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Abstract 

The Standard Model gives definite predictions for the W-photon couplings. 

Measuring them would test an important ingredient of the model. In this work we 

study the capability of a 500 GeV e+e- collider to measure these couplings. 

We study the most general C and P conserving WW7 vertex. This vertex 

contains two free parameters, K and X. We look at three processes: e+e- + 

W+W-, ey -+ WV and yy -+ W+W-. For each process we present analytical 

expressions of helicity amplitudes for arbitrary values of K and X. 

We consider three different sources for the initial photon(s). The first two are 

breamsstrahlung and beamstrahlung (photon radiation induced by the collective 

fields of the opposite bunch). Both occur naturally in the collider environment. 

The third is a photon beam generated by scattering low energy laser light off a 

high energy electron beam. 

We examine potential observables for each process, calculating their sensitiv- 

ity to K and X, and estimating the accuracy with which they can be measured. 

Assuming Standard Model values are actually measured, we present the region in 

the K - X plane to which the W couplings can be restricted with a given confidence 

level. We find that combining the three processes, one can measure K and X with 

accuracy of 0.01-0.02. 
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1. Introduction 

The Standard Model is widely accepted as the framework of contemporary 

high-energy physics. The spinor-vector couplings of the theory have been rigorously 

tested and verified. The vector-vector couplings, however, have hardly been subject 

to direct experimental test so far. [‘I Th e vector-vector couplings are completely 

determined within the Standard Model. Measuring their value is one of the most 

important tasks of the next generation of high energy colliders. 

An important role in this task will be played by e+e- colliders, which have 

always been invaluable in making precision high-energy measurments. In this the- 

sis, we present a complete analysis of the constraints on the Wy couplings possible 

from an e+e- collider. We concentrate on a particular design, NLC, currently 

under extensive study. 

In this introduction we outline the major points discussed in the thesis. We 

start with the theory of Wy couplings. Next we discuss current and future bounds 

on these couplings. In sect. 1.3 we briefly introduce the experimental setting. 

Sect. 1.4 deals with the three processes we consider. In sect. 1.5 we discuss in 

general terms the observables associated with the different processes. We conclude 

the introduction with an outline of the rest of the thesis. 

1.1 w COUPLINGS - THEORETICAL CONSIDERATIONS 

In this section we outline some theoretical considerations regarding the WWy 

vertex. We discuss C and P transformations, scale dependence and imaginary 

components in the various couplings. We give the simplifying assumptions used in 

this work. Finally we discuss the expected values of the various couplings in the 

Standard Model and in a few other models. 

The three vector vertex WWV, V being either y or 2, has been thoroughly 

studied!21 The vertex receives contributions from seven independent terms in the 
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Lagrangian.* Of these terms, three conserve both C and P, one violates both C and 

P but conserves CP, and three violate CP. The CP violating terms are not expected 

to receive significant radiative corrections in the Standard Model. Stringent bounds 

can be imposed on these parameters due to the smallness of CP violation observed 

in low energy physics. The fermion sector of the Standard Model violates C and 

P separately. It is, therefore, not surprising that fermionic loop corrections induce 

C and P violation in the boson [31 sector. In this work, however, we do not consider 

this C and P violating term. 

One of the three C and P conserving terms in the WW? interaction is fixed by 

the W charge renormalization. The remaining two terms are written in terms of 

the parameters K and X. In the Standard Model, IC = 1 and X = 0 at the tree level. 

K and X are related to the W magnetic dipole moment and electric quadrupole 

moment. We deal mainly with the WWy vertex. At some points we also need to 

refer to the WWZ vertex. In these cases we use fiZ and X, as the analogues of K. 

and X. 

Coefficients of individual Lorentz structures in the vertex function are called 

form factors. To first order in a weakly coupled theory such as the Standard Model, 

there is a simple tree-level relation between K and X and the form factors with which 

actual cross section calculations are carried out. It is clear on general principles 

that the WWy form factors must have a non-trivial momentum dependence. One 

must be very cautious when measuring their values, or even comparing potential 

bounds, at different energy scales. 

Only the Standard Model values of the WW7 couplings preserve tree level 

unitarity. In order for loop corrections not to violate unitarity, they have to drop 

like l/s at asymptotically high energies. However, this is an asymptotic result, 

which need only start at energies higher than the mass of the most massive particle 

running in the loops. 

* We neglect the scalar component of all vector bosons: a,, VP = 0, 8, Wj’ = 0. This condition 
is automatic for on-shell particles, and holds for virtual vectors if we ignore the fermion 
masses. 
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The imaginary parts of the form factors are essentially the absorptive part of 

the WW7 vertex function. Such effects are proportional to small coupling con- 

stants in a weakly coupled theory such as the Standard Model. However, they can 

be substantial if the W boson is strongly interacting in the relevant energy scale. 

Further, this energy scale must be such that new, strongly interacting particles can 

be created on-shell. We expect that in this case, the entire experimental picture is 

dramatically affected. 

In this work, we make several simplifying assumptions. First, we only consider 

the two C and P conserving terms K: and X. Second, we concentrate on Wy rather 

than WZ couplings. WZ couplings inevitably enter the process e+e- + W+W- 

which we examine here. In that case, we make the working assumptions sZ = 1 and 

X, = X, which are suggested from low energy experiments14’ All the experiments 

we consider run at, or below, 500 GeV. We assume the underlying scale of new 

physics is significantly higher, so that we can ignore the scale dependence of K 

and X. We also ignore the small Standard Model contributions to the imaginary 

component of K and X. 

Couture and Ng [51 have calculated the loop corrections to the W anomalous 

couplings in the Standard Model, including the effects of a heavy top quark. The 

results depend both on the top quark and Higgs boson masses. For a heavy top 

quark (mt > mz), this dependence is not steep. Neither K. nor X are very sensitive 

to the Higgs~ boson mass. For a Higgs mass of 500 GeV and top mass of 150 GeV, 

the corrections are AK = 5.5 x 10d3 and X = 8.5 x 10m5. It should be stressed that 

these corrections were calculated with all three bosons on-shell. At asymptotically 

high energies, one expects these corrections to drop as l/s. Some extensions of 

the Standard Model which do not significantly increase these corrections include 

two-Higgs-doublet models 161 171 and supersymmetry. 

Some “new physics” scenarios consistent with low-energy experiments do, how- 

ever, suggest significant deviations from the Standard Model tree level values. 

These include composite W’s [sl and non-decoupling effects of heavy quark PI loops. 
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Composite W models can give particularly large corrections to the W couplings. 

These corrections are typically scale dependent, and become large at scales ap- 

proaching the scale of compositeness. 

1.2 W COUPLINGS - BOUNDS 

Next we outline some of the major sources of bounds on WWy couplings. Cur- 

rent bounds are derived from unitarity considerations, loop effects on low energy 

experiments and, recently, CDF data. We also outline the bounds that can be 

extracted from experiments in future colliders. 

A theory differing from the Standard Model only in the value of the W cou- 

plings violates unitarity at high energy unless the anomalous couplings drop to 

their Standard Model value fast enough at high energies. Assuming fixed cou- 

plings, one can calculate the maximal allowed deviation from the Standard Model 

such that unitarity is not violated below some scale A. This is the unitarity bound, 

and it is based entirely on theoretical considerations. For A = 1 TeV, the bounds 

onAK=K- 1 and X are of order lfg’41 

Fixing the anomalous couplings, one can also calculate their effect on low 

energy experiments through loops involving the W boson. As the theory with 

anomalous couplings is necessarily non-renormalizable, one has to explicitly cutoff 

the loop integral at some energy scale A. The result of the calculation typically 

depend not only on A, but also on the method used for cutting off the integral. 

With few exceptions, low energy experiments also give bounds of order 1 for A,= 
1 Tev [4,10-121 

. 

On shell W production at the Tevatron allowed, for the first time, to impose 

scale independent bounds on AK and X. Due to low statistics, these bounds are very 

weak, of order 1O.I” With a luminosity upgrade, these bounds can be significantly 

A major improvement on the Tevatron results is expected when the Large 

Electron Positron facility (LEP) II starts producing W pairs through e+e- + 
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TV+ W- . Several authors have calculated that bounds of order 0.4-1.0 on the W 
[15,16,14] 

couplings can be expected from these experiments. 

Several authors considered measuring the W couplings in lepton-hadron col- 

liders.[17’181 HERA, with a center of mass energy of about 300 GeV is not very 

sensitive to K and X. In the LEP-LHC collider, however, a center of mass energy 

of 1.4 TeV allows relatively sensitive bounds, of order 0.1-0.2, on both couplings. 

The Superconducting Super Collider (SSC) 0 ff ers a very powerful tool for exam- 

ining W interactions at very high energies. The complex environment of a hadron 

collider makes precision measurements difficult. Due to the s/m& enhancement 

the total cross section for @j + Wr very sensitive to X, less so to AK. Bounds 

of order 0.01 for X and 0.1 for K are possible from that 14”” process. Because of 

the possible scale dependence of the W couplings, one should be cautious when 

comparing SSC bounds with those of lower energy machines. 

1.3 EXPERIMENTAL SETTING 

In this section we discuss the experimental setting considered in this work. We 

describe the underlying e+e- collider and the various photon spectra used. 

In this work we concentrate on a machine design commonly termed the Next 

Linear Collider (NLC).120’211 NLC is a linear eSe- collider with center of mass 

energy of 509 GeV. We assume an integrated luminosity of 9 fb-’ = 3000K1. 

Radiated photons play a very important role in high energy electron colliders. 

We consider three potential sources of photons. Any e+e- collision exhibits a 

radiated photon spectrum through bremsstrahlung. This radiation depends only 

on the electron energy. It is approximated to first order by the Weizsacker-Williams 

distribution. 

In high-energy linear colliders with very small spot size, a different mechanism 

accounts for what is potentially an even more important source of photons. As 

the electrons of one beam are passing through the other beam, they experience 
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a very strong electromagnetic field. The synchrotron radiation induced by that 

field is called Pv3l “beamstrahlung”. The actual beamstrahlung spectrum depends 

sensitively on machine parameters. We work with one particular set of parameters 

that nearly maximizes this P31 effect. 

Ginzburg et a1!24’251 have suggested a scheme for converting a single-pass 

e+e- collider into an ey or yy collider. The conversion of high-energy electrons 

to photons is done by backward Compton scattering of high intensity laser light 

off the electron beams. This mechanism entails loosing very little luminosity; it 

reduces the center of mass energy by 20-30%. In such a yy collider built on top of 

a 500 GeV e+e- collider, the average center of mass energy is about 350 GeV. 

1.4 PROCESSES 

We examine in detail three processes: e+e- + W+W-, ey + WV and 77 + 

W+W-. The first is th e ra 1 lonal W pair production e+e- + W+W-. t d’t’ [21 In the 

Standard Model, unitarity is maintained by a delicate cancellation between the 

t-channel neutrino exchange and the s-channel annihilation diagrams. Only the 

latter involves three vector boson couplings. Due to this cancellation, the process 

is particularly sensitive to deviations from the Standard Model. That makes it a 

powerful tool for exploring new physics. One disadvantage of e+e- + W+W- is 

that it involves both Wy and WZ couplings. Separating the effects of the two 

channels is not easy. 

A different process occurring at NLC is e+e- -+ W+e?. The amplitude for 

this process is dominated by the diagram in which the positron emits a collinear, 

almost on-shell photon. In that case, the positron is likely to escape detection by 

going down the beam pipe. The cross section in this case can be approximated by 

that of the reaction ey + WV. While the complete calculation of the entire process 

is essential for comparison with actual experimental results, it is not crucial for 

estimating the process’ sensitivity to anomalous couplings. The simpler ey + WV 

is the second process we consider. The process ey + WY has several advantages 
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that make it an important complement to e+e- + W+W-. 126-291 First, it only 

involves Wy couplings, avoiding the complications associated with separating 2 

and 7 couplings. Second, its total cross section approaches a constant rather than 
dropping like l/s. Even at NLC energies it has a very large cross section, allowing 

excellent statistics even with modest integrated luminosity. Finally, since the W 

decays to a muon and a neutrino, the experimental signature is extremely simple 

- a single muon scattering against nothing. Backgrounds for this signature are 

virtually nonexistent. 

The third process we consider is W pair production via photon fusion, yy 4 
w+ w- [WWI The yy luminosity in an ordinary e+e- collider is small for high 

energy photons. The process can better be utilized in the setting of a dedicated yy 

collider. In such a collider, yy + WsW- is one of the dominant processes. Like 

ey + WV, it only involves WY couplings. But unlike the two previous processes, 

ry + W+W- also involves the four vector vertex WWyr. That vertex has not 

been fully analyzed. In this work we use its simplest form which still consistent with 

arbitrary values for K and X. In order for the process to satisfy the electromagnetic 

Ward identity, the WWry vertex has to depend on X in a form first suggested (for WI different reasons) by Aronson. 

1.5 OBSERVABLES 

In this section we consider in general terms some of the observables associated 

with the different processes. These include the total cross section, the angular dis- 

tribution, the ratio between longitudinal and transverse W production and asym- 

metries associated with photon polarization. Finally, we outline the method used 

to calculate potential bounds. 

The total cross section, with minimal cuts, is a simple, yet very sensitive mea- 

sure for anomalous couplings. Measuring the total cross section requires knowledge 

of the total luminosity, as well as backgrounds, triggering and detector efficiencies. 

Systematic errors in this measurement are relatively large. Many of these errors 
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are canceled by measuring the ratio of different cross sections. One such ratio is 

the forward-backward asymmetry. Another, which we call IO is the ‘in/out’ ratio 

between production at low and high values of 1 cos 61. 

One of the most sensitive measures to the anomalous couplings is the ratio 

between longitudinal and transverse W polarizations. By the equivalence theo- 

rem, in the high energy limit, the longitudinal W degree of freedom behaves like 

the Higgs Goldstone boson it absorbed. As such, its interactions are more sen- 

sitive to anomalous behavior originating in the Higgs sector. More generally, it 

is the (s/m2,)-like term in the longitudinal polarization vector which has partic- 

ularly ‘bad’ high energy behavior. In the Standard Model, delicate cancellations 

prevent that bad behavior. Any deviation from Standard Model couplings poten- 

tially violates these cancellations, increasing dramatically the total cross section 

for longitudinal W production. 

Both e+e- + W+W- and yy + W+W- allow the determination of the 

direction of one W’s decay products with respect to the W direction of motion. 

This can be done most easily in semi-leptonic decay events, i.e. events in which 

one W decays leptonically, while the other decays hadronically. Summing the 

visible momentum in the hadronic showers gives the total momentum of the IV. 

Comparing the direction of the charged lepton to the direction of the hadronically 

decaying W, one can calculate the leptonic decay direction in the W center of 

mass frame.. From that angular distribution, one can extract the ratio between 

transverse and longitudinal W production. 

Table 1 compares the three processes we examine in this work in terms of their 

advantages and disadvantages as probes of the W anomalous couplings. 

It has been suggested that precision analysis of experimental data should be 
[331 done by direct fitting to the theory. However, in this work we only try to assess 

the general sensitivity one can expect in future experiments. The method we use 

is as follows. We calculate the theoretical expectation value of various observable 

(e.g. total cross section or forward-backward asymmetry) as a function of K and 
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Table 1. Advantages and disadvantages of the three processes. 

