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Chapter 1 

Introduction 

This document describes a number of subroutines that can be useful in GKS 
graphic applications programmed in FORTRAN-‘77. The algorithms described here 
include subroutines to do the following: 

1. Draw text characters in a more flexible manner than is possible with basic 
GKS. 

2. Project two-dimensional and three-dimensional space onto two-dimensional 
space. 

3. Draw smooth curves. 
4. Draw two-dimensional projections of complex three-dimensional objects. 

FORTRAN-?7 is described in American Nafional Standard, Programming Lan- 
guage, FORTRAN [ANS78]. GKS is described in American National Standard GOT 

Information Systems: Compufer Graphics - Graphical Kernel Sysfem (GKS) Func- 
tional Description [ANS85a] and the FORTRAN-77 interface is described in Amer- 
ican National Standard for Information Systemx Computer Graphics - Graphical 
Kernel System (GKS) FORTRAN Binding [ANSS5b]. 

All of the subroutine names and additional enumeration types that will be 
described in this document begin with the letters "GZ." Since GKS itself does not 
have any subroutine names or enumeration types that begin with these letters, no 
confusion between the usual GKS subroutines and the ones described here should 
occur. 

Many concepts will have to be defined in the following chapters. FIThen a concept 
is-first encountered, it will be given in italics. The information around the italicized 
word-or phrase may be taken as its definition. 

1.1. The Availability of the Subroutines 

The subroutines described in this document are available on the IBhf mainframe 
computers running at the Stanford Linear Accelerator Center. These computers run 
under the VM/XA operating system. Executable versions of the subroutines are 
contained in the file 

GKSUTL TXTLIB U. 
They may therefore be used by anyone at this installation who supplies the proper 

: TXTLIB statement. 
The source code is also available for those people who have to use the subroutines 

on another computer. The file 
GKSUTLTX FORTRAN U 

1 



2 GKS Utilities for FORTRAN-77 

contains the text drawing subroutines described in Chapter 2. The file 
GKSUTLTR FORTRAN U 

contains the transformation subroutines described in Chapter 3. The file 
GKSUTLCV FORTRAN U 

contains the curve drawing subroutines described in Chapter 4. The fle 
GKSUTLSU FORTRAN U 

contains the surface drawing subroutines described in Chapter 5. Finally, the file 
GKSUTLUT FORTRAN U 

contains a group of mathematical and error.processing subroutines that are used 
by the other subroutines described here. 

Since the these subroutines are written in something very close to strict 
FORTRAN-77, they themselves should be transportable to any computer with a 
FORTRAN-77 compiler and a GKS system. The only non-standard construction in 
the source code is the use of INTEGER*2 arrays to store the definition of the charac- 
ter sets. These declarations can easily be changed to INTEGER; the only requirement 
is that the arrays can contain integers of up to 32767. 

One possible modification is that of a control value, INFN, that appears in a 
number of subroutines. That value is used to check for things like singular matrices 
and to guard against division by zero. It may have to be changed for computers with 
differing word size or precision. In fact, it may be necessary to change this value on 
the host computer as more experience is accumulated with these subroutines. 

. 



Chapter 2 

An Alternate Text Generator 
._ 

There are a number of problems with the GKS text drawing subroutine, GTX, 
especially as it relates to scientific notation. The most basic problem is that the 
standards documents only specify a single font containing the ASCII character set. 
Such things as Greek letters will usually be supplied as extensions to the basic GKS 
in most implementations, but their font numbers and other properties can be very 
different among different implementations. Programs that use the Greek letters 
supplied by a GKS system will therefore probably be implementation dependent. 
Another problem is that the production of superscripts or subscripts is very difficult. 
The mixing of Roman and Greek letters is a single line of text is both difficult and 
implementation dependent. 

The subroutines described in this chapter are an attempt to alleviate the prob- 
lems described above. These subroutines can produce the upper and. lower case 
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special char- 
acters. A versatile subscripting and superscripting ability is also available and 
diacritical marks can be applied to any letter. Finally, the subroutines should be 
transportable to almost any computer. 

In addition, the characters are available in three fonts. However, to fully under- 
stand these font-s, it is necessary to describe how the subroutines work. The user 
of these text drawing subroutines supplies two character strings of equal length. 
The first string is the primary character string, and the second is the secondary 
string. The actual characters produced is determined by examining corresponding 
positions in the two strings. The first string gives an approximation to the desired 
character while the second string gives a modifier character. As an example, sup- 
pose the primary string is “AAA” and the secondary string is “ LG." In this case, 
the first character drawn is an upper case Roman “A” (because the first secondary 
character is a blank), the second character is a lower case Roman “A” (because 
the second secondary character is an “L”), and the third character is a lower case 
Greek alpha (because the third secondary character is a “G”). The subroutines pro- 
cess these characters and break them down into polylines or fill areas, and call the 
appropriate GKS subroutine to send them to the workstation. Two of these fonts, 
the simplez and dupkz fonts, are drawn with polylines while the third, the Jolid 

. font, is drawn with fill areas. The simplex font minimizes the complexity of the 

. characters, while the duplex font has some of the properties of typeset characters. 
The solid font can be useful when large lettering is required. Examples of all of the 
characters and their corresponding primary and secondary character are shown in 
Section 2.5 of this chapter. 

3 



4 GKS Utilities for FORTRAN-77 

The organization of the subroutines described in this chapter is similar to the 
GKS standards document. There is a single subroutine that is used to initialize 
this alternate text generator. There are two subroutines that break their primary 
and secondary character strings down into polylines or Cl1 areas. There are four 
subroutines that may be used to set the attributes of the characters. Finally, there 
are four subroutines that can be used to obtain the current setting of the attributes. 

. . 
2.1. Control Functions 

This section describes a subroutine that must be called to initialize the aIternate 
text generator. It may also be called at any time to reset the attributes to their 
default values. 

2.1.1. Subroutine GZOPTX: Open the Alternate Text Generator 

This subroutine may be used to initialize the attributes for the alternate GKS 
text drawing subroutines. If this subroutine is not called before the other alternate 
text drawing subroutines, the results are unpredictable. 

The calling sequence is: 
CALL GZOPTX 

This subroutine does not have any parameters. 

2.2. Output Functions 

This section describes two subroutines that process the primary and secondary 
character strings and produce either polylines or fill areas. The first subroutine, 
GZTX, sends the polylines or fill areas directly to the active workstations. The second 
subroutine, GZTXS, sends the polylines or fill areas to a user supplied subroutine. 

Since the data for the first subroutine is sent to the workstation by calling sub- 
routines GPL or GFA, the user may control the display attributes of the characters, 
such as color, by setting the polyline or fill area attributes. It is the users respon- 
sibility to assure that the polyline or fill area attributes are appropriate for the 
characters being drawn; for example, the line type should be set to GLSOLI (solid) 
when polylines are drawn 

These subroutines always produce their output in the “stroke” precision of GKS: 
It is therefore also the users responsibility to assure that the aspect ratio of the 
window and viewport of the normalization transformation are the same when the 
polylines or fill areas are sent to the workstation. If that is not the case, the 
characters, like the stroke precision characters of GKS, will be distorted, 

2.2.1. Subroutine GZTX: Alternate Text 

This subroutine may be used to draw a string of characters. The characters 
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produced by this subroutine are quite tied and include the upper and lower case 
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special charac- 
ters. They may be drawn in a simplex, duplex, or solid font. A versatile subscripting 
and superscripting ability is also available. This subroutine performs an operation 
very similar to the operation done by the GKS subroutine named GTX. 

The calling sequence is: 
CALL GZTX(PX,PY,PCHS,SCHS) -- 

The input paramete?s are: 
PX A real value that gives the z coordinate of the location point of the 

character string in world coordinates. 
PY A real due that gives the y coordinate of the location point of the 

character string in world coordinates. 
PCHS A character string containing the primary characters. 
SCHS A character string containing the secondary characters. 

2.2.2. Subroutine GZTXS: Alternate Text to User Supplied Subroutine 

This subroutine may be used to process a string of characters in a manner 
similar to the way subroutine GZTX does. However, instead of sending the data 
directly to the workstation, this subroutine calls a user supplied subroutine with 
the data. The user supplied subroutine can do anything it wants lvith the data. 

The calling sequence is: 
CALL GZTXS(SUBR,PX,PY,PCHS,SCHS) 

The input parameters are: 
SUBR An external variable that specifies the subroutine to which the com- 

puted polylines or fill areas will be sent. The calling sequence of this 
subroutine is the same as that of the GKS subroutines GPL or GFA. 

PX A real value that gives the z coordinate of the location point of the 
character string in world coordinates. 

PY A real value that gives the y coordinate of the location point of the 
character string in world coordinates. 

PCHS A character string containing the primary characters. 
SCHS A character string containing the secondary characters. 

2.3. Output Attributes 

The subroutines in this section may be used to set the attributes for the alternate 
. GKS text generator. They are 811 similar to native GKS subroutines and perform 

operations similar to those native subroutines. 
If one of these subroutines detects an error in the data supplied to it, the 

subroutine prints an.error message and sets the attribute to its default value. 
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2.3.1. Subroutine GZSTXF: Set Alternate Text Font and Spacing 

This subroutine may be used to set the text.font and spacing for the alternate 
GKS text drawing subroutines. This subroutine performs an operation very similar 
to the operation done by the GKS subroutine named GSTXFP. 

The calling sequence ,is: 
CALL GZSTXF(FDNT,SPAC) 

The input parameters are: 
FONT An integer that gives the font to be used: 

GZSMPL(=l) means the simplex font, 
GZDUPL (= 2) means the duplex font, and 
GZSOLD(= 3) means the solid font. 

SPAC An integer that gives the spacing to be used: 
GZMONO (= 0) means mono-spacing, and 

- GZPROP(= 1) means proportional spacing. 

The default values are GZSMPL and GZPROP. The mono-space option does not 
work well when superscripts, subscripts, or character size or movement control is 
used. 

2.3.2, Subroutine GZSCHH: Set Alternate Character Height 

This subroutine may be used to set Ihe character height for the alternate GKS 
text drawing subroutines. This subroutine performs an operation very similar to 
the operation done by the GKS subroutine named GSCHH. 

The calling sequence is: 
CALL GZSCHH(CHH) 

The input parameter is: 
CHH A real value that gives the character height. 

The default value is 0.01. 

2.3.3. Subroutine GZSCHU: Set Alternate Character Up Vector 

This subroutine may be used to set the character up vector for the alternate 
GKS text drawing subroutines. This subroutine performs an operation very similar 
to the operation done by the GKS subroutine named GSCHUP. 

Thecalling sequence is: 
CALL GZSCH'J(CHUX,CHW) 

The input parameters are: 

.- 
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CHUX A real value that gives the z component of the up vector in world 
coordinates. 

CHIN A real value that gives the y component of the up vector in world 
coordinates. 

The default values are 0.0 and 1.0. 

2.3.4. Subroutine GZSTXL: Set Alternate Text Alignment 

This subroutine may be used to set-the text alignment for the alternate GKS 
text drawing subroutines. This subroutine performs an operation very similar to 
the operation done by the GKS subroutine named GSTXAL. 

The calling sequence is: 
CALL GZSTXL(TXAH,TXAV) 

The input parameters are: 
TXAH An integer that gives the horizontal alignment to be used: 

GALEFT (= 1) means left, 
GACENT(= 2) means center, and 
GARITE (= 3) means right. 

TXAV An integer that gives the vertical alignment to be used: 
GACAP (= 2) means top of text, 
GAHALF (= 3) means center of text, and 
GABASE (= 4) means bottom of text. 

