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Abstract

The Standard Model gives definite predictions for the W-photon couplings.
Measuring them would test an important ingredient of the model. In this work we

study the capability of a 500 GeV ete™ collider to measure these couplings.

We study the most general C and P conserving WW+~ vertex. This vertex
contains two free parameters, £ and A\. We look at three processes: ete™ —
WHW~—, ey — Wr and vy — WTW~. For each process we present analytical

expressions of helicity amplitudes for arbitrary values of x and A.

We consider three different sources for the initial photon(s). The first two are
breamsstrahlung and beamstrahlung (photon radiation induced by the collective
fields of the opposite bunch). Both occur naturally in the collider environment.
The third is a photon beam generated by scattering low energy laser light off a

high energy electron beam.

We examine potential observables for each process, calculating their sensitiv-
ity to k and A, and estimating the accuracy with which they can be measured.
Assuming Standard Model values are actually measured, we present the region in
the & - X plane to which the W couplings can be restricted with a given confidence
level. We find that combining the three processes, one can measure £ and A with
accuracy of 0.01-0.02.
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1. Introduction

The Standard Model is widely accepted as the framework of contemporary
high-energy physics. The spinor-vector couplings of the theory have been rigorously
tested and verified. The vector-vector couplings, however, have hardly been subject
to direct experimental test so far™ The vector-vector couplings are completely
determined within the Standard Model. Measuring their value is one of the most

important tasks of the next generation of high energy colliders.

An important role in this task will be played by ete™ colliders, which have
always been invaluable in making precision high-energy measurments. In this the-
sis, we present a complete analysis of the constraints on the W+ couplings possible
from an ete™ collider. We concentrate on a particular design, NLC, currently

under extensive study.

In this introduction we outline the major points discussed in the thesis. We
start with the theory of W+ couplings. Next we discuss current and future bounds
on these couplings. In sect. 1.3 we briefly introduce the experimental setting.
Sect. 1.4 deals with the three processes we consider. In sect. 1.5 we discuss in
general terms the observables associated with the different processes. We conclude

the introduction with an outline of the rest of the thesis.

1.1 W COUPLINGS — THEORETICAL CONSIDERATIONS

In this section we outline some theoretical considerations regarding the Wiy
vertex. We discuss C and P transformations, scale dependence and imaginary
components in the various couplings. We give the simplifying assumptions used in
this work. Finally we discuss the expected values of the various couplings in the

Standard Model and in a few other models.

The three vector vertex WWV, V being either 4 or Z, has been thoroughly

studied.[Z] The vertex receives contributions from seven independent terms in the



Lagra.ngia,n.* Of these terms, three conserve both C and P, one violates both C and

P but conserves CP, and three violate CP. The CP violating terms are not expected

to receive significant radiative corrections in the Standard Model. Stringent bounds

can be imposed on these parameters due to the smallness of CP violation observed

in low energy physics. The fermion sector of the Standard Model violates C and

P separately. It is, therefore, not surprising that fermionic loop corrections induce
(3]

C and P violation in the boson sector.” In this work, however, we do not consider

this C and P violating term.

One of the three C and P conserving terms in the W W« interaction is fixed by
the W charge renormalization. The remaining two terms are written in terms of
the parameters « and A. In the Standard Model, £ = 1 and A = 0 at the tree level.
% and )\ are related to the W magnetic dipole moment and electric quadrupole
moment. We deal mainly with the WW~ vertex. At some points we also need to
refer to the WW Z vertex. In these cases we use k, and A, as the analogues of
and A.

Coeflicients of individual Lorentz structures in the vertex function are called
form factors. To first order in a weakly coupled theory such as the Standard Model,
there is a simple tree-level relation between « and A and the form factors with which
actual cross section calculations are carried out. It is clear on general principles
that the WW+~ form factors must have a non-trivial momentum dependence. One
must be very cautious when measuring their values, or even comparing potential

bounds, at different energy scales.

Only the Standard Model values of the WW+ couplings preserve tree level
unitarity. In order for loop corrections not to violate unitarity, they have to drop
like 1/s at asymptotically high energies. However, this is an asymptotic result,
which need only start at energies higher than the mass of the most massive particle

running in the loops.

* We neglect the scalar component of all vector bosons: 8,V# =0, 8,W# = 0. This condition
is automatic for on-shell particles, and holds for virtual vectors if we ignore the fermion
masses.



The imaginary parts of the form factors are essentially the absorptive part of
the WW+ vertex function. Such effects are proportional to small coupling con-
stants in a weakly coupled theory such as the Standard Model. However, they can
be substantial if the W boson is strongly interacting in the relevant energy scale.
Further, this energy scale must be such that new, strongly interacting particles can
be created on-shell. We expect that in this case, the entire experimental picture is

dramatically affected.

In this work, we make several simplifying assumptions. First, we only consider
the two C and P conserving terms « and A. Second, we concentrate on W~ rather
than WZ couplings. WZ couplings inevitably enter the process ete™ — W+W~
which we examine here. In that case, we make the working assumptions £, = 1 and
Az = A, which are suggested from low energy experiments.m All the experiments
we consider run at, or below, 500 GeV. We assume the underlying scale of new
physics is significantly higher, so that we can ignore the scale dependence of «

and A\. We also ignore the small Standard Model contributions to the imaginary

component of k£ and A.

(5]

Couture and Ng“* have calculated the loop corrections to the W anomalous
couplings in the Standard Model, including the effects of a heavy top quark. The
results depend both on the top quark and Higgs boson masses. For a heavy top
quark (m¢ > m Z)" this dependence is not steep. Neither « nor A are very sensitive
to the Higgs- boson mass. For a Higgs mass of 500 GeV and top mass of 150 GeV,
the corrections are Ax = 5.5 x 10~3 and A = 8.5 x 10~5. It should be stressed that
these corrections were calculated with all three bosons on-shell. At asymptotica,lly
high energies, one expects these corrections to drop as 1/s. Some extensions of
the Standard Model which do not significantly increase these corrections include

[6] [7]

two-Higgs-doublet models™ " and supersymmetry.

Some “new physics” scenarios consistent with low-energy experiments do, how-

ever, suggest significant deviations from the Standard Model tree level values.

(8 (3]

These include composite W’s" and non-decoupling effects of heavy quark loops.



Composite W models can give particularly large corrections to the W couplings.
These corrections are typically scale dependent, and become large at scales ap-

proaching the scale of compositeness.

1.2 W COUPLINGS — BOUNDS

Next we outline some of the major sources of bounds on WW+ couplings. Cur-
rent bounds are derived from unitarity considerations, loop effects on low energy
experiments and, recently, CDF data. We also outline the bounds that can be

extracted from experiments in future colliders.

A theory differing from the Standard Model only in the value of the W cou-
plings violates unitarity at high energy unless the anomalous couplings drop to
their Standard Model value fast enough at high energies. Assuming fixed cou-
plings, one can calculate the maximal allowed deviation from the Standard Model
such that unitarity is not violated below some scale A. This is the unitarity bound,
and it is based entirely on theoretical considerations. For A = 1 TeV, the bounds

]

on Ak = k — 1 and X are of order 1.[9’4

Fixing the anomalous couplings, one can also calculate their effect on low
eflergy experiments through loops involving the W boson. As the theory with
anomalous couplings is necessarily non-renormalizable, one has to explicitly cutoff
the loop integral at some energy scale A. The result of the calculation typically
depend not only on A, but also on the method used for cutting off the integral.
With few exceptions, low energy experiments also give bounds of order 1 for A =

1 TeV.[4’10—12]

On shell W production at the Tevatron allowed, for the first time, to impose
scale independent bounds on Ak and A. Due to low statistics, these bounds are very
weak, of order 10.[1] With a luminosity upgrade, these bounds can be significantly
]

irnproved.[13

A major improvement on the Tevatron results is expected when the Large

Electron Positron facility (LEP) II starts producing W pairs through ete™ —



W+W . Several authors have calculated that bounds of order 0.4-1.0 on the W

couplings can be expected from these experiments.[ls’m’M]

Several authors considered measuring the W couplings in lepton-hadron col-
liders.[17’18] HERA, with a center of mass energy of about 300 GeV is not very
sensitive to x and A. In the LEP-LHC collider, however, a center of mass energy

of 1.4 TeV allows relatively sensitive bounds, of order 0.1-0.2, on both couplings.

The Superconducting Super Collider (SSC) offers a very powerful tool for exam-
ining W interactions at very high energies. The complex environment of a hadron
collider makes precision measurements difficult. Due to the s/m%, enhancement
the total cross section for ¢q¢ — W+ very sensitive to A, less so to Ax. Bounds
of order 0.01 for A and 0.1 for « are possible from that process.[4’19] Because of
the possible scale dependence of the W couplings, one should be cautious when

comparing SSC bounds with those of lower energy machines.

1.3 EXPERIMENTAL SETTING

In this section we discuss the experimental setting considered in this work. We

describe the underlying ete™ collider and the various photon spectra used.

In this work we concentrate on a machine design commonly termed the Next

Linear Collider (NLC).[ZO’ZI] NLC is a linear e*e™ collider with center of mass

energy of 500 GeV. We assume an integrated luminosity of 9 fb~! = 3000R~!.

Radiated photons play a very important role in high energy electron colliders.
We consider three potential sources of photons. Any ete™ collision exhibits a
radiated photon spectrum through bremsstrahlung. This radiation depends only
on the electron energy. It is approximated to first order by the Weizsacker-Williams

distribution.

In high-energy linear colliders with very small spot size, a different mechanism
accounts for what is potentially an even more important source of photons. As

the electrons of one beam are passing through the other beam, they experience



a very strong electromagnetic field. The synchrotron radiation induced by that
field is called “beamstrahlung” .[22’23] The actual beamstrahlung spectrum depends
sensitively on machine parameters. We work with one particular set of parameters
that nearly maximizes this effect [2°]

Ginzburg et a4

have suggested a scheme for converting a single-pass
ete~ collider into an ey or vy collider. The conversion of high-energy electrons
to photons is done by backward Compton scattering of high intensity laser light
off the electron beams. This mechanism entails loosing very little luminosity; it
reduces the center of mass energy by 20-30%. In such a 4+ collider built on top of

a 500 GeV ete™ collider, the average center of mass energy is about 350 GeV.

1.4 PROCESSES

We examine in detail three processes: ete™ — WTW~, ey - Wy and vy —
W*W~=. The first is the traditional W pair production ete™ — W+W~  In the
Standard Model, unitarity is maintained by a delicate cancellation between the
t-channel neutrino exchange and the s-channel annihilation diagrams. Only the
latter involves three vector boson couplings. Due to this cancellation, the process
is particularly sensitive to deviations from the Standard Model. That makes it a
powerful tool for exploring new physics. One disadvantage of ete™ — WHW~ is
that it involves both Wy and WZ couplings. Separating the effects of the two

channels is not easy.

A different process occurring at NLC is ete™ — W*e™ 7. The amplitude for
this process is dominated by the diagram in which the positron emits a collinear,
almost on-shell photon. In that case, the positron is likely to escape detection by
going down the beam pipe. The cross section in this case can be approximated by
that of the reaction ey — Wy. While the complete calculation of the entire process
is essential for comparison with actual experimental results, it is not crucial for
estimating the process’ sensitivity to anomalous couplings. The simpler ey — Wy

is the second process we consider. The process ey — Wv has several advantages




that make it an important complement to ete™ — WTW™— [26-29] First, it only
involves W+ couplings, avoiding the complications associated with separating Z
and v couplings. Second, its total cross section approaches a constant rather than
dropping like 1/s. Even at NLC energies it has a very large cross section, allowing
excellent statistics even with modest integrated luminosity. Finally, since the W
decays to a muon and a neutrino, the experimental signature is extremely simple
— a single muon scattering against nothing. Backgrounds for this signature are
virtually nonexistent.

The third process we consider is W pair production via photon fusion, vy —
W+W_.[26’30’31] The ~+ luminosity in an ordinary ete™ collider is small for high
energy photons. The process can better be utilized in the setting of a dedicated vy
collider. In such a collider, vy — W+W = is one of the dominant processes. Like
ev7 — W, it only involves W~ couplings. But unlike the two previous processes,
vy — WTW~ also involves the four vector vertex WW~v. That vertex has not
been fully analyzed. In this work we use its simplest form which still consistent with
arbitrary values for x and A. In order for the process to satisfy the electromagnetic
Ward identity, the WW+~ vertex has to depend on A in a form first suggested (for

different reasons) by Aronson®?

1.5 OBSERVABLES

In this section we consider in general terms some of the observables associated
with the different processes. These include the total cross section, the angular dis-
tribution, the ratio between longitudinal and transverse W production and asym-
metries associated with photon polarization. Finally, we outline the method used

to calculate potential bounds.

The total cross section, with minimal cuts, is a simple, yet very sensitive mea-
sure for anomalous couplings. Measuring the total cross section requires knowledge
of the total luminosity, as well as backgrounds, triggering and detector efficiencies.

Systematic errors in this measurement are relatively large. Many of these errors



are canceled by measuring the ratio of different cross sections. One such ratio is
the forward-backward asymmetry. Another, which we call IO is the ‘in/out’ ratio

between production at low and high values of | cos 8|.

One of the most sensitive measures to the anomalous couplings is the ratio
between longitudinal and transverse W polarizations. By the equivalence theo-
rem, in the high energy limit, the longitudinal W degree of freedom behaves like
the Higgs Goldstone boson it absorbed. As such, its interactions are more sen-
sitive to anomalous behavior originating in the Higgs sector. More generally, it
is the (s/m¥,)-like term in the longitudinal polarization vector which has partic-
ularly ‘bad’ high energy behavior. In the Standard Model, delicate cancellations
prevent that bad behavior. Any deviation from Standard Model couplings poten-
tially violates these cancellations, increasing dramatically the total cross section

for longitudinal W production.

Both ete™ — WHtW~ and vy — WTW™ allow the determination of the
direction of one W’s decay products with respect to the W direction of motion.
This can be done most easily in semi-leptonic decay events, i.e. events in which
one W decays leptonically, while the other decays hadronically. Summing the
visible momentum in the hadronic showers gives the total momentum of the W.
Comparing the direction of the charged lepton to the direction of the hadronically
decaying W, one can calculate the leptonic decay direction in the W center of
mass frame. From that angular distribution, one can extract the ratio between

transverse and longitudinal W production.

Table 1 compares the three processes we examine in this work in terms of their
advantages and disadvantages as probes of the W anomalous couplings.

It has been suggested that precision analysis of experimental data should be
done by direct fitting to the theory.[33] However, in this work we only try to assess
the general sensitivity one can expect in future experiments. The method we use

is as follows. We calculate the theoretical expectation value of various observable

(e.g. total cross section or forward-backward asymmetry) as a function of x and



Table 1. Advantages and disadvantages of the three processes.

Advantages

Disadvantages

ete == WHW~—

ey = Wy

vy — WTWw-—

Particularly sensitive due to
SM cancellations.

W  polarization can be
extracted.

Large cross section allows
good statistics with modest
luminosity.

Simple experimental signa-
ture, with very little back-
ground.

Anomalous couplings enter
twice, increasing sensitivity.

In an dedicated vy collider,
photon polarization adds im-
portant information.

W  polarization can Dbe
extracted.

Both W+~ and W Z couplings
are involved. Separating their
different effects can be diffi-
cult.

Relatively small cross section.

Relatively insensitive to
anomalous couplings.

W direction is not recon-
structible in leptonic decays.

Involves the four vector ver-
tex, complicating analysis.

Cross section small in tradi-
tional eTe™ collider. Requires
a dedicated v+ collider.

A. Then, we give a very rough estimate of the experimental precision with which

one can expect to measure the same observable. We mainly consider systematic

errors. The cross sections of all the processes involved are large, and systematic

errors usually out-weigh statistical ones. Finally, assuming Standard Model values

are actually measured, we estimate what bounds can be extracted on the values of

the anomalous couplings.

1.6 OUTLINE

This dissertation proceeds as follows. Chapter 2 examines in detail the W

couplings. We present the complete Lagrangian and derive an expression for the

vertex. We then examine other bounds on the W anomalous couplings, from



unitarity considerations, low energy experiments, and potential bounds from other

high-energy experiments.

