chosen 
for a crystal structure that forbids nonresonant diffraction but allows resonant dipole 
diffraction. Though the crystal is infinitely thick, a length factor, L, was inserted for 
comparisons to previous calculations. All quantities computed for this case are actually 

independent of L. 
The extrema in Bq. 7-6.30 occur at 

A@,= 1-b (Re{g~(~)}+Im{g~(w)}) 
2bsin28, nonra (7-6.33) 

where [d%@],, = ~~~~~~~~~ is a nonresonant scattering tensor element. The 

maximum frequency shift is then 

The maximum speedup parameter occurs at the nonresonant Bragg peak: 

(7-6.34) 

1. (rsp/~) $L WP )I = - kO”L Im{s,“,w}awm (c:/cyw(l- @I (7-6.35) 

where the nonresonant Bragg peak is situated at 

Ae 
P 

= (l-b)Re{g=lm”res 
2b sin 20, 

(7-6.36) 
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due to the index of refraction shift. The angular width of the speedup parameter, 2]$&], is 
(full width at half maximum) 

Ae _ a1 - W~{zJW~~ 
n- bsin20, ’ 

(7-6.37) 

Because of the non-Lorentzian form of the reflected field, the quantities w, and r, 
no longer fully represent a frequency shift and speedup rate, but, for certain ranges of CX, , 
they do roughly describe the magnitude of these dynamical effects. The non-Lorentzian 
characteristics of the energy spectrum embodied by Eq. 7-6.29 can be seen in Figs. 7.6-l 
and 7.6-2 for various angles near the Bragg angle. The @-56Fe57Fe crystal examined 
earlier in Section 7-5 was used again in these calculations. Far from Bragg the energy 
spectrum asymptotically approaches the Lorentzian lineshape a single nucleus exhibits. On 
resonance and near the Bragg peak (which occurs at A@, = 16prads) the collection of 

- nuclei generate a field intensity with a cusp-like distribution and long tails centered at the 
natural frequency (this is where the Borrmann effect is predominant). 

Plots of Ati,( the centroid of the energy spectrum, and the energy at the peak 
intensity versus the angle from Bragg are shown in Fig. 7-6.3. The centroid and ok 
generally follow each other with discrepancies largest at the Bragg peak, and they converge 
to the energy of peak intensity at large deviations from Bragg (that is, deviations larger that 
two photoelectric Darwin widths--the photoelectric Darwin width for the a-s6Fe57Fe 
infinitely thick crystal is roughly 12prad for the [0 0 21 nearest order allowed photoelectric 
reflection). The energy shifts represented by tZo,(Ae) and the centroid maximize very 
close to the Bragg peak positioned at A@,--at about three-fourths of a microrad from the 
peak for fiw,(A8)-and.about lprad from the peak for the centroid. 

The angular position of the on-resonance Bragg peak is totally determined by 
photoelectric forward scattering since the real part of the resonant forward scattering 
amplitude goes to zero (note that the first term in Eq. 7-6.33 is the index of refraction shift, 

Ae,, for on resonance scattering). Therefore, the extrema of w,(Ae) are slightly shifted 

from A0, since nonresonant photoelectric absorption is generally much smaller than 

nonresonant scattering: (l- b)Im(p~(w)/kov)/2bsin28, = 3/4prad (note that b = -1, 
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Fig. 7-6.1. Diffracted field intensity versus deviation angle from Bragg and deviation 
from the resonant energy. 

Fig. 7-6.2. A replot of Fig. 7-6.1 over smaller energy and angle ranges. The non- 
Lorentzian energy distribution is now clearly observable along with homogeneous line 
broadening and resonant energy shifts for these energy and angle ranges. 
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Fig. 7-6.3. Plots of w,(Ae), the centroid, and the energy at which the diffracted Fig. 7-6.3. Plots of w,(Ae), the centroid, and the energy at which the diffracted 
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Fig. 7-6.4. Plots of speedup factors 2lQ,I and r,, and the full width at half maximum 
versus deviation angle. 
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0, = 4.9’, and ~Loo(o)/k,,, = (-2.8 + i0.13) x 10” for the [0 0 l] symmetric reflection of 
bee a--56Fe’7Fe having a lattice spacing of 5A). The energy shift seen by examining the 
energy at which the field intensity is maximized has extrema that are roughly 15 times less 
than that for o,(Ae) and peaks (at about 1 lprads) much further from the angular position 
of the on-resonant Bragg peak. 

From Fig. 7-6.4 one can also see that 2lQ,l+r approaches the full width at half 
maximum as the deviation angle progresses beyond half a photoelectric Darwin width. 
Thus, far off Bragg, the quantities w, and i(LI,,( b ecome good approximations for a 
frequency shift and speedup rate. 

The dynamical quantities w,, II,, and 2(SI,,l can be understood in another light by 
examining the diffracted intensity in the time domain. Fortunately, due to the efforts of 
Kahn,” an analytical expression for the Fourier transform of the diffracted field, 
Eq. 7-6.29, .has been evaluated through contour integral methods for the case where the 
frequency spectrum of the incoming field is constant: E,,,(W) = E0y(I (as is the case for a 
synchrotron beam). The integral of interest is 

where z() = (w, + 0,) - i( r + rJ2ti (7-6.39) 

and 

(7-6.40) 

(7-6.41) 

Re {z} 

Fig. 7-6.5. Contour for evaluating the Fourier transform of the diffracted field from an 
infinitely thick crystal. 
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Since Q,, is complex, the principal value of the square root in Eq. 7-6.41 must be 
evaluated. 

Since w, is much smaller that the natural frequency and Q,, 5 (us - ir8/2tt) when 
examining only the real and imaginary parts separately, an appropriate contour to integrate 
over is shown in Fig. 7-6.5 which has a branch-cut between the two branch points z1 and 
zz. For this contour where w is set to be complex valued 

(7-6.42) 

since there are no poles in the region between the closed contours IY, and r,. The integral 
over arc C’ of contour r, is zero by the Jordan Lemma (this can be seen by rewriting the 
argument of the integral in the form of a quotient of one over a polynomial of degree 1). 
The integral over the contour r, of the first term in the integral above also vanishes since it 
has no poles within the contour. Then 

(7-6.43) 

where Cl and C, are two circles each of radius r, and “/1 and “/z are two line segments on 
opposite sides of the branch-cut between the branch points z, and z2. For the integral over 
circle C, let z = z, + reie. Then, since 

the integral over C,-vanishes as r -+ 0 for t > 0. The same happens to the integral over the 
other circle C, . 

For the line segments let 

z=[yq+[qw. 
The principal value of the square root in the integral can then be expressed as 

(7-6.44) 

(7-6.45) 

Then, along ‘y, from zr to z2 the square root transforms to 

Jm = iQ:,JiT7 (7-6.46) 

when w is set to w = v.O a + ie where Ial 5 1. Similarly, w = F.O a - ir: along y2 from z2 
to z1 and thus 
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Then 

141 

(7-6.47) 

(7-6.48) 

With help from the integral tables in Abramowitz and Stegun,r4 the integral evaluates to 

The reflection channel field in the time domain is then 

(7-6.49) 

R,, ct) = ei(Lov+H)-rC E,ya~~e-i(Os+O')te-(r+r,)t/2*in, 'lpf) qt). (7-6.50) 
a sa 

The principal value of the square root expressed by &2:, has been dropped since 
J1 (Q:,t)/Q~at = JI (!&J)/G$~? (this can be seen by expanding the Bessel function in terms 
of a series expansion in Q:,t). Also, the + sign has been dropped because, as a result of 
the boundary conditions, the overall phase of the reflected field is indeterminable (though 
the phase can be determined when the reflection channel field interferes with another wave 
such as with the incoming field at the crystal surface). Examination of the reflected field 
reveals that it is frequency shifted by CO,, and the natural decay rate is modified by a 
speedup factor I’, resulting only from forward scattering and by a speedup factor Q,, 
resulting from diffraction. 

