
SLAC-391
UC-405

w

GKS UTILITIES

FOR FORTRAN-77*

Robert C. Beach

Computation Research Group

Stanford Linear Accelerator Center

Stanford University

Stanford, CA 94309

January 1992

Prepared for the Department of Energy

under contract number DE-AC03-76SF00515*

Printed in the United States of America. Available from the National Technical Infor-
mation Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield,
VA 22161.

* Manual.

Contents

Chapter 1
Introduction Y. , 1

1.1 The Availability of the Subroutines. , . . . 1

Chapter 2
An Alternate Text Generator 3

2.1 Control Functions 4
2.1.1 Subroutine GZDPTX: Open the Alternate Text Generator. 4

2.2 Output Functions .. 4

- 2.2.1 Subroutine GZTX: Alternate Text 4
2.2.2 Subroutine GZTXS: Alternate Text to User Supplied Subroutine. 5
2.3 Output Attributes 5
2.3.1 Subroutine GZSTXF: Set Alternate Text Font and Spacing 6

2.3.2 Subroutine GZSCHH: Set Alternate Character Height 6

2.3.3 Subroutine GZSCHU: Set Alternate Character Up Vector 6
2.3.4 Subroutine GZSTXL: Set Alternate Text Alignment 7
2.4 Inquiry Functions. 7
2.4.1 Subroutine GZQTXF: Inquire Alternate Text Font and Spacing 7
2.4.2 Subroutine GZQCHH: Inquire Alternate Character Height 8
2.4.3 Subroutine GZQCHU: Inquire Alternate Character Up Vector 8

2.4.4 Subroutine GZQTXL: Inquire Alternate Text Alignment 8
2.5 The Alternate Character Sets 9

Chapter 3
Projective Transformations.. , 2-1

3.1 Two-dimensions to Two-dimensions Projective Transformations ; 24
3.1.1 Subroutine GZ22PJ: Generate a Transformation 25
3.1.2 Subroutine GZ22TR: Transform a Point . , 26
3.2 Three-dimensions to Two-dimensions Projective Transformations 26
3.2.1 Subroutine GZ32PT: Generate a Perspective Transformation (I) 28
3.2.2 Subroutine GZ32AT: Generate a Perspective Transformation (II) . . . 29
3.2.3 Subroutine GZ32PL: Generate a Parallel Transformation (I) 30
3.2.4 Subroutine GZ32AL: Generate a Parallel Transformation (II) 31

: 3.2.5 Subroutine GZ32TR: Tra.kform a Point . 31

Chapter 4
Curve Drawing Algorithms.. , . . 33

. . .
111

.-

iv GKS Utilities for FORTRAN-77

4.1 Bessel’s Method of Local Cubic Interpolation 34
4.1.1 Subroutine GZBESL: Draw a Parametric Bessel’s Curve (I) 35
4.1.2 Subroutine GZBESE: Draw a Parametric Bessel’s Curve (II) 38
4.2 Cubic Spline Interpolation 40
4.2.1 Subroutine GZSPLN: Draw a Parametric Cubic Spline 40
4.3 BCzier Curves ... 41
4.3.1 Subroutine GZBEZR: Draw a Bizier Curve 43
4.3.2 Subroutine GZRBEZ: Draw a Rational BCzier Curve. 43
4.4 B-spline Curves .. 45
4.4.1 Subroutine GZBSP2: Draw a Quadratic B-spline Curve 46
4.4.2 Subroutine GZRBS2: Draw a Rational Quadratic B-spline Curve ... 48
4.4.3 Subroutine GZBSP3: Draw a Cubic B-spline Curve 49
4.4.4 Subroutine GZRBS3: Draw a Rational Cubic B-spline Curve 52

Chapter 5
Surface Drawing Algorithms 54

5.1 Two-dimensional Histograms 57
5.1.1 Subroutine GZ2DHG: Draw a Two-Dimensional Hist,ogram 57
5.2 Mesh Surfaces ... 60
5.2.1 Subroutine GZMESH: Draw a Mesh Surface 60
5.3 Generalized Polyhedral Solids 63
5.3.1 Subroutine GZPDLY: Draw a Generalized Polyhedra 63

References..........................,.......,,.............67

.-

Chapter 1

Introduction

This document describes a number of subroutines that can be useful in GKS
graphic applications programmed in FORTRAN-‘77. The algorithms described here
include subroutines to do the following:

1. Draw text characters in a more flexible manner than is possible with basic
GKS.

2. Project two-dimensional and three-dimensional space onto two-dimensional
space.

3. Draw smooth curves.
4. Draw two-dimensional projections of complex three-dimensional objects.

FORTRAN-?7 is described in American Nafional Standard, Programming Lan-
guage, FORTRAN [ANS78]. GKS is described in American National Standard GOT

Information Systems: Compufer Graphics - Graphical Kernel Sysfem (GKS) Func-
tional Description [ANS85a] and the FORTRAN-77 interface is described in Amer-
ican National Standard for Information Systemx Computer Graphics - Graphical
Kernel System (GKS) FORTRAN Binding [ANSS5b].

All of the subroutine names and additional enumeration types that will be
described in this document begin with the letters "GZ." Since GKS itself does not
have any subroutine names or enumeration types that begin with these letters, no
confusion between the usual GKS subroutines and the ones described here should
occur.

Many concepts will have to be defined in the following chapters. FIThen a concept
is-first encountered, it will be given in italics. The information around the italicized
word-or phrase may be taken as its definition.

1.1. The Availability of the Subroutines

The subroutines described in this document are available on the IBhf mainframe
computers running at the Stanford Linear Accelerator Center. These computers run
under the VM/XA operating system. Executable versions of the subroutines are
contained in the file

GKSUTL TXTLIB U.
They may therefore be used by anyone at this installation who supplies the proper

: TXTLIB statement.
The source code is also available for those people who have to use the subroutines

on another computer. The file
GKSUTLTX FORTRAN U

1

2 GKS Utilities for FORTRAN-77

contains the text drawing subroutines described in Chapter 2. The file
GKSUTLTR FORTRAN U

contains the transformation subroutines described in Chapter 3. The file
GKSUTLCV FORTRAN U

contains the curve drawing subroutines described in Chapter 4. The fle
GKSUTLSU FORTRAN U

contains the surface drawing subroutines described in Chapter 5. Finally, the file
GKSUTLUT FORTRAN U

contains a group of mathematical and error.processing subroutines that are used
by the other subroutines described here.

Since the these subroutines are written in something very close to strict
FORTRAN-77, they themselves should be transportable to any computer with a
FORTRAN-77 compiler and a GKS system. The only non-standard construction in
the source code is the use of INTEGER*2 arrays to store the definition of the charac-
ter sets. These declarations can easily be changed to INTEGER; the only requirement
is that the arrays can contain integers of up to 32767.

One possible modification is that of a control value, INFN, that appears in a
number of subroutines. That value is used to check for things like singular matrices
and to guard against division by zero. It may have to be changed for computers with
differing word size or precision. In fact, it may be necessary to change this value on
the host computer as more experience is accumulated with these subroutines.

.

Chapter 2

An Alternate Text Generator
._

There are a number of problems with the GKS text drawing subroutine, GTX,
especially as it relates to scientific notation. The most basic problem is that the
standards documents only specify a single font containing the ASCII character set.
Such things as Greek letters will usually be supplied as extensions to the basic GKS
in most implementations, but their font numbers and other properties can be very
different among different implementations. Programs that use the Greek letters
supplied by a GKS system will therefore probably be implementation dependent.
Another problem is that the production of superscripts or subscripts is very difficult.
The mixing of Roman and Greek letters is a single line of text is both difficult and
implementation dependent.

The subroutines described in this chapter are an attempt to alleviate the prob-
lems described above. These subroutines can produce the upper and. lower case
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special char-
acters. A versatile subscripting and superscripting ability is also available and
diacritical marks can be applied to any letter. Finally, the subroutines should be
transportable to almost any computer.

In addition, the characters are available in three fonts. However, to fully under-
stand these font-s, it is necessary to describe how the subroutines work. The user
of these text drawing subroutines supplies two character strings of equal length.
The first string is the primary character string, and the second is the secondary
string. The actual characters produced is determined by examining corresponding
positions in the two strings. The first string gives an approximation to the desired
character while the second string gives a modifier character. As an example, sup-
pose the primary string is “AAA” and the secondary string is “ LG." In this case,
the first character drawn is an upper case Roman “A” (because the first secondary
character is a blank), the second character is a lower case Roman “A” (because
the second secondary character is an “L”), and the third character is a lower case
Greek alpha (because the third secondary character is a “G”). The subroutines pro-
cess these characters and break them down into polylines or fill areas, and call the
appropriate GKS subroutine to send them to the workstation. Two of these fonts,
the simplez and dupkz fonts, are drawn with polylines while the third, the Jolid

. font, is drawn with fill areas. The simplex font minimizes the complexity of the

. characters, while the duplex font has some of the properties of typeset characters.
The solid font can be useful when large lettering is required. Examples of all of the
characters and their corresponding primary and secondary character are shown in
Section 2.5 of this chapter.

3

4 GKS Utilities for FORTRAN-77

The organization of the subroutines described in this chapter is similar to the
GKS standards document. There is a single subroutine that is used to initialize
this alternate text generator. There are two subroutines that break their primary
and secondary character strings down into polylines or Cl1 areas. There are four
subroutines that may be used to set the attributes of the characters. Finally, there
are four subroutines that can be used to obtain the current setting of the attributes.

. .
2.1. Control Functions

This section describes a subroutine that must be called to initialize the aIternate
text generator. It may also be called at any time to reset the attributes to their
default values.

2.1.1. Subroutine GZOPTX: Open the Alternate Text Generator

This subroutine may be used to initialize the attributes for the alternate GKS
text drawing subroutines. If this subroutine is not called before the other alternate
text drawing subroutines, the results are unpredictable.

The calling sequence is:
CALL GZOPTX

This subroutine does not have any parameters.

2.2. Output Functions

This section describes two subroutines that process the primary and secondary
character strings and produce either polylines or fill areas. The first subroutine,
GZTX, sends the polylines or fill areas directly to the active workstations. The second
subroutine, GZTXS, sends the polylines or fill areas to a user supplied subroutine.

Since the data for the first subroutine is sent to the workstation by calling sub-
routines GPL or GFA, the user may control the display attributes of the characters,
such as color, by setting the polyline or fill area attributes. It is the users respon-
sibility to assure that the polyline or fill area attributes are appropriate for the
characters being drawn; for example, the line type should be set to GLSOLI (solid)
when polylines are drawn

These subroutines always produce their output in the “stroke” precision of GKS:
It is therefore also the users responsibility to assure that the aspect ratio of the
window and viewport of the normalization transformation are the same when the
polylines or fill areas are sent to the workstation. If that is not the case, the
characters, like the stroke precision characters of GKS, will be distorted,

2.2.1. Subroutine GZTX: Alternate Text

This subroutine may be used to draw a string of characters. The characters

An Alternate Text Generator 5

produced by this subroutine are quite tied and include the upper and lower case
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special charac-
ters. They may be drawn in a simplex, duplex, or solid font. A versatile subscripting
and superscripting ability is also available. This subroutine performs an operation
very similar to the operation done by the GKS subroutine named GTX.

The calling sequence is:
CALL GZTX(PX,PY,PCHS,SCHS) --

The input paramete?s are:
PX A real value that gives the z coordinate of the location point of the

character string in world coordinates.
PY A real due that gives the y coordinate of the location point of the

character string in world coordinates.
PCHS A character string containing the primary characters.
SCHS A character string containing the secondary characters.