Chapter 3 concentrates on W pair production via ete™ — WTW~. We start
with a detailed derivation the helicity amplitudes for the process. Next we examine
which quantities are experimentally observable, estimate the accuracy with which
they can be measured, and calculate their dependence on « and A\. We discuss
the principles used for extracting bounds on the anomalous couplings, and finally

present these bounds.

Chapter 4 follows a similar route analyzing the single W production ey —
Wwv. After deriving expressions for the helicity amplitudes, we discuss the three
photon sources mentioned above: bremsstrahlung, beamstrahlung and Compton
backscattered laser light. The effective luminosity and its use in calculating cross
sections are discussed. We use the effective luminosity to calculate experimental

observables, and extract from them potential bounds on « and A.

Chapter 5 deals with W pair production via photon fusion, vy — WtW~. The
chapter follows much of the same steps of the previous two, deriving expressions for
the helicity amplitudes, using the effective luminosity to calculate observables.and
extracting from them potential bounds on k£ and A. We present our conclusions in

chapter 6.

Results for all the calculations are presented as helicity amplitudes. For pro-
cesses involving fermions this is con\}eniently done using the ‘Vector-Equivalence’
technique which provides simple analytic matrix element level expressions. This
technique is described in appendix A. All the calculations presented here were as-
sisted by HIP [34]

Mathematica.[35] Mathematica is a program for performing mathematical calcula-

— a set of packages for performing high-energy calculations using

tions, both symbolic and numeric, on the computer. HIP is described in detail in

appendix B.

10



2. Anomalous Couplings

In this chapter we discuss the anomalous couplings in the WWy vertex. In the
first section we present the most general Lagrangian for the WW-y vertex. The
Feynman rule for the vertex is derived. The discussion follows closely sect. 2 of the
very useful paper of Hagiwara, Hikasa, Peccei and Zeppenfeld.[z] Our presentation
is slightly more general in that we do not consider any particular kinematics. We

then restrict ourselves to the C and P conserving components of the vertex.

In the second section we discuss current bounds on « and A. Until very recently,
two sources for these bounds were generally available: theoretical unitarity bounds
and low energy experiments in which the vertex appears in loop corrections. Samuel
et al. have analyzed results from CDF to give the first tree level (albeit very weak)

bounds on k and )\.[1]

The third section outlines the potential of other high-energy colliders. The
colliders under consideration are lower energy e*e™ colliders (LEP-II), high-energy
hadron colliders (SSC and LHC) and electron-proton colliders (HERA and LEP-
LHC).

2.1 LAGRANGIAN AND DEFINITIONS

The general coupling of two charged vector bosons with a neutral vector bosons

(2]

can be derived from the following effective Lagrangian:

A
WLV
w

Loy = igy [g{ (WLWHVY = W WH) + k W,V +

—giWIW,(8*V" + 8" VH) — iglet* (W} 8,W,)Vs
~ V414 S‘V t Y42
+rR WIWL TR 4 %WMW“,,V ]
(2.1)
where V stands for either the photon (V = ) or the Z (V = Z) fields, W is the W~
field, Ay = 8uAy — 8y Ay, Viw = Yepnpo VP, and (A9,B) = A(8,B) — (3,A)B.

11



The seven operators in (2.1) exhaust all possible Lorentz structures if we neglect
the scalar components of all vector bosons: §,V# = §,W* = 0. This condition
is satisfied automatically for on-shell W’s and Z’s and for both real and virtual
photons. If a virtual W or a Z couples to a fermion line, the scalar component is
proportional to the mass of the fermion. In the processes we consider, the term is

of order the mass of the electron, and we may safely neglect it.

(2]

The corresponding Feynman rule with momenta as in fig. 1 is

\4
Si(q PPt 4 g (Pog# - PPgr)
mw

iT%P(q,3, P) = igy | Y (¢ — 9)*9*? -

+ifY (P¥g"P 4 PPgh®) 4 ifletPr(q —G),

7 = 7
gen, - e petmna-n)
w

(2.2)

Figure 1. The general WWV vertex.

All the form factors fV are dimensionless functions of P?, ¢? and g2. To lowest

12



order, the form factors are related to the Lagrangian parameters via

Vv P2
%
=g +m)‘v, f2 = Ay,
2, =2
q°+q
=91 + 6w+ ——y,
Qm%,v -
v v qz—ﬁz. v v q2_62'5\ ()
f4 =44 — 2m%V ZAVy fS =G5 + 2m%V tAy,
2, =2 1~
. +q° - v _ =
fé/="‘7v"“q2m2; Av, fr= 2)“"

Contributions from higher dimensional operators in the Lagrangian give a P2, ¢?

and §2 dependence of the form factors. The form factors are real for P2 < 0, ¢2 < 0

or g2 < 0. The form factors may have imaginary parts above threshold.

Without losing generality, we fix the overall coupling constants to be
gv=—¢, g = —ecotbw, (2.4)

where —e is the electron charge and 8w is the weak mixing angle. The W charge
determines g] = 1. Ky and Ay are related to the magnetic dipole moment g, and

electric quadrupole moment @ of the W+ by

’ : e €
= —(1 DY : - — . )
Bw om (1+ Ky + ‘7), Qw 2 ("57 /\‘1) (2.5)

The three couplings g1, k¥ and A are even under both C and P transformation.

Two couplings, & and X, conserve C but violate P. They are related to the
electric dipole moment dy, and the magnetic quadrupole moment Qy of the W+
by

e 5 ~ e «

dw = 2mw(k"{ + /\“/)7 QW = —;{2—‘};(&‘7 - /\"I) (26)

The remaining two couplings of eqn. (2.1), g4 and g5, violate C. g4 respects P

13



Table 2. Properties of the couplings of eqn. (2.1) under C and P.

C Cp

g1, K, A + + +
R, A - + -
94 + - -
g5 - - +

whereas g5 violates P and is thus CP conserving. The properties of the various

couplings under C and P are summarized in table 2.

The imaginary parts of the form factors are essentially the absorptive part of
the vertex function. Such effects are proportional to small coupling constants in
a weakly interacting theory such as the Standard Model. A strongly interacting
theory could contribute significantly to the imaginary parts, but only if new par-
ticles can be produced on-shell. In that event, the entire experimental picture is

dramatically affected.

In this work we only consider the C and P conserving couplings g1, £ and A,
though it should be noted that fermion loops contribute directly to g5 as well. We

also neglect the imaginary components of x and A.

2.2 UNITARITY AND LOW ENERGY CONSTRAINTS

A WW=~ interaction Lagrangian with fixed, non Standard Model couplings
violates unitarity at sufficiently high energies. Unitarity bounds on the value of
the anomalous couplings are calculated by demanding the tree level unitarity is not
violated below a fixed energy scale A. The assumption is that since the Lagrangian

is a low energy effective approximation, there exists an underlying high energy

[9)

theory which unitarizes amplitudes at the scale A. Baur and Zeppenfeld™ give
the bounds
1.86
|Ak| < A for A =0, (2.7

14



and

A <— for =1, (2.8)

where Ak = £ — 1 and A is in TeV. Here and henceforth, we use k and A for &,

and A,.

Most current experimental bounds on x and A arise from loop effects, because
so far almost no particle accelerator possesses sufficient energy or luminosity to
produce on-shell W’s directly. The one exception is discussed below. If the WW~
vertex deviates from its Standard Model value, the resulting theory is not renor-
malizable. Therefore, the theory is not fundamental, but rather is a low energy
approximation of a more basic theory characterized by some (high) energy scale
A. Results of loop calculations typically depend on that energy scale. The exact
result also depends on the regularization scheme used in doing the loop integral.
Since loop effects from different sources can interfere destructively, these estimates
also assume that the non standard couplings are the only source of new physics
in the loop diagram. Further, another basic assumption is that the value of the
couplings is independent of the loop momentum. This assumption is particularly
questionable in integrals dominated by the cutoff scale, which is also the scale of

the physics giving rise to the anomalous couplings.

Some of the more stringent bounds derived.from low energy experiments are
the following: Calculating the effects of non Standard Model values for £ and A
on the (g — 2) factor of the muon, and comparing to current experimental results,

Grau and Grifols get[m]

—2.09 < Axlog(A%/m3,) — ) < 5.54. (2.9)

Using ete™ — ff cross-section data from PETRA, and taking A = 0, van der Bij
(11]

deduces

|Ak(A/mw)| < 33. (2.10)

[12]

Alcorta et al. rely” ™ on results from the polarization asymmetry in e-D scattering
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at SLAC, and taking A = 0 again, give

1
|0.6Ax — 0.4(Ak)?| < IV (2.11)
(A in TeV.)
Neutrino-nucleon scattering experiments give[4] strong correlation between &
and kz:
Az + (cos B + D)ARY + sin 6y Ax?] < 0.015™ 2.12
kg + (cos Oy 2)ch sin Oy Aw”) < 0.015—5~. (2.12)

The allowed values form a narrow ellipse-shaped strip in the k-5, plane.

Data on the heavy boson mass ratio were used by Kane, Vidal and Yuan to
strongly correlatel ) and A z- They find (for A = 1 TeV) that one may approx-
imately take A = A, for A\, ; > 0.15. This restriction enforces an approximate
custodial SU(2) symmetry relating the W* and W?* fields. A term of the form
6""’CW;},,W,’.’” WeT™® in the unbroken Lagrangian is explicitly custodial SU(2) sym-
metric. Expressed in terms of the 4 and Z fields, in gives rise to the condition
A= As.

To summarize, the strongest independent bound on & from low energy experi-
ments is of order 100%, while the best result on X is |A| < 0.6 (eqn. (2.8)) coming

from unitarity considerations.

2.3 OTHER HIGH-ENERGY BOUNDS

In this section we discuss bounds from future high-energy colliders. Baur and
Berger considered a luminosity upgrade of the Tevatron to 100 pb'l.[l?’] Using the
process q@ — W4 they predict bounds of 1.1-1.5 on [Ak| and 0.38-0.47 on ||

(90% confidence limit).

The first significant on-shell W production in a e*e™ collider is planned in
LEP-II. With center-of-mass energy of 190-200 GeV, the collider is designed for

precision study of the interaction ete™ — WTW~. Hagiwara et al. examined
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the process in detail, but gave only a brief discussion of potential bounds from
LEP-IL 2 Kane, Vidal, and Yuan calculated the dependence of the total cross
section on k and A, and assuming it can be measured to 10%, concluded the
bounds —0.54 < Ak < 0.94 and |A\| < 0.5. Zeppenfeld studied the sensitivity
of the process to x and &, ignoring the couplings A and A z.[m] His conclusion is
that bounds of order 0.5 can be imposed on both |Ak| and |Akz|. Argyres et al.
considered the total cross section for ete™ — W"’W—'y.[ls] In a 200 GeV ete~

collider, k can be measured with accuracy of order 1.

Layssac et al. have studied a more complete set of observables associated with
the process ete™ — WHW~— il Two scenarios where studied for discovery limits.
In the first, Ax = Ak, = 0 and A = XA, were chosen, and a 1o bound |A| < 0.1
was deduced. In the second scenario, the choices A = A, = 0 and Ak = Ak, led
to the potential bound |Ax| < 0.05. In all cases, the authors assumed a uniform
experimental accuracy of 3-4% on all integrated quantities. In the case of a 500

GeV collider, these bounds would improve by a factor of 3 to 4.

Baur and Zeppenfeld calculated the sensitivity of the proceés eq — eWq' in
the context of an ep collider.ln] Two collider designs were considered. In HERA,
a 30 GeV electron beam collides with an 800 GeV proton beam. In a proposed
LEP-LHC collider, the corresponding energies are 60 GeV and 8 TeV. Assuming
the standard WW Z vertex, bounds of order 0.5 (0.2) on Ax and 1.2 (0.1) on A
can be extracted with 90% confidence limit from the experiment at HERA (LEP-
LHC). Zeppenfeld obtained slightly weaker potential bounds in the same colliders

[18]

by considering the process eq — vg'v. ' This process has the advantage in that

only W+ and not WZ couplings contribute.

Baur and Zeppenfeld also carefully calculated the sensitivity of the process
q¢ — W+ in the context of the very high energy hadron colliders SSC and LHC
with center-of-mass energies of 40 and 20 TeV respectively. Since the process can

occur with a wide range of energy scales, they use scale dependent anomalous
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ag

a(8) = m, (2.13)

where § is the center-of-mass energy of the ¢g system squared. Their bounds,
therefore, depend on a choice for A. A = 1 TeV gives (with 99.99% confidence
level) the bounds |Akg| < 0.26(0.34) and |Xo| < 0.039(0.054) for SSC (LHC).
Kane, Vidal and Yuan used fixed couplings, resulting in much stricter bounds, of

order 0.1 (0.2) for Ak and 0.01 (0.02) on X in SSC (LHC).!

The bounds derivable from different future colliders are summerized in table 3.
In comparing these results, it should be kept in mind that the various authors differ
on several important points in their analysis. In sampling the multi-dimensional
space of the various couplings, some authors fix all but one of the couplings, while
others allow independent or partially independent variation of each coupling. Con-
sidering experimental errors, some authors consider only statistical errors, others
include systematic errors. Typically, systematic errors of 5% in measuring total
cross sections are used. The confidence limit (C. L.) used in calculating the bounds
varies from 68% to 99.99%. Finally, while all authors consider the total cross sec-

tion as one observable, some but not all also consider angular distributions.

Table 3. Bounds possible at different future colliders.

- Tevatron upgrade LEP II HERA (LEP-LHC) SSC (LHC)

Type PP ete” ep PP
C.M. Energy 1.8 TeV 190 GeV 314 (1400) GeV 40 (20) TeV
Process @ - Wy  ete” - WtW- eq — eWq' q7 — Wy
Bounds: Ak 1.3 0.7 0.5 (0.2) 0.26 (0.34)
A 0.4 0.5 1.2 (0.1)  0.039 (0.054)
C. L. 68% 68% | 90% 99.99%
References 13 2, 4,14, 15 17, 18 4,19
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In conclusion, colliders scheduled for operation in the next decade or so can

increase our sensitivity to & to order 0.3, while measuring A with accuracy of order
0.04.
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3. ete” —» WtW~—
3.1 INTRODUCTION

ete™ — WHW ™ is undoubtedly the most thoroughly studied process occurring
in an NLC-type collider. The reason is that this process offers a combination of
reasonable statistics and particular sensitivity to unknown parameters both within

and outside the Standard Model.

Analyzing the process ete™ — W+W ™ is complicated because both the photon
and the Z couplings of the W are involved. For each neutral boson V, the number
a priori independent C and P conserving parameters in WWV vertex is two. As
both the photon and the Z take part in ete™ — WTW~, the total number of
parameters is four. To simplify the analysis, and allow comparison with other

processes, we reduce this number to two by assuming
kz =0, Az = Ay (3.1)

As we described in sect. 2.2, these assumptions are suggested by low energy exper-

[4]

iments. - The constraint A; = Ay also follows from custodial SU(2).

In the next section, we rederive expressions for the helicity amplitudes for
this process. We then calculate the cross sections for creating W’s of specific
polarization. These cross sections cannot be measured directly, but give an insight
into the physics of this process. Section 3 examines which quantities can actually
be measured, and estimate the accuracy of these measurements. We calculate
these observable quantities, estimating their sensitivity to x and A. In sect. 4 we
discuss principles for estimating experimental bounds on « and A using data. We
apply these principles to give the regions in the k- plane corresponding to-specific

confidence limits.
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3.2 CROSS-SECTION CALCULATION

The three Feynman diagrams contributing to e¥e™ — WTW™ are shown in

fig. 2.
W w* | |
. v
o + ‘)/,Z
e et |

Figure 2. Feynman diagrams for ete™ — WHW—.

With both W’s on shell, and momenta labeled as in fig. 3, the general WWV
vertex (2.2) takes the form

A
T = ig (1 +—2) ) (ps — pa)" 9" — —(ps — pa)"Pip}
1% v 1% 4 p3p
[ 2m%V m%V 4

+ (1 + kv + M) (Phg"™ — pigh")

(3:2)

. 2) 8\
= igy {2 (1 + rv) p3g"’ — —;S‘ipEpng

+ (14 v+ A )(phd" — pgg‘”)} :

where g, = e, g, = ecot O and r = dm¥, /s.