The reason for the non-Lorentzian frequency response of the reflected field has now 
been isolated to the dynamical beat and speedup factor J,(&2,,t)/Q,,t in the time response. 
As a result, a decay rate attributed to the entire time response is no longer possible. 
However, the time behavior of the reflected field simplifies in the limits of the Bessel 
function for large and small arguments.” For instance, in the short time domain when 

I I !&,t << 1 

(7-6.51) 

and the reflected field suffers a frequency shift, w,, and a speedup, r,, of the decay rate. 
In the long time domain when IQsat~ >> 1 
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RBIogg(t) = ei(k,+H).rCE,,a~~e-i(Ws+O')'e-(r+r=)l/2ri 
cos( SZ,,t - 3 x/4) 

3(t). (7-6.52) 
a f&G 

Since 

COS(~,at _ 3n/4) = (ei(Rc{“~l}-3~/4)e-‘“in,l) + e-iiRe{n,~t}-3~/4)e+~{n,=t})~ 

this long time limit exhibits both positive and negative frequency shifts and speedup and 
slowdown rates. However, since IIm(Q,,}I I lY,/2ti there are never runaway solutions in 
which the reflected field grows exponentially with time. In fact, for the case in which 
IIm{Q,,}I = lYJ2tt the reflected field reduces to 

(7-6.53) 

_ For this situation the reflected field intensity undergoes no frequency shift and decays faster 
than the natural decay rate by the factor l/t’. 

;_ 
For the intermediate case in which 1i2Satl is neither very large or small, an 

approximation of the decay behavior can be made using the result of the solution for the 
scattering channel field from an isotropic slab as a guide 

where @8)=1+2 14 
2 I&II + 25~ rads ’ 

(7-6.54) 

(7-6.55) 

Here, 68 is a measure of the angular deviation from the on-resonance Bragg peak 
(determined by the photoelectric index of refraction shift): 

se=Ae-Ae, (7-6.56) 

where A& is given by Eq. 7-6.36. For this estimate c(@) is a function that varies from 
unity to 2.5 as the deviation angle varies from the center of the Bragg profile to far from 
Bragg. The coefficient C(Se) rapidly varies from approximately 0.75 right on the Bragg 
peak to a plateau of 1.1 a few microrads from the Bragg peak. 

Plots of normalized reflected intensity versus time are shown in Figs 7-6.6 to 7-6.8 
for angular deviations from the Bragg peak of 0,50, and 200 prad respectively. 
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68 = Oj.lrads 

1 b, wL/2) f 

----- Short time approx. 
-_ - 

- -- -- - Intermediate time approx. 

---. - Long time approx. 

Time (in units of PJ~) 
Fig. 7-6.6. Plots ozf normalized Bragg intensity versus I!&tl (intensity is normalized by 
dividing by IQ,/21 ). Th e angular deviation from Bragg is 16prad--this is right on the 
Bragg peak. The speedup factors are 1/21!&,l= h/ilr= = 0.66 nsec . 

(a> 

0 0.5 1 

Time (in izts of i&i) 
2.5 3 
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(b) 

68 = 50prads 

lRBragg (f)/P,, PI1 __ - 

----- Long time approx. 

3.5 
I I I 

5.75 8 10.25 12.5 

Time (in units of I~,,fl) 

I I I I I I 

0 5 
Time’{n units ~f~QSJ~) 

20 25 

Fig. 7-6.7. The angular deviation from Bragg is 66prad--this is 50prad from the 
Bragg peak. The speedup factors are l/21QSu1 = 43 nsec and fi//rS = 2.8 psec. The 
dynamical beats are now apparent at long times as can be seen in Figs. 7-6.7 (b) and (c). 
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Fig. 7-6.8. The angular deviation from Bragg is 216prad--this is 2OOprad from the 
Bragg peak. The speedup factors are 1/2lQ,,l= 173 nsec and Pi/I’, = 45 psec. Far from 
Bragg the field intensity decays with nearly the natural lifetime. 

7.7 Dynamical Characteristics of Crystals with Hyperfine 
Split Spectra 

To date; all crystals examined for nuclear resonant scattering have hyperfine split 
spectra rather than single line spectra. If the resonant lines for a particular crystal are very 
close together, the effects caused by interference between the various lines must be 
carefully examined in addition to any frequency shifts and speedup rates of each individual 
line. This significantly complicates the problem of analyzing the dynamical characteristics 
of the reflected field (in addition, no analytical form of the Bragg diffracted intensity in the 
time domain has been found). 

If the resonant lines are far apart then the interference effects among the lines can be 

neglected, and the results of Sections 7.5 and 7.6 can be used for each individual line. For 
each individual line caused by a transition from an intermediate state In) to a final state If), 

the dynamical quantities us, rs, and Q,, are given by Eqs. 7-6.30, 7-6.31, and 7-6.32 
with substitution of r~‘/k,J, and I’~~/Ec& by 
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~~~*)/ko,L = $g dM(ki)LM(kf = ki)Crmd 
(j,m,LM( jflj,m,j2 poo 

(2ji + 1) 
ui (7-7.1) 

OV 

and 

l-l0 
sa(f4 I 

k,,L = yLM(ki)LM(‘,)Crrd 
(jf~fLJ+flj,Um.)2 plo 1 

“E,” - c 
-iH+, 

OV (2.ii + 1) 
-_ - 

(7-7.2) 
where Pz is a Polarization matrix described in Section 7-2. 

Plots of o,(A@ and 2lQ,,(A6)1 are shown below for three different crystals: 
a - Fe,O,, FeBO,, and YIG (only for the dl-site). All these crystals have been used for 
nuclear resonant scattering experiments, and they all exhibit hyperfine split six line spectra. 
They can all be grown with enriched 57Fe atoms, and they all have the property, because of 
either antiferromagnetic ordering or a ferromagnetic sublattice structure, where 
photoelectric diffraction for certain lattice planes is forbidden whereas resonant nuclear 
diffraction is allowed. The plots where constructed for the case in which the polarization 
matrix Pz diagonalizes: there is an applied magnetic field oriented perpendicular to the 
scattering plane. For lines (.4,~2,~~,~4,P5,&,), Re(cf&), = (3/16a)cos2~,(1,0,1,1,0,1) 
for incoming horizontally polarized fields, and (ct)nc = (3/16~)(0,2,0,0,2,0) for 

60 
-1 
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80 
----- lines 
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(c> 
Fig. 7-7.1. Homogeneous line broadening parameter, or decay rate speedup factor, for 
the various hyperfine split lines of:(a) a - Fe,O,, (b) FeBO,, and (c) YIG. 
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Fig. 7-7.2. Resonant frequency shift for the various hyperfine split lines of: (a) 
a - Fe,O,, (b) FeBO,, and (c) YIG. 

lines (~1,~,,~,,1,,~,,~,) are (1,2/3,1/3,1/3,2/3,1). The Lamb-Mossbauer and resonant 
enrichment factors have been set to unity: LM(ki)L,(kf) = 1 and C = 1. The resonant 

energy is 14.4125 keV, the resonant linewidth is 4.67 x lO+ eV, and ji = l/2. The [1 111 

reflection from a-- Fe,O, and FeBO, have Bragg angles of 5.4” and 5.1” respectively. The 
Bragg angle of the [0 0 21 reflection from YIG is 4.0”. 

Since the photoelectric absorption due to the spectator oxygen atoms is small 
compared to the iron atoms for a -Fe,O, and FeBO,, the extrema in the frequency shift 
and speedup parameter characterized by Eqs. 7-6.34 and 7-6.35 are nearly identical as can 
be seen in Figs. 7-7.1 (a) and (b) (the extrema are naturally independent of unit cell volume 
and crystal thickness, but, if the photoelectric absorption of the spectator atoms is 
completely neglected, they also become independent of the number of resonant nuclei per 
unit cell). However, YIG has many more spectator atoms (32 other iron atoms, 24 yittrium 
atoms, and 96 oxygen atoms). The photoelectric absorption from these spectator atoms 
significantly limits the maximum frequency shift and speedup. 