2.2.2. Subroutine GZTXS: Alternate Text to User Supplied Subroutine

This subroutine may be used to process a string of characters in a manner
similar to the way subroutine GZTX does. However, instead of sending the data
directly to the workstation, this subroutine calls a user supplied subroutine with
the data. The user supplied subroutine can do anything it wants lvith the data.

The calling sequence is:
CALL GZTXS(SUBR,PX,PY,PCHS,SCHS)

The input parameters are:
SUBR An external variable that specifies the subroutine to which the com-

puted polylines or fill areas will be sent. The calling sequence of this
subroutine is the same as that of the GKS subroutines GPL or GFA.

PX A real value that gives the z coordinate of the location point of the
character string in world coordinates.

PY A real value that gives the y coordinate of the location point of the
character string in world coordinates.

PCHS A character string containing the primary characters.
SCHS A character string containing the secondary characters.

2.3. Output Attributes

The subroutines in this section may be used to set the attributes for the alternate
. GKS text generator. They are 811 similar to native GKS subroutines and perform

operations similar to those native subroutines.
If one of these subroutines detects an error in the data supplied to it, the

subroutine prints an.error message and sets the attribute to its default value.

6 GKS Utilities for FORTRAN-77

2.3.1. Subroutine GZSTXF: Set Alternate Text Font and Spacing

This subroutine may be used to set the text.font and spacing for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GSTXFP.

The calling sequence ,is:
CALL GZSTXF(FDNT,SPAC)

The input parameters are:
FONT An integer that gives the font to be used:

GZSMPL(=l) means the simplex font,
GZDUPL (= 2) means the duplex font, and
GZSOLD(= 3) means the solid font.

SPAC An integer that gives the spacing to be used:
GZMONO (= 0) means mono-spacing, and

- GZPROP(= 1) means proportional spacing.

The default values are GZSMPL and GZPROP. The mono-space option does not
work well when superscripts, subscripts, or character size or movement control is
used.

2.3.2, Subroutine GZSCHH: Set Alternate Character Height

This subroutine may be used to set Ihe character height for the alternate GKS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GKS subroutine named GSCHH.

The calling sequence is:
CALL GZSCHH(CHH)

The input parameter is:
CHH A real value that gives the character height.

The default value is 0.01.

2.3.3. Subroutine GZSCHU: Set Alternate Character Up Vector

This subroutine may be used to set the character up vector for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GSCHUP.

Thecalling sequence is:
CALL GZSCH'J(CHUX,CHW)

The input parameters are:

.-

An Alternate Text Generator 7

CHUX A real value that gives the z component of the up vector in world
coordinates.

CHIN A real value that gives the y component of the up vector in world
coordinates.

The default values are 0.0 and 1.0.

2.3.4. Subroutine GZSTXL: Set Alternate Text Alignment

This subroutine may be used to set-the text alignment for the alternate GKS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GKS subroutine named GSTXAL.

The calling sequence is:
CALL GZSTXL(TXAH,TXAV)

The input parameters are:
TXAH An integer that gives the horizontal alignment to be used:

GALEFT (= 1) means left,
GACENT(= 2) means center, and
GARITE (= 3) means right.

TXAV An integer that gives the vertical alignment to be used:
GACAP (= 2) means top of text,
GAHALF (= 3) means center of text, and
GABASE (= 4) means bottom of text.

The default values are GALEFT and GABASE.

2.4. Inquiry Functions

The subroutines in this section may be used to obtain the attributes for the
alternate GKS text generator. They are all similar to native GKS subroutines and
perform operations similar to those native subroutines.

2.4.1. Subroutine GZQTXF: Inquire Alternate Text Font and Spacing

This subroutinemay be used to obtain the text font and spacing for the alternate
GKS text drawing subroutines. This subroutine performs an operation .very similar
to the operation done by the GKS subroutine named GQTXFP.

The calling sequence is:
CALL GZQTXF(FONT,SPAC) .'

,

The output parameters are:
FONT An integer that gives the font being used:

. .

8 GKS Utilities for FORTRAN-77

GZSMPL (= 1) means the simplex font,
GZDWPL(= 2) means the duplex.font, and
GZSOLD(= 3) means the solid font.

SPAC An integer that gives the spacing being used:
GZMONO (= 0) means monospacing, and
GZPRCP(=l) means proportional spacing.

2.4.2. Subroutine GZQCHH: Inquire Alternate Character Height

This subroutine may be used to obtain the character height for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GQCHH.

The calling sequence is:
CALL GZQCHH(CHH)

The output parameter is:
CHH A real value that gives the character height. -

2.4.3. Subroutine GZQCHU: Inquire Alternate Character Up Vector

This subroutine may be used to obtain the character up vector for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GQCHLP.

The calling sequence is:
CALL GZQCHU(CHUX,CHW>

The output parameters are:
CHUX A real value that gives the z component of the up vector in world

coordinates.
CHUY A real value that gives the y component of the up vector in world

coordinates.

These values are always returned as a unit vector.

2.4.4. Subroutine GZQTXL: Inquire Alternate Text Alignment

This subroutine may be used to obtain the text alignment for the alternate GKS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GKS subroutine named GQTXAL.

The calling sequence is:
GALL GZQTXL(TXAH,TXAV)

The output parameters are:

An Alternate Text Generator 9

TXAH An integer that gives the horizontal alignment being used:
GALEFT (= 1) means left,
GACENT(= 2) means center, and
GARITE (= 3) means right.

TXAV An integer that gives the vertical alignment being used:
GACAP (= 2) means. top of text,
GAHALF (= 3) means center of text, and
GABASE(= 4) means bottom of text.

2.5. The Alternate Character Sets

This section defines all of the characters that may be produced by subroutines
GZTX or GZTXS. The following table gives the primary and secondary character fol-
lowed by its description. The symbol ““” stands for a blank.

The Upper Case Roman Alphabet:
Au Upper case Roman A
BU Upper case Roman B
Cu Upper case Roman C
DU Upper case Roman D
Eu Upper case Roman E .
F,, Upper case Roman F
GU Upper case Roman G
Hu Upper case Roman H
1” Upper case Roman I
Ju Upper case Roman J
K~ Upper case Roman K
L,, Upper case Roman L
Mu Upper case Roman M
Nu Upper case Roman N
0” Upper case Roman 0
Pu Upper case Roman P
QLI Upper case Roman Q
Ru Upper case Roman R
Su Upper case Roman S
Tu Upper case Roman T
Uu Upper case Roman U
Vu Upper case Roman V
w,, Upper case Roman W
Xu Upper case Roman X
Yu Upper case Roman Y ,I

,
z,, Upper case Roman Z

The Lower Case Roman Alphabet:

10 GKS Utilities for FORTRAN-77

AL Lower case Roman A
BL Lower case Roman B
CL Lower caSe Roman C
DL Lower case Roman D
EL Lower case Roman E
FL Lower case Roman F
CL Lower case Roman G
EL Lower case Roman H
IL Lower caSe Roman I
JL Lower case Roman J
XL Lower case Roman K
LL Lower case Roman L
ML Lower case Roman M
NL Lower case Roman N
OL Lower case Roman 0
PL Lower caSe Roman P
QL Lower case Roman Q
RL Lower case Roman R
SL Lower case Roman S
TL Lower case Roman T
UL Lower case Roman U
VL Lower case Roman V
WL Lower case Roman W
XL Lower case Roman X
YL Lower case Roman Y
ZL Lower case Roman Z

Upper Case Auxiliary Roman Characters:
10 Upper case Latin and Scandinavian ligature AE
DO Upper case Icelandic Eth
LO Upper case’ Polish suppressed L
00 Upper case Scandinavian 0 with slash
20 Upper case French ligature OE
TO Upper case Icelandic Thorn

Lower Case Auxiliary Roman Characters:
Al Lower case alternate Roman A
ii Lower case Latin and Scandinavian ligature AE
D1 Lower case Icelandic Eth
31 Lower case Roman ligature FF
41 Lower case Roman ligature FI .;
51 Lower case Roman ligature FL
61 Lower case Roman ligature FFI
71 Lower case Roman ligature FFL

An Alternate Text Generator 11

CI Lower case alternate Roman G
II Lower case dotless Roman I
Jl Lower case dotless Roman J
Ll Lower case Polish suppressed L
01 Lower case Scandinavian 0 with slash
21 Lower case French ligature OE
Sl Lower case German double S
Tl Lower case Icelandic Thorn

The Upper Case Greek Alphabet:
AF Upper case Greek Alpha
BF Upper case Greek Beta
GF Upper case Greek Gamma
DF Upper case Greek Delta
EF Upper case Greek Epsilon
ZF Upper case Greek Zeta
HF Upper case Greek Eta
QF Upper case Greek Theta
IF Upper case Greek Iota
KF Upper caSe Greek Kappa
LF Upper case Greek Lambda
MF Upper case Greek Mu
NF Upper case Greek Nu
XF Upper case Greek Xi
OF Upper case Greek Omicron
PF Upper case Greek Pi
RF Upper case Greek Rho
SF Upper case Greek Sigma
TF IJpper case Greek Tau
UF Upper case Greek Upsilon
FF Upper case Greek Phi
CF Upper caSe Greek Chi
YF Upper case Greek Psi
WF Upper case Greek Omega

The Lower Case Greek Alphabet:
AC Lower case Greek Alpha
BG Lower case Greek Beta
GG Lower case Greek Gamma
DG Lower case Greek Delta
EC Lower case Greek Epsilon ‘.
ZC Lower case Greek Zeta
HG Lower case Greek Eta
QC Lower case Greek Theta

. .

12 GKS Utilities for FORTRAN-77

IG Lower case Greek Iota
XC Lower case Greek Kappa
LG Lower case Greek Lambda :
MC Lower case Greek Mu
NC Lower case Greek Nu
XC Lower case Greek Xi
OG Lower case Greek Omicron
PC Lower case Greek Pi
RG Lower case Greek Rho
SC Lower case Greek Sigma
TG Lower case Greek Tau
UC Lower caSe Greek Upsilon
FG Lower case Greek Phi
CC Lower case Greek Chi
YG Lower case Greek Psi
WG Lower case Greek Omega
1G Lower case Greek Epsilon (mriant)
2G Lower case Greek Theta (variant)
3G Lower case Greek Pi (variant)
4G Lower case Greek Rho (variant)
5G Lower case Greek Sigma (variant)
6G Lower case Greek Phi (\x.riant)

The Upper Case Cyrillic Alphabet:
AB Upper case Cyrillic Ah
BB Upper case Cyrillic Beh
VB Upper case Cyrillic Veh
GB Upper case Cyrillic Geh
DB Upper case Cyrillic Deh
EB Upper case.Cyrillic Yeh
XB Upper case Cyrillic Zheh
ZB Upper case Cyrillic Zeh
IB Upper case Cyrillic Ee
1B Upper case Cyrillic Ee S Kratkoy
XB Upper case Cyrillic Kah
LB Upper case Cyrillic El
MB Upper case Cyrillic Em
NB Upper case Cyrillic En
OB Upper case Cyrillic Oh
PB Upper case Cyrillic Peh
RB Upper case Cyrillic Err
$B Upper case Cyrillic Ess
TB Upper case Cyrillic Teh
UB Upper case Cyrillic Ooh

.-

An Alternate Text Generator 13

FB
HB
CB
2B
3B
4B
QB
YB
5B
6B
WB
JB

Upper case Cyrillic Ef
Upper case Cyrillic Kha
Upper case Cyrillic Tseh *
Upper case Cyrillic Cheh
Upper case Cyrillic Shah
Upper caSe Cyrillic Shchah
Upper case Cyrillic Tvyordy Znak
Upper case Cyrillic Yery --
Upper case Cyrillic Myakhki Znak
Upper case Cyrillic Eh Oborotnoye
Upper case Cyrillic Yoo
Upper case Cyrillic Yah