Advantages Disadvantages 

e+e- -+ W+W- l Particularly sensitive due to l Both Wy and WZ couplings 
SM cancellations. are involved. Separating their 

l W polarization can be different effects can be diffi- 

extracted. cult. 

ey+Wv 

l Relatively small cross section. 

l Large cross section allows l Relatively insensitive to 
good statistics with modest anomalous couplings. 
luminosity. 

l W direction is not recon- 
0 Simple experimental signa- structible in leptonic decays. 

ture, with very little back- 
ground. 

yy + w+w- l Anomalous couplings enter l Involves the four vector ver- 
twice, increasing sensitivity. tex, complicating analysis. 

l In an dedicated yy collider, l Cross section small in tradi- 
photon polarization adds im- tional eSe- collider. Requires 
portant information. a dedicated yy collider. 

l W polarization can be 
extracted. 

X. Then, we give a very rough estimate of the experimental precision with which 

one can expect to measure the same observable. We mainly consider systematic 

errors. The-cross sections of all the processes involved are large, and systematic 

errors usually out-weigh statistical ones. Finally, assuming Standard Model values 

are actually measured, we estimate what bounds can be extracted on the values of 

the anomalous couplings. 

1.6 OUTLINE 

This dissertation proceeds as follows. Chapter 2 examines in detail the W 

couplings. We present the complete Lagrangian and derive an expression for the 

vertex. We then examine other bounds on the W anomalous couplings, from 
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unitarity considerations, low energy experiments, and potential bounds from other 

high-energy experiments. 

Chapter 3 concentrates on W pair production via e+e- -+ W+W-. We start 

with a detailed derivation the helicity amplitudes for the process. Next we examine 

which quantities are experimentally observable, estimate the accuracy with which 

they can be measured, and calculate their dependence on K. and X. We discuss 

the principles used for extracting bounds on the anomalous couplings, and finally 

present these bounds. 

Chapter 4 follows a similar route analyzing the single W production ey + 

WV. After deriving expressions for the helicity amplitudes, we discuss the three 

photon sources mentioned above: bremsstrahlung, beamstrahlung and Compton 

backscattered laser light. The effective luminosity and its use in calculating cross 

sections are discussed. We use the effective luminosity to calculate experimental 

observables, and extract from them potential bounds on K and X. 

Chapter 5 deals with W pair production via photon fusion, yy + W+W-. The 

chapter follows much of the same steps of the previous two, deriving expressions for 

the helicity amplitudes, using the effective luminosity to calculate observables-and 

extracting from them potential bounds on K: and X. We present our conclusions in 

chapter 6. 

Results for all the calculations are presented as helicity amplitudes. For pro- 

cesses involving fermions this is conveniently done using the ‘Vector-Equivalence’ 

technique which provides simple analytic matrix element level expressions. This 

technique is described in appendix A. All the calculations presented here were as- 

sisted by HIP[341 - a set of packages for performing high-energy calculations using 

Mathematica!351 Mathematics is a program for performing mathematical calcula- 

tions, both symbolic and numeric, on the computer. HIP is described in detail in 

appendix B. 
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2. Anomalous Couplings 

In this chapter we discuss the anomalous couplings in the WWy vertex. In the 

first section we present the most general Lagrangian for the WW7 vertex. The 

Feynman rule for the vertex is derived. The discussion follows closely sect. 2 of the 

very useful paper of Hagiwara, Hikasa, Peccei and Zeppenfeld.12’ Our presentation 

is slightly more general in that we do not consider any particular kinematics. We 

then restrict ourselves to the C and P conserving components of the vertex. 

In the second section we discuss current bounds on K and X. Until very recently, 

two sources for these bounds were generally available: theoretical unitarity bounds 

and low energy experiments in which the vertex appears in loop corrections. Samuel 

et al. have analyzed results from CDF to give the first tree level (albeit very weak) 

bounds on K and x.[” 

The third section outlines the potential of other high-energy colliders. The 

colliders under consideration are lower energy e+e- colliders (LEP-II), high-energy 

hadron colliders (SSC and LHC) and electron-proton colliders (HERA and LEP- 

LHC). 

2.1 LAGRANGIAN AND DEFINITIONS 

The general coupling of two charged vector bosons with a neutral vector bosons 

can be derived from the following effective Lagrangian: I4 

Lwwv = igv 
[ 
g~(W~,W’V” - W,‘KW”“) + KvW~WvV” + ~w~pw~“vvA 

“2w 

where V stands for either the photon (V = 7) or the 2 (V = 2) fields, W is the W- 

field, A,, = tIpA,, - &A,, v,v = $spvpaVpa, and (AYpB) = A(dJ?) - (d,A)B. 
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The seven operators in (2.1) exhaust all possible Lorentz structures if we neglect 

the scalar components of all vector bosons: 8,Vfl = t3,Wfi = 0. This condition 

is satisfied automatically for on-shell W’s and Z’s and for both real and virtual 

photons. If a virtual W or a 2 couples to a fermion line, the scalar component is 

proportional to the mass of the fermion. In the processes we consider, the term is 

of order the mass of the electron, and we may safely neglect it. 

The corresponding Feynman rule with momenta as in fig. 1 is PI 

il?P;p@(q,g,P) = ig, 
1 
fr(q - q)‘“g”” - X- mzw(q - q)fiPaPD t f3y(Pag’B - Pbg”O) 

+is,V(Pag’lp + Ppgp”) t i f5YFPP(q - & 

Figure 1. The general WWV vertex. 

All the form factors f;V are dimensionless functions of P2, q2 and ?j2. To lowest 
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order, the form factors are related to the Lagrangian parameters via 

P2 
fi” = gl” t 2,2&Q 

W 

f3" =g;tKvtq;;2q2xv, 
W 

fl = g4y - qii2q2iXv, 
W 

f2” = xv, 

P-3) 

Contributions from higher dimensional operators in the Lagrangian give a P2, q2 

and q2 dependence of the form factors. The form factors are real for P2 < 0, q2 < 0 

or q2 < 0. The form factors may have imaginary parts above threshold. 

Without losing generality, we fix the overall coupling constants to be 

+/ = -e, gz = -e cot 8w, (24 

where -e is the electron charge and 8~ is the weak mixing angle. The W charge 

determines g1 - ’ - 1. G, and A, are related to the magnetic dipole moment pw and 

electric quadrupole moment Qw of the W+ by 

Pw = $(l t K-y + A,), 
W 

Qw = --$(K~ - A,). P-5) 

The three couplings gl, K and X are even under both C and P transformation. 

Two couplings, i and i, conserve C but violate P. They are related to the 

electric dipole moment d w and the magnetic quadrupole moment Qw of the W+ 

bY 

d, = (2.6) 

The remaining two couplings of eqn. (2.1), g4 and gg, violate C. g4 respects P 
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Table 2. Properties of the couplings of eqn. (2.1) under C and P. 

P C CP 

91, 4 x t + t 

k, zi - t - 

g4 t - - 

s5 - - t 

whereas g5 violates P and is thus CP conserving. The properties of the various 

couplings under C and P are summarized in table 2. 

The imaginary parts of the form factors are essentially the absorptive part of 

the vertex function. Such effects are proportional to small coupling constants in 

a weakly interacting theory such as the Standard Model. A strongly interacting 

theory could contribute significantly to the imaginary parts, but only if new par- 

ticles can be produced on-shell. In that event, the entire experimental picture is 

dramatically affected. 

In this work we only consider the C and P conserving couplings gr, K and X, 

though it should be noted that fermion loops contribute directly to g5 as well. We 

also neglect the imaginary components of K and X. 

2.2 UNITARITY AND LOW ENERGY CONSTRAINTS 

A WW7 interaction Lagrangian with fixed, non Standard Model couplings 

violates unitarity at sufficiently high energies. Unitarity bounds on the value of 

the anomalous couplings are calculated by demanding the tree level unitarity is not 

violated below a fixed energy scale A. The assumption is that since the Lagrangian 

is a low energy effective approximation, there exists an underlying high energy 

theory which unitarizes amplitudes at the scale A. Baur and Zeppenfeldl” give 

the bounds 

]AK/ < 9 for X = 0, (2-7) 
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and 

1x1 < f$y for ~=l, (2.8) 

where AK = K - 1 and A is in TeV. Here and henceforth, we use K and X for IC-, 

and X,. 

Most current experimental bounds on K and X arise from loop effects, because 

so far almost no particle accelerator possesses sufficient energy or luminosity to 

produce on-shell W’s directly. The one exception is discussed below. If the WW7 

vertex deviates from its Standard Model value, the resulting theory is not renor- 

malizable. Therefore, the theory is not fundamental, but rather is a low energy 

approximation of a more basic theory characterized by some (high) energy scale 

A. Results of loop calculations typically depend on that energy scale. The exact 

result also depends on the regularization scheme used in doing the loop integral. 

Since loop effects from different sources can interfere destructively, these estimates 

also assume that the non standard couplings are the only source of new physics 

in the loop diagram. Further, another basic assumption is that the value of the 

couplings is independent of the loop momentum. This assumption is particularly 

questionable in integrals dominated by the cutoff scale, which is also the scale of 

the physics giving rise to the anomalous couplings. 

Some of the more stringent bounds derived.from low energy experiments are 

the following: Calculating the effects of non Standard Model values for K and X 

on the (g - 2) factor of the muon, and comparing to current experimental results, 

Grau and Grifols get WI 

-2.09 < AKlog(A2/m&) - X < 5.54. (2.9) 

Using e+e- + f7 cross-section data from PETRA, and taking X = 0, van der Bij 

deduces 1”’ 

IAK(A/mw)l < 33. (2.10) 

Alcorta et al. rely[12] on results from the polarization asymmetry in e-D scattering 

15 



at SLAC, and taking X = 0 again, give 

10.6h - 0.4(~+1 < $ (2.11) 

(A in TeV.) 

Neutrino-nucleon scattering experiments give [41 strong correlation between K 

and KZ: 

AKZ + (cos O& + :)A& + sin B&An2 m2, < 0.015- 
A2 * 

(2.12) 

The allowed values form a narrow ellipse-shaped strip in the ~-6~ plane. 

Data on the heavy boson mass ratio were used by Kane, Vidal and Yuan to 

strongly correlate [41 X and X,. They find (for A = 1 TeV) that one may approx- 

imately take X = X, for X,X, > 0.15. Th is restriction enforces an approximate 

custodial SU(2) y s mmetry relating the W* and W3 fields. A term of the form 

&CWa WbvJJ7CrP in th 
flu T e unbroken Lagrangian is explicitly custodial SU(2) sym- 

metric. Expressed in terms of the y and 2 fields, in gives rise to the condition 

x = A,. 

To summarize, the strongest independent bound on K from low energy experi- 

ments is of order lOO%, while the best result on X is [XI < 0.6 (eqn. (2.8)) coming 

from unitarity considerations. 

2.3 OTHER HIGH-ENERGY BOUNDS 

In this section we discuss bounds from future high-energy colliders. Baur and 

Berger considered a luminosity upgrade of the Tevatron to 100 pb-l.[13’ Using the 

process @’ + Wy they predict bounds of 1.1-1.5 on [Alcj and 0.38-0.47 on 1x1 

(90% confidence limit). 

The first significant on-shell W production in a e+e- collider is planned in 

LEP-II. With center-of-mass energy of 190-200 GeV, the collider is designed for 

precision study of the interaction e+e- -+ W-‘-W-. Hagiwara et al. examined 
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the process in detail, but gave only a brief discussion of potential bounds from 

LEP-II. 121 Kane, Vidal, and Yuan calculated the dependence of the total cross 

section on n and A, and assuming it can be measured to lo%, concluded the 

bounds -0.54 < AK. < 0.94 and 1x1 < 0.5. Zeppenfeld studied the sensitivity 

of the process to K and K z, ignoring the couplings X and WI X,. His conclusion is 

that bounds of order 0.5 can be imposed on both IAlcl and IAK~I. Argyres et al. 

considered the total cross section for e+e- + L’s’ W-‘-W-y. In a 200 GeV e+e- 

collider, K can be measured with accuracy of order 1. 

Layssac et al. have studied a more complete set of observables associated with P41 the process e+e- + W+W-. Two scenarios where studied for discovery limits. 

In the first, AK. = AK, = 0 and X = X, were chosen, and a la bound 1x1 < 0.1 

was deduced. In the second scenario, the choices X = X, = 0 and AK = AK, led 

to the potential bound ~AK( < 0.05. In all cases, the authors assumed a uniform 

experimental accuracy of 3-4% on all integrated quantities. In the case of a 500 

GeV collider, these bounds would improve by a factor of 3 to 4. 

Baur and Zeppenfeld calculated the sensitivity of the process eq + eWq' in 

the context of an ep collider. 117’ Two collider designs were considered. In HERA, 

a 30 GeV electron beam collides with an 800 GeV proton beam. In a proposed 

LEP-LHC collider, the corresponding energies are 60 GeV and 8 TeV. Assuming 

the standard NW.2 vertex, bounds of order 0.5 (0.2) on AK and 1.2 (0.1) on X 

can be extracted with 90% confidence limit from the experiment at HERA (LEP- 

LHC). Zeppenfeld obtained slightly weaker potential bounds in the same colliders -I [I81 by considering the process eq -P vq y. This process has the advantage in that 

only Wy and not WZ couplings contribute. 

Baur and Zeppenfeld also carefully calculated the sensitivity of the process 

qij' + Wy in the context of the very high energy hadron colliders SSC and LHC 

with center-of-mass energies of 40 and 20 TeV respectively. Since the process can 

occur with a wide range of energy scales, they use scale dependent anomalous 
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couplings, varying like 

49 = (1 + ;;*2)2 9 (2.13) 

where S is the center-of-mass energy of the qif system squared. Their bounds, 

therefore, depend on a choice for A. A = 1 TeV gives (with 99.99% confidence 

level) the bounds IA/co1 < 0.26(0.34) and 1x01 < 0.039(0.054) for SSC (LHC). 

Kane, Vidal and Yuan used fixed couplings, resulting in much stricter bounds, of 

order 0.1 (0.2) for AK and 0.01 (0.02) on X in SSC (LHC).[“’ 

The bounds derivable from different future colliders are summerized in table 3. 

In comparing these results, it should be kept in mind that the various authors differ 

on several important points in their analysis. In sampling the multi-dimensional 

space of the various couplings, some authors fix all but one of the couplings, while 

others allow independent or partially independent variation of each coupling. Con- 

sidering experimental errors, some authors consider only statistical errors, others 

include systematic errors. Typically, systematic errors of 5% in measuring total 

cross sections are used. The confidence limit (C. L.) used in calculating the bounds 

varies from 68% to 99.99%. Finally, while all authors consider the total cross sec- 

tion as one observable, some but not all also consider angular distributions. 

Table 3. Bounds possible at different future colliders. 

- Tevatron upgrade LEP II HERA (LEP-LHC) SSC (LHC) 

Type PF e+e- eP PF 

C.M. Energy 1.8 TeV 190 GeV 314 (1400) GeV 40 (20) TeV 

Process d--Y e+e- + W+W- eq -9 eWq’ Qd-+W-Y 

Bounds: AK. 1.3 0.7 0.5 (0.2) 0.26 (0.34) 

x 0.4 0.5 1.2 (0.1) 0.039 (0.054) 

c. L. 68% 68% 90% 99.99% 

References 13 2, 4, 14, 15 17, 18 4, 19 
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In conclusion, colliders scheduled for operation in the next decade or so can 

increase our sensitivity to K to order 0.3, while measuring X with accuracy of order 

0.04. 
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3. e+e- -b W+W- 

3.1 INTRODUCTION 

e+e- + W+W- is undoubtedly the most thoroughly studied process occurring 

in an NLC-type collider. The reason is that this process offers a combination of 

reasonable statistics and particular sensitivity to unknown parameters both within 

and outside the Standard Model. 

