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1. Introduction 

Perhaps the most outstanding problem in quantum field theory is to compute the 

bound state spectrum and relativistic wavefunctions of hadrons at strong coupling. 

In quantum chromodynamics (QCD) one needs a practical computational method 

which not only determines the hadronic spectra, but also provides nonperturbative ._ 

hadronic matrix elements. 

Lattice gauge theory, in which the Feynman path integral is evaluated on a 

discrete spacetime grid, provides an appropriate tool for such calculations. For strong 

coupling, it leads to an appealing description of confinement. Numerical results in 

. - general have, at least qualitatively, been consistent with experiment, and there is 

little doubt their accuracy will improve with increasing computing power. 

Nevertheless, it is necessary to develop other methods which are perhaps more 

intuitive and less time consuming than the lattice gauge theory approach. In addi- 

tion, it is particularly important to compute the relativistic wavefunctions needed to 

calculate structure functions, form factors and other hadronic matrix elements. A 

step in this direction has been undertaken by a method known as Discrete Light-Cone 

Quantization (DLCQ). So far, the theory has been applied mainly to the elucidation 

of quantum field theories in one space and one time dimension. In l+l dimensional 

&CD, for example, the full spectra and wavefunctions could be obtained, using the 

DLCQ method [l] . These results, which required only a minimal numerical effort, 

are in agreement with other calculations when available. The success of DLCQ, as 

well as a similar approach, known as Light-front Tamm-Dancoff method 121, provide 

the hope for solving field theories in 3+1 dimensions. 

However, the transition to dimensions higher than 1-l-l is anything but straight- 

forward. Some of the reasons are the following: 
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a Theories in l-t1 dimensions, quantized on the light-cone, are manifestly co- 

variant. This is because the operator of boost transformations, which is a 

kinematic Poincare operator in light-cone quantization, is the only generator 

of continuous Lorentz transformations. This is generally not the case in higher 

dimensional field theories, since the underlying Poincare group includes certain 

rotation operators, which are dynamical in the light-cone formulation. Thus, 

the recovery of Lorentz invariant physical observables is a nontrivial problem 

in light-cone quantized theories beyond l+l dimensions (as for any form of 

Hamilton dynamics) [3] . 

l The Hamiltonian formulation of gauge theories in It-1 dimensions is effectively 

. - gauge invariant [4]. H owever, in higher dimensions the regularization imposed 

in such a formalism will generally spoil gauge invariance, since the gauge field 

quanta become a dynamical degree of freedom of the theory. Unless a careful 

regularization is imposed, gauge invariant amplitudes are not recovered in the 

continuum limit. 

l Simple theories like the Yukawa model or gauge theories in l-+1 dimensions are 

superrenormalizable. In 3+1 dimensions, however, a renormalization scheme 

to all orders in the coupling constant and masses must be imposed for these 

theories in order to ensure a consistent treatment of their short distance be- 

havior. 

l The number of degrees of freedom in 3+1 dimensional theories is drastically 

enhanced compared to the l+ 1 dimensional world. 

Thus, a thorough investigation of light-cone properties which are characteris- 

tic for higher dimensions is very important. The easiest way of addressing these 

issues is by analysing the perturbative structure of light-cone field theories first. 

Perturbative studies cannot be substituted for an analysis of problems related to a 

nonperturbative approach. However, in order to lay down groundwork for upcoming 
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nonperturbative studies, it is indispensable to validate the renormalization methods 

at the perturbative level, i.e., to gain control over the perturbative treatment first. A 

clear understanding of divergences in perturbation theory, as well as their numerical 

treatment, is a necessary first step towards formulating such a program. 

The first objective of this dissertation is to clarify this issue, at least in second 

and fourth-order in perturbation theory. The work in this dissertation can provide 

guidance for the choice of counterterms in DLCQ or the Tamm-Dancoff approach. 

A second objective of this work is the study of light-cone perturbation theory 

(LCPTh) as a competitive tool for conducting perturbative Feynman diagram cal- 

culations. Feynman perturbation theory has become the most practical tool for 

computing cross sections in high energy physics and other physical properties of field 

theory. Although this standard covariant method has been applied to a great range 

of problems, computations beyond one-loop corrections are very difficult. A number 

of examples of two-loop and higher calculations using Feynman methods are given 

in Ref. [5]. 

Because of the algebraic complexity of the Feynman calculations in higher-order 

perturbation theory, it is desirable to automatize Feynman diagram calculations so 

that algebraic manipulation programs can carry out almost the entire calculation. 

This thesis presents a step in this direction. The technique we are elaborating on 

here is known as light-cone perturbation theory (LCPTh) [6-81. 

LCPTh is similar to ordinary time-ordered perturbation theory, familiar in both 

nonrelativistic quantum mechanics and quantum field theory, where each time-ordered 

amplitude is constructed from a product of energy denominators and interaction ver- 

tices. The covariant Feynman amplitude is, in principle, obtained from the sum of 

time-ordered noncovariant graphs with the same topology. Instead of ordinary time, 

the LCPTh evolution parameter is the time along the light-cone r = t - z/c . The 

T- ordered amplitudes are each invariant under a large class of Lorentz boosts, so 
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that each r-ordered amplitude is itself frame-independent with respect to those 

symmetries. 

A straightforward way of relating the LCPTh amplitudes to the Feynman rules 

is by changing variables of the independent loop momenta ir, in a Feynman integral 

according to [9, lo] 

Jd’k 3 ;/dk+d2kldk- 

with k* = k” f k3, and performing the integration over k-. The residues give 

the LCPTh amplitudes. Alternatively, these amplitudes can be obtained directly 

from the Hamiltonian formalism derived at fixed 7. Thus by constructing LCPTh 

- directly, only a three dimensional integral has to be performed for each loop. Since 

- the complex contour integrations over energy or k- do not occur, the formalism is 

immediately suitable for numerical treatment. 

The price to pay for the simple features of LCPTh is that every Feynman dia- 

gram with n vertices gets decomposed into a set of light-cone time-ordered diagrams. 

-- However, unlike time-ordered perturbation theory (which can be obtained after per- 

forming the k” integration of the independent loop momenta), the number of light- 

cone time-orderings corresponding to the Feynman amplitude is considerably smaller 

than n! For example, in the case of the fourth-order (cr/~)~ correction to the elec- 

tron’s anomalous moment ( without vacuum polarization ), there are 516 individual 

time-ordered contributions, but only 8 of them are nonvanishing in the light-cone 

formalism. This example will be discussed further in the following sections. 

There are a number of other advantages of the light-cone perturbation theory 

formalism. 

l Since each amplitude describes the propagation of on-mass-shell particles with 

a specific time-ordering, the physical meaning of each LCPTh amplitude is 
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immediate. General properties such as unitarity and cluster decomposition 

theorems become explicit. 

l If one quantizes in a physical gauge, all intermediate states correspond to the 

propagation of physical particles with positive metric. The physical variables 

used to describe jets or particles in high energy physics have an immediate 

interpretation in terms of the LC variables. 

l The cancellation of infrared divergences is immediate and can be carried out 

for contributions with the same LC time-ordering. 

l The LC quantization of quantum chromodynamics leads to a direct physical 

interpretation of the theory. The implementation of current algebra becomes 

essentially a kinematic problem [l l-131. The current matrix elements Js 

needed to compute form factors and structure functions can be written as 

diagonal matrix elements of the light-cone wavefunctions, since such currents 

do not couple to vacuum fluctuations in the LC quantized theory [13, 141. 

This thesis is organized as follows : 

l Chapter 1 gives an introduction. 

l Chapter 2 lists light-cone perturbation theory rules. 

l Chapter 3 presents a new algorithm for the automatic computation of Feynman 

diagram amplitudes. Once the topology of a diagram is defined, the algorithm 

constructs all corresponding light-cone time-orderings. We explore the method 

for two- and three-loop calculations in QED. This chapter lays down the com- 

putational techniques used in the thesis. 

l Chapter 4 discusses an ultraviolet regularization and renormalization procedure 

of light-cone perturbation theory, which is suitable for numerical application. 

In this sense, Chapter 4 augments the discussion of Chapter 3. The fourth-order 

correction to the anomalous magnetic moment of the electron is computed in 
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light-cone gauge. Several regularizations of the associated gauge singularity are 

explored. Local counterterms are constructed to remove the quadratic light- 

cone divergences from the formalism. Problems of the Discrete Light-Cone 

Quantization (DLCQ) and the light-front Tamm-Dancoff approach, beyond 

the one photon exchange, are also described. 

l Chapter 5 elaborates upon the problems of Chapter 4 in the context of non- 

perturbative methods, such as DLCQ. The light-cone Hamiltonian for QE&+r 

consistent with covariant and gauge-invariant perturbation theory is constructed. 

Extension to gauge theories in 3+1 physical dimensions is also described. 

l Chapter 6 investigates specific features of a perturbation expansion in light- 

cone field theory. The decay of a heavy scalar particle at rest, in the Yukawa 

model, at the one- and two-loop level, is studied. It is shown explicitly that 

naive light-cone quantization leads to a violation of rotational invariance. Non- 

covariant counterterms are constructed in detail to restore Lorentz covariance. 

An analysis of surface and zero mode contributions clarifies the origin of the 

problem. 

l Chapter 7 summarizes this work and outlines possible future work in this field. 

It may be used as a expanded abstract of the thesis. 

This thesis is structured such that each chapter can be read mostly independently 

from other chapters. The advantage is that the reader, whose interest in this work 

is focused on LCPTh as a competitive tool for standard Feynman diagram calcula- 

tions, needs to concentrate mainly on Chapters 2, 3 and 4. Those interested in the 

consequences of this work for applications in DLCQ should focus on Chapter 5 (and 

the last subsection of Chapter 4). For those interested in the results of this thesis in 

general the focus during the first reading should be on Chapters 3 and 6. 

Chapters 3, 4, 5 and 6 of this thesis have been either published, accepted or 

submitted for pubIication [15]. 
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2. Light-Cone Perturbation Theory Rules 

In this section we present light-cone perturbation theory rules which are adopted 

from Ref. [I]. The light-cone Green’s functions are the probability amplitudes that a 

state starting in Fock state Ii) ends up in Fock state If) a (light-cone) time 7 later [3] 

* =2 J 5 e-icr/2 G(f, i; E) (f Ii) , 
2x 

where Fourier transform G(f, i; C) can be written 

= 
( I f 4ol+io, + c-Hol+io+v~-Hol+io + 

(24 

(2.2) 

1 
+ V 

1 
V 

1 
c-H*$iO+ E-Ho-tiO+ E-Ho$iO++-* 2 . I) 

HLC and Ho denote the full and free Hamiltonian respectively. The rules for r- 

ordered perturbation theory follow immediately when (E - Ho)-’ is replaced by its 

spectral decomposition 

1 In : &, A;) (n : ki, Ail = 
E. - Ho •t iO+ c - C(k; + m2);/k’ t iO+ 

(2.3) 

i 

The sum becomes a sum over all states n intermediate between two interactions. 

To calculate G(f, i; E) perturbatively then, all r-ordered diagrams must be con- 

sidered, the contribution from each graph computed according to the following rules: 

1. Assign a momentum kp to each line such that the total k+, k1 are conserved 

at each vertex, and such that k = m2, i.e., k- = (I;: + m2)/k+. 

2. Include a factor O(k+) for each line. 
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3. For each gluon (photon) line include a factor d$,)/k+ where d,, is the (gauge 

dependent) polarization sum. In Feynman gauge d,, equals -g,,. In light- 

cone gauge q s A = A+ = 0, 

dj,? = c $(k, X)~y(k, X) 
x=1,2 

= -g/.&u + 
77l.A + 17vk, 

r].k: ’ 

wherek.e=q.k= 0. For a regularization of the gauge singularity at q . k = 0 

(see Refs. [4-61). 

4. The gluon (photon)-fermion vertex is 

The trigluon vertex is 

--eo [(P - dpgPv + (q - k)Qfv + (k - p)ugpq 

and the four-gluon vertex is 

Generally there are three independent ways of inserting the four-gluon vertex; 

all must be included. 

5. For each intermediate state there is a factor 

Cinc k- - d,,.lm k- + i& 

where the sums in the “energy denominators” are over the light-cone “energies,” 

k-, of the incident (inc) and intermediate (interm) particles. 
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6. In Feynman gauge, ghosts loops occur. For each ghost line include a factor 

-[O(k+)]/k+. The gluon-ghost vertex is egk”. 

7. The fermion propagator consists of two parts: 

l A propagating piece 

where the first and second term correspond the propagation of a fermion and 

antifermion, respectively. 

l An instantaneous contribution 

- -i+ 
2k+ ’ 

Also the gluon (photon) propagator in light-cone gauge has an instantaneous part 

ws”)/k+27 as does the ghost propagator. In each case, the instantaneous propa- 

gator can be absorbed into the regular propagator by replacing k, the momentum 

associated with the line, by 

k+, xinc k- - xlnterm k-7 k 

in the numerator of those diagrams in which the fermion, gluon (photon), or ghost 

propagates only over a single time interval. Here zinc denotes summation over all 

initial particles in the diagram, while Cinterrn denotes summation over all particles 

in the intermediate state other than the particle of interest. Thus, in light-cone 

gauge, k replaces k in the polarization sum d$, as well as in the trigluon coupling, 

for gluons appearing in a single intermediate state. Similarly, fk + m is replaced 

by k,i+m [7]. 
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8. Integrate J dk+d2 kJ16 7~~ over each independent k. 

9. Include a factor -1 for each closed fermion loop, for each fermion line that 

both begins and ends in the initial state (i.e., F.. . u), and for each diagram 

in which fermion lines are interchanged in either of the initial or final states. 

10. A particular useful spinor basis is given by 

or 

(2.5) 

where x(T) = l/fi(l,O,l,O) and x(J) = l/fi(O, l,O, -l)T. 

11. Color factors are computed as for covariant diagrams. 

As an example we compute the magnetic formfactor F2,5 associated with the 

decay of a heavy top quark (t) into a massless bottom quark (b) and a W-boson, via 

t-+bW 

to second-order in perturbation theory. In the limit of zero b mass the current 

associated with this process is given by 

rc” = (+~PLF~L $ iupvqvPRF2L $ q’“PRc) bttWt, 

where the projection operators PR,L = (l/2)(1 f r5), the formfactors F~L, F~L, C 

and the annihilation operators b, t, W have been introduced. 
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Figure 2.1. 0 ne oo contribution to the decay t -+ bW. -1 p 

In order to extract F~L it is convenient to consider the helicity-flip amplitude of 

the corresponding I’+ current 

41 I”+ IT>= [-(P; + i93?2~ + (I$ - $,C] fidlh(T), (2.6) - 

where pt = (P~,P,,PZ,L) and pb = (pl,pb, pb,&) denote the four-momentum of t 

(with mass m ) and b respectively. The 1.h.s. of Eq. (2.6) can be computed in 

LCPTh, yielding two light-cone time-orderings shown in Fig. 2.1. Hence, 

< Q(Pb, 1) I r+ I W(Pt7 t> ‘= 

co 
4 e2 + qp; - k+) -- 
3 16x3 J d2kLdk k+(p; _ k+)(Pt - k+) 

0 

X 
~a(~)-+‘ b2r+( ~51 + 4wt(T) 

(P; - 9 - $)(p; - p3 - g, + ie 

00 

4 e2 
+ 

O(k+ - p;) -- 
3 167r3 J 

d2hdk+ k+(k+ 
- Pb)(Pl+ - k+) 

0 

P-7) 

where the four-vectors are given by pl = (pt - k+,pt - kl/k+,pt,l - kl), p:! = 

(p; -k+,p, -k:/k+,pb,r k.d& = (P:-k+, Km - h)” + m21/(pl+ - k+)m- 

13 



kL),@2 = (k+ - pz,pr - pb - (111,~ - k1)2/(@r - k+), kl - pal) and the factor 

4/3 includes color. Here, the momenta pt,pb, k correspond to t,b and the virtual 

gluon respectively. The computation of the r.h.s. of of Eq. (2.7) for two different 

choices of the momentum pa (note that (pt -pa)2 = m&, where mw is the W-boson 

mass) enables the extraction of F~L in Eq. (2.6). For m/mw = 150.0/80.9 we find 

FzL(rn$) = (0.49 f O.O01)(a,/27r). 

Equation (2) in combination with Eq. (3) has th e remarkable feature that they 

immediately lead to a practical prescription for the calculation of general scattering 

amplitudes in perturbation theory: 

l Approximate the Hilbert space by a finite number of Fock states. 
_ - 

; Compute all matrix elements < ki (V(kj >, between those Fock states (kl >. 

l Connect initial and final state, insert the corresponding energy-denominators 

and sum over all intermediate states. 

l Self-energy contributions can be identified by Fock states which occur more 

than once in the expansion. Thus, an appropriate mass subtraction seems pos- 

sible. Wavefunction renormalization is not necessary since Eq. (2) corresponds 

to the summation of all Feynman diagrams to this order in perturbation theory. 

Hence, all wavefunction counterterms cancel by means of the Ward identities. 

Charge renormalization can be carried out by identifying vacuum polarization 

diagrams [8] . 

Unfortunately, a direct numerical application of those steps is often extremely 

inefficient, since most of the Fock states, generally, do not connect initial and final 

states. In addition, ultraviolet regularization, by means of a Fock space truncation, 

poses extra problems. Nevertheless, due to the fact that the expansion in Eq. (2) is 

manifestly unitary, i.e., causal, an efficient modification of the above procedure can 

be constructed for the automated computation of scattering amplitudes in perturba- 

tion theory. 

14 
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3. Perturbation Theory in Light-Cone Quantization 

3.1 A general algorithm for generating LCPTh 

In this section we develop a procedure which automatically constructs all light- 

cone time-orderings associated with a given Feynman diagram F. The only input 

required is the set of photon connections of F [first-photon (4,1), second photon (5,2) 

in Fig. 3.11, which define the topology of the diagram. 

+3 

p2 P3 

A 
2 k2 

s 
4p 

4 

1 
kl 

5 

7-91 6663Al 

Figure 3.1. Two-loop QED cross diagram. The momenta pi and kj correspond to 
the internal momenta of the i-th fermion and j-th photon, respectively. 

In the first part of this section we outline the procedure for quantum electrody- 

namics in the specific example of Fig. 3.1. In the remainder of the section a general 

algorithm, useful for higher loop calculations, is described. 