The Lower Case Cyrillic Alphabet:
AC Lower case Cyrillic Ah
BC Lower case Cyrillic Beh
VC Lower case Cyrillic Veh
GC Lower case CyTillic Geh
DC Lower case Cyrillic Deh
EC Lower caSe Cyrillic Yeh
XC Lower case Cyrillic Zheh
ZC Lower case Cyrillic Zeh
IC Lower case Cyrillic Ee
1C Lower case Cyrillic Ee S Kratkoy
XC Lower case Cyrillic Kah
LC Lower cue Cyrillic El
MC Lower case Cyrillic Em
NC Lower case Cyrillic En
DC Lower case Cyrillic Oh
PC Lower case. Cyrillic Peh
RC Lower case Cyrillic Err
SC Lower case Cyrillic Ess
TC Lower case Cyrillic Teh
UC Lower case Cyrillic Ooh
FC Lower case- Cyrillic Ef
HC Lower case Cyrillic Kha
CC Lower case Cyrillic Tseh
2~ Lower case Cyrillic Cheh
3~ Lower case Cyrillic Shah
4~ Lower case Cyrillic Shchah

,. qC Lower case Cyrillic Tvyordy Znak
YC Lower case Cyrillic Yery
5~ Lower case Cyrillic Myakhki Znak
6C Lower case Cyrillic Eh Oborotnoye

.-

14 GKS Utilities for FORTRAN-77

WC Lower case Cyrillic Yoo
JC Lower case Cyrillic Yah

The Hebrew Alphabet:
AH Hebrew Aleph
BH Hebrew Beth
GH Hebrew Gimel
DH Hebrew Daleth
HH Hebrew He
VH Hebrew Vav
ZH Hebrew Zayin
CH Hebrew Cheth
OH Hebrew Teth
YH Hebrew Yod
KH Hebrew Kaph
LH Hebrew Lamed
MH Hebrew Mem _. -
NH Hebrew Nun
SH Hebrew Sameth
XH Hebrew Ayin
PH Hebrew Pe
EH Hebrew Sadhe
QH Hebrew Koph
RH Hebrew Resh
WH Hebrew Sin/Shin
TH Hebrew Tav
1H Hebrew Kaph (end of word)
2H Hebrew Men (end of word)
3H Hebrew Nun (end of word)
4H Hebrew Pe.(end of word)
5H Hebrew Sadhe (end of word)

The Numerals:
Ou Numeral 0
lu Numeral 1
2,, Numeral 2
3u Numeral 3
&, Numeral 4
5” Numeral 5
6,, Numeral 6
7” Numeral 7
&, Numeral 8
9” Numeral 9

Common Special Symbols:

An Alternate Text Generator 15

Blank
Plus sign
Minus sign
Asterisk
Slash mark
Equal sign
Period
Comma
Left parenthesis
Right parenthesis

__

Special Symbols for Punctuation:
.P Colon
, P Semi- colon
EP Exclamation mark
UP Question mark
IP Interrobang
FP Inverted exclamation
VP Inverted question
AP Apostrophe
qP Quotation marks
OP Single left quote
1P Single right quote
2P Double left quote
3~ Double right quote
SP New section
PP New paragraph or Pilcrow sign
DP Dagger
RP Double dagger

Additional Special Symbols:
DS Dollar sign
CS Cent sign
SS British Sterling
YS Japanese Yen
qs International currency symbol
+S Ampersand
PS Pound sign
AS At sign
OS Copyright
GS Registered . . .

:
OS Percent sign
1s Per thousand sign
VS Vertical line

.-

I6 GKS Utilities for FORTRAN-77

IS Broken vertical line
VS Double vertical line
US Underline
NS Not sign
/S Backwards slash
(S Left bracket
)S Right bracket
LS Left brace
RS Right brace
BS Left angle bracket
ES Right angle bracket
XS Accent mark
TS Caret mark

Mathematical Special Symbols:
.M Dot product

- XM Cross product
/M Division sign
PM Group plus .
*M Group multiply l

+M Plus or minus
-M Minus or plus
AM And
VM Or
u’M Therefore
WM Since
LM Less than
GM Greater than-
MM Less than or equal
HM Greater than or equal
3M Much less than
4M Much greater than
NM Not equal
=M Identically equal
KM Approximately equal
CM Congruent to
SM Similar to
FM Approximate
RM Proportional to
TM Perpendicular to
2M Surd I

bM Degrees
IM Integral sign
JM Line integral

An Alternate Text Generator 17

YM Partial derivative
ZM Del
(M Left floor bracket
)M Right floor bracket
BM Left ceiling bracket
EM Right ceiling bracket
OM Infinity

Set Theoretic Special Symbols:
ET Existential quantifier
AT Universal quantifier
MT Membership symbol
NT Membership negation
IT Intersection
UT Union
LT Contained in
CT Contains
KT Contained in or equals
FT Contains or equals

Physics Special Symbols:
HK H-bar
LK Lambda-bar

Astronomical Special Symbols:
HA Sun
MA Mercury
VA Venus
EA Earth
WA Mars
JA Jupiter
SA Saturn
UA Uranus
NA Neptune
PA Pluto
OA Moon
CA Comet
*A star
XA Ascending node
YA Descending node
KA Conjunction
QA Quadrature
TA Opposition
OA Aries

18 GKS Utilities for FORTRAN-77

1 A
2A
3A
4A
5A
6A
7A
8A
9A
AA
BA

Taurus
Gemini
Cancer
Leo
Virgo
Libra
Scorpius
Sagittarius
Capricornus
Aquarius
Pisces

Drawing Symbols, Arrows, and Pointers:
OW Underscore
IW Midscore
2W Overscore
UW Up arrow
DW Down arrow
LW Left arrow
RW Right arrow
BW Left/right arrow

Diacritical Marks:
GD Grave accent
AD Acute accent
HD Hat or circumflex
TD Tilde or squiggle
MD Matron or bar
BD Breve accent
DD Dot accent
UD Umlaut or dieresis
RD Ring or circle
VD Caron, hacek, or check
LD Long Hungarian umlaut
WD Over arrow
CD Cedilla accent
-D Under bar
.D Under dot
,D Under dots
PD Prime

Horizontal and Vertical Movement Control:
;u Null
OU Backwards blank

. .

An Alternate Text Generator 19

1u Half blank
2u Half backwards blank
3u Third blank
4u Third backwards blank
5u Sixth blank
6U Sixth backwards blank
1v Half up movement
2v Half down movement
3v Third up movement
4v Third down movement
5v Sixth up movement
6V Sixth down movement

Subscript and Superscript Control:
OX Enter subscript mode
1X Leave subscript mode
2X Enter superscript mode
3~ Leave superscript mode

Character Size Control:
OY Increase size by one-half
1Y Decrease size by one-third
2Y Increase size by one-third
3~ Decrease size by one-fourth
4Y Increase size by one-sixth
5Y Decrease size by one-seventh

Position Control:
OZ Put current state in first save area
12 Restore state from first save area
2~ Put current state in second save area
32 Restore state from second save area
4~ Put current state in third save area
52 Restore state from third save area
6Z Put current state in fourth save area
72 Restore state from fourth save area

In addition to the primary and secondary character pairs shown above, most
of the printable characters in the ASCII character set as described in American
National Standard for Information Systems: Coded Characfer Sets, 7-bit American

,* National Standard Code for Information Interchange (7-bit ASCII) [ANS86) will be
produced with a secondary character of blank. Thus, if the primary character is a
lower case Roman letter and the secondary character is a blank, then the proper
character will be produced. The user, however, is encouraged to use the character

.-

20 GKS Utilities ior FORTRAN-?7

pairs given in the above tables. The use of these character pairs will enhance the
portability of the application program to non-ASCII computers.

The underscore, midscore, and overscore characters in the above table have some
special properties. The purpose of these characters is to allow the programmer to
draw lines under or over a line of text. TWO consecutive underscore characters,
for example, will join together into a single line (this is not true of the underline
character). Thus the programmer, with some difficulty, can generate such things as.
fractions. The overscore will also join properly with the surd character to form a
full radical sign.

The diacritical marks may be used immediately following any drawn character
or a full sized blank. When this is done, the mark will attach itself to the preceding
character and will be centered on that character. The prime mark is different than
the others. The prime is normally used as a superscript on another symbol. More
than one prime may be used in a superscript and the spacing will be appropriately
close. However, this may mean that a partial space will have to be inserted if

An Alternate Text Generator 21

something follows a prime.
After a character is drawn, it is always followed by a short blank space before

the next character is drawn. When the character is a full blank, it produces a
space representing the blank and then the blank space that follows all characters.
The fractional blanks refer only to the space that represents the space itself. The
backwards blanks cause exactly enough movement to eliminate the space represent-
ing the blank and its following space. Thus, a “third blank” followed by a “third
backwards blank” will exactly cancel each other.

The alternate character generators usually produce characters of differing
widths; thus the upper case letter “M” is about twice as wide as the upper case
“I”, and most lower case letters are about three-fourths as wide as most upper case
letters. This results in a more pleasing appearance, but also causes some problems.

’ If, for example, a letter is to carry both a superscript and subscript, something
equivalent to a backspace would be necessar), r but the amount backspaced would
depend on the characters in the superscript (or subscript). To overcome this prob-

. .

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
RflL0Eb a&w fiff ffimglJf0tl?fijl

ABrAEZHBIKAMNEO~P~TT~X~~
apira~(17eLKXCIy~OTIPQ7V~X~U- raaec;cp
A6BraE~3~~KnMHOnPCTY~XU~~~~blb3~~
a6srAe~3M~KnMHOnpCTy~X~Y~~~blb3~~

X1Al;rlr~~'J~13JU~~~~~~n 1wlY
0123456789 +-*/=.,()
:;!??iL""““'§~t$ $cEuog#ao~%%Oll(l--\11()'*
.X~~$~$*vV.'.'.'<>~~<<)>#E~2s'~XO=~ ~"IPmllw
3vw7u~~=’ -- Rx
OP9~d~~~~e~ec6a~~~~T~~~~~~~~~~~
---~&-Hi \ rrr-v...er,,e / E 4 - . .* E -

‘igure 2.3. The solid font of the alternate character set

22 GKS Utilities for FORTRAN-77

lem, a group of position control characters have been introduced which cause the
stroke generator to save its current position and state. Another control character
in a later part of the string can cause the earlier state of the stroke generator to be
restored. There are four independent save-restore control character pairs available.
The scope of these save-restore pairs is a single call to subroutine GZTX or GZTXS.
That is, you cannot save a position in one call to one of these subroutines and try
to use it in a later call. If-you try to use a position without saving it in an earlier
part of the string, you will obtain the position of the beginning of the string.

The alternate character set in the simplex font is shown in Figure (2.1), the.
duplex font is shown in Figure (2.2), and Figure (2.3) shows the solid font, The
order of the characters in the figures is the same as in the preceding table. The
character in the lower right of these figures is produced when an invalid character
pair 4-s specified. The average number of polyline end points per character in the
simplex font is 7.8 and the maximum number is 21 (the lower case Roman G and the
lower case ligature AE). The average number of polyline end points per character

An Alternate Text Generator 23

1
Dijrer (15251: 7d1/(3

Diirer (1525): 7~=31/8
Diirer (1525): 7r=3%

PRIMARY... DUURER (1525). P-3311640/4148
SECONDARY... LDLLL P G VY UVY UYV

PRTMARY... 20222215X223+Y22
SECONDARY... MZWWWWZY x x x

igure 2.4. Examples of the simplex, duplex, and solid fonts

in the duplex font is 22.4 and the maximum number is 62 (the upper case Cyrillic
Zheh). The average number of fill area vertex points per character in the solid
font is 23.6 and the maximum number is 94 (the ascending and descending node
symbols),

Many of the characters in the duplex font were designed by A. V. Hershey and
are described by him in Calligraphy for Conrpzltets jHer67].

