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RARE K MESON DECAYS 
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BY 
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Stanford University, 1989 

The rare decays KL + 7~‘f?e-, KL + .n”u~~~ and K+ + W+Y~F~ are studied. 

The main contributions to these decays do not appear at tree level, but only at one- 

loop level in electroweak interactions. For this reason, they are highly suppressed 

within the Standard Model and, at the same time, very sensitive to heavy quark 

masses. 

The effect of a top quark mass of the order of the W boson mass or higher is 

considered, with the inclusion of strong interaction corrections in the form of per- 

turbative Quantum Chromodynamics (QCD). The calculation is done by building 

a short-distance, effective electroweak Hamiltonian -with leading QCD corrections 

included- which is scaled down from the electroweak scale Mw to an appropriate 

hadronic scale ~1. 

The short-distance contributions to these decays are sensitive to quark masses 

and Kobayashi-Maskawa matrix elements. These contributions are estimated here 

for top quark masses from 50 to 200 GeV. The range of values of the Kobayashi- 

Maskawa elements is determined by constraints coming from experimental mea- 

surements of the B - B meson mixing and the CP violating parameter c in the 

. . . 
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neutral K system. 

Of particular interest are the decays KL + n’,@fJ- and KL + r”veFf, which 

contain important CP violating contributions. The observed decay KL + XT, 

which is CP violating, is dominated by contributions coming from the mixing of 

CP eigenstates in the K mass matrix. Instead, for the processes under consid- 

eration, CP violation may arise mainly from the decay amplitudes themselves. 

Therefore, experimental measurement of these processes would not only provide 

further evidence of the occurence of CP violation in Nature, but also help determine 

whether the origin of this phenomenon is within the Standard Model. 
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1. Introduction 

One of the paths for searching for physics beyond the Standard Model is by 

probing low energy processes which are sensitive to the effects of high mass, virtual 

particles. This inspires much of the present round of rare K decay experiments.’ 

Of particular interest are processes that are forbidden in lowest order, such as 

neutral current processes which change quark flavors, but which can occur through 

one-loop Feynman diagrams. 

Decays such as KL + roe+.!- and K + nv~i are of this type. The change in 

quark flavor, from an s (in the K) to a d (in the R), occurs in the Standard Model 

through diagrams involving one or more loops. There is a large window between 

the present experimental limits on the branching ratios for these processes and 

the corresponding standard model predictions. Within that window there is the 

possibility of a branching ratio arising due to new high mass particles in the loop. 

Even if these processes are finally observed at roughly the expected level, they 

provide information on the parameters of the Standard Model and, in the case of 

K + ?YZZ, a rate which depends on the number of light neutrino species. In the 

case of KL -+ xl+t- , on the other hand, an additional interest arises from the fact 

that this decay may provide a new place to observe CP violation. 

It is almost 25 years since the original observation of CP violation in long- 

lived neutral K decays.2 Until very recently, all experiments were consistent with 

this phenomenon originating in a “superweak” interaction: whose one measurable 

manifestation was in the mass matrix of the neutral K system. As a result, the 

long-lived neutral K meson, KL x K2 + EKE, is dominantly the CP odd state 

..- 
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K2, but contains a small admixture (m c) of the CP even state Kl. 

A different, more definite origin of CP violation occurs in the three generation 

standard model where CP violating effects arise through the presence of a single, 

non-trivial phase in the matrix which expresses the mixing of quark flavors under 

the weak interactions” For the K" mass matrix, the CP violating phase enters 

through “box” diagrams that involve heavy quarks and can connect the quarks in 

a K" (a) to those in a r;” (sz), mimicking in this regard a Usuperweakn theory. 

In the past year the NA31 collaboration has presented statistically significant 

evidence5 for a non-zero value of the parameter c’, which is a measure of CP 

violation in the K + TM decay amplitude itself. Experiments at Fermilab and 

at CERN5 are continuing with the aim of reducing the statistical and systematic 

errors to a level where, if the central value of the CERN experiment holds, a non- 

zero value of 6’ will be firmly established and a ‘superweak” explanation made 

untenable. 

7-9 Such a value of c’ is consistent, within rather large uncertainties of the rele- 

vant hadronic matrix element, with the three generation standard model. Indeed, 

it was suggested lo 10 years ago that if CP violation originated in a phase of the 

three generation quark mixing matrix and if one-loop “penguin” diagrams give an 

important part of the K ---) ~FK decay amplitude, then a non-zero and measurable 

e’ would result. 

While the three generation standard model plausibly explains CP violation as 

it is observed up to now in Nature, we would like to obtain additional evidence 

that points in this direction. If we could find several experimental processes which 
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exhibit measurable CP violating effects and all could be fit by a single value of 

the ab initio free phase in the mixing matrix, then we will have gone a long way 

toward establishing this as the correct explanation. If along the way the standard 

model cannot account for the results of these experiments, so much the better - 

we would have evidence for physics beyond the standard model. 

There are several avenues toward accomplishing this; none of them is easy. 

One is to look for CP violating effects in the B meson system. Here, the CP 

violating asymmetries can potentially be very large - of order 10-l or more in 

some rare modes, rather than the order 10S3 effects in the neutral K mass matrix. 

The sheer numbers of B mesons estimated to be necessary to get a statistically 

significant effect, however, put this exciting possibility many years in the future.” 

Another avenue is to consider other K decays where CP violating effects, although 

very small, may occur with a different weighting (from that in K + n?r) between 

effects originating in the mass matrix and in the decay amplitude. Although these 

experiments are also very difficult, there is the advantage of high intensity beams 

and sophisticated detectors already in existence to perform the measurements of 

6’ and search for rare K decays. 

An example of such a process is KL + ~‘e+4?. If CP were conserved, the long- 

lived eigenstate would be the CP odd state, K2. It would not decay to 7r”+yv;tud + 

?r”@4!-, this being forbidden by CP 
12 

invariance. Since Nature has chosen to break 

CP invariance, the decay can proceed through: (1) the small part, x cK1, of the 

KL wave function that is CP even (we call this “indirect” CP violation); and (2) CP 

violating effects in the K2 + roe+.!- decay amplitude itself (we call this “direct” 

CP violation). In addition to these two CP violating amplitudes, the decay can 

3 
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Figure 1.1. Feynman diagrams for the process M - e+e-. a) “electromagnetic penguin”; 

b) “2 penguin”; c) “box” diagram. 

proceed in a CP conserving manner via the decay chain K-2 + .lr’yy + ?r’.!+t-, 

where the photons are either real or virtual. Although higher order in o, this 

latter amplitude is not necessarily negligible in comparison to either the “indirect” 

or “direct” CP violating amplitudes which are also suppressed precisely because 

they contain factors that are related to CP violation. 

Naturally, we are most interested in the question of whether one can see the 

“direct” CP violation effects and especially to investigate if they can be the domi- 

nant amplitude contributing to the decay. This amplitude comes from “penguin” 

diagrams with a photon or 2 boson and also from “box” diagrams, as shown in 

Figure 1.1. For values of rr$ << M$, it is the uelectromagnetic penguin” that 

gives the dominant short-distance contribution to the amplitude. This was dis- 

I3 cussed, with estimates of the CP violating effects, before evidence for the b quark 
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was found. A full analysis, including QCD corrections, was carried out in the case 

of six l4 quarks, building upon work done with four quarks.15’16 A principal conclu- 

sion of that study was that the ‘direct” CP violation could be comparable to the 

‘indirect” effects. 

Why do we reconsider this process now ? First, the possible mass range for the 

t quark has been pushed upward considerably since Ref. 14. The QCD corrections, 

which turned out to be quite important, need to be redone when na:/iU& cannot 

be considered to be a small number. The successive steps of removing heavy 

particles from the theory and developing an effective Hamiltonian involving only 

the light quarks can no longer be carried out by first removing the W and then 

the t quark. Rather, they must be removed together. Second, the “2 penguin” 

and “W box” diagrams, which are “suppressed” by factors of mf/M& and were 

neglected in old calculations, are important for large ml. We need to consider 

the QCD corrections to them as well. Third, experiments at the required level of 

sensitivity are beginning to be 17 
considered. 

The other process of interest here is K + RUT’, which is particularly attractive 

from a theoretical point of view due to the absence of long distance contribu- 

18’lg tions. In Standard Model predictions for this process, QCD corrections are 

often neglected or, to the same end result, stated to be small.20 When included, 

they are sometimes treated as an overall multiplicative factor for the whole ampli- 

tude, even though it arises from a sum of pieces due to c and t quarks in the loop. 

An exception is the work of Ellis and Hagelin21 where QCD corrected top-quark 

contributions are given in the case where the mass of the top quark in the loop is 

much smaller or comparable to that of the IV. 
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Figure 1.2. 

diagram. 

Feynman diagrams for the process xd -+ vL: a) “2 penguin”; b) “box” 

In this work, we re-evaluate the QCD corrections to the short-distance ampli- 

tude for K + TUT when mt N Mw. We give an analytic form for the corrections 

to the leading logarithmic pieces and discuss the ambiguities in non-leading terms. 

Quantitatively, the rate for K+ + r+~t; is decreased by 15 to 30%, a result which 

is in fact numerically similar to that 22 of applying Ref. 21, even though the detailed 

expressions are different. 

In the next two chapters we introduce the formalism we use in the calculations: 

Chapter 2 is dedicated to the calculation of the free quark effective Hamiltonian 

for strangeness-changing processes, while Chapter 3 introduces leading QCD effects 

into this short-distance effective Hamiltonian. By no means is this the only place 

where strong interactions affect these decays. The main effect of strong interactions 

is the formation of hadronic wave functions, which in our case is reflected in the 
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matrix elements of quark currents between hadron states. The calculation of these 

matrix elements, which is non perturbative, can be avoided by using experimental 

results in Ke3 decays, as we discuss in the Appendix. The other potential effect 

of (non perturbative) strong interactions occurs in the formation of light hadrons 

in some intermediate states. The possible appearance of this long distance phe- 

nomenon will be discussed independently for each one of the decays. In Chapter 

4, we briefly describe the range of Kobayashi-Maskawa matrix elements that enter 

in the amplitudes of the different processes in question. We include here bounds 

on these parameters coming from various measurements, like the mixing of neutral 

B mesons and the CP violating parameter E from the neutral K mesons. In the 

last two chapters we turn to our numerical estimates of the rare decay rates. In 

Chapter 5 we treat the decay KL + ?r’!+!-, examining the CP violating ampli- 

tudes as well as the different estimates for the CP conserving components. Finally, 

in Chapter 6 we present our results for the decays K+ -+ w+uii and KL + r”vi?. 

We have included an Appendix with the calculation of the decay rates, starting 

from the effective Hamiltonians and explicitly showing the normalization and phase 

convent ions used. 
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2. F+ee Quark Lagrangian for AS = 1 Rare Decays 

We calculate the electroweak processes s + de+e- and s + dv~ in the Stan- 

dard Model to one loop order. Since these decays do not appear at tree level in 

the absence of flavor-changing neutral currents, the leading contribution occurs at 

23 one loop in electroweak interactions. 

There are three kinds of diagrams that contribute to the first process, as shown 

in Fig. 1.1: the “electromagnetic penguin”, “2 penguin” and “box” diagram. In 

the second process (Fig. 1.2), only the last two kinds of diagram are present. 

We were able to reproduce the results of Ref. 23 using the Feynman-‘tHooft 

gauge to treat the boson propagators, and dimensional regularization to treat the 

divergent integrals. 

Since the integrals are, in most cases, dominated by virtual momenta larger 

than the hadron masses (it is not so when the internal quark is the up-quark, but in 

that case the contribution turns out to be irrelevant, as will be shown later), it is a 

good approximation to neglect all external momenta and masses in the calculation 

of the sZd vertex and the ‘box” diagram. 

