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Abstract 

One of the fundamenta1 constants of nature is the baryon asymmetry of the 

universe - the ratio of the number of baryons to the entropy. This constant is 

about lo- l1 . In baryon-number conserving theories, this was just an initial con- 

dition. With the advent of grand unified theories (GUTS), baryon number is no 

longer conserved, and this asymmetry can be generated dynamically. Unfortu- 

nately, however, there are reasons for preferring another mechanism. For example, 

GUTS predict proton decay which, after extensive searches, has not been found. 

An alternative place to look for baryogenesis is the electroweak phase transition, 

described by the standard model, which posses all the necessary ingredients for 

baryogenesis. 

Anomalous baryon-number violation in weak interactions becomes large at 

high temperatures, which offers the prospect of creating the asymmetry with the 

standard model or minimal extensions. This can just barely be done if certain 

conditions are fulfilled. CP violation must be large, which rules out the minimal 

standard model as the source of the asymmetry, but which is easily arranged with 

an extended Higgs sector. The baryon-number violating rates themselves are not 

exactly known, and they must be pushed to their theoretical limits. A more ex- 
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act determination of these rates is needed before a definitive answer can be given. 

Finally, the phase transition must be at least weakly first order. Such phase tran- 

sitions are accompanied by the formation and expansion of bubbles of true vacuum 

within the false vacuum, much like the boiling of water. As the bubbles expand, 

they provide a departure from thermal equilibrium, otherwise the dynamics will 

adjust the net baryon number to zero. The bubble expansion also provides a bias- 

ing that creates an asymmetry on the bubble surface. Under optimal conditions, 

the observed asymmetry can just be produced. 
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1. Introduction 

With the advent of grand unified theories, there arose the hope of dynami- 

cally generating the baryon number of the universe, a quantity that had to be set 

by initial conditions in baryon-number conserving theories. Baryon-number vio- 

lation alone, however, is not sufficient to generate a net baryon asymmetry. As 

first pointed out by SakharovIll, there are two more necessary conditions. The 

theory must have C and CP violation, otherwise equal numbers of baryons and 

antibaryons are produced, giving no net increase. There must also be a depar- 

ture from thermal equilibrium, otherwise the dynamics drives the system to equal 

mixtures of baryons and antibaryons. GUTS naturally violate baron number and 

CP. The phase transitions are typically strongly first-order, so a departure from 

thermal equilibrium is easily achieved. One can usually produce the observed ratio 

of baryon number to entropy, 7 G nB/s N 10-ll. This is one of the attractive 

features of GUTS. There is, however, one problem that cannot be overlooked: the 

proton has not yet been observed to decay. This completely rules out the mini- 

mal SU(5) theory. That theory has other problems, the most notable being the 

hierarchy- problem. The minimal supersymmetric extension solves the hierarchy 

problem and gives a proton life time consistent with observation. However, super- 

symmetric GUTS have their own set of problems. Furthermore, many non-minimal 

extensions soon become rather contrived, and the number of free parameters be- 

comes so large, explaining one ratio at such a price is unsatisfying. In addition, 

the temperature range between the GUT and the weak scale is large enough that 

baryon-number violation proceeding through the electroweak anomaly will wash 

out any asymmetry, unless the initial B - L is non-zero. While grand unification 
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is a very beautiful idea, these nontrivial problems are motivation for an alternative 

method of baryogenesis. 

The weak scale in minimal extensions of the standard model turns out to be 

a promising place to look. The standard model naturally possesses two of the 

three necessary conditions for baryogenesis: baryon number is not conserved (due 

to the axial vector anomaly) and CP violation is automatic. If the weak phase 

transition is not too weakly first-order, then a large enough departure from thermal 

equilibrium can be achieved. This is the case if the Higgs mass is not too large. 

It is clear, however, that CP violation will be too small in the minimal standard 

model to produce any thing like the observed asymmetry. But there are many 

extensions of the standard model, such as multi-Higgs theories, supersymmetric 

theories, technicolor theories, or the like, with ample CP violation. It then becomes 

a quantitative question as to whether the actual baryon-number violating rates 

- themselves are large enough. 

In this thesis, I examine the necessary conditions under which the baryon asym- 

metry may be generated at the weak scale. The key point is that a time-dependent 

Higgs field biases the baryon production and generates an asymmetry, the sign of 

which is determined by the sign of the CP violating parameter. The expansion 

of bubbles of true vacuum during a first order phase transition can generate this 

time dependence, as well as a sufficient departure from thermal equilibrium. If 

the baryon-number violating rates are not too small, the observed asymmetry can 

be produced this way. This is the subject of chapter 3. In chapter 4 I illustrate 

the general techniques with a simple 1 + 1 dimensional model. I also show why a 

two-Higgs model will not yield anything like the observed asymmetry. In chapter 
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5 I find an upper bound on the Higgs mass by requiring that once the asymmetry 

is produced, the baryon-number violating rates turn off fast enough so as not to 

erase it. This is a relevant bound for minimal extensions of the standard model. 

I will end this chapter with a brief review of baryon-number violation in the 

standard model. This is standard material and a nice review can be found in Ref. 

[3]. Due to the presence of axial couplings, baryon and lepton number are not 

conserved. The baryon-number current satisfies 

where Nf is the number of flavors, and the dual field strength is defined as @“ = 

$cPvcupFaSf Integrating (1.1) and discarding the surface terms of the baryonic 

current gives a change in the baryon number 

AB =$ J&z- tr(F.6’) (l-2) 

=Nf J d*a: @JP (14 

=Nf dupKp, 
f 

(14 

where the last surface integral is taken over a large three-sphere, S3, of infinite 

radius, and the Chern-Simons current is given by 

p = 92 
8a2 

epvap tr[Ay(&Ap - $g A,Ap)]. (1.5) 

I will work in the static A0 = 0 gauge, in which the only non-zero component of the 

Chern-Simons current is Ii”. For finite-action gauge field configurations, F = 0 at 

* I use the conventions: cola3 = +l; also, elements of the gauge group G are parametrized by 
u(x) = exp[igcr(z) + t], the covariant derivative is D, = 8, - igAzt*, and a general gauge 
transformation on the gauge fields is given by A, --t uA,u-’ - $3,,u u-l. 
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spatial infinity. Using this restriction in (1.4) gives 

AB = Nf [NC,@ = too) - N,,(t = -oo)] = Nf AN,,, 

where the Chern-Simons number for a field configuration A(x) is defined by 

Ncs[A] = $ J d3x cijk tr(A’ Ai Ak). 

(l-6) 

(l-7) 

Vacuum configurations A,,, = $ Vu u-l define a natural map S3 -+ G when 

restricted to o(x) + 0 as 1x1 -+ 03. With this restriction, points in space can 

be thought of as lying on a three-sphere, and the induced vacuum map is simply 

x I--) u(x) E G. The Chern-Simons number for these configurations is just the 

homotopy or winding number of this induced map. For semi-simple groups, such 

vacuum configurations can then be labeled by an integer, and the true quantum 

mechanical vacuum state is a linear superposition of the corresponding perturbative 

wave functionals, which each have support only over a definite winding number. 

The above restriction to classical vacuum configurations in which u + 1 at spatial 

infinity can be justified a posteriori, since tunneling only mixes such states among 

t hemselves’41. 

‘t Hooft15krst calculated the tunneling rate between adjacent perturbative 

vacua in the standard model to be - e-‘*iQW - 1O-164 - which is to say, it 

never happens. This small number can be understood in terms of the very large 

potential barrier, of height N Mw/cyw - 10 TeV, separating the perturbative vacua 

of definite winding number. In Ref. [9], it was shown that there exist static, un- 

stable solutions to the field equations with one negative mode. These solutions are 
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called sphalerons and represent saddle points of the potential-energy functional in 

field space. Fig. 1 illustrates the basic vacuum structure of a pure gauge theory. 

This interpretation of the sphaleron is further justified since it has a Chern-Simons 

number half way between that of the successive perturbative vacua flanking the 

sphaleron. 

1.20 - 

1.00 - 

!z E. 0.75 - 

9 
s- 

0.20 - 

0.20 - 

N ,,=w 
sphaleron 

N-=3/2 

0.00 

Figure 1. Vacuum structure of a gauge theory. The maxima represent sphaleron 

configurations. 

In chapter 3 I will discuss the high temperature limit. It is quite probable that 

under these extreme conditions, gauge field configurations can simply sail over the 

barrier rather than tunnel through it, and then baryon-number violation becomes 

unsuppressed. The question is then whether this erases any previously generated 

asymmetry, or creates an asymmetry of its own. 
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2. Finite Temperature Field Theory 

Because the calculations which follow involve field theory at finite tempera- 

tures, I will briefly review relevant aspects of the subject. The aim is to establish 

finite temperature Feynman rules and to use them to investigate symmetry restora- 

tion. In particular I will calculate the free energy to one loop. Finally, I will give 

a quick review of bubble formation in first order phase transitions, since this is a 

crucial ingredient of chapter 3. The results of this chapter may be found in Ref. 

Consider a field theory with a Lagrangian ,!Z(a4, $), where 4 includes all the 

fields in the theory, both fermionic and bosonic. The statistical average of an 

operator 0, at temperature p-l, is defined as 

The usual time ordering is performed, and 0(x1, x2, ,.., zn) is understood to be in 

the Heisenberg representation. This means that, formally, the factor e-PH acts 

as an imaginary-time development operator. In effect, it translates the system by 

-i/? units of imaginary time. It is not hard to show that in the in the imaginary- 

time direction, the statistical average is periodic (with period 6) for boson fields 

and antiperiodic for fermion fields. For simplicity I will only consider O(x) = 

$(4d(O), where 4 may b e either a boson or a fermion. First analytically continue 

to Euclidean space by defining c$~(T) = #H(t)li+--ir. Take Y- < /?, and since the 
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Euclidean time development is given by q&(r) = erH+(0)e--rH, 

< UE(7) >p Tr[emPH] = Tr[eeBH &(r)+(O)] 

= Tr[emPH eH’qS(0)eeHr r+(O)] 

= fTr[4(0) e(‘-S)HqS(0)e-rH] 

= fTr[$(O)$(r - ,B) eWPH] 

= fTr[eePH T&(7 - P)4(0)1 

= f < sH(T - p) >p Tr[esBH], 

(2.2) 

where T, is the Euclidean time-ordering operator, and the plus sign is for bosons 

and the minus sign for fermions. The Feynman rules take on a particularly sim- 

ple form for operators that are analytically continued to imaginary time, which I 

denote by OE(x,r). If real-time correlation functions are needed, analytic contin- 

uation may be performed back into Minkowski space. However, this procedure is 

delicate since the Euclidean Greens functions are only calculated approximately. 

The Feynman rules are most easily derived from the path integral approach, in 

which 

< 0, >p = 
J Dq5 ewSE 0, 

JDq5 emsE ’ (2.3) 

where the Euclidean action is given by 

P -i/3 

SE = JJ dr d3x L, = -4 JJ dt d3x &-ir, (24 
0 0 

and the bose(fermi) fields are taken to be periodic(antiperiodic) with period ,B. 

The finite temperature Feynman rules in Euclidean space are formally similar to 
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the usual zero temperature ones. For simplicity I will consider X44 theory: L = 

gw2 - U(4) with, 

U((is) = l 2 2 g-4 + $4. P-5) . 