First we shall review the derivation of LCPTh rules introduced by Soper [a]. 

The Feynman answer F for the two-loop contribution to the electromagnetic vertex 

Y*(Q) + fqP1) + er(pp) corresponding to Fig. 3.1 is given by [1,7] 

F =e4 
J 

d4xld4x2d4x3d4x4d4x5T(x5, T)yp 

x isffx5 - X4)YXiSF(X4 - 33) 
Y+e -iq23 

d- 
i&+3 - x2)+7 

x i&(x2 - ~l>)rP~(~l, S) i&,x/+4 - Xl)iDFJw(X5 - 22) ) 
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where pf denotes the incoming light-cone momentum of the electron. Here we have 

chosen the helicity-flip amplitude (pp jJ+/pf lpi) and the frame with Q+ = 0 which 

is appropriate for obtaining the anomalous magnetic moment of the electron and 

its Pauli form factor F2(q2) [8] . The Feynman propagator can be written in the 

convenient form [3] 

0 

= p(x) + $)(x) t spyx) , _. - (3.2) 
where the electron four-vector is on the mass shell i.e. p- = (m2 + J&)/P+. This 

result follows from 

SF(x) = (iQ+‘ t m)&(x) (3.3) 

and 

+ O( -x’)e”P”) . 

The third term in Eq. (3.2) gives rise to an instantaneous fermion interaction in light- 

cone quantized QED. The photon propagator in light-cone gauge 7 . A = AS = 0 is 

given by 

03 

+ 
J J 

d2kI 
,I t -r(pk z--klz*) 



where 

c e;(k,X)e,(k,X) = -gpv + Qk'$Vk" . 
X=1,2 

This result can be obtained by performing the k- integration of 

D&) = & J be -ikz -spv 

Ic2+ 

The external field \EI for the incident electron is given by 

P5) 

Us = ul(p, s)e-‘Prz (3.6) 

where ur(p,s) is the solution of the free Dirac equation. In Feynman gauge the 

_ polarization sum ‘&1,2 $(k, X)c,(k, X) in (3.4) gets replaced by -gPV and the in- 

stantaneous contribution drops out. 

-. In order to compute the scattering amplitude, Eq. (3.1), using light-cone per- 

turbation theory, one first has to split up the integration region into all possible 

time-orderings. For illustration purposes we pick a typical time-ordering 714325 

and obtain the contribution 

F(‘) 
(14325) = e4 J 

d4z#z2d4z3d4z4d4z5 

x qx$ - x~)@(x: - xf)o(xi - x~)@(x~ - xz) e+iPF25Ti(pF, T)y” 

x i$)(x5 - x4)9 is$)(x4 - x3) 

7+ e-i423 

6 
i$)( x3 - x2)7” 

x i,!$)(22 - zl)(yPe-iPlzlu(p~, 1)) iDg&(q - x1) iDg!,(z:, - x2) . , 

(3.8) 

The corresponding T-ordered diagram is shown in Fig. 3.2. Note that the instanta- 

neous contributions in S~(s4 - x3) and S~(x3 - x2) do not contribute because of 

18 



Figure 3.2. Light-cone time-ordering contributing to the cross diagram. 

-f+y+ = 0. The instantaneous contribution of S~(x2 - x1) gives zero result in this 

case due to 

- 
M - x;‘)O(x,’ - x;,qx;’ - xa,qx; - x;,qx; - x;, G 0. 

In the same way it is shown that the instantaneous contribution of S~(x5 - x4) van- 

ishes. In general, instantaneous interactions give rise to a nonzero contribution only 

if they do not extend over more than one intermediate state for the same reason [9] 

. Equation (3.8) leads to a phase factor of the form 

exp{i bFX5 - P4(X5 - 54) + P3(x4 - x3) + P2(x3 - x2) 

-423 -P&2 - XI) - prxl - h(x4 - Xl> - k2(x5 - X2)1) - 
(3.9) 

The momenta pi, kj denote the momentum associated with the i-th fermion and the 

j-th photon line respectively. The momenta pl, pi corresponds to the initial and final 

momentum respectively. The integration over x1, xr can be performed trivially and 

demonstrates momentum conservation of pz,pf at each vertex. 
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In order to perform the x+ integration, it is convenient to change variables ac- 

cording to [2] 

q=x$-.xr 

A+ = 
2 x;-5 a 

x;=xp-x; 
(3.10) 

A+ = 
4 x$-x ;..- 

The light-cone time part of (3.9) becomes 

exp 3 [;A$ (py - kz - PF) + ix; (-Pi- - P; - P; + PF) 

tix;t (-p; -p; -pz t&q-) 

(3.11) 
_. - + iA;c (-k, -p; +pF - q-) t ix; (-Pl - q- + PF)] 

-. = exp $ [iCF(Tl4325) t ix; (-p; - q- + p;)] , 

This will play an important role in our discussion, so we have introduced the definition 

of a characteristic exponent CF(~) of a time-ordering r. The integral over xt can be 

performed trivially and gives overall light-cone energy conservation. The remaining 

.- integrals over x+ can be performed by means of 

co 

J 
dTei(H+ic)T i 

=z-qe* 
0 

The product of these denominators, and the factors [-i/(27r)3](l/p+) from (3.2) and 

(3.4) then lead to the LCPTh answer of the time-ordering (3.7). 

As far as the treatment of instantaneous diagrams is concerned, a simple sub- 

stitution allows the incorporation of instantaneous vertices [9]. To see this, consider 

the y+ contribution of one fermion line to an arbitrary Feynman diagram 

F =... (gq... ) (3.12) 
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where d- = pr -p- - ‘&,, pr is the light-cone denominator containing the fermion 

line under consideration. In general, pI - is given by the total light-cone energy of 

the incoming particles and the sum runs over all spectators of the corresponding 

intermediate state. 

The second term in Eq. (3.12) presents the instantaneous contribution to F. If 

we define pinergyssheU = p- t d-, both terms combine to 

I.+- 
F=... 2 ‘Y &mgy-shell 

P’d- -** * 
(3.13) 

Note that Pi&y-shell is the light-cone energy one would obtain if one required light- 

cone energy conservation at the vertex. Thus all instantaneous fermion contributions 

can be taken into account by putting those p- on energy-shell in the numerator 

whenever that fermion does not extend over more than one intermediate state [9]. In 

the same way the light-cone gauge photon interaction in (3.4) can be handled [4]. 

Now we are ready to describe our general as a sequence of 10 steps (see Fig. 3.3). 

For illustration we again consider the order e5 contribution to the electron vertex. 

We start out noting that each two-loop T-ordered contribution to the electron vertex 

(which contains no vacuum polarization contribution [lo] ) is of the form 

F(il * 
e4 

1 ’ - ‘e7z5).= (lST3)2 
J 

dk;:d2hdk2+d2kz O(p~)O(p~)o(p~)o(p~) 
pfp;p;p$+z+ d-(l)d-(2)d-(3)d-(4) 

x 
( 

F/‘(“)(S4p4 + ?-n)~~““(S3~, t ?72)y4i3)(s2J52 + m)y+) 

x (s& -I- m)y”(‘“)u 
> D,(l),(2)(kd Dp(4)p(5)(k2) 

(3.14) 

where the diagram is defined by its photon connections. The explicit construction of 

(3.14) is done as follows: 

l Step (I): the indices il, is , . . . . i5 are specified. For the diagram of Fig. 3.1 we 

have il = 5, i2 = 2, id = $, i4 = 4, i5 = 1. For the diagram of Fig. 3.4 we have 

il = 5, i2 = -I-, i3 = 2, i4 = 4, is = 1. 
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Figure 3.3. Flow zhart for the automatic computation of QED amplitudes. 

l Step (II): F or each of the n! = 120 time-orderings one defines a vector T(I), i = 

1 , . . . . n = 5. T(I) d escribes the position of the I-th vertex of F. In the example 

of Fig. 3.1 we get ~(1) = 1,7(2) = 2,~(3) = 3,7(4) = 4,7(5) = 5. In the 

example of Fig. 3.2 we get ~(1) = 1, ~(2) = 4, ~(3) = 3,7(4) = 2, r(5) = 5. It 

is also useful to define 

A(+)) = I . 

22 
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Figure 3.4. Two-loop “corner” diagram. 

0 Step (III): 0 nce a time-ordering is defined we know which pieces out of the 

propagators (3.2) and (3.4) are to be picked. The construction of CF(~) de- 

fined in (3.11) is straightforward. Note that the term which describes overall 

momentum conservation must be subtracted in order to obtain CF(~). 

l Step (IV): one changes variables to Al = XL+, - XL for k = 1,...,4 and 

expresses the characteristic exponential in terms of Xk 

C&) = c Xpr(i) . 
i 

l Step (V): In general 5! different time-orderings can contribute to F. However, 

in practice most of them vanish. This is due to the fact that all light-cone 

momenta are greater or equal zero and conserved at each vertex [ll] . An 

example is given in Fig. 3.5, which contains a vacuum fluctuation at x4. A 

vacuum fluctuation at xi can be formally identified when all terms of d-(i) 

carry the same coefficient (namely, $1, or -1). The d-(i) can be obtained 

from CF( r) by setting Xk = 6ki. 

l Step (VI): To obtain the form Eq. (3.14) all momenta p+ and $- must be 

expressed in terms of the independent loop momenta and external momenta. 

This can be achieved by solving the equations 
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Figure 3.5. Example for a vacuum fluctuation to the cross diagram. 

d-(l) = 0 , 

C(2) = 0 ) 
- 

d-(3) = 0 ) 
d--(4) = 0 . 

(3.16) 

For example, for Fig. 3.2 we find 

p; = kl’ + k2+ - P; , pal= kll + h - PIL 

(3.17) 

PZ =ki’$k;-p; , PSI = ka + ILL - PFI 

Pa = -$-+p+F , P41= -h + PFI . 

l Step (VII): Th e expressions for the internal fermion momenta, obtained in 

step (VI), are substituted into d-(i) in order to construct all energy denomi- 

nators d-(i) explicitly. 
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l Step (VIII): Wh en setting up the fermion pf in the numerator it must be 

decided whether the fermion line pi extends over more than one intermediate 

state. A formal criteria for that is given by 

ubs(A(i). - A(i + 1)) = 1 . (3.18) 

If (3.18) is correct, pi - is set on energy shell, which means 

p; = P&mass-shell + d- (ins) (3.19) 

where ins := min(A(i + l)YA(i)),pi,mass+..e~ = (m2 + pfL)/p+. If (3.18) is not 

fulfilled we have pr = pl,mass-shell. 

l Step (IX). Th e only variables which are left to be determined in (3.14) are the 

signs si which define whether a fermion or antifermion propagates. The phase 

can be determined from 

A(xi+l) - A(xi) 
” = UPS (A(xi+l) - A(xi)) ’ 

(3.20) 

0 Step (X): (3.14) can now be calculated. If necessary, the diagram can be 

regularized using Pauli-Villars regularization. 

It should be noted that step 2 to step 10 can be readily carried out automat- 

ically, using an algebraic manipulation program like REDUCE. The algorithm can 

be generalized easily to higher loops. As an example, in Fig. 3.6 we present the 

time-orderings, generated by the algorithm, to a three-loop contribution of the elec- 

tromagnetic vertex for q+ = 0. 
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Figure 3.6. Example for a set of light-cone time-orderings which correspond to a 

sixth order Feynman diagram. 
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3.2 Numerical results 

In this section we report on the use of the general LCPTh algorithm to redo 

the two-loop calculation of the anomalous magnetic moment (g - 2)/2 = a = F2(0) 

by Petermann and Sommerfield [12,13]. F g i ure 3.7 shows all Feynman diagrams as 

well as the corresponding light-cone time-orderings, contributing to the anomaly in 

fourth order. 

The vacuum polarization diagram 6 can be computed by the effective replace- 

ment [14] 

1 CY 

J 

1 dt ty1 - $2) 1 

k2 - X2 + ic + ?r 1 -t2 
0 

k2 - f$ + ic (3.21) 

after performing the integration over k- [15,16]. All diagrams in Fig. 3.7 (with ex- 

ception of graph 5) are ultraviolet divergent and require renormalization. However, 

by computing certain sets of diagrams simultaneously, the calculation can be ar- 

ranged such that ultraviolet divergences cancel between diagrams of the same set. 

As an example, Table 3.1 shows the result of the numerical integration, using the 

adaptive integration routine VEGAS [17] of d ia g ram 1 and 2 for different values for 

the ultraviolet cut off h2. After mass renormalization of the self-energy diagram 2, 

we observe only a residual A dependence of the form 

-& log A2 . (3.22) 

which can be easily eliminated by an appropriate fit in A2 [18]. 

We obtain for our estimate of diagrams 1 and 2, a = (-0.326 f O.OO~)(~Y~/K~), 

which is to be compared with the analytic answer of Petermann [19] a = -0.327.. . 

cr2/?r2 and Sommerfield. Table 3.2 shows the result of the residual diagrams. The 

agreement with the correct result is better than 0.270 for single diagrams. To obtain 
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Figure 3.7. Six Feynman diagrams and the corresponding light-cone time-orderings 
contributing to the fourth-order anomalous magnetic moment to the electron. 
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Table 3.1. Result (6~) of the numerical integration for diagram 1 + 2 after mass 
renormalization in units of (c~/n)~. The data converge for large values of the Pauli- 
Villars cut-off A (in units of the electron mass). 

Lambda 

25 

50 

._ -100 

1000 

Table 3.2. Numerical results (6a) for the two-loop diagrams of Fig. 3.7. The 
results are compared with the analytic answer by Petermann. 

Diagram ba Result by Petermann 
- . 1+2 -0.326 Iiz 0.001 -0.327 

3+4 0.780 f 0.007 0.778 

-. 5 -0.465 f 0.002 -0.467 

6 0.016 f 0.001 0.016 

Table 3.3. Numerical results (Sa) for the sixth-order contributions of the dia- 
grams in Fig. 3.8. The results are compared with the results given by Brodsky and 
Kinoshita. 

Diagram Sa Result by Brodsky and Kinoshita 

4+-7 -0.114 f 0.002 -0.115 

1+2 -0.0031 f 0.003 -0.0032 

5-H 0.053 f 0.002 0.053 

3-M -0.09 f 0.02 -0.088 

these results we needed typically only one minute of CPU per graph on a IBM3090. 

These successes encouraged us to attempt some sixth order moment calculations 

for the Feynman graphs shown in Fig. 3.8. In Table 3.3 we compare our estimate 

with the results obtained by Brodsky and Kinoshita [20]. For further references see 

also [21] . 
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Figure 3.8. Sixth-order Feynman diagrams containing one-loop vacuum polariza- 
tion. 

3.3 Summary 

We have presented a new algorithm for the automatic computation of Feynman 

diagram amplitudes. The method, which is based on light-cone perturbation theory 

(LCPTh), is explored for two- and three-loop calculations in QED. The amplitudes 

are constructed automatically and explicitly, given just the photon connections of the 

corresponding diagrams. The extension of the algorithm to higher loops is straight- 

forward [22]. 
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One of the most useful applications of LCPTh and this algorithm could be the 

computation of multi-jet processes in e+e-- annihilation, since LCPTh amplitudes 

correspond closely to the quark and gluon jets identified in high energy physics. These 

reactions have not been completely calculated beyond the one-loop order in pertur- 

bation theory. However, the extension to quantum chromodynamics requires a more 

careful regularization of the ultraviolet behavior of the theory. The implementation 

of dimensional regularization and other renormalization issues will be described in 

Chapter 4. 
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4. Ultraviolet Regularization of Light-Cone 
Hamiltonian Perturbation Theory: 

Application to the Anomalous Magnetic 

Moment of the Electron in Light-Cone Gauge 

4.1 Introduction 

One objective of this chapter is to explore some of the renormalization issues in 

the example of the anomalous magnetic moment of the electron a = (g - 2)/Z to 

order (cY/x)~. In particular, the discussion shall focus on a renormalization scheme 

which is also suitable for a numerical treatment. This requires the construction of 

certain counterterms on the local level in order to prevent round off errors. 

The first section of this chapter addresses problems associated with quadratic 

divergences in light-cone quantized gauge theories. It is shown that Feynman gauge 

leads to an infinite number of quadratic divergent LCPTh diagrams at one loop. 

The situation is significantly better in light-cone gauge since in the continuum only 

the self-energy and the vacuum polarization display a quadratic divergence at one 

loop. However, a computation in A + = 0 gauge requires a careful regularization 

of the associated gauge singularity. Most regulators reduce the small z behavior 

of the light-cone photon propagator to that present in Feynman gauge. Thus, an 

understanding of Feynman gauge is essential even if calculations are carried out in 

A+ = 0 gauge. 

The second section discusses the fourth-order correction of g - 2 in the light-cone 

gauge. Two different descriptions for the regularization of the ks singularity are dis- 

cussed. The sensitivity of physical observables to a finite truncation is investigated. 

The third section tests the ultraviolet regula.tors, which are commonly used for 

the purpose of nonperturbative calculations in DLCQ. It is shown that these reg- 
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ulators do not recover the correct answer for a = (g - 2)/2 in fourth order, unless 

special counterterms are invoked. 

4.2 Light-cone quantization in Feynman gauge 

In any gauge different from light-cone gauge, canonical light-cone quantization 

is anything but straightforward. This is due to the fact that, after solving the spinor 

constraint equation, the light-cone Hamiltonian in these gauges contains terms which 

are of arbitrarily high order in the A+ field. Thus, in this case, we will not attempt 

to write down the light-cone Hamiltonian. However, even without constructing the 

light-cone Hamiltonian explicitly, one can still derive light-cone perturbation theory 
_. - 

(LCPTh) 1 f F y ru es or e nman gauge simply by separating the various light-cone time- 

orderings of the Feynman amplitudes. A useful reference can be found in [l] (see 

also Chapter 1). 

Feynman perturbation theory in Feynman gauge has the advantage that even off- 

shell Greens’ functions exhibit the full Lorentz structure. This simple feature provides 

important consistency checks for light-cone quantized field theories, since manifest 

covariance is lost in this case. In addition, it helps to disentangle problems associated 

with singularities in the light-cone gauge propagator from problems intrinsic to light- 

cone quantization itself. 