As we ignore the electron mass, here and throughout this work, the electron

and the positron have the same helicity. The matrix element for this process is
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given by
M = M)+ MY () + MATY(2) (3.3)

where o is the electron helicity (¢ = 1(—1) corresponding to right (left) handed
particles), A~ and AT are the helicities of the W™ and W respectively,

M ) = (o, A7) e s N ) (2P ) BT

14
ig
X [ —P, u
<\/§ L’Yu) a(Pl)
_ —ie?
" 2tsin? 0w

8a.71(p2) £ (pa, A7) (1= #3) £ (p3, A7 )us(p1)

Mﬁ‘k* (y) = e** (ps, ,\')5”*(p4, /\+)'l—2'a(P2)(—i6')’a)ua(Pl) (—ijar) (iFZI‘V)

—ie?

* — v — T Fz 14
== e"*(p3, A7) € (pa, AT )0s(p2)v ua(pl)( ")

€

_ —\ _ ) 1q%T )
MY (Z) = e (ps, X 7)e (P4»A+)va(p2)(wya“/a)( gmz)(zrf,w
VA

s-—

ie? cot Ow go
2

* - * PZ
" (ps, A™) € (pa, N () "o (1) (em’g‘;w),

(3.4)

-s—‘mz

(ps+p4)”

Figure 3. The WWV vertex for ete™ — WW-.
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e**(p3s, A™) and €”*(ps, A1) are the polarization vectors of the W~ and W+
respectively, P, = (1 — 75)/2, s = (p1 + p2)%, t = (p1 — p3)?, and eg, is the
Z-electron coupling:
sin Gy 6oL

9o = o8 Ow — 2 sin Ow cos Oy (3:5)

In the ete™ center-of-mass frame, the momenta in the process take the follow-

ing values:
P = —\g—g(o,o, 1,1) p3 = %(ﬂsin 6,0,Bcos8,1)
(3.6)
p2 = —\g—g(0,0,-—l,l) Py = —\g—g(—-ﬂsin0,0,—ﬂcos&l)

where ﬂ = \/l -T. The W polarization vectors are:
6*( ﬂ:) = —1 (C089 :l:l —sind 0) 6*(1) :i:) = ——-1 (CO 0 :Fz — 'n0 0)
p3, 2 ) ) ) 4, 5 sV, L] 81 b]
\/_ \/_

e*(p3,0) = \/L;(sin 6,0,cos 6, 8) e*(p4,0) = %(—sin 6,0, cos b, B).
(3.7)

In evaluating the spinor expressions, let us define a four vector

vt = v;{;(Pz,Pl) = \/‘;(1’ :Fi,0,0) (38)
(see Appendix A). We then have the following useful identities:

Uo(p2) Kuolp1) = k- vo
Bo(p2) K1 K2 Ksuo(p1) = (K1 - k2)(ks - vo) + (k2 - k3)(k1 - vo) - 39)
— (k1 - k3)(ky - vo) + i0€upraki kY kS0,
This is a special case of a more general mechanism discussed in Appendix A.
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With the aid of these identities, the expressions for the matrix elements take

the form:
S L —ie? . o N
ZM, (V) = .'2__501.[—172'5 (P4,/\ )E (pg,/\ )-vL
2t sin” Oy

+p1-€*(p3, A7) €% (pa, AT)-vp + (e*(pa, AT)-€*(p3, A 7)) (p3-v2)

— t€upra €7 (P4, AT)(p1 — p3)” €7* (p3, A7 )v?]

_ ;52 F‘Y
SMEN () = 2 e (pa, X7 € (pa, N0 2

-2 PZ
. A"A"‘ _ € gd ux A_ v A+ T /14
ZMU (Z) = s mzz € (P3, )5 (P4, )vaecot GW’
(3.10)

where we have used *(ps, A") - (p1—p3) = *(ps, A1) - (pa—p2) = —€*(pa, AT) - po.

Substituting eqns. (3.2) and (3.1) we get
iMAN (y) = 3—? [2 (1 + %f\-) (ps - vo) €' (p3, A7) - €*(ps, A7)
8\ _ |
— —(p3 - vo)ps - e*(pe, A\ )ps - €*(p3, A7)
AR R [(pa - € (p3,A7))(€" (e AT) - vo)

~ (p3 - €' (pa, AT))(e"(p3, A7) - v,,)]]
(3.11)

iMYY(Z) = !

e cot O o 2\ * - *
’e_c_"_W—g[2 (1+—> (ps - vo)(€" (p3, A7) - € (pa, AT))
s — My r

- i_;\(m - ve)(p3 - € (P4, AT))(pa - €*(p3,A7))
+ 2+ N)|[(ps - € (p3,27))(e*(ps, AT) - vo)

— (p3 - € (pa, X)) (e (p3, A7) - 'Ua)]} :
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The component along the Z axis of the total angular momentum of the incoming
particles is . The component along the W~ direction of motion of the total angular
momentum of the final state is AA = A~ — AT, It is natural to factor out of the
matrix elements the functions corresponding to this rotation®® The appropriate
stz to AJ0 Y oo T aof 1 TAMY ooabio oty

LOL Id UJ,A/\\U), WHCIT J(j — |1 ld«)\\l, |u/\” 15 LHC 1Iiiuinl Ilguld.r
transferred. The d functions used here are given in table 4. For future use we give

some expressions not used for ete™ — WTW—,

In the s-channel diagrams, only J =1 is possible, and therefore M™% (v, 2Z) =
M™*=(v,Z) = 0. Substituting the explicit four vectors from eqns. (3.6) and (3.7),
and extracting some overall factors

MY =B MY X dk,, (6) (3.12)

the matrix elements take the form

~ 3= 1 -
MY () = 60 AN

~ sin® O (2 — v — 2B cos 6)

My () = By (3.13)

~ -3+ s p—
MA2(2) = By cot Oy =By "

The coefficients A and B are shown in table 5.

While the individual matrix elements have a bad high-energy behavior, some
diverging as O(1/r), their sum is O(1) in the Standard Model. This behavior
requires some delicate cancellations. These cancellations are evident from the table.
In the Standard Model (and more generally whenever the photon and Z couplings
to the W are identical), B,’Y\_A+ = Bé—ﬁ. For right-handed electrons, g, cot fy = 1
(eqn. (3.5)), and the photon contribution directly cancels the Z contribution in the

limit s/(s —m%) — 1. For left handed electrons, the photon contribution again
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Table 3. The functions di")‘h‘n:(e)

d?tl,:tz = d2¢2,q:1 +1(1 + cos 8)sin 8
=71 +2(1 — cos ) sin @
Ao =d 19 X sin” 0
dzltl,:tl | %(1 + cos8).
di1 1 (1 — cos 9)
d(ll,:tl = d1¢1,0 :i:\/%- sin 8
B30z ava(L+cos )2

2 2 )
d3¢/1/2,3/2 = dyz,ﬂ/z 5’% sin /1 F cos 8

d7? %\/1 F cosf

~1/2,£1/2

cancels the first part of g,. The bad high-energy behavior multiplying the second

part of g, is canceled by the neutrino diagram contribution:

AA'X" 1 AX-’\+ B%',\"'
—._+ . _)
sin? Oy (2 — r — 28 cos 6) 2sin’ @y 1 — cosé 2sin? O

(r—0)
(3.14)
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Table 5. The coefficients A**2 and By'"*? of eqn. (3.13).

(A2t A By By X
(+=),(—+) V2 0 0
(04),(-0) (28—2cosf+r)/\/T  (L+&+A)/V/r 2+ AN/
(+0), (0-) (28 —2cos0—1)//r  (L+s+X)/V/T  (2+N)//F
(++), (=) B —cosf 1+ 2X\/r 142)\/r
(00) (28 — 2cos 0 + fr)/r % fr +1 2/r+1

Using couplings outside the Standard Model, this good high-energy behavior
is not maintained for arbitrary values of « and A. In the high-energy limit, the
leading terms (at the matrix element level) arise from two sources: the & term
of M%(y) and the A term of M} "7 (Z) which is not canceled by the photon
diagram contribution. The leading terms at the matrix element level are O(Ax/r)
and O(\/r), where Ak = k—1. Squared, these terms are O(Ax?/r?) and O(A2/r?).
The next-to-leading terms, O(Ak/r) and O(A/r), are cross-terms between the

leading and O(1) terms in the matrix element. The relevant matrix elements are:

2Ak 1
r 2 cos?2 Oy

MP = ¢e%sinb ( ) + O(r)

2Ak 1
MY = e 9( ~ ) 0 1
L ¢ sm r 4 cos? O sin? Oy +0(r) (3:15)
—e2sinf )
M++’__ _ €° sin A 0 )
L sin @y T +0(r)

Squaring and summing over polarizations, the leading behavior is

> M

A= Ao

2 1 2\2 2 sin?
=e4sin20[;5 <8AI€2+ )_—é_fi': 14 2sin HW ]

T cos? Oy sin? O

sin? Oy

+0 (A—"Z> +0 (ATZ) +0(1)

T

(3.16)
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An important point to notice is that the angular dependence factors out of the
leading terms in the expression. If we draw the curve on the x-A plane on which
the the differential cross section is equal to its Standard Model value, its shape (to

leading order in 1/r) does not depend on . This shape is shown schematically in

fig. 4.

1.5 I - i
1.0 + —
X
3
0.5 —
0.0 [ [ |
-1  -05 0 0.5 1
A(r)

Figure 4. Schematic shape of the curve corresponding to a Standard Model value of the
differential cross section The top and right x’s correspond to the points (0, zo/sinfw) and
(20, 2o/2sin Bw ) respectively, where zo = [(1 + 2sin® 8 )/(8 cos® fw sinfw )] r. Note that the

entire shape scales like r.

The differential cross section for producing a W pair of specific polarization is:

i 4 1 —4m2, /s h -
AT _ l/dﬂ(%r) M ,\+|2\/—_—_Wv B /d(cosG)|Mf} '\%Iz

T4 2s 8(2m)s ~ 1287s
-1
3R ! MO
= 3—2ﬂ/d(cos ) o2 ,
-1
(3.17)
where
dra? Ecu 2
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Figure 5 shows the differential cross section for producing W’s of various he-
licitiy combinations. Figure 6 shows the dependence on « and A of the total
cross section for producing W’s of various helicitiy combinations. These figures are
the idealized cross sections, assuming monochromatic beams of perfectly polarized
electrons. Note the strong dependence of the (00) combination on &, and of the

(++) + (——) combination on .

k=1, A=0.1

103

T
_ (+-)
f - — (%)
10° |- - (0+)+(-0)
— — (+0)+(0-)
(++)+(=-)

101

do/dcosé (R)
—
(o]
AN

10—4

cosé

Figure 5. Differential cross sections for producing W pairs of specific helicity combination
with center-of-mass energy of 500 GeV as a function of cos §. Here and henceforth, cross sections

are given in units of R.

The polarization of the individual W’s cannot be measured directly. The direc-
tion of the decay products of the W, however, carries with it important information

from which the polarized production cross sections can be extracted.
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Figure 6. Total cross sections with center-of-mass energy of 500 GeV (Jcos# < 0.8|). The
left frame shows the dependence on . The right frame shows the dependence on A. The meaning

of the lines is the same as in fig. 5.

A priori one has to consider interference terms between the production ampli-
tudes of W’s with different helicities. In practice, these interference terms vanish

upon integration over the azimuthal angle of the W decay.

Let us concentrate on the decay W~ — [~7. Let x be the angle between the
charged lepton momentum and the W direction of motion, as measured in the W

rest frame. The x distribution is then given by

do
dcosy

S o P, (3.19)
A

where
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o\ = Z o(eTe™ - WyW)) (3.20)

v
and
pa - 1T
(3.21)
R = X=X,

Using these formulas, one can use the x distribution to calculate the production

rates of the various polarizations.

3.3 OBSERVABLES

In this section we discuss the various observables and assess their sensitivity
to k and A. All the calculations in this section are performed for a 500 GeV ete™
collider, assuming perfectly monochromatic electron beams. Two types of errors
are associated with each experimental measurement: statistical and systematic.
As we show below, the total cross section for ete™ — W+W ™ in the Standard
Model (| cos8| < 0.8) is about 4 R. With an integrated luminosity of 9fb™!, the
total number of events is approximately 1.25 x 10%. Statistical errors on the full
event sample are less than 1%. Systematic errors are more difficult to estimate. A
detailed study can only be done using Monte Carlo techniques. Factors entering
into the systemafic errors include particle misidentification; uncertainty.in the size
of backgrounds, calorimeter accuracy, etc. In estimating systematic errors we rely

on related Monte Carlo studies,[37] as well as on the accuracy reported from the

recent SLC and LEP [38]

simplify our analysis by ignoring the smaller statistical errors. This step is not

experiments. As most systematic errors are 0.03-0.05, we

allowed if the integrated luminosity is significantly smaller than the one we assume

here.

The most straightforward observable is the total cross section oror. To reduce

uncertainties associated with particles escaping detection by going near the beam
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pipe, we cut the angular integration at | cos §| = 0.8. We assume a systematic error
of 5% in total cross section measurements. Figure 7 shows the total cross section
for ete™ — WHW™ as a function of « for several values of A, while fig. 8 shows

its dependence on X for several values of «.

30 T T T

w
20 - 0.2 -

Z 2

10 i -
0.0

0 ! ! I 0

0.8 0.9 1 1.1 1.2 -0.2 -0.1 0 0.1 0.2
4 A
Figure 7. opor for ete™ — WTW™ as Figure 8. oror for ete™ — WHW™ as
a function of k for A = —0.2,0,0.2. a function of A for «k = 0.8,1,1.2.

Systematic errors associated with total cross section measurement may be re-

duced by looking at ratios of cross sections. The first ratio we look at is the

forward-backward asymmetry FB defined as

_ o{cosf > 0) —a(cosf < 0)

~ o(cos§ > 0) + g(cosd < 0) (3.22)

FB

Measuring the forward-backward asymmetry FB relies on charge identification of
the W’s. Charge identification in events in which both W’s decay hadronically is
challenging, though by no means impossible. Semi-leptonic events (i.e. events in
which one W decays leptonically while the other decays hadronically), however,

provide for precise charge identification. These constitute about 44% of the total

event sample. With these events, we assume that FB can be measured with a
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Figure 9. FB as a function of x for A = Figure 10. FB as a function of A for xk =
-0.2,0,0.2. 0.8,1,1.2.

systematic error of 0.03. Figures 9 and 10 show the dependence of the forward-

backward asymmetry on & and A.

Additional information can be extracted from the W angular distribution by
looking at the ratio

o(|cosb| < 0.4)
o(|cosf| < 0.8)°

10 = (3.23)

Charge identification is not necessary for the determination of 10, and thus one
can safely use the entire event sample. Here we assume that IO can be measured

with a systematic error of 0.03. Figures 11 and 12 shows 10’s on & and .

The angle x between one of the W decay products’ momentumn and the W
direction of motion, as measured in the W rest frame can be measured for the
leptonically decaying W in a semi-leptonic event. Measuring the total momentum
of the hadronic jets and the momentum of the charged lepton, one is left with the
three unknown parameters of the missing neutrino. Imposing the constraints that
the total momentum equals that of the colliding electrons, and that the invariant
mass of the neutrino-lepton system equals that of the W, one can over-determine

the neutrino momentum. Even allowing arbitrary energy loss to beamstrahlung
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Figure 11. IO as a function of « for A = Figure 12. 10 as a function of A for k =
-0.2,0,0.2. 0.8,1,1.2.

(which we do not consider in this chapter), one can calculate the neutrino mo-
mentum up to a twofold ambiguity. Monte Carlo studies suggest that consistantly
selecting the more probable solution does not significantly degrade the sensitiv-
ity of the measured quantities to the anomalous couplings.[37] By measuring the x

distribution one can easily derive the ratio L/T defined as

2o 0’(6+6_ — WhWp)
doao(etem — WhWr)’

LT = (3.24)

where L and T refer to longitudinally and transversly polarized W’s respectively.