The one-loop diagrams for the sZd vertex are shown in Fig. 2.1, from which 

we obtain their individual contributions: 

iry 
4 

= ;rg = -2i(N.F.), L’(2 + x9) (6 + A&)} srp(l - 75)d 

iIf:’ = 4i(N.F.), (L(6 + B(xq) - msg. - 1) - 2Er,B(z,)}S^k,(l - 75)d 

iI$fL = 2i(N.F.), (R(6 + B(x,) - lnz9 - 1) - ~Lcc~B(z~)} xp 37p(1 - 75)d 
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irLtw) = -8i(~F.), cos2 Ow (36 + 3A(x,) - 1) 57/,(1 - 75)d 

iIfwd) = ;I’!:) = -8i(N.F.), sin’ BwA(~,)~7~(1 - 75)d SC1 , 

irC$i) = 
,P -2i(N.&‘.), cos 28~ xq (6 + A(x,)} 37/,(1 - 75)d 

(2.1) 

where (NJ.), is a common normalization factor, L and R the coupling of 2 to 

left-handed and right-handed charge-$e internal quarks, L’ the coupling of 2 to 

left-handed external quarks, 6 an infinite constant, and A(x,) and B(x,) finite 

functions of xp s (rn,/M~)~: 

LEl-$sin2Bw, 

R - -tsin2Bw, 
3 

L’ s -1+ :sin’Bw, (2.2) 

In the expression for 6, d is the number of spacetime dimensions and u an arbitrary 

mass parameter. 

The sZd vertex, henceforth denoted as il?z,P, is obtained by adding all the 

9 
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Figure 2.1. Contributions to the electromagnetic and Z flavor-changing vertices. 

individual contributions, with the particular exception of irgj), and irf,;, which 

contribute with only half of their value to the vertex (to this order of approximation, 

half of their value contribute to the normalization of the external quark wave 

functions): 
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r$) r(s) 
irz,, = i c( -F+?+ Q 

ie 
= 

?r sin 8~ cos ew 

where we define the 2 coupling form factor: 

Fz(xq) = 2 
(xq - 6)(x9 - 1) + (32, + 2) In xq 

6% - 1)2 I- 

- 

(2.4) 

Notice that the infinite term 6 cancels in the sum: due to the Glashow- 

Iliopoulos-Maiani (G.I.M.) mechanism -i.e. unitarity of the Kobayashi-Maskawa 

matrix-, there are no flavor changing neutral currents at tree level, so divergent 

terms at higher order must cancel to assure renormalizability. In addition, terms 

proportional to sin2 Bw also cancel since these terms couple like the electromag- 

netic current; the electromagnetic current is conserved, so the vertex vanishes as 

the gauge boson momentum qp goes to zero (for further explanation see below, in 

the paragraph on the electromagnetic vertex). 

Also notice that all the meaningful terms in I’z are xq-dependent; again, due to 

G.I.M., physical amplitudes depend only on differences of the sort I’(x;) - I’(zj), so 

that any constant term cancels. Moreover, in the hypothetical case where al1 quark 

masses are equal, flavor changing neutral currents vanish exactly to all orders; 

indeed, in that hypothetical case, the Kobayashi-Maskawa matrix is trivially the 

identity and, as a consequence, any quark generation mixing vanishes identically. 

11 



Using the effective vertex (2.3) and the Feyman rules for the diagram in Fig. 

l.l.a, the amplitude for the process sd + Z* + e+e- can be easily calculated: 

iLCZ) = 3 c V$I/pd Fz(zp) ee 
%I 

{ (sin~ew -4) QV- sin:ewQA} + '.c., 
(2.5) 

where we have denoted the semileptonic effective operators by Qv and QA: 

In much the same way, the amplitude for sd -+ Z* 4 UT is obtained, with the 

corresponding changes in the couplings and the substitution of the lepton fields 

e + u in (2.6): 

@) = YY rGF c 
% 

Vpqd FZ(Q) ’ {Qv-QA} + kc. 
sin2 Bw (2.7) 

The other vertex we need to consider is the one with a photon instead of a 2. 

Here the calculation is slightly more complicated. The s’yd vertex vanishes as q + 0 

(q is the momentum of the photon), due to electromagnetic current conservation. 

This did not happen for the 2 vertex: the 2 current is not conserved, because the 

2 boson couples differently to left and right handed fermions. While the vector 

part of the 2 current is still conserved, the axial vector part is not; instead, its 

divergence is proportional to fermion masses. 

Since the syd vertex vanishes as q + 0, it can not be calculated neglecting the 

external momenta; the calculation must be carried out to order q2. 

12 



Apart from this detail, the rest of the calculation follows that of sZd. In 

particular, the divergent and zq-independent terms cancel here as well. The final 

result can be expressed in terms of two form factors, FE(z*) and FM(Q): 

+ J’d~q)J(~m,~,d’(1- 75) + hiO&‘(l+ ys))d] , 

where the form factors are 

(35; - 30s; + 54s; - 322, + 8) Inx 

36x(xq - 1)4 Q, 

(2.9) 

The individual contributions from each diagram of Fig. 2.1 to this vertex are 

rather complicated and do not provide any further insight than what was mentioned 

above, so we will not reproduce them here. 

As we see, there are two form factors for the electromagnetic vertex. The first 

one, F&xq), which has a logarithmic dependence for small xq, will be the main 

contribution to the process sd + -y* + e + e -. The second form factor corresponds 

to an effective magnetic moment and becomes the only term that survives when the 

photon is on mass shell; however, for the processes of interest here, its contribution 

turns out to be negligible. 

The amplitude for sd + r* + e+e- is then calculated using this effective 

vertex together with the usual Feynman rules for the diagram in Fig. 1.l.b: 

13 
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iL2) = -is c &:Vqd{ h+q)Qv + Fnn(x,)Qu} + h.c. (2.10) 
!I 

The operator Qv is defined in (2.6), and the “magnetic” operator QM is given 

by: 

QM(xq) f g [~(im,~pd(l - 75) + imdaPVqu(l + ys))d] -$ [E-j‘e]. (2.11) 

QM is not explicitly a local operator (it contains powers of momenta); however, 

this is not a problem, since this momentum dependence cancels after taking its 

matrix element. 

The last contribution to be considered comes from the “box” diagrams of Fig. 

2.2. In a general gauge, there are four different diagrams, due to the presence 

of would-be Goldstone bosons. However, if we neglect the external masses and 

momenta, as well as the internal lepton masses, only the diagram with two W 

bosons gives a non vanishing result. The “box” diagrams are all convergent and 

their computation is straightforward. 

The amplitude for sd -P e+e- given by the “box” diagram in Fig. 2.2.a is 

i~(BO”) 
ee 

= -% 
1/9*,1/9d FB(xq) x 

e2 

167r sin2 0~ [%~prp(l - ys)d] [‘#y”y”(l - Ts)e] + h.c. , 

(2.12) 

where 

(2.13) 
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Figure 2.2. Semileptonic “box” diagrams. a) for the process Bd -* e+e-; b) for the process 

Sd 4 TV, 

After using the identity: 

[Wp~pP - “)]. [YPY’YV - 7511 kl = 4 [%(I - Y5)lij [y’(l - YS)] kl’ PW 

the amplitude (2.12) can be expressed as 

vq: vqd FB (Xq) ’ {Qv-QA} + kc. 
sin2 9~ 

(2.15) 

There is a slight difference between the “box” contribution to this process and 

the one to sd -+ YE in the latter, the lepton line runs in the opposite direction, 

which gives a relative minus sign coming from the internal lepton propagator (we 

neglect lepton masses) and a different order of the 7 matrices in the identity (2.14). 

15 



The appropriate identity to be used now is: 

[%Yrr7p(l - 75)];i [YVy8(1 - 75)] LI = 16 [r,(l - 754 ij [rv - 75)] k,9 PW 
which contributes with an extra factor of 4 to the amplitude: 

i~(B02) = iGF 
c 

4 
vv 

% 
vq*,vqd FBkq) sin2 8~ 

{ Qv - QA} + h.c. (2.17) 

We are now ready to write the full effective lagrangian for sd --f e+e- and 

sd + VT, calculated to one loop order in electroweak interactions: 

iLCee =i~ F v,*Jv,d [ { ( sin:8w - 4) Fz(xq) - sin~ew Fs(xq) - FEO) Qv 

1 - 
sin2 9~ {F.&Q) - F&d}QA - h(xq)QM 1 + h.c. , (2.18) 

ils,, = - is c v,:&d [FZhq) - 4FBbq)] sin;8w {&v - QA} + kc. (2.19) 
P 

Before ending this chapter, there are three important points we would like to 

address. 

First, we want to comment on the G.I.M. mechanism, or equivalently the uni- 

tarity of the Kobayashi-Maskawa matrix. The unitarity condition implies: 

c i’$I/pd = 0. 
q=u,c,t 

As a consequence, any xq-independent term in the form factors previously 

calculated is of no physical significance since it cancels automatically in the am- 

plitudes. Indeed, in the amplitudes, the form factors appea,r only as differences 

16 
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between their value at two different quark masses. This can be easily seen by 

replacing, e.g. 

(2.20) 

in the effective lagrangians; the form factors then appear only in the combinations 

F(xl) - F(x,) and F(x,) - F(x,), and th e sum over Q = u, c, t is replaced by a 

reduced sum over q = c,t. In this manner, G.I.M. is explicitly introduced into 

the lagrangian and no redundant terms are left. However, the symmetry between 

fermion generations becomes obscure. Here we prefer to leave the generation sym- 

metry explicit, and introduce the G.I.M. mechanism only at the very end, so we 

will not do the replacement (2.20) until we reach the final step of calculating decay 

rates. 

The second point we want to address is related to the small-xq limit. In fact, 

it is only for the top quark that we need to consider values of xq close to unity; 

for charm and up quarks, x9 is of the order of low3 or less, so that to very good 

accuracy we can use the small-xq limits: 

Jxxq) + 2 {lnxq + 3) + U(xi), (2.214 

FB(Xq) + $lnx, + 1) + S(x,2), (2.21.b) 

FE(%) + -&lnx, + 0(x,2), (2.21.c) 

FdXq) -+ 
7 

zx9 + c%#. (2.21.d) 

We notice from the above expressions that, in the small-xq limit, the largest 

form factor is, by far, FE. All the others are suppressed by at least one power of xq. 
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However, we can not conclude much from this, since what has physical significance 

is not the value of these functions at a given mass, but the difference between 

the functions evaluated at two different masses. Still, even after considering the 

differences F(zt) - F(z,) and F(z,) - F(z,), th e e ec 1 t romagnetic form factor is 

the largest. 

In K + aee, therefore, the “electromagnetic penguin” is the most important 

contribution; in fact, it was the only term considered in past literature, when the 

top quark was believed to be much lighter than the W boson. 

In other decays, like KL + P/..J or K + ?TVV, the electromagnetic term is absent, 

so that the “2 penguin” and “box” contributions play a major role. Moreover, 

in KL + pp the form factors appear in the combination Fz - J’B; this causes 

the logarithmic terms to cancel, adding an extra suppression to the decay rate. 

However, strong interactions affect Fz and FB differently, so that this cancellation 

does not actually occur. We should also mention that in these form factors, there 

are two comparable terms, one of which is logarithmic and the other which is not. 

Strong interactions have a different effect on these terms as well. 

Third and last, we wish to briefly comment on the gauge invariance of the form 

factors and effective lagrangians. The expressions for Fz, FE and FB given in (2.4), 

(2.9) and (2.13) are gauge dependent: they were calculated in the Feynman-‘tHooft 

gauge. In a general Rt gauge (the Feynman-‘tHooft gauge corresponds to [ = 1) 

the form factors become:23 
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FZ(%) + 

FE(G) 3 

FBbd + 

~FB(s,) + 

with the gauge dependent 

FE(+) -49(+,t) +49(%1), 

FB(Q) + dxq, 0 - s&v 1) for e+e-, 

~FB(Q)+~(&) -9&l) for yF-, 

term: 

(2.22) 

I 

(2.23) 

- 

Although the form factors are gauge dependent, the effective lagrangians (2.18) 

and (2.19) are clearly gauge independent, since the form factors appear only in 

combinations such that the term g(xp, t) cancels. 