Analyzing the process e+e- -+ W+W- is complicated because both the photon 

and the 2 couplings of the W are involved. For each neutral boson V, the number 

a priori independent C and P conserving parameters in WWV vertex is two. As 

both the photon and the 2 take part in e+e- + W+W-, the total number of 

parameters is four. To simplify the analysis, and allow comparison with other 

processes, we reduce this number to two by assuming 

KZ = 0, AZ = A,. (34 

As we described in sect. 2.2, these assumptions are suggested by low energy exper- 

iments141 The constraint X Z = X, also follows from custodial SU(2). 

In the next section, we rederive expressions for the helicity amplitudes for 

this process: We th en calculate the cross sections for creating W’s of specific 

polarization. These cross sections cannot be measured directly, but give an insight 

into the physics of this process. Section 3 examines which quantities can actually 

be measured, and estimate the accuracy of these measurements. We calculate 

these observable quantities, estimating their sensitivity to K and X. In sect. 4 we 

discuss principles for estimating experimental bounds on K and X using data. We 

apply these principles to give the regions in the K-X plane corresponding tospecific 

confidence limits. 
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3.2 CROSS-SECTION CALCULATION 

The three Feynman diagrams contributing to e+e 

2. 

+ W+ W- are shown in 

+ 

f 

YJ 

Figure 2. Feynman diagrams for e+e- -+ W+W-. 

With both W’s on shell, and momenta labeled as in fig. 3, the general WWV 

vertex (2.2) takes the form 

+ (1 + Kv + xv)(p;gur - p;gc”y 1 

+ (1 + Kv + Xv)(pfgur 

where g, = e, g, = ecot 0~ and r = 4mkl.s. 

Pw’) , 1 
As we ignore the electron mass, here and throughout this work, the electron 

and the positron have the same helicity. The matrix element for this process is 
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given by 

MA-X+ 
u = M;-‘+(v) + M$-‘+ (7) + M;-‘+ (2) (3.3) 

where u is the electron helicity (a = 1(-l) corresponding to right (left) handed 

particles), A- and A+ are the helicities of the W- and W+ respectively, 

iA&‘+ = $‘*(p3, A-) c”*(p4, X+)is,(pz) ‘(“; j3) 

Mi-‘+ (7) = ccc*(P3, A-) t”*(p4, X+)~c(p2)(-ieya)uc(p1) (5) (iI&) 

-ie2 rT,v = ~&'*(P3,X-)EY*(P4,X+)iia(h)YrUo(pl) 7 ( > 

MisXt (2) = @*(m, A-) E'*(m, x+)au(p2)(ieguy,) (iI&) 
ie2 cot Bwgm 

= 
-mi ETP3, x.7 E”*(P4, ox7(P2)7r%(Pd 

e,,” 
s ( ) 

ecot 8w , 

(3.4 

W- W+ -.p> 4 
i’i (Ps+PJ 

Y 

Figure 3. The WWV vertex for e+e- + W+W-. 
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E’*(Ps, A-) and ff*(p4, A+) are the polarization vectors of the W- and W+ 

=PectivelY, PL = (1 - 75)/2, s = (~1 + ~2)~, t = (~1 - ~3)~, and eg, is the 

Z-electron coupling: 

sin Bw 6 (IL go=-- 
cm ew 2 sin 8~ cos ew (3.5) 

In the e+e- center-of-mass frame, the momenta in the process take the follow- 

ing values: 

qo, 0, 1,1) PI= 2 p3 = ~(~sin0,O,~cosS,l) 

(3.6) 

P2 = $(O,O, -1,l) fi p4 = -+-p sin 8,0, -p cos 8,l) 

where ,4 = d=. The W polarization vectors are: 

E*(P3,f) = -$(cos 8, fi, - sine, 0) &*(p4, &I> = -&OS 8, Fi, - sin 8,O) 

E*(P3,0> = +(sin 8,0, c0s 8, p) 
r ,5*(P4,0) = + 

d 
-sin e,O, - cos 8, p). 

P-7) 

In evaluating the spinor expressions, let us define a four vector 

v* = V&2,Pl) = fi(l, riA0> (3-8) 

(see Appendix A). We then h ave the following useful identities: 

Q7(P2) h7(p1) = k:. V6 

cg(P2) Icl It2 It3%(Pl) = (h - k2)(k3 * vu) + (k2. k3)(kl . va) (3.9) 

This is a special case of a more general mechanism discussed in Appendix A. 
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With the aid of these identities, the expressions for the matrix elements take 

the form: 

iMivAt (v) = 2t ;;;;w &L [ - P2. &*(P4, A+) e*(P3, q-Q 

+ Pl’ &*(p3, A-) C(p4, A+) ‘UL + (EYP4, A+>- E*(p3, x-))(p3*vL) 

- ‘1%wra cp*(P4, XS)(pl - p3)” ET*(p3, x-)‘vLQ] 

iMtsAt (7) 
rr 

= T qp3, A-) EV*(P4, x+)v;T 

rz 
iM;-‘+(Z) = sifzi ?*(p3, A-) C*(p4, X+)TI;~~~~~, 

(3.10) 

where we have used t*(p4, A+) . (pi-p3) = ~*(p4, A+) . (p4-p2) = +*(p4, A+) . p2. 

Substituting eqns. (3.2) and (3.1) we get 

- E(P3 * %)P3 * t*(P4, x+)p4 * E*(p3, A-) 

+ (1-t K + 8 [(P4 * E*(P3, A-)>( &*(P4, A+) * Da) 

- (P3 * E*(P4, A+))( &*(P3, A-) . WV)] 
I 

(3.11) 

i*~-X+(z) = ie~~~ 

K ) 
2 1t$ (P3 * %)( E*(P3, A-) * E*(p4, A+)) 

Z 

- %(P3 * d(P3 * &*(P4, x+))(p4 * E*(p3, A-)) 

+ (2 + w [(P4 * &*(P3, W( E*(p4, A+) . Va) 

- (P3 ’ E*(P4, A+))( c*(P3, A-) * tb)] 1 . 
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The component along the i axis of the total angular momentum of the incoming 

particles is CT. The component along the W- direction of motion of the total angular 

momentum of the final state is Ax = X- - X+. It is natural to factor out of the 

matrix elements the functions corresponding to this [361 rotation. The appropriate 

factor is d :A,(0), I where Jo = max(1, IAx]) is the minimum angular momentum 

transferred. The d functions used here are given in table 4. For future use we give 

some expressions not used for e+e- + W+W-. 

In the s-channel diagrams, only J = 1 is possible, and therefore M-+(7,2) = 

M+-(7, 2) = 0. Substituting the explicit four vectors from eqns. (3.6) and (3.7), 

and extracting some overall factors 

the matrix elements take the form 

A;-"+ (v) = 1 

sin2 ew(2 - r - 2p cos e) 
&AX-X+ 

r;z;-x+(7) = +;-“’ 

(3.12) 

(3.13) 

n;ly+(z) = pga cot ew s Jm2 B;-A+. 
Z 

The coefficients A and B are shown in table 5. 

While the individual matrix elements have a bad high-energy behavior, some 

diverging as 0(1/r), their sum is O(1) in the Standard Model. This behavior 

requires some delicate cancellations. These cancellations are evident from the table. 

In the Standard Model (and more generally whenever the photon and 2 couplings 

to the W are identical), BGsXt = BjeA’. For right-handed electrons, gR cot Bw = 1 

(eqn. (3.5)), and th e p o h t on contribution directly cancels the 2 contribution in the 

limit s/(s - rni) + 1. For left handed electrons, the photon contribution again 

25 



Table 3. The functions dJa”x,,ax,(6) 

@*2,0 = d2 0,*2 

d&,*1 

d&l 

4,*1 = d&,0 

$,3,2 

d1j2 
-1/2,*1/2 

k$(l+ c0sO)sid 

fi(l - cos e) sin 8 

% 
2 t sin2 8 

g1 + cod) 

$(I - cos e) 

f&sin 8 

&(I + cos e)3/2 

-5 
2 i sin edEfTG-3 

$/v 

cancels the first part of gL. The bad high-energy behavior multiplying the second 

part of gL is canceled by the neutrino diagram contribution: 

AX-X+ 1 AX-X+ @-A+ 

sin2 8w(2 - r - 2/? cos 6) 
+ 

2sin20w * 1 -case + 2sin2&+7 (f --) 0) 

(3.14) 
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Table 5. The coefficients AXl*X” and II>*” of eqn. (3.13). 

(x-x+) AX-X+ p-X+ 
Y 

p-X+ 
Z 

Jz 
(2p - 2 cos 8 + ~-)/fi 

(2p - 2 cos 8 - ql/; 

pcose 

(2p - 2 cos 8 + pr)jr 

0 

(1 t K t X)/J;; 

(1 t K t A)/& 

1 -I- 2X/r 

26/r $1 

0 

(2 •t wfi 

(2 + wfi 

1 + 2X/r 

2/r + 1 

Using couplings outside the Standard Model, this good high-energy behavior 

is not maintained for arbitrary values of K. and X. In the high-energy limit, the 

leading terms (at the matrix element level) arise from two sources: the K term 

of &foo(y) and the X term of &fi”-- (2) which is not canceled by the photon 

diagram contribution. The leading terms at the matrix element level are 0(A~/r) 

andO(X/ ), h r w ere AK = ~-1. Squared, these terms are O(AK~/~~) and O(X2/r2). 

The next-to-leading terms, O(Alc/r) and 0(X/r), are cross-terms between the 

leading and O(1) t erms in the matrix element. The relevant matrix elements are: 

1 

2 cos2 ew + O(r) 

Mi” = --e2sine 
YAK 1 
-- 

r 4 ~0~2 ew sin2 ew 
+ O(r) (3.15) 

Mz+,-- = -e2 sine X 
sin2 iw ; + O(f)* 

Squaring and summing over polarizations, the leading behavior is 

c lM;-‘+ j2 =e4 sin2 e -!- 8At~~ -I- 
x-,x+ ,d 

[ ,2 ( 2x2 ) - $c;s;;;;;f;w] sin2 0~ 

to(y) to(F) tO(1) 
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An important point to notice is that the angular dependence factors out of the 

leading terms in the expression. If we draw the curve on the n-X plane on which 

the the differential cross section is equal to its Standard Model value, its shape (to 

leading order in l/r) d oes not depend on t9. This shape is shown schematically in 

fig. 4. 

1.5 

1.0 

0.5 

0.0 

I I I 

-1 -0.5 0 0.5 1 

w 

Figure 4. Schematic shape of the curve corresponding to a Standard Model value of the 

differential cross section The top and right x’s correspond to the points (0, x,JsinBw) and 

(XO, z0/2 sinew) respectively, where xo = [( 1 + 2 sir? Bw)/(8 cos2 Bw sin ew)] r. Note that the 

entire shape scales like P. 

The differential cross section for producing a W pair of specific polarization is: 

,x-x+ 1 =- 
J 

df) t2d4 
4 -+“i-X+ I2 = - d(cos O)lM;-‘+ I2 

= $3 jd(COS e> Mt$‘+ 

-1 

where 

(3.17) 

(3.18) 
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Figure 5 shows the differential cross section for producing W’s of various he- 

licitiy combinations. Figure 6 shows the dependence on K and X of the total 

cross section for producing W’s of various helicitiy combinations. These figures are 

the idealized cross sections, assuming monochromatic beams of perfectly polarized 

electrons. Note the strong dependence of the (00) combination on K, and of the 

(++) + C-4 combination on A. 

103 

102 

101 

100 

10-l 

10-2 

10-3 

1 n-4 

n=l, A=0 

- - - - (+0)+(0-) (+0)+(0-) 

n=l.l, A=0 
I 

: /;’ // 

Ic=l, A=O.l 

i I 

. I 

.F I 
ir 
:i 
I I 

AY . 

-1 0 l-l 0 l-l 0 1 
cost9 

Figure 5. Differential cross sections for producing W pairs of specific helicity combination 
with center-of-mass energy of 500 GeV as a function of cos 8. Here and henceforth, cross sections 
are given in units of R. 

The polarization of the individual W’s cannot be measured directly. The direc- 

tion of the decay products of the W, however, carries with it important information 

from which the polarized production cross sections can be extracted. 
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Figure 6. Total cross sections with center-of-mass energy of 500 GeV (‘1 cos0 < 0.81). The 

left frame shows the dependence on K. The right frame shows the dependence on A. The meaning 

of the lines is the same as in fig. 5. 

A priori one has to consider interference terms between the production ampli- 

tudes of W’S with different helicities. In practice, these interference terms vanish 

upon integration over the azimuthal angle of the W decay. 

Let us concentrate on the decay IV- + I-a. Let x be the angle between the 

charged lepton momentum and the W direction of motion, as measured in the W 

rest frame. The x distribution is then given by 

da = &px(x), dcosx x 
(3.19) 

where 
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(3.20) 

and 

p*l(x) = 3(l +$sxJ2 
(3.21) 

3( 1 - cos2 x) 
PO(X) = 4 - 

Using these formulas, one can use the x distribution to calculate the production 

rates of the various polarizations. 

3.3 OBSERVABLES 

In this section we discuss the various observables and assess their sensitivity 

to K and X. All the calculations in this section are performed for a 500 GeV e+e- 

collider, assuming perfectly monochromatic electron beams. Two types of errors 

are associated with each experimental measurement: statistical and systematic. 

As we show below, the total cross section for e+e- -+ W+W- in the Standard 

Model (I cos 01 < 0.8) is about 4 R. With an integrated luminosity of 9fbB1, the 

total number of events is approximately 1.25 x 10 4. Statistical errors on the full 

event sample are less than 1%. Systematic errors are more difficult to estimate. A 

detailed study can only be done using Monte Carlo techniques. Factors entering 

into the systematic errors include particle misidentification, uncertainty in the size 

of backgrounds, calorimeter accuracy, etc. In estimating systematic errors we rely 
[371 on related Monte Carlo studies, as well as on the accuracy reported from the 

recent SLC and LEP[381 experiments. As most systematic errors are 0.03-0.05, we 

simplify our analysis by ignoring the smaller statistical errors. This step is not 

allowed if the integrated luminosity is significantly smaller than the one we assume 

here. 

The most straightforward observable is the total cross section oror. To reduce 

uncertainties associated with particles escaping detection by going near the beam 
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pipe, we cut the angular integration at 1 cos 81 = 0.8. We assume a systematic error 

of 5% in total cross section measurements. Figure 7 shows the total cross section 

for e+e- + W+W- as a function of K for several values of A, while fig. 8 shows 

its dependence on X for several values of n. 

30 I I I 30 I I I 

0.0 

0 I I I 

-00.2 
I I I 

0.8 0.9 1 1.1 1.2 -0.1 0 0.1 0.2 
c h 

Figure 7. dTOT for e+e- -+ W+W- as Figure 8. u,,, for e+e- + W+W- as 

a function of K: for X = -0.2,0,0.2. a function of X for K = 0.8,1,1.2. 