Here we assume that the L/T ratio can be measured with a systematic error of

0.03. Figures 13 and 14 show the L/T ratio’s dependence on « and A.
3.4 DISCOVERY LIMITS

In assessing the discovery potential of an experiment, we always assume that
Standard Model results are actually measured. We then ask what regioﬁ in the

k- plane is still allowed based on the measured results.

The individual measurements are assumed to have a normal distribution with

standard deviation o equal to the systematic error. Let fi(x, ) be the theoretical
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L/T
L/T

Figure 13. L/T as a function of « for Figure 14. L/T as a function of A for
A=-0.2,0,02. k=0.8,1,12.

dependence of the observable z on « and A, with error ;. The probability that we

actually measure the value f,' is given by

P(fi) = exp (_(f;(n,QAU)Z—fi)Z) /a,.\/é;. | (3.25)

While strictly speaking it only makes sense to talk about the probability of
measuring fi given a certain -\ combination, we interpret that same value as
the probability for a given -\ combination given that f; was actually measured.
As we assurﬁe Standard Model values are measured, each observable : defines a

probability function on the -\ plane given by

(K _f. 2
P,'(KZ,)\) = exp <_(ft( ,/\) zft(].,O)) )/0,‘\/2—71—'. (3.26)

20

Note that this probability function is not normalized, i.e. [ Pi(x,))dxdA # 1.

One can get a good idea of the kind of bounds derivable from the observable i
by plotting the region of all (k, A) such that |fi(x,A) — fi(1,0)| < no; for some n.

In this work we always display the 2¢ regions corresponding to n = 2.
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To combine the results of several observables we assume that their measurement
is independent. The probability for a given point in the - plane is given by taking
the products over all probability functions P;i(k, A):

k
P(s,)) =[] Pi(x,))
1=1

1 1 A5, A) — fi(1,0)\
= —__——-(271')’“/21—['-0'; €xp (-—5 . (f( )dif( )) ) (327)

where fi(x,)) = (fi(k, ) — fi(1,0))/0; is the normalized observable.
The probability function P(k, ) has to be normalized:

> _ P(K1A)
P(6,X) = T b (3.28)

The new function ﬁ(n, )) is evidently maximized at « = 1, A = 0. Unless all the
observables have the same x and A dependence (i.e. fi(k,A) = fi(c(k,A)) with the
same c for all ¢), the function P(x,)) drops to zero as either k£ or A approaches
infinity. Based on that, let us define for every o (0 < a < 1) a cutoff value Py(c)
such that

/ drd\P(k, ) = o (3.29)
P(r,2)>Po(a)
The region to which a set of measurements can restrict £ and A with a specific
confidence level « is then the region of all points («, A) such that P(k, ) > Py(a).
Typical confidence levels are 68% and 90%.

Figure 15 shows the 20 regions for each observable discussed in the previous
section. The central regions are the 68% and 90% confidence level bounds obtained
by combining all the measurements. Note that the allowed region in each case is
disconnected. One has to rely on other experiments to distinguish the Ax = 0 and
the Ax = 0.115 regions.
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Ak

Figure 15. The (20) regions in the x-) plane from various measurements of ete™ — WHW~-.
The regions in the center correspond to 68% and 90% confidence level bounds from the combi-

nation of all measurements.
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4. ey — Wy
4.1 INTRODUCTION

The second process we study is ey — Ww. This process does not exhibit the
same delicate cancellations as ete™ — WTW ™, and is, therefore, generally less
sensitive to non-Standard Model couplings. Since one of the diagrams involves
the t-channel exchange of a heavy vector boson, the total cross section for this
process remains constant rather than drop like 1/s. At high energies (s > miy),
the process has a relatively large total cross section, allowing reasonable statistics
with smaller effective ey luminosity. Only W+ couplings contribute, and so we

avoid the complications associated with the Z couplings.

This chapter proceeds as follows. In the next section, we calculate the helic-
ity amplitudes and the ‘idealized’ production cross section, assuming a perfectly
monochromatic ey collider. This calculation follows the same general lines as the
one carried out in section 3.2. In sect. 3 we consider the three potential photon
sources. We introduce the effective luminosity and show how it is used in calcu-
lating cross sections. Section 4 evaluates potential observables, presenting their
dependence on k and A. Section 5 assesses possible bounds on « and A from the
individual rﬁeasurements, and combines them to given specific confidence limits in

the x-A plane.

4.2 CROSS-SECTION CALCULATION

Two Feynman diagrams contribute to the process ey — W (fig. 16). Note

that only left-handed electrons take part in the interaction.
With one W and the photon being on-shell, and momenta labeled as in fig. 17,
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Y e
Figure 16. Feynman diagrams for ey — Ww.

the WW« vertex (2.2) takes the form
P = je [29""pff + 2¢%*ph — ¢*” (ps + p2)* + (k+A-1) (¢"°Ps — ¢*"'p5)

A o
- °m—2(P2 + p4) (PZPZ — (p4 - p2) g’w)]'

v (4.1)

= ie [29"”pff +29°ph — ¢" (pa + p2)* + (x+A-1) (¢**P5 — 9"’ p5
A o m_v 132
— (P2 +p0) (phps — (P2 P2)g )],

where r = m¥,/s.

Figure 17. The WW+« vertex for ey — Ww.
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Only left-handed electrons take part in this process. The matrix element is

given by

MM = MY (1) + MY (W) (4.2)

where A and X are the helicities of the photon and W™ respectively,

M (1) = (e, X ) (2P ) PATEE)

—ieYu)uL(p1)

\/2— L7V

ie 2
\/—S s1n0 uL(p3) f (P4,/\ )(ﬂl+ ﬂ2) ﬁ(pZ,/\)uL(Pl)
- 4 4N o v* ,'— i —1gP%
M (W) = & Ne” (ot X uln) (2P, ) )= o)
ie?

= Gy e N (s NN Ty s 1) (P‘Z””) ,
(4.3)

and ¢(pz2, A) and €*(ps, ') are the polarization vectors of the photon and the W~

respectively.

In the ey center-of-mass frame, the momenta in the process take the following

values:
p) = %(0,0,_1,1) p3 = -—————\/5(12~ 7) (sin8,0,cos6,1)
(4.4)
p2 = —?(0,0, -1,1) Py = 1/2——5(—(1 —r)sin8,0,—(1 —r)cosd,1+r)
The two polarization vectors are:
e*(ps, L) 1(0s9:i:i sin 4, 0) + 1 1 "00
) = —=\C 3 s 3 = — , U,
P4 \/’2— 8(1’2’ ) \/é-( y F1 )
e*(ps,0) = F((l +r)sin,0,(1 +r)cosd,1 —r)
(4.5)
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As in eqn. (3.8), we define the four vector

vy = VL(P3s pl)

= /s(1 —r)(v/1 = cos8,iv/1 — cos8,V1 + cos 8,1 + cos §)

(4.6)
(see Appendix A), which obeys
T.(ps) pur(pr) =p-v
u,(ps) K1 K2 Faur(pr) = (k1 - ko) (ks - vg) + (k2 - k3)(k1 - vo) (4.7)

— (k1 - k3) (k2 - vo) + io€pprakl Ky k305

Next, we repeat the same steps as in section 3.2, substituting the vertex ex-
pression from eqn. (4.1) and the explicit four vectors from eqns. (4.4) and (4.5).
Again we factor the d function dﬁ)‘,AJ\'(g) where AX = A+ 1/2, AN =) +1/2
and Jo = max(|JAX|,]AN|). The d functions are given in table 4. We then get the

following expressions for the matrix elements:

wo_ Bé 4% o) (K ~ AN
= Gl @) (X 0+ SX (W) (48)

where 8 = +/1 — r and

M)\A' (V) — A,\«\'
(4.9)

~ AN B
W) = }
M (W) 1 —cosf+r(l+ cosb)

The coefficients A and B are given in table 6.

The cross section for producing a W with helicity A’ from a photon with helicity
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Table 6. The coefficients Ax,,», and Ba,,», of eqn. (4.9). r =m}, /s and B =T —r.

(AN) AW B

(—=) V2 —(2(3 - cosf) —2r(1 ~ cosf) + 2A& + A(1 — cos 0)) /v/2
(=0) =1/4/r (1 —cos@ +r(1 + cos ) + Ak — Acos ) //7
(—+) 0 —V2[3)/r

(+-) 0 2/3 (21‘2 + Akr — A1 = 1))/r
(+0) 0 (—4r — A1+ 1)+ A1 +7))/V3r
(+4) 0 ~V2(2+ Ax)

A is:

oM = l/dﬂgﬁ)ﬁ ’MA,\'Iz 1—mfy/s _1=r /ld(cose) ‘M’W’Z

4 2s 8(2r)6  1287s
-1
1 12
3R MM
= —3—5(1 — r)/d(cos 6) . .
-1

Figure 18 shows the differential cross section for producing a W of various

helicitiy combinations.

Figure 19 shows the dependence on &« and A of the total cross section. These
figures are the idealized cross sections, assuming monochromatic beams of perfectly

polarized electrons and photons.

The most striking feature of the differential cross section for ey — Wy is the
radiation zero which occurs in the Standard Model. The cross section for all helicity
combinations is exactly zero when the W scatters backwards (:.e. in the direction of -
the incoming electron). The differential cross section in the ey center-of-mass frame
is very strongly peaked for W’s scattering in the forward direction (fig. 20). Since

this radiation zero exists only for Standard Model couplings, the cross section for
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do/dcosf (R)

10—4

cosf

Figure 18. Differential cross sections for producing a W of specific helicity with center of
mass energy of 500 GeV as a function of cosf. In a combination (A1A2), A; and Az are the

helicities of the ¥ and W respectively.

backward scattering W’s could be a very sensitive probe for non-Standard Model

couplings.

However, in an ey collider, the average electron energy is significantly larger
than the average photon energy, and thus the laboratory frame is boosted in the
electron’s direction with respect to the ey center-of-mass frame. The entire W
angular distribution is shifted in the backward direction, completely obscuring
the radiation zero. The amount of this shift is sensitive to the actual photon
spectrum. An additional smearing effect is caused by the fact that, considering

only the leptonic W decay mode, its momentum is not reconstructible; only the
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Figure 19. Total cross sections for various helicity combinations with center-of-mass energy

of 500 GeV. The meaning of the lines is the same as in fig. 18.

muon’s momentum is known.

Because the W momentum is not reconstructible in leptonic decay events, the
relative direction of the decay products cannot be established (unlike in ete™ —
W+W ™). While the total W momentum can be fixed with reasonable accuracy in
hadronic decay events, it is questionable whether the same is true of the individ-
ual decay products. Thus, unlike ete™ — W+W ™, we assume here that the W

polarization cannot be determined experimentally.

As we mentioned above, the total cross section for ey — Ww approaches a
constant rather than dropping like 1/s. It is interesting to note that when one

imposes a fixed cut on the direction of the W accounting for the fact that particles
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Figure 20. Differential cross section for ey — Wv in the ¢ — v center-of-mass frame, for

different values of center-of-mass energy. The area under each curve is 1.

near the beam pipe escape detection, the 1/s asymptotic behaviour is restored.
This is because the cross section at higher energies becomes dominated by higher
partial waves, which are improtant in the low-momentum-transfer region, making
the differential cross section sharply peaked in the backward direction. Figure 21
compares the energy dependence of the cross sections of ey — Wv and ey — ey
for cutoff angles of 20° (solid) and 2° (dashed). Note that the cross section for
ey — ev is equally sensitive to the cutoff angle at all energies, whereas the one for

ev — Wv becomes more sensitive at higher energies.

4.3 PHOTON SPECTRA

The calculations in the previous section were carried out in the setting of an
‘idealized’ electron-photon collider in which the photon beam is perfectly mono-
chromatic, and is carrying the same energy as the electron beam. In this section

we show how to account for the inevitable energy spread associated with realistic

photon colliders.
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Figure 21. Total cross section for the processes ey — Wy and ey — ey as a function of

center-of-mass energy, and subject to cuts of 37° (solid) and 2° (dashed) on the scattering angle.

To account for the distribution of electron-photon center-of-mass energy, we in-
troduce the effective luminosity Le(3). Ley(8) is a dimensionless quantity, defined
as follows: the luminosity for an electron-photon collision with center-of-mass en-
ergy squared between § and §+ds is equal to Le4(8)(d3/s) times the overall collider

luminosity.

In terms of the effective luminosity Le4(3), the cross section for Wv production
is
L]
o= / (d3/5)Lor(8)0(4). (4.10)

]

We consider three potential photon sources. First, we have classical brem-
strahlung. This radiation depends only on the beam energy, and is parametrized

to first order by the Weizsacker-Williams distribution function

2 -z
f(z) = odnfs/mg) 1+ (1 )2, (4.11)

2r z

where z is the fraction of the electron energy carried by the photon. To first
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order in (a/27)In(s/m?) = 0.032, we can ignore the electron beam energy loss,
and assume it remains monochromatic. The effective luminosity function Le(8)

is then given simply by

Loy (3) = f(3/3). (4.12)

The second source for photons is the synchrotron radiation emitted by electrons
in one beam due to the electric field it experiences as it passes through the other
beam; this radiation is termed “beamstrahlung.”[zz’n] The effect of beamstrahlung
cannot be decomposed into distribution functions. We parameterize it in terms of
the luminosity function L.(3) discussed above. Beamstrahlung depends strongly
on machine parameters such as luminosity, pulse rate and bunch geometry.[22’23]
Here we use the following set of accelerator parameters (designated machine G by

1)

Palmer

Fem =500 GeV, £=9x10¥3cm %sec™!, N =1.67 x 10*°,
(4.13)
B; =34x107°cm, B, =1.3x10"%m,

where Ecn, is the center-of-mass energy, £ is the effective luminosity, N is the
number of particles per bunch and B; and By are respectively the large and small
radii of the elliptic pulse. This luminosity corresponds to 9 x 10~3pb~!sec~!. In
a 10%sec year, the integrated luminosity is 9 fb~! or about 3000 events per unit of

R.

The third potential photon source is a deliberately constructed ey collider.

2425] 1 ave suggested a scheme for Eonverting a single-pass ete™

Ginzburg et al
collider into a ey (or a v7) collider. The conversion of high-energy electrons to
photons is done by backward Compton scattering of high intensity laser light off
the electron beam. This mechanism entails losing very little luminosity; it reduces

the energy of each beam by 10-20%.
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.y v . . . . *
In describing the machine parameters, we use the dimensionless variables

_ 4 Fwy

Tz, = (4.14)

2 ?
me

where FE is the electron beam energy (here taken to be 250 GeV), wy is the energy
of the laser photon and w is the energy of the scattered photon. The parameter
x, is just (s/m?2) for the Compton scattering process. The maximum energy of a

scattered photon is given by

< Tm = . (4.15)

Due to the onset of ete™ pair production between backscattered and laser
photons, conversion efficiency drops considerably for z, > 2 + 12 ~ 4.82.[24’39]
We assume z, = 2 + 2v/2, which, given 250 GeV electrons, corresponds to laser

energy wo of about 1.2 eV.

The photon spectrum depends sensitively on A P, where A, is the mean elec-
tron helicity and P, is the mean laser photon helicity. Larger negative values of
Ae P, give a harder, more monochromatic photon spectrum, resulting in larger ef-
fective cross sections. See ref. 39 for a thorough discussion of the experimental
consequences of electron beam polarization. The sensitivity to anomalous cou-
plings, however, does not increase significantly with a harder photon spectrum,
while measuring the actual A, introduces new systematic errors. Therefore, we
assume that the electron beam is unpolarized. On the other hand, the laser can be
easily polarized almost completely, and this polarization can serve as an important

experimental tool. We assume that |P;| = 1. The effective luminosity is given

* Our z, and z correspond to ref. 24’s z and y respectively. For simplicity we use k = 1,
ap = 0 and 6y = 0 (which implies p = 0.)
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byl

Ley(8) =Ley(z3)

2 1+ :z:,,)2

2 2 2 2 2.2 2.3
_——(—1—_-;)7— (Zmp —4zpx — 4a:p:r +4z° + dxpz” + 3xp:z: — TpT ) /

[o5 (16 + 322, + 1802 + =)

—2 (84 20z, + 15m12, + 2z2 - :1:;) log(1 + a:p)] .
(4.16)

Fig. 22 shows the three photon spectra used here.