Each four-point interaction vertex has an associated factor of -A. Each internal 

propagator of momentum p, = (wn, p) and mass m takes the form 

A,(PA = l Wz+p2+m2’ (2.6) 

where w,, = 2nrT for bosons and (2n + l)rT f or f ermions. The appropriate spin 

structure must also be included in more general propagators. For example, in a 

fermion propagator, there is an additional factor of fin + m, where the gamma 

matrices are now Euclidean, i.e. {~~“,yV} = -2P”. For each internal loop of 

momentum pn = (w%,p), there is an integral-sum of the form 

TfY J&33 
n=-co 

(2.7) 

and at each vertex there is an energy-momentum conserving delta function of the 

form P(2i)36(3)(pl - P2)b1,w2. By convention, an overall delta function p(27r)3 

Sc3)(Pi7t - pout) is factored out of the momentum-space Greens functions. These 

rules are easily obtained from the generating functional 

(2.8) 

where JP = j” dr s d3 x, and the normalization is chosen so that Z[O] = 1. The 

connected Greens functional is defined by W[J] = In Z[J]. To investigate symmetry 
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restoration it is useful to define the classical field 

&l(X) - < 4(x> >p 

6W (2.9) 
=6J(z)- 

In calculating (2.9), the Euclidean action is given by SE + SE - Jp Jq5, and 4Cl 

is then a functional of J(x). If this classical field is nonzero for J = 0, then 

spontaneous symmetry breaking persists at finite temperature. To investigate this 

further, it is helpful to introduce the effective action defined by the functional 

Legendre transform of W [ J]: 

rhr] = W[J] - J J&r. (2.10) 

P 

In the above, equation (2.9) is to be inverted to give J(x) = J[q5Cl;x]. That is to 

say, J is a functional of dCi as well as a function of xi It is easy to show that 

sr 
Wcz(x) = -J(x). (2.11) 

Therefore, nonzero solutions to sI’/&$,, = 0 signal spontaneous symmetry breaking 

at finite temperature. The one-point-irreducible (1PI) Greens functions are defined 

bY . 

r[hl = C --$ J . . . J r(m)(x, . . . 4 h(4 . . . hdx,), 
m 

'Pl Pm 

(2.12) 

where JDi = J/ dq s d 3xi. It is also useful to expand I’ in powers of derivatives: 

r[hl] = 1 dT J d3x[ - f~,d t ~~~)(dcldd~ t - . - 1. (2.13) 

0 

R is called the effective potential, and at the minima, it is the thermodynamic 

potential density of the system. For zero chemical potential, however, this is just 
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the free-energy density. For a translation invariant ground state, C&(Z) = const, 

and it is sufficient that there exists a nonzero solution to dR/d& = 0 for the 

persistence of symmetry breaking. The momentum space 1PI Greens functions F 

are defined by 

I+, *.. 2m) =T-yJ$.. n, TCJg 
,cm~i @T)36(3)(C p;) 

n1 

&d i;(m)(Pl --* pm) , 
(2.14) 

where zi = (q, xi), w = Cq, and 6, = 1 if w = 0 and vanishes otherwise. All 

inner products are with a Euclidean metric. From here on I will drop the subscript 

from qSCl when no confusion will arise. Expanding f;(ml(pl . . . p,) in a momentum 

power series and writing p(23r)3~(3)(C pi) 6, = JP eI’CPi*‘, gives 

0 = - c -$i((m)(0)[(b(x)]m. (2.15) 
m ’ 

For nonzero m, the 1PI Greens functions in X44 theory at zero momenta are given 

bY 

F’2m’(~) = sm TX J & [ p;;lnZ] m3 ?l (2.16) 

where Sm = (2m)!/2m(2m) is th e s y mmetry factor associated with the number 

of ways of leaving the graph fixed upon interchanging external legs. In finite 

temperature field theory there is one more graph to consider: the noninteracting 

closed loop (m=O). At zero temperature this graph contributes an infinite constant, 

but at finite temperature it also gives a temperature dependent correction. This 

loop may be calculated by first calculating the noninteracting partition function 
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and then using the relation R = -T In Z/V, 

In Zfree = In detp(d2 + m2) 

=-fvc Jd”p 
n w3 W2(P2, + m2)1- 

So, up to one loop, the free energy takes the form 

n=~rn2~2+$+4+$~ J&[~n[p2(p~+m2)] + 
n 

ln[l + 
w2/2 

pi-i-m2 11 (2.18) 

d3P 
=u + :E Jm 1n[P2(pi + m2 + @2/2)]. 

n 

Define a $-dependent frequency and mass by w;(d) = p2 + m2 + Xqd2/2 = p2 + 

m2($). It will be useful in performing the frequency sum to get rid of the logarithm 

using the identity (Kapusta in Ref. [S]) 

- (PWPY 
ln[P2(wi + wi)] = J o2 +dyinr)2 + ln(l+ (2nr)2)- (2.19) 

1 

The second term in (2.19) just gives a temperature independent contribution to 

the partition function and may be dropped. The frequency sum may be performed 

using the following relation (Kapusta in Ref. [S]): 

co 
n~~m(.-z:n-Y) = c 

7r[cot 7rx - cot 7ry] 
y-x * 

(2.20) 

After some algebra, the one-loop correction becomes 

fc J f$ (Rj.1’02 JyinT,z = T J f& [$ + ln(1 -e-Pup)]. (2.21) 

1 
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It is convenient to split the free energy as R = Vo + VT, where: 

Vo = irn2cj2 + $ti4 + J d3p 1 
. @pwp 

T4 O” 
b = 2n2 J dxx2 ln( 1 - e-‘), 

0 

(2.22) 

(2.23) 

with E = (x2 + Y~)‘/~, x = pp and y = pm($). Notice that Vo is just the zero 

temperature effective potential to one loop. This is apparent since up to an infinite 

&independent constant 

J [ gin l+ @2/2 1 1 
w2+p2+m2 

= -w . 
2 ’ 

Therefore, 

(2.24) 

(2.25) 

This is just the usual one-loop effective potential for Ad4 theory. Since VT is 

finite, R(T) is renormalized with the same counter terms as the zero temperature 

effective potential. This is a general feature of finite temperature Greens functions. 

If there were fermions coupled to the scalars, then appropriate sign changes must 

be performed. For a general number of bosons and fermions, the finite temperature 

contribution to the effective potential is 

(2.26) 

where gb (Sf ) is the number of degrees of freedom associated with a given boson 

(fermion) type, and yb(yf) is the associated &dependent resealed mass, and I, is 
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defined by 

Co 

IF(Y) = f J dx x2 ln(1 F e-‘), (2.27) 
0 

with c = (x2 + y 2 1/2. ) If the zero temperature potential Vo is chosen to give 

spontaneous symmetry breaking, i.e. a minimum at a nonzero r$, then it can be 

arranged that finite temperature effects restore the symmetry above some critical 

temperature Tc. 

This illustrates the main technical points. For most of this thesis, however, I 

will be concerned with the standard model, or minimal extensions. I will work in a 

gauge in which there is one real component of the Higgs field that takes a vacuum 

expectation value (VEV) of v x248 GeV. Including heavy fermion effects, the zero 

temperature effective potential to one loop is 

where 

(2.28) 

(2.29) 

with cy w = g2/47r x l/30. The Higgs mass is related to the VEV by Mi = 2Xv2, 

where v = p/a. In equation (2.29), g is the SU(2) gauge coupling constant 

and Mt is the top quark mass. The W and 2 gauge boson masses are related by 

Mw = igv and Mz = Mw/cosO,. For a top mass Mt - 100 GeV and a Higgs 

mass MH N 50 GeV, B N 0.001 and X N 0.02. Quantum corrections are then some 
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what important since 4B/X N 0.2. The renormalization conditions are* 

The finite temperature potential now becomes 

T4 
b = 3 

(2.30) 

(2.31) 

6VYw) + 31-(y,) + 121+(yt) 1 , (2.32) 

where yi = Mi$/VT. This is a general expression (up to one loop), valid for 

any temperature at which non-standard-model physics is unimportant. It is often 

useful to make a high temperature (small y) expansion of (2.32). The first two 

terms of the Taylor series expansion in y2 are easy to find. However, there is a 

subtlety in the y4 term. The functions 1k are not analytic at y = 0, and the Taylor 

series expansion breaks down in the third term. There is a simple pole in l!(y) 

and a logarithmic singularity in both I:(y). Th is suggests there are cubic and 

logarithmic terms in the expansion. Dolan and Jackiw of Ref. [6] use a clever trick 

for dealing with this non-analyticity. They calculate 1$(y) at a non-zero but small 

argument and then integrate twice, using the known values of I&(O) and I!+(O) to 

fix the integration constants. The result of this calculation is 

d I? lr 3 
I-(y) = -45 + EY2 - sy - (2.33) 

72 
I+(y) = -f 2 + zy2 + hy4 my2 -I- . . . . (2.34) 

* This convention differs some what from Shaposhnikov in Ref. [15] in which the self coupling 
is redefined to absorb the quantum corrections. 
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Using the above expansions in (2.32) gives an effective potential 

T4 
S-2 = -zg* + y(T2 -T&b2 - STqS3+ ;(I- y) d4 

+ Bs41n($) - &44[2(+)41n (F)” t 

(2+)*ln (s)2 - 8(?)‘ln ($$>“I, 

where g* = Nb -I- :Nf, and 

y= ;[2(+)2 + (y2 + 2(92] 

6=&[2(+)3 t ($)j] 

Mi T,2 = - 47 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Above a critical temperature T,, which I will soon determine, the minimum occurs 

at zero Higgs field, and symmetry is restored. This is a natural initial condition in 

a hot Big Bang scenario. As the universe expands and the temperature drops, a 

relative minimum appears, and at temperature T,, it becomes degenerate with the 

original. Then at some temperature, given by To above, the potential develops a 

relative maximum at zero and is qualitatively similar to the usual zero temperature 

Mexican hat potential. Since zero Higgs field is a relative minimum down to 

temperature To, and there is a potential barrier between the false and true vacua, 

the phase transition is not instantaneous. Instead, it proceeds via bubble nucleation 

due to quantum tunneling and thermal fluctuations of the Higgs field in small 

regions of space. If a bubble of true vacuum appears with a radius larger than 
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0 0.6 1 1.6 2 

$ 

Figure 2. A typical temperature evolution (in arbitrary units) for a first order transi- 
tion. The free energy at zero field has been subtracted off. 

some critical value, the bubble of Higgs field expands. Its evolution is determined 

classically, and at some temperature Tb, typically greater than To, all the bubbles 

collide filling up space. This, in effect, produces one large bubble of Higgs field 

at the minimum of the potential. During bubble expansion, the change in the 

Higgs field is much faster than the expansion of the universe. However, after Tb, 

the Higgs field changes with the minimum of the potential, which is of order the 

Hubble parameter and hence quite small. This point is very important for weak 

scale baryogenesis and will be elaborated on in the next chapter. In any event, 

phase transitions of this type are called first order, and a typical temperature 

evolution of the potential is shown in Fig. 2. 

I will now find the critical temperature T,, neglecting all logarithmic terms. 