We start our discussion with the evaluation of the fourth order correction to the 

anomalous magnetic moment of the electron (g - 2)/2 in LCPTh. The Feynman dia- 

grams and the corresponding light-cone time-orderings are displayed in Fig. 4.1. The 

techniques we used for this calculation has been discussed in the previous chapter, 

so that we only compare the LCPTh answer of the anomaly 

cr2 
ULCPTh = (-0.324f0.004);;T 
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Figure 4.1. Feynman diagrams F with corresponding light-cone time-ordered di- 
agrams contributing to the electron anomalous magnetic moment a 

= (g - 2)/2 to 

fourth order. 
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Figure 4.2. n-photon jellyfish graph. 
._ 

Figure 4.3. Powercounting for the n = 2 jellyfish diagram leads to a logarithmic 
divergence. 

with the analytic result by Petermann and Sommerfield [2,3] 

a = -0.327... 7 . 

In Chapter 3 some sixth order contributions have also been calculated using LCPTh. 

It should be emphasized that, in order to obtain this agreement, additional renor- 

malization, beyond usual procedures, is necessary for the self-energy diagram 2 in 

Fig. 4.1. This is because the one-loop self-energy exhibits a quadratic divergence in 

light-cone quantization, which is rather atypical for gauge theories [4]. The “method 

of alternate denominators” has been suggested as a possible solution to this prob- 

lem [5]. However, in Appendix 4A we show that this method must be used with 

caution if one wants to recover the usual Feynman answer for general perturbative 

processes. 

Whereas the problem of the one-loop quadratically divergent self-energy occurs 

also in A+ = 0 gauge, any gauge different from light-cone ga.uge, such as Feynma.n 
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gauge, poses extra problems in light-cone quantization. To see this, we consider the 

“jellyfish graph” (Fig. 4.2) with n(n > 0) external photons inserted into the loop. 

For any n we find a quadratic divergence in this diagram [6]. Furthermore, extra 

logarithmic divergences occur, which can be seen by power counting of the diagram 

in Fig. 4.3 [7,8]. 

In the following we demonstrate that extra divergences in light-cone field theories 

can be associated with certain noncovariant terms appearing in the light-cone formal- 

ism. As an example, we investigate the n = 0 jellyfish graph In=0 (which is actually 

just the one-loop self-energy) with momentum p = (p+,p-,pl). We leave the explicit 

calculation to Appendix 4B and quote the.result obtained after mass renormalization 

(throughout the paper we use the notation p* = p” f p3, y* = y” f y3) 

I n=O = (p - m)B + (fi - m)2qp2) + ($-g.gc (4-l) 

or 

i tr(y-I,,o) = p-(B - 2mC(p2)) + -$-C . (4.2) 

: In the following we want to imply that the integral JdX2p(X2) = 0 is always taken, 

i.e., one Pauli-Villars subtraction is assumed. In the example of above we find 

(4.3) 

The quadratic divergence can be identified with the term C in (4.1) and is therefore 

associated with the noncovariant structure in the self-energy. 

We note that the occurrence of noncovariant terms of the form Cy+/p+ is not 

restricted to the one-loop self-energy [9] . In fact, all noncovariant terms we have 

encountered have had this structure (for a discussion of vacuum polarization contri- 

butions see Chapter 5). 
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Figure 4.4. One-loop correction to Compton scattering. 

As far as the self-energy is concerned, a method which is based on the correct 

tensor structure of the diagram can be proposed. This is possible since different 

tensor components should be related by covariance: 

tr(7Xe~f--energy) = iL tr(7+&e~f-energy > 
P’ 

, (4.4) 

where p+,p- correspond to the momentum of the fermion and Iself--energy denotes 

the fermion self-energy. In one-loop it is straightforward to show that (4.4) is eyuiv- 

alent to the effective replacement 

(4.5) 

(see Fig. 4.4) in the D irac numerator, where pt = 6 $- = p;: - k+ 7 &-energy-she,, = 

p-. The momenta p+,p- denote the total light-cone momentum and energy respec- 

tively. Here, k+ is given by the light-cone momentum of the virtual photon. More 

generally, &nergy-shell defines the light-cone energy one would obtain if light-cone 

energy conservation was imposed. The replacement (4.5) expresses the “bad com- 

ponent” (i.e., 7+) in terms of the “good component” (i.e., 7-) and thus renders 

the self-energy covariant by construction. Hence, the problem of the quadratic di- 

vergence is avoided in this case [lo] . Equation (4.4) can be generalized to higher 

loop self-energy diagrams, provided allLsubloops are first rendered covariant and the 

noncovariant piece is of the form Cy+/p+. 
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Whereas the tensor method provides a useful practical tool for dealing with the 

quadratic divergence in self-energy diagrams, the application of the tensor method 

for the cure of the jellyfish diagram with n 2 1 is not straightforward. This is because 

the different tensor components are not simply related in this case. 

It should be noted that in 3+1 dimensions’ the noncovariant term in Eq. (4.2) 

and all other jellyfish diagrams can be eliminated more systematically, if the spectral 

conditions [11,12] 

J. dX2p(X2) = 0 

J dX2X2p(X2) = 0 . - (4.6) 

J dX2X210g(X2)p(X2) = 0 . _ 

are introduced which corresponds to the introduction of three Pa,uli-Villars ghost 

particles into the theory. However, this is awkward from a numerical view, since the 

number of degrees of freedom is enhanced dramatically in this case. For example, a 

.. typical two-loop Feynman diagram, Eq. (4.6) re q uires 16 independent computations 

of its integrand at each integration point. This is in contrast to only 4 computations 

in a covariant approach. In addition, the quadratic divergences would be cancelled 

only among contributions from different Pauli-Villars particles. However, for the 

purpose of numerical calculations, it is extremely inconvenient to cancel quadratic 

divergences among different diagrams, because of the limited accuracy of any numer- 

ical procedure. 

Hence, for practical purposes, it is necessary to develop a recipe which reduces the 

number of Pauli-Villars particles as well as subtracts quadratic divergences locally, 

i.e., before integration. In this context we shall introduce the “null-subtraction” as 
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such a local procedure. For n = 0 the idea of the null subtraction is based on the 

observation that the troublesome term in Eq. (4.2) is given by 

c 
- = ~wl,=O)p-=O,pL=O P+ 8 

(4.7) 

where C is independent of the external momenta. Hence, we define the null subtrac- 

tion as a procedure where the “bad” component of a quadratically divergent graph 

or subgraph is subtracted for vanishing external (with respect to the divergent graph 

or subgraph) p- and pl momenta, while keeping p+ 2 0. In the above example we 

obtain for the null subtraction 

INull 
e2 ’ 

=i67 J 

dxd2 kl 
x(1 _ x) (yn2+k: _ X2+ky . 

0 (1-z) 2 ) 

(4s) 

Performing replacements similar to those given in Appendix 4B yields 

I e2 7’ ’ dx 
JJ 

d2k x2 - m2 
null = --- 167r3 p+ 

0 
‘k; + X2(1 - x) + n-2x 

&?k d Idz log(m2z + X”( 1 - x) + kt) (4.9) 

e2 y+ 
.=mp+ J 

d2 kl log 
m2 + kt 
X2 + k; * 

What we encounter here is nothing but the noncovariant piece of Eq. (4.3). Hence, 

the null subtraction removes the quadratic divergence automatically in the correct 

way. 

Let us examine now the null-subtraction for the jellyfish graph for n = 1 (which 

is actually the one-loop vertex correction in this case). The covariant answer is 

expected to be of the form [13] 

(4.10) 
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Using the Gordon-decomposition, Eq. (4.10) can be rewritten as 

Tr+u = ‘iir+u (F1(q2) + F2(q2)) - ;(p + p’)+F2(q2)(p + IO+ 6xX1 
@F 

(4.11) 

, (4.12) 

- 

where A, A’ denote the initial and final helicity respectively. The momenta p and p’ 

correspond to the initial and final fermion respectively. If one inserts the analytic 

form for the second term on the r.h.s. of Eqs. (4.11) and (4.12), the sum Fi(q2) + 

F2(q2) may be computed in two different ways: Fl (q2) + F2( q2) can be obtained 

from the I’+ current by means of Eq. (4.11). Th is is straightforward, since we do 
- 
not expect trouble in this case [14,15]. H owever, the extraction of Fl(q2) + F2(q2) 

_ by means of Eq. (4.12), i.e., by computing the I’- current requires a null subtraction 

which takes the form 

1 

J 
(4.13) 

0 

Note that we only subtract the r+ component for zero external p- a.nd pl momenta.. 

If the null- subtraction- removes the quadratic divergences correctly, the result for 

Fl(q2) + F2(q2) should be th e same in both cases. We have checked this statement 

numerically [16] . H ence, the null subtraction restores the covariant answer also in 

the case of the n = 1 jellyfish graph. 

If we take those results, together with the fact that the one-loop Ward identities 

are fulfilled for the good components in LCPTh, one can say that the null subtraction 

preserves the Ward identities at one-loop (for external fermion lines on shell). 

It should also be mentioned that we have checked the null subtraction method 

for the case of the two-loop rainbow self-energy in Fig. 4.5. More interesting, how- 
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Figure 4.5. Two-loop rainbow self-energy diagram. 

res. component 

. - -2656 f 7.7 1 

-2691 *37 + 

-2641 *50 
e-e, 

7009*7 
_ 

Figure 4.6. The two-loop self-energy contribution of the electron is expected to 
be of the form A+ BP, where p corresponds to the external fermion momentum. The 
result res shows the extraction of B by means of the various components of p. 

ever, is the two-loop self-energy of Fig. 4.6 since it contains two n = 1 jellyfish 

subdiagrams [17]. The corresponding null subtractions are 

e2 I1 = (16n3)2 
0 0 

where p2 = (1 - y,p- - (A2 + kzl)/y,pl - h) and 
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e2 I2 = (16~~)~ 
0 0 

respectively. Figure 4.6 shows the result of the numerical integration for different 

components. The result is that the null subtraction eliminates the quadratic diver- 

gence and restores a covariant form within the error of the calculation. 

The general definition of the null-subtraction of the n-photon jellyfish graph 

e2 ‘+&.+&k 
IJ, =(ls.?r3) J 

I 
0 

@(p+ -k+)@(p+ --k-t -&.. .@(p+-k+- . ..-q$) 

’ k+(p+ _ k+)(p+ _ k+ _ q;‘). . . (p+ _ k+ _ q; - . . . _ qi) 

X 
7”h + m)7p1 (lb2 + m)7” - ’ - (6, + m)7, 

(p- _ k- m2+dipf;td2) . . . (p- _ k- _ m’+(~:I::~~lt.~~,q*,)2) 
1 

(4.16) 

with external fermion momentum p = (p+, p-,pl) and momentum pi = (qf, q;, qil) 

for the i-th external photon line is given by [18] 

,2 p+ 
%11= (16R3) o J dk+dk.l. 

O(p+ - k+)O(p+ - k+ - q;‘) . . . @(p+ - k+ _ . . . - q$) 
’ k+(p+ - k+)(p+ - k+ - ql$) . . . (p+ - k+ - ql$ - . . . - q$) 
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where k- = (k; + X2)/k+. Th e f ermion light-cone energies p; are given by p; = 

-(ki + X2)/k+, if pi is set on energy-shell i.e., the i-th fermion line does not extends 

over more than one intermediate state [5]. The on-mass-shell case yields pi = 

(m2 + k;)/(p+ - k;t -q; -. . -4:). Note that the null subtraction in (4.17) is to 

be used in combination with only one Pauli-Villars particle. Thus, the number of 

degrees of freedom is considerably reduced-. The was possible since all higher-loop 

noncovariant terms are independent of the photon mass. We elaborate on this issue 

in more detail in the next chapter. 

The null subtraction was developed to deal consistently with quadratic diver- 

gences, in particular in the context of a numerical trea.tment. In Chapter 6 it is 

- shown that the occurrence of noncovariant terms is due to nonvanishing surface and 

zero mode contributions in light-cone quantized field theories. An alternative method 

based on the addition of noncovariant counterterms to cure these problems will be 

proposed in the following chapters. 

4.3 Light-cone quantization in light-cone gauge 

For nonperturbative methods such as DLCQ or the light-front Tamm-Dancoff 

procedure, A + = 0 gauge is by far the most favorable choice among all gauges. This 

is due to the fact that ghosts and spurious degrees of freedom should not occur in 

this case. Furthermore, it seems to be the only gauge where canonical light-cone 

quantization is tractable, since it avoids having the A+ field in the denominator 

after solving the constraint equation for the left-handed spinors. In addition, only 

light-cone quantization in AS = 0 gauge pr ovides a convenient extraction of hadronic 

structure functions and, therefore, ensures an intuitive picture of high-energy scat- 

tering processes. Due to our discussion of the previous section, we may add the fact 

that quadratic divergences and noncovariant terms are restricted to a much smaller 

set of diagrams, compared to any other gauge. However, a.s a noncovariant ga.uge, 
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AS = 0 requires a careful regularization of its k’ singularity, in particular because 

the covariant structure in a Hamilton formulation is already lost. Many procedures 

have been given in literature to regulate the light-cone gauge singularity [19-211. In 

any event, every prescription gives rise to the introduction of a regularization param- 

eter e into the theory. It is essential for analytic, as well as numerical calculations, 

to ensure independence of physical quantities on the IZ regulator. 

In this section, we want to focus on E prescriptions, which are easy enough to im- 

plement, i.e., they are of potential interest for practical applications in DCLQ or the 

light-front Tamm-Dancoff procedure. In addition, we investigate, in the particular 

example of the anomalous magnetic moment of the electron (g - 2)/2, the sensitivity 

of physical observables to a truncation at finite e. We start out with the light-cone 

gauge propagator, which has the form 

d 77PkY + Tbk, 
/1v = -9pv + rpk ’ 

(4.18) 

where q . k := ks [23]. 0 ne p ossibility to regulate the 77 . k singularity is given by 

d 
77pkv + %k, 

pv = -9pv + 
0 

O(yk-6) . (4.19) 

Note that the O-function of the second term does not regulate the gauge piece 

only, but also all energy denominators which will multiply this term. Since gauge 

invariance in QED should occur locally (or quasi-locally [25] ) we expect the correct 

result for the anomalous magnetic moment of the electron for any value for E be- 

tween zero and one. This is exactly what we observe in our numerical calculations. 

It is instructive to see how the contributions of single diagrams add to the gauge 

invariant answer. This is shown in Figs. 4.7 and 4.8. We remark that contributions 

of single diagrams grow logarithmically if E gets small, which makes it more difficult 

to maintain the numerical accuracy for small values of 6. In order to obtain these 
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Total Result -137.8 
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4941 

0 E 

2.2 0.05 
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2.34 

1.1 

0.3 
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319.17 

1.3 

1.1 

9 0.48 

-121.1 2.3 

-3952 2.0 

-428.8 2.7 

9-91' 

5 7009A12 

Figure 4.7. Contributions res of single LCPTh diagrams to the anomalous mag- 
netic moment of the electron a = (g - 2)/2 to fourth order in light-cone gauge for 
different values of the light-cone gauge cutoff 6 [24] . 
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3. 

4. 
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^ 5. 
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7. 

8. 

graph res 0 E 

A 
A 
A 
A 
n 
A 

Total Result -134.7 

523.73 2.5 0.5 

-135.63 

-9.16 0.3 

182.5 0.2 

-167.4 0.73 

9.69 0.5 

419 0.6 

-104.7 0.04 

-852.7 2.2 

B-91 

3.7 7009A13 

Figure 4.8. Fourth-order correction to the electron anomaly in light-cone gauge 
for a different value of its gauge regulator. The analytic Feynman answer is given by 
-137.2 for a/27r = 10. 
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Figure 4.9. Instantaneous contribution to the external wavefunction correction in ._ 
light-cone gauge. 

results, it was essential to include the instantaneous self-energy diagram of Fig. 4.9 

which vanishes in Feynman gauge. This is because the external self-energy diagram 

does contain a double pole in A+ = 0. 
The price we pay for the complete e-independence of physical observables for the 

regularization introduced in Eq. (4.19) is that for 7 -k < E the computation is carried 

out essentially in Feynman gauge. Indeed we find 

Qua” = -g+-(1 - O(q m k - E)) f 0 (4.20) 

for 7. k < e. Basically, any prescription which regulates the second term in Eq. (4.18 

different from the first one exhibits this feature. This is why, even in light-cone gauge, 

the existence of ghosts cannot be excluded in general [26]. From a technical point of 

view Eq. (4.19) means that the jellyfish problem does occur even in AS = 0 gauge. 

The only exception to this case is given by a regularization, introduced through 

d ?bkv + %&A pv = - spv + 77-k > 0(~.k--c) , (4.21) 

which means that A+ = 0 gauge is strictly obtained even at finite E, i.e., A+(E) = 
0. The advantage of this choice is the absence of ghosts and the jellyfish problem 

at finite E. However, regularization (4.21) will, in general, truncate also physical 

contributions to Feynman integrals. Thus, correct physical answers are recovered 
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Table 4.1. Total answer for the electon anomaly to fourth order in light-cone gauge 
for different values of the gauge regulator. The analytic Feynman answer is given by 
a = -131.4.. . (cz/7r)2. 

I 6a I E 

-128.3 f 3.3 0.0 

-125.6 f 1.8 0.01 

-105.3 f 1.1 0;05- 
57.5 f 0.1 0.1 

only in the e -+ 0 limit. For the purpose of practical applications, such as DLCQ, 

one can investigate the numerical significance of such a truncation. In Table 4.1 we 

_ present the result for the computation of (g - 2)/2 for finite E, using the prescription 

in Eq. (4.21). 

4.4 Regulators in DLCQ 

Nonperturbative methods should generally be compatible with perturbation the- 

ory in the weak coupling domain of a theory. In lattice QCD, for example, the data 

_- scale like the one-loop p-function for weak coupling. This important feature indi- 

cates the recovery of the correct continuum field theory for small values of the lattice 

spacing. A Hamiltonian formulation of field theory, such as DLCQ, should in prin- 

ciple reproduce correct perturbative results for any scattering process to finite order 

in the coupling. Thus, the calculation of g - 2 to fourth order provides a powerful 

consistency check as well as an ideal testing ground for those methods. 