The angular range over which there is a moderate speedup is described by 
IQ. 7-6.37. By decreasing the Bragg angle (such as by increasing the lattice spacing) or by 
increasing the photoelectric absorption (such as by increasing the number of resonant nuclei 
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per unit cell), the angular range for moderate speedup can be greatly extended. However, 
increasing the photoelectric absorption by increasing the number of spectator atoms instead 
of the number of resonant nuclei will decrease the maximum speedup. 

7.8 Numerical Solutions of the Li,ne.arized Dispersion 
Relations 

The analytical two beam solution of the linearized dispersion equation was possible 
because the polarization matrices were diagonal for a particular eigenpolarization basis. 
The dispersion equation decoupled into two relations for each eigenpolarization, and this 
resulted in simple analytical solutions for the transmitted and diffracted fields. The 

- ei,genpolarizations for nonresonant photoelectric scattering are the sigma and pi 
polarizations since mainly Thomson scattering occurs. For resonant magnetic dipole 
scattering with an applied magnetic field perpendicular to the scattering plane, the 
eigenpolarizations are also the sigma and pi polarizations. When the applied magnetic field 
is parallel to the scattering plane and horizontally oriented (Case 3 in Section 5.1) the 
eigenpolarizations are the right and left circular polarizations (however, a polarization 
matrix must be reconstructed in this basis since the polarization matrices in the linear basis 
represented by Eqs. 5-1.19 and 5-1.20 no longer apply). 

In general eigenpolarizations for resonant scattering are not easy to find for an 
arbitrary orientation of the quantum axis. Therefore the polarization matrices are usually 
constructed in a simple polarization basis (such as the sigma and pi basis), and then one 
proceeds to solve the dispersion equations (which may no longer be uncoupled) through 
numerical techniques. This involves solving the characteristic eigenvalue equation 
expressed in Eq. 7-4.19 where 

2 (kc Glin= ;m -ba,) 8: sz 8 01 
YX YX g,” 

01 
g * YY 

(7-8.1) 

The G,,-matrix is a 2n x 2n matrix where n is the number of scattering channels (or beams 
as it is termed in the literature). For the two-beam case G,, is a 4 x 4 matrix, but when 
there are many umveg, or simultaneous, reflections G,, can rapidly become very large to 
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the point where a fast computer is a necessary tool for solving the characteristic equation. 
Resonant umveg reflections are not explored in this paper, thus the largest G,,,-matrix 
investigated is the Iinearized 4 x 4 matrix shown above. With the help of readily available 
computer programs (such as EISPACK or the NAG eigenvector-eigenvalue routines) 
numerically solving the dispersion equation for both the eigenvalues and eigenvectors is a 
straightforward procedure. However, insight into the dynamics of the scattering process is 
lost. This insight can be partly recovered by examining simple analytical solutions such as 
those presented in Sections 7-3 to 7-7. 

When the incoming photon beam is near the surface grazing angle of the crystal, the 
boundary conditions described in Section 7-4 are no longer adequate--the specular 
reflection off the crystal surface is no longer negligible. One must now properly insure that 
the normal components of the D and B fields and the tangential components of the E and 
H fields of the Maxwell equations are continuous across the top and bottom surfaces of the 
crystal. When this is done for the two-beam case, instead of having 4 eigenvalues to solve 
for, there are now 8 to find. Four come from solving the characteristic equation in 
Eq. 7-4.19, and four more come from solving two separate dispersion equations describing 
fields propagating through the crystal that have been internally reflected from the top and 
bottom surface of the crystal. The continuity boundary conditions yields 16 equations 
(eight involving the transmission channel eigenwaves and eight involving the reflection 
channel eigenwaves). They can be reduced to 8 equations by eliminating the exiting fields 
and the specularly reflected field. I5 Resonant grazing angle scattering from crystals is also 
not explored in this thesis. 

7.9 Nonlinear Dispersion Equation 

The linearized dispersion equation is valid in the limit of finite and nonzero 
asymmetry factors. As b + 0 or as b +&-=J (that is, when the forward scattered or 
diffracted field propagates nearly parallel to the crystal surface), the nonlinear dispersion 
equation presented in Eq. 7-1.4 may be required. This involves finding the solution to a 
quadratic characteristic equation.15 

Projecting the wavectors within the crystal onto unit vectors normal and parallel to 
the crystal surface ( fi and G respectively) produces a nonlinear characteristic dispersion 
relation in terms of the projection of the transmission channel wavector onto the surface 
normal: 
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$,,=k,-ii. 

Noting that k, = k, + H, (Bragg’s law) gives 

k, - k,/k& = k,2, +k,,(2H,,/k,,)+(H,,/k,“)’ + k;“s. 

The quadratic characteristic relation is then 

(k$B2 + k,,B, + 8, - G)u = 0 
-- - where 

-1 

B ’ 
-1 

0 =I 

I0 

(&,/%J2 + G 

(7.9) 

(7-9.1) 

(7-9.2) 

(7-9.3) 

(7-9.4) 

By defining an eigekector o such that 

‘u = koho (7-9.5) 
* allows the quadratic characteristic equation to be modified to 

kohB,B+ + (B, - G)B;‘k,,o = -kitiu. (7-9.6) 
This relation becomes linear in koh when both sides of the equation are divided by that 
parameter. The new linear characteristic equation to be solved for is then 

(Q - k,,I)b = 0 (7-9.7) 

where Q = -BIBi -(B, - G)B;’ 
I 0 (7-9.8) 
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(7-9.9) 

and I is the identity matrix. 
Since the B and G-matrices are of order 4, the Q-matrix is of order 8. Then the 

linear characteristic equation will give 8 eigenvalues, k&, and eigenvectors, b’. The first 
four elements of the eigenvector bf yields ‘u’ which is the desired eigenvector for the 
nonlinear dispersion equation. The bound-&conditions are found by the same method 
explained in Section 7.8: ensuring that the normal components of D and B and the 
tangential components of E and H are continuous across the crystal interfaces. Instead of 
there being 16 eigenwaves inside the crystal that exists for the linearized dispersion relation 
with simple boundary conditions, there are now 32 eigenwaves traveling inside the 
crystal--l6 for each polarization and 8 for each scattering channel direction. 

When examining highly asymmetric reflections (which are also not explored in this 
thesis) one may need to solve the nonlinear dispersion equation rather that the linearized 
dispersion equation. 

7.10 Umweganregung, or Simultaneous, Reflections 

In the previous sections only 2-beam diffraction was investigated. However, 
n-beam diffraction from a crystal can occur when more than one set of crystal planes reflect 
the incident beam into the same outgoing direction. These umweganregung (umveg for 
short) reflections occur simultaneously with the primary reflection. The Ewald sphere for a 
3-beam diffraction case is shown in Fig. 7-1.1. In the figure, k, is shown to scatter into 
the k, direction due to planes having a primary scattering vector H . Simultaneously, k, is 
scattered into the k, direction due to planes having a scattering vector S, and then k, is 
scattered into the k, direction due to planes having a scattering vector H - S. 

Bragg’s law for satisfying both the primary H reflection and the secondary S 
reflection can be obtained by studying the scattering geometry shown in Fig. 7- 10.1. The 

scattering plane (ir ,G) consists of k,, H, and k,, and H points in the i-direction. S is a 

secondary reciprocal lattice vector that makes and angle 0, with respect to H : 

~=sinB,cos~jc+sinB,sin~~+cos8,i. (7-10.1) 
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S 

---- 

(7.10) 

Fig. 7-10.1 Scattering geometry for 3-beam diffraction. 