The important issue here is to know what will happen with this cancellation 

after strong interaction (&CD) corrections are applied. In general, each form factor 

receives a different correction from QCD, which could spoil the cancellation of 

gauge dependent terms in the effective lagrangians. Of course, if the calculations 

were done exactly to all orders, gauge invariance would be automatically satisfied; 

however, here we are only dealing with an effective theory calculated to a particular 

order in masses and couplings. Therefore, we need to check for consistency up to 

that order. 

QCD corrections are calculated to the leading logarithm approximation. Since 

logarithmic terms generated by loop integrals depend on all scales inside the in- 

tegration region, and the QCD coupling c~$ varies with scale, the most important 
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QCD effects appear in the logarithmic terms of the form factors, provided the 

range of scales is large. Subleading terms may also get corrected, but in this case 

a scheme dependence may arise. In order to check the effect of our QCD correc- 

tions on the gauge invariance of the effective lagrangians, we need to look into the 

leading terms of (2.23) when xg is small (when xq is large -i.e. of order unity-, 

there are no large logarithms, so QCD effects are negligible). 

The expansion of g(zq,<) for small xq gives: 

7l$ - 1 
s(x,,O ---) &[7X&$ + (1 + _i-+!J. (2.24) 

The leading logarithm in (2.24) d oes not depend on t, which assures gauge 

invariance for the leading logarithmic corrections of the lagrangian. However, the 

non-logarithmic terms still show a e-dependence; gauge invariance for the non- 

logarithmic terms can be maintained if either the same QCD corrections are ap- 

plied to all of these terms or, at most, only a part of these terms that do not depend 

on < receive different corrections. Neither of these two procedures is completely 

systematic, because the QCD coupling q,(q2) is calculated up to the leading log- 

arithmic term only. Moreover, there is an infinite number of ways of extracting a 

t-independent piece from the non-logarithmic terms; this is where the scheme de- 

pendence enters. The problem of gauge invariance for these terms will be analyzed 

in the next chapter, once we have chosen our scheme. 
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3. Leading Logarithmic QCD Corrections 

and the Effective Hamiltonian 

In Chapter 2 we calculated a AS = 1 Hamiltonian at the quark level, which 

contains all short distance electroweak effects in the coefficients of effective low en- 

ergy operators. The next step in the calculation is to consider the effect of strong 

( i.e. QCD) t in eractions. We can classify the QCD effects into three categories: 

first, there is the calculation of matrix elements of quark currents between hadronic 

wave functions; we will treat this problem in the Appendix. Second, strong inter- 

actions can cause hadronization at intermediate stages, where these intermediate 

hadrons later decay into the external hadrons; these are the so called long distance 

effects and will be briefly discussed in Chapter 5. Finally, the short distance elec- 

troweak vertices also receive corrections through the presence of virtual gluons; 

this last effect can be calculated perturbatively to a good degree of approximation 

and will be the main objective of this chapter. 

We will calculate the QCD effects to the short distance interaction by building 

an effective Hamiltonian at a high scale Mw, where QCD can be treated pertur- 

batively. QCD corrections are thus calculated by the inclusion of one gluon at the 

high scale, and then by running the Hamiltonian down to a hadronic scale with 

the use of Renormalization Group equati0ns.r’ The one-gluon calculation is kept 

to the leading logarithm at the scale Mw. Then, using the Renormalization Group 

equations, the logarithmic terms can be summed to all orders of crs. 

The effective Hamiltonian is an expansion of the standard model Hamiltonian 

in terms of effective operators, where the heavy fields are removed from the theory 
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in succesive steps, and the coefficients of the operators are determined by means 

of renormalization group equations. QCD effects are then included in the leading 

logarithmic terms for scales below the W boson mass. 

As we saw in the previous chapter, there are three contributions to the AS = 1 

Hamiltonian, namely the “electromagnetic penguin”, the “2 penguin” and the 

“W box”. These contributions do not mix under renormalization, so they can be 

treated separately; moreover, they obey a similar scale running pattern, so they 

can all be treated using the same general method. We first describe this general 

method to calculate the effective Hamiltonian and then give numerical results for 

the “electromagnetic penguin”, the “2 penguin,, and the ‘W box”. 

At the scale of Mw or above, the terms in the Hamiltonian are taken to be those 

in a free (no strong interactions), six quark theory. Below Mw, the effects of QCD 

are included through the mixing of the effective operators using the machinery of 

the renormalization group. We first assume a succession of scales characterized by 

the Uold” hierarchy of scales: Mw, mt, ?72b, m, and finally /.L At the end, we remove 

the W boson and the top quark together in order to treat the case ml R, Mw. 

At each stage of the calculation, we will be left with an effective Hamiltonian 

in the form of a sum of Wilson coefficients times operators &;: 

&I = Wdl - r5)&)(q37p(1 - 75)~~) 

Q2 = h-d1 - 75)+)(q97p’(l - 75)~) 

Q3 = &7dl- 75)hJ(q37a(l - 75)~~) + (&y’l(l - 75)da) + --- ] 

Q4 = (%7p(1 - 75)+)[(q37“(1 - 75)%x) + (q37’(1 - 75)&Y) + *a* ] 
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Q5 = (%7p(l- 75)&)[( q97Y1+ 75)q) + @prP(l + 75)43) + -** ] 

96 = (sari41 - 75>qPpr”(l+ 75)4 + ($7”(1 t 7&y) t * ’ - ] 

Qv = :(G~~(I - ys)d,)(We) 

QA = ;(~7~(1 - Cy5)dQ)(+‘y5e) . (3-l) 

The color indices cr and /!I are summed over the three colors. The quark fields 

appearing in the second factor in the definition of Q3, Q4, Q5, and Q6 generally 

include all those which have not yet been removed from the theory. At the last 

stage, where this includes only the u, d and s quarks, one of the operators in (3.1) 

is linearly dependent (this is usually taken to be Q4). We have chosen the same 

operators as in Ref. 14, with the addition of QA, whose presence is required now 

that we include the contributions from the “2 penguin” and “W box” graphs of 

Figures 1.1 and 1.2. We have neglected operators of the form m, Zu,, Fp”d as 

giving a very small contribution to the net amplitude. 

Although in principle we should use the whole set of operators, we neglect the 

mixing of strong interaction upenguin” operators (Q3 to Q6 ) since we know their 

coefficients and matrix elements are at least one order of magnitude smaller than 

those of Qv and QA. 

After the W is treated as heavy and removed from the theory, the Hamiltonian 

can be expressed as: 

iFt GF 

eff = z *=&& 
C VisQd C Ai(q)Oi(q) + h. C. 7 (3.2) 

i=+,-,7 

where 

o!p) z 3Q2 f 91) 
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and Or is a linear combination of the semileptonic operators QV and QA, slightly 

different for the uelectromagnetic penguin,,, the “2 penguin,, and the “W box,,. 

Cd The precise normalization of 07 will be specified later on. The operators 0, 

appear only at scales above mq where the quark Q is still extant in the theory and 

where they mix with Opl through one-loop electroweak corrections. The effective 

operator 07 appears at all scales, and its coefficient contains leading logarithmic 

QCD corrections as well as non leading terms coming from the free quark theory. 

These operators satisfy a renormalization group equation of the form: 

with 

(3.5) 

Since the Hamiltonian is p-independent, the coefficients Ai satisfy the equation: 

[%j (3.6) 

with the boundary conditions at p = Mw given by A+(l) = A-(l) = 1. The value 

of A7(1) must correspond to the coefficient of 07 in an effective free quark theory 

at the scale of Mw. In a case where all quarks are much lighter than the W boson, 

the coefficient of 07 at Mw is negligibly small and can be taken to be zero, as was 

done in Ref. 14. However, for the cases where rnt 2 Mw, AT(~) receives important 

nonleading-logarithmic contributions, which should not be neglected. 

If all the elements of the anomalous dimension matrix 7 are of the same order 

in the strong coupling g and the quark masses m,, the solution to (3.6) can be 
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easily found by first transforming the components to a basis where 7 is diagonal, 

then solving in this diagonal basis a set of uncoupled differential equations, and 

finally transforming.the solution back to the original basis. It is important that 

all elements of 7 are of the same order in g and m,, otherwise the transformation 

matrix will be p-dependent and the equations will not decouple. To order g2, it is 

always possible to define 7 in this form by choosing an appropriate normalization 

of the operators 0;. 

Denoting the original basis by latin indices and the diagonal basis by greek 

indices, the transformation matrix 2’ is defined as: 

T--l ai rTij Tja = ^~(~)~crp, Ai = Ti, A,, (3.7) 

where 7(o) are the eigenvalues of 7, and sum over repeated indices is understood. 

The solution for Ai (y) then becomes: 

where 

= T. K’b$‘-1 
aa WlP aj Aj(l), (3.8) 

r(a) E 24r27(a)/(33 - 2Nj), 

and Nj is the number of quark flavors with masses below the scale /.L. For scales 

above the top quark mass, Nf = 6. 

Going below mt, Nf = 5; we then need to expand the operators Oi in terms of 

operators OiI of an effective theory where the top quark has been removed (primed 
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indices will denote a theory with Nf = 5).#’ Using the expansion: 

Oi = Bikl 0~1, (3.10) 

the coefficients Bijl satisfy a renormalization group equation of the form: 

(3.11) 

with the boundary conditions at ~1 = mt given by Bikf(1) = Si,t. 

Notice that while 7ij is the anomalous dimension matrix for a theory with six 

flavors, 7kIl1 is the anomalous dimension matrix for a theory with five flavors. 

Again, the equation for B/k’ can be solved by going to a diagonal basis: 

S-’ ai 7ij Sj/3 = Y(4hYPl 

Bik! = Sio Tk'cyl Baas, S E T-IT, 

and then reexpressing the solution in the original basis: 

. 

(3.12) 

(3.13) 

#l We use primes on the indices, not on the operators; this notation is particularly useful 
when dealing with transformation matrices: if it is the indices that are primed, there is no 
ambiguity in telling from which to which basis the matrix transforms. 
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For scales below mb, the b quark is treated as heavy and removed from the 

theory. Therefore, the operators from the theory with Nf = 5 need to be expanded 

in terms of operators from a theory with Nf = 4. The expansion goes as follows: 

o;, = c;‘k” OkW, (3.14) 

where the coefficients C;t,tt satisfy the boundary conditions Ci~k~(l) = bifk” and a 

renormalization group equation analogous to (3.11): 

with its solution given by: 

= Sjr,~Kb;Z(a’)S-l,~j~ ~~,r,,,K~~~“‘T-‘,,,~,, Cit/t,( I), (3.16) 

where Kblp s . 