We start our discussion with the test of the global cut-off, which is commonly 

used in DLCQ [22]. The global cut-off regulates an intermediate state with n particles 

according to 

n rnf + k,21 c 
i=l Xi (4.22) 
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Figure 4.13. Ladder diagram contribution to the electron anomaly in fourth order. 

where xi, kilymi refers to the light-cone x, the perp.momenta and the mass of the 

i-th particle respectively. A denotes the ultraviolet cut-off, which is taken to infinity 

at the end of the calculation. Our result for the calculation of graph 1+2 in Fig. 4.1 

is R1+2 = (-0.34 f 0.005) cr2 7r2 which is to be compared with the analytic result / 

by Petermann: Rp = -0.3285.. . a2/r2 . The result for the ladder graph using 

the global cut-off is (0.658 f 0.006)(r2/7r 2. However, the correct answer is given by 

R = 0.778a2/n 2. Thus, the global cut-off does not recover the correct continuum 

answer in the limit A ---t oo. In order to understand what has happened, we recall 

the theta-function in the j’ + 0 limit for the counterterm (see graph 4 in Fig. 4.1) 

(4.23) 

where m, X denote the fermion mass and the photon mass, respectively. Here, the 

variables k2l and x correspond to the loop momentum of the virtual photon [27] . 

However, the theta-function of the second intermediate state of the diagram corre- 

sponding to Fig. 4.13 is given by 

m2 + (Ical+ h-l2 X2 + J& A2 + k;, 
1-X-Y - Y - x 

(4.24) 

Obviously, (4.24) does not reduce to (4.23) in the large k2l limit and hence does 

not allow a factorization of its infinite contribution. This effect induces the observed 

deviation from the correct answer in the A -+ 00 limit. 
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Figure 4.10. Correction to e+e- scattering. 

Recently, the so-called local cut-off has been proposed [28] , which restricts the 

difference in the invariant mass locally, i.e., at a given vertex only, to values less 

than A2/x. Here x is given by the fraction of the light-cone momentum which flows 

through the vertex under consideration. Hence, (4.24) gets replaced by 

-m2 t (kll + k-d2 X2 t kiL + m2 t kf,- < A2 
l-x-y - Y l-x -1-2 * (4.25) 

~-. Changing variables according to y = (1 - z)c, k21 = H2, - tkll and A2 = A2 - m2 

reduces (4.25) to (4.23) and, th us, avoids the problem of the global cut-off. Indeed 

our calculations show that the local cut-off reproduces the correct result for the ladder 

graph. Unfortunately, it leads to the incorrect answer for graph l-i-2 in Fig. 4.1. It 

is straightforward to show that the local cut-off violates gauge invariance already at 

the tree-level [30]. 

Other theta-function cut-offs, which have been proposed [31] , are also doomed 

to failure, unless a noncovariant counterterm is invoked. The reason is that they 

depend on momenta, i.e., derivatives only. However, a gauge invariant regulator 

would require a functional dependence on covariant derivatives instead. 

In Appendix 4C we demonstrate the implementation of dimensional regulariza- 

tion on the light-cone. 
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4.5 Summary 

We have shown that light-cone quantization in Feynman gauge leads to an infi- 

nite number of quadratically divergent LCPTh diagrams at the one-loop level. The 

problem occurs for self-energy diagrams where n-photons (n 1 0 ) are inserted into 

the loop (“n-photon jellyfish problem”). We constructed a local representation of 

noncovariant counterterms, called the “null-subtraction,” in order to remove those 

divergences from the formalism. 

In principle, also light-cone quantization in light-cone gauge exhibits this feature 

for all n (and not only for n=O). This is due to the fact that most regularizations of 

the light-cone gauge singularity reduce the small z behavior of the photon propagator 
_ - 

to that in Feynman gauge. In this case, the null subtraction can be used in the same 

way. 

In Section 2 we evaluated the fourth-order correction to the anomalous magnetic 

moment of the electron in light-cone gauge and reproduced the analytic Feynman 

gauge result by Petermann. It was shown that a finite truncation of the k+ N 0 

region can lead to a significant modification of the continuum result. 

Finally, several ultraviolet cut-offs, which are commonly used in DLCQ, were 

tested in perturbation theory. It was shown that those regulators do not recover the 

correct continuum field theory in the A + 00 limit. 

Appendix 4C demonstrates the introduction of dimensional regularization into 

the light-cone formalism. 
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4.6 Appendix 4A 

In this section we discuss the “method of alternate denominators” which was 

introduced in Ref. [5] as a possible way of removing quadratic divergences in the light- 

cone formulation. For illustration the one-loop correction to the Compton graph, 

shown in Fig. 4.4, yields [32] 

kolnp. = 
‘il&l + 4 

P:(Pi - L!z$!UL) 

P+ 
X 

J 
dk+d2k r”(h - F + 47, 

0 
L(pl - k)+k+(pf _ w _ w, 

P+ 

J 
dksd2k 7v1 - fi + 7-+7, 

0 
*(pl - k)+k+(p; “-$~k;k~)~ “‘,‘+“;, 

(4.26) 

The second term is the alternate denominator (a.d.) subtraction which is designed 

to cancel the quadratic divergence in the first term as well as perform the mass 

renormalization (see Fig. 4.11). The a.d. term is obtained by replacing the initial 

energy pr in the energy-denominator of the quadratically divergent subgraph by its 

adjacent energy pr which is, in case of the self-energy diagram in Fig. 4.4, equal to 

the mass-shell energy 13, (see below). 

Q-91 7OOQA2 

Figure 4.11. Mass correction to electron Compton scattering. 
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Obviously, the quadratic divergence is subtracted in this procedure since it is 

independent of the incoming energy. However, it remains to be shown that the mass 

subtraction of Fig. 4.11 is carried out correctly, using the a.d. method. Note that 

the a.d. term Ia.d. of Eq. (4.26) is obtained by performing the k- integration of 

I a.d. = 
J 

& -iz%(P, + m> 
(P:’ - m2 + k) -. 

(4.27) 
r&51 - F> + m)7” 

> 
(P1+ m>b 

- m2 + ic)2(k2 - X2 t ic) (pf - m2 + ic) 

Here, 51 is on-shell, i.e., $ = p: for p + - and $1 = (m2 + p:,)/p;‘. However, the 

usual Feynman counterterm is given by 

1 
hiln =2m 

J 
&k a,&h + m) 

(Pi - m2 $ k) 

x 
~(Z%rdf& - F) + m)ypu(51) 

> 
(P1+ mP*u 

(($1 - k)2 - m2 + ic)2(k2 - X2 + ic) (pf _ m2 + it) * 

(4.28) 

Obviously, there is a difference between these two expressions because of the spinors 

u(fir) and YI(fir) which project out the bm piece from the self-energy in Eq. (4.28). 

Thus, we conclude that the a.d. method must be used with caution. However, if one 

ignores the double instantaneous graph of Fig. 4.12 for a moment, at least one of the 

fermions is on-shell and the corresponding propagator 

Pl +m 
p: - m2 + k 

gets replaced by 

so that the missing projection onto the 6m piece in Eq. (4.27) is a.chieved by the 

adjacent on-shell fermion line. The point is that, unless one is cautious, the a.d. 
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Figure 4.12. Double instantaneous diagram to electon Compton scattering. 

method treats the double instantaneous graph incorrectly by subtracting a nonzero 

contribution 1331. 

Thus, if one modifies the a-d. method such that the subtraction is excluded from 

the double instantaneous self-energy diagram, the usual (Feynman-) answer can be 

obtained [34]. 
. - 
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4.7 Appendix 4B 

In this section we prove that the n = 0 jellyfish graph (which is actually just the 

one-loop self-energy) with momentum p = (p+,p-,pl) has the form 

I n=~ = (p - m)B t (fi - m)2Q2) t (5 -g-J c (4.29) 

after mass renormalization. In the following we want to imply that the integral 

j’dA2p(.A2) = 0 is always taken, i.e., one Pauli-Villars subtraction is assumed. 

LCPTh yields for the r- and 71 component for the n = 0 jellyfish graph 

e2 ’ c-J- = _ - 
167r3 J 

dxd2 kl 

0 
. - 

7%j - &>7P 
x (kL - ~12)~ - ptx2 - p-p+z(l - z) + (m2 + p:)x + X2( 1 - x)) 

(4.30) 

where the “good” vectors g = (p+, O,pl),& = (k+, 0, kl) have been introduced. The 

. quantity x is given by the relative momentum carried by the virtual photon, i.e., x = 

k-t/p+. Rewriting the denominator in terms of the four momentum p2 E p+p- -pi 

and shifting integration variables yields 

e2 l -pJ- = i- 
J 

dxd2 kL PC1 - 4 
8T3 -ki + x(1 - x)p2 - m2x - A”(1 - x) * 

0 

(4.31) 

For the y+ component we find 

1 
e2 ly+ c+ = _--- 

J 
dxd2 kL 

m;T$- + pi(l - x) 
879 2 p+ -ki+x(l-x)p2-m2x-A2(1-x) ’ 

(4.32) 

0 

Since we are using Pauli-Villars regulator, the replacement kf + p2x( 1 - x) - m2x - 

X2(1 - 2) does not change the value of the integral [35]. Thus, 

1 
e2 ly+ c+ = _--- 

879 2 p+ s 
dxd2 kl 

xp2 $ m2 -P$p;(l -x) 
-ki $ ~(1 - x)p2 - m2x - X2(1 - x) 

(4.33) 
0 



Using 

xp2 + (m2 - X2) = - [( 1 - 2x)p2 - 7n2 + A”] + (1 - x)p2 

= --$ [p2x(l - x) - xm2 - (1 - x)X2 - /ki] + (1 - x)p2 

we obtain, 

1 

c+ 
e2 17+ 

=gpsp+ J 
d2klds$ log(p2x( 1 - 5) - xm2 - (1 - x)X2 - ICI) 

0 
(4.34) 

. - 

1 
e2 1 --- 

87r3 27+ J 
d2 kLdx (1 - x>p- 

0 
-ki+s(l -x)p2-rr-?x+X2(1 -x) ’ 

Obviously, the last integral corresponds to the integral in Eq. (4.31) and is there- 

fore part of the covariant answer. 

However, the first integrand in Eq. (4.34) is noncovariant and leads to 

The total answer becomes 

(4.35) 

e2 7+ bm + In=0 =-- 
167r3 p+ J 

l &dx d z log(p2x(l - x) - xm2 - (1 - x)X2 - ki) 

0 

e2 ’ -- 
8n3 J 

d2 kldx (1 - m - 4 
-ki + x(1 - x)p2 - m2x - X2(1 - 2) 

0 

-(l t x)m 
’ -kT + x(1 - x)p2 - m2x - X2(1 - x) 

(4.36) 



where 6m denotes the mass correction. Performing mass renormalization yields 

I n=” 
1 

X 
J 

d2kldx& log (p2x( 1 L x) - xm2 - (1 - x)X2 -6) 
0 

e2 ’ (1 - xu - 4 
-8n3 J 

d2 kLdx 
-k; +x(1 - x)p2 - m2x - X2(1 - x) 

0 

e2 ’ -- 
8x3 J 

0 
d2k’dx (-‘cl + x(1 - x)~Z~- m.25 - x2(1 - x)) 

“( 

(1 - x2)xm(p2 - m2) 
-ICI f x(1 - x)m2 - m2x - X2(1 -x)) ’ 

Thus, we obtain the form of the self-energy in Eq. (4.29). 

(4.37) 
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4.8 Appendix 4C 

In this section, we demonstrate the use of dimensional regularization in light-cone 

quantization. For illustration we discuss the computation of the ladder diagram in 

Fig. 4.13. LCPTh yields 

e4 
FL =(16~~)~ o 

jdx d2kl Tdy d2(1-c)k2xy(l _x)2;l _ x -y)2 

0 

X N(q, kl, k2) 
( 

m2 - “12_‘,“: _ %@?) (m2 _ m2-ffktz:j2 _ “:;A2 kz;X2) 

where m, X denote the fermion and photon mass respectively. The Dirac numerator is 

- -abbreviated by N(q, kl, k2) and will be specified later. Note, that the q dependence 

in the denominator can be dropped, in this particular example, since it gives no 

contribution to the anomaly. Notice further that only the inner loop is ultraviolet 

divergent and requires regularization. The introduction of dimensional regularization 

according to 

J 
dx d2k --+ 

/ 
da: &(1-d (4.38) 

seems dangerous, in particular if the integrals are not absolutely convergent. How- 

ever, (4.38) is a direct consequence of the definition of dimensional regularization [36] 

. We have not yet encountered an example where (4.38) leads to additional difficul- 

ties (in comparison to one Pauli-Villars photon and fermion for example) in the 

light-cone formulation. 

Shifting momenta and setting m = 1 yields 

1 1 

e4 FL =(16n3)2 /dxd2k1 ddy(l .ex)4x(1 ” e _ ‘CT)2 
0 

(4.39) 
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where & = k2 + y/(1 - x)kl and IiT = (kf + X2)/x, Ic, = (k,” + X2)/y. If we expand 

the numerator according to 

N(q, h , i2 - &h) = Ai; + Bkl + c (4.40) 

the last integral can be performed analytically by means of 
._ 

J 

d2Wl &L 1 Is I’(A-1-w) 
(27r)s” (Z2 + M2)A - (47r)‘T(A) 2 ” (M2)A-‘-w * 

With the definition 

one obtains 

e4 
FL = (167r3)2 J / 

l&k ’ 
1 d~f(kl,x,~) (A + CA’)+ - e)(i - Ceu~.) t w(Bh t c) , 

0 0 
(4.41) 

where we have written A( E) = A $ CA’ . A, A’, B can be computed, using a algebmic 

manipulation program like REDUCE. (4.41) can be integrated numerically. Cezll. is 

the Euler constant and given by Ceul. = 0.577.. . . 

The counterterm to Fig. 4.13 ( see diagram 4 in Fig. 4.1) is computed in a similar 

way. It should be stressed that the pole in the one-loop vertex correction of diagram 4 

in Fig. 4.1 not only cancels the pole in Eq. (4.41), but also gives rise to a finite 

contribution [37]. 

We have redone the entire fourth-order calculation using dimensional regulariza- 

tion. Unlike the computation of the ladder graph, in general one has to combine 

energy denominators first, before the analytic part of the integration can be carried 
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out, In contrast to a covariant theory, only one additional o parameter is neces- 

sary in light-cone quantization. This is due to the fact that the photon propagator 

l/( k2 + if) simply becomes 1 /k+ in this case. 

On the other hand, the coefficients A, A’, B are harder to extract in light-cone 

quantization since the fermion energies generally depend implicitly on the loop mo- 

menta. 

An understanding of dimensional regularization is essential, if one wants to ex- 

tend LCPTh to non-Abelian gauge theories. 
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5. A HAMILTONIAN FORMULATION 
OF QED2+1 ON THE LIGHT CONE 

5.1 Introduction 

One of the main advantages of the light-cone quantization in field theory is its 

manifest invariance under a maximally large subgroup of the Lorentz group [l] which 

contains even certain boost transformations. The corresponding generators of these 

“simple” transformations are nondynamical operators, i.e., they do not involve any 

interaction terms. Such nondynamical symmetries can be preserved under a wide 

class of approximations [2] , such as, e.g., cutoffs in the number of particles. This 

- feature greatly simplifies the task of constructing the Hamiltonian formulation of a 

relativistic field theory. 

The price to pay for having simple generators of boost transformations is the oc- 

currence of complicated and dynamical generators for certain rotations which implies 

that angular momentum is not manifestly conserved in the light-cone quantization. 

We will show that this results in a divergent structure of even super renormalizable 

theories. 

Rotational invariance, is not a natural symmetry in the light-cone quantization 

procedure since it mixes longitudinal and transverse degrees of freedom. In particular 

an improper treatment of the short distance singularities due to regularization will 

result in a violation of rotational invariance. In fact most approximations or regular- 

izations (if infinities are present) will spoil rotational invariance, for rotations which 

mix the a: = (xc-, z1,z2) and z + direction [3]. In this chapter we will concentrate on 

this aspect. 

We will discuss several complementary approaches to this problem. The first, 

using Pauli-Villars (P-V) regularization, softens the short distance singularities and 

thus avoids the cause of the problem, since it regularizes symmetrically in longitu- 
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dinal and transverse coordinates. The second approach starts from the naive light- 

cone quantization. Any violations of rotational invariance, e.g., due to an improper 

treatment of the short distance singularities, are then cancelled by adding explicitly 

rotational noninvariant terms to the light-cone Hamiltonian. 

The resulting regularization and renormalization program has a ptiori nothing 

to do with the usual renormalizations of mass and. charge. As a matter of fact, 

while infinite mass and charge renormalization are often not necessary in less than 

3+1 dimensions, the problems which are discussed here appear in any number of 

dimensions (except in l+l, where there are no spatial rotational) [4]. 

In order to emphasize this point we will mostly work in 2+1 dimensions. This 

will- help separate light-cone specific divergences and renormalizations from the usual 

ones. An extension of the techniques developed here to 3+1 dimensions will be 

described at the end of this paper. 

5.2 Pauli-Villars regularization of the light-cone quantized 

Yukawa model 

As a simple example, which exhibits many of the light-cone related problems, we 

first consider the light-cone quantized Yukawa model, 

in 2+1 dimensions. It is easy to study the violation of rotational invariance in 

this model since it is-in contrast to, e.g., gauge theories in the light-cone gauge- 

described by a fully covariant Lagrangian, i.e., even off-shell Green’s functions should 

exhibit covariance. In particular, one should be able to express the fermion self- 

energy in the form 

qP”) = ($ - 4 fdP2) + f2(P2) ’ 
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However, naive light-cone perturbation theory yields [5] (A similar calculation in 

QED(3 + 1) h as b een done in the Appendix 4B of Chapter 4.) at one loop 

1 co 

tr(Cy+) = cp+ dx 
J J 

dkl 
l-x 

41 - 4P2 -mm25 - X2(1 - 2) - (Icl - spJ2 
0 -CCJ 

(5 3) 

- “A -+ A” 

1 00 
tr(C7-) = -J$ dx J J 

m2+(pl-kl)2 
dkl 1-Z 

4 - x)p2 - m2x - X2(1 - X) - (kL - xp1)2 
0 --Di, (54 

_. - where c = y2/3r . Adding 

0 
1 x(1 - x)p2 - m2x - A2(1 - x) - (Icl - xpl)” _ “x ---t *,, 

= 1-z x(1 - x)p2 - m2x - X2( 1 - x) - (Icl - xcp~)~ (5.5) 

to the integrand in Eq. (5.4) one finds 

1 00 

tr(C7-) = s dx 
J J 

dkl 
xp2 + m2 - x2 + (1 - x,p; 

x( 1 - x)p2 - m2x - X2(1 - x) - (Icl - xp~)~ 
0 - -co 

1 00 
C 

=- 
P+ J J 

dx dkl 
(1 - x)(p2 t pi) - & [x(1 - x)p2 - m2x - X2(1 - x)] 

x( 1 - x)p2 - m2x - X2(1 - x) - (El - xp1)2 
0 -00 

- “A * A” 

= 5 tr (X7+) - s [ (42 - a) - “A + A”] . 