The Bragg angle between H and k, is 90°-#, and the Bragg angle between S and k, is 
90°-ei. Then, from Fig. 7-10.1, 

A 
sin0~=kH-6=sin8~cos8~+cos8~sinB,sin~. (7-10.2) 

Bragg’s law for each of the separate reflections is (recall Eq. 7-4.17) 
sin e,H = AcH/2 EB and sin 0: = tzcSj2E,. (7-10.3) 

The azimuthal angle for which both of these reflections occur simultaneously is then 

sin@ = 
2 E, 

and the energy at which this occurs is 

(7-10.4) 

(7-10.5) 

Umveg reflections can show up as undesirable glitches in crystallography 
experiments. Or, they can be useful as precise energy calibration markers. As a result, 
knowledge of the intensity of umveg reflections is valuable information. As a first order 
approximation, the intensity of an umveg reflection is proportional to the product of the 

structure factors of the umveg’s two sets of reflections: 
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I umvcg = wii-, (7- 10.6) 

where F is the structure factor of a unit cell (see Eqs. 6-1.4 and 6-1.5).16 More about 
these umveg reflections are discussed in Section 9.5 where they are used as energy 
calibration markers and where 9 -energy graphs are constructed to chart out the regions that 
should be avoided. 
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8. NUMERICAL ANALYSIS PROCEDURES 

8.1 Crystal Structure of Fe,O,, FeBO,,and YIG 

The principle crystals used in the field of ntuclear resonance scattering have been 
hematite (a- Fe,O,), l-4 rhombohedral iron borate (FeB0,),5-7 yittrium iron garnet 
(YIG) ,** 9 and orthorhombic iron borate (Fe,BO,) lo, * 1 (and, to a lesser extent, potassium 
ferrocyanide (K,Fe(CN), - 3H,O), * * sodium nitroprusside (Na,Fe(CN), NO - 2H,O) ,l 3 
157Te crystals,t4 and mosaic ‘19Sn crystal@ -- these crystals have very large mosaic 
spreads, and perfect crystals of these compounds are difficult to fabricate). All these 
crystals (except for the mosaic ‘19Sn crystals) have the feature that, for certain 

- crystallographic reflections, nonresonant photoelectric diffraction is forbidden whereas 
resonant nuclear diffraction is allowed. l6 This feature allows the nonresonant background 
to be significantly reduced in order to observe the nuclear signal. 

a- Fe,O, and FeBO, both have a rhombohedral calcite crystal structure (space 
group R% - D;,)17-19 and exhibit a canted antiferromagnet system20-23 (see Fig. 8.1-1). 
They each have two molecules per unit cell which lead to the formation of magnetic 
sublattices below the NCel temperature (948°K for a-Fe,O, and 348°K for 
FeBO,).*O* 23 The magnetic moments lie within the (1 1 1) plane with two adjacent planes 
being antiferromagnetically coupled (however, below the Mot-in temperature of 253” K the 
a-Fe,O, magnetic moments align themselves perpendicular to the (1 1 1) planes24). 
Because the antiferromagnetic moments are canted, there is a small ferromagnetic moment 
lying within the (1 1 1) plane. The ferromagnetic moments will align themselves parallel to 
an external magnetic field, therefore, an applied external magnetic field can be used to 
orient the antiferromagnetic moments (an alignment field of about 1 kGauss25* 26 is needed 
for a- Fe,O, and only several Gauss (- 5Gauss)*** 27 is needed for FeBO,). 

Because of the antiferromagnet sublattice structure, resonant nuclear reflections are 
allowed from certain lattice planes whereas photoelectric reflections are forbidden. For 
instance, from planes A and B for the crystals in Fig. 8.1-1, the electric fields are reflected 

180” out of phase. However, since the magnetic moments lie in nearly antiparallel 
directions for the two planes, the polarization of the reflected fields for each hyperfine line 
for the two planes is different (for perfect antiferromagnets, the polarizations are 

156 
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Fig. 8.1-l. Antiferromagnetic structure of (a) a-Fe,O, and (b) FeBO,. The electric 
field gradients lie perpendicular to the (1 1 1) planes. Planes A and B have magnetic 
moments in antiparallel directions. 
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B Planes 

Fig. 8.1-2. Hyperfine energy spectrum illustrating the case where theapplied magnetic 
field is perpendicular to the scattering plane (only hyperfine lines 1,3,4, and 6 are then 
possible). For small canting and Bragg angles, the polarization of each hyperf$e line-of 
the reflected field can be approximated as right and left circularly polarized: e- and e,. 
Since the internal hyperfine fields are identical for the iron atoms in the A and B planes 
(except for the direction of the internal magnetic fields), the hyperfine lines from the two 
planes overlap with a 180” phase difference due to the position of atoms within the unit 
cell. However, due to polarization differences, there is no cancellation of the fields 
reflected from the two planes. 

orthogonal--see Fig. 8.1-2). Complete cancellation of the reflected fields is then no longer 
possible. 

YIG (Y,Fe,O,,) is the crystal examined in this thesis. Even though it has a cubic 
crystal structure, its unit cell is much more complex than the rhombohedral structure of the 
other crystals. YIG belongs to the space group Ia3d - OF, and it has 96 03- ions located at 
the h-sites, 24 Y*+ located at the c-sites, and 40 Fe3’ ions located at the 
(I and d - sites.** During the 1960’s and 1970’s when magnetic bubbles appeared to be a 
promising way to ‘store megabytes of information, the technology was developed to grow 
high quality YIG crystal films on GGG (gadolinium gallium garnet) substrates by liquid- 
phase epitaxy methods. Because these YIG films can be grown nearly free of dislocations 
and other crystal defects and with very uniform lattice spacings, YIG is an attractive choice 
for nuclear resonant diffraction experiments. 

YIG is a ferrimagnet below the Curie temperature of 559°K for ceramic materials 
and 549.2”K for YIG films grown from PbO - V,O, fluxes.29 The easy direction of 
magnetization is the [l 1 l] direction, though alignment fields of 100 Gauss are sufficient to 

orient the magnetic moments to the [OOl] direction. The d - site iron atoms are surrounded 
by a distorted oxygen tetrahedron stretched along a fourfold inversion axis oriented in the 
[OOl] direction, and the u - site iron atoms are surrounded by a distorted octahedron 
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:iii] 

a4 - site 
Fig. 8-1.3. Orientation of magnetic moments, ($1, and electric field gradients, (31, for 
the seven magnetic sublattices of YIG. To orient the magnetic moments, there is an applied 
magnetic field in the [OOl] direction. 

stretched along a threefold symmetry axis oriented in the [l 1 l] direction. The electric field 
gradients formed within these distorted oxygen polyhedra lie along the symmetry axis. The 
seven ferromagnetic sublattices within the YIG unit cell are shown in Fig. 8-1.3 with the 

orientation of the magnetic moments and electric field gradients.30p 31 
For the experiments done in this thesis, crystal planes were chosen where all the 

a - site reflections were forbidden and all the d - site reflections were allowed except for 
the d3 - site. Therefore, ferromagnetic ordering was utilized to examine nuclear resonant 
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scattering instead of antiferromagnetic ordering as was used for the a- Fe,O, and FeBO, 
crystals. Nonzero reflected fields now occur because of different electric quadrupole shifts 
between the d-sites rather than because of polarization differences that occur for 
antiferromagnetic crystals (See Fig. 8-1.4). 

(1) (3) (4) (6) 

dl - site 

I 1 I I 
M= -11 1 I-11 d2 - site 

I I I 
e- e, e- 

Fig. 8-1.4, Hyperfine energy spectrum illustrating the case where the a&lied magnetic 
field is parallel to the scattering plane. 32 For small Bragg angles the polarization of each 
hyperfine line can be approximated as right and left circularly polarized: 6- and 6,. The 
magnetic moments of the two sites are parallel, but the electric field gradients are in 
perpendicular directions. This introduces small differences in the electric quadrupole field 
which show up as different quadrupole shifts in the hyperfine lines for each d - site. 