Systematic errors associated with total cross section measurement may be re- 

duced by looking at ratios of cross sections. The first ratio we look at is the 

forward-backward asymmetry FB defined as 

FB = a(cos8 > 0) - a(cos8 < 0) 

a(cos8 > 0) + a(cos8 < 0)’ 
(3.22) 

Measuring the forward-backward asymmetry FB relies on charge identification of 

the W’s. Charge identification in events in which both W’s decay hadronically is 

challenging, though by no means impossible. Semi-leptonic events (i.e. events in 

which one W decays leptonically while the other decays hadronically), however, 

provide for precise charge identification. These constitute about 44% of the total 

event sample. With these events, we assume that FB can be measured with a 
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0.8 0.9 1 1.1 1.2 
Jc 

Figure 9. FB as a function of K for X = Figure 10. FB as a function of A for n = 

-0.2,0,0.2. 0.8,1,1.2. 

systematic error of 0.03. Figures 9 and 10 show the dependence of the forward- 

backward asymmetry on K and X. 

Additional information can be extracted from the W angular distribution by 

looking at the ratio 

10 = 4 cos 4 < 0.4) 
a(1 cod1 < 0.8)’ (3.23) 

Charge identification is not necessary for the determination of IO, and thus one 

can safely use the entire event sample. Here we assume that IO can be measured 

with a systematic error of 0.03. Figures 11 and 12 shows IO’s on K and X. 

The angle x between one of the W decay products’ momentum and the W 

direction of motion, as measured in the W rest frame can be measured for the 

leptonically decaying W in a semi-leptonic event. Measuring the total momentum 

of the hadronic jets and the momentum of the charged lepton, one is left with the 

three unknown parameters of the missing neutrino. Imposing the constraints that 

the total momentum equals that of the colliding electrons, and that the invariant 

mass of the neutrino-lepton system equals that of the IV, one can over-determine 

the neutrino momentum. Even allowing arbitrary energy loss to beamstrahlung 
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Figure 11. IO as a function of K for X = Figure 12. IO as a function of A for K = 

-0.2,0,0.2. 0.8,1,1.2. 

(which we do not consider in this chapter), one can calculate the neutrino mo- 

mentum up to a twofold ambiguity. Monte Carlo studies suggest that consistantly 

selecting the more probable solution does not significantly degrade the sensitiv- 

ity of the measured quantities to the anomalous [371 couplings. By measuring the x 

distribution one can easily derive the ratio L/T defined as 

(3.24) 

where L and T refer to longitudinally and transversly polarized W’s respectively. 

Here we assume that the L/T ratio can be measured with a systematic error of 

0.03. Figures 13 and 14 show the L/T ratio’s dependence on 6 and A. 

3.4 DISCOVERY LIMITS 

In assessing the discovery potential of an experiment, we always assume that 

Standard Model results are actually measured. We then ask what region in the 

K-X plane is still allowed based on the measured results. 

The individual measurements are assumed to have a normal distribution with 

standard deviation cr equal to the systematic error. Let fi(lc, A) be the theoretical 
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Figure 13. L/T as a function of K for Figure 14. L/T as a function of X for 

x = -0.2,0,0.2. Ic = O&1,1.2. 

dependence of the observable i on K and X, with error cri. The probability that we 

actually measure the value ]i is given by 

(3.25) 

While strictly speaking it only makes sense to talk about the probability of 
A 

measuring fi given a certain K-X combination, we interpret that same value as 

the probability for a given K-X combination given that ji was actually measured. 

As we assume Standard Model values are measured, each observable i defines a 

probability function on the K-X plane given by 

qK, A) = exp 
( 
_ (fib A> - fdL ON2 

24 )/ 
qJ21;. (3.26) 

Note that this probability function is not normalized, i.e. J P~(K, X)ddX # 1. 

One can get a good idea of the kind of bounds derivable from the observable i 

by plotting the region of all (6,X) such that /fi(~,X) - f;(l,O)l < nai for some n. 

In this work we always display the 2a regions corresponding to n = 2. 
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To combine the results of several observables we assume that their measurement 

is independent. The probability for a given point in the K-X plane is given by taking 

the products over all probability functions P~(K, X): 

P(K,X) = fiPj(K,X) 
i=l 

fi(K, A> - .fi(k 0) 
(3.27) 

ai 

where .L(K, A) = (fi(K, A) - f;(l, O))/ ai is the normalized observable. 

The probability function P(K, X) has to be normalized: 

(3.28) 

The new function ji)(lc, X) is evidently maximized at K = 1, X = 0. Unless all the 

observables have the same K and X dependence (i.e. ~;(K,X) = f;(c(~,X)) with the 

same c for all i), the function P(tc, X) drops to zero as either K or X approaches 

infinity. Based on that, let us define for every (Y (0 < cy < 1) a cutoff value PO(Q) 

such that 

J 
dKdAP(K, A) = cr. (3.29) 

B(Gq>El(~) 

The region to which a set of measurements can restrict K and X with a specific 

confidence level Q is then the region of all points (K, X) such that p(n, X) > PO(~). 

Typical confidence levels are 68% and 90%. 

Figure 15 shows the 2a regions for each observable discussed in the previous 

section. The central regions are the 68% and 90% confidence level bounds obtained 

by combining all the measurements. Note that the allowed region in each case is 

disconnected. One has to rely on other experiments to distinguish the AK = 0 and 

the AK M 0.115 regions. 

36 



0.2 

0.1 

0.0 

-0.1 

-0.2 _ 
-0.2 -0.1 0 0.1 0.2 

x 

Figure 15. The (2~) regions in the K-A plane from various measurements of e+e- -+ W+ W-. 

The regions in the center correspond to 68% and 90% confidence level bounds from the combi- 

nation of all measurements. 
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4. ey ---) Wu 

4.1 INTRODUCTION 

The second process we study is ey + WV. This process does not exhibit the 

same delicate cancellations as e+e- 4 W+W-, and is, therefore, generally less 

sensitive to non-Standard Model couplings. Since one of the diagrams involves 

the t-channel exchange of a heavy vector boson, the total cross section for this 

process remains constant rather than drop like l/s. At high energies (s >> m&), 

the process has a relatively large total cross section, allowing reasonable statistics 

with smaller effective ey luminosity. Only Wy couplings contribute, and so we 

avoid the complications associated with the 2 couplings. 

This chapter proceeds as follows. In the next section, we calculate the helic- 

ity amplitudes and the ‘idealized’ production cross section, assuming a perfectly 

monochromatic ey collider. This calculation follows the same general lines as the 

one carried out in section 3.2. In sect. 3 we consider the three potential photon 

sources. We introduce the effective luminosity and show how it is used in calcu- 

lating cross sections. Section 4 evaluates potential observables, presenting their 

dependence on K and X. Section 5 assesses possible bounds on K and X from the 

individual measurements, and combines them to given specific confidence limits in 

the K-X plane. 

4.2 CROSS-SECTION CALCULATION 

Two Feynman diagrams contribute to the process ey + lVv (fig. 16). Note 

that only left-handed electrons take part in the interaction. 

With one W and the photon being on-shell, and momenta labeled as in fig. 17, 
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+ e- 

A 

Figure 16. Feynman diagrams for ey -+ WV. 

the WW~ vertex (2.2) takes the form 

lYva = ie 
[ 
2gQ”pg + 2gaclpg - gpu (p4 + ~2)~ + (K+X-1) (gPaps - gPvpt) 

- 3P2 + P4Y (P$G - (p4 * p2) gq. 

= ie [ 2gQ”pz + 2gffPpz - gPy ip4 + ~2)~ + (K+X--1) (#“pi - gpVp;) 

- 3P2 + P4F (PZPZ - (P4 * P2)Yq) 

where r = m2w/s. 

(4.1) 

Figure 17. The WW7 vertex for ey + WY. 
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Only left-handed electrons take part in this process. The matrix element is 

given by 

MAA’ = MAA’(v) + MAA’ (44 

where X and A’ are the helicities of the photon and IV- respectively, 

iMAX’ = ~~(p2, XY’*(p4, X’)zL(p3) &=LT~) uL(p1,,-@; (ir,,,) 
W 

= -JZ(t- 
;;) sinBwEYP2, w*(P4,o~L(P3Y~L(Pl) % , 

( > 

(4.3) 

and ~(pp,X) and ~*(p4,X’) are the polarization vectors of the photon and the IV- 

respectively. 

In the ey center-of-mass frame, the momenta in the process take the following 

values: 

6 
Pl = +w.L 1) P3 = fi(~Br)(sinO,O,cosO,l) 

(4.4 

p2 = $(O,O, -1,l) 
d p4 = T(-(1 - r) sin 8,0, -(l - r) cos 8,l + r) 

The two polarization vectors are: 

E*(P4, a = gc cos 8, fi, - sin 8,O) 

E*(P4,0) = +((l $r)sin8,0,(1 +r)cos8,1 -r) 
r 

B(P2,f) = -+AO) 

P-5) 
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As in eqn. (3.8), we define the four vector 

(see Appendix A), which obeys 

BL(P3) #UL(Pl) = p - v 

(4.7) 

Next, we repeat the same steps as in section 3.2, substituting the vertex ex- 

pression from eqn. (4.1) and the explicit four vectors from eqns. (4.4) and (4.5). 

Again we factor the d function d$ nx,( ) 9 where Ax = X + l/2, Ax’ = X’ + l/2 

and Js = max(lAXI, IAx’l). The d f ’ unctions are given in table 4. We then get the 

following expressions for the matrix elements: 

,,@ _ pe2 - -d&&@ (J@(V) + fiAA’(w)) , sin ew 

where ,O = d= and 

BAA’ 

1 - cos 0 + r( 1 + cos 6) ’ 

(4.8) 

(4.9) 

The coefficients A and B are given in table 6. 

The cross section for producing a W with helicity X’ from a photon with helicity 
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Table 6. The coefficients Ax,,x, and Bx,,x, of eqn. (4.9). P = m&/s and 0 = G. 

(XX’) AXX’ BAA’ 

(-4 Jz -(2(3 - cos8) - 2r(l - cos 0) + YAK + X(1 - cos B))/& 

(-0) -l/fi (1 - cos0 t r(l t cos0) + AK - XcosB)/fi 

(--+I 0 -&$iii/r 

(+-I 0 $@(2r2 + Anr - X(1 - r))/r 

(+0) 0 (-4r - a~(1 + r) + X(1 + r))/& 

c-t-+I 0 --d3(2 + A4 

X is: 

Figure 18 shows the differential cross section for producing a W of various 

helicitiy combinations. 

Figure 19 shows the dependence on K and X of the total cross section. These 

figures are the idealized cross sections, assuming monochromatic beams of perfectly 

polarized electrons and photons. 

The most striking feature of the differential cross section for ey + WV is the 

radiation zero which occurs in the Standard Model. The cross section for all helicity 

combinations is exactly zero when the W scatters backwards (i.e. in the direction of 

the incoming electron). The differential cross section in the ey center-of-mass frame 

is very strongly peaked for W’s scattering in the forward direction (fig. 20). Since 

this radiation zero exists only for Standard Model couplings, the cross section for 
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Figure 18. Differential cross sections for producing a W of specific helicity with center of 

mass energy of 500 GeV as a function of cos8. In a combination (A,&), X1 and A2 are the 

helicities of the 7 and W respectively. 

backward scattering W’s could be a very sensitive probe for non-Standard Model 

couplings. 

However, in an ey collider, the average electron energy is significantly larger 

than the average photon energy, and thus the laboratory frame is boosted in the 

electron’s direction with respect to the ey center-of-mass frame. The entire W 

angular distribution is shifted in the backward direction, completely obscuring 

the radiation zero. The amount of this shift is sensitive to the actual photon 

spectrum. An additional smearing effect is caused by the fact that, considering 

only the leptonic W decay mode, its momentum is not reconstructible; only the 
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Figure 19. Total cross sections for various helicity combinations with center-of-mass energy 

of 500 GeV. The meaning of the lines is the same as in fig. 18. 

muon’s momentum is known. 

Because the W momentum is not reconstructible in leptonic decay events, the 

relative direction of the decay products cannot be established (unlike in e+e- + 

W+W-). While the total W momentum can be fixed with reasonable accuracy in 

hadronic decay events, it is questionable whether the same is true of the individ- 

ual decay products. Thus , unlike e+e- + W+W-, we assume here that the W 

polarization cannot be determined experimentally. 

As we mentioned above, the total cross section for ey -+ WV approaches a 

constant rather than dropping like l/s. It is interesting to note that when one 

imposes a fixed cut on the direction of the W accounting for the fact that particles 
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Figure 20. Differential cross section for ey --+ WV in the e - 7 center-of-mass frame, for 

different values of center-of-mass energy. The area under each curve is 1. 

near the beam pipe escape detection, the l/s asymptotic behaviour is restored. 

This is because the cross section at higher energies becomes dominated by higher 

partial waves, which are improtant in the low-momentum-transfer region, making 

the differential cross section sharply peaked in the backward direction. Figure 21 

compares the energy dependence of the cross sections of ey --) WV and ey + ey 

for cutoff angles of 20’ (solid) and 2’ (dashed). Note that the cross section for 

ey + ey is equally sensitive to the cutoff angle at all energies, whereas the one for 

ey --+ WV becomes more sensitive at higher energies. 

4.3 PHOTON SPECTRA 

The calculations in the previous section were carried out in the setting of an 

‘idealized’ electron-photon collider in which the photon beam is perfectly mono- 

chromatic, and is carrying the same energy as the electron beam. In this section 

we show how to account for the inevitable energy spread associated with realistic 

photon colliders. 
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Figure 21. Total cross section for the processes e-y + WV and ey -+ ey as a function of 

center-of-mass energy, and subject to cuts of 37’ (solid) and 2’ (dashed) on the scattering angle. 

To account for the distribution of electron-photon center-of-mass energy, we in- 

troduce the effective luminosity L,,(2). ,Ce,( i is a dimensionless quantity, defined ) 

as follows: the luminosity for an electron-photon collision with center-of-mass en- 

ergy squared between $ and s^ + & is equal to L&(.G)(&/s) times the overall collider 

luminosity. 

In terms of the effective luminosity ,f&(.G), the cross section for WV production 

is 

d = 
J 

’ (di/S)Ley (2)0(i). (4.10) 

0 

We consider three potential photon sources. First, we have classical brem- 

strahlung. This radiation depends only on the beam energy, and is parametrized 

to first order by the Weizsacker-Williams distribution function 

f(x) = aln(slm2) . 1+ (1 - x)2 
2n , 

X 
(4.11) 

where x is the fraction of the electron energy carried by the photon. To first 
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order in (a/2n) ln(s/mz) M 0.032, we can ignore the electron beam energy loss, 

and assume it remains monochromatic. The effective luminosity function &($) 

is then given simply by 

G&> = f(S/s). (4.12) 

The second source for photons is the synchrotron radiation emitted by electrons 

in one beam due to the electric field it experiences as it passes through the other 

beam; this radiation is termed “beamstrahlung.d22’231 The effect of beamstrahlung 

cannot be decomposed into distribution functions. We parameterize it in terms of 

the luminosity function L,,(i) discussed above. Beamstrahlung depends strongly 
rw3l on machine parameters such as luminosity, pulse rate and bunch geometry. 

Here we use the following set of accelerator parameters (designated machine G by 

Palmer’211): 

EC, = 500 GeV, L = 9 x 1033cm-2sec-1, N = 1.67 x lOlo, 

(4.13) 
B, = 3.4 x 10m5cm, B, = 1.3 X 10S6cm, 

where E,, is the center-of-mass energy, ,C is the effective luminosity, N is the 

number of particles per bunch and & and Br,, are respectively the large and small 

radii of the elliptic pulse. This luminosity corresponds to 9 x 10-3pb-‘sec-1. In 

a 106sec year, the integrated luminosity is 9 fb-’ or about 3000 events per unit of 

R. 