Finally, below m,, the effective theory has Nj = 3 and the operators from the 

previous theory are expanded as: 

0;~ = Diuk,n Ok,,,. (3.17) 

The coefficients satisfy the boundary conditions Di~~,~~~(l) = Si,p,,Rf and the equation: 

the solution for Dj,tl”t is given by: 

= Si”,“Kc;:(~“‘S-‘~,,j,, ~k,,,,r,,K~~~““T-l,,,,~,,, Dj,,l,,,( l), (3.19) 

where Kc/, = a’dy . H-d 
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In consequence, the effective Hamiltonian at a scale ~1 below m, is given by the 

general expression: 

(3.20) 

Although numerical values change from one region of scales to another, the 

anomalous dimension matrices, in the basis of O!p), O$’ and 07 and above m,, 

have the general form: 

7 = g2 (3.21) 

Below mq, all entries are zero except 77. The transformation matrices that diago- 

nalize the matrix 7 in (3.21) are of the form: 

T= 

77 -7+ 0 0 

0 77 -y- 0 

-^/+7 -7-7 1 

, S = T--IT. (3.22) 

Replacing (3.12), (3.16) and (3.19) in (3.20), we obtain an explicit expression 

for the QCD corrected effective Hamiltonian. Since 0+ and 0, do not mix, the 

effective Hamiltonian separates in terms involving these two operators plus terms 

coming from their mixing to 07 and subleading terms coming from the free quark 

theory: 
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+ h. , 
(3.23) 

(3.24.~) 

(3.24.b) 

(3.24.~) 

(3.24.d) 

(3.24.d) 

The coefficients cFq’(p) come from the mixing of Ok into 07 and correspond to the 

leading logarithmic pieces of the form factors (2.4), (2,9) and (2.13), with inclusion 

of QCD corrections; AT,,(p) contains the nonleading terms. 
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In order to fix the boundary conditions API(l) at the scale of Mw, we require 

that the Hamiltonian of the free electroweak theory coincide with the CQ + 0 limit 

of the effective Hamiltonian: 

‘FI o!“’ + 0”) + Ml+ Ap)( 1) - 2++7 + y-7)cr, log( 7 

A$%) - 2x(7+7 + 7-7)~~ 

A$%) - 2n(7+7 + 7-7)a, log(- (3.25) 

In addition, we must consider the matrix element of 02’ to one loop order, 

which is: 

< ot) + ol”’ > = %(7+7 + 74 Cr,log( +07>. (3.26) 

Equations (3.25) and (3.26), while written for the cys + 0 limit, are illustra- 

tive of general properties with respect to /.L dependence, renormalization-scheme- 

dependent matrix elements, and subleading terms in 3-t,ff. First, the p dependence 

explicitly cancels between Eqs. (3.25) and (3.26), as it should. Second, there are 

possible subleading terms on the right-hand-side of Eq. (3.26) which depend on 

the renormalization scheme, as do subleading terms in 7-feff. Since we use the 

anomalous dimensions and beta function calculated in leading order we do not 

consistently predict subleading terms in the expansion of ‘Fl,ff; consequently, only 

the leading logarithmic terms in (3.26) are meaningful. The subleading terms are 

67) introduced only as boundary conditions in A, (l), which are obtained by compar- 

ing the free Hamiltonian with the limit of the effective Hamiltonian in Eq. (3.25). 
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Now we use the method just described to treat the QCD corrections to the 

“electromagnetic penguin”, the “2 penguin” and the “box”. 

For the “electromagnetic penguin”, we recognize that O$“ E Qk, and that the 

appropriate operators 0, (‘I for q = u,c,t are 

OP) = 07 s $Qv . (3.27) 

A factor of l/o, is absorbed in the normalization of 07 to make all the elements 

of the anomalous dimension matrix be of the same order in cr,. At the end of the 

calculation the effective Hamiltonian is expressed in terms of the operators Q* and 

Qv, and the factor l/o, put back into the coefficient of the latter operator. 

The anomalous dimension matrix for the “electromagnetic penguin”, calculated 

to order g2 is: 

0 -2g2 /91r2 

-g2/27r2 g2/9w2 7 (3.27) 

0 -(33 - 2Nf)g2/24x2 

Substituting the operator Qv and numerical values into (3.23-24), an expres- 

sion similar to (2.10) is obtained: 

‘H(Y) 
eff = z GF [%v.,{c+tdQ+ + c-(p)Q-} 

+ c V;VqdFQCD E h,dQv 1 
(3.28) 

+ kc. , 
q=u,c,t J 

where 

corresponds to the QCD corrected form factor FE. The terms c7 q (*) and AT,~ contain , 
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the QCD-corrected leading logarithmic pieces and the nonleading terms, respec- 

tively. The explicit expressions for the form factors are: 

C-(P) =Kw,t 
-12121 K-l2/23 K-12/25 K-l2/27 

0 b/c c/cc ’ 

(3.29) 

+ (1 - I$y 
1 > (if) + 6 - K%9 (-ii) }as(~w) 

+ 
{ ( 

K;' 1 - Kt2/;/23 
)( > 

I$ + I(;;/” (1 _ K;//23 
) (-k>}G&) 

+ 
{ 

K$;; K;;;” (1 - K;;;25 
16 

N > 93 

+ K-$/21 Kt;;2/23 (1 _ K;;;25 
) (-ii) } &:mb) (3’30) 

K;;‘K;$” Kb”llc”” (1 - K$!27 
16 

+ 
)C > 99 

+ Kw/t 
-12/21K- 12/23 IibT12/25 

t/b C 

F;cD(~c, P> =F&c(Mw)) + $lnWhv) 
+ { (1 - h’z;tq (E) + (1 - K$zf) (-$) } as(;w) 

+{K$ (1 - K:l”bl”“) (g) +K$lzl (I - K;/~~) (-A)}-& 
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(3.32) 

Following the same steps, the QCD corrections to the “2 penguin” can be 

found. In this case we use the process sd + Z* --t e+e-, so that the appropriate 

normalization of 09) is: 

“)) = ~[ (4- sin~8w) ” + sin~BwQA], 
and the anomalous dimension matrices y (4) b ecome: 

,(d = 

for p > mq. 

g2/8n2 

-g2/16w2 

(-9 + 2Nf)g2/24x2 1 (3.34) 

(3.33) 

The effective Hamiltonian can then be expressed as in (3.23): 

c+(P)&+ + C-(P)&- 
> 

(3.35) 

+ c v;bdF;CD(“q,/‘) 4 - ’ Qv + 
q=u,c,t [( sin2 0~ > 

sin;ow QA] + kc. 

We should mention that the normalization factor 

(4 - sin’&7 ) Qv + siniow QA 

is only due to the 2 coupling to electrons, and is irrelevant in the calculation of 
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QCD corrections. Indeed, this normalization always factors out in the calculations; 

what actually becomes corrected by QCD is the sZd vertex, i.e. the form factor 

Fz(xq) of the hadro+c 2 current. In this manner, the same QCD corrections apply 

to sd -+ 2* + vi7 and other semileptonic processes mediated by the 2 current. 

The corrected form factors are thus found: 

FjcD(xu, 4 = Fz(xu(~w)) 

F;cD(xc, P) = Fz(xc(Mw)) - $h(~w)lns,(Mw) 

+ (1 -Kg;;); + (1 -K&;j21) $-}# 
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-12/21 
+ Kw/t (3.37) 

FzQcD(zt, p) = Fz(xt(Mw)) - &xt(Mw) lnst(Mw) 

+ (1 -Kg;;) ; + (1 -K;;121) $}-d!$ (3.38) 

Finally, QCD corrections to the “box” diagram can be treated in a similar way, 

(!I) * now using a semileptonic operator 0, Cd instead of 0, and a different normalization 

for OFI: 

ok’ = -$Sr,(l - 75)q]p7yl - 75)el x k74 - 75>4[~7”(l - 75)4 

@ I) - xq l 
a.9 sin2 6~ 1 Q7v - QUA}. (3.38) 

The anomalous dimension matrices, for ~1 > mq, are now only 2 x 2: 

,(nl = O g2/16n2 

> 0 (-9+2Nf)g2/24n2 ’ 

The effective Hamiltonian can again be written in the form of (3.23): 

7ip = $ V:,v&c~(~)O~) 

+ c s:hdFBQCD(Xq,P) ,’ sin 6~ 
{ Qv - ,A}] + h.c. (3*40) 

q=u,c,t 

Just like in the previous case, the normalization factor l/ sin2 8~ comes from 

the fact that we chose electrons as external leptons. For the case of sd -+ vt, 
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there is an additional factor of -4, but in neither case does this affect the QCD 

corrections to the form factors FB(xq). 

The corrected form factors are given by: 

F;cD(xu, P) = FB(x&w)) 
1 

+5 
1 _ K--;(21) $!!$ + ; (1 - K,;:/23) d$ 

3 
-- 1 - 

2 
I{;cz”) 9 - 1 

3 2 
(1 - Kz;l;f7) $ (3.41) 

9 

F:cD(xc, cl) = FE (xc(Mw)) - $@fw) ln @fw) 

+ f (1 - K;7i21) - xc(w) 
%(W) + 2 

3 1 _ K1;:f23) - 
( 

x&) 

a, e> 
3 -- 
2 ( 

1 - K$“> z, (3.42) 
8 

FicD(xt,p) = F&t(Mw)) - &t(Mw)lnxt(Mw) 

+ ; (1 - K;;;‘l) $$ 
s 

(3.43) 

We have included a coefficient c~(p) in the effective Hamiltonian (3.40) in analogy 

with c,t(p) of the electromagnetic and 2 Hamiltonians. However, unlike c*(p) 

which do depend on p, CB(~) is actually equal to 1 at all scales. The reason for 

this is clearly that the operator 0~ does not run, as can be seen in (3.39): the 

upper left element of the anomalous dimension matrix is zero. 
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There is a simple and practical way to obtain the QCD corrections to the 

leading logarithm of the form factors above. The main idea is to identify the 

region of the loop momentum that contributes to the logarithmic term and then 

include the momentum dependence of the effective four-quark operators coming 

from gluon 24 effects. 

The leading term of the electromagnetic form factor FE(x~), which is given in 

(2.21.c), can be generated as: 

QCD effects are then taken into account by simply including the factor (2c+(q2) - 

c-(q2)) in the integral, which reflects the running of the four-quark vertices Q+ 

and Q- from the scale M& down to q2: 

#v 
dq2 

MZV 
2 

J 
2 

gR (r2-)G J - c-(q2)), (3.45) 

with c+(q2) and c-(q2) given in (3.29). 

The corrections to the leading term of the 2 form factor Fz(xq) can be found 

in a similar way, with one further complexity: not only the running of Q& from 

M& down to q2 needs to be to be included in the integrand, but also the running 

of rni from q2 down to rni, which reflects the running of Q7 in the region where 

this operator is active. Consequently, the leading term of Fz(zq) in (2.21.a) can 
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be corrected as: 

M& 
1 1 

--2,1nxq = -- 
J 

dq2 
8n 8n -pxq 

m’P 

MR 
1 

J 
dq2 -- 

SW g1xq(42)(2c+(92) - 4q2)), 

4 

(3.46) 

with 

xq(q2) = xq 
24/(33--2Nf) 

(3.47) 

In much the same way, the corrections to the “box” factor FB(x~) are calcu- 

lated. In this case, however, there are no Q* operators in the process; instead, 

there is only the effective operator QB, which is not affected by QCD to this order 

of approximation [i.e. cB(q2) E l]. Therefore, the corrections to FB(xq) come from 

the running of the quark mass alone: 

M& 
1 1 

-xqInxq = -- J dq2 
8~ 8n FXq 

m: 

@V 
1 -- J dq2 yx!h2). h _ Q 

(3.48) 

To conclude this chapter, we wish to comment on our treatment of the non 

logarithmic terms. In the treatment presented above, all terms except the leading 

logarithms are introduced as matching conditions at the scale Mw. In order to do 

this, we choose a scheme in which all one-loop matrix elements of effective opera- 

tors, such as < O* > in (3.26), are kept only to its leading logarithm, subtracting 
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off all other terms that arise in the regularization procedure. In this manner, all 

nonleading terms appear as coefficients evaluated at the same scale Mw and, there- 

fore, gauge dependent terms cancel in the physical amplitudes, just like in the free 

quark theory of Chapter 2. 