The default values are GALEFT and GABASE. 

2.4. Inquiry Functions 

The subroutines in this section may be used to obtain the attributes for the 
alternate GKS text generator. They are all similar to native GKS subroutines and 
perform operations similar to those native subroutines. 

2.4.1. Subroutine GZQTXF: Inquire Alternate Text Font and Spacing 

This subroutinemay be used to obtain the text font and spacing for the alternate 
GKS text drawing subroutines. This subroutine performs an operation .very similar 
to the operation done by the GKS subroutine named GQTXFP. 

The calling sequence is: 
CALL GZQTXF(FONT,SPAC) .' 

, 

The output parameters are: 
FONT An integer that gives the font being used: 

. . 
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GZSMPL (= 1) means the simplex font, 
GZDWPL(= 2) means the duplex.font, and 
GZSOLD(= 3) means the solid font. 

SPAC An integer that gives the spacing being used: 
GZMONO (= 0) means monospacing, and 
GZPRCP(=l) means proportional spacing. 

2.4.2. Subroutine GZQCHH: Inquire Alternate Character Height 

This subroutine may be used to obtain the character height for the alternate 
GKS text drawing subroutines. This subroutine performs an operation very similar 
to the operation done by the GKS subroutine named GQCHH. 

The calling sequence is: 
CALL GZQCHH(CHH) 

The output parameter is: 
CHH A real value that gives the character height. - 

2.4.3. Subroutine GZQCHU: Inquire Alternate Character Up Vector 

This subroutine may be used to obtain the character up vector for the alternate 
GKS text drawing subroutines. This subroutine performs an operation very similar 
to the operation done by the GKS subroutine named GQCHLP. 

The calling sequence is: 
CALL GZQCHU(CHUX,CHW> 

The output parameters are: 
CHUX A real value that gives the z component of the up vector in world 

coordinates. 
CHUY A real value that gives the y component of the up vector in world 

coordinates. 

These values are always returned as a unit vector. 

2.4.4. Subroutine GZQTXL: Inquire Alternate Text Alignment 

This subroutine may be used to obtain the text alignment for the alternate GKS 
text drawing subroutines. This subroutine performs an operation very similar to 
the operation done by the GKS subroutine named GQTXAL. 

The calling sequence is: 
GALL GZQTXL(TXAH,TXAV) 

The output parameters are: 



An Alternate Text Generator 9 

TXAH An integer that gives the horizontal alignment being used: 
GALEFT (= 1) means left, 
GACENT(= 2) means center, and 
GARITE (= 3) means right. 

TXAV An integer that gives the vertical alignment being used: 
GACAP (= 2) means. top of text, 
GAHALF (= 3) means center of text, and 
GABASE(= 4) means bottom of text. 

2.5. The Alternate Character Sets 

This section defines all of the characters that may be produced by subroutines 
GZTX or GZTXS. The following table gives the primary and secondary character fol- 
lowed by its description. The symbol ““” stands for a blank. 

The Upper Case Roman Alphabet: 
Au Upper case Roman A 
BU Upper case Roman B 
Cu Upper case Roman C 
DU Upper case Roman D 
Eu Upper case Roman E . 
F,, Upper case Roman F 
GU Upper case Roman G 
Hu Upper case Roman H 
1” Upper case Roman I 
Ju Upper case Roman J 
K~ Upper case Roman K 
L,, Upper case Roman L 
Mu Upper case Roman M 
Nu Upper case Roman N 
0” Upper case Roman 0 
Pu Upper case Roman P 
QLI Upper case Roman Q 
Ru Upper case Roman R 
Su Upper case Roman S 
Tu Upper case Roman T 
Uu Upper case Roman U 
Vu Upper case Roman V 
w,, Upper case Roman W 
Xu Upper case Roman X 
Yu Upper case Roman Y ,I 

, 
z,, Upper case Roman Z 

The Lower Case Roman Alphabet: 
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AL Lower case Roman A 
BL Lower case Roman B 
CL Lower caSe Roman C 
DL Lower case Roman D 
EL Lower case Roman E 
FL Lower case Roman F 
CL Lower case Roman G 
EL Lower case Roman H 
IL Lower caSe Roman I 
JL Lower case Roman J 
XL Lower case Roman K 
LL Lower case Roman L 
ML Lower case Roman M 
NL Lower case Roman N 
OL Lower case Roman 0 
PL Lower caSe Roman P 
QL Lower case Roman Q 
RL Lower case Roman R 
SL Lower case Roman S 
TL Lower case Roman T 
UL Lower case Roman U 
VL Lower case Roman V 
WL Lower case Roman W 
XL Lower case Roman X 
YL Lower case Roman Y 
ZL Lower case Roman Z 

Upper Case Auxiliary Roman Characters: 
10 Upper case Latin and Scandinavian ligature AE 
DO Upper case Icelandic Eth 
LO Upper case’ Polish suppressed L 
00 Upper case Scandinavian 0 with slash 
20 Upper case French ligature OE 
TO Upper case Icelandic Thorn 

Lower Case Auxiliary Roman Characters: 
Al Lower case alternate Roman A 
ii Lower case Latin and Scandinavian ligature AE 
D1 Lower case Icelandic Eth 
31 Lower case Roman ligature FF 
41 Lower case Roman ligature FI .; 
51 Lower case Roman ligature FL 
61 Lower case Roman ligature FFI 
71 Lower case Roman ligature FFL 
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CI Lower case alternate Roman G 
II Lower case dotless Roman I 
Jl Lower case dotless Roman J 
Ll Lower case Polish suppressed L 
01 Lower case Scandinavian 0 with slash 
21 Lower case French ligature OE 
Sl Lower case German double S 
Tl Lower case Icelandic Thorn 

The Upper Case Greek Alphabet: 
AF Upper case Greek Alpha 
BF Upper case Greek Beta 
GF Upper case Greek Gamma 
DF Upper case Greek Delta 
EF Upper case Greek Epsilon 
ZF Upper case Greek Zeta 
HF Upper case Greek Eta 
QF Upper case Greek Theta 
IF Upper case Greek Iota 
KF Upper caSe Greek Kappa 
LF Upper case Greek Lambda 
MF Upper case Greek Mu 
NF Upper case Greek Nu 
XF Upper case Greek Xi 
OF Upper case Greek Omicron 
PF Upper case Greek Pi 
RF Upper case Greek Rho 
SF Upper case Greek Sigma 
TF IJpper case Greek Tau 
UF Upper case Greek Upsilon 
FF Upper case Greek Phi 
CF Upper caSe Greek Chi 
YF Upper case Greek Psi 
WF Upper case Greek Omega 

The Lower Case Greek Alphabet: 
AC Lower case Greek Alpha 
BG Lower case Greek Beta 
GG Lower case Greek Gamma 
DG Lower case Greek Delta 
EC Lower case Greek Epsilon ‘. 
ZC Lower case Greek Zeta 
HG Lower case Greek Eta 
QC Lower case Greek Theta 

. . 
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IG Lower case Greek Iota 
XC Lower case Greek Kappa 
LG Lower case Greek Lambda : 
MC Lower case Greek Mu 
NC Lower case Greek Nu 
XC Lower case Greek Xi 
OG Lower case Greek Omicron 
PC Lower case Greek Pi 
RG Lower case Greek Rho 
SC Lower case Greek Sigma 
TG Lower case Greek Tau 
UC Lower caSe Greek Upsilon 
FG Lower case Greek Phi 
CC Lower case Greek Chi 
YG Lower case Greek Psi 
WG Lower case Greek Omega 
1G Lower case Greek Epsilon (mriant) 
2G Lower case Greek Theta (variant) 
3G Lower case Greek Pi (variant) 
4G Lower case Greek Rho (variant) 
5G Lower case Greek Sigma (variant) 
6G Lower case Greek Phi (\x.riant) 

The Upper Case Cyrillic Alphabet: 
AB Upper case Cyrillic Ah 
BB Upper case Cyrillic Beh 
VB Upper case Cyrillic Veh 
GB Upper case Cyrillic Geh 
DB Upper case Cyrillic Deh 
EB Upper case.Cyrillic Yeh 
XB Upper case Cyrillic Zheh 
ZB Upper case Cyrillic Zeh 
IB Upper case Cyrillic Ee 
1B Upper case Cyrillic Ee S Kratkoy 
XB Upper case Cyrillic Kah 
LB Upper case Cyrillic El 
MB Upper case Cyrillic Em 
NB Upper case Cyrillic En 
OB Upper case Cyrillic Oh 
PB Upper case Cyrillic Peh 
RB Upper case Cyrillic Err 
$B Upper case Cyrillic Ess 
TB Upper case Cyrillic Teh 
UB Upper case Cyrillic Ooh 

.- 
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FB 
HB 
CB 
2B 
3B 
4B 
QB 
YB 
5B 
6B 
WB 
JB 

Upper case Cyrillic Ef 
Upper case Cyrillic Kha 
Upper case Cyrillic Tseh * 
Upper case Cyrillic Cheh 
Upper case Cyrillic Shah 
Upper caSe Cyrillic Shchah 
Upper case Cyrillic Tvyordy Znak 
Upper case Cyrillic Yery -- 
Upper case Cyrillic Myakhki Znak 
Upper case Cyrillic Eh Oborotnoye 
Upper case Cyrillic Yoo 
Upper case Cyrillic Yah 

The Lower Case Cyrillic Alphabet: 
AC Lower case Cyrillic Ah 
BC Lower case Cyrillic Beh 
VC Lower case Cyrillic Veh 
GC Lower case CyTillic Geh 
DC Lower case Cyrillic Deh 
EC Lower caSe Cyrillic Yeh 
XC Lower case Cyrillic Zheh 
ZC Lower case Cyrillic Zeh 
IC Lower case Cyrillic Ee 
1C Lower case Cyrillic Ee S Kratkoy 
XC Lower case Cyrillic Kah 
LC Lower cue Cyrillic El 
MC Lower case Cyrillic Em 
NC Lower case Cyrillic En 
DC Lower case Cyrillic Oh 
PC Lower case. Cyrillic Peh 
RC Lower case Cyrillic Err 
SC Lower case Cyrillic Ess 
TC Lower case Cyrillic Teh 
UC Lower case Cyrillic Ooh 
FC Lower case- Cyrillic Ef 
HC Lower case Cyrillic Kha 
CC Lower case Cyrillic Tseh 
2~ Lower case Cyrillic Cheh 
3~ Lower case Cyrillic Shah 
4~ Lower case Cyrillic Shchah 

,. qC Lower case Cyrillic Tvyordy Znak 
YC Lower case Cyrillic Yery 
5~ Lower case Cyrillic Myakhki Znak 
6C Lower case Cyrillic Eh Oborotnoye 

.- 
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WC Lower case Cyrillic Yoo 
JC Lower case Cyrillic Yah 

The Hebrew Alphabet: 
AH Hebrew Aleph 
BH Hebrew Beth 
GH Hebrew Gimel 
DH Hebrew Daleth 
HH Hebrew He 
VH Hebrew Vav 
ZH Hebrew Zayin 
CH Hebrew Cheth 
OH Hebrew Teth 
YH Hebrew Yod 
KH Hebrew Kaph 
LH Hebrew Lamed 
MH Hebrew Mem _. - 
NH Hebrew Nun 
SH Hebrew Sameth 
XH Hebrew Ayin 
PH Hebrew Pe 
EH Hebrew Sadhe 
QH Hebrew Koph 
RH Hebrew Resh 
WH Hebrew Sin/Shin 
TH Hebrew Tav 
1H Hebrew Kaph (end of word) 
2H Hebrew Men (end of word) 
3H Hebrew Nun (end of word) 
4H Hebrew Pe.(end of word) 
5H Hebrew Sadhe (end of word) 

The Numerals: 
Ou Numeral 0 
lu Numeral 1 
2,, Numeral 2 
3u Numeral 3 
&, Numeral 4 
5” Numeral 5 
6,, Numeral 6 
7” Numeral 7 
&, Numeral 8 
9” Numeral 9 

Common Special Symbols: 
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Blank 
Plus sign 
Minus sign 
Asterisk 
Slash mark 
Equal sign 
Period 
Comma 
Left parenthesis 
Right parenthesis 

__ 

Special Symbols for Punctuation: 
.P Colon 
, P Semi- colon 
EP Exclamation mark 
UP Question mark 
IP Interrobang 
FP Inverted exclamation 
VP Inverted question 
AP Apostrophe 
qP Quotation marks 
OP Single left quote 
1P Single right quote 
2P Double left quote 
3~ Double right quote 
SP New section 
PP New paragraph or Pilcrow sign 
DP Dagger 
RP Double dagger 

Additional Special Symbols: 
DS Dollar sign 
CS Cent sign 
SS British Sterling 
YS Japanese Yen 
qs International currency symbol 
+S Ampersand 
PS Pound sign 
AS At sign 
OS Copyright 
GS Registered . . . 