A large number of interesting constructions are possible with these character
generators. Some examples are shown in Figure (2.4). In producing that figure, the
primary and secondary characters were drawn with the simplex font in the mono-
spaced mode. The-other parts of the figure were done with the simplex, duplex, or
solid fonts in the proportionally spaced mode.

-.

Chapter 3

Projective Transformations

This chapter describes a group of subroutines that may be used to define pro-
jective transformations from two-dimensional or three-dimensional space into two-
dimensional space. Subroutines are provided which generate the transformations
and encode them as a matrix. Other subroutines are then provided that take a
point, in twodimensional or three-dimensional space, and project them into two-
dimensional space. The mathematical derivation of all of these projective trans-
formation algorithms is given in An. Introduction to the Curves and Surfaces of
Computer-Aided Design [BeaSl].

One use of the two-dimensions to two-dimensions transformation is in digitiz-
ing photographs. If the photograph contains a figure of known dimensions then
the transformation from real. two-dimensional space to the coordinate system of
the photograph can often be determined. A projective transformation is also the
physically correct transformation if the optical system of the camera approximates
a pinhole camera.

The three-dimensions to two-dimensions transformations are useful whenever
two-dimensional images of three dimensional objects are required.

These transformations have many desirable properties. One of the most impor-
tant is that they transform straight lines into straight lines. Another advantage is
that neither the generation of the transformation nor the projection of a point is
computationally expensive.

If one of the transformation generating subroutines determines that the trans-
formation does not exist, it sets an error indicator and returns to the caller. The
subroutines that project a.point should always work unless they are supplied with
extremely large coordinates.

3.1. Two-dimensions to Two-dimensions Projective Transformations

This section describes a means of generating and using a projective transforma-
tion from two-dimensional space to two-dimensional space. The transformation is
defined by giving four points in the source coordinate system and the corresponding
four points in the target coordinate system. The resulting projective transformation
will always be computable provided no three of the points lie on a straight line in
either coordinate system.

There is, however, a problem with points that transform into a point at infinity.
To understand this problem, refer to Figure (3.1). In this figure, the four points
on the irregular quadrilateral, Pi, Pz, Pa, and Pq, are to be transformed into the

24 -.

Projective Transformations 25
c

Figure 3.1. A two-dimensions to two-dimensions projective transformation

rectangle described by Pi, Pb, Pi, and Pi. The line through the points PI and
P2 intersects the line through the points Ps and Pq at Ql. The lines through
the corresponding Pi points do not intersect, or rather, they intersect at infinity.
The point Q1 therefore transforms into a point at jnfinity. The point Q2 similarly
transforms into a point at infinity. Since straight lines are preserved under the
transformation, all’of the points on the dotted line through Qr and Q2 transform
into points at infinity. The subroutine that transforms a point from one coordinate
system to another will determine if the given point transforms into a point at infinity
and warn. the. caller.

3.1.1. Subroutine GZ22PJ: Generate a Transformation

This subroutine may be used to generate a two-dimensions to two-dimensions
projective transformation that carries four given points into four given points.

The calling sequence is:
CALL G222PJ(PXAS,PYAS,PXAT,PYAT,IERR,PTRN)

The input parameters are:
PXAS A real array of dimension 4 containing the z coordinates of the source

. points.
PYAS A real array of dimension 4 containing the y coordinates of the source

points.

,

26 GKS Utilities for FORTRAN-77

PXAT

PYAT

The output
IERR

PTRN

A real array of dimension 4 containing the z coordinates of the target
points.
A real array of dimension 4 containing the y coordinates of the target
points.
parameters are:
An integer giving an error flag. A nonzero value means the transfor-
mation could not be computed.
A real array of dimension (3,3) containing the projective transforma-
tion.

3.1.2. Subroutine CZZZTR: Transform a Point
This subroutine may be used to transform a point using a two-dimensions to

two-dimensions projective transformation, A Aag indicates if the projected point is
a finite point or a point at infinity.

The calling sequence is:
CALL GZ22TR(PTRN,PAS,PAP,FLAG)

The input parameters are:
PTRN A real array of dimension (3,3) containing the projective transforma-

tion.
PAS A real array of dimension 2 containing the source point.

The output parameters are:
PAP A real array of dimension 2 containing the projected point.
FLAG A real value that indicates whether a finite point or a point at infinity

has been computed. If this vaIue is nonzero, PAP contains the finite
coordix ates of the projected point. If this k-alue is zero, PAP is a unit
vector pointing in the direction of the point at infinity.

3.2. Three-dikensions to Two-dimensions Projective Transformations

This section describes a number of ways to generate a three-dimensions to two-
dimensions projective transformation.

In the first case the projection of a point in three-dimensional space is defined
by an eye point and a projection plane as shown in Figure (3.2). The plane is
defined by an origin point, 0, on the plane, and two direction vectors, H and V. H
is the “horizontal” direction and V is the “vertical” direction. These two direction
vectors will often be perpendicular to each other. A point on the plane, Q, is found
by starting at 0, and moving parallel to H the necessary distance and then parallel
to V the necessary distance. Thus, Q is represented as

, Q=O+,tH+qv.

Thus the vectors H and V impose a coordinate system on the plane. The projec-
tion of a point P onto the plane is then obtained by drawing a straight line through

Projective Transformations 27

H

E
--- --Q

2
k Y

X

Figure 3.2. A three-dimensions to two-dimensions perspective transtormation

the eye point, E, and the point P until it meets the plane. The [and q values of
the intersection point are the coordinates of the projected point in twedimensional
space. In many applications H and V are perpendicular and the vector from E
to 0 is perpendicular to both H and V but that is not necessary in these subrou-
tines. This type of transformation is known as a perspective ttansjormntion. These
transformations are best understood by imagining a viewer at the eye point, looking
toward the origin point.

The second type of three-dimensions to two-dimensions transformation that is
described here is known as a parallel hznsfotnafion. It is formed by projecting a
given point, P, parallel to a fixed direction, D, as shown in Figure (3.3). It is again
common to have H and V perpendicular and to have D perpendicular to both H
and V.

In the case of a perspective transformation, the horizontal and vertical directions
must be distinct and neither may point at the eye point. In a parallel transforma-
tion, the horizontal, vertical, and projection directions must all be distinct.

The preceding scheme is very general but is not very easy to use. The problem
is that the origin point is not easy to determine. For this reason, a second way to
define the projection plane is provided. In this second scheme, the projection plane
is defined by selecting a rectangular area on the projection plane and thinking of

. . it as the “projection screen.” The projection screen is orientated so that one set of
parallel sides is parallel to the s-y plane. The projection screen is defined by giving
the center point of the screen, C, and its horizontal and vertical size, h and V. In
the case of a perspective transformation, the projection plane is perpendicular to

. I

28 GKS Utilities for FORTRAN-77

H

Z

c

Y

X

‘igure 3.3. A three-dimensions to two-dimensions parallel transformation

the vector from E to C; in the case of a parallel transformation, it is perpendicular
to D. To define the coordinate system on the projection screen, the maximum and
minimum values of [and q are given. This information is all shown in Figure (3.4).

The maximum and minimum values of C$ and 7 are given by a real array of
dimension (22). The format of the data is

SCRC =
(

SCRC(l,l) SCRC(1,2) (min qrnin

SCRC(2,i) SCRC(2,2) > (

=
> (maz qmaz ’

For most usage, the aspect ratio given by h and u should be the same as that defined
by the maximum and minimum values of [and 7. That is, the values should satisf)

7jrnaz - qmin = u

c mat -(min x’

However, the subroutines do not enforce this constraint.
A perspective transformation can also produce points at infinity. ,411 of the

points on the plane through the eye point and parallel to the projection plane
map into points at infinity except for the eye point itself. The eye point has no
corresponding point. A parallel transformation never produces points at infinity.

,;.

3.2.qi. Subroutine GZ32PT: Generate a Perspective Transformation (I)

This subroutine may be used to generate a three-dimensions to two-dimensions
perspective transformation. The transformation is defined by giving the projection

. .

Proiective Transformations 29

Figure 3.4. An alternate method of dei-mmg the proJectlon plane

plane and an eye point. The projection plane is specified by giving a point on the c
plane and a horizontal and vertical direction within the plane.

The calling sequence is:
CALL GZ32PT(PO,HD,VD,PE,IERR,PTRN)

The input parameters are:
PO A real array of dimension 3 containing the origin point on the projection

_ plane.
HD A’ real array of dimension 3 containin, u the horizontal direction in the

projection plane.
VD A real array of dimension 3 containing the vertical direction in the

projection plane.
PE A real array of dimension 3 containing the eye point.

The output parameters are:
IERR An integer giving an error flag. A nonzero value means the transfor-

mation could not be computed.
PTRN A real array of dimension (3,4) containing the projective transforma-

tion.

. 3.2.2. Subroutine GZ32AT: Generatk a Perspective Transformation (II) .

This subroutine provides an alternate way to generate a three-dimensions to two-
dimensions perspective transformation. The transformation is defined by giving the

. I

30 GKS Utilities for FORTRAN-77

projection plane and an eye point. In this case, the projection plane is specified
by giving the center point of a projection screen, its size, and the limits of the
coordinates on the screen.

The calling sequence is:
CALL GZ32AT(PC,HZ,VZ,SCRC,PE,IERR,PTRN)

The input parameters are:
PC A real array of dimension 3 contdning the center point on the projec-

tion plane.
HZ A real value giving the size of the screen in the horizontal direction.
vz A real value giving the size of the screen in the vertical direction.
SCRC A real array of dimension (2,2) containing the limits of the coordinate

system on the screen.
PE A real array of dimension 3 containing the eye point.

The output parameters are:
- _ IERR An integer giving an error flag. A nonzero value means the transfor-

mation could not be computed.
PTRN A real array of dimension (3,4) containing the projective transforma-

tion.

3.2.3. Subroutine GZ32PL: Generate a Parallel Transformation (I)

This subroutine may be used to generate a three-dimensions to two-djmensjons
parallel transformation. The transformation is defined by giving the projection
plane and a projection direction. The projection plane is specified by giving a point
on the plane and a horizontal and vertical direction within the plane.

The calling sequence is:
CALL GZ32PL(FO,HD,VD,PD,IERR,PTRN)

The input parameters are:
PO A real array of dimension 3 containing the origin point on the projection

plane.
HD A real array of dimension 3 containing the horizontal direction in the

projection plane.
VD A real array of dimension 3 containing the vertical direction in the

projection plane.
PD A real array of dimension 3 containing the projection direction.

The output parameters are:
JERR An integer giving an error flag. A nonzero value means the transfor-

mation could not be computed.
PTRN A real array of dimension (3,4) containing the projective transforma-

Con.

Projective Transformations 31

3.2.4. Subroutine GZ32AL: Generate a Parallel Transformation (II)

This subroutine provides an alternate way to generate a three-dimensions to
two-dimensions parallel transformation. The transformation is defined by giving
the projection plane and a projection direction. In this case, the projection plane
is specified by giving the center point of a projection screen, its size, and the limits
of the coordinates on the screen.

The calling sequence is:
CALL GZ32AL(PC,HZ,VZ,SCRC,PD,IERR,PTRN)

The input parameters are:
PC A real array of dimension 3 containing the center point on the projec-

tion plane.
HZ A real value giving the size of the screen in the horizontal direction.
vz A real value giving the size of the screen in the vertical direction.
SCRC _ - A real array of dimension (2,2) containing the limits of the coordinate

system on the screen.
PD A real array of dimension 3 containing the projection direction.