. 8.2 Crystallography 

To orient a general crystal for diffraction, an orientation matrix must be found that 
can perform the transformation of a vector in reciprocal space to an orthogonal lab 
coordinate system. Let there be a vector v in reciprocal space with basis axes (&*,I;‘,?*): 

v = hTf* = hi* + &’ + et’ (g-2.1) 

where i’ = &* + b* + C* is a unit radial vector in reciprocal space and hT = (h,k,.t) is a row 

vector containing the Miller indices, or reciprocal space coordinates, of the reciprocal vector 

V. Let the laboratory system have a fixed orthogonal basis (iL,eL,iL) (see Fig. 8-2.1). 

The problem is then to find the components of v in the lab space. 
A solution can be found if there are three known reflections from the crystal. Then 

there are three reciprocal vectors v,, v,, and V, which are known to point in some 
direction in lab space--their components in lab space are then known. This is summarized 
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Fig. 8-2.1. Vector VAT reciprocal and lab space. 

by the following relation:33 

or H;iL = HTi’ (8.2-2) 

(the superscript T denotes the transpose of the matrix, and vectors are always column 
vectors). The coordinate axes then transform as 

F, = U’i’ (8-2.3) 

where lJ’= (H;)-lHT. (8-2.4) 

From Eqs. 8-2.2 and 8-2.3, one also gets a relationship detailing how the 
coordinates transform: 

hT,U’=hT (8-2.5) 

which leads to 

h, = (U’-‘)T h (8-2.6) 

or h,=Uh (8-2.7) 

where U = H,H-’ . (8-2.8) 

As expected, the coordinates transform in an inverse way to the axes since UT = U’-‘. 
Thus, from a knowledge of the elements of H, and H-’ for three reciprocal vectors, the 

components of any reciprocal vector can be obtained in terms of lab coordinates by using 
Eq. 8-2.7. 

The determination of the orientation matrix can be simplified if a primary reflection, 

h,, is known and a secondary reflection, h,, lies in the scattering plane such that 

h, -k, > 0 where k, is the scattered wavector of the primary reflection (see Fig. 8-2.2). 
The third reciprocal vector can be found by taking the cross product between the primary 
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Fig. 8-2.2. Orientation geometry for diffraction. ki, k,, h,, h,, GL ,and f, all_lie in the 
scattering plane. k, diffracts from planes perpendicular to h,, h, is parallel to z,, X, is 

to the scattering plane, and S is the outward surface normal of the crystal. 
lab system is fixed in space and never rotates--same for ki since it comes from 

a fixed source. h,, h,,k,, and s all rotate with crystal as it is oriented in space. h is the 
desired reflection and is always eventually oriented to lie in the ir, -direction. 

and secondary reciprocal vectors. Cross products can be done only in spaces with an 
orthonormal basis, therefore, for crystals with noncubic structure, such as rhombohedral 
crystals, one must project the reciprocal basis onto an orthonormal basis, then take the 
cross product, and then broject the results back into reciprocal space. The matrix that 
transforms a reciprocal.vector to an orthogonal space with basis (j&,9,,&) is34* 35 

B= 
‘a* b* cos y* c* cog* 
0 b*sin y* -c* sinp’ cos a 
0 0 l/c 

(8-2.9) 

a sin p sin y* -asinpcos y* acosp 
B-l= 0 

i 

bsina bcosa (g-2.10) 

0 0 C 1 
where ( 1 5,6, E are the direct crystal axes with interaxis angles a, /3, y where cos a = 6 - 2, 

cosp=i:.i, cosy=i-6, and (6*,6*,C*) are the reciprocal lattice axes with interaxis 
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reciprocal angles a*, j3’ , y* defined in a similar manner. In the orthogonal space ic,, 90, 
i’ , and $ all lie in a plane perpendicular to &, , and i’ is parallel to i,. 

A third reflection is then 

h, = h, x h, = B-‘[(Bh,)x (Bh$)]. (8-2.11) 

From Fig. 8-2.2, the lab coordinates of the reciprocal vectors can easily be seen. The 
primary reflection is in the &,-direction, the third reflection is in the i,-direction, and the 
secondary reflection is 

- - 

h, = bsl( sin t?,,j, + cos OPSfL) (8-2.12) 

where cos 6ps = hp - h,/~hpl)h,l. (8-2.13) 

To take the dot product of two vectors in a nonorthogonal basis, the two vectors must again 
be transformed to an orthogonal space in which the dot product can be properly taken: 

h, -h, = (Bh$ - (Bh,). (8-2.14) 

Note that the dot product relationship gives the metric for reciprocal space: 

BTB=[;;;!; i;;i :“-fll& (8-2.15) 

The dot product can then be written in the familiar way for the dot product of two vectors 
within a space defined by a metric G : 

h -h =h G”‘h 
P s PP S” (g-2.16) 

where h,;and. h,, are the covariant components of the vectors h, and h, (that is, they are 
the components of those vectors in reciprocal space), and G”” are the contravariant 
elements of the metric for the direct crystal axes space (that is, they are the elements of the 
reciprocal space metric G-l). The cross product given in Eq. 8-2.11 can also be written in 
terns of the metric as36 

(hp x h,), = G,&ykhpjhsk (g-2.17) 

where ctik is the contravariant antisymmetric tensor for a space with metric G-* : 
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[ $iqq if i, j, k is a cyclic permutation of 1,2,3 

&‘it = 
I 
-$qq if i, j, k is a cyclic permutation of 2,1,3 (8-2.18) 

0 otherwise 

and GLi are the covariant elements of the metric for the direct crystal axes space (that is, 
they are the elements of the metric G ) . 

The orientation matrix U can now be constructed since H, and H are completely 
determined: 

0 0 I 4 I 
H, = i 0 Ih,lsin 0p 0 

lhpl Ihslcos8, 0 

and U = H,H-‘. 

I (8.2- 19) 

(8-2.20) 

(8-2.21) 
The Fortran code, Orient-tryst, embodying all of this section’s discussion on 

orienting a general crystal follows. The subroutine uses the same framework as Busing 
and Levy’s Algol program designed for 3 and 4-circle diffractometers.35 In addition to 
what has been discussed, the subroutine can perform rotations about the desired reflection, 
h, and rotations about the incoming photon direction, ki, that preserve the Bragg 

condition. 
The subroutine must be linked with another subroutine package called 

EIS-LIN-PACK. This package contains the popular LINPACK code for solving 
simultaneous equations and the EISPACK code for solving eigenvalue problems.37* 38 
They were obtained from the National Energy Software Center at Argonne National 
Laboratory. The subroutine Lineq in LINPACK was used to find the inverse matrix H-’ 

for constructing the orientation matrix. 
In the Fortran code below, and in the EWALD code that follows later, to preserve 

space, several lines of code are piled up onto a single line. A semicolon (never used in 
actual Fortran code) separates each line of code. 
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Subroutine Orient_cryst(Ee,a,alpha,hp,hs,h,S,Uo,sigmai,pii,sigmaf,pif,b) 
c This Subroutine sets up the Crystal Orientation for Diffraction. Uo is the Net Orientation Matrix -- to 
c Transform any Reciprocal Lattice Vector to the Orthogonal Lab Coordinate System, Operate Uo on it: 
c V-lab = Uo(dot)V-recip. 
c VARIABLES: 
c a(i) P Crystal Lattice Spacings a,b,c (cm) ; alpha(i) I Crystal Lattice angles alpha,beta,gamma (deg) 
c Vo = Unit Cell Volume (cm”3) ; Ee = Incoming Photon Energy (Ev) ; hp,hs = Primary and Secondary 
c Reciprocal Lattice Vectors ; S = Outward Surface Direction ; h = Desired Reciprocal Lattice Scattering 
c Vector ; Ki,Kf = Incoming and Diffracted wavectors (l/Angstrom) ; sigma,pi = sigma and pi 
c polarization vectors ; Bragg P Bragg Angle (radians) ; b = Asymmetry Factor 
c PhiKiphiH I azimuthal rotation angles about Ki and h directions (deg) 
c psi P azimuthal rotation angle about h after azimuthal rotation about Ki has been done. 
c NOTE: 
c(1) The Lab coordinate system is determined by Ki and its polarization vectors. 
c(2) PhiKi = rotation of a plane perpendicular to Ki direction. For example, phiKi = 90 deg ==> h rotates 
C from Lab-z to a vector lying in [Lab-x,Lab_y] plane. PhiH = azimuthal rotation of plane 

: LINK: 
perpendicular to h direction. PhiKi,PhiH rotations both preserve Bragg’s Condition. 