The third potential photon source is a deliberately constructed ey collider. 

Ginzburg et a1!24’251 have suggested a scheme for converting a single-pass e+e- 

collider into a e7 (or a 77) collider. The conversion of high-energy electrons to 

photons is done by backward Compton scattering of high intensity laser light off 

the electron beam. This mechanism entails losing very little luminosity; it reduces 
the energy of each beam by lo-20%. 

. 
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In describing the machine parameters, we use the dimensionless variables* 

4Ewo 
xp = - 

rnz ’ 
22 

E' 
(4.14) 

where E is the electron beam energy (here taken to be 250 GeV), wg is the energy 

of the laser photon and w is the energy of the scattered photon. The parameter 

xP is just (s/m:) for the Compton scattering process. The maximum energy of a 

scattered photon is given by 

ZP x<xm=- 
xp+l’ 

(4.15) 

Due to the onset of e+e- pair production between backscattered and laser 

photons, conversion efficiency drops considerably for xP > 2 + 24 M P4,391 4.82. 

We assume xp = 2 + 2fi, which, given 250 GeV electrons, corresponds to laser 

energy wo of about 1.2 eV. 

The photon spectrum depends sensitively on A,P,, where A, is the mean elec- 

tron helicity and P, is the mean laser photon helicity. Larger negative values of 

X,P, give a harder, more monochromatic photon spectrum, resulting in larger ef- 

fective cross sections. See ref. 39 for a thorough discussion of the experimental 

consequences of electron beam polarization. The sensitivity to anomalous cou- 

plings, however, does not increase significantly with a harder photon spectrum, 

while measuring the actual Xe introduces new systematic errors. Therefore, we 

assume that the electron beam is unpolarized. On the other hand, the laser can be 

easily polarized almost completely, and this polarization can serve as an important 

experiment al tool. We assume that /PC/ = 1. Th e effective luminosity is given 

* Our zP and x correspond to ref. 24’s x and y respectively. For simplicity we use t = 1, 
QO = 0 and 60 = 0 (which implies p = 0.) 
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= 2(1 t qJ2 
(1 - x)2 

(22; - 49x - 4$x + 4x2 + 4x,x2 + 3x;x2 - xix3) I 

16 + 32x3, + 180; + x;) 

- 2 (8 t 20xp + 15x; + 2x; - x;) log( l-t- xcp) . 1 
(4.16) 

Fig. 22 shows the three photon spectra used here. 

I I 

. . . . . . . . . 
0 0.25 0.5 0.75 1 

zi/s 

Figure 22. Effective luminosity L,, as a function of i/s, where i is the center-of-mass energy 
squared of the e - y system. The solid curve is the Compton backscattered effective luminosity. 

The dashed curve is the beamstrahlung effective luminosity. The dotted curve is the classical 

Weizsacker-Williams spectrum. The the thin vertical line represents the W production threshold. 
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The various measureables associated with ey + WY are sensitive to the ac- 

tual photon luminosity. Therefore, the question of measuring this luminosity with 

sufficient accuracy becomes prominent. As it turns out, ordinary Compton scat- 

tering provides a simple yet effective method for measuring the photon spectrum. 

It provides both a large cross section and therefore good statistics, and a virtually 

background-free event topology. The process ey -+ ey, with both final particles 

visible and no missing perpendicular momentum has no background beyond ra- 

diative corrections. Furthermore, the momenta of the incoming particles can be 

reconstructed completely. The cross section for ey + ey is 

& 27rQ 2L!,(q(d+) J 5 + 2 cos 8 + cos 26 = 
4 1 + COSB 

d(cos e>. (4.17) 

The infrared divergence is avoided by cutting off the 13 integral at some finite 

80. This is justified since, experimentally, no detection is possible for small beam 

particle angles. 

In units of R, one gets 

&T(d) = &,(a)$ * 3 
( 

cos 80 + 2 log 
(: 22)) ) 

(4.18) 

where 190 is the minimal angle from the beam direction in which particles can be 

detected. Equation (4.18) 11 a ows a straightforward determination of L,,(2) by 

measuring the cross section for ey production in a given > bin. 

In the case of a Compton backscattered ey collider, we also consider the ques- 

tion of photon polarization. Using a polarized laser beam results in a polarized 

backscattered beam. The amount of polarization is energy dependent. If the laser 

beam polarization does not have linear component, coherence between left- and 

right- handed photons is lost upon integration over the azimuthal angle of the 

Compton scattering process. Since the photons are emitted within 0.1 mrad of the 

electron direction, the angle is unobservable, and the integration is done automat- 
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ically. The average helicity 52 of the photon beam is then given by [241 

(2 = - 
xp(xp -2x- xpx)(2-2x +x2) 

2x; -4x,x -4x;x+4x~$4xpx~ $3x;x2-x;x3' 
(4.19) 

Fig. 23 compares the total photon spectrum to that of photons with helicity --PC. 

Figure 23. Spectrum of photons with helicity -PC (dashes) and the total spectrum (solid). 

4.4 OBSERVABLES 

In this section we discuss the various observables and assess their sensitivity 

to K and X. All the calculations in this section are performed for machines based 

on a 500 GeV e+e- collider. We repeat the calculations using the three photon 

spectra discussed in the previous section. In the case of a Compton backscattered 

photon beam, we also use the partial polarization of the photon beam (eqn. (4.19)) 

induced by the polarization of the incident laser beam. 

As with e+e- -+ W+W-, we start with the total cross section. The angular 

integration over the direction of the W in the ey center-of-mass frame is cut at 

1 cos 61 = 0.8. We assume systematic errors in measuring the total cross section 
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to be 5%. The total cross section depends on the photon spectra used, but even 

the Weizsacker-Williams spectrum gives 5.8 R, corresponding to over 17000 events. 

Statistical errors are, thus, negligible compared with systematic ones. Figure 24 

shows the total cross section for ey + WV as a function of K. for several values 

of A. The calculations were performed using the three photon spectra. Figure 25 

shows its dependence on X for several values of K. 
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Figure 24. uToT for ey -+ WY as a func- 

tion of n for X = 0. Here and henceforth, 

the solid curves correspond to the Compton 

backscattered spectrum. The dashed curves 

are computed using the beamstrahlung effec- 

tive luminosity. The dotted curves correspond 

the the Weizsacker-Williams distribution. 
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Figure 25. uToT for ey -+ Wu as a func- 

tion of X for K: = 1. 

The forward-backward asymmetry, defined in eqn. (3.22), can be measured with 

the entire event sample. We assume that FB can be measured with systematic 

error of 0.03. Figures 26 and 27 show its dependence on K and A. 

IO (eqn. (3.23)) g ives a complementary parameter of the W production angular 

distribution. Here we assume that IO can be measured with systematic error of 

0.03. Figures 28 and 29 show its dependence on K and A. 
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Figure 26. FB as a function of K for X = 0. Figure 27. FB as a function of X for n = 1. 
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Figure 28: IO as a function of K. for X = 0. Figure 29. IO as a function of X for K. = 1. 

In a dedicated ey collider constructed by the Compton backscattering mecha- 

nism discussed in the previous section, a circular polarization of the incident laser 

beam results in a partial, energy-dependent polarization of the high-energy photon 

beam (eqn. (4.19)). Th e most energetic photons are always polarized with oppo- 

site helicity with respect to the laser photons. We define the two configurations 

corresponding to the two possible laser polarizations as JZ = 3/2 and Jz = l/2 

dominated, according to the combined spin of the left-handed electrons and the 
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most energetic photons. We emphasize that the Jz tag holds only for the most 

energetic photons. Lower energy photons have both possible helicities. The cross 

section calculations are carried out with the actual helicity spectrum of eqn. (4.19). 

The ratio 

(l/3) = 
a(J, = l/2 dominated) 
c(Jz = 3/2 dominated) 

(4.20) 

is another, independent, measureable quantity. Lasers can be easily and accurately 

polarized, and therefore virtually all systematic errors are canceled in measuring 

this ratio. We assume it can be measured with systematic error of 0.01. Let us 

stress that this measurement does not require the electron beam to be polarized. 

Figures 30 and 31 show the ratio’s dependence on K. and A. 
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Figure 30. (l/3) a8 a function of kc for X = Figure 31. (l/3) as a function of X for fc = 

0. 1. 
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4.5 DISCOVERY LIMITS 

We repeat the analysis described in section 3.5 to the observables described in 

the previous section. Figures 32 and 33 show the (20) regions for each observable 

discussed in the previous section, as well as the 68% and 90% confidence level 

bounds. The calculations were repeated for each of the three photon spectra. 
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Figure 32. The (2~) regions in the K-X plane from various measurements of ey -+ WV: 

u,,, (long dashed), FB (dot-dash), IO (dotted) and (l/3) (short dashed). The solid curves 

correspond to 68% and 90% confidence level bounds from the combination of all measurements. 

All calculations were done using the Compton backscattered spectrum. 
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Figure 33. The (2~7) regions in the K-X plane from various measurements of ey --+ WY 

using the beamstrahlung (dashed) and the Weizsacker-Williams (dotted) spectra. The regions 

in the center correspond to 68% and 90% confidence level bounds from the combination of all 

measurements. 
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5. yy + w+w- 

5.1 INTRODUCTION 
The third process we study is 77 + W+W-. While not quite as sensitive as 

e+e- --+ W+W- to deviations from the Standard Model, it has many attractive 

features, making it possibly the most interesting process in a 77 collider in the 300 

GeV - 1 TeV energy range. Like e7 + WV, 77 + W+W- involves a t-channel 

exchange of a heavy vector boson, and correspondingly a relatively large cross 

section at higher energies. 

Because two WW7 vertices appear in the Feynman diagrams for the process, 

the anomalous couplings can appear to fourth power in the expressions for the 

cross section. That greatly inhances the sensitivity to large deviations from the 

Standard Model. Although 77 4 W+W- involves only W7 couplings, its analysis 

is complicated because the four vector vertex WW77 as well as the three vector 

vertex WW7 contributes. In this work, we do not consider the most general 

WWyy vertex. Rather, we use the simplest one satisfying the electromagnetic 

Ward identity. This simple consistency requirement forces the WW77 vertex to 

depend on A.[““’ 

This chapter proceeds as follows. In the next section we introduce the WW77 

vertex, and outline the calculation of the production cross section in the setting of 

an ‘idealized’ 77 collider. In sect. 3 we describe the effective 77 luminosity expected 

from different sources. Section 4 evaluates potential observables, calculating their 

dependence on K and X. Section 5 assesses possible bounds on K and X from the 

individual measurements, and combines them to give specific confidence limits in 

the K-X plane. 
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5.2 CROSS-SECTION CALCULATION 

Cross section calculations for 77 -+ Ws IV- proceed much like those for the 

previous processes. 77 + W+W- is conceptually simpler because no spinors are 

involved. As the WW7 vertex appears twice in two of the Feynman diagrams, 

the expressions for the helicity amplitudes are quadratic in K and X. The three 

Feynman diagrams contributing to 77 + W+W- are shown in fig. 34. 

W 
- - 

-- xxfi + + 
W 

x 
Y Y 

Figure 34. Feynman diagrams for yy + W+W-. 

The WW7 vertices have the same kinematics as the vertex in e7 + WV 

(eqn. (4.1)), with the obvious changes in the assignment of indices and momenta. 

Unlike the WW7 vertex, the WW77 vertex has not been systematically analyzed. 

Here we do not use its most general form. Instead, we use the simplest form which 

is still consistent with eqn. (4.1) in the sense of maintaining electromagnetic gauge 

invariance.[321 This general form, with momenta labeled as in fig. 35, is given by 
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+ $-{9?Y( h * PI> + (P3 * P2,) + gplbgvr ((p4 * p2) + (p3 - PI)) 

- gpugra (P4 + P3)2 + 2gPVp4’p3U + 2gQrp2CLplV 

- SPLr (2P4vP3u+2P3uP2=-p4"p2") - g”=(2p4Tp3V+2p4Vp2’-p3”p2’) 

- gur (2P4'P3"+2P3"P2u-p4~p~~) - g”Q (2p4rp3’1+2p4’Lp1’- p4 PI )}I 
cc r . 

(5.1) 

Figure 35. The WWyy vertex. 

The matrix element (in unitary gauge) is given by 

iM puru = (qL,p,) -i (g 
plpz - (PI -P3Y (Pl -P3Y+7&) (ir"P2a) 

t-m& 
(5.2) 

+ ~G,l~) 
-i (9 ‘lpz - (Pi-P4)p1(pl-p4)P2/m~) ( .r 

u-m& 2 vrp2 
) 

X1, X2, X3 and X4 are the helicities of the two photons, the W- and the W+ 
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respectively. Xr and X2 take the values -1 and 1. X3 and X4 take the values -1, 0 

and 1. 

The momenta ~1-4 are the same as in e+e- + W+W- (eqn. (3.6)). The 

photon polarization vectors Xl,2 are given by 

E(Pl,f) = -&~~,O,O) dp2,33 = -$(L 3% O,O>. (5.3) 

The W polarization vectors are the same as in e+e- -+ W+W- (eqn. (3.7)). 

Substituting the vertex expressions from eqns. (4.1) and (5.1) and the explicit 

four vectors from eqns. (3.6), (3.7) and (5.3), we get the following expressions for 

the matrix elements: 

J%,x2,x3,x4 = 4CY~d~~~2,aXsri\;lX,,X2rX1,X* 
l-cos26+rcos20 ’ (5.4) 

where Ax12 = X1 - X2, AX34 = X3 - X4 and Jo = max(jAxlzl, lAX34[), and the d 
functions are given in table 4. 

The helicity amplitudes are: 
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M++oo =$ [4r2 + 8AK(sin2 8+r cos2 0) - 8Xr sin2 e 

+ AK~ (4 sin2 e + ~(3 cos2 8 - 1)) - 2Adr(3 cos2 8 - 1) 

+ X2(1 + cos2 e> (2 sin2 8 + r( 2 cos2 8 - 1)) ] 

M++o+ =$ [4A~(l-p-r) - 4X(1-p+) t AK~(~-2/?-r) 

- 2A+(2 + r) - X2 (2(1 t @)(1/r - 1) sin2 8 -I- v) ] 

a+-00 =-$ [4r(l+r) t 8Arcr + AK2(2tr) - 2Ad(2-r) 

+ x2 (2cos2e + r(l-2cos2B))] 

1 
M+-++ =- 

mh 
8r2 t 8Am - 16X(1 - r) -t- 3Arc2r - 2Ad(4 - 3r) 

- X2 (2 sin2 8 - (3 - 2 cos’ e)r) ] 

d 
M+++- =- 

Srfi 
- 8X(2-r) + Arc2r - 2Ad(4-r) 

- X2 (2sin2 6 t (2cos2e-l)r)] 

8r t 4As(ltr) - 4X(1-r) + An2(3+ cosb-r cos0) 

- Ad(4(1+ cose)/r - 2(1+3cose) t 2rcos8) 

+ x2 (2( 1 + cos 0)2/r - (1 t cos e)( 1 t 2 cos e> t 1‘ cos2 8) ] 
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M++++ =z -’ [sr(Z-Zp-r) + 8Arcr(2-/?-pcos2 d) 

- 8X (Z(l+P) sin2 8 - r( 1 - p - 3 cos2 8 - p cos2 S)) 

t Atc2 (2(1+@) sin2 0 + r(3+3 cos2 O-2/? cos2 fl)) 

- 2Ad (2(1+-p) sin2 0 - ~(3-5 cos’ e--Z@ cos’ 0)) 

t x2 (4(W) sin2 O(l-3 cos2 0)/r 

- 2(6+3@-13 cOs2 fl-9p COS’ 8+3 COS4 I%i-2p COS4 0) 

-I- r(3-11 cos2 8--2p cosa l9+2 cos4 l9))] 

fi+-+- =f [Sr + 8Aw + As2 (2(1 - cos 0) $ (1 + 2 cos O)r) 

- 2A/cX (2(1- cost?) - (l- 2cosd)r) + X2(4(1-cosf3)(3-cosO)/r 

- 2(6-11 cos 6t3cos2 0) -I- (l-6 cos 8-l-2 cos2 O)r)] , 

(5.5) 

where r = 4m&/.s and p = d-. 