4 T | l

Loy (5)

Figure 22. Effective luminosity L.y as a function of §/s, where 3 is the center-of-mass energy
squared of the e — v system. The solid curve is the Compton backscattered effective luminosity.
The dashed curve is the beamstrahlung effective luminosity. The dotted curve is the classical

Weizsacker-Williams spectrum. The the thin vertical line represents the W production threshold.
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The various measureables associated with ey — W are sensitive to the ac-
tual photon luminosity. Therefore, the question of measuring this luminosity with
sufficient accuracy becomes prominent. As it turns out, ordinary Compton scat-
tering provides a simple yet effective method for measuring the photon spectrum.
It provides both a large cross section and therefore good statistics, and a virtually
background-free event topology. The process ey — ey, with both final particles
visible and no missing perpendicular momentum has no background beyond ra-
diative corrections. Furthermore, the momenta of the incoming particles can be

reconstructed completely. The cross section for ey — ey is

do

_ 2ma 2Ley(8)(d8/s) / 54 2cosf + cos 26

$ 1+ cosé

R d(cos 6). (4.17)

The infrared divergence is avoided by cutting off the 6 integral at some finite
8o. This is justified since, experimentally, no detection is possible for small beam

particle angles.

In units of R, one gets

>

N L ds 1 4 cosby
do(3) = Ee-,(s)—g- -3 (cos 6o + 2log (T——mé—%» , (4.18)

where 0y is the minimal angle from the beam direction in which particles can be
detected. Equation (4.18) allows a straightforward determination of Ley(3) by

measuring the cross section for ey production in a given § bin.

In the case of a Compton backscattered ey collider, we also consider the ques-
tion of photon polarization. Using a polarized laser beam results in a polarized
backscattered beam. The amount of polarization is energy dependent. If the laser
beam polarization does not have linear component, coherence between left- and
right- handed photons is lost upon integration over the azimuthal angle of the
Compton scattering process. Since the photons are emitted within 0.1 mrad of the

electron direction, the angle is unobservable, and the integration is done automat-
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ically. The average helicity {2 of the photon beam is then given by[24]

zp(zp — 2T — zpz)(2 — 27 + 22)
me, — 4dz,z — 4:0,2,:1: + 422 + 4zp2? + 3:5,2,302 - x%a:3'

{2 = (4.19)

Fig. 23 compares the total photon spectrum to that of photons with helicity —FPe.

Le,(5)

0 0.2 0.4 0.6 0.8
s/s

Figure 23. Spectrum of photons with helicity — P, (dashes) and the total spectrum (solid).

4.4 OBSERVABLES

In this section we discuss the various observables and assess their sensitivity
to k and A. All the calculations in this section are performed for machines based
on a 500 GeV ete™ collider. We repeat the calculations using the three photon
spectra discussed in the previous section. In the case of a Compton backscattered
photon beam, we also use the partial polarization of the photon beam (eqn. (4.19))

induced by the polarization of the incident laser beam.

As with ete™ — WW ™, we start with the total cross section. The angular
integration over the direction of the W in the ey center-of-mass frame is cut at

|cos 8| = 0.8. We assume systematic errors in measuring the total cross section
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to be 5%. The total cross section depends on the photon spectra used, but even
the Weizsacker-Williams spectrum gives 5.8 R, corresponding to over 17000 events.
Statistical errors are, thus, negligible compared with systematic ones. Figure 24
shows the total cross section for ey — Ww as a function of « for several values
of X\. The calculations were performed using the three photon spectra. Figure 25

shows its dependence on A for several values of .

60 T T I 80 T T T -

g0 5 40 \/—
2 3

5 20 . 5 20 =
6 &

................. o 1 . |1|
0.8 0.9 1 1.1 1.2 -0.2 -0.1 0 0.1 0.2
A
Figure 24. oror for ey — Wv as a func- Figure 25. oror for ey — Wv as a func-

tion of & for A = 0. Here and henceforth, tion of A for k = 1.
the solid curves correspond to the Compton

backscattered spectrum. The dashed curves

are computed using the beamstrahlung effec-

tive luminosity. The dotted curves correspond

the the Weizsacker-Williams distribution.

The forward-backward asymmetry, defined in eqn. (3.22), can be measured with
the entire event sample. We assume that F'B can be measured with systematic

error of 0.03. Figures 26 and 27 show its dependence on « and A.

10 (eqn. (3.23)) gives a complementary parameter of the W production angular
distribution. Here we assume that I0 can be measured with systematic error of

0.03. Figures 28 and 29 show its dependence on « and A.
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Figure 26. F B as a function of & for A = 0. Figure 27. F B as afunction of A for k = 1.
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Figure 28. IO as a function of & for A = 0. Figure 29. 1O as a function of A for k = 1.

In a dedicated ey collider constructed by the Compton backscattering mecha-
nism discussed in the previous section, a circular polarization of the incident laser
beam results in a partial, energy-dependent polarization of the high-energy photon
beam (eqn. (4.19)). The most energetic photons are always polarized with oppo-
site helicity with respect to the laser photons. We define the two configurations
corresponding to the two possible laser polarizations as J, = 3/2 and J, = 1/2

dominated, according to the combined spin of the left-handed electrons and the
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most energetic photons. We emphasize that the J, tag holds only for the most
energetic photons. Lower energy photons have both possible helicities. The cross

section calculations are carried out with the actual helicity spectrum of eqn. (4.19).

The ratio
(1/3) = o(J; = 1/2 dominated)
"~ o(J, = 3/2 dominated)

(4.20)

is another, independent, measureable quantity. Lasers can be easily and accurately
polarized, and therefore virtually all systematic errors are canceled in measuring
this ratio. We assume it can be measured with systematic error of 0.01. Let us
stress that this measurement does not require the electron beam to be polarized.

Figures 30 and 31 show the ratio’s dependence on « and A.

0.95 T T T 0.85 T
090 - m 080
o o
S N
Ao ol
- —/"__ 088 I” ]
0.80 : . L 0.80 1
0.8 0.9 1 11 1.2 —-0.2 0 0.2
- A
Figure 30. (1/3) as a function of « for A = Figure 31. (1/3) as a function of A for k =
0. 1
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4.5 DISCOVERY LIMITS

We repeat the analysis described in section 3.5 to the observables described in
the previous section. Figures 32 and 33 show the (20) regions for each observable
discussed in the previous section, as well as the 68% and 90% confidence level

bounds. The calculations were repeated for each of the three photon spectra.

0.2

0.1

0.0

Ak

-0.1

_0.2 4 Y " .
-0.2 . 0.2

Figure 32. The (20) regions in the x-A plane from various measurements of ey — Wu:
oror (long dashed), FB (dot-dash), IO (dotted) and (1/3) (short dashed). The solid curves

correspond to 68% and 90% confidence level bounds from the combination of all measurements.

All calculations were done using the Compton backscattered spectrum.
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Figure 33. The (20) regions in the k-A plane from various measurements of ey — Wy
using the beamstrahlung (dashed) and the Weizsacker-Williams (dotted) spectra. The regions

in the center correspond to 68% and 90% confidence level bounds from the combination of all
measurements.
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5. vy — WtW-
5.1 INTRODUCTION

The third process we study is vy — W+W~. While not quite as sensitive as
ete™ — WHTW ™ to deviations from the Standard Model, it has many attractive
features, making it possibly the most interesting process in a 47 collider in the 300
GeV - 1 TeV energy range. Like ey — Wy, vy — WTW™ involves a t-channel
exchange of a heavy vector boson, and correspondingly a relatively large cross

section at higher energies.

Because two WW vertices appear in the Feynman diagrams for the process,
the anomalous couplings can appear to fourth power in the expressions for the
cross section. That greatly inhances the sensitivity to large deviations from the
Standard Model. Although vy — W*W™ involves only W7 couplings, its analysis
is complicated because the four vector vertex WW+~ as well as the three vector
vertex WW~ contributes. In this work, we do not consider the most general
WW~~v vertex. Rather, we use the simplest one satisfying the electromagnetic

Ward identity. This simple consistency requirement forces the WWyy vertex to
depend on )\.[32]

This chapter proceeds as follows. In the next section we introduce the WWyy
vertex, and outline the calculation of the production cross section in the setting of
an ‘idealized’ 77‘collider. In sect. 3 we describe the effective 44 luminosity expected
from different sources. Section 4 evaluates potential observables, calculating their
dependence on « and \. Section 5 assesses possible bounds on x and A from the
individual measurements, and combines them to give specific confidence limits in

the k- plane.
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5.2 CROSS-SECTION CALCULATION

Cross section calculations for 7y — W1W ™ proceed much like those for the
previous processes. vy — WTW™ is conceptually simpler because no spinors are
involved. As the WW4~ vertex appears twice in two of the Feynman diagrams,
the expressions for the helicity amplitudes are quadratic in & and A. The three

Feynman diagrams contributing to vy — W*W ™ are shown in fig. 34.

PR

Figure 34. Feynman diagrams for yy — W+W~-.

The WW=~ vertices have the same kinematics as the vertex in ey — Ww
(eqn. (4.1)), with the obvious changes in the assignment of indices and momenta.
Unlike the WW  vertex, the W W~y vertex has not been systematically analyzed.
Here we do not use its most general form. Instead, we use the simplest form which
is still consistent with eqn. (4.1) in the sense of maintaining electromagnetic gauge

[

invariance.gz] This general form, with momenta labeled as in fig. 35, is given by
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ir;wra' — iez [2guugar . gp,rgva' _ guagvr

+ E);V;{g’"gw ((ps - p1) + (p3 - p2)) + 976" ((ps - p2) + (p3 - p1))

9 .
— gul/gro (p4 + Ps) + 29“”1)41-[)30 + 2ga‘rp2uplu
— gll-‘l’ (2p4up3a+2p3upza'_p4up26) . gutr(2p4rp3u+2p4up2r_p3up2r)

— 9" (2p4"p3” +2p3* p2” —pat ;%) — 9" (2p4" p3*+2pa* p1” —patp1") }] :

(5.1)
W w*
pg\ /;Z
P’f/4 V\PZ
7 7
Figure 35. The WWy~ vertex.
The matrix element (in unitary gauge) is given by
Made s ne = €4(p1, A1) €7 (p2, X2) €77 (p3, A3) €7 (pa, Aa) Mpwro
: . —i (g7 — (p1—p3)” (p1—p3)” /my) .
iMupro =(’Furp1) ( : ) 2 1/ W) (:Twpr0)
(5.2)
. —i (g70? — (p1—pa)” (p1—pa)?* /miy) .
+ ({Tupror) ( ( ) 2( ) miy) (Twrp,)
u — miy
+ L pyro-

A, X2, A3 and Ay are the helicities of the two photons, the W~ and the W+
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respectively. A1 and Ay take the values -1 and 1. A3 and A4 take the values -1, 0
and 1.

The momenta p;—4 are the same as in ete™ — WTW~ (eqn. (3.6)). The

photon polarization vectors /\1,2 are given by
€(p :}:) = —-—1 (1 +1,0 0) 6( :E) = —-——1 (1 :F' 0 0) (5 3)
? ? M ? Z, ? * M
! \/i P2 \/_2-

The W polarization vectors are the same as in ete™ — WTW™ (eqn. (3.7)).

Substituting the vertex expressions from eqns. (4.1) and (5.1) and the explicit
four vectors from eqns. (3.6), (3.7) and (5.3), we get the following expressions for

the matrix elements:

Jo y
40!7TdA/\12,A>‘34Mz\1,/\2,A3,/\4
1—cos?20+rcos2f

M/\1,/\2,1\3,1\4 = . (5.4)

where A)\lz = /\1 - Ag, A/\34 = )\3 — )\4 and Jo = maX(IA)\lzl, IA)\34|), and the d

functions are given in table 4.

The helicity amplitudes are:
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M 4100 =2L [47‘2 + 8Ak(sin? §4r cos? §) — 8Arsin? 0
r
+ Ak? (4 sin® 0 + r(3cos? § — 1)) — 2AkAr(3 cos?8 — 1)

+ A%(1 + cos? §) (2sin2'0 +r(2cos? 8 — 1)) ]

~ cosd
Mijor =5—=

N [4An(1——ﬂ—r) — IN1=B+r) + Ak (228~
—2AKN2 4 1) — % (2(1 +8)(1/r—1) sin? 0 + r) ]

Moo =4:'/52_ [4r(1+r) + 8Akr + Ak%(247) — 2AKN(2—T)

+ )2 (2 cos? 0 + r(1-2 cos? 0)) }
My_4y =—1— [87'2 + 8Akr — 16A(1 — r) + 3Ax%r — 2AkA(4 — 3r)
rv6
~ A% (2sin?0 — (3 -2 cos® O)r) ]

V3

Mogyo 287\/_—2 [ — 8A(2—7) + Ak*r — 2AkA(4—T)
— 2% (25in% 0 4 (2cos? 6-1)r) ]
~ =1
My o4 =

T [81" +4Ak(1+7) — 4A(1—7) + Ak*(3+ cos@—r cos §)
— AkA (4(14 cos8)/r — 2(14+3 cos §) + 2r cos 6)

+ A2 (2(1 + cos 0)%/r — (1 + cos 8)(1 + 2 cos 8) + r cos? 0)]
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Miyyist =;—: [8r(2—2[3—r) + 8Akr(2—B—B cos? )
— 8\ (2(148)sin® § — r(1 — B — 3cos? § — B cos” )
+ Ak? (2(148) sin” 0 + r(3+3 cos® §—2 cos® )
— 2Ak\ (2(148) sin? 8 — r(3—5 cos® §—28 cos® 6))
+ A2 (4(1+B) sin? 9(1—3 cos® ) /r
— 2(6+38—13 cos® 6—98 cos? 843 cos* 042 cos* )
+ (311 cos? 0~26 cos® 6+2 cos* 0)) |
Myt =% [8r +8AkT + Ax? (2(1 — cos ) + (1 + 2 cos 8)r)
— 2AkA (2(1 — cos 8) — (1 — 2cos 0)r) 4+ A% (4(1— cos 6)(3— cos §)/r

— 2(6—11 cos 643 cos® 8) + (1—6 cos 6+2 cos? 0)7’)] ,

(5.5)
where r = 4m2, /s and B = /1.
The other amplitudes are related to those by the following relations:
Mg da e = Mod—ag,—da,-A
Mo s e = Magaagn,  (cosf — —cosd)
(5.6)

Mz\l,/\z,)\s,h = Mf\l,)\z,t\u/\a (C030 — —COo8 0)

MA1,/\2,/\3,A4 = Mh,)g,—/\4,—/\3 (ﬂ — "“:6)

Figure 36 shows the differential cross section for producing a W pair of various

helicity combinations.

Figure 37 shows the dependence on « and X of the differential cross section at
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Figure 36. Differential cross sections for producing a W pair of specific helicity combination
with center of mass energy of 500 GeV as a function of cosf. The curves are:
L(+++H)+ (=) 2 (+++-)+F+-H)+(——+-)+ (- ——+),
S (H+—)+(—+H s F -+ +(-++H)+(+——=)+ (- +—-),
5 (+—+=)+(—+ =)+ (—++-)+ (+— —+),
6: (+-0+)+(=+0-)+ (+—==0) + (= ++0) + (+ — +0) + (= + —=0) + (+ — 0=) + (— + 0+),
7: (+—00) + (— +00), 8: (++0+4) +(— —0-) + (+ + +0) + (-~ — —0), '
9: (++00) + (= —00), 10: (++0-) + (+ + —0) + (= — 0+) + (- — +0).
In a combination (A1A2A3)4), A1, A2, A3 and A4 are the helicities of the two photons, the W+
and the W~ respectively.

cos § = 0. These figures are the idealized cross sections, assuming monochromatic

beams of perfectly polarized electrons and photons.

There are several points worth noting:
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Figure 37. Total cross sections for producing W pairs of specific helicity combination with

center of mass energy of 500 GeV. The meaning of the lines is the same as in fig. 36.

1. The cross section for producing two opposite-helicity W’s from an initial
state with total spin component along beam axis J, =0 ((+ + +—) term) is

exactly zero in the Standard Model.

2. The cross section for producing one longitudinal and one transverse W from

a J, = 0 initial state ((++04) term) is exactly zero in the Standard Model.