: 
OS Percent sign 
1s Per thousand sign 
VS Vertical line 

.- 
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IS Broken vertical line 
VS Double vertical line 
US Underline 
NS Not sign 
/S Backwards slash 
(S Left bracket 
)S Right bracket 
LS Left brace 
RS Right brace 
BS Left angle bracket 
ES Right angle bracket 
XS Accent mark 
TS Caret mark 

Mathematical Special Symbols: 
.M Dot product 

- XM Cross product 
/M Division sign 
PM Group plus . 
*M Group multiply l 

+M Plus or minus 
-M Minus or plus 
AM And 
VM Or 
u’M Therefore 
WM Since 
LM Less than 
GM Greater than- 
MM Less than or equal 
HM Greater than or equal 
3M Much less than 
4M Much greater than 
NM Not equal 
=M Identically equal 
KM Approximately equal 
CM Congruent to 
SM Similar to 
FM Approximate 
RM Proportional to 
TM Perpendicular to 
2M Surd I 

bM Degrees 
IM Integral sign 
JM Line integral 
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YM Partial derivative 
ZM Del 
(M Left floor bracket 
)M Right floor bracket 
BM Left ceiling bracket 
EM Right ceiling bracket 
OM Infinity 

Set Theoretic Special Symbols: 
ET Existential quantifier 
AT Universal quantifier 
MT Membership symbol 
NT Membership negation 
IT Intersection 
UT Union 
LT Contained in 
CT Contains 
KT Contained in or equals 
FT Contains or equals 

Physics Special Symbols: 
HK H-bar 
LK Lambda-bar 

Astronomical Special Symbols: 
HA Sun 
MA Mercury 
VA Venus 
EA Earth 
WA Mars 
JA Jupiter 
SA Saturn 
UA Uranus 
NA Neptune 
PA Pluto 
OA Moon 
CA Comet 
*A star 
XA Ascending node 
YA Descending node 
KA Conjunction 
QA Quadrature 
TA Opposition 
OA Aries 
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1 A 
2A 
3A 
4A 
5A 
6A 
7A 
8A 
9A 
AA 
BA 

Taurus 
Gemini 
Cancer 
Leo 
Virgo 
Libra 
Scorpius 
Sagittarius 
Capricornus 
Aquarius 
Pisces 

Drawing Symbols, Arrows, and Pointers: 
OW Underscore 
IW Midscore 
2W Overscore 
UW Up arrow 
DW Down arrow 
LW Left arrow 
RW Right arrow 
BW Left/right arrow 

Diacritical Marks: 
GD Grave accent 
AD Acute accent 
HD Hat or circumflex 
TD Tilde or squiggle 
MD Matron or bar 
BD Breve accent 
DD Dot accent 
UD Umlaut or dieresis 
RD Ring or circle 
VD Caron, hacek, or check 
LD Long Hungarian umlaut 
WD Over arrow 
CD Cedilla accent 
-D Under bar 
.D Under dot 
,D Under dots 
PD Prime 

Horizontal and Vertical Movement Control: 
;u Null 
OU Backwards blank 

. . 



An Alternate Text Generator 19 

1u Half blank 
2u Half backwards blank 
3u Third blank 
4u Third backwards blank 
5u Sixth blank 
6U Sixth backwards blank 
1v Half up movement 
2v Half down movement 
3v Third up movement 
4v Third down movement 
5v Sixth up movement 
6V Sixth down movement 

Subscript and Superscript Control: 
OX Enter subscript mode 
1X Leave subscript mode 
2X Enter superscript mode 
3~ Leave superscript mode 

Character Size Control: 
OY Increase size by one-half 
1Y Decrease size by one-third 
2Y Increase size by one-third 
3~ Decrease size by one-fourth 
4Y Increase size by one-sixth 
5Y Decrease size by one-seventh 

Position Control: 
OZ Put current state in first save area 
12 Restore state from first save area 
2~ Put current state in second save area 
32 Restore state from second save area 
4~ Put current state in third save area 
52 Restore state from third save area 
6Z Put current state in fourth save area 
72 Restore state from fourth save area 

In addition to the primary and secondary character pairs shown above, most 
of the printable characters in the ASCII character set as described in American 
National Standard for Information Systems: Coded Characfer Sets, 7-bit American 

,* National Standard Code for Information Interchange (7-bit ASCII) [ANS86) will be 
produced with a secondary character of blank. Thus, if the primary character is a 
lower case Roman letter and the secondary character is a blank, then the proper 
character will be produced. The user, however, is encouraged to use the character 

.- 
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pairs given in the above tables. The use of these character pairs will enhance the 
portability of the application program to non-ASCII computers. 

The underscore, midscore, and overscore characters in the above table have some 
special properties. The purpose of these characters is to allow the programmer to 
draw lines under or over a line of text. TWO consecutive underscore characters, 
for example, will join together into a single line (this is not true of the underline 
character). Thus the programmer, with some difficulty, can generate such things as. 
fractions. The overscore will also join properly with the surd character to form a 
full radical sign. 

The diacritical marks may be used immediately following any drawn character 
or a full sized blank. When this is done, the mark will attach itself to the preceding 
character and will be centered on that character. The prime mark is different than 
the others. The prime is normally used as a superscript on another symbol. More 
than one prime may be used in a superscript and the spacing will be appropriately 
close. However, this may mean that a partial space will have to be inserted if 
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something follows a prime. 
After a character is drawn, it is always followed by a short blank space before 

the next character is drawn. When the character is a full blank, it produces a 
space representing the blank and then the blank space that follows all characters. 
The fractional blanks refer only to the space that represents the space itself. The 
backwards blanks cause exactly enough movement to eliminate the space represent- 
ing the blank and its following space. Thus, a “third blank” followed by a “third 
backwards blank” will exactly cancel each other. 

The alternate character generators usually produce characters of differing 
widths; thus the upper case letter “M” is about twice as wide as the upper case 
“I”, and most lower case letters are about three-fourths as wide as most upper case 
letters. This results in a more pleasing appearance, but also causes some problems. 

’ If, for example, a letter is to carry both a superscript and subscript, something 
equivalent to a backspace would be necessar), r but the amount backspaced would 
depend on the characters in the superscript (or subscript). To overcome this prob- 

. . 
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‘igure 2.3. The solid font of the alternate character set 
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lem, a group of position control characters have been introduced which cause the 
stroke generator to save its current position and state. Another control character 
in a later part of the string can cause the earlier state of the stroke generator to be 
restored. There are four independent save-restore control character pairs available. 
The scope of these save-restore pairs is a single call to subroutine GZTX or GZTXS. 
That is, you cannot save a position in one call to one of these subroutines and try 
to use it in a later call. If-you try to use a position without saving it in an earlier 
part of the string, you will obtain the position of the beginning of the string. 

The alternate character set in the simplex font is shown in Figure (2.1), the. 
duplex font is shown in Figure (2.2), and Figure (2.3) shows the solid font, The 
order of the characters in the figures is the same as in the preceding table. The 
character in the lower right of these figures is produced when an invalid character 
pair 4-s specified. The average number of polyline end points per character in the 
simplex font is 7.8 and the maximum number is 21 (the lower case Roman G and the 
lower case ligature AE). The average number of polyline end points per character 
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1 
Dijrer (15251: 7d1/(3 

Diirer (1525): 7~=31/8 
Diirer (1525): 7r=3% 

PRIMARY... DUURER (1525). P-3311640/4148 
SECONDARY... LDLLL P G VY UVY UYV 

PRTMARY... 20222215X223+Y22 
SECONDARY... MZWWWWZY x x x 

igure 2.4. Examples of the simplex, duplex, and solid fonts 

in the duplex font is 22.4 and the maximum number is 62 (the upper case Cyrillic 
Zheh). The average number of fill area vertex points per character in the solid 
font is 23.6 and the maximum number is 94 (the ascending and descending node 
symbols), 

Many of the characters in the duplex font were designed by A. V. Hershey and 
are described by him in Calligraphy for Conrpzltets jHer67]. 

A large number of interesting constructions are possible with these character 
generators. Some examples are shown in Figure (2.4). In producing that figure, the 
primary and secondary characters were drawn with the simplex font in the mono- 
spaced mode. The-other parts of the figure were done with the simplex, duplex, or 
solid fonts in the proportionally spaced mode. 
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Chapter 3 

Projective Transformations 

This chapter describes a group of subroutines that may be used to define pro- 
jective transformations from two-dimensional or three-dimensional space into two- 
dimensional space. Subroutines are provided which generate the transformations 
and encode them as a matrix. Other subroutines are then provided that take a 
point, in twodimensional or three-dimensional space, and project them into two- 
dimensional space. The mathematical derivation of all of these projective trans- 
formation algorithms is given in An. Introduction to the Curves and Surfaces of 
Computer-Aided Design [BeaSl]. 

One use of the two-dimensions to two-dimensions transformation is in digitiz- 
ing photographs. If the photograph contains a figure of known dimensions then 
the transformation from real. two-dimensional space to the coordinate system of 
the photograph can often be determined. A projective transformation is also the 
physically correct transformation if the optical system of the camera approximates 
a pinhole camera. 

The three-dimensions to two-dimensions transformations are useful whenever 
two-dimensional images of three dimensional objects are required. 

These transformations have many desirable properties. One of the most impor- 
tant is that they transform straight lines into straight lines. Another advantage is 
that neither the generation of the transformation nor the projection of a point is 
computationally expensive. 

If one of the transformation generating subroutines determines that the trans- 
formation does not exist, it sets an error indicator and returns to the caller. The 
subroutines that project a.point should always work unless they are supplied with 
extremely large coordinates. 

3.1. Two-dimensions to Two-dimensions Projective Transformations 

This section describes a means of generating and using a projective transforma- 
tion from two-dimensional space to two-dimensional space. The transformation is 
defined by giving four points in the source coordinate system and the corresponding 
four points in the target coordinate system. The resulting projective transformation 
will always be computable provided no three of the points lie on a straight line in 
either coordinate system. 