WV 

Obviously two conditions, namely J dX2p(X2) and J dX2flp( X2) = 0, are necessary 

to cancel the noncovariant term which implies the need for ar least two P.V. particles. 

This is rather unpleasant and perhaps unexpected, since-in a manifestly covariant 
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approach-the fermion self-energy in Yukawao+l is finite by power counting. As we 

have seen here, in light-cone quantization C is linearly divergent and extra degrees of 

freedom have to be introduced to make it finite and covariant. As far as perturbation 

theory is concerned, one of the recipes developed in the previous chapter can be 

used to cure the problem. However, in the Hamiltonian formalism, one does not 

calculate C(p”) but on mass shell matrix elements thereof. Thus in general it will 

be technically more difficult to develop an algorithm for extracting the noncovariant 

piece. Nevertheless the noncovariant terms still have observable effects which allow 

one to extract them. We will discuss this point later in the context of QEDz+l. 

One should emphasize that the term which violates the rotational invariance de- 

pends only on the external p+ but not on pl or p 2. Furthermore a simple calculation 

shows that tr (X7’) and tr (Z7’) d o not contain such extra terms. This implies that 

we can write 

CLc(pP) = Cco”(pi) + const. $ . (5.7) 

This is a general result which also holds for higher loops [6] -provided all nonco- 

: variant terms have been removed for subloops-and for other field theories like e.g., 

QED in light-cone gauge. This has various practical consequences. First one might 

be able to remove this term by adding a counterterm to the Hamiltonian (i.e., by 

changing the mass of the fermion in the kinetic energy term). Secondly this allows 

one to develop simple subtraction procedures in perturbative calculations to get rid 

of such terms (see null-subtraction introduced in Chapter 4). 

A last point which we are going to make in the context of Yukawaa+l concerns 

the “over regularization” of the theory. As we mentioned already there are no P-V 

particles necessary in covariant perturbation theory whereas we needed two of them 

for a more one-loop treatment. At higher loops the situation becomes a. little better, 

namely one P-V particle is sufficient (provided subloops are rendered covariant) but 
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it is also necessary in general as the example in Appendix 5B shows. For renormal- 

ization theories where P-V regularization poses no extra problems, like QEDs+l, this 

means that there is no more regularization necessary than one would normally need. 

However, in non-Abelian gauge theories P-V regularization violates gauge invari- 

ance and we would have to restore it by further counterterms. We also emphazise, 

and this can also be read off from the example in Appendix 5B, that dimensional 

regularization does not take care of the noncovariant terms. The reason for this is 

that dimensional regularization in the transverse coordinate does not regularize the 

longitudinal coordinates. 

. - 5.3 Hamiltonian formulation for QED2+1 in the light cone 

gauge (Pauli-Villars regularization) 

We start our considerations from the QED-Lagrangian in two space and one-time 

dimensions with gauge fixing term (n,Ap = A+) 

For the purpose of P-V regularization (as well as if one wants to introduce an IR- 

regulator) it is necessary to specify how to introduce a mass for the A-field. One 

might be tempted to add just a term like (A2/2)ApAp to Eq. (5.8). However, 

since A,Ap = A+A- - A: = -A: (note: A+ = 0) this means that only the 

I-degrees of freedom become massive whereas the longitudinal degrees of freedom 

remain massless. In terms of the photon propagator this means 

DC”” = - lim [(k2 - A2)gfiv + Jnpn” - khkv]-’ = -’ 
pu k”n”&k”n’ l A;;.;” 

A 
t-00 k2 - A2 $ if ) 

(5.9) 
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i.e., even at the tree level, the photon propagator does not vanish for A2 + 00 and 

the “instantaneous”contribution 

nPnv 
zrnmDr = - 

4 bw2 
(5.10) 

remains. What one has to do, in addition to adding an (A2/2) A,Ap term to fZ, is 

to introduce a dynamical longitudinal degree of freedom: a scalar field $ of mass A 

which couples with strength (eA/k+) to the current j+, i.e., 

(5.11) 

The effect of this scalar field can be absorbed into the photon propagator, yielding 

Dr(eff) = Dr + Dr(longitudina1) = -’ -=?F k2 _ i2 . (5.12) 

. Since for on-shell Greens functions the npkV terms do not contribute [7] , all S-matrix 

elements should exhibit rotational invariance-even for finite A2! 

Having specified how to treat the A-field we can now proceed to construct the 

Hamiltonian. As a matter of convenience we choose to represent the Hamiltoniau 

using discrete light-cone quantization (DLCQ) [8,9] . Except for the longitudinal 

field this has been done already by A. Tang [lo] for QEDs+l so that we do not have 

to go into the details. %or one flavor of fermion (!I+ = fermion, dS = antifermion) 

and one massive photon (a+ = transverse photon, c+ = longitudinal photon) one 

finds in 2 + 1 dimensions 

H = HO + hip + Vno flip + Knst phot + Kong + &St ferm + VNO (5.13) 

where 

Ho = 7; [A2+ (y)2] [a;u~+c;c~] 

(5.14) 
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V no flip 

(5.16) 

. b$,,,bb,t5$,,, - d$,d.&:?, m + b~,nd+,n6$,, p + h.c. 7 - - - - -- ,- - -1- -,- 
> 

e2 ‘I/! -- mst phot - 
TLI 

-:b+b+b b -:d+d+d d 2 Sk te sm tll 2 Sk te s?E tn 1 
+ b&b,~b,,d-+ 

I 
+ h.c. 

(5.17) 
1 

- bzkd+,ebtmd-tn. [k + elm + n] , - - 

eA 
Kong= ~skem&cL’ c 

,-1-1- 1 
(5.18) 

- 



v e2 
mst ferm = - 47rLl 

4&z k -3 

b$mbsE+d$zdsE - - 1 .[{p+mlq+n}-{p-n/q--mm)] 

+ a+a+b,,d-,, zg- - dP-ml - q +: n} + h.c. (5.19) 

+ a~a,b,,LE~ [{P - mlq + n} - {P - nlq + m}] + kc. 

+ %%PZrnbsn f d&&x] * {P + nl - q + m} + h.c. -_ - - 

Here 

p, q = 2,4,6,. . . 

k, 1, m, n = 1,3,5,. . . 

P-L, nr h, CL, ml, nl = 0, =tL 4%. . . 

s,t =I-, 1 

(5.20) 

{m/n} = bc2) . ii- I?%14 m 
(5.21) 

VNO represents the normal ordering terms which are part of the O(e2) contribu- 

tions to the self-energies. Since they arise from instantaneous interactions they are 

independent of particle masses and thus vanish in P-V regularization [ll] . 

We leave the explicit construction of the P-V regularized Hamiltonian to the 

Appendix. For perturbative calculations we will weight the contributions from the 

various electrons and photons (physical and P-V) with coefficients cf and c: which are 
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later determined such that all unwanted terms vanish. E.g., the O(e2) contributions 

to the self-energy of a transverse photon with momentum p are (FL = PL MW: 

(5.22) 

In order to obtain a finite results in the continuum limit we have to require C; c” = 0. 

This allows us to simplify the numerator by using the replacement (Gl - p^l (n/p))2 -+ 

_. - 
-m: + X2/p (l/n + l/p - n)-l, i.e., 

e2 l =-- 
.4& P c 

c; (5.23) 
i 

X 
4m:+X2[1-8; (l-a)] 

+GEp"g, 

where we have already separated the self-energy of a longitudinal photon 
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In the continuum limit the self energies of longitudinal and transverse photons must 

be equal-otherwise rotational invariance is broken. To analyze this condition further 

we transform this term into an integral 

e2 &7-JtranS - &O”g + 4,rr2 

e2 1 
c 

2 =--- 
“Pi 

ci 

(5.25) 

and our second P-V condition has to be Ci cf d 
rnf = 0. 

We have performed similar calculations for the on-shell self-energy of an elec- 

trori. Since this is a gauge invariant quantity we can require that our calculation in 

light-cone gauge and light-cone quantization reproduces the covariant result obtained 

in Feynman gauge and 2 + 1 dimensional symmetrical integration. An alternative 

approach-which will be elaborated in more detail in the next section-is to calcu- 

late the one-loop corrections to the Compton cross section and compare with well 

known results. Both methods lead to the same condition, namely 

c c; = 0 (5.26) 
j j 

For practical calculations it is useful to reduce the number of P-V conditions. To 

achieve this one can add a counterterm to the Hamiltonian which cancels those 

terms which are multiplied by cf fiand czfiin th e self-energies of photons and 

electrons respectively. At one loop this reduces-by construction-the number of 

P-V conditions required. However, and this is a highly nontrivial result, numerical 

calculations of the self-energies as well as the example in Appendix 5B show that 

this is also true for higher loops, i:e., the second P-V particle is only necessary at 

one loop. Once we avoid it by adding a suitable one-loop counterterm there is only 

one P-V particle needed at two loops and most probably also for higher loops. 
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There might be various reasons for this special behavior at one loop. First of 

all there are ambiguities in how to treat normal ordering divergences which are of 

0(e2) and contribute only to the one-loop self-energies. Secondly, power counting 

in light-cone coordinates is different from the usual covariant power counting [l2] . 

One has to count separately powers in kl and l/lc+ in order to properly estimate 

the degree of divergence. Here it turns out that the strongest divergence (e.g., a 

quadratic Icl divergence in 3 + 1 divergences) occurs only at the one-loop level. The 

situation here is similar to scalar QED in equal-time quantization [l3] . 

5.4 Renormalization using noncovariant counterterms 

QEDz+r is super renormalizable and only two graphs are superficially divergent 

in Feynman perturbation theory (the one- and two-loop vacuum polarization are 

finite if gauge invariant regularization is used.). However, the presence of terms 

which break rotational invariance has forced us to introduce four P-V particles (two 

photons and two electrons), i.e., the Fock space content of the theory has increased 

considerably. Even after calculating the one-loop counterterms by hand one has to 

deal with one P-V photon and one P-V electron, i.e., the number of degrees of 

freedom still increases by a factor of four compared to the unregularized theory. 

Furthermore practical calculations require in general some approximations which 

in general lead to further violations of rotational invariance [14] . In this work we 

deal only with those violations of rotational invariance which are induced by an 

improper treatment of the high energy degrees of freedom (large kl, small X) if no 

P-V regularization, or anything equivalent, is applied. (The methods, .which we 

are going to develop for the latter problem, should, however, also be applicable for 

approximation-induced effects.) 

Using the light-cone power counting rules one shows that light-cone QED in 

3-l-l and 2$1 dimensions is renormalizable [l l]. This implies that the violations 
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of rotational invariance (which in our case are induced by an improper handling 

of arbitrarily high energies) can be compensated by a redefinition of terms in the 

Hamiltonian. In general such a renormalization procedures can be quite lengthy 

since, at least in principle, the e- masses which appear in the kinetic energy and 

in the vertex, the various e- charges and the various photon masses can all require 

different renormalizations, i.e., instead of three renormalization constants (m, A, e) 

we would have to deal with nine (men, mvertex, eflip, en0 flip, einst phot y einst ferm, 

Along 9 x x trans 9 vertex). However, practical calculations have shown that violations of 

rotational invariance in LC gauge occur only in two-point functions and there only 

in a very specific form [ 151 , namely 

(5.27) 

~- 

for ,electron and photon self-energies respectively. i.e.,the deviations from the P-V 

regularized results-which lead to rotational invariant observables-can be param- 

etrized by only two additional constants cl, ~2. The burden of fitting nine renormal- 

ization constants has thus been reduced to fitting five [16] . In practice one adds two 

-- extra counterterms 

f5H(2) = c -7 ap’ai! agra,, 21 
(5.2s) 

to the Hamiltonian and adjusts 6m~in and bA;r,,, such that rotational invariance is 

restored (this point will be discussed below). The next step, which is not necessary 

in QED2+1, would then be the usual mass and charge renormalization 1171 . 

The constants &&, and SAfr,,, are determined as follows. Fixing SX&,,, is 

rather easy: one diagonalizes the Hamiltonian (within some approximations like e.g., 

cutoff in Fock space) for a given 6Atr,,, and compares the physical ma.sses (eigenvalues 

78 



of the Hamiltonian) of longitudinal and transverse photons. 6X&,, is then tuned 

until these eigenvalues coincide. 

For &z& two methods are suggested. The first method is based on the fact that 

instantaneous e- exchange becomes singular for small p+ transfer (e.g., in Comp- 

ton back scattering). Th is is of course. an unphysical singularity which has to be 

cancelled by noninstantaneous e- exchange. At tree level it is crucial for the cancel- 

Jation that the kinetic mass of an electron [m in Ho(3.7)] equals the vertex mass [m 

in Vsp(3.8)]. At one loop the interaction will renormalize rnkin and mvertex differ- 

ently and one can easily convince oneself that the cancellation will be spoiled unless 

different renormalization counterterms for mbn and mve=+,ex are used. This defines 

already the renormalization procedure, namely tuning main until finiteness of the 

Compton back scattering amplitude for zero p+ transfer is achieved. 

The second method uses the degeneracy of the positronium spectrum due to 

rotational invariance. A glance at the Hamiltonian, Eq. (5.13) shows that, for zero 

perpendicular momenta, an annihilation of an e+e- pair into a transverse photon is 

possible if and only if both have a parallel spin but not for the S = 1, S, = 0 state. 

Another annihilation process is possible via longitudinal or instantaneous photons 

but only from the S = 1, S, = 0 state. In the first case the vertex mass appears 

whereas in the second it does not. For degeneracy of the S, = 0, fl states it is 

important that both interactions have the same strength. Again this is achieved at 

tree level by choosing mkin = mvertex but if loops are taken into account the condition 

changes. Degeneracy of the S, = 0, fl states in the ground state of positronium can 

thus be used as a renormalization condition. 

The first method seems to be superior from a practical point of view, since it 

requires to look at the e-7 system only and not at e-e+7 states as for the second 

method. However, from a practical point of view we are interested in the positronium 

spectrum, i.e., we diagonalize the Hamiltonian. The second methods thus requires 
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only little effort to implement -namely, diagonalizing H for two spin configurations 

and repeating this a few times (to fit 6rni iteratively). Furthermore, and this will 

also be of practical importance, the renormalization constants will thus be evaluated 

automatically to the same loop order and with the same approximations as the actual 

positronium calculations are done. 

5.5 Extension to 3 + I Dimensions 

For those theories considered in this work (Yukawa and QED) an extension to 

3 + 1 dimensions is straightforward. The only difference will be that more coefficients 

have to be renormalized and that there will be in general an infinite renormalization. 

In practice the following steps have to be performed. If one wants to render all 

loops covariant, i.e., even the one-loop graphs, using P-V there will be three P-V 

conditions for photons and electrons, namely [18] 

J 
dX2p(X2) = 0 

J 
dX2X2p(X2) = 0 (5.29) 

J 
dX2X2 log X2p(X2) = 0 

tihich is awkward from a numerical point of view. Thus one should only use the 

improved version of the P-V approach, where the one-loop counterterms are con- 

structed “by hand” and only one P-V condition has to be imposed for higher loops. 

The number of degrees of freedom will thus be the same as in a covariant approach 

(e.g., euclidean integration) with P-V regularization. The method of noncovariant 

counterterms might also be very useful. For example, if one uses a kinetic energy cut- 

off further violations of rotational invariance are induced. The algorithm described 

in Section 4 would automatically remedy this without further effort. 
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The extension to nonabelian gauge theories is not as straightforward. All m&h- 

ods discussed in this work violate local gauge invariance at least in intermediate 

steps. For QED this is not a problem since, e.g., the P-V regularization preserves 

the Ward identities. In QCD this is not the case and one has to add further gauge 

breaking counterterms which restore gauge invariance [19] . 

5.6 Summary and conclusion 

Naive light-cone quantization without careful regularization violates rotational 

invariance. In theories with a covariant Lagrangian we have demonstrated this by 

investigating the covariant structure of self-energies. In the case of a noncovariant 

. - Lagrangian (QED in the light-cone gauge) the Lorentz transformation properties of 

Green’s functions are nontrivial and therefore possible violations of Lorentz invari- 
-. 

ante are not obvious. 

However, these effects must show up in the calculation of physical processes. To 

study them it is convenient to select those processes which are sensitive to violation 

of its covariant structure as well as technically rather easy to deal with. In QED the 

degeneracy of the triplet positronium state with parallel and antiparallel spin as well 

as Compton. back scattering are such processes. 

The violation of rotational invariance is not limited to one loop, althought one 

might expect this since normal-ordering ambiguities arise only in one-loop self- 

energies. In fact, unless regularized properly, the normal ordering contributions lead 

to violation of rotational symmetry. However, those terms are not the only source 

of violations of this kind as our explicit two-loop calculations show. The induced 

divergences are less severe there, though. 

We have discussed from two basic methods to restore rotational invariance, the 

Pauli-Villars method and the method of noncovariant counterterms. Both methods 

seem to require a large number of additional degrees of freedom or counterterms. 
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However, because of the specific structure of rotational invariance violation in light 

cone quantization- the worst problems are restricted to one loop and only certain 

components of two point functions (the 7’ component of the fermion self energy 

and the II - components of the vacuum polarization) are affected. This allows us 

to optimize these methods considerably. We give analytic expressions for one-loop 

counterterms. As a result the P.V. approach then requires only one ghost per particle 

to offset the violations of rotational symmetry at higher loops. 

The method of noncovariant counterterms requires only two additional coun- 

terterms (compared to a manifest covariant approach), namely a mass term for 

transverse photons and an additional correction to the fermion mass term which 

-. appears at spin flip photon-electron vertices. To fix the additional constants one has 

- to specify the renormalization conditions. This can be achieved by considering the 
.-. 

degenerate ground state of positronium as well as the degeneracy of the longitudinal 

and transverse photons. 
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5.7 Appendix 5A: The Pauli-Villars regularized Hamiltonian 

for QED2+1 

As discussed in the section about Pauli-Villars regularization, one Pauli-Villars 

condition 

J 
dm2p,(m2) = 0 

J 
dX2p,(X2) = 0 . 