If greater accuracy is needed, then numerical techniques can be used and the 

16 
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logarithms kept. From (2.35), there is a non-zero minimum at 

12ST 
v(T) = X(1 - f3B/X) ’ (2.39) 

The critical temperature is where this minimum disappears: 

9s 1 
-1 

T,” = T,2 1 - 
27X(1 - 6B/X) * 

(2.40) 

Notice that T, N To N v/h, where h is th e ar 1 g er of the gauge coupling g or the 

top Yukawa coupling ht. This means that the high temperature expansion near 

the critical temperature is only valid in the weak coupling limit. In particular, for 

heavy top N 100 GeV, the expansions (2.33) and (2.34) are unreliable, and (2.32) 

must be used directly. 

Finally, I give a brief sketch of bubble formation. Again, this is standard ma- 

terial and can be found in Ref. [8]. Th e g eneral theory of vacuum instability 

at zero temperature was developed by Callan and Coleman in the previous ref- 

erence. Given a metastable state, such as the false vacuum, its energy develops 

an imaginary part which can be calculated using instanton methods. The decay 

rate is then proportional to eWS4, where S, is a four dimensional Euclidean ac- 

tion associated with the so-called “bounce” solution. Similar to an instanton, the 

bounce is a classical solution to the Euclidean equations of motion. While an 

instanton interpolates between different perturbative vacua, the bounce connects 

the metastable false vacuum and the true vacuum and then bounces back to the 

metastable state once again. It is quite reasonable that bounce states of least ac- 

tion are O(4) symmetric. This means the equations of motion are really ordinary 
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differential equations with boundary conditions, a problem well suited to numerical 

techniques. Linde applied these arguments to finite temperature field theory[“. As 

was shown in (2.2), finite temperature field theory is equivalent to Euclidean field 

theory on a cylinder of circumference ,0 in the time direction. If the temperature 

is increased sufficiently, the cylinder radius becomes smaller than a typical O(4) 

bubble. This means one may take the bounce solutions to be constant in Euclidean 

time and O(3) symmetric instead. The vacuum tunneling rate is then proportional 

to e-ps3. This three dimensional action has the interpretation of free energy, and 

this formalism then agrees with the theory of boiling’7’8’. There is also a prefactor in 

the bubble formation rate that involves a determinant of small fluctuations about 

the bounce solution. This is typically very difficult to calculate, but fortunately 

it may be estimated using dimensional analysis. The complete expression for the 

bubble formation rate per unit volume was found by Linde in Ref. [8] to be: 

where det’ means that 

sional action is defined 

the zero modes have been removed, and the three dimen- 

bY 

s3 = J (2.42) 

The O(3) symmetric bounce solution must be used in the above action: 

(2.43) 

where the boundary conditions are 4 + 0 as r + 03, and 4’ + 0 as T + 0. Since 

the temperature sets the scale, the prefactor in (2.41) must be roughly proportional 
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to T4 by dimensional analysis. This means one can use the approximation 

rbub - T4( &)3/2 I+=~. (2.44) 
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Figure 3. A typical temperature evolution of SJT. 
I 

For a given potential fl(q5, T), a numerical solution to (2.43) satisfying the appro- 

priate boundary conditions can be found, the three dimensional action calculated, 

and the bubble production rate found. Fig. 3 illustrates a typical temperature 

evolution of the bounce action. It was produced by numerically solving for the 

bounce with a Higgs mass MH - 50 GeV and with a light top. Right after the 

phase transition, the high potential barrier separating the false and true vacua 

(see Fig. 2) produces a very large action, but as the universe cools and the bar- 

rier drops, the action decreases exponentially. This means the bubbIe production 
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increases quickly on a macroscopic scale, and the false vacuum is gone soon after 

the first bubbles appear. Roughly speaking, when the rate within a volume of Tm3 

becomes comparable to the Hubble parameter, all of space fills up with bubbles of 

true vacuum. To be more precise, bubble formation is a Poisson process, and when 

the bubbles form they begin to expand with some speed Vb. Eventually the bubbles 

collide filling all of space. Guth, in Ref. [8], d erives the following expression for 

the fraction of false vacuum left at time t: 

f(t) = exp [ - $1 dt’ I’bub(T’) ~(t; t/)1, 

tc 

where t, is the critical time associated with T,, and 

t’ 

(2.45) 

(2.46) 

This last expression is the volume that a bubble produced at time t’ occupies at a 

later time t due to both the expansion of the universe and the bubble expansion 

itself, In the Standard Model, by matching the pressure gradients across the bubble 

wall, it can be show that the bubble expands at non-relativistic speeds: vi N c&,/X. 

I define the bubble temperature, Tb, as the temperature at which lnf = -1, 

at which point the false vacuum is mostly gone. Since f changes so abruptly, 

the bubble temperature is very insensitive to the wall velocity Vb. Even for non- 

relativistic velocities, since the Hubble parameter H N lo-l4 GeV at the weak 

scale, the bubble expansion rate is much larger than the expansion rate of the 

universe. As will be shown in the next chapter, such a rapidly changing Higgs field 

biases the baryon-number violation in a given direction. As the bubbles expand, 
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baryons are produced in the outer walls, and with any luck the observed ratio 

nBJny N 10 -lo will be produced. As it turns out, if the CP violating phases are 

not small, this can just barely be done. This marginal production places some 

stringent constraints on the theory. In particular, the Higgs boson cannot be too 

heavy. After the bubbles collide, the rate of change of the Higgs field is set by 

the Hubble parameter. Baryon-number violation is then no longer biased in a 

particular direction, and unless the Higgs mass is small enough, any previously 

produced baryons get wiped out. This is the subject of Chapter 5. In the following 

chapter I will examine baryon production on the bubble surfaces in more detail 

and derive a somewhat general bayron rate equation in the presence of a changing 

Higgs field. 
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3. Baryon Production from Higgs Biasing 

In this chapter I will discuss the adiabatic production of baryons in a rather 

general manner. I will consider an arbitrary field theory with CP violation and an 

anomalous baryon current. This could be the standard model or some extension 

of it, the one most relevant for this discussion being the minimal supersymmetric 

extension. This is because CP violation in the standard model is too small to 

reproduce the correct baryon asymmetry, but minimal extensions can have much 

larger CP violating phases and thereby stand a chance of producing the observed 

baryon asymmetry. 

It has long been known t1la.t ba.ryon and lepton number are not conserved in the 

sta.nda.rd model, as a consequence of anomalies 151. Sta,tes of different baryon number 

are smootllly connect,ed to one another through different configurations of the gauge 

and Higgs fields, but they a.re separated by a very la.rge energy barrier of order 

M,,,/cY., - 10 TeV, which makes zero temperature tunneling an extremely unlikely 

process. In the last few yea.rs, however, it has become clear that baryon number is 

ba.dly viola.ted a.t tcmperntures much above h/l, (with R-L being conserved)‘g-‘21. 

The full proof of this is quite involved”31, but the following heuristic argument 

provides some insight into the situation. At high temperatures, the system is well 

described by classical sta.tistical mechanics. At temperatures below the weak phase 

transition, the lowest, energy ba.rrier separating baryon-number states is called the 

spha.leron - this is a sta.tic, unstable solution to the field equations. It has one 

nega.tive mode and represents a saddle point in the field space “I. The rate for 

barrier penetration is essentially the Boltzmann factor associated with forming a 
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sphaleron: 

where B is a number which depends rather weakly on the Higgs mass, varying 

between about 3 to 6. Above the weak phase transition, the situation is equivalent 

to a three dimensional field theory with no small dimensionless parameter. On 

dimensional grounds, however, the rate must be given by 

r N rc(c~,T)~. (3.2) 

A recent simulation gives 6 = 0.01 - 1114]. It is very reasonable that the baryon- 

number violation rate becomes unsuppressed, since gauge configurations may easily 

pass over the barrier. 

While no single classical configuration dominates this rate, a heuristic descrip- 

tion in terms of instanton trajectories can be given. It is generally believed that the 

three dimensional field theory has a mass gap, cmwT, where a is a number of order 

unity. Correspondingly, the correlation length of the high temperature theory (the 

so-called magnetic screening length) is t = (acr,T)-‘. Consider now instantons 

in the high temperature theory. These will exist with arbitrary scale size, from 

p = 0 to p - [. Th e instanton represents a particular tunneling trajectory through 

configuration space. The barrier height associated with such a trajectory is neces- 

sarily of the form E,, = c/(~~p, where c N 1. Clearly, then, the smallest barriers 

are associated with the largest possible values of p, i.e. p - [. Such configurations 

have a Boltzmann factor of order unity, while the prefactor is of order tm4. 
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The large rate of baryon-number violation has important implications for any 

baryon number produced at very early times. For example, if no net B - L is pro- 

duced at early times, the baryon (and lepton) numbers will completely disappear. 

It also raises the intriguing possibility that the observed baryon number could arise 

at temperatures of order the scale of weak interactions. This could have signifi- 

cant implications for our understanding of cosmology. In particular, in inflationary 

models, one usually requires significant reheating after inflation in order to produce 

baryons. This would not be necessary if baryons could be produced at such low 

temperatures. 

The possibility that the baryon asymmetry might be produced at the weak 

phase transition was first discussed by Kuzmin, R,ubakov and Shaposhnikovt”‘and 

has been most. cxt,cnsively explored in subsequent pa,pers of Sha,poshnikov and 

collaborators’151, Ot,her important works on t’he subject are those of McLerran [I61 , 

P71 Turok and Zadrozny , and of Cohen, Kaplan and Nelson ‘lel. The main point is 

t,llat if t.hc phase 1,ransit,iorl in the Weinberg-Salam model is at least mildly first 

order, t,hen t,he t,hrce conditions enumera.ted by Sakharov[“necessary to obtain a net 

asymmetry are satisfied. Baryon-number violation is provided by the SU(2) gauge 

interactions themselves. CP violation is a!rea.dy present in the standard model, and 

cxteusions of the st.andard model, such a.s multi-Higgs systems, supersymmetry or 

tcchnicolor tend to yield larger violations of CP. Deviations from equilibrium will 

a.ut~oriia.t,ica.lly arise if the transition is first order. 