There is, however, a problem with points that transform into a point at infinity. 
To understand this problem, refer to Figure (3.1). In this figure, the four points 
on the irregular quadrilateral, Pi, Pz, Pa, and Pq, are to be transformed into the 

24 -. 
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c 

Figure 3.1. A two-dimensions to two-dimensions projective transformation 

rectangle described by Pi, Pb, Pi, and Pi. The line through the points PI and 
P2 intersects the line through the points Ps and Pq at Ql. The lines through 
the corresponding Pi points do not intersect, or rather, they intersect at infinity. 
The point Q1 therefore transforms into a point at jnfinity. The point Q2 similarly 
transforms into a point at infinity. Since straight lines are preserved under the 
transformation, all’of the points on the dotted line through Qr and Q2 transform 
into points at infinity. The subroutine that transforms a point from one coordinate 
system to another will determine if the given point transforms into a point at infinity 
and warn. the. caller. 

3.1.1. Subroutine GZ22PJ: Generate a Transformation 

This subroutine may be used to generate a two-dimensions to two-dimensions 
projective transformation that carries four given points into four given points. 

The calling sequence is: 
CALL G222PJ(PXAS,PYAS,PXAT,PYAT,IERR,PTRN) 

The input parameters are: 
PXAS A real array of dimension 4 containing the z coordinates of the source 

. points. 
PYAS A real array of dimension 4 containing the y coordinates of the source 

points. 
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PXAT 

PYAT 

The output 
IERR 

PTRN 

A real array of dimension 4 containing the z coordinates of the target 
points. 
A real array of dimension 4 containing the y coordinates of the target 
points. 
parameters are: 
An integer giving an error flag. A nonzero value means the transfor- 
mation could not be computed. 
A real array of dimension (3,3) containing the projective transforma- 
tion. 

3.1.2. Subroutine CZZZTR: Transform a Point 
This subroutine may be used to transform a point using a two-dimensions to 

two-dimensions projective transformation, A Aag indicates if the projected point is 
a finite point or a point at infinity. 

The calling sequence is: 
CALL GZ22TR(PTRN,PAS,PAP,FLAG) 

The input parameters are: 
PTRN A real array of dimension (3,3) containing the projective transforma- 

tion. 
PAS A real array of dimension 2 containing the source point. 

The output parameters are: 
PAP A real array of dimension 2 containing the projected point. 
FLAG A real value that indicates whether a finite point or a point at infinity 

has been computed. If this vaIue is nonzero, PAP contains the finite 
coordix ates of the projected point. If this k-alue is zero, PAP is a unit 
vector pointing in the direction of the point at infinity. 

3.2. Three-dikensions to Two-dimensions Projective Transformations 

This section describes a number of ways to generate a three-dimensions to two- 
dimensions projective transformation. 

In the first case the projection of a point in three-dimensional space is defined 
by an eye point and a projection plane as shown in Figure (3.2). The plane is 
defined by an origin point, 0, on the plane, and two direction vectors, H and V. H 
is the “horizontal” direction and V is the “vertical” direction. These two direction 
vectors will often be perpendicular to each other. A point on the plane, Q, is found 
by starting at 0, and moving parallel to H the necessary distance and then parallel 
to V the necessary distance. Thus, Q is represented as 

, Q=O+,tH+qv. 

Thus the vectors H and V impose a coordinate system on the plane. The projec- 
tion of a point P onto the plane is then obtained by drawing a straight line through 
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Figure 3.2. A three-dimensions to two-dimensions perspective transtormation 

the eye point, E, and the point P until it meets the plane. The [ and q values of 
the intersection point are the coordinates of the projected point in twedimensional 
space. In many applications H and V are perpendicular and the vector from E 
to 0 is perpendicular to both H and V but that is not necessary in these subrou- 
tines. This type of transformation is known as a perspective ttansjormntion. These 
transformations are best understood by imagining a viewer at the eye point, looking 
toward the origin point. 

The second type of three-dimensions to two-dimensions transformation that is 
described here is known as a parallel hznsfotnafion. It is formed by projecting a 
given point, P, parallel to a fixed direction, D, as shown in Figure (3.3). It is again 
common to have H and V perpendicular and to have D perpendicular to both H 
and V. 

In the case of a perspective transformation, the horizontal and vertical directions 
must be distinct and neither may point at the eye point. In a parallel transforma- 
tion, the horizontal, vertical, and projection directions must all be distinct. 

The preceding scheme is very general but is not very easy to use. The problem 
is that the origin point is not easy to determine. For this reason, a second way to 
define the projection plane is provided. In this second scheme, the projection plane 
is defined by selecting a rectangular area on the projection plane and thinking of 

. . it as the “projection screen.” The projection screen is orientated so that one set of 
parallel sides is parallel to the s-y plane. The projection screen is defined by giving 
the center point of the screen, C, and its horizontal and vertical size, h and V. In 
the case of a perspective transformation, the projection plane is perpendicular to 

. I  
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‘igure 3.3. A three-dimensions to two-dimensions parallel transformation 

the vector from E to C; in the case of a parallel transformation, it is perpendicular 
to D. To define the coordinate system on the projection screen, the maximum and 
minimum values of [ and q are given. This information is all shown in Figure (3.4). 

The maximum and minimum values of C$ and 7 are given by a real array of 
dimension (22). The format of the data is 

SCRC = 
( 

SCRC(l,l) SCRC(1,2) (min qrnin 

SCRC(2,i) SCRC(2,2) > ( 

= 
> (maz qmaz ’ 

For most usage, the aspect ratio given by h and u should be the same as that defined 
by the maximum and minimum values of [ and 7. That is, the values should satisf) 

7jrnaz - qmin = u 

c mat -(min x’ 

However, the subroutines do not enforce this constraint. 
A perspective transformation can also produce points at infinity. ,411 of the 

points on the plane through the eye point and parallel to the projection plane 
map into points at infinity except for the eye point itself. The eye point has no 
corresponding point. A parallel transformation never produces points at infinity. 

,;. 

3.2.qi. Subroutine GZ32PT: Generate a Perspective Transformation (I) 

This subroutine may be used to generate a three-dimensions to two-dimensions 
perspective transformation. The transformation is defined by giving the projection 

. . 
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Figure 3.4. An alternate method of dei-mmg the proJectlon plane 

plane and an eye point. The projection plane is specified by giving a point on the c 
plane and a horizontal and vertical direction within the plane. 

The calling sequence is: 
CALL GZ32PT(PO,HD,VD,PE,IERR,PTRN) 

The input parameters are: 
PO A real array of dimension 3 containing the origin point on the projection 

_ plane. 
HD A’ real array of dimension 3 containin, u the horizontal direction in the 

projection plane. 
VD A real array of dimension 3 containing the vertical direction in the 

projection plane. 
PE A real array of dimension 3 containing the eye point. 

The output parameters are: 
IERR An integer giving an error flag. A nonzero value means the transfor- 

mation could not be computed. 
PTRN A real array of dimension (3,4) containing the projective transforma- 

tion. 

. 3.2.2. Subroutine GZ32AT: Generatk a Perspective Transformation (II) . 

This subroutine provides an alternate way to generate a three-dimensions to two- 
dimensions perspective transformation. The transformation is defined by giving the 

. I  



30 GKS Utilities for FORTRAN-77 

projection plane and an eye point. In this case, the projection plane is specified 
by giving the center point of a projection screen, its size, and the limits of the 
coordinates on the screen. 

The calling sequence is: 
CALL GZ32AT(PC,HZ,VZ,SCRC,PE,IERR,PTRN) 

The input parameters are: 
PC A real array of dimension 3 contdning the center point on the projec- 

tion plane. 
HZ A real value giving the size of the screen in the horizontal direction. 
vz A real value giving the size of the screen in the vertical direction. 
SCRC A real array of dimension (2,2) containing the limits of the coordinate 

system on the screen. 
PE A real array of dimension 3 containing the eye point. 

The output parameters are: 
- _ IERR An integer giving an error flag. A nonzero value means the transfor- 

mation could not be computed. 
PTRN A real array of dimension (3,4) containing the projective transforma- 

tion. 

3.2.3. Subroutine GZ32PL: Generate a Parallel Transformation (I) 

This subroutine may be used to generate a three-dimensions to two-djmensjons 
parallel transformation. The transformation is defined by giving the projection 
plane and a projection direction. The projection plane is specified by giving a point 
on the plane and a horizontal and vertical direction within the plane. 

The calling sequence is: 
CALL GZ32PL(FO,HD,VD,PD,IERR,PTRN) 

The input parameters are: 
PO A real array of dimension 3 containing the origin point on the projection 

plane. 
HD A real array of dimension 3 containing the horizontal direction in the 

projection plane. 
VD A real array of dimension 3 containing the vertical direction in the 

projection plane. 
PD A real array of dimension 3 containing the projection direction. 

The output parameters are: 
JERR An integer giving an error flag. A nonzero value means the transfor- 

mation could not be computed. 
PTRN A real array of dimension (3,4) containing the projective transforma- 

Con. 
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3.2.4. Subroutine GZ32AL: Generate a Parallel Transformation (II) 

This subroutine provides an alternate way to generate a three-dimensions to 
two-dimensions parallel transformation. The transformation is defined by giving 
the projection plane and a projection direction. In this case, the projection plane 
is specified by giving the center point of a projection screen, its size, and the limits 
of the coordinates on the screen. 

The calling sequence is: 
CALL GZ32AL(PC,HZ,VZ,SCRC,PD,IERR,PTRN) 

The input parameters are: 
PC A real array of dimension 3 containing the center point on the projec- 

tion plane. 
HZ A real value giving the size of the screen in the horizontal direction. 
vz A real value giving the size of the screen in the vertical direction. 
SCRC _ - A real array of dimension (2,2) containing the limits of the coordinate 

system on the screen. 
PD A real array of dimension 3 containing the projection direction. 

The output parameters are: 
IERR An integer giving an error flag. A nonzero vale means the transfor- 

mation could not be computed. 
PTRN A real array of dimension (3,4) containing the projective transforma- 

tion. 

3.2.5. Subroutine GZ32TR: Transform a Point 

This subroutine may be used to transform a point using a three-dimensions to 
two-dimensions projective transformation. A flag indicates if the projected point is 
a finite point or a point at infinity. 

The calling sequence is: 
CALL GZ32TR(PTRN,PAS,PAP,FLAG) 

The input parameters are: 
PTRN A real array of dimension (3,4) containing the projective transforma- 

tion. . 
PAS A real array of dimension 3 containing the source point. 

The output parameters are: 
PAP A real array of dimension 2 containing the projected point. 
FLAG A real value that indicates whether a finite point or a point at infinity 

has been computed. If this value is nonzero, PAP contains the finite 
coordinates of the projected point. For a perspective transformation, a 
positive value indicates the source point is in front of the viewer while 
a negative value indicates it is behind the viewer. In these cases, the 
magnitude of FLAG is proportional to the distance from the eye point to 
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the projected point; it can be used as the projected distance from the 
eye point to the source point. if this value is zero, PAP is a unit vector 
pointing in the direction of the point at infinity. If the source point is 
the eye point of a perspective transformation, both components of PAP 
and the value of FLAG will be zero. 

.- 



Chapter 4 

Curve Drawing Algorithms 

This chapter describes a group of subroutines that may be used to draw smooth 
curves. The curves are defined by supplying control points and other control in- 
formation to the subroutines. The curves are drawn by breaking them down into 
small strtight line segments and then calling the GKS polyline subroutine, GPL. 
The user has control over the number of line segments generated. The mathemat- 
ical derivation of all of these curve drawing algorithms is given in An Inttoduciion 
to the Curves and Surfaces of Computer-Aided Design [BeaSl]. 