- 

(5.30) 

(5.31) 

-. for electrons and photons respectively is sufficient to guarantee covariant regulariza- 

tion in all calculations beyond one loop-provided all one-loop subgraphs have been 

rendered covariant (e.g., by constructing the necessary one-loop counterterms). One 

can easily convince oneself that the sum rules (5.30) and (5.31) can be achieved by 

introducing one additional electron and photon field respectively which are qua.n- 

tized with the wrong metric. One way to do so in practice is to introduce an extra 

factor of &i for all heavy photon vertices and another factor of J”I for all heavy 

electron pair creation and annihilation vertices. In addition the heavy electron has 

to be quantized as a boson. 

In practice this implies 

HP’ = HO + %p + V,o flip t r/iong t Vnst ferm t V, loop (5.32) 

where 
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e 
Gip = 

(“p + i A,) 

2mpmn Ix Jii { 

+ “h.c.” 

7r 1 
V no flip = e 

d- 
--p;A~ p n ; 

L-L 2LL spmn . ( 

2Pl nl ml -_-_ 
1 

-- 

X (bzmbsn + BzmBsn) Jt!p,m - (d&ds, + DZrnDsl) GZJp,rn (5.35) -- - - - - 
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v inst ferm = e 

. - 

x (bi!irnbs, + B,S,Bs* + dzmdsn + D$mDs,)Jfim q+E - - .- - - - - -‘- 

x ({P-+4q+4 = {P-n/q-m}) 

- (u$ t iAp')(al t $)(d-snbsm + iLEBs2) - - - 

x ‘$!q m+n{P 7- - - m( - q + n} + “hmc.” -- 

t ($ -I- iAl)(az + iAg)(d-s,b,, t iD_,,B,,) 

X bri+m+,({P - n(q + m) - {p - m/q + 72)) + “h.C.” -‘- - - 

1 + (‘p + iAp)(“4 + iA,)(b,,b,, f B&B,, + d;-d,, t D$%Dsm) 

X &,P+q+n{p t nl - q t m) t “h.c.” --- 
(5.37) 

85 



e2 _ t ua$ap -t AzAP, X2 -+ A2,? + - 
[b&b,, + d&dsn] 

-- - - 4TLl c - 12 - 
n,s 

{ c x2-s [m2$Fq .pz;;lp?L 1 
X 

P 
d+?A X2+P^ _ m2+ GA-& 2 p(p - n) 

_ 92 --) A297 

n P n-p 1 

+ “b+b -+ B+B,d+d ---t D+D, m2 t M2* . 
(5.38) 

The conventions are the same as in Eqs. (5.13)-(5.19). up, Aa,cE, CT, Bs,m, D,,, 
_ - 

obey usual boson commutation relations, bs,,ds,z fermion anticommutation rela- 

tions. “h.c.” indicates Hermitian conjugation only for field operators-not for c- _ 

numbers, i.e., iAp -t “h.c.” = iAp $ iAp’. Of course H is thus not hermitian but this 

should not influence unitarity below the production threshold for the heavy photons 

and electrons. There is no instantaneous photon exchange term since those terms 

cancel among the light and heavy photons [20] . The one-loop counterterms have 

-- been constructed such that they, together with one-loop corrections induced by H, 

avoid all one-loop self-energies which would be proportional to Jdm2p(m2)&? or 

J dX2p( X2) fi in the continuum limit. Without the one-loop counterterms more 

Pauli-Villars particles would be necessary to make all such terms vanish. 
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5.8 Appendix 5B: The two-loop self energy in Yukawao,+2 

In light-cone pertubation theory (LCPTh) the strong divergences (quadratic in 

3 + 1) occur at the one-loop level. Thus one might be tempted to expect that the 

violations of rotational invariance occur also only at one loop. This is not true as 

the following simple example shows. 

We consider a massless fermion coupled to a massive scalar boson via a Yukawa 

interaction term. As a specific example we evaluate explicitly the rainbow graph 

(Fig. 5.1) contribution to the r+ component of the one-shell fermion self-energy. If 

we choose vanishing pl for the 

from (2.2) that this component 
_. - 

incoming electron, i.e., pi, = pt/p+ = 0, it follows 

should be zero. 

Q-91 7009A6 

Figure 5.1. Rainbow diagram contribution to the two-loop fermion self-energy in 
the Yukawa model. 

In order to separate one-loop and two-loop effects we allow the masses of the 

inner (A) and the outer boson (A) in the diagram to be different from each other. 

This also makes it easy to regularize the inner loop “sufficiently” while leaving the 

outer loop unregularized for the moment. Applying LCPTh one easily finds [21] (up 

to the same constants) 

where 

p;t = p+(l -Z) p; = - 
k; + X2 

XP-+ 
(5.40) 
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and 

Here we have already used Jdh2p(h2) = 0, JdA2p(A2)(A2)DL/2 = 0 to cast IILooP 

into a rotationally invariant form [22] . Using [note that pr is an energy shell; see 

Eq. (5.40)] 

Pf = -(l--Z) 
[ 

kl i i-r;+k :““I 

one finds 

k2 + X2 1 
x k2 1--2 + &A? Jc2+x2 z 2 + Js + ~&f&j 

(5.42) 

(5.43) 

=cwD l. lY(l - 01) 
sin 7r(Ll/2) J 

dA2P(A2) f 0 . 
(A2)rsD~ 

-- First and most important, the r+ component of C is nonzero and rotational invari- 

ante is thus violated since p- = 0. Secondly, the result is independent of the outer 

boson mass X; i.e., a Pauli-Villars regularization (with condition JdX2p(X2) = 0) 

would have rendered tr (Cy-) zero. 

This is a rather typical result for higher loop graphs and implies the following. 

Once one has (over-) regularized the short distance singularities so much that one 

can handle the one-loop singularities in a rotationally invariant way (as in P-V) then 

the (milder) higher loop singularities should be no problem any more if one uses the 

same (over-) regularized versions of the theory there. 

It is, however, not sufficient to add only a one-loop counterterm and add no 

two-loop counterterms at all. although one might be tempted to do so, because 
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e.g., in 2 + 1 dimensions the two-loop self-energy of a fermion is finite in a covariant 

approach, this violates rotational invariance by a logarithmic divergence. 
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6. Rotational Invariance in 
Light-Cone Quantization 

6.1 Introduction 

Light-cone quantization might be a very valuable tool toward a better under- 

standing of the strong interaction. The main advantages of the formalism are the 

simple vacuum structure, the manifest boost invariance in the z-direction and the 

Hamiltonian formulation that leads to a very physical approach to field theory. 

One of the major disadvantages of the formalism [l] (as for any Hamiltonian 

form of dynamics) is its nonmanifest Lorentz invariance (here, rotational invariance). 

. - Being not manifestly Lorentz covariant one still expects that physical observables (S- 

matrix elements) exhibit the full Lorentz covariance of the underlying Lagrangian. 

Since the verification of Lorentz covariance of the S-matrix in a noncovariant formal- 

ism is in general rather tedious, it has become common practice to simply assume 

covariance of the S-matrix in naive light-cone quantization [2] . This paper deals with 

the problem of Lorentz covariance (in particular, rotational invariance) in light-cone 

quantization. 

A powerful test of rotational invariance is given by examining the angular distri- 

bution of the decay products of a heavy scalar particle at rest, such as 

a-+fT. (6.1) 

Starting out with the light-cone quantized Yukawa model (see Chapter 5) 

L: = %P - 4f + d@ + X2)4 + r7f 4, (6.2) 

we note that any deviation from a uniform f7 distribution in physical S-matrix 

elements would indicate a serious violation of rotational invariance. 
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> 

--- 

6M5Al 

Figure 6.1. Tree level matrix element for the decay u --) f7. The dashed line 
represents a heavy boson with mass X at rest: p+ = p-,pl = 0 .The sum runs over 
the fermion (mass m) spin labels sf, sp -- 

This section investigates the decay (6.1) at the one- and two-loop level. A dis- 

cussion beyond one loop is important in order to decide whether self-induced inertia 

terms [3] , which naturally arise from normal ordering of the Hamiltonian, could 

cure the problem. Violations at higher loops would mean, in particular, that any 

clever arrangement of self-induced inertia terms cannot restore a covariant answer 

for physical S-matrix elements, since self-induced inertias are of second order in the 

coupling. 

We demonstrate an alternative treatment by adding counterterms to the La- 

grangian respecting only those symmetries, which are manifestly preserved on the 

light-cone, i.e., transverse rotations and boosts along the z-axis. The goal of this 

paper is to construct them explicitly and show how rotational invariance can be 

restored for physical S-matrix elements. To complete the discussion, in Section 4 

we address the question of why light-cone quantization leads to incorrect results, if 

naively applied. 

6.2 Breakdown of Covariance at the One-Loop Level and 

Addition of Noncovariant Counterterms 

We begin our considerations with the decay of a scalar particle into a fermion 

antifermion pair 0 -+ f7 at tree level. The corresponding matrix element squared is 

(see Fig. 6.1) 
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&~Ml” = --< >-- +--< >-- 

+--y >--+--A >--+,,. 
6-91 6945A2 

Figure 6.2. Fourth-order contributions to u + f7. The 6m insertion represents 
the one-loop mass counterterm. _ - 

c WI2 = Tr ((Pp + m~)(-b + mu)) . (64 Sf ,ST 
Overall light-cone energy conservation constrains the external momenta, leading to 

p = 
m2+qi 

q’(l - a+> - 
(6.4) 

-- Note that, in order to allow for noncovariant counterterms, two different masses have 

been introduced [P] . A vertex mass m,, appears in the numerator, and a kinetic 

mass m, appears in P- conservation and in all denominators associated with the 

-diagram [5] ( see also previous chapter). Eqs. (6.3) and (6.4) lead immediately to 

(6.5) 

Obviously rotational invariance is obtained if and only if m, = m , i.e., no problems 

arise in tree-level physics. 

At the one-loop level the set of diagrams in Fig. 6.2 contributes to the decay. Note 

that to order r4 only interference terms between one-loop and tree level diagrams 
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6-91 6945A3 

Figure 6.3. Typical contribution to the vertex correction of a + f7. 

contribute. As an example we calculate the contribution from interference between 

. - a boson-exchange graph and the tree graph (see Fig. 6.3) [6] 

1 

IBos-Ez = r4 
J 

&(1-4/q q1 - q+ - rc+> 
(q+ + k+)(l -q+ - k+)k+ 

0 

Tr NJ - R + 74@2 + mE-24 + m>(-8 + 4) 
(p- m2-t-$q;;b)z m~u.L~;)') (p- m2:_~;~~~)2 A'+$ ";:-T$) 

(6.6). 

Using the Brodsky trick [7] to include instantaneous fermion contributions, perform- 

ing the trace, combining energy denominators and integrating over Ll, we obtain 

1 1 

IBos.-EL = r4 
J 

dk+ O(l - q’ - k+) 
167r3 (q+ + k+)(p+ -q+ - k+)k+ J 

0 0 (6.7) 

where 
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p=- (1 - 4(1 - q+> 
(k+ + q+)(;- q+ - k’) + k+(l -q+ - k+) 

M2 = p-1 ’ (q+ + k+)(;s q+ _ k+) + (1 :b;y)k+))2 

+a p-- ( 
m2+qi m2+qi. 
q+ + k+ - 1 - q+ - k+ ) _ 

+ (1 -a> 
m2 +qt A2 m2tq: 

q+ -Ic+- l-k+-q+ 

W) 

A =2(4m2q+2 - m2 - qt) 
(q+ t k+ - l)q+ 

B -2(4mzq+2 - 4m2q+ + m2 + qi) - 
(1 - Q+)Q+ * 

C acquires terms from zero and linear order in the integration variable kl of the 

Dirac trace. The linear terms give a contribution after shifting momenta. Since the 

expression is rather lengthy we do not display it here. 

Similar steps must be performed for all the other diagrams of Fig. 6.2. This 

.- involves renormalizing the diagrams using minimal subtraction and performing the 

integral over k’ and (Y numerically. Then rotational invariance can be checked for 

the total one-loop S-matrix element by computing the diagrams for two different sets 

-of external momenta: 

Set (I) : q+ = f , q2 = i , qy = 0 
(6.9) 

Set (II) : q+ = a, q2 = 0, qy = 0 . 

In both cases, we have chosen A = 1, m = dm. Since both sets obey Eq. (6.3) 

and describe a scalar at rest, i.e., P+ = P- and P_L = 0, the answer is supposed to 

be the same for both of them, unless rotational invariance is broken. 
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P .-- --- 

7-91 6945A4 

Figure 6.4. Instantaneous contributions to the external self-energy. 

.- 

For the asymmetry r, i.e., the result of the numerical integration for the difference 

of set (I) and set (II) , in in terms of 

a = 7 c pq, 

SfST 

(6.10) 

we find r = 0.02a. That means rotational invariance is broken for physical S-matrix 

elements at the one-loop level. In Appendix 6A we give details of this calculation. In 

particular it is shown there that the piece which violates rotational invariance comes 

from the instantaneous contribution in the external self-energy diagrams shown in 

Fig. 6.4. 

In order to keep our discussion as clear as possible, we restrict the number of 

spatial dimensions to two in what follows. This enables us to disentangle the specific 

renormalization procedure on the light-cone from the ordinary ones, since the Yukawa 

model is superrenormalizable in 2 + 1 dimensions. 

The remaining goal of this section is to show that the term that violates rotational 

invariance is of the same form as the first term in the r.h.s. of Eq. (6.5). Thus, 

by allowing independent renormalizations for m, and m one can restore rotational 

invariance. 

Using light-cone perturbation theory (LCPTh) rules one finds [8] for the graph 

in Fig. 6.4 
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1-q+ 

I((?‘, QI) = 
J 

dk*dk+ 
16n3 

0 

Tr ((b - R + m>(82 + m)$r+ 6-h + m)> 

x (1 -q+ - k+)k+(l - q+) (p- m>& A’;.: rn~~~~f~12) ’ 

(6.11) 

A change of variables k+ = (1 - q+)s , gl= ki+ xql , combined with use of 

cp _ q)2 = p-(l - q+> - (1 - q+) ““,: qi - qf = m2 (6.12) 

and 

. - 
X2 + k; + m2 t (u. + W2 

X l-x 

X2 + m2 + (h. t uxJ2 + x&l - 2) =- 
l-x 

(6.13) 
X x(1 - x) 

yields 

= I 
0 

= dzLdx Tr (. . .) 

(167r3) 
(6.14) 

x(1 - 2) m2 - $ - f$ - 1 -q+)’ 

where x = kl + qlx. To write this in a more compact form, we define the q+ and 

qL independent function 

(6.15) 

Discarding odd terms in go , which do not contribute to the integral, we obtain 

1 h 

I= dx- 
J 

(2 - s)m(l - q+) - (2 - s)m2q+ 

Cfii3) (~(1 - x)m2 - X2(1 - 5) - m2x -Xt) 
(6.16) 

0 (1 -(I+> 

= 11-T: f(m, A) = (2 - j-&p) fCrn3 x>* (6.17) 
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A similar calculation for the diagram that correspond to the anti-fermion self- 

energy, yields 

T=’ 22 ( > q+ fhV, (6.18) 

which contains the same function f(m, X). The total answer,i.e.,the sum of I and 7, 

is 

Itot = ( 4 - 
1 

Q+(l -(I+) > 
fb-4 * (6.19) 

This result has the remarkable feature that it contains the same q+ dependence as the 

term in Eq. (6.5) that violates rotational invariance. Hence the violation of rotational 

invariance at the one-loop level can be cured by an appropriate renormalization 

of m and m,, i.e., by using different bare values for m and m, in the light-cone 

Hamiltonian. 

6.3 Breakdown of Covariance at the Two-Loop Level 

In this section it is shown that violations of rotational invariance in the light-cone 

formulation are not restricted to the one-loop level. This statement is correct even 

if the one-loop subdivergences are treated covariantly. 

In order to constrain the number of diagrams that contribute to the S-matrix, 

we introduce a second fermion flavor and bosons, which change isospin, into the 

2+1 dimensional Yukawa model. However all couplings at fermion-boson vertices 

are assigned differently, so that isospin symmetry is broken. The new interaction 

Lagrangian is 

Lint = 9pnFnb t gp$p4o t g,Jqh + h.c. (6.20) 

In this two-flavor model only the rainbow self-energy (Fig. 6.5) and the ladder vertex 

correction (Fig. 6.6) contribute at order g& . g$ to the decay $0 --) j?p. All other 

99 



Figure 6.5. Two-loop rainbow self-energy contribution to o + f?. &~,6(~)rn 
denote the one- and two-loop self-energy mass correction, respectively. I corresponds 
to a counterterm which restores rotational invariance at the one-loop level. 

Figure 6.6. Two-loop ladder vertex correction to u + f7. Six timeorderings add 
up to the covariant answer. 

diagrams contribute with other combinations of coupling constants and must be 

separately covariant, if covariance is assumed for all values of the couplings. 

The rainbow self-energy contribution is shown diagramatically in Fig. 6.5. The 

third diagram restores covariance at the one-loop level. Diagrams which contain 

&IX, ~Y(~)rn are one and two-loop mass counterterms, respectively. 

As in Section 2, we consider the instantaneous contribution to the self-energy 

diagrams in Fig. 6.7 separately from the rest. Table 6.1 shows the result of the 
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Figure 6.7. Instantaneous self-energy correction in two loops. Momentum labels 
are assigned as indicated. 

Table 6.1. Self-energy contribution to u + f7 in two loops. a2 describes the 
contribution from the instantaneous diagrams (Fig. 6.7), which violate rotational 
invariance. al is the result of the numerical integration of the residual self-energy 
diagrams. 

Set a1 

(1) -1.58 f 0.01 

a2 

0.015 f 0.004 

I (11) -1.58 f 0.01 -0.135 f 0.002 

Table 6.2. Result of the numerical integration of the ladder vertex correction to 
cr -+ f7 (Fig. 6.6). A rotational invariant answer is obtained for both sets. 