Malay of tile specific proposa.ls which have been made for the origin of the 

baryon asymmet,ry at the weak phase transition are based on the minimal stan- 

da.rd model. It is c1ea.r from the st,art, however, that unless the dynamics of the 
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Figure 4. General loop diagram contributing to the CP violating dimension six operator 

considered in the text. 

high temperature theory exhibits certain bizarre featurest’51, CP violation in this 

theory is simply too small to yield anything like the observed asymmetry, what- 

ever the details of the phase transition might be. Moreover, as recently stressed in 

Ref. [19], there is another strong constraint on any such picture of baryon-number 

production, which almost rules out the minimal standard model. Once the phase 

transition is completed, the Higgs field will have some expectation value v(T). The 

corresponding sphaleron (free-) energy is proportional to v(T). If this VEV is too 

small, the rate of sphaleron-induced B-violating transitions (commonly called the 

“sphaleron rate”) will be larger than the expansion rate and any baryon-number 

produced during the phase transition will be washed out. This almost certainly 

requires that the Higgs boson be so light that it would have shown up in recent 

LEP experiments. I will have more to say about this in chapter 5. 
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Since there are numerous possible extensions of the standard model, it is nec- 

essary to make a few simplifying assumptions. The assumptions I make here are 

not essential, and the analysis is easily extended to a wide variety of situations, 

including supersymmetry, technicolor, and multi-Higgs theories. In particular, I 

will assume in the discussion which follows that the new physics responsible for 

CP violation is associated with energy scales large compared to T,, the transition 

temperature, and that the effective theory at 7’, contains the usual quarks and 

leptons, and a Higgs doublet, $. For reasons which will become clear shortly, I 

will also allow for the possibility of a,n additional scalar singlet, s. In the effective 

lagrangian, CP will be broken not, only by the usual phase in the KM matrix, but 

also by various non-renormalizable operators. I will focus on the dimension-six 

operator 

(3.3) 

Here 3: is the baryon current, and I have used the anomaly equation (1.1) and 

integrat,ed by parts. In theories with singlets, I will consider the dimension-5 

opera.tor 

(3.4) 

In the minimal supersymmetric standard model, for example, 0 would be generated 

at one loop by a diagram with gauginos and higgsinos in the intermediate state, as 

illustra,ted in Fig. 4. The coefficient l/M2 would thus be of order some combination 

of CP viola.ting phases, 6, divided by some typical supersymmetry breaking mass- 

squared. There are no strong limits on S. In a non-minimal supersymmetric 

model with a complex gauge singlet field, S, s could be some component of this 
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field. It could possess tree-level, CP violating couplings to the higgsino fields. The 

coefficient l/M’ would be of order 6 divided by a supersymmetry breaking mass. 

Already, the potential for baryon-number creation is present. I will consider 

two extreme cases. First I will examine a slowly changing Higgs field, so that the 

system can respond adiabatically, in the sense that at each instant the baryon- 

number violation rate, I’( 4, T), is that appropriate to the value of the temperature 

and Higgs field at that moment. Then I close this chapter by examining rapidly 

changing Higgs fields. Surprisingly, this does not yield a substantial increase in 

the baryon number. Since the dominant processes are associated with gauge boson 

wavelengths of order t, rapid change means change on a time scale much shorter 

than [.* A simple model of the baryon-number violation rate isi 

%W) = 
~(cz,T)~; T > TB 
o 

; T<T, 
P-5) 

where the cut-off temperature TB is given by gqS(TB) N a,T,. At this temperature, 

the Boltzmann factor for sphaleron-like configurations becomes of order unity: 

ESP N Mw(L)/awT, N 1. For temperatures less than TB, the rate is Boltzmann 

suppressed, so I approximate it by zero. The rate in this region may still be 

much larger than the Hubble parameter, in which case any baryon asymmetry gets 

washed out, which places an upper bound on the Higgs mass. There is another 

justification for this simple model. Place the system in a box of length N [. For 

* This may be seen as follows. The scattering cross section for particles of such momenta on 
one another is of order crwE2. However, the number density of such particles is of order 
their energy density times <; the product is of order (-I. 

t For large 4, the rate has been computed in Ref. [30]. For mH - mw, and small 4, their 
result is similar to the q5 = 0 result with K. N 1. 
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large temperatures the system is classical, and since there is a mass gap of order 

t-l, the gauge fields of wave length t-l obey an equation of the form 

(8; + (-2 + (g@2]A,(k) = c&-~‘~A~ t cL3A3, P-6) 

where c, and c, are of order one, and the left hand side has an implicit an integral 

over Fourier modes. For 4 = 0, the system becomes non-linear for A N E1j2. 

However, for g4 > ~~2 the equation becomes linear. Sphaleron-like configurations 

that pass over the barrier are associated with non-linearities of the field equations, 

so when (3.6) b ecomes linear, the baryon-number violation rate turns off. No 

further passage over the barrier can occur; the barrier has simply “grown” and 

there is not enough energy available in these modes. Thus the process turns off 

both for slow and rapid changes in 4 at about the same value of 4. In each case, 

the relevant value of the Higgs field is very small. For TB N 100 GeV, for example, 

the rate turns off when 4 - 5 GeV. 

I will now derive a baryon-number violating rate equation for the adiabatic 

limit. Let l?+ be the sphaleron rate per unit volume of increase in the Chern- 

Simons number N,,, and correspondingly let r- be the rate of decrease in N,,. 

In Fig. 1, the bottom axis may represent Chern-Simons number, and then I?+,- 

is the sphaleron rate over the barrier to the left and right, respectively. Exactly 

how the system approaches equilibrium depends upon the initial configuration. 

For simplicity, I will assume there is initially no baryon or lepton number. In the 

standard model, there are 24 types of fermions which I denote by i = e, v, 3u, 3d, 

and their corresponding number densities by ni. Due to sphaleron transitions and 
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the axial vector anomaly, 

dn; 
- = f(r+ - L). 
dt 

Left handed doublets of each family must be involved in a single sphaleron tran- 

sition. This is because the corresponding zero modes must be eaten in the path 

integral for the amplitude of the process. This is why the rate above is family 

independent. But even though each doublet must be produced, there is only a fifty 

percent chance that the fermion has a specific isospin. This gives the factor of one 

half. Actually, there is an isospin preference in sphaleron transitions, but since 

I am only interested in order-of-magnitudes, for simplicity I assume I3 = &l/2 

are equally likely. I should also consider constraints such as electric charge and 

isospin conservation, but this only complicates things, and (3.7) contains the es- 

sential physics. Given the initial conditions ni(O) = 0, all the fermion densities 

are equal at subsequent times: n;(t) = n(t). Taking Nf flavors, the lepton and 

baryon-number densities are defined by 

nL = C [nef + nyfl = 2Nf n 
f 

1 
nB = - 

3 C [n,f, + wfcl = 2Nf n7 
fc 

(3.8) 

where the sum is over flavors and/or colors, and I have used a short hand notation 

n,f to represent the density of isospin -l/2 fermions of flavor f, and a similar 

notation for other fermions. I will now use detailed balance to constrain the rates 

rh in (3.7)121’. In equilibrium, l?k satisfy 

r+n7y$) = rJJ-yNit’i2), 
i i 

P-9) 
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where the probability of producing N fermions is 

P(F) = cons-t espvF,, (3.10) 

with Ff being the fermionic free energy. Since the system is adiabatic and not too 

far from equilibrium, I will apply this equilibrium constraint to the right hand side 

of rate equation (3.7). Letting r = r+ + I?-, and after some algebra, to first order 

in the number densities, 

dn; 
dt v~g$. (3.11) 

i 

For a free fermi gas of number density n, Ff = -K T4 $ 3n2/T2, where K is 

a constant depending on the number of light particle species. The CP violating 

operator 0 produces a shift in the minimum of the free energy: 

Ff = c F; + 0 = c 3(ni;2n!)2. 

i i 
(3.12) 

The minimum must be found according to the constraint nB = 2Nf n. Defining 

ni = 2Nf np, and using the form of the CP violating operator (3.3) gives 

0 
= &aol~21 

T2 
n2, 

0 
nB = -80s 

12M’ 
(3.13) 

for the doublet or singlet case, respectively. I have dropped the spatial gradient of 

the Higgs field. This is justified since I am working in the adiabatic limit where 

gradients of the Higgs field on the expanding bubble walls is not too steep. Using 
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(3.12) in (3.11) g ives the baryon-number violation rate equation 

dn, 6Nf -=-- 
dt T3 r( nB - ni). (3.14) 

Because of the four powers of crw appearing in P, nB can be neglected relative to 

ni, on the right hand side of this equation, provided dn$/dt is large enough. I will 

shortly demonstrate that this is the case for a broad range of model parameters. 

Substituting the expression for ni, and using the simple model (3.5) for P yields 

the baryon number 

(3.15) 

for the doublet and singlet respectively. Here, in the singlet case, I have assumed 

that gS N crwT when baryon-number violation turns off.* These numbers need 

not be so small. In the singlet case, if the CP violating phase is of order one, and 

M’ N T, then the baryon to photon ratio is of order lo-‘! In models with only 

doublets, this result is suppressed by an additional power of o,. These estimates 

are rather rough. It is already clear, though, that potentially one can obtain a 

baryon asymmetry as large as that which is observed. 

If n”, is changing much more slowly in time, nB(t) w n:(t) until I becomes 

exponentially small. In this case, one obtains a result suppressed by more powers 

of Qw, due to the time derivative in ni. The extreme case of this type arises if 

the transition is second order. Then the asymmetry is suppressed by the Hubble 

IlO1 constant . 

* Whether or not this is the case depends on the details of the phase transition. One can 
easily imagine that S - 1412, for example. 
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Before describing the case where the transition occurs suddenly, it is helpful 

to understand these results in another way. Consider the operator 0 written in 

the form containing FF. As in the heuristic discussion above, consider a single 

instanton trajectory, and treat the usual instanton time, 7, as parameterizing a 

path in configuration space. 7 = 0 corresponds to the top of the barrier. If the 

gauge field in the lagrangian is replaced by its classical value as a function of 7, 

then the lagrangian for 7 (for small 7) is of the form 

L(7, ;> = +/2 + 4?rb1p, 
i12P3 

(3.16) 

where p N 5 is th e instanton scale size, and cl and bl are coefficients of order unity! 

For small T, 0 has the form 

(3.17) 

and similarly for 0’. In the adiabatic limit, where the field 4 is essentially constant, 

7 and i will be Boltzmann distributed at each instant. The canonical momentum 

receives a $-dependent contribution from 0, eqn. (3.17). This has the effect of 

skewing the velocity distribution, giving rise to an excess flux over the barrier in one 

direction. Because of the anomaly, this corresponds to a net production of baryons 

or antibaryons, depending on the sign of S. Proceeding in this way one obtains a 

rate equation of the form eqn. (3.7). In particular, this heuristic argument gives 

the correct dependence on (uw. 

This picture is readily adapted to the case where the field 4 changes suddenly. 

Despite the fact that this corresponds to a more violent departure from equilibrium, 

t There is some arbitrariness in these definitions, since the result depends on the gauge choice 
for the instanton. Here I have indicated the factor of 4n coming from the angular integration. 
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it does not in general lead to a much larger production of baryons. Before the 

transition, one has a Boltzmann distribution for r and i , and this distribution 

remains essentially unchanged as C$ changes. However, the system receives a “kick” 

from the sudden change in 4. In the time q5 changes from 0 to $0, the value at 

which baryon-number violation turns off, the velocity changes by an amount: 

A+= dt $(-$s) J 2 Ml2 c2g2 4: 1 =mM2 (3.18) 

Ai has a definite sign. If it is large compared to the initial velocity, it will send 

the system over the barrier in the direction corresponding to the production of 

(say) baryons rather than antibaryons. If it is small compared to this velocity, it 

will have no effect on the baryon number. The fraction of the distribution with 

velocities i < A+ is simply of order A+. If At is the time it takes for the Higgs 

field to rise to #o over a correlation volume, te3, the final baryon number is of 

order the product of this fraction, At, and r: 

’ 14’12 a5 &7,4 nB N z &f2 W 
. (3.19) 

Here I have attempted to keep track of g’s and 47r’s, but not (unknown) coefficients 

of order unity. Since g& N awT, this result is comparable to that obtained in 

the “adiabatic” case only if At N <. A similar expression holds in the case of the 

operator 8’. The picture described here is close to that described in Ref. [17], 

where the behavior of particular field configurations is considered. 