Link with EIS-LIN-PACK 
c D.E.Brown 1990 (SSWSTANFORD) 

Real’8 “Everything possible** (all Matrices are 3x3 arrays) 
Common /stup/ hbarc,sinBragg,Vo,phiKi,phiH,psi,Ki,Kf,kis 
Common /Lab/ x-Lab,y-Lab,z-Lab ; Common /conv/ rad,pi 

c Construct a matrix Bo that transforms from non-orthogonal axes to an orthogonal axes system. 
c Boi is the inverse of Bo. 

Call Generate-Bo(a,alpha,Vo,Bo,Boi) 
c Determining angle between hs and hp which gives orientation of hs in Lab coordinate system 

Call General-Dot(hp,hp,Bo,hpp) ; Call General-Dot(hs,hs,Bo,hss) 
Call General-Dot(hp,hs,Bo,hps) ; Call General-Dot(S,S,Bo,ss) 
hpp = Dsqrt(hpp) ; hss = Dsqrt(hss) ; ss = Dsqrt(ss) 
cosps = hps/(hpp’hss) ! angle between hs and hp ; sinps = Dsqrt(1 .OdO - cosps”2) 

c To construct a third vector, take cross product of hs and hp 
Call General_Cross(hs,hp,Bo,Boi,h3) ; Call GeneraldDot(h3,h3,Bo,h33) ; h33 = Dsqrt(h33) 

c One can now construct the Orientation Matrix U that transforms any vector in reciprocal coordinate space to 
c the Lab coordinate space. Note that: hp is in Lab-z direction, hs = cosps(Lab-z) + sinps(Lab_y), and h3 is in 
c Lab-x direction. 

Call Lab_Vectors(hpp,hss,h33,sinps,cosps,hplab,hslab,h3lab) 
Call Orientation(hp,hs,h3,hplab,hslab,h3lab,U) 

c Computation of the Bragg angle of the Desired Reflection. Note that hmag = 1 .O/d(hkl) , 
c where d(hkl) = interplaner spacing for indices h,k,l (units = angstroms) 

Call General Dot(h,h,Bo,hmag) ; hmag = Dsqrt(hmagj 
sinBragg = pi’hbarc’hmag’l .Od8IEe ; cosBragg IP Dsqrt(1 .O - sinBragg”2) 

c The h reflection is desired. Then rotate h so that is is pointing in the Lab-z direction--h will point in the 
c direction hp used to be directed. To Do this, transform h to Lab system, h --> Uh = hLab. From its polar and 
c azimuthal angles, one can now rotate h to point in the Lab z direction--and one can rotate all of the other 
c vectorsattached to the crystal system with rotatation matrix Rz. 

Call Mv(U,h,hLab) ; Call Polar(hLab,x-Lab,y-Lab,z-Lab,theta,phi) ; Call Generate-Rz(theta,phi,Rz) 
c Now, the crystal can be rotated about h and Ki and still preserve the Bragg condition. The Rkh matrix 
c performs this rotation. First the crystal is rotated azimuthally about h, and then azimuthally about Ki. The 
c Rpsi matrix performs an addition azimuthal rotation about h after the rotation Rkh has been done (necessary 
c only when a rotation about Ki has been done). Uo is the Net Orientation Matrix. First it transforms reciprocal 
c lattic vector to Lab system. Then it rotates it by Rz in aligning h to point in the +z-Lab direction. Then it 
c makes Rkh Bragg preserving rotation. 

Call Generate_Rkh(phiH’rad,phiKi’rad,cosBragg,sinBragg,Rkh) ; Call MM(FtzUdum2) 
tf(phiKi .Eq. 0.0) Then ; Call MM(Rkh,dum2,Uo) ! Uo is the Net Orientation Matrix 
Else ; Call Generate-Rpsi(psi’rad,Rz,Rkh,hLab,Rpsi) ; Call MM(Rkh,dum2,dum3) ; Call MM(Rpsi,dum3,Uo) 
Endif 

c The Diffracted wavevector can now be determined from Bragg’s law h = Kf - Ki, as well as the asymmetry 
c factor b = ki(dot)n/Kf(dot)n where n I inward surface normal. 

Call Mv(Uo,h,hLab) ; Call Mv(Uo,S,SLab) ; Ko = Ee’l.Od-8/hbarc 
Do 1 l=1,3 

Ki(i) = Ko’(cosBragg*y-Lab(i) - sinBragg’z_Lab(i)) ; Kf(i) t 2,0’pi’hLab(i) + Ki(i) 
1 pii = sinBragg’y_Lab(i) + cosBragg’z_Lab(i) ; sigmai = x-Lab(i) 

Call Cross(Kf,z-Labsigmafnorm) !diffracted sigma polarization 
Call Cross(sigmaf,Kf,pif,norm) !diffracted pi polarization 
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Call Dot(Ki,SLab,kis) ; Call Dot(Kf,SLab,kfs) ; b = kis/kfs ; kis = kis/(ss’Ko) 
Do5 1=1,3 

5 Ki(i) = Ki(i)n<o ; Kf(i) = Kf(i)/Ko 
Return 
End *t*****.*.*.**..t******~*****..*.**.****..***~~.**.*~.....****~**.***~*****..*.*.***...~*.****.****.*..***.*.**~ 

Subroutine Generate-Rz(theta,phi,Rz) 
c This subroutine rotates crystal so that the desired reciprocal lattice scattering vector is in the Lab-z direction. 
c Rz = the rotation matrix that does this. First, crystal is rotated azimuthally by phi so that desired vector lies in 
c (+x-Lab,+z-Lab) plane. Then, crystal is rotated polarly by theta so that the vector lies points in the +z-Lab 
c direction. 

cost = Dcos(theta) ; sint = Dsin(theta) ; cosp = Dcos(phi) ; sinp = Dsin(phi) 
Rz(1 ,l) = cost’cosp ; Rz(2,l) = -sinp ; Rz(3,l) = sint’cosp 
Rz(l,2) = cost’sinp ; Rz(2,2) = cosp ; Rz(3,2) = sintSinp- 
Rz( 1,3) = -sint ; Rz(2,3) = O.OdO ; Rz(3,3) = cost 
Return *ttt..t*t~.****....*...*.~.**~*****..******....*******.~**~~.*~**~*.**...****~.*.*~*..*~*~*****~*****..~******** 

Subroutine Generate-Rkh(pH,pK,cosb,sinb,Rkh) 
c This subroutine constructs Rotation Matrix Rkh that performs Bragg-preserving rotations first by pH about 
c the reciprocal scattering vector and then by pK about the incident photon direction. All rotations obey right 
c hand rule. 