I Set I 

numerical integration for both sets of momenta in (2.7). As in the one-loop case, 

rotational invariance is violated for the instantaneous contribution to the external 

self-energy diagrams. 

The ladder vertex contributions yield the 6 time-orderings shown in Fig. 6.6. The 

result of the numerical integration is given in Table 6.2. 
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Figure 6.8. n + 1 loop rainbow self-energy correction. 

._ 
Thus the ladder diagrams appear to be rotationally invariant by themselves, and 

a possible cancellation of the noncovariant terms in the self-energy diagram cannot 

occur. Details of this calculation are given in Appendix 6B [9] . 

In the remainder of this section we-want to demonstrate that the breakdown of 

covariance, as in the one-loop case, can be cured by an appropriate renormalization 

of m, and m. Since the calculation is similar to that of the one-loop case, we restrict 

- ourselves to an illustration of this procedure. 

We start out with the matrix element in Fig. 6.8 in two loops. In Appendix 6C it 

is shown that the two-loop self-energy Iself contains a noncovariant piece proportional 

to Cr+/p+ (see also previous chapter), where C is independent of the incoming 

fermion momentum [lo] . Th us, after on-shell mass renormalization, one finds 

. Iielf = ($-s$) c 

+ (fi - m)fib2) + (P2 - m2)f2(p2) . 

The instantaneous self-energy contribution of Fig. 6.7 becomes 

I=Tr (-fi+m)i$l(p+m)) C-y2 

= 47% 
p+ - k’ 2p+ - 1 

P+ 
= 47% 

P+ 
(6.22) 

= 472c 2 -L 
( > P+ ’ 
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where we have set fi = m for the external fermion in Fig. 6.7, and used the following 

7+7+ =o, Ic++p+ = 1 and ?77+u = 2p+. 

An analogous calculation for the diagram which corresponds to the anti-fermion 

self-energy, yields 

so that the total contribution becomes 

I+T=4y2c 4- 
( 

(6.23) 

(6.24) 

Again we see that Eq. (6.24) has the same form as the piece that violates rotational 

invariance in Eq. (6.5) , which means that rotational invariance can be restored by 

tuning the vertex mass and the kinetic mass differently [ll] . 

6.4 Surface and Zero Mode Contributions 

In the previous sections we have discussed the breakdown of rotational invari- 

ance in light-cone quantization and described a way to cure the problem by adding 

noncovariapt counterterms. In order to make the discussion more complete, we will 

investigate in this section the question of why rotational invariance is broken if light- 

cone quantization is applied naively. The conclusion will be that naive light-cone 

quantization omits important surface and zero mode contributions. 

We start our discussion with the n + 1 loop self-energy diagram in Fig. 6.8 

in d dimensions and covariant perturbation theory. Since the theory is based on 

a manifestly covariant Lagrangian, one expects for the n-loop self-energy lrelr the 

following structure after mass renormalization 

I” self = t# - B - m)fih((P - 412) + [(P - Cf12 - m21f;((P - q12> 
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where ji” must have a spectral representation 

f%12) = Jm ds l4Ys) 
q2 -s+k 

(6.26) 

so>0 

with no poles for q2 5 0. We discuss here only the zero mode effects induced by jr. 

For j; the same considerations can be made yielding similar results [12]. 

One finds for the jr contribution in n + 1 loops 

J 
dDq I - n+l fin((P - q>2)(b - R + 4 

self = 
(WD UP - d2 - m2 + ic) (q2 - X2 + ic) 

(6.27). 

- Since problems are expected for the r+-component only [13], we compute 

$ Tr (r-1::‘) = /$ (p- - “:9:“‘> ((p-q)2 -::;;;;;2 -A2+ic) 

+ J 

dDq 1 f?((P - q)2) -- 
(2T)D q+ (p -q)2 - m2 +k 

(6.28) 

where 

Q -=-- q!l (q2 - x2 + (4: + x2)) (6.29) 

was used. 

It should be emphasized that even though light-cone variables have been in- 

troduced, only algebraical steps have been performed so far, i.e., no breakdown of 

covariance can have occurred at this point. The trouble occurs when the integration 

over q - is performed, in order to obtain LCPTh. 

The first integral in Eq. (6.28) p oses problems at the one-loop level, i.e., f z 1, 

when trying to perform the q- integration. This is because the integrand falls off 

no faster than l/q- for p+ - q+ = 0 or q+ = 0. Whereas the first case should give 

rise to a contribution of measure 0, we expect nonvanishing contributions from the 
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surface term in the second case, since the denominators are multiplied by a function 

which diverges for Q+ + 0. 

What we encounter here is nothing else but the one-loop problem of the self- 

energy which has been noticed by many authors [7, 14, 151. 

However, in higher loops we expect no trouble arising from this term. To il- 

lustrate this we use the spectral decomposition of Eq. (6.26) and write the first 

contribution to Eq. (6.28) as 

llz/"ds/$ (pmsq'~A2) ((p-q)2-s+;f;;(bd-q)2-,2+;,) 

SO 

x (q2 - :2 + iE) . 

If sufficiently regular behavior for PI(S) is assumed, the integrand falls off like N 

(1/q-)2 or faster, which means that surface terms do not contribute [16-181 . 

The situation is different for the second integral in Eq. (6.28), however. Perform- 

ing the q- integration leads to [19] 

1 

J 
dq-flD-2qL-1- .fX(P - q)2) dDq .fx(P - d2> 

5 q+ (p - q)2 - m2 + it5 
= L qp+ - q+> 

p+ J (q-p)2+m2+ic ’ 
(6.31) 

This is because for p+ # q’ the contour of the left-hand side can be chosen such 

that its contribution vanishes. The rest follows from 

P+ 
1 - 
5 J J 

4+ dq-dD-2qll fX(P - !d2) 1 
q+ (p - q)2 - m2 + it5 = pS J 

dDP fin((P - q)2) 
(p - q)2 - m2 + ic ’ 

(6.32) 

0 

The point is that naive light-cone quantization omits the zero-mode contribution 

on the right-hand side of Eq. (6.31) and thereby causes a violation of rotational 

invariance. This also predicts that the piece that violates rotational invariance is 
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always proportional to l/p+, which is in perfect agreement with all our experiences 

at the one, two and three-loop level. 

Since the right-hand side of Eq. (6.31) d oes not depend on the outer boson 

mass, we see that using a heavy Pauli-Villars boson regulator instead of dimensional 

regularization would have taken care of the problem [20] . 

To complete this section we want to list again the properties of the diagrams in 

Fig. 6.8: 

l It is very likely that noncovariances appear in any order of perturbation theory. 

l The noncovariant piece is always pl and p- independent and of the form 

c (7+/P+)- 

l The noncovariant zero-mode contribution is independent of the outer boson 

mass, which explains why a Pauli-Villars regulator plays an extraordinary role .- 

among regulators. 

l Dimensional regularization is not sufficient, neither is the so-called “covariant 

cut-off” [21] . 

l Even supersymmetric theories suffer from this problem (see Appendix 6D). 

6.5 Summary and conclusions 

We have shown that naive light-cone quantization leads to a violation of rota- 

tional invariance in physical S-matrix elements. To do this we investigated the decay 

of a heavy scalar particle at rest and observed a deviation from a uniform distribution 

of its decay products. The analysis shows that the effect is not restricted to one loop 

(An explicit example is given in Appendix 6C). Following the general arguments of 

Section 4 one expects a violation at any order in perturbation theory. 

At the one- and two-loop level, we explicitly show that the problem can be 

cured by tuning the vertex mass m, differently from the kinetic mass m. This 
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procedure corresponds to adding noncovariant counterterms, which preserve only 

the kinematic light-cone symmetries. That requires an additional renormalization 

condition, compared to a manifestly covariant theory. 

We suggest the decay of a heavy boson at rest because violation of covariance 

is obvious in this case. Once the additional counterterm is fixed the statement 

of renormalizability requires that all processes can be evaluated to the same order 

in perturbation theory [22]without encountering any further violations [23]. To 

complete our discussion, we investigated the question of why light-cone quantization 

goes wrong if it is not applied carefully enough. We found that nonvanishing surface 

contributions accompanied by a zero mode problem at one loop and missing zero 

mode contributions at higher loop orders cause a breakdown of the covariant structure 

of the theory. At this point it should be mentioned that the same problems are 

expected to occur in gauge theories (in A + = 0 or any other gauge), quantized on 

the light-cone. As far as practical methods are concerned, such as DLCQ [24] or 

the Tamm-Dancoff procedure [3], additional violations of rotational invariance are 

anticipated. This is because one is forced to work with a finite value of a cut-off 

which by itself breaks Lorentz invariance. In this paper, we have discussed only 

those violations of rotational invariance which survive the continuum limit. 
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6.6 Appendix 6A 

Using LCPTh theory for the self-energy contribution ISelf (Fig. 6.9), one finds 

I r4 
J 

&+d2t1-+)kL O(1 - q+ - k+) 
self =s (1 - q+)k+(l - q+ - k+) 

Tr ((162 + m)(zh + m>& + m>(-h + m>> 

(6.33) 

where pl = 0 and p+ = 1. Note that an off-shell value for p- has been assigned in 

order to deal with the double pole. At the end of the calculation, p- is taken on 

_. - shell. If one shifts variables to 

(6.34) 

the Dirac trace can be reduced to the simple form Ax: + C, where 

A = 2(4m2q+ - 3m2 + q+2X2 - 2q+X2 + q; + X2)/k;’ (6.35) 

and C contains terms. of zero and linear order in the integration variable rl of the 

Dirac trace. -This is correct only after terms are discarded which do not contribute 

.to the integral. The linear terms give a contribution after shifting momenta. Since 

6945A14 

Figure 6.9. Self-energy diagram in one loop. 
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the expression is rather lengthy we do not display it here. The x;_ integration can 

be trivially performed, yielding 

r4 
1 

=-s J 
dk+ ‘(l - q+ - ‘+) 1 

(1 - 4+J2 
0 

(p--.zt2Ji-~) 
(6.36) 

x ( 
w-1 + c) r(e) 

(l - +(M2)-l+c + Cpf2) > 

where 

M2 = - k+(l - k+ - q+) 
1 - q+ 

k+ x2 
x 

-- 
qi (1 -q+)(l wq+ -k+) +‘- - k+ 

m2 + qt m2+qi 
1 sq+-k+ - q+ 

.- (6.37) 

CeUl = 0.577... is Euler’s constant. The self-energy counterterm that corresponds to 

the diagramm in Fig. 6.10 is evaluated in a similar fashion. As in the self-energy 

diagram (see Fig. 6.9) the instantaneous contribution is included by putting 

p; =p- - m2+$ 
!7+ 

on energy shell. 6m is given by 

6m = & 7’ 
J 

1 
dk+d(l-‘)kl k+(l _ k+) 

X 
%4 + m)u 

(p- r;‘_‘,:; “‘k:“;) 

(6.38) 

(6.39) 

with pl = 0, p+ = 1 for the initial fermion. Note that it does not matter whether 

the instantaneous contribution is included or not, since it is kl independent and 

therefore gives a vanishing contribution in dimensional regularization. 
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6045AlS 

Figure 6.10. One-loop mass correction to the self-energy. 

Table 6.3. Total one-loop contribution to cr + j7. 
I I 1 

I Set I 
(1) 0.048 f 0.2 * 1O-4 

(11) 0.335 f 0.6 * lo-’ 

. - Performing steps similar to those taken before one finds 

.- . . J 
dk+(l - &a N2) 

x (-(X2 - m2) + m2( 1 - k+) + k+m2 - 2m2) 

where 

N2 = -k+(l -k+) 
m2 X2 

----- . 
> 

(6.41) 

Table 6.3 shows the result for the numerical integration. The result is that rotational 

invariance is broken at the one-loop level. Numerically we find that the violating piece 

arises from the instantaneous self-energy contribution. 
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6.7 Appendix 6B 

We start out with the two-loop rainbow self-energy diagram (Fig. 6.5). LCPTh 

yields 

4 2 

I QPPgPP dk;dk$dklIdk2i 1 
rainbow = (16~~)~ J P:P;P$Paktk; 

( 
p- m’+gL m>&) 

Tr ((jf + m)(fi4 + m)(fi3 + m)(fi2 -I- m)(h + m)(-h -I- m)) 

_ - + Tr ((Pf + 77-$254 + 77-+-~77w2 + mM1+ m)(-k + 4) p; 

D2 
1 
J 

2 
gPPgPP 4 J dk,sdk$dk 11 dk’ 2 

- (16~~)~ + + + +k+k+ 
l-5 P2 p3 p4 1 2 

i 

Tr ((I$ + m>(h + m)(-h + m)) &Tr (f% + m>l% + m>f% + m>> 
( ’ P&,-k;--) (I’&-k;-k;-9) (P&-9-k;) t 7 

&Tr ((f~f + m)(fi~ + m)(--h + m)) Tr (f% •t m)(-6m)f% + m)) 
- 

(p- _ .E?$!$A - 2$&) (Jo;,, - k, - 9) (PG,, - ,+$$ - k;) ” 1 
+ Imirtow 7 

(6.42) 

where 

p-+-m2+pk m2+q: 

Pi- q+ 

P- - m2 + PiI m2 + qf - 
Pi- !?+ 

- k; 
> 
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p-+m2+p;~-m2+q; 
PZ q+ >( P- - m2 + P& m2+$ - 

Pi- q+ 
- k, 

> 

and where Imirtow denotes the contribution from diagrams in the last two lines of 

Fig. 6.5. The momenta are given by 

Pl = ( 1 -4+,x2 - m2 + qf. 
!l+ 

,-!LL 9 
> 

I--q’--:,X2- ““v: ” - k;, -qI - kll 
> 

, 

. - 
+ 6 + l-q+-k:-k,,~P,,-ql--kll-kzl 

fi2 = p”4 = 1 - q+ - kl+, m2 ;rpTL _ k;, mqI _ B,,) , 

-- 
$3 = 1 - q+ - kf - k,+, Fp;, -qI - kll - kal 

P2 > 

and 

p- _ $1 + m2 
M,l - 

P;’ ’ 

P- = x2. 

Note that the third diagram of Fig. 6.5 which restores covariance at the one-loop 

level can be taken into account by setting p3 = (p;/pt)p;’ and 17; = (&/J$)~;’ . 

112 



This rule relates the bad component of the self-energy (r+pT) to the good component 

(7-p:) and covariance is achieved by construction [25] . 

The one-loop mass correction 6m is given by 

e2 ’ 
6m=s J 

dk,+dkzl 
(1 - kz)m2 + m2 

0 (-k&+k$(l-k$)(m2-f$-%)* 
2 2 

_. - 

The last two terms of Eq. (6.42) correspond to the two-loop mass correction 6c2)m. 

Note that they are defined quasi-local, i.e., the 6(2)m-subtraction occurs already at 

the integrands before integration. This makes the expression suitable for numerical 

integration. 

The instantaneous self-energy contribution can be obtained by subtracting a 

similar expression like Eq. (6.42) from Irainbow, where p; is set on mass shell. The 

two-loop vertex correction is computed in a similar way. 
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6.8 Appendix 6C 

In this section we show by explicit construction that the two-loop rainbow self- 

energy in naive LCPTh contains a noncovariant piece of the form 

cg (6.43), 

even when all subloops have been rendered covariant. C is independent of the incom- 

ing fermion momentum P. Since by assumption the l-loop self-energy lLiif (Fig. 6.9) 

is covariant, one should be able to express lielr in the form (6.25), (6.26). In this 

particular example we find 

. - 

e2 
m(s) = - c&$~(~) 

J 
dx (l - x)(T(x)po (T(X)) 

e2 
p2(‘> = 8*3 --R(D) 

J 
dx (2 - x)@(x))+-% (T(X)) ,2”_ s (6.44) 

where r(x) = (x(1 -x)s-(m2x+X2(1-x)) was introduced. iI(D) is the volume 

.- of the D-dimensional unit sphere. Thus in a covariant formalism the 2-100~ rainbow 

self-energy becomes 

cQ 
O” dDk 

It21 = ds - 
J J 

h(s) + (fi - F + mb2bN 
(27r)D (k2 - X2 + i~)(fi - j! - m + ic)((p - q)2 - s + if) (6’45) 

so>0 -co 

Naive LCPTh replaces 1c2) by 1/z’, where 

If’,” = 
J (2(2T&)2 

jj$$i$$ h(s) + @i + mb2(s)) @I t m) 
(p- br--~~);++m2 k?;A2) (p- _ ,;y~$+s ,,&A’) 
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= J (2(2?iyD-1)2 J dk+dD-2 kl 
(p+ - k+)sk+ Pi(S) + riilr + m)p2(s) > 

Wtm) (P+-k+) 
s-m2 

and 

p”1 = 
k; + X2 

- k+,p- - k+ - . 

The problem is thus reduced to finding the noncovariant piece of the one-loop self- 

. - energy. This has been done [13] and the answer is of the asserted form of Eq. (6.43). 
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6.9 Appendix 6D: The two-loop self-energy in the supersym- 

metric Wess-Zumino model 

When dimensional regularization is used in the Yukawa model, there is no need 

for a one-loop noncovariant counterterm if the boson and fermion masses are equal [26]. 

This observation could be of crucial importance for the light-cone quantization of su- 

persymmetric field theories. In fact, in Ref. 27, it has been proposed to use the 

(finite [28]) N = 4 supersymmetric Yang-Mills theory as a regularized extension of 

light-cone QCD3+1. 