The other amplitudes are related to those by the following relations: 

MxI,x~,x~,x~ = J%,W~A (cos 0 -+ - cos S) 

(5.6) 
MA, ,xz,x~,x~ = ~‘4x1 ,LA A (cos t9 + - cos 0) * 

MA,,x~,x~,x~ = Mx,,x,,-A,,-~3 @ + -p) 

Figure 36 shows the differential cross section for producing a W pair of various 

helicity combinations. 

Figure 37 shows the dependence on IC and X of the differential cross section at 
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Figure 36. Differential cross sections for producing a W pair of specific helicity combination 

with center of mass energy of 500 GeV as a function of cos8. The curves are: 

1: (++++)+(----),2: (+++-)+(++-+)+(--+-)+(---+), 

3: (+ + --) i-. (- - ++), 4: (+ - ++> + (- + ++> + (+ - --) + (- + --), 
5: (+-+-)+(-i-+)+(-++->+(+--+), 
6: (+-O+)+(-+O-)+(+--O)+(-++O)+(+-+O)+(-+-O)+(+-O-)+(-+O+), 
7: (+-OO)+(-+00),8: (t-+0+)+(--0-)+(+++O)+(---0), 
9: (+ + 00) + (- - OO), 10: (+ + o-) + (+ + -0) + (-- - o+> + (-- - +o>. 
In a combination (A1A2X&), Al, X2, A s and X4 are the helicities of the two photons, the W+ 
and the W- respectively. 

cos 13 = 0. These figures are the idealized cross sections, assuming monochromatic 

beams of perfectly polarized electrons and photons. 

There are several points worth noting: 
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Figure 37. Total cross sections for producing W pairs of specific helicity combination with 

center of mass energy of 500 GeV. The meaning of the lines is the same as in fig. 36. 

1. The cross section for producing two opposite-helicity W’s from an initial 

state with total spin component along beam axis J, = 0 ((+ + +-) term) is 

exactly zero in the Standard Model. 

2. The cross section for producing one longitudinal and one transverse W from 

a Jz = 0 initial state ((t-+-O+) t erm) is exactly zero in the Standard Model. 

3. The differential cross section at cos 6 = 0 for producing one longitudinal and 

one transverse W from a J, = 0 state ((t-+0+) term) is exactly zero for all 

values of K and A.* 

* The reason for this is as follows. The initial state has to have an even angular momen- 
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4. The cross section for producing two longitudinal W’s from a Jz = 0 photon 

combination is suppressed by a factor of m2w/s in the Standard Model. The 

same factor is known to appear in the production of charged scalars (yy -+ 

T+T-.) 

5. The cross section for producing two right- (left-) handed W bosons from two 

left- (right-) handed photons is suppressed by a factor of (m&/s)2. 

As in e+e- t W+W-, information about the polarization of a W boson can be 

obtained by looking at the angular distribution of its decay products (eqns. (3.19)- 

(3.21)). The ratio between left- and right-handed W bosons is related to the x 

forward-backward asymmetry XFB by 

a(cosx > 0) - a(cosx < 0) 3 u-1 - f-71 

XFB = a(cos x > 0) $ a(cosx < 0) = 4 - UTOT (5-V 

5.3 PHOTON SPECTRA 

The calculations in the previous section were carried out in the setting of an 

‘idealized’ photon-photon collider in which the photon beams are perfectly mono- 

chromatic and carry identical energy. In this section we discuss some realistic 

photon-photon collision schemes. 

In analogue to L,, we define the effective luminosity L,,(j) as follows: the lu- 

minosity for a photon-photon collision with center-of-mass energy squared between 

d and i + dS is equal to &,(i)(di/s) t imes the overall collider luminosity. In terms 

of that effective luminosity, the cross section for yy + W+W- is 

u = ’ (di,s)&(+(i). 
J 
0 

(5.8) 

We consider the same three photon sources of the previous chapter. In the 

turn J. The angular dependence of the matrix element is then of the form d&i(f?) = 
d&l(C9)P(cos 0) = 7 sin BP(cos 19)/d w h ere P is an odd polynomial, which vanishes at 
cos0 = 0. I am grateful to Ken-ichi Hikasa for pointing out this explanation. 
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case of the classical bremsstrahlung radiation, the effective luminosity is given by 

folding the distribution function f(z) (eqn.(4.11)) with itself. 

CT= 

0 0 

Defining i = zllc2.s and changing variables gives 

from which one can read the expression for I!&($): 

(5.9) 

(5.10) 

(5.11) 

Substituting the expression for f(z) one gets 

-6 + 4i/s + 2(5/~)~ + (g/s + 2)2 log(+)] . (5.12) 

The second photon source we consider is beamstrahlung. As we mentioned 

in the previous chapter, the beamstrahlung effects cannot be decomposed into 

distribution functions. The effective luminosity has to be calculated directly. We 

use again the parameters of eqn. (4.13). 

The third potential photon source is a dedicated yr collider constructed by the 

Compton backscattering mechanism discussed in sect. 4.3. Folding the spectra of 

the two photon beams can be done analytically (same as in eqn. (5.11)), but the 

result is long and unilluminating. 
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Figure 38. Effective luminosity 2zL,,(r2s) as a function of z = fi, where i is the center- 

of-mass energy squared of the y-y system. The solid curve is the Compton backscattered effective 

luminosity. The dashed curve is the “beamstrahlung” effective luminosity. The dotted curve is 

the classical Weizsacker-Williams spectrum. The vertical dotted line represents W production 

threshold. 

Fig. 38 shows the effective luminosity associated with each of the three photon 

spectra used here. 

As before, in the case of Compton backscattered beams, the photon beams 

acquire partial, energy dependent polarization if the incident laser beam is polar- 

ized. Figure 39 shows the total effective luminosity, and the effective luminosity 

for lJtl = 0,2 h w ere J, is the spin component along the beam axis. 
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2 

Figure 39. Effective luminosity for collisions with IJ,I = 2 (dashed) and 0 (dots). The total 

effective luminosity is given by the solid curve. The role of the 1J21 = 2 and IJ,I = 0 cruves can 

be interchanged by flipping the polarization of one of the laser sources. 

5.4 OBSERVABLES 
In this section we discuss the various observables and calculate their depen- 

dence on K and X. Calculations are performed for machines based on a 500 GeV 

e+e- collider. We repeat the calculations using the three photon sources discussed 

in the previous section. In the case of a Compton backscattered photon beams, we 

also use the partial polarization of the photon beam (eqn. (4.19)) induced by the 

polarization of the incident laser beams. 

Again, let us start with the total cross section. The angular integration over the 

direction of the W in the ey center-of-mass frame is cut at 1 cos 81 = 0.8. We assume 

systematic errors in measuring the total cross section to be 5%. As in ey --t WV, 

the total cross section depends on the photon spectrum used. The lowest cross 

section is obtained by using the Weizsacker-Williams distribution. In that case, 

the cross section is about 0.37R which corresponds to a little over 1000 events. The 

statistical error in that case is about 3%. With the Compton backscattered and 

the beamstrahlung spectra, however, the total cross section is 28 and 56 units of 

R respectively. The statistical errors are much less than 1% in both cases, and are 
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completely negligible. Figure 24 shows the total cross section for yy + W+W- 

as a function of K for several values of X. The calculations were performed using 

various photon spectra. Figure 25 shows its dependence on X for several values of 

tc. 

f 5; ~...,..,,_..... ;” . . . . . . . . . . . .._ I . . . . . . . . . . . ] . . . . . . . . . 1 
0.8 0.9 1 1.1 1.2 

n 

Figure 40. uToT for yy + W+W- as a 
function of K for A = 0. Here and henceforth, 
the solid curves correspond to the Compton 

backscattered spectrum. The dashed curves 

are computed using the beamstrahlung spec- 

trum. The dotted curves correspond the the 

Weizsacker-Williams distribution. 
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Figure 41. uToT for y-y -+ W+ W- as a 

function of A for K = 1. 

The process yy + W+W- is symmetric with respect to interchanging the two 

initial photons, so there cannot be any forward-backward asymmetry. The angular 

distribution of the W does, however, carry important information. We quantify 

this information by looking at the IO ratio as defined in eqn. (3.23). We assume 

that IO can be measured with systematic error of 0.03. Figures 42 and 43 show 

IO’s dependence on K and A. 

As in e+e- + W+W-, one can extract the L/T ratio (eqn. (3.24)) from the 

angular distribution of the W decay products. Again, one has to reconstruct the 

missing neutrino momentum by imposing the constraint that the total momentum 
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Figure 42. IO as a function of IC for X = 0. Figure 43. IO as a function of A for K = 1. 
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perpendicular to the beam direction is zero, and that the invariant mass of the 

neutrino-lepton system be that of the W. That fixes the neutrino momentum up 

to a twofold ambiguity. This ambiguity can be practically resolved by consistantly 

selecting the more probable solution. Monte Carlo studies done for the process 

e+e- --+ W+W- in an environment with hard beamstrahlung radiation. [371 These 

studies suggest that the degredation of data quality associated with the resolution 

of this ambiguity is minimal. 

We assume that the L/T ratio can be measured with systematic error of 0.03. 

Figures 44 and 45 show its dependence on K and A. 

In the case of a dedicated yy collider constructed using the Compton backscat- 

tering mechanism, additional information can be extracted by looking at the de- 

pendence of the cross section on the polarization of the laser beams. We define 

the (O/2) t ra io in analogue to (l/3) of eqn. (4.20) as the ratio between the ‘Jz = 0 

dominated’ and the ‘ I J, I = 2 d ominated’ configurations. The ‘J, = 0 dominated’ 

(‘I J,I = 2 dominated’) configuration corresponds to having the most energetic pho- 

tons of each beam have the same (opposite) helicity. We assume this ratio can be 

measured with systematic error of 0.01. Again, this measurement does not require 

the electron beams to be polarized. Figures 46 and 47 show its dependence on K. 
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Figure 44. L/T as a function of K for X = Figure 45. L/T aa a function of X for IC = 

0. 1. 
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Figure 46. (O/2) as a function of K for X = Figure 47. (O/2) as a function of X for ti. = 

0. 1. 

0.95 - 

0.85 - 

and A. 

Finally, with the photon beams polarized, one can measure not only the I cos XI 

distribution which carries information on the L/T ratio, but also the x forward- 

backward asymmetry XFB which carries information on the ratio between positively 

and negatively polarized W bosons (eqn. (5.7).) Here we assume that xFB can be 
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measured with systematic error of 0.03. Figures 48 and 49 show its dependence on 

K. and A. 
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Figure 48. xPe as a function of fc for X = 0. Figure 49. xpB as a function of X for IC = 1. 

5.5 DISCOVERY LIMITS 
We repeat the analysis described in section 3.5 to the observables described in 

the previous section. Figures 50 and 51 show the (20) regions for each observable 

discussed in the previous section, as well as the 68% and 90% confidence level 

bounds. The calculations were repeated for each of the three photon spectra. Note 

that a dedicated. photon collider provides for a much better measurement of A. 
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Figure 50. The (2~) regions in the K-X plane from various measurements of y-y --+ W+W-: 

~TOT, L/T, (o/2) and XFB. The center regions correspond to 68% and 90% confidence level 

bounds from the combination of all measurements. All calculations were done using the Compton 

backscattered spectrum. 
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Figure 51. The (2~) regions in the 6-X plane from various measurements of yy --+ VW- 

using the beamstrahlung (dashed) and the Weizsacker-Williams (dotted) spectra. The regions 

in the center correspond to 68% and 90% confidence level bounds from the combination of all 

measurements. 
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6. Summary and Conclusions 

We summerize our results by displaying the allowed regions taken from figures 

15,32,33,50 and 51. Figures 52,53 and 54 show the 90% confidence limits from the 

three processes using the Compton backscattering, beamstrahlung and Weizsacker- 

Williams spectra respectively. Note that the curve from e+e- + W+W- is the 

same in all three graphs, and does not include any photon radiation effects. 
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Figure 52. Allowed regions (90% confidence level) in the K-X plane from various processes 

and using the Compton backscattered spectrum. The center region is obtained by combining all 

three processes. 
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Figure 53. Allowed regions (90% confidence level) in the K-X plane from various processes 

and using the -beamstrahlung spectrum. The center region is obtained by combining all three 

processes. 

Finally, we show only the combined limits from all three processes and for 

the three photon spectra. The combined bounds are dominated by the e+e- + 

W+W- measurement which is common to all three spectra. The importance of 

the other processes is first in verifying the e+e- + W+W- results in a way which 

does not depend on the WZ couplings, and second in providing good statistics 

until the full e+e- + W+W- data set can be collected. 

A 500 GeV e+e- collider is a powerful tool for measuring Wy and WZ cou- 
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Figure 54. Allowed regions (90% confidence level) in the K-X plane from various processes 

and using the -Weizsacker-Williams spectrum. The center region is obtained by combining all 

three processes. 

plings. In this work we concentrated on measuring C and P conserving parameters 

in the WWr vertex. The process eSe- + W+W- is uniquely sensitive to the var- 

ious couplings under examination. The two other processes we consider, ey + WV 

and yy + W’W- can significantly add to our knowledge of W interactions. 

Compared to e+e- + WsW-, both processes involve only Wy vertices, allowing 

a separation of Wy and WZ effects. Their large cross sections allow detailed study 

even with relatively small integrated luminosity. Useful information can be derived 
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Figure 55. Allowed regions (68% and 90% confidence levels) in the K-X plane from the 

combination of all three processes and using the Compton backscattered (solid), beamstrahlung 

(dashed) and Weizsacker-Williams (dotted) spectra. 

from these processes even in a traditional e+e- collider. Constructing a dedicated 

ey or yy collider can greatly enhance the sensitivity of the two processes. Finally, 

yy 4 w+w- involves the WWyy vertex. A careful analysis of experimental 

results should give us insight into its structure. 
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Appendix A. The Vector Equivalence Technique 

In this appendix we discuss the ‘Vector Equivalence’ technique for symbolic, 

matrix element level spinor calculations. As its name implies, the heart of the 

technique is the calculation of a Lorentz four vector which serves as an equivalent to 

two external fermions. In further calculations, traces involving this vector replace 

the matrix element with the external fermions. 

In calculating a Feynman diagram with external fermions, one encounters ob- 

jects of the form 

M = z(p, s)rt@, s’), (A4 

where p and p’ are the momenta of the external fermions, and .s and s’ are their 

helicities. l7 is an arbitrary string of Dirac gamma matrices. In this discussion 

we only refer to fermions. Anti-fermions can be treated with the same expressions 

provided one changes the sign of the particle mass. 