All the ingredients to estimate the baryon asymmetry are in place, once the 

behavior of the Higgs field is known as a function of time. In a first order phase 
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transition, baryon number will be produced near the bubble walls, where the Higgs 

field is changing in time. In order to compute the asymmetry, it is thus necessary 

to know about the shape and velocity of the walls. Here I simply illustrate some of 

the possible behaviors by considering the minimal standard model”“, even though 

this cannot be a realistic model of baryon generation. For Higgs masses smaller 

than M,, the transition is first order. Ignoring the heavy top contribution for the 

moment, for small self-coupling X and setting sin2 6~ = 0 to simplify the writing, 

the effective potential for the 4 field as a function of temperature is given by 

V(h T) = M2(T)42 - gTq53 + $b4, (3.20) 

where M2(T) = q - m2. The discussion to follow is only meant to give a quali- 

tativeflavor, so (3.20) 11 ffi f wi su ce or now. This potential should be contrasted with 

the more complicated forms (5.2) and (5.6)-(5.9), which I use for a quantitative 

analysis. When the phase transition occurs, the coefficient of the quadratic term is 

extremely small, M2(T) N o3 T2 X; otherwise the potential has only a minimum w / 

at the origin. I can make a crude estimate of the bubble wall velocity and size 

(well after the bubble forms) by requiring that in the rest frame of the wall, the 

pressure is constant. This pressure receives an extra contribution from the motion 

of the gas in this frame. The momentum change of a particle passing through the 

wall can be estimated by assuming that the particle’s energy is conserved, while its 

mass changes due to the change in 4. This gives vi N AP/AE, where AP and AE 

are the changes in pressure and internal energy across the wall. From eqn. (3.20), 

“b2 N C&/X. The shape of the wall can be inferred from similar considerations. For 

small 4, one finds 4 - e”(s-vt), where M N (cY$/A)~T. As a result, if X is not too 
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small, the scalar field is changing rather slowly in space and time and the system 

is in the adiabatic regime described earlier. For such a field, nz is changing quickly 

enough that the approximations leading to eqn. (3.15) are valid. As one increases 

X, and the transition becomes more second order, the amount of baryon number is 

reduced; decreasing X brings the system to the “sudden” regime. Considerations 

of this type apply as well to the minimal supersymmetric standard model, where 

the quartic couplings are of order g2, and the scalar masses are of order Mw. 

In other models, the transition might be strongly first order, with bubbles ex- 

panding at nearly the speed of light, and with a wall of microscopic dimensions. 

This is the regime of rapid change of the Higgs field. Here, what is needed is an 

estimate of the time At, appearing in eqn. (3.19), required for the zero momentum 

mode of the field in a correlation volume, e3, to reach $0. In a multi-Higgs model, 

one might expect this time to be of order cy w times some microscopic (mass) param- 

eter in the lagrangian. Since the characteristic time for baryon-number violation 

is rather long (t), th is may be a source of additional suppression. 

In summary, it is possible to think that the baryon number of the universe 

was created at the electroweak phase transition, in some modest extension of the 

standard model. However, there are uncertainties in the calculations described 

here, particularly in the actual calculation of the rate I?. Detailed studies of the 

phase transition in particular models are also essential, including not only the 

structure of the bubble wall but also flow of baryon number across the wall. One 

should also reconsider models such as that of Ref. [18], in which there are other 

sources of lepton number violation in the theory, but in which the mechanisms 

described here may also operate efficiently, 
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4. l+l Dimensional and Two Higgs Models 

The 1 + 1 dimensional Abelian Higgs model coupled to fermions has been 

widely studied as a model for four dimensional baryon-number violation. Indeed, 

many features of this model arc similar to the standard model. There are anomalies, 

instantons, and sphalerons, and “baryon-number violation” is enhanced at high 

temperatures. As will now be seen: this model, and variations on it, provide 

an extremely simple illustration of the issues in weak scale baryogenesis. I first 

consider the case where the t,heory contains, in addition to the gauge boson and 

Higgs boson, 4, of charge e, two Dirac fermions of charge e, 4 and x, and a 

y~cudoscalar, a. The Lagrangia.n cont.ains ga.uge invariant kinetic terms and the 

coliplings 

(4.1) 

Note that the field II, is massive, with mass M, while x is massless. The standard 

anomaly argument, or a simple one loop calculation, leads to a coupling of the 

“a.xion”, n, t,o the “photon”, in the effective action at scales below M, 

(44 

In this model, the current a5 ” = yyLLy5x plays the role of the baryon current. 

Choosing the A0 = 0 gauge, it is ea.sy to see that a constant background A1 field 

is equivalent, up to a. factor of e, to a. chemical potential for the corresponding 

charge. (A convenient choice for the gamma matrices in this model is y” = 01, 

y1 = -iaz, and 75 = 03; with this choice the connection is obvious). It is helpful, 
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here, to recall some well-known facts about the vacuum structure of this theory. 

As shown in the introduction, the classical vacua are labeled by an integer n 

representing the winding number of the field configuration. At the classical level, 

these states are separated from one another by a barrier, and are degenerate in 

energy. Examining the Dirac equation for the field x in such an A1 field, it is 

easy to see that changing n by one unit changes the “baryon number,” ng = ji 

by two units.* Quantum mechanically, states with different values of A1 differ in 

energy. This is not surprising, since they contain different numbers of baryons (a 

gauge-invariant notion). This energy difference may be computed, either at zero 

or finite temperature, either by calculating the contribution at zero momentum of 

the field x to the A1 two-point function, or equivalently by introducing a chemical 

potential for n5 and calculating the free energy in textbook fashion. 

Suppose now there is a slowly varying background a field, at a temperature T << 

M! This leads to a baryon number which can be computed in either of two ways. 

If the scalar field changes slowly enough, the system will respond adiabatically. 

At temperatures well below M, the minimum of the free energy may be found by 

using the-anomaly equation to make the replacement 

If a is constant in space, integrating by parts gives a term in the effective action 

-X80a 725. 
2M (4.4) 

* For a nice review, see Ref. [22]. 
t Such a field violates P; to be cosmologically relevant, this presupposes P violation either 

in the fundamental lagrangian or in the choice of ground state. Otherwise, different regions 
of the universe, as will be clear below, would acquire different signs of the baryon number, 
and the baryon-number averaged over several horizon lengths would be zero. 
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Note t,hat a factor of e/&r has disappeared. With the adiabatic assumption, it is 

simply necessary to minimize the free energy with this term. This yields for the 

*‘baryon asymmetry,” 

(4.5) 

This result may be understood in a different, yet equivalent way. Instead of 

using the anomaly equation, the coupling of eqn. (4.2) can be viewed as a source 

for A’. Int.egrating by parts gives a. coupling 

At high temperatures, the potential for 111 is quadratic. A one-loop calculation of 

the polariza,tion yields 

Iq.4) = ;A;. 

The coupling of eqn. (4.6) shifts the minimum of the Ar potential. Al quickly 

set,tles to the minimum of this potential; how quickly depends on the coupling 

of Al to the thermal bath. (E’or exa.mple, by choosing the charge and mass of 

t,he scalar field appropriately, it is possible to arrange that Al is underdamped 

or overdamped.) This corresponds to the appearance of a chemical potential, or 

equivalently to a non-zero baryon density. The coefficient of the term linear in the 

chemical potential is &&a/i. 

This focus on A1 may not appear to be gauge invariant. However, a completely 

gauge invariant calculation may be forrnulated by computing the term in the free 
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Figure 5. Diagram leading to chemical potential for the field x. The blob denotes the 
full dressed propagator for the gauge boson. 

energy linear in the chemical potential for x. The corresponding Feynman diagram 

is drawn in Fig. 5. 

The blob in the figure denotes the full propagator for the field Al, evaluated at zero 

momentum. Up to a factor of e, this just cancels the x loop indicated explicitly 

in the figure. Thus a term in the free energy linear in the chemical potential is 

directly dbtained, precisely as above. In either case, an elementary calculation 

gives a result in agreement with eqn. (4.5) for the density at the minimum of the 

free energy. 

In this model, it is not too difficult to determine what happens as the mass 

M is decreased. I am interested here in a problem in real time. The imaginary- 

time formalism, however, provides a clue as to how to proceed. Parity violating 

couplings of the gauge fields to the scalar fields are of interest. Since, in both 
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two and four dimensions, the theory without fermions preserves parity, fermions 

must play a crucial role. In the imaginary-time approach, if one is considering 

phenomenon at low momentum and zero frequency, the effects of fermions may be 

represented by local operators. Since I am now interested in a real time-dependent 

problem at finite temperature, I use the real-time formalismt231. In general, this 

formalism is rather complicated. There is no simple Feynman diagram expansion, 

and it is not immediately obvious what the role of the effective action is. In the 

real-time approach, the linear response of a system at equilibrium to a perturbation 

is typically calculated. In the present context, for example, one might ask the value 

of A1 as a function of time in the presence of a time-varying a. In the textbook 

treatments of this subject[231, the required Green’s functions are obtained by first 

evaluating them for imaginary frequency and then analytically continuing. Now 

consider some complicated Feynman diagram, containing fermion loops. If one is 

interested in continuing to a region where the external frequencies and momenta are 

small, then the analytic continuation of the fermion loops is trivial, since possible 

cuts are far away from the momenta. The frequencies are simply replaced by their 

small (real) values. The fermion propagators may now be expanded in powers 

of the external frequencies and momenta, and thus the fermion loops may still 

be replaced by local operators. The resulting effective action should be gauge 

invariant. These remarks apply equally to two or four dimensions. 

Now consider the two-dimensional model. Suppose M, eq5 < 7’. The effect of 

the fermion, $J, can, by the arguments above, be absorbed into a gauge invariant, 

local operator. The lowest dimension operator allowed by the surviving symmetries 

is simply 0 = aP. 
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Figure 6. One loop diagram yielding coupling of the field a to the gauge boson. 

In the present framework, the computation of the coefficient is elementary. 

The one-loop diagram of Fig. 6 is calculated using the usual (Euclidean) finite 

temperature Feynman rules, but with the external lines carrying a small imaginary 

frequency; qo. It is simplest to do the integral over spatial momenta, followed by 

the discrete frequency sums.. The result is 

7 ((3) iXeM a ap -- - 
8 x n2T2 ’ ’ ’ (4.8) 

Now the thermodynamics of the system is simply that of a model with the operator 

0 in the Hamiltonian. In particular, the equilibrium configuration can be found 

by precisely the arguments previously given for the case of large M. This gives the 
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minimum of the free energy at 

0 nB = 7569 Mu aoa --- 
4 T n2T2 ’ 

As an analog for the standard model, the model described so far is not com- 

pletely satisfactory in a number of respects. Most important, in the standard 

model, the same field is responsible for the breaking of SU(2) x U(1) and for giv- 

ing mass to fermions. This is important for the generation of the baryon asymmetry 

at the phase transition. This limitation is easily remedied. Consider a theory with 

gauge group U(1) and with a single scalar, 4, of unit charge. Suppose also the 

theory contains a left moving fermion, GL, of charge q, a right moving fermion, tiR, 

of charge -(q + l), and another left moving fermion, x, with Q$ = 1 - 2q. With 

these charge assignments, the theory is anomaly free. The potential for q5 is chosen 

so that q!~ has a non-zero expectation value. This breaks the gauge symmetry. It is 

now possible to write a Yukawa coupling, 

The VEV for q3 leads to a mass, M = X < q5 > for T,LJ~ and $R. Thus it is natural 

to combine them into a two-component field, $, and rewrite the Yukawa coupling 

as 

.cY = VP?& t Gw), (4.11) 

where q5 = p $ ia. 