The output parameters are:
IERR An integer giving an error flag. A nonzero vale means the transfor-

mation could not be computed.
PTRN A real array of dimension (3,4) containing the projective transforma-

tion.

3.2.5. Subroutine GZ32TR: Transform a Point

This subroutine may be used to transform a point using a three-dimensions to
two-dimensions projective transformation. A flag indicates if the projected point is
a finite point or a point at infinity.

The calling sequence is:
CALL GZ32TR(PTRN,PAS,PAP,FLAG)

The input parameters are:
PTRN A real array of dimension (3,4) containing the projective transforma-

tion. .
PAS A real array of dimension 3 containing the source point.

The output parameters are:
PAP A real array of dimension 2 containing the projected point.
FLAG A real value that indicates whether a finite point or a point at infinity

has been computed. If this value is nonzero, PAP contains the finite
coordinates of the projected point. For a perspective transformation, a
positive value indicates the source point is in front of the viewer while
a negative value indicates it is behind the viewer. In these cases, the
magnitude of FLAG is proportional to the distance from the eye point to

32 GKS Utilities for FORTRAN-77

the projected point; it can be used as the projected distance from the
eye point to the source point. if this value is zero, PAP is a unit vector
pointing in the direction of the point at infinity. If the source point is
the eye point of a perspective transformation, both components of PAP
and the value of FLAG will be zero.

.-

Chapter 4

Curve Drawing Algorithms

This chapter describes a group of subroutines that may be used to draw smooth
curves. The curves are defined by supplying control points and other control in-
formation to the subroutines. The curves are drawn by breaking them down into
small strtight line segments and then calling the GKS polyline subroutine, GPL.
The user has control over the number of line segments generated. The mathemat-
ical derivation of all of these curve drawing algorithms is given in An Inttoduciion
to the Curves and Surfaces of Computer-Aided Design [BeaSl].

Mathematically, all of these curves are defined parametticnlly, that is, the z
and y coordinates are defined as functions of a parameter, t. In effect, a user maJ
specify the parameter at each of the control points. Different assignments of the
parameter values at the control points usually results in different curves. There
are two schemes that are commonly used to define the values of the parameter
associated with the given control points. These two schemes produce curves that
axe known a.s uniform and nonuniform curves. For uniform curves, the parameter
is set to zero at the first point ,and increases by one for each succeeding point. For
nonuniform curves, the parameter may be set to any increasing sequence of positive
values.

The uniform scheme is very simple mathematically but often does not produce
acceptable curves if the points are not nearly equally spaced. A nonuniform scheme
that usually produces good results is based on accumulated chord length along the
sequence of ppints. The parameter is set to zero for the first point and increases
by an amount equal to the distance between consecutive points for each point. For
later reference, we display the increments in the parameter for this nonuniform case

D1 = distance from point 1 to point 2,
D2 = distance from point 2 to point 3,

. . .

DH-~ = distance from point (N - 2) to point (N - l),
D+1 = distance from point (N - 1) to point N,

(4.1)

where N is the number of given control points. The subroutines described in this
chapter all start the parameter at zero and expect the user to supply the increments

- in parameter value, explicitly or implicitly, along the curve.
In the following subroutines, the parameter values are supplied by two argu-

ments; the first, NP, is an integer and the second, PA, is a real array. If NP is
positive, the dimension of PA must be NP. The increments in parameter values are

33

34 GKS Utilities for FORTRAN-77

then obtained from the PA array. If more parameter values are needed than are con-
tained in PA, then they are obtained cyclically from PA. That is, the values PA(~),
. . . . PA(NP) are obtained and then this sequence is repeated. This makes it very
easy to specify the uniform curve; HP is simply given an integer value of one while
PA is given a real value of one. It is also easy to specify the nonuniform curve with
the parameter value based on accumulated chord length. This is done by giving
NP a value of zero. In this case, PA is ignored and the subroutine calculates the
parameter internally.

Most of the algorithms described here produce curves by using concatenations
of simple parametric polynomials. The parametric polynomials are usually of low
degree (normally two or three). The points at which consecutive polynomials join
are known as knots.

In addition to the simple polynomial form of these algorithms, some also have
a rational form. The rational form consists of x and y being defined as quotients
of polynomials. In certain applications, the rational form can be more useful. For
example, the only conic the polynomial form can ever match exactly is the parabola.
It is impossible for the polynomial form to exactly match a simple circle although
it can come arbitrarily close. On the other hand, a rational parametric quadratic
can exactly match any conic.

Two distinct types of curves, interpolation curves and design curves, may be
produced by these subroutines. Interpolation curves pass through all of their control
points while design curves do not necessarily do this.

The description of each subroutine will include figures showing examples of
curves produced by the subroutines. In these figures, the given control points are
joined by straight lines between consecutive points. This open polygon is known
as the control polygon. The reader will notice that these figures do not dispIay the
coordinate axes. The reason for this is that all of the curves described here are
isofropic, that is, they are independent of the coordinate system in which they are
defined. In fact, the reader may draw a set of coordinate axes anywhere in these
figures and label the axes in any units. The figures also do not label the points so
the reader cannot tell which end of the curve corresponds to the first point. The
reason for this is that most of these curve drawing algorithms are symmetric, that
is, they do not depend on which end of the control polygon is the starting end.

If one of these subroutines detects an error in the data supplied to it, the.sub-
routine prints an error message and returns without producing any graphic output.

4.1. Bessel’s Method of Local Cubic Interpolation

Bessel’s method is a cubic interpolation algorithm. Between each pair of points
is a segment of a parametric cubic. Adjacent cubic segments join at the control
points and have tangent vectors at those points which have the same direction. The
method is also local in that a cubic segment is completely determined by four control
points, the ones at its ends and the two on either side of it. In addition to the usual
parameter values that are associated with the line segments in the control polygon,

Curve Drawing Algorithms 35

there are additional parameters associated with the tangent vectors at the points.
This combination of parameters gives the user a substantial amount of control over
the final interpolation curve.

The two subroutines that are described here differ in the type of control that the
user has over the ends of the curve. In the first subroutine, the user must supply
and extra point beyond the actual ends of the curve. In the second subroutine,
the user may specify the tangent direction at the end points or request that the
curmture be zero. In this later case, the end conditions may be mixed, that is,
the user may specify a tangent vector at one end and request zero curvature at the
other.

4.1.1. Subroutine GZBESL: Draw a Parametric Bessel’s Curve (I)

This subroutine may be used to draw a curve through a sequence of points using
Bessel’s method. In this scheme, the ends of the curve are controlled by an extra
point. The actual curve, therefore, extends from the second control point to the
second point from the end of the curve. Either a uniform curve, or a nonuniform
curve may be drawn. In the case of a nonuniform curve, a simple means to base
the line segment parameters on accumulated chord length is provided.

The calling sequence is:
CALL GZBESL(N,PXA,PYA,NP,PA,HT,TA,NS)

The input parameters are:
N An integer giving the number of control points.
PXA A real array of dimension N containing the z coordinates of the control

points.
PYA A real array of dimension N containing the y coordinates of the control

points.
NP An integer giving the number of parameter values associated with line

. segments in the control polygon. If this value is not positive, accu-
muIated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N - 1) values are needed.

PA If NP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.

NT An integer giving the number of parameter values associated with tan-
gent vectors at the interior points. This value must be positive and
the values are selected cyclically from the next parameter. A total of
(N - 2) values are needed.

TA A real array of dimension NT containing the given parameter values
associated with the tangent vectors. ,

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

36 GKS Utilities for FORTRAN-77

Figure 4.1. Examples of interpolation by Bessel’s method (I)

Figure (4.1) includes an example of a nonuniform curve where accumulated
chord length has been used as the parameter. The TA cdues have all been set to
one. The circular curve at the lower right of Figure (4.1) was formed by specifying
seven points at the corners of the square in sequence. Since the chord segments are
equal, the uniform and nonuniform curves based on accumulated chord length are
identical.

Figure (4.2) illustrates the affect the PA values have on the curve. The figure
illustrates the manipulation the PA value associated with the central line segment
of the control polygon. It shows that reducing the value of PA(3) causes the curve
to move closer to the chord between the third and fourth points. In this cae, the
tangent vectors at the third and fourth points also rotate to become closer to the
chord. Large values of PA(3) cause the curve to move away from the chord and a
cusp or loop can form if it is made too large. Figure (4.2) also illustrates the local
properties of the interpolation because all three composite curves are tangent to
each other at their ends; any continuation of the curve beyond its current ends will
not be affected by the change in the parameter.

Figure (4.3) illustrates the manipulation of the TA values. The natural value of
the TA values is one. As TA(2) is reduced, the influence of the tangent vector at
the middle point is reduced and the curve pulls away from the tangent vector and
approaches the adjacent chords. However, in this case, the tangent direction at the
middle point does not change. If TA(2) is made large, the infiuence of the tangent
vector at the middle point becomes strong. This forces the interpolation curve to
flatten and follow the direction of the tangent vector longer. In general, when the

Curve Drawing Algorithms 37

PA(3)=D3

. PA(3)=2Ds

Figure 4.2. Examples of interpolation by Bessel’s method (II)

LL- TA(2)=0.5

TA(2)=1

. TA(2)=2

: Figure 4.3. Examples of interpolation by Bessel’s method (III)

TA values are reduced, the curve moves closer to the adjacent chords and becomes
taut; increasing the TA values allows the curve to relax and bow out.

38 GKS Utilities for FORTRAN-77

4.1.2. Subroutine GZBESE: Draw a Parametric Bessel’s Curve (II)

This subroutine may be used to draw a curve through a sequence of points using
Bessel’s method. In this scheme, the ends of the curve are controlled by specifying
the end tangents or by requesting zero curmture at the ends. Either a uniform
curve, or a nonuniform curve may be drawn. In the case of a nonuniform curve, a
simple means to base the line segment parameters on accumulated chord length is
provided.

The calling sequence is:
CALL GZBESE(N,PXA,PYA,Vl,VZ,NP,PA,NT,TA,NS)

The input parameters are:
N
PXA

PYA
-

VI

v2

NP

PA

NT

TA

NS

An integer giving the number of control points.
A real array of dimension N containing the z coordinates of the control
points.
A real array of dimension N containing the y coordinates of the control
points.
A real array of dimension 2 containing the given tangent vector at the
initial end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero cur\-ature is imposed at the end.
A real array of dimension 2 containing the given tangent vector at the
terminal end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.
An integer giving the number of parameter values associated with line
segments in the control polygon. If this Falue is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N - 1) values are needed.
If NP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.
An integer giving the number of parameter values associated with tan-
gent vectors at the points. This value must be positive and the values
are selected cyclically from the next parameter. A total of N values are
needed.
A real array of dimension NT containing the given parameter values
associated with the tangent vectors.
An integer giving the number of straight line segments into which each
curve segment is to be divided.

Figure (4.4) shows examples of interpolation by Bessel’s method when tangents
at the ends of the curve are supplied. In this case the curve is not, strictly speaking,
symmetric. Since the tangents at the ends are supplied, they must point in the
direction of the curve so this curve was drawn from the left to the right. To draw
the curve in the other direction, the directions of the tangent vectors must be

. I

Curve Drawing Algorithms 39

--- Uniform Curve

Nonuniform Curve \

Figure 4.4. Examples of interpolation by Bessel’s method with end tangents given

--- Uniform Curve

Nonuniform Curve

Figure 4.5. Examples of interpol$ion by Bessel’s method with zero curvature at
the ends

reversed, In the nonuniform curve, accumulated chord length has been used as the

. I

40 GKS Utilities for FORTRAN-77

parameter.
In Figure (4.5) the curvature at the end points has been constrained to be zero.

The nonuniform curve again has accumulated chord length as its parameter.