The traditional method calls for squaring M while summing over fermion he- 

licities: 

c IM I2 = c tr { U(P’, OWP, NP, +wP’, s’,} 
9,s’ 9,s’ 

(A-2) 

= tr ((~4 - m’)T(#- ,)I?} , 

where l? = l? 
-R* 

and m and ,’ are the masses of p and p’ respectively. 

This method is advantageous in that the final result is expressed in terms of 

easy to calculate Lorentz invariants. The problem with this method is that the 

number of terms in the squared amplitude grows as the square of the number of 

terms in M. 

Several authors have proposed methods for calculating the matrix element 
[40,411 without squaring. We propose yet another such method. Its main advantage 

is that it allows, much like the traditional method, a relatively simple symbolic 

evaluation of M. Unlike other methods, one is not required to sum over vector 
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polarizations for massive bosons or to use a real basis for them. Our method also 

allows calculation of quantities with free Lorentz indices. 

We start by rewriting 

M = z(p, s)h(p’, s’) = tr { I%($, d)i~i(p, s)} . (A4 

Next, decompose 

u(p’, s’)E(p, s) = ; c [ NJ3 + qpx7/J + ~W’“r,v, 
x 

(A4 

where Pk = (1 f r5)/2 and yPV = (~~7” - 7”7,)/2. U, V and W all depend on p, 

s, p’ and s’. 

The coefficients Ux, Vi and Wp” can be calculated using the projections 

XI = tr { u(P’, +(p, s)pX} = c(p, s)&@, s’), 

VI = tr { U(P’, WP, S)Y%} = qp, s)yVQl(p’, s’), (A-5) 

WC”” = tr 
{ 

YPU u(p’, s’)E(p, s)~ 
1 

= $qp, s)7?4p’, s’). 

Given GA, VT and Wh’, M may be written as 

M = qp,s)ru(p’,s’) = i C [Uxtr {rq) + tr px PA}] + kWPYtr {r+fpvj. 
x 

(A-6) 
At this point, one could proceed by substituting a specific representation for 

the spinors and Dirac matrices in eqn. (A.5). Th e g eneral symbolic expressions 

for Ux, VI and WpV are complicated, but managable. The calculation of M is 

reduced to an evaluation of traces. This can be done quickly and efficiently with 
[42,43,44] 

one of several computer algebra systems. 
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The expressions (A .5) and (A.6) simplify dramatically when only massless ex- 

ternal fermions are involved, and no helicity flip occurs. The second condition is 

automatic if there are no virtual massive fermions. In high-energy calculations, 
often, the only massive fermion is the top quark. Diagrams in which the top quark 

decays by emitting a W also satisfy the helicity conservation condition because 

only left handed quarks couple to the W. Helicity conservation implies that r of 

eqn. (A.l) contains an odd number of gamma matrices. Consequently, both L4x 

and Wp”” vanish. Further, helicity conservation requires s = s’ = X. Equation 

(A.6) then takes the form 

(A4 

and 

q = qP)-YwP’). (A-8) 

We substituted the notation ux(p) = ux(p, X). The vector Vf obeys the following 

relations: 

1’/~12 = -4p*p’, 

Vx*p=Yyp’=O, (A4 

where we have used Vi = V-x. We write Vk = R f il with both R and I real. 

Then, assuming both p and p’ are real, eqn. (A.9) takes the form 

R2 + I2 = -4~. p’, 

R.p=R.p’=O, I*p=I*p’=O, (A.lO) 

R2 - I2 = 0, R.I=O. 

If there are no identical external fermions in the problem, the phase of Y, is 

irrelevant. In that case we can arbitrarily choose Vg to be real. Writing R = 
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(R, R”) and I = (I, 0)) one easily concludes 

I.p=I.p’=O, 

R.p=R.p’ 

R-1=0. 

(A.ll) 

Geometrically, I is perpendicular to both p and p’. R is perpendicular to I and 

thus lies on the p-p’ plane; on that plane it bisects the angle between p and p’. 

If p and p’ are collinear, there is an extra degree of freedom in selecting R and 

I. That is because in that case, Vt = 0, and the arbitrary phase is not fixed by 

choosing it to be real. 

With p = E(fi, 1) and p’ = E’(fi’, l), the final expressions for V is: 

v* = J 
2EE’ (~+ri’~i(~xiz’),l+cos6). 

(1+ co&) 

Two special cases are fi = 6’ and fi = -CL’. The first case gives 

VA = 2rn(h, 1). 

In the second case, choose fir and C2 such that 6~1 x 62 = ti. Then, 

(A.12) 

(A.13) 

(A.14) 

Detailed examples of the use of the Vector Equivalence techniques is given in 

sections 3.2 and 4.2. The value of Yx for particular values of p and p’ are given in 

eqns. (3.8) and (4.6). Special cases of eqn. (A.7) are given in eqns. (3.9) and (4.7). 
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Appendix B. HIP 

B.l INTRODUCTION 

Present day pertubative calculations in the Standard Model (SM) and its ex- 

tensions often require tedious algebra calculations. While tree level calculations 

of two-body production processes in the SM can certainly be done manually, it is 

often helpful to have a check in the form of an automatic calculation method. Pro- 

cesses involving the production of more than two particles (e.g. e+e- + W+W-y) 

or complicated Feynman rules (e.g. 77 --f W+W- with arbitrary Wy couplings) 

involve much more difficult calculations in which computerized aid is almost indis- 

pensable. 

Two approaches have been used to automate calculations of this type. Hagi- 

wara et al!451 have written a set of Fortran subroutines that calculate matrix ele- 

ments numerically. This approach allows the automatic calculation of complicated 

tree level processes, but it is restricted to numeric results. An alternative approach 

introduced by Veltman [431 with Schoonship is to allow symbolic manipulation of 

expressions. While Schoonship was written as a special purpose program, with all 

the necessary algorithms ‘hard-wired’ into its assembly code, Reduce [421 followed 

a more general approach. Much more mathematical knowledge (e.g. integration 

rules) is incorporated into the program as higher-level lisp routines. The user, 

building on that basis of knowledge, can then expand the program by writing his 

or her own routines. The price for that flexibility is naturally paid in performance. 

[351 We follow this latter approach by writing our packages in Mathematics, one 

of the newer and most promising of the new generation of symbolic manipulation 

languages which also includes Maple!461 Using Mathematics’s high-level program- 

ming language greatly simplifies the task of writing programs. Additionally, the 

physics calculations are embedded within a powerful environment in which results 

can be simplified, calculated numerically and plotted. With the rapid advance in 

computer performance, the CPU-time needed for the calculations is usually negli- 

gible compared with the time needed to prepare the input and process the output 
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of the programs. This approach is also being used by the Wiirzburg group in their 

programs FeynArts PI [481 and Feyn Calc. 

Unlike Feyn Arts we do not attempt to automatically generate the necessary 

Feynman diagrams. Typically, tree-level diagrams can be easily generated manu- 

ally. HIP takes as input expressions describing the Feynman diagrams. HIP then 

provides the user with a rich set of operators by which to manipulate the physi- 

cal objects occurring in these expressions. The user may, for example, substitute 

explicit four-vectors and particle polarizations, square the matrix elements to give 
1491 traces that can then be evaluated or convert the expressions to spinor techniques. 

As an aid in calculating cross-sections and decay widths, phase-space integrals can 

be automatically constructed and evaluated symbolically, numerically, or converted 

to a C or Fortran program. 

The traditional method of Feynman diagram calculation involves squaring the 

matrix element symbolically. The number of terms involved increases like the 

square of the number of Feynman diagrams involved. In contrast, spinor tech- 

niques are methods for calculating Feynman diagrams numerically at the matrix 

element level. The number of terms involved is linear with the number of Feynman 

diagrams. Photon and fermion polarizations have to be summed explicitly. Spinor 

techniques are simplest when the fermions involved can be taken to be massless. 

They are most useful when a large number of Feynman diagrams is involved. 

We have used HIP extensively, typically calculating processes with relatively 

simple topology ( 2 + 2 and 2 + 3 tree-level cross-sections) but with complex 

Feynman rules. 

The paper proceeds as follows. In the next section we give a brief overview 

of HIP. Some of the major objects and functions are mentioned. In sect. 3 we 

describe in more detail some of HIP’s more important functions, presenting the 

mathematical relations they use and short examples of their application. In sect. 4 

we give two complete examples: the calculation of the width for the muon decay 

p- + upe-F, with a finite electron mass, and a calculation of the matrix element 
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for eie, + 2 -+ t? + W+W-b&, including the W coupling to light fermions, 

which preserves all spin and angular correlations. In sect. 5 we summarize and 

give an outlook. The complete listing of HIP functions, with their usage messages 

(available as on-line documentation) is given in the appendix. 

B.2 OVERVIEW 

The packages in HIP contain functions that can manipulate various mathe- 

matical objects occurring in high-energy physics such as four-vectors, spinors and 

gamma matrices. Rather than follow one strict path from input to output, the 

packages allow the user to specify how a calculation proceeds (either interactively 

or in batch mode). A typical calculation might be to construct a matrix element, 

square it and sum over polarizations, construct the phase-space integral and eval- 

uate this integral to give a symbolic expression for the total cross-section. 

The most fundamental component of any high energy calculation is the ma- 

nipulation of four-vectors. Basic objects such as the dot-product (p . q) (DotProd- 

uct [p, ql), the metricg P ( G [mu, nul ) and the completely anti-symmetric tensor 

cpLyur (EpsCmu, nu, sig, tad) are defined, with some of their elementary prop- 

erties (e.g. the dot-product is symmetric in its two arguments). Four-vectors can 

be specified in terms of their components. They can then be boosted (using the 

function Boost), represented as sum of other four-vectors (Decay), etc. In addi- 

tion, four-vectors can also be treated without reference to the explicit components. 

Dot products can be given explicit values (SetDotProduct, SetMass), Mandelstam 

variables defined (SetMandelstam), Lorentz indices defined (PrepareIndex) and 

contracted (Contract). 

The second component in HIP is the Dirac algebra. The basic objects involved 

are the Dirac gamma matrices yp (DiracGamma[mu]), y5 (DiracGammali), the pro- 

jection operators PA = (l+xy5)/2 (H e 1 icityProj ect ion [lambda] ) and $ = p,y@ 

(SlashCpl). The D irac matrix product is represented by the Mathematics built- 

in function NonCommutativeMultiply (aliased to **). The trace of a product of 

Dirac gamma matrices is computed using the operator GammaTrace. 
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Some programs handling Dirac algebra, notably Reduce, can only deal with 

gamma matrices. HIP can also work with spinors. The basic spinor objects 

U(P) and w (SP inorU[p] and SpinorV[p]) and their conjugates E(P) and u(p) 

(SpinorUbar [pl and SpinorVbar Cpl ) are defined. The function AbsSquared is 

used to square matrix element expressions which may include these spinors. 

Expressions involving spinors do not have to be squared before they are cal- 

culated numerically. The HIP function ConvertToST converts a suitable expres- 

sion involving spinors t;o an expression involving the elementary spinor products 

s(p, E) = ZR(p)uL(k) and t(p, Ic) = VL(p)uR(k) (SpinorSCp, k] and SpinorT[p, 

k] ) defined in reference 49. The expression produced can then be evaluated numer- 

ically by giving explicit values to the components of the four-vectors. Alternatively, 

it ca,n be squared and converted back to an expression involving traces using the 

function STToTraces. 

Given an expression for the matrix element squared associated with a process, 

the calculation of physical observables such as cross sections and decay widths in- 

volves integration over the phase space of the out-going particles. The functions 

CrossSection and DecayWidth set up the phase-space integral. The functions 

return a PhaseSpaceIntegral object that can then be evaluated either symboli- 

cally using EvaluatePhaseSpaceIntegral or numerically using NEvaluatePhas- 

eSpaceIntegra1. Alternatively, one can write a Mathema.tica program to convert 

such an object to a C or Fortran program for numeric evaluation. Such a conver- 

sion program would be highly specific, depending on the particular programming 

language, integration routine etc. We have used one such program in our work, 

but it is not included with HIP. 

HIP includes some of the common Feynman rules of the Standard Model which 

are implemented using the functions Vertex and Propagator. Constants such as 

sin2 6~ (Sin [ThetaW] A2) and particle masses (e.g. Mass [ZBoson] ) are usually kept, 

as symbolic constants. However, HIP stores a table of their numerical values; these 

are substituted for the symbolic expression by the Mathematics function N. 
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B.3 HIP FUNCTIONS 

Strictly speaking, Mathematics does not distinguish between data-structures, 

functions and procedures. In practice, however, the Mathematics objects defined in 

HIP can be divided into several broad categories. In all cases we try to follow the 

Mathematics convention of beginning each name with a capital letter. Further, 

as far as is practical we use full, descriptive English names rather than cryptic 

acronyms. Using Mathematics utilities, the user can choose his or her own cryptic 

abbreviations. The major categories are: 

1. Objects such as gamma matrices or dot products. These are characterized 

by the property that they usually remain unevaluated. 

2. Declarations and definitions. These do not typically return anything, but are 

rather invoked as part of the initialization process. 

3. Operations such as contracting indices or taking traces. These typically take 

their input and convert it to an equivalent expression. 

In this section we describe the most important members of each class. 

Table 7 lists the major functions representing objects with their equivalent in 

ordinary physical notation. 

The most useful declarative functions are: 

- PrepareIndex: PrepareIndex [mu, nul declares ,V and u and Lorentz in- 

dices. 

- SetMass: SetMass [pl, p2, . . . , ml sets pl, p2,.. to be four-vectors with 

invariant mass m.* 

- SetMandelstam:SetMandelstam[(pl, p2, p3, ~41, (ml, m2, m3, m4), 

* Note that the p’s are used in a dual mode, both as representing momenta and as representing 
particles. The mass m associated with p is the mass of the particle carrying the momentum 
p. For off-shell particles, p2 # m2 (DotProduct [p, p] != WassCpI -2). 
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Table 1. HIP functions representing objects 

HIP Function Example Physical Equivalent 

0 +, py, P=, e) The four-vector (pz,pY, p,, E) 

DotProduct DotProductCp, q] P-q 

G G [mu, nu] g P” 

EPS Eps[p, q, mu, nd %TpllPrqa 

DiracGamma DiracGamma[mu] YP 

Slash Slash Cpl * 

DiracGamma5 DiracGamma5 +I5 

** DiracGamma[mul**Slash[pl rp # 

SpinorU SpinorUCp, lambda] ux (24 

SpinorUbar SpinorUbarCp, lambda] zx (P) 

HelicityProjection HelicityProjectionCLeft] PL = (1 - r5)/2 

SpinorS SpinorS [p , k] 4P, v = Q(PbL@) 

SpinorT SpinorTCp, kl t(P, v = ~ir;(Pht(~) 

s, t , ul sets pi, p2, p3 and p4 to be on-shell with masses ml, m2, m3 and 

m4 respectively and sets the DotProducts of pl, p2, p3 and p4 in terms of 

the Mandelstam variables s, t and u and the masses: 

(Pl *pa) + f(s - mf - m;) 

(Pi *P3) --+ i(--t + m2 + rni) 

(Pi *P4) -+ i(--u t mf t rnz) 

(P3 *P4) + i(s - rni - rni) 

(P2 * P4) -+ jj(-t t mi t rnz) 

(P2 -P3) -+ f(-u t mi t mi), 

where m; is the mass of the particle p;. 