By varying X and e, we can vary the masses of the fermion and the gauge 

boson. It is interesting to consider various limits. We will be interested in the 
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case where the gauge boson mass is much smaller than the temperature. Suppose, 

first, that the fermion mass, M, is much larger than the temperature. Then the 

fermions can be integrated out, giving a Lorentz invariant effective lagrangian for 

the remaining fields. The one loop diagram of Fig. 6 yields a coupling 

L an (4.12) 

This coupling is not gauge invariant, since a transforms non-linearly under a gauge 

transformation. However, at scales below M, the effective theory contains only the 

fermion x, and appears to be anomalous. The coupling of eqn. (4.12) is precisely 

what is needed to cancel the anomaly, and render the complete theory gauge in- 

variant. To make the analogy with the standard model complete, imagine for some 

period the fields p and a are changing in time. In this limit, the above analysis 

can easily be repeated, or equivalently that of Ref. [26], to compute the resulting 

asymmetry. In particular, the minimum of the free energy at a given instant can be 

obtained by any of the following methods: using the anomaly equation to replace 

+,FfiV by the “bary on current” (in this case the x-number current), and reading 

off the linear term in the baryon density; by determining the value of A1 resulting 

from the coupling in eqn. (4.12); or by computing directly the linear term in the 

chemical potential, from a diagram analogous to that of Fig. 5. Again, each of 

these calculations yields the same result. 

Now consider the case that M << T. As discussed above, in this limit the 

effects of the fermions II, can be described by a local operator. In the present case, 

as stressed by the authors of Ref. [28], the possible operators are not restricted by 

the requirement of Lorentz invariance. In order to create a baryon asymmetry in 
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this model, I am interested in operators which involve doa and the Chern-Simons 

density Al. The diagram of Fig. 6 indeed yields such a coupling: 

La-A = $24 + 1)c(3)$$&0 Al. (4.13) 

(Here M = X141.) Unlike th e ar 1 g e mass case, I cannot appeal to any anomaly 

argument here to explain away any non-gauge invariance in this effective action. 

Instead it must be possible to write this result in a gauge invariant fashion. Indeed, 

it is easy to see that this coupling is one term which would arise from a coupling 

l' -La-A = mv - (4.14) 

where Do and Dr are the usual gauge covariant derivatives. It is straightforward to 

check that the other couplings implied by this term in the effective lagrangian are 

indeed generated. For example, the diagram of Fig. 6 gives the required AoA11q512 

coupling. 

I can no longer use the anomaly to replace the operator appearing in eqn. 

(4.14). On the other hand, using the various techniques described up to now, it is 

easy to determine the baryon-number created in a time-varying a field (or, stated 

in a gauge invariant way, in a field configuration for which Do4 # 0). One can, as 

before, either determine, in a fixed gauge such as Coulomb gauge, the minimum 

of the A1 potential, or one can compute the term in the free energy linear in pX. 

Again, both calculations are elementary and yield the same result: 

(4.15) 

Note the final result for low mass is suppressed, not by T, but by rT. This lowers, 

by an order of magnitude, some of the estimates presented in Ref. [26]. 

44 



I will close this chapter by returning to four dimensions and considering the 

problem of producing the baryon asymmetry in multi-Higgs models, where the only 

new sources of CP violation are the terms in the Higgs potential. The simplest such 

model, studied in Refs. [28] and [17], is the two Higgs doublet model. However, it 

is easy to see that such models can not yield a large enough asymmetry. Consider 

first the quadratic terms in the Higgs potential. Calling the two Higgs fields HI 

and Hz, these take the form 

V quad = mflH11~ + mzlH2i2 + (p2HlH2 + cc>. (4.16) 

By a field redefinition, p can always be taken real. Thus, ignoring KM phases and 

quartic couplings of the scalars, there is no CP violation. 

What does this mean for the baryon asymmetry? As previously stressed, the 

baryon-number violating processes essentially turn off once 4 N cr,T. But for such 

small q5, the quartic terms in the potential can be neglected, to a good approxi- 

mation, in considering the (essentially classical) evolution of the Higgs field. This 

means that any CP violation in this evolution is suppressed by at least two powers 

of cyw. As discussed in Ref. [28], the operator relevant to baryon-number creation 

in the two Higgs model is 

0% = cijk$*TaDoD;$Fajk. (4.17) 

Using the equations of motion, these authors indeed find that this operator is of 

order 44. As a result, the asymmetry is of order cr$, x S, where S is again some 

measure of CP violation; four powers of cy w come from the rate, four from the 
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four powers of 4. Again, the coefficient can be computed, as suggested by the 

two dimensional model, from thermodynamic arguments. The result obtained is 

in qualitative agreement with Ref. [28], written in terms of the scalar field 4. 

However, 4 must be understood as being of order (~~57, rather than as the value 

of the scalar field after the phase transition. As a result, the asymmetry in such 

models is unacceptably small, no matter how large the CP violation. 

The situation can be improved by considering models with larger number of 

Higgs particles. Once there are three or more Higgs, the quadratic terms in the 

potential do violate CP. Of course, if multi-Higgs models are to be taken seriously, 

flavor changing neutral currents must be suppressed. I will not explore here the 

question of simultaneously obtaining a large baryon asymmetry and satisfying this 

condition. 
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5. Baryon Persistence and Higgs Mass Bounds 

In an important series of papers, Shaposhnikov and collaborators have pointed 

out that there is an important constraint on any scheme to produce the observed 

asymmetry at the electroweak transition (at least any scheme with zero B - L)[“‘. 

Immediately after the phase transition, the baryon number violation rate due to 

sphaleron transitions may be large compared to the expansion rate of the universe. 

If this is so, any asymmetry produced during the transition will be quickly wiped 

out. The demand that the transition rate be low enough that this not occur places 

constraints on models. In the minimal standard model, the authors of Ref. [24] 

argue that a Higgs mass of about 42 GeV cannot be exceeded. The basic idea is 

quite simple. One computes the sphaleron energy as a function of Higgs mass and 

temperature, and from this the transition rate. As the Higgs mass increases, the 

transition becomes more and more weakly first order, so the Higgs field after the 

transition is smaller, as is the sphaleron energy. Since the expansion rate at these 

times is quite small in microscopic terms, the sphaleron rate quickly becomes large 

compared to the expansion rate. 

The limit obtained in Ref. [24] is particularly striking when compared with the 

recent limits on Higgs particles reported from LEP[251(jUH > 48 GeV). Moreover, 

this limit is relevant to models other than the minimal standard model. First, 

as noted in Refs. [26] and [28], unless some rather exotic physics is operative 1291 , 

there is no hope for producing a large enough asymmetry in the minimal model. 

However, even in a model with a single doublet, new physics could provide new 

sources of CP violation. Moreover, even in models with multiple doublets, the 

effective theory at the phase transition often involves only a single doublet. 
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In fact, in the supersymmetric standard model, the phase transition is similar 

to that in the minimal standard model. As will now be shown, requiring the 

Higgs expectation value to be large after the phase transition forces one into a 

narrow range of parameters in which the model at zero temperature contains one 

light and one heavy doublet. This is certainly a theory with additional sources of 

CP violation; it also has two doublets. The potential for the doublets is highly 

constrained. In particular, the quartic couplings are completely fixed. The full 

zero-temperature potential has the form 

V susy =+#h12 t 774H2j2 t p2(HlH2 t cc) t 

$(Hir,Xl - H2TaH;)2 + $([Hl/’ - /Hz/~)~. 
(5.1) 

As is well known, this potential is subject to various constraints. Either rn: or rnz 

must be positive. Requiring the energy be bounded below gives 

rn! t 172; - 2p2 > 0, (5.2) 

while if both rnf and rni are greater than zero, demanding that the Higgs mass 

matrix possesses a negative eigenvalue yields 

m f 172: < p4. (5.3) 

In this model, the phase transition occurs near the point where the temperature- 

dependent effective mass of one of the doublets nearly vanishes. At this point, the 

second doublet is generically much heavier, and to first approximation can be ig- 

nored. The corresponding effective theory is then that of a single doublet with a 
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quartic potential (plus temperature dependent corrections). In order to make the 

Higgs VEV after the phase transition as large as possible, the quartic coupling 

must be as small as possible. To determine this coupling, return first to the zero 

temperature potential, eqn. (5.1). Ignoring quark Yukawa couplings, and p2 it- 

self, p2 does not receive finite temperature corrections while rn: and rni do. The 

temperature dependent mass matrix has a zero eigenvalue at the point where the 

condition of eqn. (5.3) is an equality. At this point, it is straightforward to find 

the effective quartic coupling of the massless field. It is given by 

v = cd + 922) (P4 - ma2 

8 (m; + p4)2 Id”, (5.4) 

where 4 is the light field, and the masses appearing in this equation are the tem- 

perature dependent ones. In order to have a large Higgs VEV after the phase 

transition, this quartic coupling must be as small as possible, i.e. one requires 

rnf 23 ~1~. This in turn means that rnf x mz. Combined with the conditions on 

the zero temperature masses above, and recalling that there are no finite tempera- 

ture corrections to p2, it is easy to see that one is forced into a situation in which 

the zero-temperature theory also has a single very light Higgs and one massive 

Higgs. But this is precisely the situation under consideration. 

Because the transition rate depends exponentially on the sphaleron energy, 

small errors in the energy density can lead to large changes in the rate. Thus I 

wish to examine carefully the analysis of Ref. [24] to determine whether or not 

there still exists a window of allowed Higgs masses for which it might be possible to 

obtain the observed baryon-asymmetry. There are several sources of uncertainty 

which I examine here. First, it is important to include all finite temperature effects 
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in the effective action. This includes both terms in the effective potential, as well 

as derivative terms. Corrections to the effective potential are relatively easy to 

incorporate. One can simply compute the sphaleron solution appropriate to the 

corrected potential, and calculate its energy. Derivative terms turn out to be more 

complicated. To compute these requires summation of an infinite set of diagrams, 

and I know of no general way of accomplishing this. Study of some particular 

diagrams suggests that the resulting corrections to the sphaleron energy are of 

order 10 - 20% for the parameter range of interest. Again, since this uncertainty is 

exponentiated, this is an important effect. Previous analyses have also not taken 

into account the likely large value of the top quark mass. Including this effect 

(i.e. the large Yukawa coupling of the top quark to the Higgs) also tends to yield 

substantial corrections. 