3. The differential cross section at cos § = 0 for producing one longitudinal and
one transverse W from a J, = 0 state ((++0+) term) is exactly zero for all

values of x and A"

% The reason for this is as follows. The initial state has to have an even angular momen-
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4. The cross section for producing two longitudinal W’s from a J, = 0 photon
combination is suppressed by a factor of m#,/s in the Standard Model. The
same factor is known to appear in the production of charged scalars (yy —
W+W"J

5. The cross section for producing two right- (left-) handed W bosons from two
left- (right-) handed photons is suppressed by a factor of (m%,/s)2.

Asinete™ —» WW~, information about the polarization of a W boson can be
obtained by looking at the angular distribution of its decay products (eqns. (3.19)-
(3.21)). The ratio between left- and right-handed W bosons is related to the x

forward-backward asymmetry xzp by

o(cosx >0) —o(cosx <0) 3o0-1—01
o(cosxy >0)+a(cosx <0) 4 oror

XrB = (5.7)

5.3 PHOTON SPECTRA

The calculations in the previous section were carried out in the setting of an
‘idealized’ photon-photon collider in which the photon beams are perfectly mono-
chromatic and carry identical energy. In this section we discuss some realistic

photon-photon collision schemes.

In analogue to Ly we define the effective luminosity £,($) as follows: the lu-
minosity for a photon-photon collision with center-of-mass energy squared between
5 and §+ d5 is equal to £,,(8)(d5/s) times the overall collider luminosity. In terms

of that effective luminosity, the cross section for vy — W+TW~ is
8
o= / (d3/5) L1y (3)0(3). (5.8)
0

We consider the same three photon sources of the previous chapter. In the

tum J. The angular dependence of the matrix element is then of the form dg,il(ﬂ) =

d} +1(8)P(cosf) = Fsin6P(cos#)/v/2 where P is an odd polynomial, which vanishes at
cosf = 0. I am grateful to Ken-ichi Hikasa for pointing out this explanation.

65



case of the classical bremsstrahlung radiation, the effective luminosity is given by

folding the distribution function f(z) (eqn.(4.11)) with itself.

1
= /dmljdxzf z1)f(z2)o(z1228). (5.9)
0

Defining § = z172s and changing variables gives

- / (dsfs) | / f’-’ilf(xl) (S/s) a(3), (5.10)

0 §/s

from which one can read the expression for £,4(8):

Lrn(3) = / L s (L)), (5.11)
i/s

Substituting the expression for f(z) one gets

s [aln(s/m{

2
Ly(8) = 3 [—T)] [~6 +43/s +2(3/5)% + (3/s + 2) log(s/3)] . (5.12)

The second photon source we consider is beamstrahlung. As we mentioned
in the previous chapter, the beamstrahlung effects cannot be decomposed into
distribution functions. The effective luminosity has to be calculated directly. We

use again the parameters of eqn. (4.13).

The third potential photon source is a dedicated v collider constructed by the
Compton backscattering mechanism discussed in sect. 4.3. Folding the spectra of
the two photon beams can be done analytically (same as in eqn. (5.11)), but the

result is long and unilluminating.
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Figure 38. Effective luminosity 22L,+(22s) as a function of z = \/3/s, where § is the center-
of-mass energy squared of the y—+ system. The solid curve is the Compton backscattered effective
luminosity. The dashed curve is the “beamstrahlung” effective luminosity. The dotted curve is
the classical Weizsacker-Williams spectrum. The vertical dotted line represents W production

threshold.

Fig. 38 shows the effective luminosity associated with each of the three photon

spectra used here.

As before, in the case of Compton backscattered beams, the photon beams
acquire partial, energy dependent polarization if the incident laser beam is polar-
ized. Figure 39 shows the total effective luminosity, and the effective luminosity

for |J;| = 0,2 where J, is the spin component along the beam axis.
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Rz L, (z°s)

Figure 39. Effective luminosity for collisions with |J,| = 2 (dashed) and 0 (dots). The total
effective luminosity is given by the solid curve. The role of the |J,| = 2 and |J,| = 0 cruves can

be interchanged by flipping the polarization of one of the laser sources.

5.4 OBSERVABLES

In this section we discuss the various observables and calculate their depen-
dence on k and A. Calculations are performed for machines based on a 500 GeV
ete™ collider. We repeat the calculations using the three photon sources discussed
in the previous section. In the case of a Compton backscattered photon beams, we
also use the partial polarization of the photon beam (eqn. (4.19)) induced by the

polarization of the incident laser beams.

Again, let us start with the total cross section. The angular integration over the
direction of the W in the ey center-of-mass frame is cut at | cos 8| = 0.8. We assume
systematic errors in measuring the total cross section to be 5%. Asin ey — Wy,
the total cross section depends on the photon spectrum used. The lowest cross
section is obtained by using the Weizsacker-Williams distribution. In that case,
the cross section is about 0.37R which corresponds to a little over 1000 events. The
statistical error in that case is about 3%. With the Compton backscattered and
the beamstrahlung spectra, however, the total cross section is 28 and 56 units of

R respectively. The statistical errors are much less than 1% in both cases, and are
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completely negligible. Figure 24 shows the total cross section for vy — WHW~—
as a function of « for several values of A. The calculations were performed using

various photon spectra. Figure 25 shows its dependence on A for several values of

K.
100.0 T T 100.0 N___——I—”"—‘
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e o — E
oz b | o2
0.1 L ' . 0.1 ' : L
0.8 0.9 1 1.1 1.2 -0.2 -0.1 0 0.1 0.2
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Figure 40. oror for vy — WYW~ as a Figure 41. oyor for vy — WtW™ as a

function of k for A = 0. Here and henceforth, function of A for x = 1.
the solid curves correspond to the Compton
backscattered spectrum. The dashed curves
are computed using the beamstrahlung spec-
trum. The dotted curves correspond the the

Weizsacker-Williams distribution.

The process 7y — WTW™ is symmetric with respect to interchanging the two
initial photons, so there cannot be any forward-backward asymmetry. The angular
distribution of the W does, however, carry important information. We quantify
this information by looking at the IO ratio as defined in eqn. (3.23). We assume

that IO can be measured with systematic error of 0.03. Figures 42 and 43 show

I0’s dependence on k and A.

As in ete™ — W*W ™, one can extract the L/T ratio (eqn. (3.24)) from the
angular distribution of the W decay products. Again, one has to reconstruct the

missing neutrino momentum by imposing the constraint that the total momentum
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Figure 42. 10 as a function of x for A = 0. Figure 43. 10 as a function of A for x = 1.

perpendicular to the beam direction is zero, and that the invariant mass of the
neutrino-lepton system be that of the W. That fixes the neutrino momentum up
to a twofold ambiguity. This ambiguity can be practically resolved by consistantly
selecting the more probable solution. Monte Carlo studies done for the process
ete™ — WTW™ in an environment with hard beamstrahlung radiation””) These
studies suggest that the degredation of data quality associated with the resolution

of this ambiguity is minimal.

We assume that the L/T ratio can be measured with systematic error of 0.03.

Figures 44 and 45 show its dependence on k and A.

In the case of a dedicated v~ collider constructed using the .Compton backscat-
tering mechanism, additional information can be extracted by looking at the de-
pendence of the cross section on the polarization of the laser beams. We define
the (0/2) ratio in analogue to (1/3) of eqn. (4.20) as the ratio between the ‘J, = 0
dominated’ and the ‘|J,| = 2 dominated’ configurations. The ‘J, = 0 dominated’
(‘|Jz] = 2 dominated’) configuration corresponds to having the most energetic pho-
tons of each beam have the same (opposite) helicity. We assume this ratio can be
measured with systematic error of 0.01. Again, this measurement does not require

the electron beams to be polarized. Figures 46 and 47 show its dependence on &
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Figure 46. (0/2) as a function of & for A = Figure 47. (0/2) as a function of A for k =
0. 1
and A.

Finally, with the photon beams polarized, one can measure not only the | cos x|
distribution which carries information on the L/T ratio, but also the y forward-
backward asymmetry xzp Which carries information on the ratio between positively

and negatively polarized W bosons (eqn. (5.7).) Here we assume that ys can be
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measured with systematic error of 0.03. Figures 48 and 49 show its dependence on

k and A.
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Figure 48. xrg as afunction of k for A = 0. Figure 49. xrp as afunctionof A forx = 1.

5.5 DISCOVERY LIMITS

We repeat the analysis described in section 3.5 to the observables described in
the previous section. Figures 50 and 51 show the (20) regions for each observable
discussed in the previous section, as well as the 68% and 90% confidence level
bounds. The calculations were repeated for each of the three photon spectra. Note

that a dedicated photon collider provides for a much better measurement of .
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Figure 50. The (20) regions in the k- plane from various measurements of yy — W+W—:
orors L/T, (0/2) and xps. The center regions correspond to 68% and 90% confidence level
bounds from the combination of all measurements. All calculations were done using the Compton

backscattered spectrum.
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Figure 51. The (20’) regions in the &-A plane from various measurements of vy — W+W-
using the beamstrahlung (dashed) and the Weizsacker-Williams (dotted) spectra. The regions
in the center correspond to 68% and 90% confidence level bounds from the combination of all

measurements.
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6. Summary and Conclusions

We summerize our results by displaying the allowed regions taken from figures
15, 32, 33, 50 and 51. Figures 52, 53 and 54 show the 90% confidence limits from the
three processes using the Compton backscattering, beamstrahlung and Weizsacker-
Williams spectra respectively. Note that the curve from ete™ — W+W™ is the

same in all three graphs, and does not include any photon radiation effects.

0.2
| l |
0.1 — —
ete WIW™
g 0.0 — —
yy-WW™
-0.1 — S —
ey-»Wy
-0.2 | I |
-0.2 -0.1 0 0.1 0.2

Figure 52. Allowed regions (90% confidence level) in the k-A plane from various processes
and using the Compton backscattered spectrum. The center region is obtained by combining all

three processes.
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Figure 53. Allowed regions (90% confidence level) in the k-A plane from various processes
and using the beamstrahlung spectrum. The center region is obtained by combining all three

processes.

Finally, we show only the combined limits from all three processes and for
the three photon spectra. The combined bounds are dominated by the e¥e™ —
WtW— measurement which is common to all three spectra. The importance of
the other processes is first in verifying the ete~ — W¥W™ results in a way which
does not depend on the WZ couplings, and second in providing good statistics

until the full ete™ — WHW— data set can be collected.

A 500 GeV ete™ collider is a powerful tool for measuring W+ and WZ cou-

76



0.2 T

0.1 I~ ey->Wv ' ®<’\e+e“—>w+w~ ]

’é 0.0 — —
-0.1 —
77—+W+W—
-0.2 | ‘ I
-0.2 -0.1 0 0.1 0.2

Figure 54. Allowed regions (90% confidence level) in the x-A plane from various processes
and using the ‘Weizsacker-Williams spectrum. The center region is obtained by combining all

three processes.

plings. In this work we concentrated on measuring C and P conserving parameters
in the WW~ vertex. The process eTe™ — W1W ™ is uniquely sensitive to the var-
ious couplings under examination. The two other processes we consider, ey — Wy

and 7y — WTW™ can significantly add to our knowledge of W interactions.
Compared to ete™ — WTW ™, both processes involve only W+~ vertices, allowing
a separation of Wy and W Z effects. Their large cross sections allow detailed study

even with relatively small integrated luminosity. Useful information can be derived
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Figure 55. Allowed regions (68% and 90% confidence levels) in the k-A plane from the
combination of all three processes and using the Compton backscattered (solid), beamstrahlung
(dashed) and Weizsacker-Williams (dotted) spectra.

from these processes even in a traditional ete™ collider. Constructing a dedicated
e or v collider can greatly enhance the sensitivity of the two processes. Finally,
vy — WTW™ involves the WW~y~ vertex. A careful analysis of experimental

results should give us insight into its structure.
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Appendix A. The Vector Equivalence Technique

In this appendix we discuss the ‘Vector Equivalence’ technique for symbolic,
matrix element level spinor calculations. As its name implies, the heart of the
technique is the calculation of a Lorentz four vector which serves as an equivalent to
two external fermions. In further calculations, traces involving this vector replace

the matrix element with the external fermions.

In calculating a Feynman diagram with external fermions, one encounters ob-

jects of the form

M =a(p,s)Tu(p,s), (A.1)

where p and p' are the momenta of the external fermions, and s and s’ are their
helicities. T’ is an arbitrary string of Dirac gamma matrices. In this discussion
we only refer to fermions. Anti-fermions can be treated with the same expressions

provided one changes the sign of the particle mass.

The traditional method calls for squaring M while summing over fermion he-
licities:
STIMPE ="t {a(y, ) Tulp, s)alp, s)Tul(p', s') }
(A2)

— e {(# - )T(F—m)L},

where T = I'®* and m and m' are the masses of p and p' respectively.

This method is advantageous in that the final result is expressed in terms of
easy to calculate Lorentz invariants. The problem with this method is that the
number of terms in the squared amplitude grows as the square of the number of
terms in M.

Several authors have proposed methods for calculating the matrix element

without squaring.[40’4l]

We propose yet another such method. Its main advantage
is that it allows, much like the traditional method, a relatively simple symbolic

evaluation of M. Unlike other methods, one is not required to sum over vector
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polarizations for massive bosons or to use a real basis for them. Our method also

allows calculation of quantities with free Lorentz indices.

We start by rewriting
M =a(p,s)Tu(p, s') = tr {Tu(, s )u(p,s)} . (A.3)
Next, decompose

1 1
u(,sa(p,5) = 5 ) [UaPr+ VEPy] + 29" v, (A4)
A

where Py = (1 £4°)/2 and v = (Y1 — Y Yu)/2. U, V and W all depend on p,

s, p' and §'.

The coefficients U}, Vf\‘ and W#? can be calculated using the projections

u/\ =1tr {u(p', S’)-ﬂ(p, S)P,\} = 'ﬂ(p, S)P,\'U,(p', Sl),

VY = tr {u(p, s')alp, s)¥*Pr} = u(p, s)v* Pau(p', s'), (A.5)

p 1
WH = tr {u(J.D’,S')ﬂ(pﬁﬁ2 } = 5ﬁ(p,8)7’“’u(p’,3')-

Given U, V§ and W, M may be written as

M =u(p,s)lu(p,s') = % > (Ut {TP} + tr {TPy YA} + EW“"tr {Tyuw}-
X
(A.6)

At this point, one could proceed by substituting a specific representation for
the spinors and Dirac matrices in eqn. (A.5). The general symbolic expressions
for U, V)’f and WH are complicated, but managable. The calculation of M is
reduced to an evaluation of traces. This can be done quickly and efficiently with

42,43,44
one of several computer algebra systems.[ ]
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The expressions (A.5) and (A.6) simplify dramatically when only massless ex-
ternal fermions are involved, and no helicity flip occurs. The second condition is
automatic if there are no virtual massive fermions. In high-energy calculations,
often, the only massive fermion is the top quark. Diagrams in which the top quark
decays by emitting a W also satisfy the helicity conservation condition because
only left handed quarks couple to the W. Helicity conservation implies that I' of
eqn. (A.l) contains an odd number of gamma matrices. Consequently, both Uy
and WH*” vanish. Further, helicity conservation requires s = s’ = A. Equation

(A.6) then takes the form

T(TuAW) = 5t (TP Pa, (A7)
and
Vi =mr un ). (A.8)

We substituted the notation uy(p) = ux(p, A). The vector V{ obeys the following

relations:
Va2 =—4p-p,

Vy.-p=Vy-p =0, (A.9)

Vy- Vi, =VE=0,

where we hz;ve used Vy = V_. We write V1 = R £ ¢I with both R and I real.
Then, assuming both p and p' are real, eqn. (A.9) takes the form

R2+12=_4p'pl,
R-p=R-p =0, I-p=1-p=0, (A.10)

R*-I? =0, R-I1=0.

If there are no identical external fermions in the problem, the phase of V) is

irrelevant. In that case we can arbitrarily choose V{ to be real. Writing R =
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(R, R%) and I = (I,0), one easily concludes

I.p=I1.p'=0,
R-p=R-p _ (A.11)
R-I=0.