Most of HIP’s functionality is implemented as operator-type functions. The 

main ones are: 
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- Boost: Boost [fv, rap, dir] gives a four-vector obtained by boosting the 

four-vector fv by rapidity rap in the direction specified by dir. Example: 

I I 

In[ll:= Boost[{O, 0, 0, d, r, (cth, 031 

Boost the four-vector (0, 0, 0, m) by rapidity r in the direction cos 8 = cth, 

4 = 0. 

Out Cl1 = Gqrt Cl - cth2] m Sinh [rl , 0, cth m Sinhkl , m CoshCrl) 

(mdwsinh r, 0, m cos 0 sinh r, m cash r). 

- Decay: Decay[v, dir, (ml, m231 gives two four-vectors vr and ~2 such that 

vl+v2 = v, ~1” = rn:, vi = rni and the direction of 01 in the TJ center-of-mass 

frame is given by dir. Example: 

I I 

In111 := Decay[(O, 0, 0, ml, (cth, 03, (ml, 031 

Decompose the four-vector p = (0, 0, 0, m) into two four-vectors pl and pa 

such that p: = rnf, ps = 0 and the direction of p1 in the p center-of-mass 

frame is given by cos 0 = cth and 4 = 0. After some rearrangement one 

gets: 
2 2 2 2 2 2 2 

Sqrt Cl - cth 1 (m - ml ) cth (m - ml ) m + ml 
out[l]= ~c-----------2-m-----------, 0, ------------__ -___---- , 3, 

2m 2m 

2 2 2 
-(Sqrt[l -(cth cm2 

2 2 2 
-cth] (m -ml>> -ml>> m -ml 

> (----------------------------, 0, ----------------- 3 
2m 2m --;---33 
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( diITGZT(m2 - rn:) 0, cos 8(m2 - rn:) m2 Pl j-m: = 2m 9 2m ’ 2m > 
’ 

p2 _ 
- ( 

-W(m2 - rn:) - cosB(m2 - mf) m2 - mf 

2m 9 0, 2m > 2m 1 ’ 

- Contract: Contract Cexpr, index] contracts index in expr. Contract 

with respect to a particular index ~1 invokes a large set of rules. The basic 

rules for handling arbitrary tensors and vector are: 

where D is the dimension of space-time.* For handling the completely anti- 

symmetric E symbol we use 

The rules associated with y-matrices are: [501 

P/d -4 

Y/d --+ D 

Y/mYP + (2 - D>rv 

Yp YVl “Iv2 7 p -+ (D - 4)yvl yv2 t 4g,,, 

(B-2) 

(B-3) 

* Most of HIP’s functions operate well in arbitrary D dimensions. The exceptions are the 
functions dealing with vectors given in terms of their explicit components (e.g. Boost), 
functions associated with phase-space integrals and functions treating r5. 
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For more complicated cases we use 

yJ+)yl” + 

where 

Example: 

2r+) +2rk"' 

-2ry 

(n even) 
(D = 4) 

(n odd) 

n-3 

(D -4)r+) +zrk"' - 2~(-l)5Jp (D # 4), 
i=4 > 

(B.4) 

I 
InCll := Contract CG [mu, nul p [mu] , mu] 

Contract the index ~1 in g,“pp. 

I 

Out Cl] = p [nul 
PU 

In[21:= Contract [DiracGamma [mu] **Slash [p] **DiracGamma[nu] ** 
DiracGammaCmu] , mu] 

Out [2] = (-4 + SpaceTimeDimension) Slash[p] ** DiracGamma[nu] + 

> 4 pCnu1 
(D - 4) #yV + 4pv where D is the space-time dimension. 

- GammaTrace: GammaTrace [expr] is the trace (in spinor space) of expr. tr { 1) 

can be left unevaluated as the constant DiracGammaSize, but is usually set 
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to 4. Whenever possible, GammaTrace uses the following simple rules: 

Traces of longer expressions invoke the following recursive rules: 

tr {7p(n)} -i fJ-l)(‘+‘Jgpvitr {rim)} 
i=l 

tr {y5+)} --+ C (-l)(i+j+k+')~~vivjvbY,tr {rjyil}. (B'7) 
l<i<j<k<l<n 

Example: 

In[ll:= GammaTrace[DiracGamma[mu]**DiracGamma[nu] 

out [II = 

tr {Yk-rvl 

4 GCmu, nu] 

In[21:= 

Out[21= 4 I Eps[mu, nu, sig, tad 

In[31:= GammaTrace[DiracGamma[mu]**Slash[pl]**DiracGamma[nu]** 
Slash[p2]**DiracGamma[mu]**Slash[p3]**DiracG~a[nu]** 
SlashCp411 

GammaTrace[DiracGamma5**DiracGamma[mu]**DiracGamma[nu]** 
DiracGamma[sig]**DiracGamma[tau]] 

tr { Y5YpYvYuYr 1 
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out L-31 = -32 Dotproduct Cpl, p31 DotProduct [p2 ) pa] 

-=(Pl - P3)(P2 e p4) 

- AbsSquared: AbsSquaredCexprl is the absolute value of expr squared. Ab- 

ssquared sums over polarization of both external spinors and vectors unless 

their polarizations are explicitly specified: 

IWP) I2 -+ c xux(P)‘iiA(P)x* + X(j + mw* 

IWP) I2 + ;: Xv~(p)a~(p)X* + X(j - m)X* 
x 

hW12 + 
1 

- g/w’ . (m=O> 
PPPPt - g/w’ + ,2 cm # Oh 

(B-8) 

where m is the mass associated with p. Example: 

I -1 
In[ll := AbsSquared [SpinorUbar [p] **SpinorV [q] ] 

I~(PMd I2 

Out Cl]= 4 DotProduct [p,q] - 4 Mass Cpl Mass [q] 

4~. q - 4mpm, 

In[21:= AbsSquared [SpinorUbar [p, Right] **SpinorV [q, Left] 1 

Out [2] = 2 DotProduct [p , q] 

In[31:= AbsSquared [SpinorUbar [p] **DiracGamma[mu] **SpinorU [q]] 
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I~(P)Yi4l) I2 

out [31= -4 DotProduct [p, ql GCmu, ConjugateCmull + 

> 4 G [mu, Conjugate [mu] 1 Mass [pl Mass Cql + 

> 4 p[Conjugate[mull qCmu1 + 4. p[mul qCConjugateCmul1 

-4(P ’ q)!w + 4% ‘mpmq + 4P,lq, + 4p,q,1 

Conjugate [mu] (p’ is the new index needed on squaring the expression). 

- ConvertToST: ConvertToST[expr] attempts to convert expr to Spinors and 

SpinorT objects. Unless instructed otherwise, the program assumes every 

massive vector q is the sum of two massless vectors LightlikeVectorDe- 

cayedFrom [q, I] and LightlikeVectorDecayedFrom[q, 21. Example: 

I 
In[ll:= ConvertToST [ 

SpinorUbar [p , Right] **Slash [ql **SpinorU [k, Right] 1 

Convert Tin $u~(k) t o s p inor techniques. p and k have previously been 

set massless. 

out [II= - (SpinorS [p , Light 1ikeVect orDecayedFrom [q, 11 I * 

> SpinorT [k , Light 1ikeVectorDecayedFrom [q, 111) - 

> SpinorS [p, LightlikeVectorDecayedFrom [q, 211 * 

> SpinorT[k, LightlikeVectorDecayedFrom[q, 211 

The result is s(p, ql)t(k, ql) - s(p, qa)t(k, 42) where qf = qij = o and 

ql + q2 = q are assumed. 

- Vertex: VertexClinel, line2, . . .I is the Feynman rule for a vertex. 

Each line is of the form particle or {particle, p) or (particle, p, 
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indices) where particle is the particle type, p is the particle’s momentum, 

and indexes are the appropriate Lorentz or gauge group indexes. Example: 

I I 

In[l] := Vertex[Electron, Electron, (ZBoson, p, mu)] 

The eeZ vertex for 2 boson carrying momentum p, 

Out [I]= (-2 I Sqrt [Alpha] Sqrt [Pi] DiracGamma[mu] ** 

-HelicityProjection[Left] 
> ( ------------2------------ + Sin[ThetaW]‘)) / 

> (Cos [ThetaW] Sin [ThetaW] > 

-2i&i1/;; 
cos 6~ sin 0~ Y/J 

( 
-~PL + sin2 0~ 

> 

where o is the electromagnetic fine structure constant and 13w is the Wein- 

berg angle. 

I 

- CrossSection and DecayWidth: CrossSectionCme2, ql->(qlx, qly, 

qlz, el3, q2->(q2x, q2y, q2z, e2), outGoing] returns an expression 

for the phase space integral to be evaluated by EvaluatePhaseSpaceInte- 

gral. me2 is the expression for the matrix element squared, (plx, ply, 

plz, 61) and (p2x, p2y, p2z, e2) are the explicit four-vectors of the in- 

coming particles, and outGoing specifies the order of phase-space evalua- 

tion as explained below. DecayWidthCme2, p -> Xpx, py, pz, e), out- 

Going] similarly returns an expression for the phase space integral resulting 

in the decay width given matrix element squared me2 and initial momentum 

+L py, pz, 4. 

The formula used for cross-section calculations is 

cw4 %l I 
o = 77 IM12~Wq1 + q2;p1,. . . ,pn), J 
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and for the decay width it is 

r _ (2n)4 
- 2M 

J 
IM12aa(P;pl, * * .I%>. (B.lO) 

Phase-space integration is performed by a recursive use of the relations 

d@n(P; pl,. * * ,Pn) = d@n-1 (P; P12,P3,. . . ,Pn)dQ2(pl2;Pl,p2) (2T)3dmT2 

1 2lPll 
= @n-l(P; p12,p3,. . . ,pn) -- Qr)3 m12 dfh2 dm:2y 

(B.ll) 

where pf2 = rnT2 and 012 represents the direction of the ‘decay’ of the vector ~12 

to pl and pa in its center-of-mass frame. The factor 2lplI/rnla is given by 

1 

21pll=( 

ml2 

K m42 - (ml t m2)2) (mT2 - (ml - m2)2)]1’2 

42 

4ml 
/- 

l-- 
ml2 

(ml = m2> 

(m2 = 0) 

(ml = m2 = 0). 

(B.12) 

The argument outGoing tells HIP how to build the phase space element d@,. 

It specifies both the order that the momenta pl *. . pn are paired (eq. (B.ll)) and, 

optionally, the symmetry of the individual two-body phase-space elements. By 

default, the complete angular integral over 012 is constructed. Often, due to the 

symmetry of the process, one can reduce the dimension of this integral (in the 

case of cylindrical symmetry), or eliminate it completely (in the case of spherical 

symmetry). This is done using the keywords Cylindrical and Sphericai. 

For example, let us consider the decay process p-(p) + e-(pl)Fe(p2)vP(p3). If 

the p is unpolarized, the decay process is spherically symmetric. The direction of 

vP may be chosen arbitrarily. Once that is done, the direction of the electron with 
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respect to the (e-ye) system has cylindrical symmetry about the V~ direction. The 

outGoing argument is given by Spherical [Cylindrical [pi, ~21, ~31. If the ,U 

is polarized, the spherical symmetry of the decay is reduced to a cylindrical sym- 

metry about the polarization axis. outGoing is then given by Cylindrical [(PI, 

pa, p31* 

B.4 EXAMPLE 

In this section we give an example showing step by step how a HIP calcu- 

lation is carried out. We compute the decay width of a muon in the process 

p-(pJ -+ e-(pe>qdpv>~e(~) and with a non-zero electron mass. We use a low- 

energy approximation in which the W-propagator is a constant and is absorbed, 

along with the coupling constant g into the Fermi constant GF. 

I I 
InCll:= PrepareIndex [sigh 

Instruct Mathematics to treat sig as an index. 

InCal:= SetMass [(pnub, 01, (pe, me), (pnu, 01, (pmu, mmu~l 

Set the masses of the four external particles. The neutrinos (v~ and & 

carrying momenta pnu and pnub respectively) have zero mass. The electron 

(pe) is set to have mass me while the muon (pmu) is set to have mass mmu. 

Later on, these masses can be given numerical values. 

InC3]:= matrixelement = 2 Sqrt [2] FermiGF * 
SpinorUbarCpnul ** DiracGammaCsig] ** SpinorU[pmu, Left] * 
SpinorUbarCpel ** DiracGammabig] ** SpinorV[pnub, Left]; 

In[4]:= me2 = AbsSquared[matrixelement]/2; 

Square the matrix-element using the Mathematics function AbsSquared. 

We suppress the printing of the long intermediate result. 
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In [53 : = me2 = Contract Cme2, (sig, Conjugate [sig] )] // Factor 

Contract over the indices cr and u’. // Factor instructs Mathematics to 

the factor the expression. 

Out [5] = 128 FermiGF’ DotProduct [pe , pnu] DotProduct [pmu, pnub] 

128G;(pe - P”)(P, - m> 

In[6] := width = DecayWidthCme2, pmu -> (0, 0, 0, mmu), 
Spherical [Cylindrical [pe, pnub] , pnu] 1 

Ask Mathematics to construct the phase-space integral to compute the 

decay-width. The expression Spherical [Cylindrical [pe, pnub] , pnu] 

indicates a cylindrical symmetry in the phase-space integral over the pair 

(e-, F~) and a spherical symmetry over pair (v~, (e-, TV)) (here (e-, TV) 

is the combined system of e- and F~.) 

out c71= -PhaseSpaceIntegral- 

In[8] := width = EvaluatePhaseSpaceIntegral[width]; 

Evaluate the phase-space integral symbolically. Again we suppress the long 

intermediate result. 

InC91 := Factor [width / . me-)x mmu /. Log[a, b-1 : > Log [aI +Log[bll 

Use some Mathematics rules to tidy up the expression. We express the 

mass of the electron in terms of the mass of the muon m, = zmP and 

combine logarithms using the rule log(ab) + log a + log b. 

2 5 8 
- (FermiGF mmu (-1 + 8 x2 8 x6 + x + 12 x4 LogCx21)) - 

out[iO]= ------------------------------3---------------------------- 

192 Pi 

lY(p- + e-vpFe) = 
G$-I-L;( 1 - 8x2 + 8x6 - x8 - 12x4 log(x2)) 

1927G 
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B.5 CONCLUSION AND OUTLOOK 
We developed HIP as an aid in the calculation tree-level processes in high 

energy physics which would otherwise be much more difficult. HIP’s main feature 

is in providing an environment within. Mathematics in which one can refer to 

objects and perform operations that occur frequently in this field. One can use 

HIP interactively to assist with small calculations, or set it up to automatically 

perform massive ‘symbol crunching’. 

We have checked HIP against hand calculations of e+e- + W+W-, e7 + 

WV, both with arbitrary (C and P conserving) W7 couplings, and of numerous 

simple electroweak processes. We also checked them against published results for 

e+e- -+ W+W-7, e-I-e- + W+W-2, e+e- + 777 and e+e- + 22.2. 

In the future, we hope to extend HIP’s capabilities into performing loop inte- 

grals, calculating color factors and incorporating other techniques for symbolically 

calculating Feynman diagrams at the matrix element level. We also hope to trans- 

late HIP to other symbolic languages such as Maple, so as to maximize the group 

of its potential users. 

HIP is available for distribution. The distribution includes the various compo- 

nent Mathematics packages, the online documentation as listed in the appendix, 

and several files containing sample calculations done by HIP. 
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