4.2. Cubic Spline Interpolation

This section describes a subroutine that may be used to draw a parametric
cubic spline. A cubic spline is an interpolation curve consisting of parametric cubic
polynomial segments. The segments of the curve join at the knots with equal first
and second derivatives. However, the curve is not local in nature; changing one
control point modifies the entire curve.

There is a limit on the number of control points that may be supplied to this
subroutine.

4.2.1. Subroutine GZSPLN: Draw a Parametric Cubic Spline

This subroutine may be used to draw a parametric cubic spline curve through
a sequence of points. The ends of the curve are controlled by specifying the end
tangents or by requesting zero curvature at the ends. Either a uniform curve, or
a nonuniform curve may be drawn. In the case of a nonuniform curve, a simple
means to base the parameter on accumulated chord length is provided.

The calling sequence is:
CALL GZSPLN(N,PXA,PYA,Vl,V2,NP,PA,NS)

The input parameters are:
N An integer giving the number of control points. The maximum number

of points that are allowed is 32.
PXA A real array of dimension N containing the x coordinates of the control

points..
PYA A real array of dimension N containing the y coordinates of the cont.rol

points.
Vl A real array of dimension 2 containing the given tangent vector at the

initial end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.

v2 A real array of dimension 2 containing the given tangent vector at the
terminal end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.

NP An integer giving the number of parameter values associated with line
segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this

‘. parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N - 1) values are needed.

PA If NP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.

Curve Drawing Algorithms 41

--- Uniform Curve

Nonuniform Curve

Figure 4.6. Parametric cubic splines with end tangents given

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

Figure (4.6) h s ows examples of cubic splines with the tangents given at the
end points. In this case the curve is not, strictly speaking, symmetric, Since the
tangents at the ends are supplied, they must point in the direction of the curve so
this curve was drawn from the left to the right. To draw the curve in the other
direction,.the directions of the tangent vectors must be reversed. The figure also
shows the oscillatory behavior that is often a problem in spline curves.

Figures (4.7) and (4.8) were drawn with zero curvature at the end points. In
Figure (4.7), the spacing of the points was deliberately chosen to have large variation
in the chord lengths. As a result, the uniform curve exhibits oscillatory problems at
the top center of the figure. Figure (4.8) illustrates how the PA values can be used
to control the shape of the curve. In this case, chord lengths have been used for
the parameters except that the PA value associated with the central line segment of
the control polygon has been manipulated. As we have seen before, reducing a PA
value causes the curve to move closer to the associated line segment. Figure (4.8)
also shows that changes like these are not local; they affect the entire curve.

‘* 4.3. BGzier Curves

A Bezier curve is a design curve and not an interpolation curve. It does, however,
pass through its first and last control points and is tangent to the first and last

--- Uniform Curve

42 GKS Utilities for FORTRAN-77

Nonuniform Curve

Figure 4.7. Parametric cubic splines with zero end curlature (I)

Figure 4.8. Parametric cubic splines witfi zero end curvature (II)

straight line segment in the control polygon. The Bizier curve is a parametric
polynomial of large degree (in fact the degree is the number of control points minus

--- PA(3)=0.5&

PA(3)=Dj

. PA(3)=2D3

Curve Drawing Algorithms 43

one). Although using polynomials of large degree is usually a dangerous thing to
do, the Bizier curve is unusuaIly well behaved.

The BCzier curve is available in both a simple polynomial and a rational form.
The polynomial form does not have any user control except for the positioning of
the control points. The rational form has control variables called weighta. The
weights may be any positive values. If the weights are all -equal, the polynomial
form of the BCzier curve is produced.

There is a limit on the number of control points that may be supplied to these
subroutines.

4.3.1. Subroutine CZBEZR: Draw a BCzier Curve
This subroutine may be used to draw a BCzier curve of arbitrary degree deter-

mined by a sequence of points.

The calling sequence is:
CALL GZBEZR(N,PXA,PYA,NS)

_. - The input parameters are:
N An integer giving the number of control points. The maximum number

of points that are allowed is 32.
PXA A real array of dimension N containing the x coordinates of the control

points.
PYA A real array of dimension N containing the y coordinates of the control

points.
NS An integer giving the number of straight line segments into which the

curve is to be divided.

Figures (4.9) and (4.10) h s ow some examples of BCzier curves. Figure (4.10)
illustrates the effect of moving a single control point.

4.3.2. Su~broutine GZRBEZ: Draw a Rational BCzier Curve
This subroutinemay be used to draw a rational BCzier curve of arbitrary degree

determined by a sequence of points.

The calling sequence is:
CALL GZRBEZ(N,PXA,PYA,NW,WA,NS)

The input parameters are:
N An integer giving the number of control points. The maximum number

of points that are allowed is 32.
PXA A real array of dimension N containing the x coordinates of the control

points. ,.
PYA A real array of dimension N containing the y coordinates of the control

points.

AA cl/c 11+:1:t:ma ~r\r FnRTR AN-77

a-, . /T\

Figure Examples oi l3ezler curves (1)

Figure 4.10. Examples of Bizier curves (II)

An integer giving the number of weights associated with the control
points. This value must be positive and the weights are selected cycli-

Curve Drawing Algorithms 45

Figure 4.11. Examples of rational Bezier curves

tally from the next parameter. A total of N values are needed.
WA A real array of dimension NW containing the given weights. _._ .

. WA=(1,1,5,1,1)

NS An integer giving the number of straight line segments into which the
curve is to be divided.

Figure (4.11) illustrates how the weights may be used to control the shepe of
a rational BCzier curve. In the figure, larger values of the weights cause the curve
to move closer to its associated point while allolving the curve to pull away from
neighboring points.

4.4. B-spline Curves

A B-spline curve is a pure design curve; it normally does not pass through any
of its control points. The subroutjnes described here make the B-spline available in
both the polynomial and rational forms in either quadratic or cubic degree. The
segments of a quadratic B-sphne match at the knots in ordinate and first derivative.
The segments of a cubic B-spline match in ordinate, and first and second derivative.
The curve also is local in nature; changing a single contro1 point only affects a small
number of curve segments.

Since the knots would not otherwise be known to the user, a facility is provided
.* whereby the knots my be marked. This is done by calling the GKS poIymarker

subroutine, GPM. All of the figures in this section have had the knots marked with
markers that are slightly smaller than those used for the control points.

46 GKS Utilities for FORTRAN-77

The B-spline is actually a generalization of the Bdzier curve. The proper selec-
tion of the parameter values can cause the subroutines described in this section to
produce a BCzier curve.

4.4.1. Subroutine GZBSPZ: Draw a Quadratic B-spline Curve

This subroutine may be used to draw a quadratic B-spline curve that is con-
trolled by a sequence of points. Either a uniform curve, or a nonuniform curve may
be drawn. In the case of a nonuniform curve, a simple means to base the parameter
on accumulated chord length is provided. In addition to drawing the curve, the
knots may also be marked.

The calling sequence is:
CALL GZBSP2(N,PXA,PYA,NP,PA,NS,MFLG)

The input parameters are:
N An integer giving the number of control points.
PXA A real array of dimension N containing the z coordinates of the control

points. -
PYA A real array of dimension N containing the y coordinates of the control

points.
NP An integer giving the number of parameter values associated with line

segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of N values are needed.

PA If NP is positive, this is a real array of dimension HP containing the
given parameter values associated with the line segments.

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

MFLG An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked.

There is, however, a problem with the generation of the PA array when accu-
mulated chord length is used to produce it. The problem is that there are (N - 1)

- distances available but N values are needed. An appropriate scheme, and the~one
used within subroutine GZBSPZ, is

PA(l) = D1,

PA(Z)= ;(a +D2),

PA(3) = ;pz+m,

. . .
(4.2)

PA(N -1) = 3 (DN-2 + DN-I),

PA(N) = &-I.

Curve Drawing Algorithms 47

Figure 4.12. Examples of quadratic B-splines (I)

The Di values are determined by Equations (4.1).
Figure (4.12) shows examples of uniform and nonuniform quadratic B-splines.

The nearly circular curve at the lower right was formed by specifying six consecutive
corner points around the square. The uniform and nonuniform curve based on chord
length are equal in this case. In the other nonuniform curve, the PA dues were
determined from chord distances and Equations (4.2).

For the quadratic B-spline, the knots always lie on the control polygon and the
curve is tangent to the control polygon at the knots. In the uniform case,‘the knots
are at the’midpoints of the line segments in the control polygon.

Figure (4.13) h s ows examples of how a modification of the PA values changes
the curve. In this case, the PA’s were also determined from Equations (4.2) and only
the central one was modified. Notice how small values of this parameter cause the
points of tangency on the control polygon to move closer to the associated point on
the control polygon.

There is a fairly popular alternative to Equations (4.2). That alternative sets

PA(l) = 0.0,
PA(N) = 0.0,

with the other values set by Equations (4.2). Th e a d vantage of this scheme is that
1. the curve now passes through the ‘first and last control points and is tangent to

the control polygon at those points. The interior of the curve has the properties
described above. The problem with this formulation is that it does not reduce to
the usual uniform approach.

48 GKS Utilities for FORTRAN-77

--- PA(3)=0.1(Dz+D3)

PA(3)=0.5(D2+D3)
. PA(3)=2.5(Dz+D3)

Figure 4.13, Examples of quadratic B-splines (11)

4.4.2. Subroutine GZRBS2: Draw a Rational Quadratic B-spline Curve

This subroutine may be used to draw a rational quadratic B-spline curve that is
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve
may be drawn. In the case of a nonuniform curve, a simple means to base the
line segment parameters on accumulated chord length is provided. In addition to
drawing the curve, the knots may also be marked.

The calling sequence is:
CALL GZRBS2(N,.PXA,PYA,NP,PA,NW,WA,NS,MFLG)

The input parameters are:
N An integer giving the number of control points.
PXA A real array of dimension N containing the x coordinates of the control

points.
PYA A real array of dimension N containing the y coordinates of the control

points.
NP An integer giving the number of parameter values associated with line

segments in the control polygon. If this value is not positive, accu-
mulated chord length will be,,used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-

; rameter. In this case, a total of N values are needed.
PA If NP is positive, this is a real array of dimension NP containing the

given parameter values associated with the line segments.

.

Curve Drawing Algorithms 49

--- WA=(l,l,O.Z,~,l)

WA=(l,l,l,l,l)
. WA=(l,1,5,1,1)

Figure 4.14. Examples of rational quadratic B-splme curves

NW An integer giving the number of weights associated with the control
points. This due must be positive and the weights are selected cycli-
cally from the next parameter. A total of N values are needed.

UA A real array of dimension NW containing the given weights.
NS An integer giving the number of straight line segments into which each

curve segment is to be divided.
MFLG An- integer flag that indicates if the knots are to be marked. An>

nonzero value will cause them to be marked.

Figure (4.14) illustrates how the weights may be used to control the shape
of a rational quadratic B-spline curve. The PA values were determined by Equa-
tions (4.2). In the figure, larger values of the weights cause the curve to move closer
to its associated point while allowing the curve to pull away from neighboring points.

4.4.3. Subroutine GZBSP3: Draw a Cubic B-spline Curve

This subroutine may be used to draw a cubic B-spline curve that is controlled
by a sequence of points. Either a uniform curve, or a nonuniform curve may be
drawn. In the caSe of a nonuniform curve, a simple means to base the parameter on
accumulated chord length is provided. In addition to drawing the curve, the knots
may also be marked.

.
*,

The calling sequence is:
CALL GZBSP3(N,PXA,PYA,NP,PA,NS,MFLG)

50 GKS Utilities for FORTRAN-77

The input parameters are:
N An integer giving the number of control points.
PXA A real array of dimension N containing the x coordinates of the control

points.
PYA A real array of dimension N containing the y coordinates of the control

points.
NP An integer giving the number of parameter values associated with line

segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N + 1) values are needed.