If we choose instead a scheme that leaves some non-logarithmic terms in the 

evaluation of one-loop matrix elements, like: 

< 02) > N { l%$) + l} (3.49) 

then not all non-logarithmic terms are introduced at the scale Mw. There are 

terms that appear at the scale ma, which is where the operators 02) drop out of 

the effective theory. Consequently, the Hamiltonian (3.23) has an additional set of 

terms: 

(3.50) + C-(P)&- 

+ C&‘(P) + B;;)(P) t B$,)(~) + A7,q(,u) O7 I 1 + h.c., 

with 

(3.51) 

The non-logarithmic terms, now included in A7,q and B7,q, are affected differently 

by QCD. 
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For example, for the “2 penguin”, the non-logarithmic terms on the first row 

of Eqs. (3.37) and (3.38) respectively become: 

Fz (xc(Mw 1) - ++Mw){ lnx@w) + 1) 

+ ${2K$$lK$f3Kif5 - K~~‘21Kt$2’23Kb~~‘25}xc(mc), 

and 

Fz(xtPw)) - $4Mw) { In xt(Mw ) + l} 
+ &{2@!;;1 - K$‘21}xt(mt). 

Although this scheme dependence is an undesirable ambiguity that arises from 

the one-loop leading logarithm approximation, the numerical differences are fairly 

small in most cases, so that it is still possible to make reasonably good physical 

predictions. 

With respect to possible gauge dependences, there is still cancellation of the 

gauge dependent terms in the physical amplitudes. Even when some non leading 

terms do get different corrections from &CD, these terms are gauge independent. 

All of the gauge dependent terms still appear only at the scale Mw, where the 

effect of QCD reduces to simply replacing all quark masses by their values at that 

scale. 
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4. The Kobayashi-Maskawa Matrix Elements 

The analytical expressions for the decay rates under consideration can be eas- 

ily obtained with the use of the effective Hamiltonians of the previous chapter. 

However, in order to give numerical estimates, we need to take into account the 

uncertainties in the parameters that enter these expressions. Once the top quark 

mass is fixed, there are still uncertainties coming from the unknown Kobayashi- 

Maskawa elements. Since the top quark has not yet been observed, there are no 

direct measurements of either mt or the K.M. elements that involve a top quark. 

In addition, some of the other K.M. elements are not well known either. In order to 

find estimates for the unknown K.M. elements, we need to use constraints coming 

from other experimental results that indirectly depend on these quantities. 

The Kobayashi-Maskawa matrix for three generations of quarks can be param- 

etrized by three real angles 012, 823, t913 and one phase 613 
25 

cl2cl3 s12c13 s13e 
4613 

v= --sl2c23 - c12s23s13e i&3 c12c23 - s12s23s13e i613 s23c13 

s12s23 - c12c23s13ei613 --cl2s23 - s12c23s13e i&3 c23c13 

where the indexes i and j run over U,C, t and d,s, b respectively, and ckl and ski 

are abbreviations for cos f&l and sin OkI. 

Most of the elements that mix the first two generations are well known:26 

lvUdl =0.9747 f 0.0011, 

lVusj =0.2197 f 0.0023, 

l&d1 =0.21 f 0.03 . 
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For lVcsI, there is an experimental lower bound of 0.66, which is rather weak. 

A much tighter bound is found by imposing unitarity of the K.M. matrix in three 

generations: 

ILI = 0.9744 f 0.0011, 

which clearly does not hold if there exists a fourth generation. 

The elements involving the third generation are less certain. From the mea- 

surement of B decays into charmed mesons, a value of IV&j = 0.046 f 0.010 is 

extracted, and from the lack of observation of decays into non-charmed mesons, 

an upper limit for [Vu* I can be found: 

4f v 
I I 

s! < 0.2 . 
cb 

(4.2) 

There is no direct measurement of the elements involving the top quark. We 

find upper and lower bounds for these elements using unitarity relations of the K.M. 

matrix and constraints coming from the measurement of B” -B’ mixing 27 and the 

CP violating parameter E of the K” -? system.28 The last two quantities provide 

an indirect measurement of the K.M. elements, which appear in loops containing 

a top quark. The bounds so obtained are rather loose and, in addition, strongly 

dependent on the top quark mass. While I?’ - @ mixing restricts the value of 

I&l, pushing it to smaller values as ml is taken to be larger, the result on t: forces 

the phase Sr3 to be far from the extreme values 0 or 7r. 

These constraints seem to be sufficient to consistently determine bounds for 

the K.M. elements. However, the observation of KL + p”+p-, which is now in 

progress ,” may provide a stronger bound than that of B - B mixing if this decay 
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rate turns out to be smaller than the present value. Although we will not include 

this constraint here, it may have to be considered in future analyses. 

The B” - g mixing parameter zd is defined as 

xd 
2IM2 I 

=r’ P-3) 

where Ml2 is the non diagonal element of the B” - B” mass matrix and I’ is the 

B meson width. In the standard model, Ml2 is calculated from “box” diagrams.30 

Assuming only three generations of quarks, Xd is given by: 

xd = s .f; BB TB mB M$ qt S(Q) IVtdv$j2, 
67r2 (4.4) 

where all contributions coming from the charm quark have been neglected. In the 

above expression, f~ is the B meson decay constant, Bg the bag parameter coming 

from the hadronic matrix element of the four-quark operator, TB the B meson 

lifetime and mg its mass. 72 is a QCD correction to the four-quark operator31 and 

S(zl) a function of the top quark mass coming from the loop integral: 

S(x) = 4(1 ’ x)2 (4 - 11x + x2) - 2(13x3x)3 lnz. - - (4.5) 

with xt = m,2/M$. 

In order to determine the constraints coming from Eq. (4.4), we fix the values 

of the quantities that are better known: 

mg = 5.28 GeV, 

Mw = 81. GeV, 

77t = 0.85 . 
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and allow the rest to vary inside their accepted ranges: 32 

&BB = (0.1 + 0.2 GeV)2, 

xd = 0.6 -+ 0.85, 

TB = (1.04 -+ 1.32) - lo-l2 sec. 

unitarity relations force ]xb] % 1, so that (4.4) practically becomes a bound 

for Iv&] as a function Of ?7Zt. 

The constraint imposed by the CP violating parameter c can be found in much 

the same way. The expression for c in the standard model, calculated from the 

AS = 2 “box” diagram, becomes: 

+ 2 (v,*,v,dv*v ) ts td ‘73 s(%xt) + (V,:&d)2 172 s(Q)}, 

where all the quantities are defined in analogy to Eq. (4.4). The values of the QCD 

33 corrections in this case are 71 = 0.7, ~2 = 0.6 and 773 = 0.4, and the function 

S(xc,xt), for xc << zt, is given by: 

S(xc, xt) = xc 
1 

In 21 - 3x1 
xc 4(1 - 22) l+ 1 I”,, ( -1nxt)). WV 

Eq. (4.6) can be simplified in the phase convention of Eq. (4.1) if we neglect 

fie[V$Vtd] compared to &[V,*,V,d] and use 

which is the factor that appears in all CP violating quantities within the standard 

model (in the original parametrization of Kobayashi and Maskawa: this factor 
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corresponds to -srs93sg). In this manner, (4.6) can be expressed as: 

Here we use E = 2.28 . lo- 3. The large uncertainties in (4.8) come from BK 

and mc, which are taken to be: 

BK = 0.3 + 1.5 

m, = 1.3 + 1.7 GeV. 

The main effect of the constraint (4.8) is to keep the phase 613 away from 0 or 

r, and to provide a lower limit for ]I&] = 913. Both restrictions, which depend on 

mt, become weaker as mt is taken to be larger. 

The combination of constraints coming from unitarity, B - B mixing and E 

defines a complicated region in the space of K.M. parameters which, in addition, 

depends on rn,.“” Unitarity constraints fix ~12 = 0.22, and determine the bounds 

0.036 < ~23 < 0.056 and q = S13/s23 < 0.2, while B - B and c define further 

constraints on ~23, ~13 and 613 as a function of mt. 

We search for the extreme values of the decays KL + w’l+P, KL + rove 

and K+ + ~+v’ii as a function of mt, by scanning the region of K.M. parameters 

allowed by the constraints above mentioned. In the first two decays, which are CP 

violating, the quantity that enters is Im[Vt*,&d], shown in Table (4.1). Instead, 

what enters in the third decay is a combination of &[&*,I&] and Im[VcI&], 

weighted by the coefficients Cv,c and Cy,t, as shown in the Appendix. The values 
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mt Im[VGhd] 

(GeV) min.(max.) x 10m4 

50. 0.86 (6.2) .055 (.056) 172 (102) .2 (.2) 1.7 (1.3) 

100. 0.37 (5.1) .055 (.056) 176 (53) .18 (.2) 1.7 (1.3) 

150. 0.24 (4.2) .055 (.056) 176 (41) .12 (.2) 1.7 (1.3) 

200. 0.21 (3.5) .053 (.055) 174 (35) .07 (.2) 1.7 (1.3) 

S23 613 9 mc 

(GeV 

Table 4.1. Parameters that minimize (maximize) Im[V,‘,&] as a function of ml. 

of these parameters can be found in Table (4.2). It is interesting to notice that, 

while the CP violating decays are bound by Im[vc&], the extreme values of the 

charged K decay are determined mainly by Re[Vt*,V&]. 

mt 
(GW 

50. 

100. 

150. 

200. 

B(K+--m+v~) Re[y*,&d] Im[%&d 

min.(max.) X 10-l’ x 1o-4 x 10-4 

0.15 (0.4) -7.9 (-13.) 1.4 (.87) 

0.127 (1.16) -2.6 (-13.) 2.6 (.44) 

0.135 (1.75) -1.5 (-11.) 2.2 (1.1) 

0.151 (2.10) -1.0 (-8.9) 1.9 (.86) 

Table 4.2. Values of V,: & that minimize (maximize) B(K+ -+ &vi7) as a function of mt. 
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5. Branching Ratios for KL + ~‘l+l- 

In previous chapters we set the general formalism and physical constraints in 

order to treat rare decays of K mesons. We now proceed to apply our formalism 

to the calculation of the decay KL --f ~~.k?+4?. This decay is expected to be mainly 

CP violating, although it may contain important CP conserving contributions. The 

CP violating amplitudes originates from two sources, namely the small admixture 

of a CP even state in KL measured by the parameter E, and a direct CP violating 

decay amplitude. 

In section 5.1 we discuss the possible magnitudes of the CP conserving ampli- 

tudes. The CP violating contribution coming from c -which we call “indirect”- 

with inclusion of long distance effects is treated in section 5.2. The main part of our 

work is dedicated to the calculation of the direct CP violating amplitude, which is 

shown in section 5.3. We close this chapter in section 5.4, where we compare the 

different contributions and draw our conclusions. 

5.1. The CP Conserving Amplitude 

A CP conserving contribution to the process K2 --f 7r”~+f!- is induced through 

the chain K-J ---) .~r’yy + rr”l+e-, which is shown in Figure 5.1. We give here 

a brief review of the checkered history of this amplitude, partly because it is of 

interest in and of itself, but mainly to see whether the CP conserving contribution 

to I’(K2 + 7r”P+f?) is comparable to the CP violating contribution or might even 

“drown out” the latter. 
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Figure 5.1. CP conserving contribution to KL -+ roe+,- mediated by two photons. 

The absorptive part of Figure 5.1 can be calculated with the two intermediate 

photons on shell. For the first part of this process, K2 + x’yy, there are two 

35 invariant amplitudes. If we take the momenta as p, p’, qr and ~2, respectively, 

the photon field tensors as $,‘2), and define ~2 = p. q1,2/p2, then they may be 

expressed in a gauge invariant way as: 

To this order, any other gauge invariant term is a combination of these two. 

Expressing the fields in terms of the polarization vectors of the photons cr,2, the 

amplitude becomes: 

< r77ijh’2 > = Ah, 22) [q2 - 61 q1 - ~2 - q1 ~42 61 - ~21 + 

B(xI, 22) [p2 3a52~1. ~2 + q1 - q2 P ~61 p - 62/p” (5.1.2) 

- Xl q2 * Cl p * c2 - 22 q1 * c2 p * Cl] 



When joined with the QED amplitude for 77 --t !+e- to form the amplitude for 

K2 -+ rr”4?f!-, the contribution from the A amplitude gets a factor of ml in front 

of it. This is not hard to understand, as the total angular momentum of the 77 

system that pertains to the A amplitude is zero; the same is then true of the 

final e+e- system. However, the interactions, being electroweak, always match 

(massless) left-handed leptons to right-handed antileptons and viceversa, causing 

the decay of a J = 0 system to massless leptons and antileptons to be forbidden. 