The sphaleron transition rate is proportional to eaE8phiT. Determining the 

proportionality constant requires evaluation of a certain determinant in the three 

dimensional field theory which describes the classical thermodynamic limit’301. This 

prefactor also introduces significant uncertainties. For certain values of the quartic 

coupling, this prefactor has been evaluated numerically in Ref. [30]. There are, 

however, a number of problems with using these results. These authors noted a 

drastic dependence on the Higgs self-coupling X, and realized that this could be 

explained, at least in part, by the need to use a corrected sphaleron solution. In 

the range of parameters which will be important to us, these corrections cannot be 

treated perturbatively. I will deal with this problem by making a simple estimate 

of the determinant which is at least consistent with the results of Ref. [30]. To be 

more specific, when Mw < 7’ < Mw/cyw, the baryon-number violation rate takes 
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the form13”: 

,-E,ph/T , (5.5) 

where v(T) is the minimum of the effective potential, A& and NTot are factors asso- 

ciated with translational and rotational zero modes respectively, w is the frequency 

of the unstable mode of the sphaleron in units of gv(T), and K is the functional 

determinant associated with fluctuations about the sphaleron. It is the factor K 

that involves the large uncertainties mentioned above. In this work, I continue to 

use the numerical values for the zero mode and frequency factors found in Ref. 

[30]. This is justified since the primary uncertainty lies in n. At the high end, I es- 

timate n N 10-l. For a lower bound, absorbing the uncertainties of the derivative 

contributions to the effective action into this factor, K N 10-l e-0.2ESph/T N 10m4. 

Finally, there is another important effect which must be taken into account. In 

Ref. [24], it was assumed that the phase transition occurs at the temperature, Z’s, 

where the effective Higgs mass vanishes. However, the transition actually occurs 

at a higher temperature, and as a result the Higgs expectation value is somewhat 

smaller after the transition. This tends to increase the sphaleron rate. Once 

all of these effects are taken into account, and allowance is made for the various 

uncertainties, I find that indeed a small window of Higgs mass remains; the Higgs 

can possibly be as heavy as 55 GeV, without leading to a significant reduction of 

the baryon asymmetry. 

Now I consider each of the points mentioned above in greater detail. First, 

the form of the effective potential, and some aspects of the phase transition are 

discussed. I am interested in relatively weak Higgs coupling; however, account 
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must be taken of the relatively large value of the top quark mass. In the standard 

model, the phase transition occurs near the temperature where the mass of the 

Higgs doublet vanishes [201. If this temperature is sufficiently high, then for small 

values of the Higgs field, the potential has the form 

V&T) = y(T2 - T&S2 - 6TqS3 + fd4, F-6) 

where 

7= ;[2(3” t (y2 t 2(3’] WY 

+-[2(33 + (y3], (5.8) 

Mii T$ = - 
4Y * 

(5.9) 

The temperature To is where the curvature at 4 = 0 changes sign. Without the 

cubic term, To is simply the critical temperature, and the phase transition is second 

order. However, even for a small cubic term, the transition is at least weakly first 

order. This means that for temperatures slightly larger than To, q5 = 0 becomes a 

relative minimum. At a temperature T,, this relative minimum becomes degenerate 

with the true minimum, and at temperatures greater than T, it becomes the true 

minimum. 

In practice, these statements require some modifications. First, the top quark 

is likely to be quite heavy. Typically the minimum of the potential occurs at values 

of q5 for which the effective top quark mass, ht$, is of order To or larger. (Here ht is 

the top quark Yukawa coupling). As a result, one cannot make the approximation 

52 



of small C$ for the top quark contribution to the free energy, and it is necessary to 

use the exact result. The one-loop finite temperature correction from gauge bosons 

and top quarks is 

T4 
VT = s WYW) t 31~(y,) + 121+(yt) 1 , (5.10) 

where y; = M;~/vT, and 

co 

I,(y) = f 
J 

&r z21n(l F e -&w )* (5.11) 

0 

For the numerical work, I fit the above integrals to a tenth order polynomial in y. 

Fits to the first and second derivatives were also performed. These are essential in 

solving the sphaleron rate equations. The second derivative is needed for numerical 

programs that solve the rate equation using relaxation methods in which a solution 

is initially guessed and then relaxed to an approximate solution. These fits are 

given in the appendix. 

It is also necessary to include the first order quantum corrections to the zero 

temperature potential. These turn out to be as important as the top quark finite- 

temperature corrections. I write the effective potential as V = Vi + VT, where VI 

is the zero temperature potential, and VT is the finite temperature correction. The 

zero temperature potential takes the form 

VlJ = -$(l - y)S2 t a(1 - y)S4 $ Bcj41n ($), 

where 

(5.12) 

(5.13) 

The simpler form of the potential, (5.6), still gives the qualitatively correct 

53 



behavior to the more exact expressions (5.10)-(5.13). The temperature at which 

the curvature vanishes is now given by T$ = (it4:/47)(1 - 4B/X). Between the 

critical temperatures T, and To, there is a potential barrier separating the true 

and false vacua. Thermal fluctuations of the Higgs field produce bubbles of true 

vacuum, which then expand and collide to fill space. The rate of bubble nucleation 

can be computed using the methods of Ref. [31]. One calculates the action of a 

three dimensional bounce; the nucleation rate is then roughly the exponential of the 

bounce action, i.e. l?bub N T4 (S3/2xT)3/2 e -S3/T. The bubbles then expand with 

a certain velocity. This velocity can be estimated by requiring that the pressure 

difference between the inside of the bubble and the outside be compensated by the 

force exerted by the bubble on the particles just outside. This gives a velocity, 

V62 N ok/X. The fraction of false vacuum left at time t, f(t), is given by (2.45) 

and (2.46). A s p reviously stated, the bubble temperature, Tb, is defined to be 

the temperature for which lnf = -1, at which point the false vacuum is mostly 

gone. Since the barrier separation between the true and false vacua is rather large 

at first, bubble formation is suppressed until the temperature drops sufficiently 

low. At such a point, due to the exponential behavior of (2.45), space fills up 

with bubbles rather quickly on a macroscopic scale. This means that the bubble 

temperature is in fact rather insensitive to the wall velocity vb. In integrating 

(2.45), it is convenient to change variables to S = 1 - T/Tc using T2 = mp,/2ht, 

where h = (4a3g*/45)lj2 (I take g* = 100). I also take R - t1j2, the scale factor in 

a flat, hot Robertson-Walker universe. I have numerically determined the bounce 

action and then integrated (2.45) to determine the bubble temperature for several 

values of the Higgs mass. This is illustrated in Fig. 7. This curve is actually a fit 
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to ten Higgs mass points, each of which were numerically determined in the above 

manner: 

6, = 0.0404 - 0.00111 it’!f~ + 0.00000799 kf;, (5.14) 

where MH is given in GeV. 

o.oos - 

0.004 - 

0.00s - 
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40 so 112 M se 58 

Figure 7. The temperature, expressed as 66 = 1 - Tb/Tc, at which space fills up with 

bubbles of true vacuum as a function of Higgs mass for Mt = 120 GeV. 

Typically, Tb is only slightly below Tc. The reason for this is easy to understand. 

At the time of the phase transition, the Hubble constant is of order H N lo-l4 

GeV. This corresponds to a very long time in microscopic terms. A typical bubble 

expands for a finite fraction of the Hubble time. Thus an extremely low bubble 

nucleation rate, of order H3T, is sufficient to fill the universe with bubbles. The 

fact that the temperature is higher than 2’0 tends to decrease the upper limit on 

55 



the Higgs mass over that in Ref. [24], since the expectation value of the scalar field 

is correspondingly smaller, as is the sphaleron energy. However, as will be seen, 

there are a variety of effects which work in the other direction. 

In actually computing the sphaleron energy, one should also use the full ef- 

fective potential. This fact has already been discussed in Ref. [30]. These au- 

thors computed the determinant numerically beginning with a solution of the 

temperature-dependent potential including only the quadratic and quartic pieces. 

They note that their result contained a severe X dependence, and that this could 

be at least partially accounted for by treating as a perturbation the 43 term in 

the potential displayed in eqn. (5.6) b a ove. Indeed, the determinant calculation 

of these authors can only yield a good approximation to the correct answer if this 

cubic term can be treated perturbatively. This is certainly not the case in the 

range of temperatures of interest here, where the effective mass of the Higgs field 

is very small, and where the d3 terms is at least as important. 

In view of this fact, I have obtained the sphaleron solution for the full effective 

potential, including all effects to one loop, particularly the top quark. The net 

effect of this is to increase the sphaleron energy as a function of X. Starting from 

the bubble temperature, I have integrated the baryon-number rate equation to 

determine the suppression factor, the fraction of baryon number finally left, as a 

function of the Higgs mass. 

The arguments of Ref. [9] are easily generalized to include the finite temper- 

ature effects. For simplicity I will set the Weinberg angle to zero and consider an 

SU(2) gauge th eor with a Higgs doublet a. Apart from this, everything else is y 

identical to the standard model. I will work in the A0 = 0 gauge, and it is conve- 
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nient to make the following resealings for the position vector, the gauge fields and 

the Higgs field: 

A -+ +‘)A (5.15) 

a + v(T)tD 

where V(T)/& is th e minimum of the Higgs field a. It is also useful to work with 

the real scalar d = fi ]@I, w ic simply takes the value v(T) at the minimum. As h’ h 

pointed out in Ref. [9], th ere is an unstable, static solution to the classical field 

equations given by the parameterization 

(5.16) 

where u,/~ = (0,l) and 7“ = aa/2. When the ansatz (5.16) is substituted into the 

effective finite temperature action, the energy functional becomes 

jjJ = !$7d[ [4(3 + $f(l - f)]” t ;E2($)2 t 

0 (5.17) 

Ml - f)12 t t2fi@J) , 1 
where the resealed free energy is defined by h(h) = n((a)/g2u*(7’). This is a rather 

long, but straightforward exercise. Static solutions extremize the energy, so the 

sphaleron field equations simply become 

d2h - = - ;$ + ;h(l - f)2 t p 
At2 

d2f 2 F =,f(l - f)(l - 2.f) - ;h2(1 - f). 

(5.18) 

The boundary conditions are taken to be f, h + 0 as ( + 0 and f, h + 1 as 
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Figure 8. The sphaleron solution for the one-loop finite temperature potential 
Mt = 120 GeV and Mn = 52 GeV. 

for 

l + oo. Fig. 8 shows a typical solution to this boundary value problem. 

Now, in the adiabatic regime, the baryon number satisfies an equation of the 

form 

dn, r 
-=-c-[n,-n0,], dt T3 

(5.19) 

where c N 10. The exact value of this constant depends upon the initial mixtures 

of baryon and lepton number. It is not crucial since uncertainties in r are far 

more important (I take c=lO for definiteness). The term ni - doj4j2, and it 

reflects a bias in the free energy generated by a changing Higgs field. On the 

boundary of the expanding bubble walls, where the Higgs field is rapidly changing, 

the second term in (5.19) d ominates, and baryons are produced. However, when 

the bubbles finish colliding near temperature Tb, the Higgs field changes with the 
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Hubble rate, and now the second term must be dropped. Unless the baryon- 

number violation rate falls quickly below the Hubble expansion rate, any previously 

produced baryon number will be eaten. The sphaleron energy was computed as a 

function of temperature for about ten values of the Higgs mass. Equation (5.19) was 

then integrated, and the asymptotic form of nB(trarse)/na(0) z S was determined. 