cash = Dcos(pH) ; sinh = Dsin(pH) ; cask = Dcos(pK) ; sink = Dsin(pK) 
Rkh(1 ,l) = cosk’cosh + sinb’sink’sinh ; Rkh(2,l) = -sinb’sink*cosh + (sinb**2*cosk + cosb”2)*sinh 
Rkh(3,l) = cosb’sink’cosh + cosb’sinb’(cosk - 1 .OdO)‘sinh 
Rkh(l,2) = cosk’sinh + sinb’sink*cosh ; Rkh(2,2) = sinb’sink’sinh + (sinb”2’cosk + cosb”2)‘cosh 
Rkh(3,2) = cosb’sink’sinh + cosb’sinb’(cosk - l.OdO)‘cosh 
Rkh(l,3) = cosb’sink ; Rkh(2,3) = cosb’sinb’(cosk - 1 .OdO) ; Rkh(3,3) = cosb”2’cosk + sir-W.2 

Return .*.*t**.*****t**.*.t**~***~*~**.*....*,*~.~****.****.**~**.***~******~**~*.***..***.*****************.********.* 

Subroutine Generate-Rpsi(psi,Rz,Rkh,h,Rpsi) 
c This subroutine does a crystal plane normal rotation--that is, a rotation about the scattering vector h. The 
c Zsdirection is in the h-direction, Xs = h(cross)z-lab, Ys = h(cross)Xs. 

Call Mv(Rz,h,dum) ! Rotate h to Lab-z direction ; Call Mv(Rkh,dum,h) ! Rotate h around itself and Ki 
hx = h(1) ; hy = h(2) ; hz = h(3) ; dl = Dsqrt(hx”2 + hy”2) ; d2 = Dsqrt(hx”2 + hy”2 + hz”2) 

c Transform to [Xs,Ys,Zs] system 
R(1,l) = hy/dl ; R(2,l) = hz’hx/(dl l d2) ; R(3,l) = hx/d2 
R(1.2) = -hx/dl ; R(2.2) = hz’hyI(dl”d2) ; R(3,2) = hy/d2 
R(1,3) = O.OdO ; R(2.3) = -(hx”2 + hy’*2)/(dl l d2) ; R(3,3) = hz/d2 

c Perform azimuthal psi rotation in [Xs,Ys] plane (right-handed sense) 
Rpsi(l,l) = Dcos(psi) ; Rpsi(2,l) = Dsin(psi) ; Rpsi(3,l) = O.OdO 
Rpsi(l,2) = -Dsin(psi) ; Rpsi(2.2) = Dcos(psi) ; Rpsi(3,2) = O.OdO 
Rpsi(l,3) = O.OdO ; Rpsi(2,3) = O.OdO ; Rpsi(3,3) = l.OdO 

c Inverse Transform back to Lab [Note that R(inverse) = R(transpose) since R is an orthogonal matrix] 
RT(l,l) = hy/dl ; RT(2,1)=-hx/dl ; RT(3,1)= O.OdO 
RT( 1,2) = hz’hx/(d 1 l d2) ; RT(2,2) = hz’hyI(dl’d2) ; RT(3,2) = -(hx”2 + hy**2)/(dl ‘d2) 
RT(1,3) = hxld2 ; RT(2.3) = hyld2 ; RT(3,3) = hz/d2 
Call MM(Rpsi,R,duml) ; Call MM(RT,duml ,Rpsi) 
Return 

Subroutine Generate-Bo(a,alpha,Vo,Bo,Boi) 
c This subroutine generates the matrix Bo that transforms crystal reciprocal lattice vectors from their crystal 
c bases system to an orthogonal coordinate system. In this way dot and cross products of reciprocal lattice 
c vectors can be performed. 
c VARIABLES: 
c b(i) = Reciprocal Lattice Spacings a’,b’,c’ (l/cm) ; cosb(i) = Cosine of Reciprocal Lattice Angles 
c alpha’,beta’,gamma* ; Boi(i,j) = Inverse of Bo(i,j) ; Vo = Volume of Unit Cell (cm”3) 

Common /conv/ rad 
Do 1 1=1,3 

a(i) = a(i)*1 .Od8 ! Conversion from cm to Angstroms ; cosa(i) = Dcos(alpha(i)‘rad) 
1 sina = Dsin(alpha(i)*rad) 

V = Dsqrt(1 .OdO - cosa(l)“2 - cosa(2)“2 - cosa(3)“2 + 2.O’ccsa(l)‘cos.a(2)*cosa(3)) 
Vo = V’a(l)‘a(2)‘a(3)‘(1 .Od-8)“3 
Do 5 l=1,3 

j-i+1 ; lf(j.Gt.3)j=l ; k=j+l ; If(k.Gt.3)k=l 
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cosb(i) = (cosa(j)*cosa(k) - cosa(i))/(sina(j)*sina(k)) ; sinb(i) = Dsqrt(1 .OdO - cosb(i)“2) 
5 b(i) 3: sina(i)/(a(i)‘V) 

Wl,l) = b(l) ; Bo(2,l) = o.odo ; Bo(3.1) = o.wo 
Bo( 112) = b(2)‘cosb(3) ; Bo(2,2) = b(2)‘sinb(3) ; b(3,2) = O.OdO 
Bo(l,3) = b(3)‘cosb(2) ; Bo(2,3) = -b(3)‘sinb(2)‘cosa(l) ; Bo(3,3) P 1 .OdO/a(3) 
Boi(l,l) = l&JO/b(l) ; Boi(2,l) = O.OdO ; Boi(3,l) = O.CIdO 
Boi(l,2) = -a(l)‘sina(2)*cosb(3) ; Boi(2,2) = a(2)‘sina(l) ; Boi(3,2) = O.WO 
Boi( 1,3) = a( 1 )‘cosa(2) ; Boi(2,3) = a(2)*cosa(l) ; Boi(3,3) = a(3) 
Return *.**tt**t*.~*~*t***t**~*.**~**~*.*******.**~.**~.*~***********.*****~**.~*~~*.**~~.***~**.**********.***~*****.* 

Subroutine Orientation(h1 ,h2.h3,hl L,h2L,h3L,U) 
c This subroutine constructs the Orientation Matrix U that allows one to transform from the crystal reciprocal 
c coordinate space to Lab orthogonal coordinate space: (Lab vector) V-lab = U (dot) V-recip. 

nd=3 !#ofrows ; nr-3 !#ofcolumns ; n = 3-! order of matrix 
Do1 Cl,3 

H(i,l) = hl (i) ; H(i,2) = h2(i) ; H(i,3) = h3(i) 
HL(i,l) E hlL(i) ; HL(i,2) = h2L(i) ; HL(i,3) = h3L(i) 
Do 1 J=l,3 

1 b(i,j) = O.OdO 
b(l,l) = l.OdO ; b(2,2) = 1 .OdO ; b(3,3) = l.OdO 
Call Lineq(H,b,Hinv,nd,n,nr,aa,ierr) ; Call MM(HL,Hinv,U) 
Return ******~*~***tt~t.********~.,.***..*******~***.~.****~*******~**.*************...****.*****~**..****.*.~***.****~ 

Subroutine Lab_Vectors(hpp,hss,h33,sinps,cosps,hl ,h2,h3) 
c This subroutine uses the reciprocal lattice vectors in reciprocal space to construct Lab vectors in Lab space. 
c Note that this subroutine has taken a special case -- 2 reciprocal lattice vectors lie in the scattering plane and 
c one points in the Lab-z direction. However, if one were to know beforehand the directions of all 3 
c vectors hl ,h2,h3 in lab space (pointing in general directions), their lab components could be inserted in this 
c subroutine, and no other modtiications need be done in this program (except some calculations are no longer 
c necessary, such as calculating sinps,cosps,etc. ). 
c hpp = magnitude of hp, hss = magnitude of hs, h33 = mag. of h3 