Hence the factor of me in the overall amplitude for K2 + w” e+!-, which causes the 

A amplitude to give a negligible contribution for K2 + ?r’e+e-. A corollary of this 

theorem applies when the K2 --$ 7r” 77 amplitude is calculated using traditional 

current algebra techniques in the limit of vanishing pion four-momentum. Only a 

non-vanishing A-type amplitude is predicted. In order to see this, we may simply 

take the limit of (5.1.2) as the pion four-momentum vanishes, in which case, 

P = Ql + 42 and Xl = 22 = Ql - 42 1 

p2 = 2’ 
(5.1.3) 

The amplitude (6.3.1) then turns into a term of the A-type: 

< r77llK2 > ---t (Ahsz) + ;B(~I, 52)) [qx - ~1 q, - ~2 - ql - q2 cl - ~23. (5.1.4) 

The factor of m, then found36 to be produced in the absorptive part of the am- 

plitude for K2 + r” e+e- merely reflects the presence of a single amplitude of 

the kind of (5.1.4) in the current algebra calculation. If this were the end of the 

story, the CP conserving contribution to K2 + n’e+e- would produce negligible 

branching ratios at the lo-l3 leve136 or smaller.35 
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On the other hand, the contraction of the amplitude for 77 + e+e- with the 

B amplitude produces terms with no such factor of m,. B does however contain 

a coefficient with two more powers of momentum, and one might hope for its 

contribution to be suppressed by angular momentum barrier factors. Because of 

the extra powers of momentum, in chiral perturbation theory this amplitude is put 

in by hand and its coefficient not predicted. An order of magnitude estimate may 

be obtained by pulling out the known dimensionful factors in terms of powers of 

f 
35 

*7 and asserting that the remaining coupling strength should be of order one. 

The branching ratio for K2 + ?y” e+e- is then of order 10-14. Again, the CP 

conserving amplitude would make a negligible contribution to the decay rate. 

However, an old fashioned vector dominance, pole model predicts37 compara- 

ble A and B amplitudes in K2 + ?r”rr and a branching ratio for K2 + r’e+e- of 

order 10-11, roughly at the level of that arising from the CP violating amplitudes 

(see below). The B amplitude is far bigger38 than would be estimated3’ in chiral 

perturbation theory. The applicability of such a model, however, can be challenged 

on the grounds that the low energy theorems and Ward identities of chiral pertur- 

bation theory are not being satisfied.3g The consistent implementation of vector 

dominance with the chiral and other constraints may lead to an extra suppression 

factor, and to a smaller prediction than in the old fashioned model. 

At this point the burden is still on the theorists to show that the CP conserving 

contribution is truly negligible in KL + r’e+e-. After a short period when factors 

of rnz seemed to assure this, we are presently not able to claim it. In the longer run, 

it will be in the hands of experimentalists to measure KL + n”yr and eventually 

to separate the A and B amplitudes by measuring the Dalitz plot distributions, 

50 



40 particularly the invariant mass of the two photons. 

5.2. The CP Violating Amplitude from the Mass Matrix 

As already noted in the Introduction, the presence of CP violation in the mass 

matrix of the neutral K system results in a small admixture of the CP even K1 

state being found in the long-lived eigenstate: 

K2 + c Kl 
KL = [1 + ,cj2]1/2 ’ (5.2.1) 

where the denominator is unity to an excellent approximation, as 28 ICI M  2.28*10-3. 

We define “indirect” CP violation as arising from the part of the KL eigenstate 

which is proportional to c in (5.2.1): CP is violated within the mass matrix, pro- 

ducing the K1 admixture in the KL, while the decay K1 + ?r’@ .F itself proceeds 

in a CP conserving manner. 

So defined, the magnitude of “indirect” CP violation is dependent upon the 

choice of phase convention for the K” and p states, as the value of E depends on 

this choice. We choose the commonly used convention where the weak interaction 

amplitude for K” + XT is real when the 7r7r system has isospin zero. As we do 

most calculations in a quark basis where this is not true (precisely because of CP 

violation in the decay amplitude for K + XT), we will have to do a transformation 

lK” > -+ e-‘tIK’ > 

12 > + e+yP > , 
(5.2.2) 

with 15.61~1 = l&/cl f rom strong interaction ‘penguin” lo effects, to get to the 

commonly used phase convention. This induces a term in the KL + ~r’e+e- 
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amplitude proportional to i sin < ti ;s (which is about an order of magnitude smaller 

than that which is proportional to e); we shall take due account of this term later 

when we consider the total CP violating amplitude that includes both “indirect” 

and “direct” pieces. This net amplitude, being a physical quantity, is independent 

of phase convention. 

With the above definition of “indirect” CP violation we may estimate its con- 

tribution to the decay rate from the identity: 

B(KL -+ r”e+e-)indirect E B(K+ + w+e+e-) x 

WL -X 
I’(K1 --f r’e+e-) x r(KL ---) r”e+e-)indirect 

TK+ I’(K+ + ?r+e+e-) I’(Kl + xOe+e-) . 
(5.2.3) 

This allows us to relate the desired quantity to the known branching ratio for the 

CP conserving decay K+ + n+e+e-. Experimental values26 of 2.7 x 10S7 and 4.2 

may be inserted for the first two factors on the right hand side, while the last factor 

is [cl2 by the definition above of what we mean by “indirect” CP violation. The 

third factor can be measured directly one day. For the moment it is the subject of 

model dependent theoretical calculations, with a value of 1 if the transition between 

the K and the 7r is AI = l/2. Th is is the case for the short-distance amplitude 

which involves a transition from a strange to a down quark. For AI = 3/2, the 

corresponding value is 4. With both isospin amplitudes present and interfering, 

any value is possible.41 Using a value of unity for this factor makes 

B(Kt + rOe+e-)harect = 0.58 x 10 -11 . 

This is quite close to the previous estimate in Ref. 14, although the discussion 

is phrased in a different manner. Instead of relating the branching ratio back to 
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Figure 5.2. Long distance contributions to KL + r’e+e-. 

that for KS + w+e+e- , one could proceed directly from the amplitude for Kr --f 

7r”e+e- using the theoretical, QCD corrected, short-distance contribution to the 

real part of this amplitude. This is dangerous; the QCD corrections to the real part 

of the short-distance contribution are so large as to change its sign, as pointed out 

in Ref. 14, and discussed in the next Section. As a result, its magnitude cannot be 

calculated reliably. It is too small to explain P(Ii’+ + n+e+e-) and there is a high 

likelihood that long-distance contributions are important. Ultimately all of this 

discussion can be bypassed by an experimental measurement of I’( KS -+ n’e+e-). 

This will provide a direct determination of the third factor on the right-hand side 

of Eq. (5.2.3), removing all the present uncertainty that stems from our theoretical 

inability to supply a precise prediction for this decay rate. 

5.3. CP Violation from the Decay Amplitude 

We now turn to the calculation of the CP violating contributions to the K2 -+ 
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n’!+e- amplitude. After QCD effects are introduced in the theory, we are left 

with an effective Hamiltonian for the process KL --$ 7r”e+e- in the form of a sum 

of Wilson coefficients times local operators which, following the notation of Ref. 

42, is expressed as: 

C+(P)&+ + c-(p)&- + cg(p)Q~ 

+ c v;vqd c719,Qv + ~~A,~&A + h.c. , 
q=u,c,t 

(5.3.1) 

where the coefficients 

c’Iv,q = 

C7A,q = 

F:YZq, 4 + (4 - sin:ow) %Y~Q? P,>? 

Fy(“q, P)}, (5.3.2) 

are given in terms of the QCD corrected form factors defined in Chapter 3. 

We have neglected operators of the form m, ET,,” F”“d as giving a very small 

contribution to the net amplitude, after their coefficients and matrix elements are 

taken into account. In addition, some important features of the QCD effects are 

worth mentioning. First, to order e”, non-zero coefficients are generated for the 

first six operators as we move successively down from the weak scale to one quark 

mass and then another. The operators Q3, Q4, Q5, and Q6 arise from “penguin” 

diagrams involving gluons. The operators Qk = i[Q2 f &I] are multiplicatively 

renormalized: a@&) r(*) 
4p2) = &.2) 1 1 C&p&) , (5.3.3) 

with c*(M&) = 1, and where r(t) = 6/(33-2Nf) and r(-) = -12/(33-2Nf) for 
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Nf quark flavors in leading logarithmic approximation between the scale Mw and 

the scale ~1. At the same time, to order e2 the coefficients of the operators Qv and 

QA are generated from their values at Mw plus mixing effects of the operators &I 

and Q2 with Qv or QA. The ‘penguin” operators, 93, 94, Qs, and Q6, which arise 

only through QCD effects, have coefficients which start out at zero at the weak 

scale. They typically never grow to be more than an order of magnitude smaller 

than the coefficients for Q*. So, while we in principle consider the whole 8 x 8 

anomalous dimension matrix 
43 

which describes the mixing among all the operators 

in Eq. (3.1) as we go from one scale to another, it is an excellent approximation 

to consider the mixing only of Q* with Qv and QA and the renormalization of 

Qk as in (5.3.3). In the same spirit we neglect the effect of taking order e2 matrix 

elements of the “penguin operators,” 44 which is also known to give a small effect. 

The derivation of the QCD corrected contributions when mt N Mw proceeds 

in a straightforward manner, if one follows the general method given in Chapter 3. 

The QCD corrections to c$$!, are negligible and those to @?, are large. However, 

the corrections to 8.$$, are enormous, for they can easily change not only the 

magnitude but the sign of this coefficient. As pointed out in Ref. 14, this is readily 

understandable by considering the correction to FE(z,) - FE(cc,) rewritten as: 

2 

2 -A 
J 
-d42[2 c+(q2) - c-(q2)] . 

97r q2 
cc2 

Before QCD effects are considered, the integrand is [2 x 1 - l] = 1. When QCD 

is included, the coefficient c+(q2) decreases and c- (q2) increases so that the can- 

cellation between the terms in the integrand becomes more complete. In fact, over 
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most or all of the region of integration from p2 to rnz the second term overwhelms 

the first and the integrand is negative. 

For the real (CP conserving) part of the short-distance generated amplitude, 

the contribution from the top quark is negligible because of the Kobayashi - 

Maskawa factor. It is @$, - @$, which gives the important short-distance con- 

tribution to the real part of the amplitude for K t x&+[-, and the possibilities 

for making a precise theoretical prediction are nil because of the situation we have 

just described: The QCD corrections typically change not just the magnitude but 

even the sign of the coefficient of Qv. Aside from this explicit indication of danger 

from delicate cancellations in the calculation, a comparison of the magnitude of the 

resulting amplitude with that required from the measured rate for K+ + r+e+e- 

shows that the theoretical calculation gives a result that is much too small to ex- 

plain the data. Long-distance contributions, not unexpectedly, are necessary to 

understand the magnitude of the real part of the amplitude. 

This is entirely different than the situation with regard to the imaginary (CP 

violating) part of the amplitude. The Kobayashi - Maskawa factors for charm and 

top are the same, up to a sign: 

(5.3.4) 

These quantities are all invariant under a (quark field) rephasing:5’46 and in (5.3.4) 

have been kept in a form to exhibit that fact. The numerator on the right-hand- 

side is just a form of the invariant measure of CP non-conservation proposed by 

Jarlskog4’ for three generations. In the original parametrization of Ref. 4, the 

quantities in (5.3.4) are expressible as sin 02 sin fl3 sin 6 = ~2.~3~6, with cosines of 
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small angles set equal to unity. We shall use this shorthand to refer to the rephase 

invariant quantity in (5.3.4) in what follows. 