Mathematically, all of these curves are defined parametticnlly, that is, the z 
and y coordinates are defined as functions of a parameter, t. In effect, a user maJ 
specify the parameter at each of the control points. Different assignments of the 
parameter values at the control points usually results in different curves. There 
are two schemes that are commonly used to define the values of the parameter 
associated with the given control points. These two schemes produce curves that 
axe known a.s uniform and nonuniform curves. For uniform curves, the parameter 
is set to zero at the first point ,and increases by one for each succeeding point. For 
nonuniform curves, the parameter may be set to any increasing sequence of positive 
values. 

The uniform scheme is very simple mathematically but often does not produce 
acceptable curves if the points are not nearly equally spaced. A nonuniform scheme 
that usually produces good results is based on accumulated chord length along the 
sequence of ppints. The parameter is set to zero for the first point and increases 
by an amount equal to the distance between consecutive points for each point. For 
later reference, we display the increments in the parameter for this nonuniform case 

D1 = distance from point 1 to point 2, 
D2 = distance from point 2 to point 3, 

. . . 

DH-~ = distance from point (N - 2) to point (N - l), 
D+1 = distance from point (N - 1) to point N, 

(4.1) 

where N is the number of given control points. The subroutines described in this 
chapter all start the parameter at zero and expect the user to supply the increments 

- in parameter value, explicitly or implicitly, along the curve. 
In the following subroutines, the parameter values are supplied by two argu- 

ments; the first, NP, is an integer and the second, PA, is a real array. If NP is 
positive, the dimension of PA must be NP. The increments in parameter values are 

33 
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then obtained from the PA array. If more parameter values are needed than are con- 
tained in PA, then they are obtained cyclically from PA. That is, the values PA(~), 
. . . . PA(NP) are obtained and then this sequence is repeated. This makes it very 
easy to specify the uniform curve; HP is simply given an integer value of one while 
PA is given a real value of one. It is also easy to specify the nonuniform curve with 
the parameter value based on accumulated chord length. This is done by giving 
NP a value of zero. In this case, PA is ignored and the subroutine calculates the 
parameter internally. 

Most of the algorithms described here produce curves by using concatenations 
of simple parametric polynomials. The parametric polynomials are usually of low 
degree (normally two or three). The points at which consecutive polynomials join 
are known as knots. 

In addition to the simple polynomial form of these algorithms, some also have 
a rational form. The rational form consists of x and y being defined as quotients 
of polynomials. In certain applications, the rational form can be more useful. For 
example, the only conic the polynomial form can ever match exactly is the parabola. 
It is impossible for the polynomial form to exactly match a simple circle although 
it can come arbitrarily close. On the other hand, a rational parametric quadratic 
can exactly match any conic. 

Two distinct types of curves, interpolation curves and design curves, may be 
produced by these subroutines. Interpolation curves pass through all of their control 
points while design curves do not necessarily do this. 

The description of each subroutine will include figures showing examples of 
curves produced by the subroutines. In these figures, the given control points are 
joined by straight lines between consecutive points. This open polygon is known 
as the control polygon. The reader will notice that these figures do not dispIay the 
coordinate axes. The reason for this is that all of the curves described here are 
isofropic, that is, they are independent of the coordinate system in which they are 
defined. In fact, the reader may draw a set of coordinate axes anywhere in these 
figures and label the axes in any units. The figures also do not label the points so 
the reader cannot tell which end of the curve corresponds to the first point. The 
reason for this is that most of these curve drawing algorithms are symmetric, that 
is, they do not depend on which end of the control polygon is the starting end. 

If one of these subroutines detects an error in the data supplied to it, the.sub- 
routine prints an error message and returns without producing any graphic output. 

4.1. Bessel’s Method of Local Cubic Interpolation 

Bessel’s method is a cubic interpolation algorithm. Between each pair of points 
is a segment of a parametric cubic. Adjacent cubic segments join at the control 
points and have tangent vectors at those points which have the same direction. The 
method is also local in that a cubic segment is completely determined by four control 
points, the ones at its ends and the two on either side of it. In addition to the usual 
parameter values that are associated with the line segments in the control polygon, 
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there are additional parameters associated with the tangent vectors at the points. 
This combination of parameters gives the user a substantial amount of control over 
the final interpolation curve. 

The two subroutines that are described here differ in the type of control that the 
user has over the ends of the curve. In the first subroutine, the user must supply 
and extra point beyond the actual ends of the curve. In the second subroutine, 
the user may specify the tangent direction at the end points or request that the 
curmture be zero. In this later case, the end conditions may be mixed, that is, 
the user may specify a tangent vector at one end and request zero curvature at the 
other. 

4.1.1. Subroutine GZBESL: Draw a Parametric Bessel’s Curve (I) 

This subroutine may be used to draw a curve through a sequence of points using 
Bessel’s method. In this scheme, the ends of the curve are controlled by an extra 
point. The actual curve, therefore, extends from the second control point to the 
second point from the end of the curve. Either a uniform curve, or a nonuniform 
curve may be drawn. In the case of a nonuniform curve, a simple means to base 
the line segment parameters on accumulated chord length is provided. 

The calling sequence is: 
CALL GZBESL(N,PXA,PYA,NP,PA,HT,TA,NS) 

The input parameters are: 
N An integer giving the number of control points. 
PXA A real array of dimension N containing the z coordinates of the control 

points. 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
NP An integer giving the number of parameter values associated with line 

. segments in the control polygon. If this value is not positive, accu- 
muIated chord length will be used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of (N - 1) values are needed. 

PA If NP is positive, this is a real array of dimension NP containing the 
given parameter values associated with the line segments. 

NT An integer giving the number of parameter values associated with tan- 
gent vectors at the interior points. This value must be positive and 
the values are selected cyclically from the next parameter. A total of 
(N - 2) values are needed. 

TA A real array of dimension NT containing the given parameter values 
associated with the tangent vectors. , 

NS An integer giving the number of straight line segments into which each 
curve segment is to be divided. 
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Figure 4.1. Examples of interpolation by Bessel’s method (I) 

Figure (4.1) includes an example of a nonuniform curve where accumulated 
chord length has been used as the parameter. The TA cdues have all been set to 
one. The circular curve at the lower right of Figure (4.1) was formed by specifying 
seven points at the corners of the square in sequence. Since the chord segments are 
equal, the uniform and nonuniform curves based on accumulated chord length are 
identical. 

Figure (4.2) illustrates the affect the PA values have on the curve. The figure 
illustrates the manipulation the PA value associated with the central line segment 
of the control polygon. It shows that reducing the value of PA(3) causes the curve 
to move closer to the chord between the third and fourth points. In this cae, the 
tangent vectors at the third and fourth points also rotate to become closer to the 
chord. Large values of PA(3) cause the curve to move away from the chord and a 
cusp or loop can form if it is made too large. Figure (4.2) also illustrates the local 
properties of the interpolation because all three composite curves are tangent to 
each other at their ends; any continuation of the curve beyond its current ends will 
not be affected by the change in the parameter. 

Figure (4.3) illustrates the manipulation of the TA values. The natural value of 
the TA values is one. As TA(2) is reduced, the influence of the tangent vector at 
the middle point is reduced and the curve pulls away from the tangent vector and 
approaches the adjacent chords. However, in this case, the tangent direction at the 
middle point does not change. If TA(2) is made large, the infiuence of the tangent 
vector at the middle point becomes strong. This forces the interpolation curve to 
flatten and follow the direction of the tangent vector longer. In general, when the 
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PA(3)=D3 

. . . . . . . PA(3)=2Ds 

Figure 4.2. Examples of interpolation by Bessel’s method (II) 

LL- TA(2)=0.5 

TA(2)=1 

. . . . . . . TA(2)=2 

: Figure 4.3. Examples of interpolation by Bessel’s method (III) 

TA values are reduced, the curve moves closer to the adjacent chords and becomes 
taut; increasing the TA values allows the curve to relax and bow out. 
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4.1.2. Subroutine GZBESE: Draw a Parametric Bessel’s Curve (II) 

This subroutine may be used to draw a curve through a sequence of points using 
Bessel’s method. In this scheme, the ends of the curve are controlled by specifying 
the end tangents or by requesting zero curmture at the ends. Either a uniform 
curve, or a nonuniform curve may be drawn. In the case of a nonuniform curve, a 
simple means to base the line segment parameters on accumulated chord length is 
provided. 

The calling sequence is: 
CALL GZBESE(N,PXA,PYA,Vl,VZ,NP,PA,NT,TA,NS) 

The input parameters are: 
N 
PXA 

PYA 
- 

VI 

v2 

NP 

PA 

NT 

TA 

NS 

An integer giving the number of control points. 
A real array of dimension N containing the z coordinates of the control 
points. 
A real array of dimension N containing the y coordinates of the control 
points. 
A real array of dimension 2 containing the given tangent vector at the 
initial end. This argument should usually be a unit vector or a zero 
vector. If it is a zero vector, then zero cur\-ature is imposed at the end. 
A real array of dimension 2 containing the given tangent vector at the 
terminal end. This argument should usually be a unit vector or a zero 
vector. If it is a zero vector, then zero curvature is imposed at the end. 
An integer giving the number of parameter values associated with line 
segments in the control polygon. If this Falue is not positive, accu- 
mulated chord length will be used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of (N - 1) values are needed. 
If NP is positive, this is a real array of dimension NP containing the 
given parameter values associated with the line segments. 
An integer giving the number of parameter values associated with tan- 
gent vectors at the points. This value must be positive and the values 
are selected cyclically from the next parameter. A total of N values are 
needed. 
A real array of dimension NT containing the given parameter values 
associated with the tangent vectors. 
An integer giving the number of straight line segments into which each 
curve segment is to be divided. 

Figure (4.4) shows examples of interpolation by Bessel’s method when tangents 
at the ends of the curve are supplied. In this case the curve is not, strictly speaking, 
symmetric. Since the tangents at the ends are supplied, they must point in the 
direction of the curve so this curve was drawn from the left to the right. To draw 
the curve in the other direction, the directions of the tangent vectors must be 

. I  
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--- Uniform Curve 

Nonuniform Curve \ 

Figure 4.4. Examples of interpolation by Bessel’s method with end tangents given 

--- Uniform Curve 

Nonuniform Curve 

Figure 4.5. Examples of interpol$ion by Bessel’s method with zero curvature at 
the ends 

reversed, In the nonuniform curve, accumulated chord length has been used as the 

. I  
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parameter. 
In Figure (4.5) the curvature at the end points has been constrained to be zero. 

The nonuniform curve again has accumulated chord length as its parameter. 

4.2. Cubic Spline Interpolation 

This section describes a subroutine that may be used to draw a parametric 
cubic spline. A cubic spline is an interpolation curve consisting of parametric cubic 
polynomial segments. The segments of the curve join at the knots with equal first 
and second derivatives. However, the curve is not local in nature; changing one 
control point modifies the entire curve. 

There is a limit on the number of control points that may be supplied to this 
subroutine. 

4.2.1. Subroutine GZSPLN: Draw a Parametric Cubic Spline 

This subroutine may be used to draw a parametric cubic spline curve through 
a sequence of points. The ends of the curve are controlled by specifying the end 
tangents or by requesting zero curvature at the ends. Either a uniform curve, or 
a nonuniform curve may be drawn. In the case of a nonuniform curve, a simple 
means to base the parameter on accumulated chord length is provided. 