The fit to this suppression factor is shown in Fig. 9 for K = 10-l and K = 10s4 

and is given by 

-1nS = & exp [ - 110 $3.42 MH - 0.0249 Mi 1, (5.20) 

where MH is in GeV. It is apparent that a Higgs mass greater than about 55 GeV 

cannot be tolerated. 

- 
50 

Figure 9. The suppression factor versus Higgs mass. 
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APPENDIX A 

In this appendix I briefly sketch for completeness the method of performing the 

frequency sums found in the main body of the text. A nice feature of this method 

is that the zero temperature contribution is easy to locate. I wish to perform the 

following two fermion sums, 

(A.2) 

where L& = (2n + 1)~. The basic trick is to write the sum as a contour integral of 

a function with poles at &. I will first concentrate on the more general expression 

C f(&), where f(z) is a function with no poles or branch cuts along the real axis. 

A simple calculation gives 

Cf(h2) = -Cf -$ tan: f(z), 
n n cn 

(A4 

where the contour Cn is a small circle centered at Gn, with orientation shown in 

Fig. 10. The small circles may be joined to form two lines, one above and one 

below the real axis, and then these contours may be closed, as shown in Fig. 10. 

If the function f(z) has p o es 1 in the complex plane, the residue theorem may be 

used to evaluate the integral. For the sums ( A .l) and ( A .2), there are double 

poles at fia, which give two equal contributions. After some algebra, 
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Figure 10. Contour deformation for the integral ( A 3). 

If(a) = & tanh % - & sech2i 

If(a) = -& tanh z + 2 f sech2i. 

(A4 

(A-5) 

Boson loops have even frequency sums, L;)n = 2nn. Denoting the boson sums 

corresponding to ( A .l) and ( A .2) by 1: and Ii, it is easy to show that 

m = -$ coth z + 1 
2 8a2 

csch2 a 
2 

I/(a) = & coth; - f csch2;. 
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APPENDIX B 

In this appendix I present the fits used in the text. A high temperature (small 

y) expansion of (5.11) was performed by Dolan and Jackiw, of ref. [6]. This is what 

is usually done, and it leads to a potential like (5.6). However, a heavy top brings 

the critical temperature down too low for such an expansion to remain valid. I am 

then forced to evaluate I&(y) with numerical techniques. I do this at 100 points 

in the interval y = 0 to y = 3, and then fit to a tenth order polynomial. Fits to 

the first and second derivatives with respect to y were also performed. The first 

derivative fits were needed in solving the sphaleron field equation, and the second 

derivatives were needed in the differential equations program. I list them here for 

completeness. 

I-(y) = - 2.165 + 0.0001952 y + 0.8193 y2 - 0.4958 y3 + 0.2017 y4 

- 0.08131 y5 + 0.03264 y6 - 0.01062 y7 -I- 0.002372 y* 

- 0.0003133 yg $ 0.00001831 ylo 

(B-1) 
I+(y) = - 1.894 - 0.0001938Y + 0.4144 y2 - 0.02774 y3 - 0.1152 y4 

+ 0.08152 y5 - 0.03468 y6 + 0.01065 y7 - 0.002267 y8 

+ 0.0002928 yg - 0.00001699 yi’. 
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I:(y)= 0.00004204 + 1.642 y - 1.512 y2 + 0.8868 y3 - 0.5530 y4 

+ 0.3582 y5 - 0.1878 y6 + 0.06916 y' - 0.01646 y8 

+ 0.002261 yg - 0.0001358 yl' 

I;(y)= - 0.00004214 + 0.8254 y - 0.05914 y2 - 0.5399 y3 + 0.5522 y4 

- 0.3683 y5 + 0.1864 y6 - 0.06761 y7 + 0.01608 y8 

- 0.002217 yg -I- 0.0001337 yl'. 

P.2) 

I!(y) = 1.644 - 3.074 y + 3.001 y2 - 3.298 y3 t 3.733 y4 

- 3.239 y5 -I- 1.935 y6 - 0.7645 y7 + 0.1901 y* 

- 0.02692 yg -I- 0.001652 y" 

(B.3) 
I;(y) = 0.8229 - 0.06742 y - 1.961 y2 + 3.296 y3 - 3.787 y4 

-I- 3.235 y5 - 1.927 y6 + 0.7628 y7 - 0.1901 y8 

+ 0.0270 yg - 0.001656 y". 

63 



REFERENCES 

1. A.D. Sakharov, JETP Lett. 6 (1967). Other seminal papers in this area 

include: M. Yoshimura, Phys. Rev. Lett. 41 281 (1978); 42 746 (1979); A. 

Yu. Ignatiev, N.V. Krasnikov, V.A. Kuzmin and A.N. Tavkhelidze, Phys. 

Lett. 76B 436 (1978); S. Dimopoulos and L. Susskind, Phys. Rev. D18 4500 

(1978); D. Toussaint, S. Trieman, F. Wilczek and A. Zee, Phys. Rev. D19 

1036 (1979); S. Weinberg, Phys. Rev. Lett. 42 850 (1979); A. Yu. Ignatiev, 

V.A. Kuzmin and M.E. Shaposnikov, Phys. Lett. 87B 114 (1979); J. Ellis, 

M.K. Gaillard and D. Nanopoulos, Phys. Lett. 80B 360 (1979); 82B 464 

(1979). 

2. J. Harvey and M. Turner, Phys. Rev. D42, 3344 (1990); A. Nelson and S. 

Barr, Phys. Lett. B246, 141 (1990) 

3. P. Arnold, ANL-HEP-CP-90-95 (1990). 

4. Rajaramman, S&tons and Instantons: an Introduction to Solitons and 

Instuntons in Quantum Field Theory, Amsterdam, North-Holland (1982). 

5. G. ‘t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D14, 3432 (1976). 

6. L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974); S. Weinberg, Phys. 

Rev. D12, 3357 (1974); S. C 1 o eman and E. Weinberg, Phys. Rev. D7, 

1888 (1973); D. Kirzhnitz and A. Linde, Ann. of Phys. 101, 195 (1976); 

R. Brandenberger, Rev. of Mod. Phys. 57, 1-19 (1986); J. Kapusta, Finite 

Temperature Field Theory, Cambridge University Press 1989. 

7. L. Landau and E. Lifshitz, Statistical Physics, Moscow, Nauka, 1964. 

64 



8. S. Coleman, Phys. Rev. D15, 2929 (1977); C. Callan Jr. and S. Coleman, 

Phys. Rev. D16, 1762 (1977); P. Frampton, Phys. Rev. D15, 2922 (1976); C. 

Hammer, J. Shrauner and B. Facie, Phys Rev. D19, 667 (1979); I. Affleck, 

Phys. Rev. Lett. 46, 388 (1980); A. Linde, Nucl. Phys. B216, 421 (1983); 

A. Guth and S. Tye, Phys. Rev. Lett. 40. 631 (1979); A. Guth, Phys. Rev. 

D 23, 347 (1980). 

9. N. Manton, Phys. Rev. D28, 2019 (1983); D. Klinkhammer and N. Manton, 

Phys. Rev. D30, 2212 (1984). 

10. V. A. Kuimin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. 155B, 

36 (1985). 

11. P. Arnold and L. McLerran, Phys. Rev. D37, 1020 (1988); E. Mottola and 

A. Wipf, Phys. Rev. D39, 588 (1989); S. Khlebnikov and M. Shaposnikov, 

Nucl. Phys. B308, 885 (1988); J. A m ‘orn, M. Laursen and M. Shaposnikov, bj 

Phys. Lett. 197B, 49 (1987); A. Ringwald, Phys. Lett. 201B, 510 (1988); D. 

Grigorien, V. Rubakov and M. Shaposhnikov, Phys. Lett. 216B, 172 (1989). 

12. M. Dine, 0. Lechtenfeld, B. Sakita, W. Fischler and J. Polchinski, CCNY- 

HEP-89/18 (1990). 

13. P. Arnold and L. McLerran, Phys. Rev. D37 1020 (1988); E. Mottola and 

A. Wipf, Phys. Rev. D39 588 (1989); S. Khlebnikov and M. Shaposhnikov, 

Nucl. Phys. B308 885 (1988); J. Ambjorn, M. Laursen and M. Shaposhnikov, 

Phys. Lett. B197 49 (1987); A. Ringwald, Phys. Lett. 201B 510 (1988); D. 

Grigoriev, V. Rubakov, and M. Shaposhnikov, Phys. Lett. 216B 172 (1989); 

M. Dine, 0. Lechtenfeld, B. Sakita, W. Fischler and J. Polchinski, Nucl. 

65 



Phys. B342 381 (1990). 

14. J. Ambjorn, T. Askgaard, H. Porter and M. Shaposhnikov, Phys. Lett. 

244B, 497 (1990). 

15. M.E. Shaposhnikov, Nucl. Phys. B287 757 (1987); Nucl. Phys. B299 797 

(1988); A. I. B oc hk arev, S. Yu Khlebnikov and M.E. Sahposnikov, Nucl. 

Phys. B329 490 (1990). 

16. L. McLerran, Phys. Rev. Lett. 62 1075 (1989). 

17. N. Turok and P. Zadrozny, Princeton University preprint (1990). 

18. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Institute for Theoretical Physics 

preprint (1990). 

19. A. Bochkarev, S. Kuzmin and M. Shaposhnikov, Phys. Lett. 244B 275 

(1990). 

20. M. Sher, Phys. Rep. 179 275 (1989). 

21. P. Arnold and L. McLerran, Phys. Rev. D37 1020 (1988); E. Mottola and A. 

Wipf, Phys. Rev. D39 588 (1989); S. Khlebnikov and M. Shaposnikov, Nucl. 

Phys. B308 885 (1988); J. A m b jorn, M. Laursen, and M. Shaposhnikov, 

Phys. Lett. B197 49 (1987); A. Ringwald, Phys. Lett. 201B 510 (1988); D. 

Grigoriev, V. Rubakov and M. Shaposhnikov, Phys. Lett. 216B 172 (1989). 

22. P. Arnold, Argonne preprint, ANL-HEP-CP-90-95 (1990). 

23. E.M. Lifschitz and L.P. Pitaevskii, Statistical Physics, Part 2, Pergamon 

Press, Oxford (1980); A.L. Fetter and J.D. Walecka, Quantum Theory of 

Many Particle Systems, Mcgraw Hill, NY (1971). 

66 



24. A. I. Bochkarev, S.V. Kuzmin and M.E. Shaposhnikov, Phys. Lett. 244B 

275 (1990). 

25. Aleph Collaboration, CERN preprint CERN-PPE/Sl-19. 

26. M. Dine, P. Huet, R. Singleton and L. Susskind, SCIPP preprint, SCIPP- 

90-31 (1990). 

27. M. Dine, P. Huet, R. Singleton, SCIPP-91-08 (1991). 

28. L. McLerran, M. Shaposnikov, N. Turok and M. Voloshin, Minnesota preprint 

PUTP-90-1224 (1990). 

29. M.E. Shaposhnikov, Nucl. Phys. B287 757 (1987). 

30. L. Carson, Xu Li, L. McLerran and R. Wang, Phys. Rev. D42 2127 (1990). 

31. A. Linde, Nucl. Phys. B216, 421 (1983). 

67 


	slac-r-380a.pdf
	slac-r-380b.pdf