Because of the Kobayashi-Maskawa factors, it is momentum scales from rnz 

to mf that contribute to the imaginary part. This can be seen, for example, 

by combining the charm and top quark leading logarithmic contributions to the 

imaginary part of C$) E C$, - C$$, in the absence of QCD: 3 

hd$:) = S#js&i @t(/t2) - &?“c(,2) 
I 

Mf4 dq2 J 1 - 
q2 

m? 

2 mc 

(5.3.5) 

Thus, no dependence on the scale p appears in this expression. There is every 

reason to expect the short-distance contributions to give the dominant part of the 

udirect” CP violating amplitudef7 

Once QCD corrections are applied, the integrand is reduced, but over most or 

all of the range of integration it does not change sign (from that for free quarks). 

Thus, while the QCD corrections are non-negligible, they are fairly insensitive to 

changes in parameters and reliably calculable for the imaginary part. This is shown 

in Figure 5.3, where the QCD corrected e.$ = e$it - e.$, is indicated with solid 

curves for AQCD = 100 and 250 MeV as a function of the top quark mass. The 

result is independent of p 2. While about a factor of two smaller than the result 

without QCD (dashed curve), the result does not depend strongly on AQCD or top 

quark mass. 
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“Electromagnetic penguin” contribution k!pG = cpv!r - 6$.tc as a function of 

ml without (dashed curve) and with (solid curves) QCD corrections for AQCD = 100 and 250 

MeV. 

To assemble the full coefficient, C,v, we need to add the “2 penguin” and 

“W box” contributions. For those involving the t quark, they may be taken di- 

rectly from their value in the free quark theory. When mt N Mw there are no 

QCD corrections to be applied, as these contributions are generated at momentum 

48 scales from mt to Mw where there are no large logarithms. For those contri- 

butions involving the c quark, there are important QCD corrections., However, 
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Figure 5.4. Contributions to the coefficient & from each of its components, the “elec- 
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tromagnetic penguin”, the “Z penguin” and the Ubox” diagrams and the total & with QCD 

corrections (solid curves) for AQCD = 150 MeV, and the total coefficient without QCD corrections 

(dashed curve) as a function of mt. 

these contributions, being proportional to zc = m:/M&, are themselves negligible 

compared to those coming from the ‘electromagnetic penguin”. 

The total coefficient & z &v,t - -C~V,~ and the contributions from each of its 

components is shown in Figure 5.4. Even after being reduced by QCD corrections, 

the contribution from the “electromagnetic penguin,” 0, is the largest of the 
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three. This is in good part due to the smallness of the vector coupling of the 

2’ to charged leptons (which is proportional to 1 - 4sin2 0~). Otherwise, the 

contribution of the ‘(2 penguin” would dominate for large values of ml. 

The dominance of the “2 penguin” contributions at large ml can be seen in 

Figure 5.5, where the total and component parts of the coefficient &A z &~,t - 

C7,4c are shown. As mt + co, @2)1 grows as mt, , while @:r’ goes to a constant. 

In &A, the “box” contribution is less than that from the “2 penguin” for ml ;2 

Mw. 

Note that in the opposite situation where rni << M&, both these contributions 

behave as xt - lnxt and are non-leading when compared to the “electromagnetic 

penguin” contribution (to &), which behaves in the same limit as lnxt. QCD 

provides corrections to such large logarithms, which can arise when there is a large 

ratio of momentum scales. Our philosophy here, with mt - Mw, has been to keep 

the leading and non-leading contributions at the scale Mw, and to also carry out 

the QCD corrections to the large logarithms that arise from integration over scales 

with a big ratio. In fact, the nonleading contribution @$t(M&) is a small part 

of the full @$. Some of the ambiguities at the low scale p also cancel out in the 

imaginary part of the amplitude, where the different sign in Kobayashi-Maskawa 

factors for charm and top makes the resulting amplitude arise from scales larger 

than m,. 

To proceed to actual branching ratios or decay rates, we may avoid some arith- 

metic by relating the hadronic matrix element of the operator, (~~7~(1 - 75)&), 

which occurs in Qv and QA, to that of the corresponding charged current operator, 

(3’a7/4 - 75)4, h h w ic occurs in Kc3 decay. Then the form factors and phase 
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Figure 5.5. Contributions to the coefficient &A from the “Z penguin” and the “box” 

diagrams as a function of ml. 

space involved in this latter decay are automatically entered by Nature into the 

measured branching ratio for that mode. Using this, we find from the measured 26 

branching ratio for Ke3 decay that 

B(K2 -+ vr’e+e-) = 1.0 x 1o-5 (s2s3sb)2 [(c7V)2 + (z;,,)‘] . (5.3.6) 

The factor in square brackets is shown in Figure 5.6. With QCD corrections, 

and with rnt between 50 and 200 GeV, it ranges between about 0.1 and 1.0. While 
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Figure 5.6. The quantities (&v)~ and (&A)~ as a function of mt , and their sum, (c~v)~ + 

(&A)~, with (solid curve, AQCD = 150 MeV) and without (dashed curve) QCD corrections. 

the combination .QS~S~ enters other CP violating quantities such as c and c’, im- 

precisely known hadronic matrix elements and rnt presently allow a broad range 

of values of this combination. From measurement of Kobayashi-Maskawa matrix 

elements, ~2~3~6 5 2.5 x 10 -3. For rnt at the low end of the acceptable range (as 

constrained by B ’ - 8 mixing), the allowed region of Kobayashi-Maskawa param- 

eters contracts and s2s3sg must be quite close8 to 10e3. More generally, a typical 

value is in this neighborhood. Putting this information into (5.3.6) we see that the 

62 



branching ratio for KL --) 1 e e ’ + - from CP violation in the decay amplitude alone 

is around 10-ll. 

5.4. Conclusions for KL + n’.!+l- 

From the results of the previous three sections, it appears that from our present 

knowledge, the three contributions to the process KL + 7r”.@!- could each give 

rise to a branching ratio in the lo-l1 range. With further theoretical and/or 

experimental work, it is possible that the CP conserving contribution might yet be 

shown to be well below this level. 

This is not the case for the effects of CP violation in the mass matrix and in 

the decay amplitude. Their contributions are comparable, roughly at the 10-l’ 

level in branching ratio, and in general will interfere in the expression for the total 

decay rate. 

Some care must be exercised about phase conventions in calculating this in- 

terference. We have been calculating the CP violation in the decay amplitude in 

terms of what happens at the quark level, where strong interaction “penguin” di- 

agrams induce a AI = l/2 K --) err transition which has a CP violating phase. 

The standard convention, on the other hand, where (CP)K’ = II”, starts from 

making the amplitude for K + xx real when the final state has I = 0 (as it would 

from a AI = l/2 transition). To get to the standard convention from the quark 

basis requires absorbing a phase s proportional to c’ into the neutral K field, as de- 

scribed in the Appendix. As a result, in the amplitude for “indirect” CP violation, 

e -b e - it, if [[I is small. A somewhat abbreviated expression for the branching 
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ratio from all CP violating effects is then, 

B(KL +r’eTe-) M [ IO.16 (eiri4 - if$) (:[:i 7 :~e~~~l)1’2 

+i(~)crv/2 + ~(~)E74 .1o-11 , (5.4.1) 

where we have taken into account the phase conventions mentioned above. In 

the last term of Eq. (5.4.1) we have neglected the contribution from c times 

the real part of C7,4, which is only a few percent of the imaginary part of C7A 

(see Appendix). Eq. (5.4.1) indicates th e interference of amplitudes coming from 

“indirect” and “direct” CP violation. Neglected is the fact that the two interfering 

amplitudes (those which involve vector coupling to the lepton pair) can have a 

different dependence on the pair invariant-mass and the interference can then vary 

with this quantity. If both amplitudes came from short-distance effects (which we 

have indicated is very unlikely for the “indirect” CP violation), then (I’(Kl + 

r’e+e-)/I’( K+ + a+e+e-))l12 is negative, the interference is the same for all 

values of the pair invariant-mass, and (5.4.1) stands as written. 

Since c’/c = -15.6[ M 3 x 10m3, the extra piece from the change of basis 

is small, but interferes constructively with that from E. The terms coming from 

“direct” CP violation are comparable to those from the mass matrix (“indirect” CP 

violation), and we cannot give a definitive conclusion as to their relative magnitudes 

without further knowledge of A(K1 + r”l+C), ~2~3~6, and ml. Nor can we give 

a statement as to constructive or destructive interference without a model for the 

long-distance effects which we suspect are inherent in the “indirect” CP violation 

amplitude. As rnt becomes larger, more of the “direct” CP violation comes through 
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QA (see Figures 5.4, 5.5, and 5.6). A s a result, the theoretical predictions become 

more definitive, as the QCD corrections to C7A are very small and this contribution 

does not interfere in the expression for the decay rate with that from “indirect” 

CP violation. Even for large mt, however, it is hard to get a branching ratio that 

is more than a few times 10-l’. 

We have a major advantage over calculations of other CP violating effects 

in the K" system in that the hadronic matrix element of the relevant operators 

(QvandQ~)f rom the short-distance physics is given to us from Kf3 decay. There 

is no uncertainty here. Nevertheless, we would assign an uncertainty from the 

QCD corrections, the neglect of non-leading QCD terms, and possible “direct” 

CP violating contributions from order e2 matrix elements of Qr to Q6, of 10 to 

20% for C~V, even if we knew mt precisely along with all the Kobayashi-Maskawa 

parameters. Conversely, if there were both a precise measurement of mt and of 

the KL + 7r”.@e- branching ratio that resulted in an isolation of the amplitude 

for “direct” CP violation, there would be an uncertainty of this magnitude in the 

extracted value of ~2~3~6. While not as precise as one might like, this would be 

far better than the determination from c and c’, where non-trivial hadronic matrix 

elements enter. 

There are a number of experimental observations which would help to sort 

out various contributions and their magnitudes. We conclude by briefly discussing 

some of them: 

l The short-distance generated amplitudes have a dependence on the kinematic 

variables of the final state which is identical to that in Kl3 decay, with 

obvious substitutions of particle names. This allows an easy calculation of 
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decay rates with cuts on final state kinematic variables, e.g., restrictions 

on ma. Comparison with observations of K+ + a+l+l-, KS + x’l+t-, 

and KL + ?r”e+4?, would help to sort out long-distance contributions from 

short-distance ones. 

l The relative rates for KL + a’e+e- and KL + .~r’p+p- are sensitive as 

well to the CP conserving two-photon contribution, with the factor of me 

that accompanies the A amplitude (see Section 5.1) acting to enhance its 

contribution in the latter reaction in comparison to the former. 

l The direct measurement of KL + ~‘77 can be used as an input to calcula- 

tions of the two-photon, CP conserving contribution to KL -+ r”lsP. In 

particular, one could separate the A and B amplitudes by measuring the 

Dalitz plot distributions, such as the invariant mass distribution of the two 

photons.40 

l If both CP conserving and CP violating amplitudes are present with even 

roughly comparable strengths, they will in general interfere on the Dalitz 

plot, giving rise to a large lepton - antilepton energy asymmetry.37 

l The “indirect” CP violating amplitude can be obtained from a measurement 

of KS + rOl+t-. Any deviation in the then measured rate for KL + 

?r’e+e- from the straightforward prediction involving multiplication of the 

former rate by Ic - $I2 is then evidence for “direct” CP violation in the 

decay amplitude (assuming the CP conserving contribution has been shown 

experimentally or theoretically to be small). 

l One can imagine a full interference pattern being measured, as was done for 
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the ~~IT?T mode, where one sees both the regime of KS + ?r’-f?.f? decay followed 

by that for KL + T’!+!-, with an interference region between the two 

regimes of exponential decay. This would permit not only the measurement of 

the two rates, but the phase between the “indirect” and “direct” amplitudes 

whose interference is indicated in Eq. (5.4.1). 