The calling sequence is: 
CALL GZSPLN(N,PXA,PYA,Vl,V2,NP,PA,NS) 

The input parameters are: 
N An integer giving the number of control points. The maximum number 

of points that are allowed is 32. 
PXA A real array of dimension N containing the x coordinates of the control 

points.. 
PYA A real array of dimension N containing the y coordinates of the cont.rol 

points. 
Vl A real array of dimension 2 containing the given tangent vector at the 

initial end. This argument should usually be a unit vector or a zero 
vector. If it is a zero vector, then zero curvature is imposed at the end. 

v2 A real array of dimension 2 containing the given tangent vector at the 
terminal end. This argument should usually be a unit vector or a zero 
vector. If it is a zero vector, then zero curvature is imposed at the end. 

NP An integer giving the number of parameter values associated with line 
segments in the control polygon. If this value is not positive, accu- 
mulated chord length will be used to generate the parameter. If this 

‘. parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of (N - 1) values are needed. 

PA If NP is positive, this is a real array of dimension NP containing the 
given parameter values associated with the line segments. 
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--- Uniform Curve 

Nonuniform Curve 

Figure 4.6. Parametric cubic splines with end tangents given 

NS An integer giving the number of straight line segments into which each 
curve segment is to be divided. 

Figure (4.6) h s ows examples of cubic splines with the tangents given at the 
end points. In this case the curve is not, strictly speaking, symmetric, Since the 
tangents at the ends are supplied, they must point in the direction of the curve so 
this curve was drawn from the left to the right. To draw the curve in the other 
direction,.the directions of the tangent vectors must be reversed. The figure also 
shows the oscillatory behavior that is often a problem in spline curves. 

Figures (4.7) and (4.8) were drawn with zero curvature at the end points. In 
Figure (4.7), the spacing of the points was deliberately chosen to have large variation 
in the chord lengths. As a result, the uniform curve exhibits oscillatory problems at 
the top center of the figure. Figure (4.8) illustrates how the PA values can be used 
to control the shape of the curve. In this case, chord lengths have been used for 
the parameters except that the PA value associated with the central line segment of 
the control polygon has been manipulated. As we have seen before, reducing a PA 
value causes the curve to move closer to the associated line segment. Figure (4.8) 
also shows that changes like these are not local; they affect the entire curve. 

‘* 4.3. BGzier Curves 

A Bezier curve is a design curve and not an interpolation curve. It does, however, 
pass through its first and last control points and is tangent to the first and last 
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Nonuniform Curve 

Figure 4.7. Parametric cubic splines with zero end curlature (I) 

Figure 4.8. Parametric cubic splines witfi zero end curvature (II) 

straight line segment in the control polygon. The Bizier curve is a parametric 
polynomial of large degree (in fact the degree is the number of control points minus 

--- PA(3)=0.5& 

PA(3)=Dj 

. . . . . . . PA(3)=2D3 
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one). Although using polynomials of large degree is usually a dangerous thing to 
do, the Bizier curve is unusuaIly well behaved. 

The BCzier curve is available in both a simple polynomial and a rational form. 
The polynomial form does not have any user control except for the positioning of 
the control points. The rational form has control variables called weighta. The 
weights may be any positive values. If the weights are all -equal, the polynomial 
form of the BCzier curve is produced. 

There is a limit on the number of control points that may be supplied to these 
subroutines. 

4.3.1. Subroutine CZBEZR: Draw a BCzier Curve 
This subroutine may be used to draw a BCzier curve of arbitrary degree deter- 

mined by a sequence of points. 

The calling sequence is: 
CALL GZBEZR(N,PXA,PYA,NS) 

_. - The input parameters are: 
N An integer giving the number of control points. The maximum number 

of points that are allowed is 32. 
PXA A real array of dimension N containing the x coordinates of the control 

points. 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
NS An integer giving the number of straight line segments into which the 

curve is to be divided. 

Figures (4.9) and (4.10) h s ow some examples of BCzier curves. Figure (4.10) 
illustrates the effect of moving a single control point. 

4.3.2. Su~broutine GZRBEZ: Draw a Rational BCzier Curve 
This subroutinemay be used to draw a rational BCzier curve of arbitrary degree 

determined by a sequence of points. 

The calling sequence is: 
CALL GZRBEZ(N,PXA,PYA,NW,WA,NS) 

The input parameters are: 
N An integer giving the number of control points. The maximum number 

of points that are allowed is 32. 
PXA A real array of dimension N containing the x coordinates of the control 

points. ,. 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
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Figure Examples oi l3ezler curves (1) 

Figure 4.10. Examples of Bizier curves (II) 

An integer giving the number of weights associated with the control 
points. This value must be positive and the weights are selected cycli- 
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Figure 4.11. Examples of rational Bezier curves 

tally from the next parameter. A total of N values are needed. 
WA A real array of dimension NW containing the given weights. _._ . 

. . . . . . . WA=(1,1,5,1,1) 

NS An integer giving the number of straight line segments into which the 
curve is to be divided. 

Figure (4.11) illustrates how the weights may be used to control the shepe of 
a rational BCzier curve. In the figure, larger values of the weights cause the curve 
to move closer to its associated point while allolving the curve to pull away from 
neighboring points. 

4.4. B-spline Curves 

A B-spline curve is a pure design curve; it normally does not pass through any 
of its control points. The subroutjnes described here make the B-spline available in 
both the polynomial and rational forms in either quadratic or cubic degree. The 
segments of a quadratic B-sphne match at the knots in ordinate and first derivative. 
The segments of a cubic B-spline match in ordinate, and first and second derivative. 
The curve also is local in nature; changing a single contro1 point only affects a small 
number of curve segments. 

Since the knots would not otherwise be known to the user, a facility is provided 
.* whereby the knots my be marked. This is done by calling the GKS poIymarker 

subroutine, GPM. All of the figures in this section have had the knots marked with 
markers that are slightly smaller than those used for the control points. 
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The B-spline is actually a generalization of the Bdzier curve. The proper selec- 
tion of the parameter values can cause the subroutines described in this section to 
produce a BCzier curve. 

4.4.1. Subroutine GZBSPZ: Draw a Quadratic B-spline Curve 

This subroutine may be used to draw a quadratic B-spline curve that is con- 
trolled by a sequence of points. Either a uniform curve, or a nonuniform curve may 
be drawn. In the case of a nonuniform curve, a simple means to base the parameter 
on accumulated chord length is provided. In addition to drawing the curve, the 
knots may also be marked. 

The calling sequence is: 
CALL GZBSP2(N,PXA,PYA,NP,PA,NS,MFLG) 

The input parameters are: 
N An integer giving the number of control points. 
PXA A real array of dimension N containing the z coordinates of the control 

points. - 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
NP An integer giving the number of parameter values associated with line 

segments in the control polygon. If this value is not positive, accu- 
mulated chord length will be used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of N values are needed. 

PA If NP is positive, this is a real array of dimension HP containing the 
given parameter values associated with the line segments. 

NS An integer giving the number of straight line segments into which each 
curve segment is to be divided. 

MFLG An integer flag that indicates if the knots are to be marked. Any 
nonzero value will cause them to be marked. 

There is, however, a problem with the generation of the PA array when accu- 
mulated chord length is used to produce it. The problem is that there are (N - 1) 

- distances available but N values are needed. An appropriate scheme, and the~one 
used within subroutine GZBSPZ, is 

PA(l) = D1, 

PA(Z)= ;(a +D2), 

PA(3) = ;pz+m, 

. . . 
(4.2) 

PA(N -1) = 3 (DN-2 + DN-I), 

PA(N) = &-I. 
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Figure 4.12. Examples of quadratic B-splines (I) 

The Di values are determined by Equations (4.1). 
Figure (4.12) shows examples of uniform and nonuniform quadratic B-splines. 

The nearly circular curve at the lower right was formed by specifying six consecutive 
corner points around the square. The uniform and nonuniform curve based on chord 
length are equal in this case. In the other nonuniform curve, the PA dues were 
determined from chord distances and Equations (4.2). 

For the quadratic B-spline, the knots always lie on the control polygon and the 
curve is tangent to the control polygon at the knots. In the uniform case,‘the knots 
are at the’midpoints of the line segments in the control polygon. 

Figure (4.13) h s ows examples of how a modification of the PA values changes 
the curve. In this case, the PA’s were also determined from Equations (4.2) and only 
the central one was modified. Notice how small values of this parameter cause the 
points of tangency on the control polygon to move closer to the associated point on 
the control polygon. 

There is a fairly popular alternative to Equations (4.2). That alternative sets 

PA(l) = 0.0, 
PA(N) = 0.0, 

with the other values set by Equations (4.2). Th e a d vantage of this scheme is that 
1. the curve now passes through the ‘first and last control points and is tangent to 

the control polygon at those points. The interior of the curve has the properties 
described above. The problem with this formulation is that it does not reduce to 
the usual uniform approach. 
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--- PA(3)=0.1(Dz+D3) 

PA(3)=0.5(D2+D3) 
. . . . . . . PA(3)=2.5(Dz+D3) 

Figure 4.13, Examples of quadratic B-splines (11) 

4.4.2. Subroutine GZRBS2: Draw a Rational Quadratic B-spline Curve 

This subroutine may be used to draw a rational quadratic B-spline curve that is 
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve 
may be drawn. In the case of a nonuniform curve, a simple means to base the 
line segment parameters on accumulated chord length is provided. In addition to 
drawing the curve, the knots may also be marked. 

The calling sequence is: 
CALL GZRBS2(N,.PXA,PYA,NP,PA,NW,WA,NS,MFLG) 

The input parameters are: 
N An integer giving the number of control points. 
PXA A real array of dimension N containing the x coordinates of the control 

points. 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
NP An integer giving the number of parameter values associated with line 

segments in the control polygon. If this value is not positive, accu- 
mulated chord length will be,,used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 

; rameter. In this case, a total of N values are needed. 
PA If NP is positive, this is a real array of dimension NP containing the 

given parameter values associated with the line segments. 

. 
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--- WA=(l,l,O.Z,~,l) 

WA=(l,l,l,l,l) 
. . . . . . . WA=(l,1,5,1,1) 

Figure 4.14. Examples of rational quadratic B-splme curves 

NW An integer giving the number of weights associated with the control 
points. This due must be positive and the weights are selected cycli- 
cally from the next parameter. A total of N values are needed. 

UA A real array of dimension NW containing the given weights. 
NS An integer giving the number of straight line segments into which each 

curve segment is to be divided. 
MFLG An- integer flag that indicates if the knots are to be marked. An> 

nonzero value will cause them to be marked. 

Figure (4.14) illustrates how the weights may be used to control the shape 
of a rational quadratic B-spline curve. The PA values were determined by Equa- 
tions (4.2). In the figure, larger values of the weights cause the curve to move closer 
to its associated point while allowing the curve to pull away from neighboring points. 

4.4.3. Subroutine GZBSP3: Draw a Cubic B-spline Curve 

This subroutine may be used to draw a cubic B-spline curve that is controlled 
by a sequence of points. Either a uniform curve, or a nonuniform curve may be 
drawn. In the caSe of a nonuniform curve, a simple means to base the parameter on 
accumulated chord length is provided. In addition to drawing the curve, the knots 
may also be marked. 

. 
*, 

The calling sequence is: 
CALL GZBSP3(N,PXA,PYA,NP,PA,NS,MFLG) 
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The input parameters are: 
N An integer giving the number of control points. 
PXA A real array of dimension N containing the x coordinates of the control 

points. 
PYA A real array of dimension N containing the y coordinates of the control 

points. 
NP An integer giving the number of parameter values associated with line 

segments in the control polygon. If this value is not positive, accu- 
mulated chord length will be used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of (N + 1) values are needed. 