Geometrically, I is perpendicular to both p and p’. R is perpendicular to I and
thus lies on the p-p’ plane; on that plane it bisects the angle between p and p'.
If p and p’ are collinear, there is an extra degree of freedom in selecting R and
I. That is because in that case, Vg = 0, and the arbitrary phase is not fixed by

choosing it to be real.

With p = E(#%,1) and p' = E'(?',1), the final expressions for V is:

QEEI N N PN Al
vi—‘,m(n+n Fi(nxn'),l+ cosb). (A.12)

Two special cases are #i = 7/ and 7 = —#'. The first case gives
Vi =2VEE'(n,1). (A.13)
In the second case, choose 77 and #; such that iy X fig = f. _Then,

Vi = 2VEE (A F ihg,0). (A.14)

Detailed examples of the use of the Vector Equivalence techniques is given in
sections 3.2 and 4.2. The value of V) for particular values of p and p’ are given in

eqns. (3.8) and (4.6). Special cases of eqn. (A.T) are given in eqns. (3.9) and (4.7).
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Appendix B. HIP
B.1 INTRODUCTION

Present day pertubative calculations in the Standard Model (SM) and its ex-
tensions often require tedious algebra calculations. While tree level calculations
of two-body production processes in the SM can certainly be done manually, it is
often helpful to have a check in the form of an automatic calculation method. Pro-
cesses involving the production of more than two particles (e.g. ete™ — WTW )
or complicated Feynman rules (e.g. vy — WHW~ with arbitrary W~ couplings)
involve much more difficult calculations in which computerized aid is almost indis-

pensable.

Two approaches have been used to automate calculations of this type. Hagi-
wara et al®® have written a set of Fortran subroutines that calculate matrix ele-
ments numerically. This approach allows the automatic calculation of complicated
tree level processes, but it is restricted to numeric results. An alternative approach

introduced by Veltman[43]

with Schoonship is to allow symbolic manipulation of
expressions. While Schoonship was written as a special purpose program, with all
the necessary algorithms ‘hard-wired’ into its assembly code, Reduce™? followed
a more general approach. Much more mathematical knowledge (e.g. integration
rules) is incorporated into the program as higher-level lisp routines. The user,
building on that basis of knowledge, can then expand the program by writing his
or her own routines. The price for that flexibility is naturally paid in performance.

[

We follow this latter approach by writing our packages in Mathematica,35] one

of the newer and most promising of the new generation of symbolic manipulation
languages which also includes Map]e.[46] Using Mathematica’s high-level program-
ming language greatly simplifies the task of writing programs. Additionally, the
physics calculations are embedded within a powerful environment in which results
can be simplified, calculated numerically and plotted. With the rapid advance in
computer performance, the CPU-time needed for the calculations is usually negli-

gible compared with the time needed to prepare the input and process the output
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of the programs. This approach is also being used by the Wiirzburg group in their

programs FeynArts[47] and FeynCa]c.[48]

Unlike Feyn Arts we do not attempt to automatically generate the necessary
Feynman diagrams. Typically, tree-level diagrams can be easily generated manu-
ally. HIP takes as input expressions deséribing the Feynman diagrams. HIP then
provides the user with a rich set of operators by which to manipulate the physi-
cal objects occurring in these expressions. The user may, for example, substitute
explicit four-vectors and particle polarizations, square the matrix elements to give
traces that can then be evaluated or convert the expressions to spinor techniques.[49]
As an aid in calculating cross-sections and decay widths, phase-space integrals can

be automatically constructed and evaluated symbolically, numerically, or converted

to a C or Fortran program.

The traditional method of Feynman diagram calculation involves squaring the
matrix element symbolically. The number of terms involved increases like the
square of the number of Feynman diagrams involved. In contrast, spinor tech-
niques are methods for calculating Feynman diagrams numerically at the matrix
element level. The number of terms involved is linear with the number of Feynman
diagrams. Photon and fermion polarizations have to be summed explicitly. Spinor
techniques are simplest when the fermions involved can be taken to be massless.

They are most useful when a large number of Feynman diagrams is involved.

We have used HIP extensively, typically calculating processes with relatively
simple topology ( 2 — 2 and 2 — 3 tree-level cross-sections) but with complex

Feynman rules.

The paper proceeds as follows. In the next section we give a brief overview
of HIP. Some of the major objects and functions are mentioned. In sect. 3 we
describe in more detail some of HIP’s more important functions, presenting the
mathematical relations they use and short examples of their application. In sect. 4
we give two complete examples: the calculation of the width for the muon decay

p~ — vue” U, with a finite electron mass, and a calculation of the matrix element
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for efe; — Z — tt — WHW™bb, including the W coupling to light fermions,
which preserves all spin and angular correlations. In sect. 5 we summarize and
give an outlook. The complete listing of HIP functions, with their usage messages

(available as on-line documentation) is given in the appendix.

B.2 OVERVIEW

The packages in HIP contain functions that can manipulate various mathe-
matical objects occurring in high-energy physics such as four-vectors, spinors and
gamma matrices. Rather than follow one strict path from input to output, the
packages allow the user to specify how a calculation proceeds (either interactively
or in batch mode). A typical calculation might be to construct a matrix element,
square it and sum over polarizations, construct the phase-space integral and eval-

uate this integral to give a symbolic expression for the total cross-section.

The most fundamental component of any high energy calculation is the ma-
nipulation of four-vectors. Basic objects such as the dot-product (p- ¢) (DotProd-
uct[p, ql), the metric g*” (G[mu, nul) and the completely anti-symmetric tensor
€*v°" (Eps[mu, nu, sig, taul) are defined, with some of their elementary prop-
erties (e.g. the dot-product is symmetric in its two arguments). Four-vectors can
be specified in terms of their components. They can then be boosted (using the
function Boost), represented as sum of other four-vectors (Decay), etc. In addi-
tion, four-vectors can also be treated without reference to the explicit components.
Dot products can be given explicit values (SetDotProduct, SetMass), Mandelstam
variables defined (SetMandelstam), Lorentz indices defined (PrepareIndex) and

contracted (Contract).

The second component in HIP is the Dirac algebra. The basic objects involved
are the Dirac gamma matrices 4# (DiracGamma[mu]), v° (DiracGammaS), the pro-
jection operators Py = (14+Xv°)/2 (HelicityProjection[lambda])and g = p,v*
(Slash[p]l). The Dirac matrix product is represented by the Mathematica built-
in function NonCommutativeMultiply (aliased to **). The trace of a product of

Dirac gamma matrices is computed using the operator GammaTrace.
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Some programs handling Dirac algebra, notably Reduce, can only deal with
gamma matrices. HIP can also work with spinors. The basic spinor objects
u(p) and v(p) (SpinorU[p] and SpinorV[pl) and their conjugates %(p) and v(p)
(SpinorUbar[p] and SpinorVbar[p]) are defined. The function AbsSquared is

used to square matrix element expressions which may include these spinors.

Expressions involving spinors do not have to be squared before they are cal-
culated numerically. The HIP function ConvertToST converts a suitable expres-
sion involving spinors to an expression involving the elementary spinor products
s(p, k) = Ua(p)u,(k) and t(p, k) = . (p)ur(k) (Spinorslp, k] and SpinorT[p,
k]) defined in reference 49. The expression produced can then be evaluated numer-
ically by giving explicit values to the components of the four-vectors. Alternatively,
it can be squared and converted back to an expression involving traces using the

function STToTraces.

Given an expression for the matrix element squared associated with a process,
the calculation of physical observables such as cross sections and decay widths in-
volves integration over the phase space of the out-going particles. The functions
CrossSection and DecayWidth set up the phase-space integral. The functions
return a PhaseSpacelntegral object that can then be evaluated either symboli-
cally using EvaluatePhaseSpaceIntegral or numerically using NEvaluatePhas-
eSpacelntegral. ‘Alternatively, one can write a Mathematica program to convert
such an object to a C or Fortran program for numeric evaluation. Such a conver-
sion program would be highly specific, depending on the particular programming
language, integration routine etc. We have used one such program in our work,

but it is not included with HIP.

HIP includes some of the common Feynman rules of the Standard Model which
are implemented using the functions Vertex and Propagator. Constants such as
sin? @y (Sin[ThetaW] “2) and particle masses (e.g. Mass[ZBoson] ) are usually kept
as symbolic constants. However, HIP stores a table of their numerical values; these

are substituted for the symbolic expression by the Mathematica function N.
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B.3 HIP FUNCTIONS

Strictly speaking, Mathematica does not distinguish between data-structures,
functions and procedures. In practice, however, the Mathematica objects defined in
HIP can be divided into several broad categories. In all cases we try to follow the
Mathematica convention of beginning each name with a capital letter. Further,
as far as is practical we use full, descriptive English names rather than cryptic
acronyms. Using Mathematica utilities, the user can choose his or her own cryptic

abbreviations. The major categories are:

1. Objects such as gamma matrices or dot products. These are characterized

by the property that they usually remain unevaluated.

2. Declarations and definitions. These do not typically return anything, but are

rather invoked as part of the initialization process.

3. Operations such as contracting indices or taking traces. These typically take

their input and convert it to an equivalent expression.
In this section we describe the most important members of each class.

Table 7 lists the major functions representing objects with their equivalent in

ordinary physical notation.
The most useful declarative functions are:

— Preparelndex: PrepareIndex[mu, nul declares y and v and Lorentz in-

dices.

— SetMass: SetMass[p1, p2,..., m] sets pl, p2,.. to be four-vectors with

. . *
invariant mass m.

— SetMandelstam: SetMandelstam[{pi, p2, p3, p4}, {m1, m2, m3, m4},

* Note that the p’s are used in a dual mode, both as representing momenta and as representing
particles. The mass m associated with p is the mass of the particle carrying the momentum
p. For off-shell particles, p? # m? (DotProduct[p, p] != Mass[p]l~2).
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Table 1. HIP functions representing objects

HIP Function Example Physical Equivalent
{} {px, py, pz, e} The four-vector (pz, py, Pz, E)
DotProduct DotProduct[p, ql p-q

G G[mu, nul gt

Eps Eps[p, q, mu, nu] €rouvD” ¢°
DiracGamma DiracGamma [mu] ~#

Slash Slash[p] ¥

DiracGammab DiracGammaS A5

*ok DiracGamma[mul**Slash(p] v, ¥

SpinorU SpinorU[p, lambda] ux(p)

SpinorUbar SpinorUbar[p, lambda] ux(p)

HelicityProjection HelicityProjection[Left] Pr = (1 —~°)/2
SpinorS SpinorS[p, k] s(p, k) = ur(p)ur(k)
SpinorT SpinorT[p, k] t(p, k) = ur(p)ur(k)

s, t, u] sets p1, p2, p3 and p4 to be on-shell with masses m1, m2, m3 and
m4 respectively and sets the DotProducts of p1, p2, p3 and p4 in terms of

the Mandelstam variables s, t and u and the masses:

1 1
(p1-p2) — 5(8*’”? — m3) (p3 - ps) — §(S—m§—m§)

1 1
(p1-p3) — 5(—t+m%+m§) (p2 - pa) — -2'(—t+m§+mi)

1 1
(p1-p4) — 5(—u+m%+m§) (p2 - p3) — 5(—u+m%+m§),

where m; is the mass of the particle p;.

Most of HIP’s functionality is implemented as operator-type functions. The

main ones are:
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— Boost: Boost[fv, rap, dir] gives a four-vector obtained by boosting the

four-vector fv by rapidity rap in the direction specified by dir. Example:

[ v |
In[1]:= Boost[{0, 0, O, m}, r, {cth, 0}]

Boost the four-vector (0, 0, 0, m) by rapidity r in the direction cos § = cth,

¢=0.
2
Out[1]= {Sqrt[1 - cth ] m Sinh[r], 0, cth m Sinh[r], m Cosh[rl}

(mV1 — cos? sinhr, 0, mcosfsinhr, mcoshr).

— Decay: Decayl[v, dir, {m1, m2}] gives two four-vectors v; and vz such that
vi+ve =, v% = m%, v% = m% and the direction of v; in the v center-of-mass

frame is given by dir. Example:

:
In[1]:= Decay[{0, 0, 0, m}, {cth, 0}, {m1, 0}]

Decompose the four-vector p = (0, 0, 0, m) into two four-vectors p; and po
such that p? = m2, p% = 0 and the direction of p; in the p center-of-mass

frame is given by cos 8 = cth and ¢ = 0. After some rearrangement one

gets:
2 2 2 2 2 2

Sqrtft - cth ] (m - m1 ) cth(m -ml) m +mi

Cut [1]= {{ _________________________ y 0, —————————————— y TTTTETES }’
v 2 m 2m 2 m
2 2 2
-(Sqrtll - cth ] (m - ml )) ~(cth(m -ml)) m -ml
> ---------------------------- 2 o, ----------------- y TTTmEEEET }}
2m 2m 2m
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) o,

)

=

2m 2m 2m

<\/1 — cos2(m? — m?

cos B(m2 — m%) m? + m%)
?

,O’

)

2m 2m 2m

(—\/1 — cos? §(m? — m?)
P2 =

—cosf(m? —m?) m?- m%)

— Contract: Contract[expr, index] contracts index in expr. Contract
with respect to a particular index p invokes a large set of rules. The basic

rules for handling arbitrary tensors and vector are:

g, — D

pug” —p-q (B.1)

where D is the dimension of space-time. For handling the completely anti-

symmetric € symbol we use

g - 9
€€ 5 (D=n)| P .1 (B.2)
9on - Gun
The rules associated with vy-matrices are: [50]
P,u.')’u —
Yuv* — D
Yun Y = (2— D)y (B.3)

YY1 Y27 = (D — 4) Vs Yo + 49010,
VYo Yo Yos T = =290 Yoo Yir — (D = 4) Y0, You Vo -

% Most of HIP’s functions operate well in arbitrary D dimensions. The exceptions are the
functions dealing with vectors given in terms of their explicit components (e.g. Boost),
functions associated with phase-space integrals and functions treating 5.
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For more complicated cases we use

(20 4 or( n even
W NG
‘y,,F(")*y” N 2FR‘ (n odd)
’ n—3
(-1)* ((D — )1 4 21‘%‘) —9 Z(—l)ivu;Ff")> (D # 4),
\ 1=4
(B.4)
where
I™ =y ooy,
I = (B.5)
Fz('n) = Yoyt Wi Voigr 7 Yo
Example:

—
In(1]:= Contract[G[mu, nu] p[mul, mu]

Contract the index g in g,,p¥.