PA If NP is positive, this is a red array of dimension NP containing the
given parameter values associated with the line segments.

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

MFLG An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked.

There is again a problem with the PA array when accumulated chord length is
used to produce it. In this case there are (N - 1) distances available but (N + 1)
values are needed. An appropriate scheme, and the one used within subroutine
GZBSP3,is

PA(l)= &,
PA(2) = D1,
PA(3) = D2,

. . . (4.3)
PA(N- I)= DN-2,

PA(N) = &-I,
PA(N + 1) = DN-1.

The Di values are again determined by Equations (4.1).
Figure (4.15) h s ows examples of uniform and nonuniform cubic B-splines. The

nearly circular curve at the lower right was formed by specifying seven consecutive
corner points around the square. The uniform and nonuniform curve based on chord
length are equal in this case. In the other nonuniform curve, the PA values were
determined from chord distances and Equations (4.3).

Figure (4.16) shows examples of how a modification of the PA values changes
the curve. In this case, the PA’s were also determined from Equations (4.3) and
only,, the central one was modified. Small values of this parameter cause the central
curve segment to shrink and move closer to the associated segment of the control
polygon.

.

Curve Drawing Algorithms 51
1

--- Uniform Curve

Nonuniform Curve

Figure 4.15. Examples of cubic B-splines (I)

--- PA(5)=0.20(

PA(5)=D4
. PA(5)=5D4

’ Figure 4.16. Examples of cubic B-splines (II)

As in the quadratic case, there is a popular alternative to Equations (4.3). That

52 GKS Utilities for FORTRAN-77

alternative sets
PA(l) = 0.0,
PA(2) = 0.0,
PA(N) = 0.0,

PA(N + 1) = 0.0.

This scheme again forces the curve to pass through the first and last control points
and makes it tangent to the control polygon at those points.

4.4.4. Subroutine GZRBS3: Draw a Rational Cubic B-spline Curve

This subroutine may be used to draw a rational cubic B-spline curve that is
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve
may be drawn. In the case of a nonuniform curve, a simple means to base the
parameter on accumulated chord length is provided. In addition to drawing the
curve, the knots may also be marked.

The calling sequence is:
CALL GZRBS3(N,PXA,PYA,NP,PA,NW,WA,NS,MFLG)

..,
The input parameters are:

N
PXA

PYA

NP

PA

NW

WA
NS

MFLG

An integer giving the number of control points.
A real array of dimension N containing the z coordinates of the control
points.
A real array of dimension N containing the y coordinates of the control
points.
An integer giving the number of parameter values associated with line
segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N + 1) values are needed.
If HP is. positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.
An .integer giving the number of weights associated with the control
points. This Moue must be positive and the weights are selected cycli-
cally from the next parameter. A total of N values are needed.
A real array of dimension NW containing the given weights.
An integer giving the number of straight line segments into which each
curve segment is to be divided.
An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked.

eigure (4.17) illustrates how the weights may be used to control the shape of a
rational cubic B-spline curve. The PA values were determined by Equations (4.3).

.-

Curve Drawing Algorithms 53

Figure 4.17. Examples of rational cubic B-splice curves

In the figure, larger values of the weights cause the curve to move closer to its
associated point while allowing the curve to pull away from neighboring points.

.

.-

Chapter 5

Surface Drawing Algorithms

This chapter describes a group of subroutines that may be used to draw pictures
of the surfaces of solid objects. The surfaces are defined by supplying control
points and other control information to the subroutines. The surfaces are drawn
by breaking them down into simple polygons, eliminating those polygons that face
away from the viewer, sorting the remainder so that the ones farthest away are first
on the list, and then calling the GKS fill area subroutine, GFA, to write the polygons
to the active workstations in the sorted order. Closer polygons, therefore, overlay
the farther ones.

This method is quite fast but does have its problems. It is possible, especially
when polygons of vastly differing sizes are involved, to have a large polygon deter-
mined to be “closer” than a small one even though the small one actually hides part
of the larger. The subroutine in this chapter that deals with generalized polyhedral
solids is especially mlnerable to this problem, particularly if non-convex polygons
are supplied. It is also important that the polygons do not intersect each other;
none of the algorithms described here can handle that problem.

There are a number of ways that the polygons may be drawn so that useful
pictures are produced. In the simplest method, the polygons are drawn as fill areas,
usually in the background color, and then outlined by a polyline. When this is
done the pictures look like line drawn figures. A second way is to apply a light
source and reflection model to obtain fairly realistic pictures. This method will
only be successful on workstations that can produce a large number of colors. If
the workstation only supports a small number of colors, the fill areas will all blend
together and the picture will be unintelligible. In addition to these two general
modes, some algorithms will supply other options.

To understand the light source and reflection model used in these subroutines,
consider Figure (5.1). This figure shows a point, P, on the surface and the light
source and eye point. N isthe surface normal at P, L is a vector pointing from P
to the light source, and E is a vector pointing toward the eye position. R represents
a light ray that starts at the light source and reflects off the surface. The vectors L,
N, and R are coplanar and L and R make the same angle, 6, with N. The vector
E makes an angle of cr with R. Notice that E is not necessarily coplanar with L,
N, and R.

The light source and reflection model used is

I I + II~~ cos e t IC, coin a
= 0

d t K

54

Surfar~ Drawinr Al~otithms
---_--- -_-.._-_ o ---. ------ ----

5s
--

Light

So&e

Figure 5.1. The light source and reiiectlon model

where IO, n, Kd, KS, and K are parameters that the user may set. The computed
due, I, is known as the shading junction for the point. The value d is the projected
distance from the eye point to the surface; its value is one on the projection plane

and zero at the eye point. K is a distance adjustment constant. 10 is the ambient
illumination for the scene. Kd is the diffuse reflection constant and h’, is the specular
reflection -constant. Highlights on a shiny object are caused by large &ues of the
specular reflection constant. Large values.of n also cause an object to appear shiny.
A complete derivation of the model is given in Section 5.2 of Procedural Elements
for Computer Graphic3 [Rog85].

The computed shading function for a polygonal surface is mapped to a sequence
of GKS color indices or attribute bundle indices. The calling program must set up
this sequence of indices and supply the subroutine with the smallest and largest
index and the value of the shading function that it corresponds to. Linear interpo-
lation is used for intermediate values. Values of the shading function outside the
given limits are mapped to the appropriate extreme index.

The parameters of the light source and reflection model are given jn a real array,
CCA, that is common to all of the subroutines. The description of the array in this

** case is as follows:
CCA (1) To specify the light source and reflection model, this value should con-

tain a real value of one.

.

56 GKS Utilities for FORTRAN-77

CCA (2) A real value giving the z component of a vector in the direction of the
light rays. That is, the direction is from the light source toward the
object.

CCA (3) A real value giving the y component of a vector in the direction of the
light rays.

CCA(4) A real value giving the z component of a vector in the direction of the
light rays.

CCA(4) A real value giving the ambient illumination, lo.
CCA(6) A real value giving the specular reflection exponent, n.
CCA(7) A real due giving the diffuse r&e&ion constant, Kd.
CCA (8) A real value giving the specular reflection constant, Ii’,.
CCA(9) A real value giving the distance adjustment constant, K.
CCA(10) A real value of zero indicates that the indices given below are color

indices. A real value of one indicates that the indices given below are
attribute bundle indices.

CCA (11) A real value giving the minimum value of the shading function corre-
sponding to the next index.

CCA (12) A real value giving the color index or the attribute bundle index to
be used to draw the color associated with the minimum l&e of the
shading function. This due will be converted to an integer before it
is used.

CCA (13) A real value giving the maximum value of the shading function corre-
sponding to the next index.

CCA(14) A real value giving the color index or the attribute bundle index to
be used to draw the color associated with the maximum \a.lue of the
shading function. This value will be converted to an integer before it
is used.

Notice that the direction of the light rays as given by CCA(2), . . . , CCA(4) is the
reverse of that shown by the vector L in Figure (5.1). It is important to get the
direction correct; it is no help if the light is shining on the bottom of the model
when you expected it on the top. The values of these parameters can be difficult
to select. In the absence of other information, a good place to start is 10 = 0.1,
n = 2.0, Kd = 1.5, KS = 0.3, and K = 1.0.

Each of the subroutines also needs a work array. This is a real array that is used
to sort the polygons. The required size depends on the problem but a maximum
value is usually easy to obtain.

From the above discussion, it is apparent the there are two things that are
difficult to determine when these subroutines are used. The first of these problems
is the coefficients of the shading function and its extreme values. The second is the
size of the work array. To aid in the use of these subroutines, the maximum and
minimum computed values of the shading function and the actual size of the work
array that was needed are made available to the user. These results are put into a
COMMON block whose declaration is

C COMMON BLOCK TO RETURN SURFACE INFORMATION.

. .

Surface Drawing Algorithms 57

SAVE /GZSINF/

COMMON /GZ~INF/GZLMAX,GZSHIN,GZSMAX
C MAXIMUll LENGTH OF THE UORK AREA THAT WAS USED.

INTEGER CZLMAX
C MINIMUM AND MAXIMUM VALUES OF THE SHADING FUNCTION.

REAL GZSMIN,GZSMAX
The COMMON block is available after one of these subroutines has been called. If the
light source and reflection model was not used, GZSMIN and GZSMAX will be zero.

The view of the surface is selected by specifying a three-dimensions to two-
dimensions projective transformation. That transformation must be a perspective
transformation; it cannot be a parallel transformation.

These subroutines are quite efficient when processing on the host computer
only is considered. However, the amount of data that must be transmitted to the
workstation can be quite large and many workstations require substantial amounts
of time to process fill areas. In essence, these subroutines off-load much of the

_
computation from the host computer to the graphic device itself.

If one of these subroutines detects an error in the data supplied to it,
subroutine prints an error message and returns, usually without producing
graphic output.

the
any

5.1. Two-dimensional Histogranls

A two-dimensional histogram consists of a rectangular array ‘of rectangular
columns sitting on a common base. The height of the columns can be used to rep-
resent experimental or synthetic data. Pictures of this type are sometimes called
Leg0 plots.

.

5.1.1. Subroutine GZZDHG: Draw a Two-Dimensional Histogram

This subroutine may be used to draw a two-dimensional histogram.
The polygons that constitute the histogram may be drawn in one of three ways.

In the first scheme, corresponding sides on each column are drawn in a distinct color.
In the second scheme, the existing GKS settings are used to draw the polygons as
fill areas and then outline the polygons using a polyline. The third scheme provides
a light source and reflection model to color the polygons.

The calling sequence is:
CALL GZ2DHG(M,N,PXYZA,PTRN,CCA,L,UA)

The input parameters are:
M An integer giving the first dimension of PXYZA.
N An integer giving the second dimension of PXYZA.

58 GKS Utilities for FORTRAN-77

Figure 5.2. A two-dimensional histogram

PXYZA A real array of dimension (M,N) containing the z, y, and z coordinates
of the two-dimensional histogram. The format of the array is

a =1 x2 . . . =N-? XN-1

Yl 21 ,l 22,1 * * - ?N-2,l -

Y:! a,2 22,2 **- =N-2,2
.

m-2 zl,H-2 z2,H-2 . -. ZN-2,H-2 -
-y&1 - - . . . - - I

The sequences (z1,22, . . . , XN-1) and (yl, y?, . . . , m-1) must be mono-
tonically increasing but do not have to be equally spaced. The two-
dimensional histogram consists of (N - 2) columns in the x direction
and (M - 2) columns in the y direction. The value zo is the z coor-
dinate of the base of the columns. The bounds of the (i,j)th column
(i = l,..., (N-2); j = l,...,(M-2)) are xi to xi+1 in x and yj to yj+l
in y. This means that the last row and column of PXYZA are almost
unused. These unused values are shown as dashes in the matrix. The

PTRN

CCA

Surface Drawing Algorithms 59

zi,j values give the z coordinates of the tops of the columns and should
not be smaller than 20.
A real array of dimension (3,4) containing the perspective transforma-
tion.
A real array containing the color control for the two-dimensional his-
togram. The value of CCA (1) selects one of three possibilities:

CCA(1)=-l. 0 This means each side of a column is to be colored
in a distinct color. Additional data is supplied in the array
as described below. --

CCA(1)d.O This means that the existing GKS settings for fill
areas and polylines is to be used to draw the polygons. No
additional data is supplied in the array.