PA If NP is positive, this is a red array of dimension NP containing the 
given parameter values associated with the line segments. 

NS An integer giving the number of straight line segments into which each 
curve segment is to be divided. 

MFLG An integer flag that indicates if the knots are to be marked. Any 
nonzero value will cause them to be marked. 

There is again a problem with the PA array when accumulated chord length is 
used to produce it. In this case there are (N - 1) distances available but (N + 1) 
values are needed. An appropriate scheme, and the one used within subroutine 
GZBSP3,is 

PA(l)= &, 
PA(2) = D1, 
PA(3) = D2, 

. . . (4.3) 
PA(N- I)= DN-2, 

PA(N) = &-I, 
PA(N + 1) = DN-1. 

The Di values are again determined by Equations (4.1). 
Figure (4.15) h s ows examples of uniform and nonuniform cubic B-splines. The 

nearly circular curve at the lower right was formed by specifying seven consecutive 
corner points around the square. The uniform and nonuniform curve based on chord 
length are equal in this case. In the other nonuniform curve, the PA values were 
determined from chord distances and Equations (4.3). 

Figure (4.16) shows examples of how a modification of the PA values changes 
the curve. In this case, the PA’s were also determined from Equations (4.3) and 
only,, the central one was modified. Small values of this parameter cause the central 
curve segment to shrink and move closer to the associated segment of the control 
polygon. 

. 
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--- Uniform Curve 

Nonuniform Curve 

Figure 4.15. Examples of cubic B-splines (I) 

--- PA(5)=0.20( 

PA(5)=D4 
. . . . . . . PA(5)=5D4 

’ Figure 4.16. Examples of cubic B-splines (II) 

As in the quadratic case, there is a popular alternative to Equations (4.3). That 
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alternative sets 
PA(l) = 0.0, 
PA(2) = 0.0, 
PA(N) = 0.0, 

PA(N + 1) = 0.0. 

This scheme again forces the curve to pass through the first and last control points 
and makes it tangent to the control polygon at those points. 

4.4.4. Subroutine GZRBS3: Draw a Rational Cubic B-spline Curve 

This subroutine may be used to draw a rational cubic B-spline curve that is 
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve 
may be drawn. In the case of a nonuniform curve, a simple means to base the 
parameter on accumulated chord length is provided. In addition to drawing the 
curve, the knots may also be marked. 

The calling sequence is: 
CALL GZRBS3(N,PXA,PYA,NP,PA,NW,WA,NS,MFLG) 

.., 
The input parameters are: 

N 
PXA 

PYA 

NP 

PA 

NW 

WA 
NS 

MFLG 

An integer giving the number of control points. 
A real array of dimension N containing the z coordinates of the control 
points. 
A real array of dimension N containing the y coordinates of the control 
points. 
An integer giving the number of parameter values associated with line 
segments in the control polygon. If this value is not positive, accu- 
mulated chord length will be used to generate the parameter. If this 
parameter is positive, values are selected cyclically from the next pa- 
rameter. In this case, a total of (N + 1) values are needed. 
If HP is. positive, this is a real array of dimension NP containing the 
given parameter values associated with the line segments. 
An .integer giving the number of weights associated with the control 
points. This Moue must be positive and the weights are selected cycli- 
cally from the next parameter. A total of N values are needed. 
A real array of dimension NW containing the given weights. 
An integer giving the number of straight line segments into which each 
curve segment is to be divided. 
An integer flag that indicates if the knots are to be marked. Any 
nonzero value will cause them to be marked. 

eigure (4.17) illustrates how the weights may be used to control the shape of a 
rational cubic B-spline curve. The PA values were determined by Equations (4.3). 

.- 
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Figure 4.17. Examples of rational cubic B-splice curves 

In the figure, larger values of the weights cause the curve to move closer to its 
associated point while allowing the curve to pull away from neighboring points. 

. 

.- 



Chapter 5 

Surface Drawing Algorithms 

This chapter describes a group of subroutines that may be used to draw pictures 
of the surfaces of solid objects. The surfaces are defined by supplying control 
points and other control information to the subroutines. The surfaces are drawn 
by breaking them down into simple polygons, eliminating those polygons that face 
away from the viewer, sorting the remainder so that the ones farthest away are first 
on the list, and then calling the GKS fill area subroutine, GFA, to write the polygons 
to the active workstations in the sorted order. Closer polygons, therefore, overlay 
the farther ones. 

This method is quite fast but does have its problems. It is possible, especially 
when polygons of vastly differing sizes are involved, to have a large polygon deter- 
mined to be “closer” than a small one even though the small one actually hides part 
of the larger. The subroutine in this chapter that deals with generalized polyhedral 
solids is especially mlnerable to this problem, particularly if non-convex polygons 
are supplied. It is also important that the polygons do not intersect each other; 
none of the algorithms described here can handle that problem. 

There are a number of ways that the polygons may be drawn so that useful 
pictures are produced. In the simplest method, the polygons are drawn as fill areas, 
usually in the background color, and then outlined by a polyline. When this is 
done the pictures look like line drawn figures. A second way is to apply a light 
source and reflection model to obtain fairly realistic pictures. This method will 
only be successful on workstations that can produce a large number of colors. If 
the workstation only supports a small number of colors, the fill areas will all blend 
together and the picture will be unintelligible. In addition to these two general 
modes, some algorithms will supply other options. 

To understand the light source and reflection model used in these subroutines, 
consider Figure (5.1). This figure shows a point, P, on the surface and the light 
source and eye point. N isthe surface normal at P, L is a vector pointing from P 
to the light source, and E is a vector pointing toward the eye position. R represents 
a light ray that starts at the light source and reflects off the surface. The vectors L, 
N, and R are coplanar and L and R make the same angle, 6, with N. The vector 
E makes an angle of cr with R. Notice that E is not necessarily coplanar with L, 
N, and R. 

The light source and reflection model used is 

I I + II~~ cos e t IC, coin a 
= 0 

d t K 
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Figure 5.1. The light source and reiiectlon model 

where IO, n, Kd, KS, and K are parameters that the user may set. The computed 
due, I, is known as the shading junction for the point. The value d is the projected 
distance from the eye point to the surface; its value is one on the projection plane 

and zero at the eye point. K is a distance adjustment constant. 10 is the ambient 
illumination for the scene. Kd is the diffuse reflection constant and h’, is the specular 
reflection -constant. Highlights on a shiny object are caused by large &ues of the 
specular reflection constant. Large values.of n also cause an object to appear shiny. 
A complete derivation of the model is given in Section 5.2 of Procedural Elements 
for Computer Graphic3 [Rog85]. 

The computed shading function for a polygonal surface is mapped to a sequence 
of GKS color indices or attribute bundle indices. The calling program must set up 
this sequence of indices and supply the subroutine with the smallest and largest 
index and the value of the shading function that it corresponds to. Linear interpo- 
lation is used for intermediate values. Values of the shading function outside the 
given limits are mapped to the appropriate extreme index. 

The parameters of the light source and reflection model are given jn a real array, 
CCA, that is common to all of the subroutines. The description of the array in this 

** case is as follows: 
CCA (1) To specify the light source and reflection model, this value should con- 

tain a real value of one. 

. 



56 GKS Utilities for FORTRAN-77 

CCA (2) A real value giving the z component of a vector in the direction of the 
light rays. That is, the direction is from the light source toward the 
object. 

CCA (3) A real value giving the y component of a vector in the direction of the 
light rays. 

CCA(4) A real value giving the z component of a vector in the direction of the 
light rays. 

CCA(4) A real value giving the ambient illumination, lo. 
CCA(6) A real value giving the specular reflection exponent, n. 
CCA(7) A real due giving the diffuse r&e&ion constant, Kd. 
CCA (8) A real value giving the specular reflection constant, Ii’,. 
CCA(9) A real value giving the distance adjustment constant, K. 
CCA( 10) A real value of zero indicates that the indices given below are color 

indices. A real value of one indicates that the indices given below are 
attribute bundle indices. 

CCA (11) A real value giving the minimum value of the shading function corre- 
sponding to the next index. 

CCA (12) A real value giving the color index or the attribute bundle index to 
be used to draw the color associated with the minimum l&e of the 
shading function. This due will be converted to an integer before it 
is used. 

CCA (13) A real value giving the maximum value of the shading function corre- 
sponding to the next index. 

CCA(14) A real value giving the color index or the attribute bundle index to 
be used to draw the color associated with the maximum \a.lue of the 
shading function. This value will be converted to an integer before it 
is used. 

Notice that the direction of the light rays as given by CCA(2), . . . , CCA(4) is the 
reverse of that shown by the vector L in Figure (5.1). It is important to get the 
direction correct; it is no help if the light is shining on the bottom of the model 
when you expected it on the top. The values of these parameters can be difficult 
to select. In the absence of other information, a good place to start is 10 = 0.1, 
n = 2.0, Kd = 1.5, KS = 0.3, and K = 1.0. 

Each of the subroutines also needs a work array. This is a real array that is used 
to sort the polygons. The required size depends on the problem but a maximum 
value is usually easy to obtain. 

From the above discussion, it is apparent the there are two things that are 
difficult to determine when these subroutines are used. The first of these problems 
is the coefficients of the shading function and its extreme values. The second is the 
size of the work array. To aid in the use of these subroutines, the maximum and 
minimum computed values of the shading function and the actual size of the work 
array that was needed are made available to the user. These results are put into a 
COMMON block whose declaration is 

C COMMON BLOCK TO RETURN SURFACE INFORMATION. 

. . 
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SAVE /GZSINF/ 

COMMON /GZ~INF/GZLMAX,GZSHIN,GZSMAX 
C MAXIMUll LENGTH OF THE UORK AREA THAT WAS USED. 

INTEGER CZLMAX 
C MINIMUM AND MAXIMUM VALUES OF THE SHADING FUNCTION. 

REAL GZSMIN,GZSMAX 
The COMMON block is available after one of these subroutines has been called. If the 
light source and reflection model was not used, GZSMIN and GZSMAX will be zero. 

The view of the surface is selected by specifying a three-dimensions to two- 
dimensions projective transformation. That transformation must be a perspective 
transformation; it cannot be a parallel transformation. 

These subroutines are quite efficient when processing on the host computer 
only is considered. However, the amount of data that must be transmitted to the 
workstation can be quite large and many workstations require substantial amounts 
of time to process fill areas. In essence, these subroutines off-load much of the 

_ 
computation from the host computer to the graphic device itself. 

If one of these subroutines detects an error in the data supplied to it, 
subroutine prints an error message and returns, usually without producing 
graphic output. 

the 
any 

5.1. Two-dimensional Histogranls 

A two-dimensional histogram consists of a rectangular array ‘of rectangular 
columns sitting on a common base. The height of the columns can be used to rep- 
resent experimental or synthetic data. Pictures of this type are sometimes called 
Leg0 plots. 

. 

5.1.1. Subroutine GZZDHG: Draw a Two-Dimensional Histogram 

This subroutine may be used to draw a two-dimensional histogram. 
The polygons that constitute the histogram may be drawn in one of three ways. 

In the first scheme, corresponding sides on each column are drawn in a distinct color. 
In the second scheme, the existing GKS settings are used to draw the polygons as 
fill areas and then outline the polygons using a polyline. The third scheme provides 
a light source and reflection model to color the polygons. 