Out[1]l= p[nul

bv
In[2] := Contract[DiracGamma[mu] **¥Slash[p]l**DiracGamma [nu]**
DiracGamma[mu], mu]
Tu Prvr*
Out[2]= (-4 + SpaceTimeDimension) Slash[p] ** DiracGammal[nu] +
> 4 plnu]

(D — 4) vy + 4py where D is the space-time dimension.
| ]

— GammaTrace: GammaTrace[expr] is the trace (in spinor space) of expr. tr {1}

can be left unevaluated as the constant DiracGammaSize, but is usually set
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to 4. Whenever possible, GammaTrace uses the following simple rules:

tr {Yuy -+ Yuomyr ) — 0 tr{7y’} =0
tr {7’ ymw} — 0 6 {* Vs - Tnzmgs } = 0
tr{7#7V}'_’tr{1}g#V v tr{757ﬂ7v7770} — tr {1} i€uvro-
tr {Yuro¥rve} = tr {1} (guvgro + Guogvr — Gurgro)
(B.6)
Traces of longer expressions invoke the following recursive rules:
n .
tr {7} = 31 gt {1}
=1 o (B.7)
tr {75F(n)} - Z (_1)(’+J+k+l)i5u.‘wukwtr {I‘SlIZI} :
1<i<j<k<i<n
Example:

In[1] := GammaTrace[DiracGamma[mu] **DiracGamma[nu]
tr {7u'7u}
Out[1]= 4 G[mu, nu]
Agpy

In[2] := GammaTrace[DiracGamma5**DiracGamma [mu] **DiracGamma [nu]**
DiracGamma[sig]**DiracGamma[tau]]

tr { Y vurv0r )
Out[2]= 4 I Eps[mu, nu, sig, tau]

4i€;wa7'

In[3]:= GammaTrace[DiracGamma[mu]**Slash[p1]**DiracGamma[nu]**
Slash[p2]**DiracGamma[mu] **Slash[p3]**DiracGamma[nu] **
Slash(p4]]

tr{vu F1vw #27" ¥37" Pa}
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Out [3]= -32 DotProduct(pl, p3] DotProduct([p2, p4]

—32(p1 - p3)(p2 - p4) |
| |

— AbsSquared: AbsSquared[expr] is the absolute value of expr squared. Ab-
sSquared sums over polarization of both external spinors and vectors unless

their polarizations are explicitly specified:

I Xu(p)l* =) Xua(p)ua(p)X* = X(§ +m)X*
A

Xo@)* = ) Xva(poa(p)X* — X (§ ~m)X*
A

el )|2 = Gup' (m =0)
«wlP)l = Puby!
— 9uw + 5 (m #0),

where m is the mass associated with p. Example:

In[1] := AbsSquared[SpinorUbar[p]**SpinorV[ql]
[@(p)v(q)l”
Out(1]= 4 DotPfoduct [p,q] - 4 Mass[p] Mass[q]
| dp - g — dmpmy
In[2] := AbsSquared[SpinorUbar[p, Right]**SpinorV[q, Left]l]

[wr(p)vr(q)l*
Out [2]= 2 DotProduct[p,q]
2p-q

In[3]:= AbsSquared[SpinorUbar [p]**DiracGamma[mu]**SpinorU[q]]
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[@(p)ruu(q)l’

Out[3]= -4 DotProduct[p, q] G[mu, Conjugate[mu]] +
> 4 G[mu, Conjugatel[mul] Mass[p] Mass[q] +
> 4 p[Conjugate[mul] q[mu] + 4 plmu] q[Conjugate[mu]]

—4(p - Q)9up' + 4guumpmq + 4Pu'qu + 4puqy

Conjugate[mu] (4’ is the new index needed on squaring the expression).

l |

— ConvertToST: ConvertToST [expr] attempts to convert expr to SpinorS and
SpinorT objects. Unless instructed otherwise, the program assumes every
massive vector q is the sum of two massless vectors LightlikeVectorDe-

cayedFrom[q, 1] and LightlikeVectorDecayedFrom[q, 2]. Example:

M I

In[1] := ConvertToST[
SpinorUbar[p, Right]**Slash[q]l**SpinorU[k, Right]}

Convert ug(p) gur(k) to spinor techniques. p and k have previously been

set massless.

Out[1]= -(SpinorS[p, LightlikeVectorDecayedFrom[q, 1]] *
> SpinorT[k, LightlikeVectorDecayedFrom[q, 1]]) -
> SpinorS[p, LightlikeVectorDecayedFrom[q, 2]] *

> SpinorT[k, LightlikeVectorDecayedFrom[q, 2]]

The result is s(p, q1)t(k, 1) — s(p, g2)t(k, g2) where ¢ = ¢ = 0 and

g1 + g2 = q are assumed.

— Vertex: Vertex[linel, line2, ...] is the Feynman rule for a vertex.

Each line is of the form particle or {particle, p} or {particle, p,
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indices} where particle is the particle type, p is the particle’s momentum,

and indexes are the appropriate Lorentz or gauge group indexes. Example:

I |
In[1]:= Vertex[Electron, Electron, {ZBoson, p, mu}]

The eeZ vertex for Z boson carrying momentum p,

Out[1]= (-2 I Sqrt[Alphal] Sqrt[Pi] DiracGamma[mu] *x*
-HelicityProjection[Left] 2

> (=== oo + Sin[ThetaW] )) /

> (Cos[ThetaW] Sin[ThetaW])

_%i/a /T ( 1

— — 1 2
cos Oy sin Ow Tu 2 Pp +sin OW)

where «a is the electromagnetic fine structure constant and fy is the Wein-

berg angle.
I |

~— CrossSection and DecayWidth: CrossSection[me2, q1->{qix, qly,
qiz, el}, q2->{q2x, q2y, q2z, e2}, outGoing] returns an expression
for the phase space integral to be evaluated by EvaluatePhaseSpaceInte-
gral. me2 is the expression for the matrix element squared, {pix, piy,
plz, €1} and {p2x, p2y, p2z, e2} are the explicit four-vectors of the in-
coming particles, and outGoing specifies the order of phase-space evalua-
tion as explained below. DecayWidth[me2, p -> {px, py, pz, e}, out-
Going] similarly returns an expression for the phase space integral resulting

in the decay width given matrix element squared me2 and initial momentum

{px, py, pz, e}.

The formula used for cross-section calculations is

o)t 2
(21) %/|M|2d¢n(ql+qz;p1,---,pn), - (B.9)

2s
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and for the decay width it is
(2m)*
F="r |M|?d®(P;p1,-- - pn)- (B.10)

Phase-space integration is performed by a recursive use of the relations

d®p(P; p1,. .., Pn) = d®p_1 (P; P12, 93, - - - , Pu) d®2(p12; p1, p2) (21)3dm3,

1 2
= d®p—1(P; p12,P3,---,Pn) m—% dQyz dmi,,

(B.11)
where p2, = m3, and (s represents the direction of the ‘decay’ of the vector pi2

to p1 and po in its center-of-mass frame. The factor 2|p;|/m12 is given by

( 1/2
[(m2, — (m1 + m3)2) (m2, — (m1 — ma)?)]"/
m%z
2|p1| A (m1 = my)
— = 9 mig
mi2 m% (mz = 0)
B r_n_%; (Tn1 =19 = O).
1
\

(B.12)

The argument outGoing tells HIP how to build the phase space element d®,.
It specifies both the order that the momenta py - - - p, are paired (eq. (B.11)) and,
optionally, the symmetry of the individual two-body phase-space elements. By
default, the complete angular integral over 13 is constructed. Often, due to the
symmetry of the process, one can reduce the dimension of this integral (in the
case of cylindrical symmetry), or eliminate it completely (in the case of spherical

symmetry). This is done using the keywords Cylindrical and Spherical.

For example, let us consider the decay process p~(p) — €~ (p1)Ze(p2)vu(ps). If
the p is unpolarized, the decay process is spherically symmetric. The direction of

v, may be chosen arbitrarily. Once that is done, the direction of the electron with
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respect to the (e~ 7. ) system has cylindrical symmetry about the v, direction. The
outGoing argument is given by Spherical[Cylindrical(pi, p2], p3]. If the
is polarized, the spherical symmetry of the decay is reduced to a cylindrical sym-
metry about the polarization axis. outGoing is then given by Cylindricall{p1,

p2}, p3l.
B.4 EXAMPLE

In this section we give an example showing step by step how a HIP calcu-
lation is carried out. We compute the decay width of a muon in the process
1~ (pu) — € (Pe)vu(py)Pe(pr) and with a non-zero electron mass. We use a low-
energy approximation in which the W-propagator is a constant and is absorbed,

along with the coupling constant g into the Fermi constant G'p.

|
In[1] := PrepareIndex[sig]

Instruct Mathematica to treat sig as an index.

In[2]:= SetMass[{pnub, 0}, {pe, me}, {pnu, 0}, {pmu, mmu}]
Set the masses of the four external particles. The neutrinos (v, and 7.
carrying momenta pnu and pnub respectively) have zero mass. The electron
(pe) is set to have mass me while the muon (pmu) is set to have mass mmu.

Later on, thése masses can be given numerical values.

In[3]:= matrixelement = 2 Sqrt[2] FermiGF *
SpinorUbar[pnu] ** DiracGamma[sig] ** SpinorU[pmu, Left] *
SpinorUbar[pe] ** DiracGamma[sig] ** SpinorV[pnub, Left];
M = 2v2Gpu(py JYour(pu)a(pe)y” uL(pv)
In[4] := me2 = AbsSquared[matrixelement]/2;

Square the matrix-element using the Mathematica function AbsSquared.

We suppress the printing of the long intermediate result.
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In[5]:= me2 = Contract[me2, {sig, Conjugatelsigl}] // Factor

Contract over the indices o and ¢'. // Factor instructs Mathematica to

the factor the expression.

2 .
128 FermiGF DotProduct[pe, pnul] DotProduct[pmu, pnub]

128G%‘ (Pe - pv)(Pu - P7)

Out [5]

In[6]:

width = DecayWidth[me2, pmu -> {0, 0, 0, mmu},
Spherical [Cylindrical[pe, pnub], pnul]

Ask Mathematica to construct the phase-space integral to compute the
decay-width. The expression Spherical[Cylindrical[pe, pnub]l, pnul
indicates a cylindrical symmetry in the phase-space integral over the pair
(e~, Te) and a spherical symmetry over pair (v, (¢7, 7.)) (here (e7, )

is the combined system of e~ and 7,.)

Out [7]= -PhaseSpacelntegral-
In[8]:= width = EvaluatePhaseSpacelntegral[width];
Evaluate the phase-space integral symbolically. Again we suppress the long

intermediate result.

In[9] := Factor[width /. me->x mmu /. Logla_ b.] :> Loglal+Loglbl]
Use some Mathematica rules to tidy up the expression. We express the
mass of the electron in terms of the mass of the muon m, = zm, and

combine logarithms using the rule log(abd) — loga + log b.

2 5 2 6 8 4 2
-(FermiGF mmu (-1 +8 x -8x +x + 12 x Loglx ]))

Out[10]= =====-====mmm=mmmmmmmmmmmmeeee JTmmTTTTT
192 Pi

GLm5(1 — 822 + 82 — z® — 12z log(z?
F' g
19273

T(p™ — eTue) =
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B.5 CONCLUSION AND OUTLOOK

We developed HIP as an aid in the calculation tree-level processes in high
energy physics which would otherwise be much more difficult. HIP’s main feature
is in providing an environment within Mathematica in which one can refer to
objects and perform operations that occur frequently in this field. One can use
HIP interactively to assist with small calculations, or set it up to automatically

perform massive ‘symbol crunching’.

We have checked HIP against hand calculations of ete™ — WIW™, ey —
Wv, both with arbitrary (C and P conserving) W+ couplings, and of numerous

simple electroweak processes. We also checked them against published results for

ete > WIW v, ete” > WTW~=Z, ete” -5 yyyand ete™ — ZZ2Z.

In the future, we hope to extend HIP’s capabilities into performing loop inte-
grals, calculating color factors and incorporating other techniques for symbolically
calculating Feynman diagrams at the matrix element level. We also hope to trans-
late HIP to other symbolic languages such as Maple, so as to maximize the group

of its potential users.

HIP is available for distribution. The distribution includes the various compo-
nent Mathematica packages, the online documentation as listed in the appendix,

and several files cdntaining sample calculations done by HIP.

99



REFERENCES

. M. A. Samuel, et al., Phys. Rev. Lett. 67(1991), 9.

. K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa,

10.

11.

12
13
14
15
16
17
18

19

Nucl. Phys. B282(1987), 253 and references therein.

C. Ahn et al., Nucl. Phys. B309(1988), 221.

G.L. Kane, J. Vidal and C.P. Yuan, Phys. Rev. D39(1989), 2617.
G. Couture and J. N. Ng, Z. Phys C35(1987), 65.

G. Couture et al., Phys. Rev. D36(1987), 859.

T.M. Aliyev, Phys. Lett. 155B(1985), 364;
S. Alam, S.N. Biswas and A. Goyal, Phys. Rev. D33(1985), 168;
G. Couture et al., Phys. Rev. D38(1988), 860.

T.G. Rizzo and M.A. Samuel, Phys. Rev. D35(1987), 403;
M. Suzuki, Phys. Lett. 153B(1985), 289.

. U. Baur, D. Zeppenfeld, Phys. Lett. B201(1988), 383.

A. Grau and J.A. Grifols, Phys. Lett. B154(1989), 283.

J.J. van der Bij, Phys. Rev. D23(1987), 1088.

R. Alcorta, J.A. Grifols, S. Peris, Mod. Phys. Lett. A2(1987), 23.
U. Baur and E. L. Berger, Phys. Rev. D41(1990), 1476.

J. Layssac et al., Report No. PM/90-42 (1991).

E. N. Argyres et al., Phys. Lett. B259(1991), 195.

D. Zeppenfeld, Phys. Lett. B 183(1987), 380.

U. Baur and D. Zeppenfeld, Nucl. Phys. B325(1989), 253.

S. Zeppenfeld, Report No. OCIP-C-91-2 (1991).

U. Baur and D. Zeppenfeld, Nucl. Phys. B308(1988), 127.

100



20

21.

22.

23.

24.

25.
26.
27.
28.

29.
30.
31.
32.
33.

34.

35.

. R. D. Ruth, Report No. SLAC-PUB-5406 (1991).

We use machine design G from R. B. Palmer,

Ann. Rev. Nucl. Part. Sci. 40(1990), 529.

P.B. Wilson, SLAC-PUB-3985 (1986);

R. Blankenbecler and S.D. Drell, Phys. Rev. D36(1987), 277,

P. Chen, in Proceedings of the Workshop on Physics at Future Accelerators,
La Thuile(Italy) and Geneva(Switzerland) CERN 87-07 (1987);

R. Blankenbecler and S.D. Drell, Phys. Rev. D37(1988), 3308.

D. V. Schroeder, Report No. SLAC-Report-371, 1990 (Ph.D. dissertation).

I. F. Ginzburg et al., Nucl. Instrum. Meth. 205(1983), 47;
I. F. Ginzburg et al., Nucl. Instrum. Meth. 219(1984), 5.

V. L. Telnov, Nucl. Instrum. Meth. A294(1990), 72.
I.F. Ginzburg et al., Nucl. Phys. B228(1983), 285.
K.O. Mikaelian, Phys. Rev. D30(1984), 1115.

J.A. Robinson and T.G. Rizzo, Phys. Rev. D33(1986), 2608;
G. Couture, S. Godfrey and P. Kalyniak, Phys. Lett. B218(1989), 361.

E. Yehudai, Phys. Rev. D41(1990), 33.

G. Couture, S. Godfrey and R. Lewis, Report No. PRINT-91-0047 (1991).
E. Yehudai, Report No. SLAC-PUB-5495 (1991).

H. Aronson, Phys. Rev. 186(1969), 1434.

D. Levinthal, F. Bird, R. G. Stuart and B. W. Lynn, CERN-TH-6094-91-
REV.

A. Hsieh and E. Yehudai, Report No. SLAC-PUB-5576. The packages are

available from the author upon request.

S. Wolfram, Mathematica — A System for Doing Mathematics by Computer
(Addison-Wesley, Redwood City, 1988).

101



36. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press,
Oxford, 1977), pages 213-219.

37. C. Ahn, et al., Report No. SLAC-329 (1988);
T. Barklow, et al., to be published as a SLAC Report.

38. J. Steinberger, Phys. Rep. 203(1991), 345 and references therein.
39. T. L. Barklow, Report No. SLAC-PUB-5364, 1990.

40. H. W. Fearing and R. B. Silbar, Phys. Rev. D6(1972), 471;
K. Hagiwara and D. Zeppenfeld, Nucl. Phys. B274(1986), 1.

41. R. Kleiss, W. J. Stirling, Nucl. Phys. B262(1985), 235.

42. Reduceby A. C. Hearn, see Reduce User’s Manual, version 3.2, Rand Crop.,
1985.

43. Schoonship by M. Veltman, see H. Strubbe, Comp. Phys. Comm 8(1974), 1.
44. Form by J. A. M. Vermaseren, unpublished.

45. H. Murayama, I. Watanabe, K. Hagiwara, “HELAS: HELicity Amplitude

Subroutines for Feynman diagram evaluations”, to appear in KEK-Report.

46. Maple by Waterloo Maple Corp., see MAPLE Reference Manual, Fifth
Edition, Waterloo Maple Publishing, 1988.

47. J. Kiiblbeck, M. Bohm and‘ A. Denner, Comp. Phys. Comm. 60(1990), 165.
48. R. Mertig, M. Bohm and Av. Denner, Comp. Phys. Comm. 64(1991), 345.
49. R. Kleiss, W. J. Stirling, Nucl. Phys. B262(1985), 235.

50. M. Veltman, Nucl. Phys. B319(1989), 253.

102



	slac-r-383a.pdf
	slac-r-383b.pdf
	slac-r-383c.pdf