. - 

Compared to normal theories with similar interactions, supersymmetric theories 

have a less singular UV-behaviour. Since part of the problem with the violation 

of rotational invariance is connected with the loop regularization of light-cone sin- 

gularities, one might hope that SUSY theories are less troubled by noncovariant 

self-energies. Technically, the improved UV-behaviour arises from cancellations be- 

tween various diagrams related by SUSY transformations. Perhaps something similar 

happens with the noncovariant self-energies in light-cone quantization. As mentioned 

above this is indeed the case at the one-loop level if one uses dimensional regular- 

ization in the transverse coordinates. In order to find out whether such a behaviour 

persists in higher loops, we will investigate the two-loop self-energy of a fermion in 

.the SUSY Wess-Zumino model [29] 

1 -- 
2 

m2A2 - f m2B2 - i miT$ 

(6.46) 

- gm A(A2 + B2) - i g2(A2 + B2)2 

- is?@ - 75B) 1c1 T 
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where + is a Majorana spinor and A and B are, respectively, a scalar and a pseu- 

doscalar field. The (unsubtracted) one-loop self-energies for bosons and fermions in 

this model read 

% =$1f1(p2) EB = 2P2 h(P2) (6.47) 

where 

fi(p2) = c JdD-2kl jdx p2x(1 _ .,‘--,“z _ “~ + iE 
0 

(6.48) 

(c is some constant). Performing an on-shell mass subtraction one finds [30] 

CF = (fi-m)fi(p2)+(p2 -mZ,+ 

cB=2 [(P2-m2)fi(p2)+(p2-rn2)f2(p2)] 

where 

f2(p2) = m 
2 fib”) - fi(m2> 

p2-m2 ’ 

(6.49) 

(6.50) 

Inserting these one-loop corrections into the one-loop self-energy yields the nested 

(rainbow-type) contributions to the fermion self energy at 0(g4) [31] 

Cl”(p”) = Z 
J 

dDk ’ (B- F) fi((p - k)2) 
k2 - m2 + if (p - k)2 - m2 + ic 

Clb(p”) = C 
J 

dDk ’ 2( b- b> fi(k2) 
k2 - m2 + ic (p - k)2 - m2 + ic 

(6.51) 

c2a(p”) = ’ J dDk k2 - i2 + if 
2(b- F) .f2((~ - k)2> 

(p _ k)2 _ 7732 + ir 

c2b(pp) = ’ J 
2( b- F> f2(k2> 

dDk k2 - A2 + ie (p _ k)2 _ m2 + ie 

where Z is some constant. 

C” and Cb correspond to insertions of CIJooP into the fermion and boson line, 

respectively. 
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Following Section 4 we substitute in the numerator of the y+ component 

-p p * -k- +) - k2-m2 
9 . 

k+ 
(6.52) 

p p . > . p- - k- H (p - k)2 - m2 - k1)2 + m2 

(P+ - k+> 
+ (PI 

(P+ -k-t) . 

As we have shown there naive light-cone quantization (NLCQ) simply neglects the 

first term thus omitting 

ACla = ++ J 
dDk fd(p - k>2) 
w (p - k)2 - rn2 

= -2 dDk ;ck2) 
p+ J -m2 

AClb = 2 2 e,+ 
_ - P+ J 

dDk k;‘“z2 

AC2” = +‘c y+ 
J 

dDk .fdk2) 
P+ k2-m2 

(6.53) 

Ax2b = 2 f ?+ JdDk fdk2) k2-m2. 

One can easily verify that the Ahc terms arising from f2-insertions cancel whereas 

this does not happen for fl. Thus NLCQ falls short of the correct result by an 

amount 

.ACNLCQ =; 7+ 
- J 

dDk kzBrn2 
fdk2> f (-) . (6.54) 

In the beginning of this appendix we raised the hope that SUSY theories are free of 

the zero mode problem. Unfortunately this turned out to be false as Eq. (6.54) shows. 

This means that if one want to use SUSY theories as a regulator for other theories one 

still has to preregulate them in such a way that there are no noncovariant terms or 

use some other technique (e.g., noncovariant counterterms) to compensate for AE. 

This might limit the practical use of SUSY regulators in light-cone quantization 

considerably. 
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but rather allow the masses to change via the one-loop correction, this would 

not induce new noncovariant effects. Since the masses of bosons and fermions 

would remain equal, the one-loop cancellation of noncovariant terms still 

applies. 
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7. Summary and Outlook 

In the first part of this dissertation a new algorithm for the automatic compu- 

tation of Feynman diagram amplitudes is presented. The method, which is based 

on light-cone perturbation theory (LCPTh), is explored and tested for two- and 

three-loop calculations in QED. The amplitudes are constructed automatically and 

explicitly, given just the photon connections of the corresponding diagrams. The 

extension of the algorithm to higher loops is straightforward [l] . In contrast to usual 

techniques, where single Feynman diagram amplitudes get renormalized, this pro- 

cedure constructs renormalized amplitudes of sets of Feynman diagrams only. This 

simplifies the renormalization procedure significantly since those sets can be chosen 

such that ultraviolet divergences, associated with wavefunction renormalization can- 

cel between diagrams of the same set. Also the infrared behavior is improved in this 

case, since wavefunction counterterms generally induce artificial infrared divergences. 

Mass- and coupling constant renormalization must be carried out the usual way. 

In contrast to standard covariant procedures, light-cone field theories involving 

fermions require further renormalization [5] . In the case of the quadratically diver- 

gent one-loop fermion self-energy, this problem has been noticed by many 

authors [2, 3, 41. In this dissertation it is shown that additional renormalization 

is necessary for an infinite number of quadratically divergent LCPTh diagrams at 

the one-loop level. Also the two-loop order induces additional divergences. This 

happens even if one-loop subdivergences have been removed consistently from the 

formalism. It is most likely that additional control of the renormalization procedure 

is necessary at any order in perturbation theory. 

One of the main results of this thesis is that the additional divergences of LCQ 

can be identified with noncovariant terms in light-cone quantization. It is shown that 

those terms lead to observable effects, unless further renormalization is invoked. All 
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noncovariant terms that we have encountered in the Yukawa model always had the 

structure 

where C is independent of the external momenta. In QED we find an additional 

noncovariant term in the I, I -component of the vacuum polarization. This sur- 

prisingly simple structure greatly reduces the number of noncovariant counterterms 

necessary for the restoration of Lorentz covariance. In the case of QED the burden 

of fitting nine constants is reduced to just two (one for the 7+/p+ term and the other 

one for the vacuum polarization). 

. 
Another part of this dissertation has been devoted to the analysis of perturbation 

theory expansions in light-cone field theories. In order to avoid possible subtleties 

of the quantization procedure for small x, we derived the light-cone formulation of 

Feynman amplitudes by integrating over light-cone energies. The result shows that 

naive light-cone quantization may omit important surface and zero mode contribu- 
I 

tions. The analysis recovers the noncovariant term 7+/p+. 

Another objective of this dissertation was to lay down some of the groundwork 

which is necessary for upcoming nonperturbative studies. The noncovariant countert- 

erms constructed in this work are applicable also for nonperturbative calculations. 

An essential step is the derivation of renormalization conditions necessary for the 

adjustment of the additional counterterms. In the case of QED (2+1) (the general- 

ization to QED (3+1) is straightforward) the Hamiltonian, consistent with covariant 

and gauge invariant perturbation theory was constructed explicitly. 

In the following we would like to outline some of the future challenges in nonper- 

turbative light-cone Hamiltonian dynamics. LCPTh provides a useful source of intu- 

ition for nonperturbative methods such as DLCQ or the light-front Tan-n-n-Dan&F 
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approximation. The connection between nonperturbative questions, i.e., an eigen- 

value problem 

(E - Hop = V@ (7.1) 

(the free problem is defined by Ho\Eo = EoUo) and the language of a perturbation 

expansion is given by 

(7.2) 

since each term in Eq. (7.2) presents a given order in perturbation theory and al- 

lows for a depiction in terms of LCPTh diagrams. Nonperturbative Hamiltonian 

formulations often use an effective version of Eq. (7.1), such as 

in order to compute physical observables within a certain subspace of Hilbert space 

(such as e+e- or q?j for fermion-antifermion subspaces in QED and &CD, respec- 

tively). The corresponding effective potential V&r is of infinite order in the coupling 

constant since Fock states of arbitrarily high particle content can couple to the sys- 

tem under consideration. Most methods, however, such as a finite Tamm-Dancoff 

truncation, approximate V,ff by a renormalized kernel verr which is of finite order 

in the coupling only. The solution of the corresponding integral equation iterates 

those kernels ad infinituum and generates LCPTh diagrams up to infinite order in 

perturbation theory [see Eq. (7.2)]. Th e ro p bl em is that these diagrams are highly 

reducible and form a nongauge invariant set thereof. In gauge theories in light-cone 

gauge this results in k+ singularities, due to incomplete cancellations of its gauge 

terms. 

A possible solution of this problem might be the addition of nongauge invariant 

counterterms to i/err which could simulate the effect of missing higher-order kernels. 
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However, some of those counterterms are expected to be nonlocal as well as of higher 

order derivative structure. This could give rise to run-away solutions which would 

aggravate the numerical treatment of the problem. 

With the introduction of n counterterms, n additional parameters cl, ~2, a - -,cn 

have been introduced into the formalism. If one wants to go beyond the construction 

of phenomenological models those parameters need to be determined by a set of n 

constraints such as 

< 4fk(Cl,C2,’ *-,cl)lil >= 0 (7.4), 

where ]$ > corresponds to eigenstates to (7.3) and k = 1,. . ., n . The challenge is to 

construct the functions fk, k =‘ 1, . . a, n explicitly. Possible constraints could be given 

by current conservation, rotational invariance, and a zero mass for the photon (in 

case of QED). Note that ];j > implicitly depends on cj,j = 1, - - ., n and is of infinite 

order in the coupling [6] . Thus Eq. (7.4) would determine the new parameters to 

all orders in the coupling. Another challenge is given by the consistency check for 

the obtained set of constants cl,c2,. . .cn. A possible way could be the consistent 

overdetermination by means of further constrains. 

The last challlenge to be mentioned in this context concerns the scale-dependence 

of computed quantities in nonperturbative methods. Scale dependencies are gener- 

ally introduced through ultraviolet counterterms in the construction of the effective 

renormalized kernel. At the fixed point of the theory, the parameters can be adjusted 

(with respect to th e scale) such that physical observables are scale independent. In 

cases where the fixed point of the theory lies in the weak coupling regime, the per- 

turbative ,&function should be recovered. 

The central objective of this work was the study of LCPTh as a competitive tool 

for standard Feynman diagram calculations. The main challenge here is to generalize 

the algorithm for non-Abelian theories. One might be able to reduce the labor associ- 
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ated with the computations of one and two-loop processes in QCD and the Standard 

Model considerably. Examples of interest are the two-loop corrections to top quark 

decay, QCD-corrections to charm and beauty production in deep inelastic scattering, 

as well as the higher loop corrections to the various spin-dependent parton distribu- 

tions [7]. In particular the last example suggests the use of light-cone quantization, 

since this is the most natural frame to--discribe structure functions. Computing 

higher-order corrections to these spin-dependent structure functions could also help 

to clarify whether the Burkardt-Cottingham sum rule [8] is violated. 

_. - 

Finally, we present a list of statements concerning renormalization which have 

been developed in this dissertation. This list serves as a glossary and provides the 

reader with the necessary orientation of the results in this work. 

l Alternate Denominator (See Appendix A in Chapter 4.) is a method in- 

troduced in Ref. [9] which is designed t o 1 ocally cancel quadratic divergences 

as well as perform the mass renormalization of fermion self-energies. In or- 

der to ensure a consistent description for general fermion self-energy diagram 

amplitudes, the method must be modified: Contributions where instantaneous 

fermions are adjacent to the self-energy from the right and left must be excluded 

from the alternate denominator subtraction. In addition, QED in A+ = 0 

gauge requires further restriction to the gPv piece of the photon propagator 

only. 

l Counterterm. In addition to counterterms which are necessary in a man- 

ifestly covariant theory, LCQ requires additional counterterms. This is gen- 

erally the case even for superrenormalizable theories (see also noncovatiant 

structure of LCQ and Superrenormalizable Models). For the construction of 

those counterterms see vertex muss, kinetic muss, alternate denominator, null- 

subtraction. 
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l Dimensional Regularization (See Appendix C in Chapter 4.) can be intro- 

duced in LCQ by altering the dimension of perpendicular (with respect to the 

z-direction) degrees of freedom. 

l DLCQ see Theta function regulators in DLCQ. 

l Gamma-plus over p- plus terms. (See for example Section 5.4.) In the case 

of the Yukawa model the noncovariant structure of the theory (see Rotational 

Invariace) is restricted to terms proportional to +y+/p+. The same statement 

applies for Feynman-gauge QED diagrams which contain no vacuum polariza- 

tion contributions. Noncovariant terms of this kind are due to an improper 

treatment of surface and zero-mode contributions in LCQ (see Surface and 

Zero Modes ). They can result in quadratic and logarithmic divergences in LC 

field theories (see Quadratic Divergence). 

l Jellyfish Problem. (See Section 4.2.) Jellyfish diagrams are defined by in- 

serting n (n 2 0) photons into the one-loop fermion self-energy. In QED 

in Feynman gauge jellyfish diagrams give rise to a quadratic divergence (see 

Quadratic Divergence). In the continuum version of QED in A+ = 0 gauge the 

problem is reduced to n = 0 (which is actually just the fermion self-energy). 

However, the problem can also occur in A+ = 0 gauge since most regular- 

izations of the associated gauge singularity (see light-cone gauge singularity) 

reduce the small z behavior of the photon propagator to that in Feynman 

gauge. Independent of that, quadratic divergences are unavoidable in A+ = 0 

if questions such as current conservation are investigated. For the removal of 

the quadratic divergences in the jellyfish graph see NuZI-Subtraction. 

l Light-Cone Gauge Singularity. See Section 4.3. 

l Kinetic Mass. See vertex mass. 

l Noncovariant Structure of LCQ. See Rotational Invariance. 
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l Null Subtraction (See Section 4.2.) is a method which locally subtracts 

quadratic divergences in n-photon jellyfish diagrams (see jellyfish problem). 

The subtraction term is given by setting the total light-cone energies and perp- 

momenta for the bad component of n-photon jellyfish (sub-) diagrams to zero. 

l Pauli-Villars Regularization. (See for example Section 5.2.) LCPTh of 

QED and the Yukawa model is equivalent (at least to two loops) to ordinary 

covariant Feynman perturbation theory if Pauli-Villars regularization is used. 

However, unlike regularization in a covariant formalism, where only one Pauli- 

Villars photon and fermion are necessary, three ghost particles of each type 

must be introduced in LCQ. If noncovariant terms (see also Gamma-plus over 

p-plus) are consistently removed at the one-loop level, higher loop contributions 

require only one Pauli-Villars particle for each type. Pauli-Villars regulariza- 

tion plays an extraordinary role among regulators in LCQ. 

l Quadratic Divergence. (See for example Section 4.2.) LCQ involving 

fermions give rise to two kinds of quadratic divergences (QD). 

1. QD which cancel when all light-cone time-orderings, corresponding to a Feyn- 

man diagram, are summed. Those divergences are due to the lack of absolute 

convergence in Feynman integrals. A similar problem occurs in ordinary time- 

ordered perturbation theory. A regulator consistent with covariance is essential 

in this case in order to recover the correct continuum answer. An example is 

given in the amplitude of diagram 6 in Chapter 4. 

2. QD associated with a noncovariant structure of LCQ (see Rotational Invari- 

ance). For the removal of quadratic divergences see Alternate Denomainator, 

Kinetic Mass, Null-Subtraction, Tensor Method, Vertex Mass, Pauli-ViZZars 

Regularization. 

l Rotational Invariance. (See for example Chapter 6.) Unless surface--and 

zero-mode contributions (see surface and zero modes) are treated properly, 
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LCQ violates rotational invariance for physical S-matrix elements. Those rota- 

tions mix longitudinal with perpendicular degrees of freedom. The problem is 

not expected to occur for scalar theories with energy-independent interaction 

vertices (see also Gamma-plus over p-plus terms). 

l Self-Induced Inertia (See Section 6.1.) terms arise from normal-ordering of 

the Hamiltonian and can be interpreted asmass counterterms which naturally 

arise in LCQ. Their treatment is a regulator dependent. In Pauli-Villars reg- 

ularization fermion self-induced inertias vanish in the case of QED and the 

Yukawa model. This is due to their independence on the photon (or boson) 

mass. Self-induced inertias are of second-order in the coupling and do not give 

_ rise for a consistent renormalization in higher loops. 

l Superrenormalizable Models. (S ee Chapter 1.) LCQ of superrenormal- 

izable models such as QED 2 + 1, QCD 2 + 1 or the Yukawa model in 1 + 1 

dimensions show divergent structures unfamiliar to manifestly covariant formu- 

lations. The cause is given by a breakdown of parity invariance in naive LCQ, 

which is due to an improper treatment of surface and zero mode contributions 

(see Surface and zero Modes). 

l Supersymmetry. (See Appendix D in Chapter 6.) The supersymmetric 

extensions of the Yukawa model, known as the Witten-Zumino-Witten model, 

does not avoid the necessity of noncovariant counterterms (see counterterms). 

l Surface and Zero Modes (See Section 6.4.) can give rise to nonzero con- 

tributions when performing the light-cone energy integration in Feynman in- 

tegrals. Surface and zero modes are omitted in naive light-cone quantization 

which can give rise to noncovariant structures of LC field theories (see. rota- 

tional invariance). This happens when a cancellation of light-cone energies in 

the numerator and denominators of Feynman diagrams occurs such that all 

poles lie either in the upper or lower complex-plane. 
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a Tensor Method. (See Section 4.2.) In the case of the fermion self-energy in 

the Yukawa model and QED in Feynman gauge the associated quadratic di- 

vergences (see Quadratic Divergence) can be consistently removed by relating 

the bad component of the self-energy to its good component. Lorentz invari- 

ance (see Rotational Invariance) is achieved by construction. The quadratic 

divergence is avoided in this case. In addition the usual mass renormalization 

must be carried out. In QED in A + = 0 the application of the tensor method 

is rather restricted due to the more complicated Lorentz structure of the self- 

energy. However, in the one-loop self-energy the tensor method can be used 

when restricted to the g,, piece of the photon propagator only. 

a Theta function regulators in DLCQ. (See Section 4.4.) Theta function 

regulators limit a function of the total light-cone energy of Fock states. Those 

regulators generally respect the kinematic symmetries of light-cone quantiza- 

tion but violate rotations which mix longitudinal and transverse degrees of 

freedom. Theta function regulators do not recover correct continuum answers 

for general perturbative processes, unless noncovariant counterterms are used. 

l Vertex Mass. In the Hamiltonian formulation of QED or the Yukawa model 

the vertex mass of the electron (positron) is defined as the mass appearing in 

the helicity flip vertex of the theory. In contrast, the kinetic mass appears in 

the free kinetic energy of the fermion. Whereas the (regularized) bare values 

for vertex mass and kinetic mass coincide in a manifestly covariant formulation, 

they must be tuned differently in LCQ in order to offset violations of rotational 

invariance (see Rotational Invariance and Gamma-plus over p-plus terms). 
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