The calling sequence is: 
CALL GZ2DHG(M,N,PXYZA,PTRN,CCA,L,UA) 

The input parameters are: 
M An integer giving the first dimension of PXYZA. 
N An integer giving the second dimension of PXYZA. 
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Figure 5.2. A two-dimensional histogram 

PXYZA A real array of dimension (M,N) containing the z, y, and z coordinates 
of the two-dimensional histogram. The format of the array is 

a =1 x2 . . . =N-? XN-1 

Yl 21 ,l 22,1 * * - ?N-2,l - 

Y:! a,2 22,2 **- =N-2,2 
. . . . . . . . . . . . . . 

m-2 zl,H-2 z2,H-2 . -. ZN-2,H-2 - 
-y&1 - - . . . - - I 

The sequences (z1,22, . . . , XN-1) and (yl, y?, . . . , m-1) must be mono- 
tonically increasing but do not have to be equally spaced. The two- 
dimensional histogram consists of (N - 2) columns in the x direction 
and (M - 2) columns in the y direction. The value zo is the z coor- 
dinate of the base of the columns. The bounds of the (i,j)th column 
(i = l,..., (N-2); j = l,...,(M-2)) are xi to xi+1 in x and yj to yj+l 
in y. This means that the last row and column of PXYZA are almost 
unused. These unused values are shown as dashes in the matrix. The 
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CCA 
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zi,j values give the z coordinates of the tops of the columns and should 
not be smaller than 20. 
A real array of dimension (3,4) containing the perspective transforma- 
tion. 
A real array containing the color control for the two-dimensional his- 
togram. The value of CCA (1) selects one of three possibilities: 

CCA( 1)=-l. 0 This means each side of a column is to be colored 
in a distinct color. Additional data is supplied in the array 
as described below. -- 

CCA(1)d.O This means that the existing GKS settings for fill 
areas and polylines is to be used to draw the polygons. No 
additional data is supplied in the array. 

CCA (l)=l .O This means that the columns are to be colored using 
the light source and reflection model. Additional data is 
supplied in the array as described earlier. 

L An integer giving the length of the work array. 
- WA A real array of dimension L that will be used as a work array. L should 

be at least 6(M - 2)(N - 2). 

This subroutine allows the special coloring scheme defined by a Falue of CCA (1) 
equal to minus one. The description of the CCA array in this case is as follows: 

CGA(1) To specify this option, this value should contain a real value of minus 
one. 

CCA (2) A real value of zero indicates that the indices given below are color 
indices. A real value of one indicates that the indices given below are 
attribute bundle indices. 

CCA(3) A real value which specifies the index to be used to draw the xmin side 
of the polygon. This value will be converted to an integer before it is 
used. 

CCA(4) A real value which specifies the index to be used to draw the xmaz side 
of the polygon. This value will be convert.ed to an integer before it is 
used. 

CCA(5) A real value which specifies the index to be used to draw the ymin side 
of the polygon. This value will be converted to an integer before it is 
used. _ 

CCA(G) A real value which specifies the index to be used to draw the ymor side 
of the polygon. This value will be converted to an integer before it is 
used. 

CCA(?) A real value which specifies the index to be used to draw the Zmin side 
of the polygon. This value will be converted to an integer before it is 
used. 

-. CCA(~) A real value which specifies the index to be used to draw the tmaz side 
of the polygon. This value will be converted to an integer before it is 
used. 



60 GKS Utilities for FORTRAN-77 

Figure (5.2) shows an example of a two-dimensional histogram. Like all of 
the examples in this chapter, it was produced by drawing the polygons in the 
background color and then outlining the polygons in the normal color. 

5.2. Mesh Surfaces 
A mesh surface consists of a rectangular sheet positioned above a rectangular 

area in the s-y plane. The sheet is divided into smaller rectangular or triangular 
patches. The height of the corners of the patches of the sheet can be used to 

.. represent experimental or synthetic data. 
If the data suppled to the mesh surface subroutine is not relatively smooth, 

the resulting picture may be difficult to interpret. In this case, a two-dimensional 
histogram may be more appropriate. 

5.2.1. Subroutine GZMESH: Draw a Mesh Surface 
This subroutine may be used to draw a mesh surface. The mesh may be con- 

strutted by drawing rectangles or splitting each rectangle into a pair of triangles. 
- Either the upper side, lower side, or both sides of the surface may be drawn. When 

only one side of the surface is drawn, a akirt is drawn around the base. 
The polygons that constitute the surface may be drawn in one of two ways. In 

the first scheme, the existing GKS settings are used to draw the polygons as fill 
areas and then outline the polygons using a polyline. The second scheme provides 
a light source and reflection model to color the polygons. 

The calling sequence is: 
CALL GZMESH(M,N,PXYZA,SFLG,WLG,PTRN,CCA,L,WA) 

The input parameters are: 
M An integer giving the first dimension of PXYZA. 
N An integer giving the second dimension of PXYZA. 
PXYZA A real &ray of dimension (M,N) containing the 5, y, and z coordinates 

of the mesh surface. The format of the array is 

10 Xl x2 *.. XN-2 TN-1 

Yl Zl,l 22,1 -a’ ZN-2,l ZN-l,l 

Y2 *1,2 =2,2 * l * ZN-2,? =N-1,2 
. . . . . . . . . . . . . . . . 

344-2 qn-2 zz,n-2 l . - ZN-2,M-2 *N-I,W-2 

?,‘I61 Zl,H-1 22,M-1 .*. ZN-2,H-1 ZN-I,&I 

The sequences (21, x2, . . . , XN-1) and (~1, ~2, . . . , m-1) must be mono- 
tonically increasing but do not have to be equally spaced. The mesh 
surface consists of (N -2) surface elements in the 2 direction and (M- 2) 
surface elements in the y direction. The bounds of the (i,j)th surface 
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‘igure 5.3. A mesh surface showing both upper and lower sides 

SFLG 

MFLG 

PTRN 

CCA 

element (; = 1,. . . , (N - 2); j = 1,. . . , (M - 2)) are x; to x;+l in x and 
yj to yj+l in Y. The zi,j values give the z coordinates of the corners 
of the rectangular surface elements. The value zc is the z coordinate 
of the base of the structure and is only used if a skirt is being drawn. 
When a skirt is drawn for the upper side of the surface, to must not be 
greater than any of the Zi,j values. When a skirt is drawn for the lower 
side of the surface, to must not be smaller than any of the ti,j values. 
An integer specifying which side of the surface is to be drawn. A 
positive value means the upper side is to be drawn while a negative 
value means the lower side. A zero value means both sides are to be 
drawn. 
An integer specifying the type of mesh to be drawn. A zero value means 
rectangles are to be drawn while nonzero values mean triangles are to 
be drawn. A positive value means the dividing line for the triangles 
will pass through zr,l and a negative value means it will not. 
A real array of dimension (3,4) containing the perspective transforma- 
tion. . ,. ,. 
A real array containing the color control for the mesh surface. The 
value of CCA (1) selects one of two possibilities: 

CCA (i>=O. 0 This means that the esisting GIG settings for fill 

. 

.- 
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. 

Figure 5.4. A mesh surface showing the upper side only 

areas and polylines is to be used to draw the polygons. X:0 
additional data is supplied in the array. 

CCA( l)=i .O This means that the surface elements are to be col- 
ored using the light source and reflection model. Additional 

L 
WA 

data is supplied in the array as described earlier. 
An ‘integer giving the length of the work array. 
A real array of dimension L that will be used as a work array. The 
required size of WA is difficult to estimate. The maximum size is easier 
to compute. Start with (M - 2)(N - 2). If triangles are being drawn, 
double that value. If both top and bottom are being drawn, double 
that value again. If only the top or bottom is being drawn, add 2(M - 
2) + (N - 2) + 1. Finally, double that value. This value overestimates 
the number of words needed; the actual number will usually be about 
half this maximum number. 

Figures (5.3), (5.4), and (5.5) all illustrate examples of mesh ‘surfaces. In Fig- 
ure (5.3) the mesh surface was broken down into rectangles, while the other two 
figures use triangles. In Figure (5.4) the triangular division goes through the rl,l 
point while in Figure (5.5) it does not. 
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Figure 5.5. A mesh surface showing the lower side only 

5.3. Generalized Polyhedral Solids 

This section describes a subroutine that can be used to draw any figure that can 
be broken down into planar polygons. Normally the polygons should be organized 
into solid polyhedra because, at most, only one side of each polygon will be drawn. 

. 
5.3.1. Subroutine GZPOLY: Draw a Generalized Polyhedra 

This subroutine may be used to draw a group of polyhedra. A polyhedron 
consists of a solid body bounded by polygonal faces. The polygons should be planar 
or very nearly so. The polygons must also be nonintersecting. The points on the 
boundary should be ordered in such a manner that the polygon is to the left as one 
traverses the outside of the surface in the given order of the bounding points. 

The polygons that constitute the polyhedra may be drawn in one of two ways. 
In the first scheme, the existing GKS settings are used to draw the polygons as fill 
areas and then outline the polygons using a polyline. The second scheme provides 
a light source and reflection model ,to color the polygons. 

The calling sequence is: 
CALL GZPOLY(PXA,PYA,PZA,M,NPA,IPA,IXA,PTRN,CCA,L,~A) 
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.- Figure 5.6. The five Platonic solids 

The input parameters are: 
PXA A real array of containing the z coordinates of the points on the poly- 

hedra. 
PYA A real array of containing the y coordinates of the points on the poly- 

hedra. 
PZA A real array of containing the z coordinates.of the points on the poly- 

hedra. 
M An integer giving the number of polygons in the polyhedra. 
NPA An integer array of dimension M containing the number of points in each 

of the polygons. The maximum number of points allowed in each poly- 
gon is 16. However, there is no need to close the polygon; a triangular 

. I polygon may be defined by giving only three points. 
IPA An integer array of dimension M containing a pointer into the IXA array 

that gives the starting index of the indices pointing to the coordinates 
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Figure 517. Two interlocked tori 

of the points in the PXA, PYA, and PZA arrays bounding the polygon. 
IXA An integer array containing the indices of the points bounding the 

polygons. 
PTRN A real array of dimension (3,4) containing the perspective trarsforma- 

tion. 
CCA A real array containing the color control for the polyhedra. The value 

of CGA(1) selects one of two possibilities: 
CCA(l)=O .O This means that the esisting GKS settings for fill 

areas and polylines is to be used to draw the polygons. Ho 
additional data is supplied in the array. 

CCA( l)=l .O This means that the polygons are to be colored 
using the light source and reflection model. Additional data 
is supplied in the array as described earlier. 

L An integer giving the length of the work array. 

. . 
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WA A real array of dimension L that will be used as a work array. The 
maximum size that will ever be required is 2~. The actual number 
needed will usually be about half this number. 

Figures (5.6) and (5.7) illustrate two applications of this subroutine. Notice 
that Figure (5.6) could have been produced in two distinct ways. In the first case, 
a single call could be made to subroutine GZPOLY supplying it with all of the data 
necessary to draw all five solids. A second way that the figure could have been 
produced is to draw each of the five solids in turn starting with the farthest from 
the viewer; first the tetrahedron, then the cube, octahedron, dodecahedron, and 
finally the icosahedron. Since the farther solids do not hide the nearer ones, either 
method will produce exactly the same result. This second method will be slightly 
more efficient because the subroutine always has smaller files to sort. However, the 
order that the polyhedra must be processed is dependent on the viewing direction. 
This shortcut will not work in producing Figure (5.7) because each of the tori hides 
part of the other; the entire figure must be produced in a single call to GZPOLY. 

. 
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