Common /Lab/ x-Lab,y-Lab,z-Lab 
hl(l)=O.OdO ; hl(2)=O.OdO ; hl(3)=hpp 
h2(1) = O.OdO ; h2(2) = hss’sinps ; h2(3) = hss’cosps 
h3(1) = h33 ; h3(2) = o.ocfo ; h3(3) = O.OdO 
x-Lab(l) = l&JO ; x-Lab(2) = o.Odo ; x-Lab(S) = o.Odo 
y-Lab(l) = o.Odo ; y-Lab(2) = l.OdO ; y-Lab(B) = o.Odo 
z-Lab(l) = O.OdO ; gLab(2) = O.OdO ; z-Lab(3) = 1 .OdO 
Return *.~****t**~*..*******..*“**************..**.****.****....~.*...**.*.**~**~~~..*..*~***.*************~*...*~****~ 

Subroutine General-Cross(u,v,B,Bi,uv) 
c This subroutine takes the general cross product of vectors u,v defined in a non-orthogonal coordinate system. 
c Bi = inverse of B 

Call Mv(B,uBu) ; Call Mv(B,v,Bv) ; Call Cross(Bu,Bv,BuBv,norm) ; Call Cross(u,v,uv,uvmag) 
Call Mv(B@uBv,uv) ; Call Dot(uv,uv,norm) 
Do 1 l=l,3 ! Giving uv a magnitude equal 

1 uv(i) = uvmag’uv(i)/Dsqrt(norm) ! to magn. of cross product of indices of u,v 
Return 

Subroutine General-Dot(u,v,B,uv) 
c This subroutine takes the general dot product of vectors u.v defined in a non-orthogonal coordinate system. 

Call Mv(B,u,Bu) ; Call Mv(B,v.Bv) ; Call Dot(Bu,Bv,uv) 
Return 

Subroutine Polar(v,x,y,z,theta,phi) 
c This Subroutine determines the azimuthal and polar angles of a vector “v” in a coordinate system with basis 
c vectors x,y,z theta = polar angle, phi = azimuthal angle -180<phi<180, O<thetacl80 
*I*tt.*~t*t.t*t**..~~*~**...***~****~.*********,.**.**~**~***~**.***~.**~***.*****~***.**..*.~*~~*********.****. 

Subroutine MM(A,B,C) 
c This subroutine performs matrix multiplication C = A’B t+..f.tt*t*C***.t**+**..****..*~*******~*~***.*.*..*.~***.*****.*.***.*..**..*~***.*~******.*.*****~*.*~**~***** 

Subroutine Mv(A,x,Ax) 
c This subroutine multiplies column vector x by 3x3 matrix A to obtain column vector Ax : Ax = A*x 
. . ..ft**~*~*.**tt..~~“~.**~~*~~.~.*.*~****~.**~*~*~~**************.*.******~.*~*******.~~~**~*.********~*****~~* 



168 Numerical Analysis Procedures (8.3) 

Subroutine Cross(u,v,w,norm) 
c This Subroutine computes the Cross Product of two vectors “u’ and “v” in orthogonal space. Returns a unit 
c vector “w” and its length “norm” 

Subroutine Dot(u,v,w) 
c This Subroutine computes the Dot product of two vectors “u” and “v” in orthogonal space: w = u’v 
.***t*~**********.***~***.~***.*.*~****.~..*.*..***..~*.*****..***.~..~*.*.....*****~*~****.”****.~********~**.* 

8.3 Ewald Program ^” . 

The EWALD code that follows computes the reflection and transmission amplitudes 
from a crystal using the Ewald-Laue dynamical diffraction theory.39”* The main program 
Ewald controls the calculation by calling the appropriate subroutines. An initialization 
subroutine is called (Initialize) to set up the dynamical diffraction calculation, and 
instructions are returned (via iflg) to compute either an energy or angle spectrum over a 
desired range. Program Ewald then makes calls to subroutine Dispersion at each 
appropriate energy or angle value. Dispersion returns the reflection and transmission 
coefficients R and T directly, and it returns the reflected and transmitted electric field 
amplitudes indirectly through the common block its/. When energy spectra are calculated, 
time spectra can also be determined by taking the Fourier transform of the electric field 
amplitudes. Since fast Fourier transform routines are quite ubiquitous, the routine that did 
calculations for EWALD is not shown here--the actual routine used was an adapted version 
of Brigham’s well known Fortran code.42 

Subroutine Initialize reads in the relevant information contained in the files 
nuclear.dat and atompos.dat, and it initializes physical constants to be used in further 
calculations. The important physical constants pertinent to 57Fe used in EWALD are the 
total lifetime, 140.95 nsecs,43 the internal conversion coefficient, 8.23,43 and the magnetic 
moments of the ground and excited states: 0.09024 nm and -0.1549 nm. The ground state 
magnetic moment was measured by Lecher and Geschwind though electron-nuclear double 
resonance techniques 44 while the excited state magnetic moment was found by Preston, 
Hanna, and Heberle through Miissbauer measurements.45 

Calls are made to Orient-tryst to get the orientation matrix, U, and, for each 
site, to YIG-basis to construct the quantum coordinate system (Hx,Hy,Hz) where Hz is 
in the direction of the internal magnetic field. Thus, for multi-site crystals, no universal 
quantum axis is constructed--their internal magnetic field defines what type of scattering 
occurs. Using the orientation matrix, the quantum coordinate system, and the information 
from the data files, an ‘eigenvector representing the nuclear scattering tensor elements for 
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each polarization combination, quantum level, and site is constructed along with associated 
eigenvalues. Eigenvector is essentially gHS/2 in Eq. 7-2.1 for magnetic dipole scattering 
without the resonance denominator. 

ElectStrFact is also called to compute the photoelectric structure factor (the 
contents of the subroutine are not shown here since the calculations are straightforward). 
Since the photoelectric structure factor is essentially constant over the energy range of the 
hyperfine nuclear resonance, = 10” eV, they only need to be calculated once. In 
computing the photoelectric structure factor presented in Eq. 7-2.2, the value for fO came 
from a mean atomic scattering factor (calculated from self-consistent or variational 
wavefunctions) tabulated in International Tables for X-Ray Crystallography46 and in 
Warren.47 The value for f' came from a database (set up by Sean Brennan at SSRL) of 
Cromer and Liberman’s relativistic Hartree-Fock calculations,48 and the value for f" came 
from a compilation of x-ray cross section measurements contained in McMaster.49 
Compton scattering was also included by adding the incoherent cross section values 
contained in McMaster to f “. Since the anomalous scattering factors, f’ and f”, are 
insensitive to the scattering angle when operating far from any absorption edge or bound 
state resonance, the angular dependence of these terms was neglected. 

Subroutine Polarmat constructs photoelectric and nuclear magnetic dipole 
polarization matices for the incident and scattered electric fields. The photoelectric 
polarization matrix is equivalent to the Thomson polarization matrix given by Eq. 5-1.3. 
Construction of the magnetic dipole polarization matrix is more involved. Once the 
spherical unit vectors are calculated through the appropriate cross products outlined in 
Section 5.1, the vector spherical harmonics can be constructed. Translating from program 
symbols to those used in Section 5.1: 

YlOi = $Zj?Y/~)(!A,J = isin ok,&, 

Ylli=~~Y~P)(n,i)=ei’ki(e,, +ico~B,~h ). 

(8-3.1) 

(8-3.2) 

If nuclear level mixing did not occur, then the final polarization matrices could be 
constructed in the form given by Eq. 51.5. However, to include nuclear level mixing the 
matrices must be constructed as described in Section 5.2 and given by Eq. 5-2.30. 
Therefore, Polarmat only finds all of the possible dot products between polarizations and 
vector spherical harmonics in preparation for making the final polarization matrix given by 
Eq. 5-2.30. 

The coefficients c, in Eq. 5-2.29 are calculated by the subroutine Splitting 
through diagonalizing the unperturbed Hamiltonian given in Section 5-2. Once the 
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