CCA (l)=l .O This means that the columns are to be colored using
the light source and reflection model. Additional data is
supplied in the array as described earlier.

L An integer giving the length of the work array.
- WA A real array of dimension L that will be used as a work array. L should

be at least 6(M - 2)(N - 2).

This subroutine allows the special coloring scheme defined by a Falue of CCA (1)
equal to minus one. The description of the CCA array in this case is as follows:

CGA(1) To specify this option, this value should contain a real value of minus
one.

CCA (2) A real value of zero indicates that the indices given below are color
indices. A real value of one indicates that the indices given below are
attribute bundle indices.

CCA(3) A real value which specifies the index to be used to draw the xmin side
of the polygon. This value will be converted to an integer before it is
used.

CCA(4) A real value which specifies the index to be used to draw the xmaz side
of the polygon. This value will be convert.ed to an integer before it is
used.

CCA(5) A real value which specifies the index to be used to draw the ymin side
of the polygon. This value will be converted to an integer before it is
used. _

CCA(G) A real value which specifies the index to be used to draw the ymor side
of the polygon. This value will be converted to an integer before it is
used.

CCA(?) A real value which specifies the index to be used to draw the Zmin side
of the polygon. This value will be converted to an integer before it is
used.

-. CCA(~) A real value which specifies the index to be used to draw the tmaz side
of the polygon. This value will be converted to an integer before it is
used.

60 GKS Utilities for FORTRAN-77

Figure (5.2) shows an example of a two-dimensional histogram. Like all of
the examples in this chapter, it was produced by drawing the polygons in the
background color and then outlining the polygons in the normal color.

5.2. Mesh Surfaces
A mesh surface consists of a rectangular sheet positioned above a rectangular

area in the s-y plane. The sheet is divided into smaller rectangular or triangular
patches. The height of the corners of the patches of the sheet can be used to

.. represent experimental or synthetic data.
If the data suppled to the mesh surface subroutine is not relatively smooth,

the resulting picture may be difficult to interpret. In this case, a two-dimensional
histogram may be more appropriate.

5.2.1. Subroutine GZMESH: Draw a Mesh Surface
This subroutine may be used to draw a mesh surface. The mesh may be con-

strutted by drawing rectangles or splitting each rectangle into a pair of triangles.
- Either the upper side, lower side, or both sides of the surface may be drawn. When

only one side of the surface is drawn, a akirt is drawn around the base.
The polygons that constitute the surface may be drawn in one of two ways. In

the first scheme, the existing GKS settings are used to draw the polygons as fill
areas and then outline the polygons using a polyline. The second scheme provides
a light source and reflection model to color the polygons.

The calling sequence is:
CALL GZMESH(M,N,PXYZA,SFLG,WLG,PTRN,CCA,L,WA)

The input parameters are:
M An integer giving the first dimension of PXYZA.
N An integer giving the second dimension of PXYZA.
PXYZA A real &ray of dimension (M,N) containing the 5, y, and z coordinates

of the mesh surface. The format of the array is

10 Xl x2 *.. XN-2 TN-1

Yl Zl,l 22,1 -a’ ZN-2,l ZN-l,l

Y2 *1,2 =2,2 * l * ZN-2,? =N-1,2
.

344-2 qn-2 zz,n-2 l . - ZN-2,M-2 *N-I,W-2

?,‘I61 Zl,H-1 22,M-1 .*. ZN-2,H-1 ZN-I,&I

The sequences (21, x2, . . . , XN-1) and (~1, ~2, . . . , m-1) must be mono-
tonically increasing but do not have to be equally spaced. The mesh
surface consists of (N -2) surface elements in the 2 direction and (M- 2)
surface elements in the y direction. The bounds of the (i,j)th surface

Surface Drawing Algorithms 6 1

‘igure 5.3. A mesh surface showing both upper and lower sides

SFLG

MFLG

PTRN

CCA

element (; = 1,. . . , (N - 2); j = 1,. . . , (M - 2)) are x; to x;+l in x and
yj to yj+l in Y. The zi,j values give the z coordinates of the corners
of the rectangular surface elements. The value zc is the z coordinate
of the base of the structure and is only used if a skirt is being drawn.
When a skirt is drawn for the upper side of the surface, to must not be
greater than any of the Zi,j values. When a skirt is drawn for the lower
side of the surface, to must not be smaller than any of the ti,j values.
An integer specifying which side of the surface is to be drawn. A
positive value means the upper side is to be drawn while a negative
value means the lower side. A zero value means both sides are to be
drawn.
An integer specifying the type of mesh to be drawn. A zero value means
rectangles are to be drawn while nonzero values mean triangles are to
be drawn. A positive value means the dividing line for the triangles
will pass through zr,l and a negative value means it will not.
A real array of dimension (3,4) containing the perspective transforma-
tion. . ,. ,.
A real array containing the color control for the mesh surface. The
value of CCA (1) selects one of two possibilities:

CCA (i>=O. 0 This means that the esisting GIG settings for fill

.

.-

62 GKS Utilities for FORTRAN-77
.

Figure 5.4. A mesh surface showing the upper side only

areas and polylines is to be used to draw the polygons. X:0
additional data is supplied in the array.

CCA(l)=i .O This means that the surface elements are to be col-
ored using the light source and reflection model. Additional

L
WA

data is supplied in the array as described earlier.
An ‘integer giving the length of the work array.
A real array of dimension L that will be used as a work array. The
required size of WA is difficult to estimate. The maximum size is easier
to compute. Start with (M - 2)(N - 2). If triangles are being drawn,
double that value. If both top and bottom are being drawn, double
that value again. If only the top or bottom is being drawn, add 2(M -
2) + (N - 2) + 1. Finally, double that value. This value overestimates
the number of words needed; the actual number will usually be about
half this maximum number.

Figures (5.3), (5.4), and (5.5) all illustrate examples of mesh ‘surfaces. In Fig-
ure (5.3) the mesh surface was broken down into rectangles, while the other two
figures use triangles. In Figure (5.4) the triangular division goes through the rl,l
point while in Figure (5.5) it does not.

Surface Drawing Algorithms 63

Figure 5.5. A mesh surface showing the lower side only

5.3. Generalized Polyhedral Solids

This section describes a subroutine that can be used to draw any figure that can
be broken down into planar polygons. Normally the polygons should be organized
into solid polyhedra because, at most, only one side of each polygon will be drawn.

.
5.3.1. Subroutine GZPOLY: Draw a Generalized Polyhedra

This subroutine may be used to draw a group of polyhedra. A polyhedron
consists of a solid body bounded by polygonal faces. The polygons should be planar
or very nearly so. The polygons must also be nonintersecting. The points on the
boundary should be ordered in such a manner that the polygon is to the left as one
traverses the outside of the surface in the given order of the bounding points.

The polygons that constitute the polyhedra may be drawn in one of two ways.
In the first scheme, the existing GKS settings are used to draw the polygons as fill
areas and then outline the polygons using a polyline. The second scheme provides
a light source and reflection model ,to color the polygons.

The calling sequence is:
CALL GZPOLY(PXA,PYA,PZA,M,NPA,IPA,IXA,PTRN,CCA,L,~A)

64 GKS Utilities for FORTRAN-77

.- Figure 5.6. The five Platonic solids

The input parameters are:
PXA A real array of containing the z coordinates of the points on the poly-

hedra.
PYA A real array of containing the y coordinates of the points on the poly-

hedra.
PZA A real array of containing the z coordinates.of the points on the poly-

hedra.
M An integer giving the number of polygons in the polyhedra.
NPA An integer array of dimension M containing the number of points in each

of the polygons. The maximum number of points allowed in each poly-
gon is 16. However, there is no need to close the polygon; a triangular

. I polygon may be defined by giving only three points.
IPA An integer array of dimension M containing a pointer into the IXA array

that gives the starting index of the indices pointing to the coordinates

Surface Drawing Algorithms 65

Figure 517. Two interlocked tori

of the points in the PXA, PYA, and PZA arrays bounding the polygon.
IXA An integer array containing the indices of the points bounding the

polygons.
PTRN A real array of dimension (3,4) containing the perspective trarsforma-

tion.
CCA A real array containing the color control for the polyhedra. The value

of CGA(1) selects one of two possibilities:
CCA(l)=O .O This means that the esisting GKS settings for fill

areas and polylines is to be used to draw the polygons. Ho
additional data is supplied in the array.

CCA(l)=l .O This means that the polygons are to be colored
using the light source and reflection model. Additional data
is supplied in the array as described earlier.

L An integer giving the length of the work array.

. .

66 GKS Utilities for FORTRAN-77

WA A real array of dimension L that will be used as a work array. The
maximum size that will ever be required is 2~. The actual number
needed will usually be about half this number.

Figures (5.6) and (5.7) illustrate two applications of this subroutine. Notice
that Figure (5.6) could have been produced in two distinct ways. In the first case,
a single call could be made to subroutine GZPOLY supplying it with all of the data
necessary to draw all five solids. A second way that the figure could have been
produced is to draw each of the five solids in turn starting with the farthest from
the viewer; first the tetrahedron, then the cube, octahedron, dodecahedron, and
finally the icosahedron. Since the farther solids do not hide the nearer ones, either
method will produce exactly the same result. This second method will be slightly
more efficient because the subroutine always has smaller files to sort. However, the
order that the polyhedra must be processed is dependent on the viewing direction.
This shortcut will not work in producing Figure (5.7) because each of the tori hides
part of the other; the entire figure must be produced in a single call to GZPOLY.

.

The following list contains more information about the books and reports that
have been referenced in this document.

[ANS78]

[ANS85a]

(.4NS85b]

[ANSSG]

[BeaSl]

[Her671

PgS51

American National Standard:’ Programming Language FORTRAN,
Document ANSI X3.9-1978, American National Standards Institute,
Inc., New York, April 1978.

American National Standard for Information Systems: Computer
Graphics - Graphical Kernel System (GKS) Functional Description,
Document ANSI X3.124-1985, American National Standards Institute,
Inc., New York, June 1985.

American National Standard for Information Systems: Computer
Graphics - Graphical K ernel System (GXS) FORTRAh’ Binding, Docu-
ment .4NSI X3.124.1-1985, American National Standards Institute, Inc.,
nlew York, June 1985.

American National Standard for Information Systems: Coded Charac-
ter Sets, 7-bit American National Standard Code fot Information Inter-
change (7-bit ASCII), D ocument ANSI X3.4-1986, American National
Standards Institute, Inc., New York, Grch 1966.

Robert C. Beach, An Introduction to the Curves and Surfaces of Com-
puter-Aided Design, Van Nostrand Reinhold, New York, 1991.

A. V. Hershey, Calbgraphy fot Computers, Report Number 2101, United
States Naval Weapons Laboratory, Dahlgren, Virginia, .4ugust 1967.

David F. Rogers, Procedural Elements for Computer Graphics, McGratv-
Hill Book Company, New York, 1985.

67

68 GKS Utilities for FORTRAN-77

,

. *

///-