As of now, we have a long way to go experimentally. While recent upper 

limits 49,50 are around 4 x 10S8, and are improvements by orders of magnitude on 

51 
earlier limits, we have about three orders of magnitude further improvement in 

sensitivity needed to see the standard model signal. 

Finally we note that in the large mt regime, all the decays K+ + r+uF, KL + 

?rOl+i?- , and K L + ?r’v~ have amplitudes which are dominated by contributions 

from the “2 penguin” and “W box” graphs, and the latter two, which are CP 

violating, have comparable rates in this regime. 
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6. Branching Ratios for K + ~~47 

We just studied the decay of KL into x and charged leptons, where the pres- 

ence of different kinds of contributions at the same order of magnitude, like CP 

conserving and CP violating amplitudes or long distance and short distance terms, 

make the analysis rather complex and theoretical predictions hard to disentangle. 

These difficulties are less likely to occur in rare decays of K mesons into neutri- 

nos. la The reason for this is the absence of electromagnetic coupling to neutrinos, 

suppressing the major long distance contributions found lg above. In addition, and 

for the same reason, there is no ‘electromagnetic penguin” in K --+ XZG, but only 

“2 penguin” and ubox” diagrams. As was shown in Chapter 5, it is the “electro- 

magnetic penguin” which gives the most important QCD corrections to the decay 

KL + r’l+l-; in the present case, however, QCD corrections have to come from 

the “2 penguin” and “box”, which are quite different from those coming from the 

‘electromagnetic penguin”. We therefore expect to find a new effect of QCD in 

these decays. 

As additional features, the charged meson decay K+ + 7r+v~ contains a dif- 

ferent combination of Kobayashi - Maskawa elements, and the neutral meson decay 

KL + T’YF, with long distance and CP conserving amplitudes highly suppressed, 

could provide a clear signal of direct CP violation in the decay amplitude. 

6.1. The decay K+ ---) w+vF 

Feynman diagrams for the process I( + TveFc are shown in Figure 1.2. They 

are similar to the diagrams for the short-distance contributions to the process 
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K + ?rf%?, except for the absence of the “electromagnetic penguin” and the 

appearance of different lepton lines. The latter induces a dependence on the mass 

of the charged lepton in the loop and, as shown in Chapter 2, a different weighting 

of the diagrams: the “box” appears enhanced by a factor of 4 with respect to the 

appropriate ((box” for the decay into charged leptons. 

At a hadronic scale ~1 below the charm mass and appropriate for K decays, we 

write the effective Hamiltonian for AS = 1 processes as: 

‘H”, = - z [KL%l,(r)yi + C s\Vq$v,q{ Qv - QAJ] + h.c., (6.1.1) 
q=u,c,t 

where the effective four-quark operators &I to Q6 are the same as in Eq. (3.1). 

The V - A character of the gauge boson coupling to neutrinos allows only the 

operator 
n 

Qv - QA = &~r,(l - 75)&)(~&‘(1- r5)ve) (6.1.2) 

to appear to lowest order in electroweak interactions to represent the short-distance 

contributions to K + ~VF in the summation. 

After comparing the effective Hamiltonian (6.1.1) with the short distance cal- 

culation (2.19), we match the coefficients cV,* of the semileptonic operator, which 

receives contributions involving quarks Q = u, c, t from both the “2 penguin” and 

((box” diagrams: 52 

(6.1.3) 

where zq = mi/M&. For small z9, the leading terms in (6.1.3) come from the 

logarithm [see Eqs. (2.21)], with its coefficient in ~~~oz) being four times larger 
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and of opposite sign to that in 2;;:). The contribution of the u quark is neglected 

(because of an overall factor of zu), leaving c and t quark contributions which 

are comparable in the amplitude for K* ---) &vi7 when the respective Kobayashi- 

Maskawa factors are included. 

The leading logarithmic QCD corrections are applied to the term proportional 

to In zg, which arises here from an integration from the scale rni to that of the weak 

interaction, M$. With the introduction of &CD, the integrand gets an additional 

scale dependence reflecting those of the four-fermion interaction and the running 

of masses, so that 24 

M& Mtv GJ 
J 

dq2 
J J &I2 7- QCD 42’ 4 4 4 

Since by assumption the t quark has a mass comparable to the W, its contribution 

has no large logarithms and in addition comes from a region where a, is small. 

Therefore the QCD corrections to cV,t are neglected. Consequently, the only signif- 

icant QCD corrections of interest here are those to the charm contribution. From 

the results of Chapter 3, we find for the ubox” 

vpJ4 = 127r 

wqilm,2) >( 

(K$’ - 1) + Kc$4’25 (1 - Kb;tl”“) 

G-4 Q-4) > 

, (6 1 4) 
. . 

with K~IW = a,(mi)/a,(M&) and Kc/b = a,(m~)/cr,(m~) in effective five and 

four quark theories, respectively. 
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For the “2 penguin” the corresponding QCD correction factor is: 

(Z) = ‘IC 

([ 

(K;;;' - 1) ( 1 - Kc;;1'25) 
- 

a4m:) 4%) 1 (6.1.5) 

( VW K5/23 - 1) 
Q-4, 

_ +;;$3 Cl 

Numerical values of the charm contribution, before and after QCD corrections, 

can be found for various values of AQCD in Table 6.1. The values there correspond 

to qiBo=) = 0.61 and viz) = 0.31 when AQCD = 150 MeV. Especially for the 

“2 penguin,” the QCD corrections are large (by ulargen meaning a value of 77 far 

from 1). However, since the leading logarithm, Zn(M&/mE), enters the amplitude 

for K + TUT in the ratio of 4 to -1 (of Uboxn to “2 penguinn), the effective 

QCD correction factor to the leading logarithm in the overall charm contribution 

is [4(0.61) - 1(0.31)]/[4 - l] = 0.71 . 

There remains the question of how to treat the QCD corrections to the non- 

leading terms, which appear to be more important here than in the case of KL -+ 

7r”e+L. In general, the coefficients cv,q may contain different (non-leading) 

renormalization-scheme dependent terms of the form: (constant) x zq . Being a 

physical quantity, the net amplitude can not change in going from one scheme to 

another, as there are compensating changes in the matrix elements of the other 

operators. Without a higher order QCD calculation of the anomalous dimensions 

and the matrix elements, a scheme dependence remains in the QCD corrections to 

the non-leading terms in the coefficients. 
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Leading Log Only 

No QCD -4.7 18.9 14.2 

AQCD = 100 MeV -1.7 12.1 10.4 

AQCD = 150 MeV -1.5 11.5 10.0 

AQCD = 250 MeV -1.1 10.5 9.4 

___------- ----- 

Full Contribution 

No QCD 

QCD applied to 
leading log only 

(AQCD = 150 MeV) 

QCD applied to leading 
and non-leading terms 
(AQCD = 150 MeV) 

-3.0 16.6 13.6 

0.3 9.1 9.4 

-1.0 10.6 9.6 

Table 6.1. The coefficient f?“,, for m, = 1.5 GeV (Units of 10S4). 

If we take the non-leading terms of the charm contribution from Eq. (6.1.3), 

then it does not make much difference what is done as far as QCD corrections 

to them. The next-to-leading terms are in the ratio of -4 to +3 and cancel 

against each other, as can be seen from Eqs. (2.21) and (6.1.1), or by comparing 

the (no QCD) leading logarithm portion with the full contribution of charm in 

Table 6.1. As QCD corrections reduce the coefficient of the leading logarithm, 

the non-leading terms become relatively more important if no correction is applied 

to them. Even in this case, there is only a 10% difference in the total charm 
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contribution (compare the sixth and third row of Table 6.1) if the non-leading terms 

are included, although the effects are very much bigger in the component pieces, 

especially CL:‘. The application of QCD corrections characteristic of the scale m, 

to these next-to-leading terms reduces their magnitude and makes them even less 

significant (row seven of Table 6.1). The lesson is that there is a sizable difference 

in the charm contribution due to QCD corrections to the leading logarithm, but 

only small differences induced from changing the value of AQCD or from handling 

the QCD corrections to the non-leading terms in different ways. 

With the QCD corrections in hand, we can apply them to the amplitudes for the 

processes of interest. The branching ratio (per neutrino flavor) for K* + r*vei?l 

can be related to that for Ke3 decay, as shown in the Appendix, to yield 

B(K* --) r*vt~t) = 2 IVud12 a2 lCv12 B(K+ + ?r”e+ve) 
, 

= 5.1 x 1o-6 lVud12 lCy12 
(6.1.6) 

where 

C” M 4,c + e E”$ . u*s ud 
(6.1.7) 

We have performed a full numerical search over Kobayashi-Maskawa parameter 

space to obtain maximum and minimum values of the branching ratio as a function 

of mt, which is shown in Figure 6.1. Our results without QCD corrections (dashed 
53 

curve) are very close to those of Nir. 

An upper limits3 on the rate occurs when m, is as large as allowed (1.7 GeV 

here), and we replace y*g&/V&Vud in Eq. (6.17) by minus its maximum magni- 

tude, allowing complete constructive interference between the charm and top con- 

tributions. Unitarity of the KM matrix gives II&l < 0.024, while for mt 2 120 GeV, 
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50 100 150 200 
mt GeV) 

Figure 6.1. Maximum and minimum of the branching ratio (per neutrino flavor) for 

h’+ + *+yL without (dashed curve) and with (solid curve) QCD corrections (&co = 150 

MeV). 

a more stringent upper limit on IV&l occurs from & - Ed mixing and possibly 

the branching ratio for KL --$ p+p-. The upper bound on the rate so derived 

holds for three generations of quarks irrespective of whether CP violation arises 

from the Kobayashi-Maskawa matrix. In fact, adding the c constraint lowers the 

maximum rate by at most a few percent. On the other hand the minimum of 

B( K* + **vti7!) for a given mt occurs both when m, is as small as allowed (1.3 

GeV here) and the potentially constructive interference between the charm and 

top contributions tends to be as small as possible. 
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When one compares to the branching ratio with QCD corrections (solid curve), 

there is a decrease in the minimum by x 30%. The maximum, on the other hand, 

decreases by M 25%. for smaller mt and x 15% for larger values. Although the 

detailed formulas are different, this is numerically similar to the results of Refs. 

21 and 22. From the preceding discussion this is to be expected in that, even 

though we take account of the change in operative quark flavors at the &scale and 

mt being comparable to Mw, the basic physics is the same and the magnitude of 

54 the QCD corrections is not sensitive to the details of the running of a,. 

6.2. The CP violating decay KL + x”vF 

The process Ki -+ 7r”u~~~ is determined by the same diagrams and effective 

Hamiltonian as above. The only difference comes from the external hadrons: since 

‘s these are CP eigenstates, the decay becomes particularly interesting. Being the 

coupling of the hadrons to the neutrinos primarily mediated by a vector current, 

the decay turns out to be CP violating. 

It is clear that the coupling of hadrons to neutrinos is a current-current type 

of interaction for the “2 penguin”, since the 2 boson itself provides the coupling 

between the currents. This is less obvious for the “box” diagram, where there 

are two W bosons mediating the quark and lepton sectors. However, in the short 

distance expansion of the interaction, the leading term of the “box” is also of the 

current-current type, as can be seen from the identity (2.16). Once the interaction 

is factorized as: 

< a”vYIXIK~ > = < x”lJ;lHadlK~ >< vi?lJ,!&lO >, 



we can examine the CP properties of the hadronic matrix element. From the fact 

that the hadrons are (pseudo-)scalars, the only vectors available to reproduce the 

Lorentz structure of the current are the particles’ momenta. Consequently, the 

axial component vanishes and the current becomes pure vector-like. It is then 

clear that the hadronic transition from the KL to the ?r” and vector current follows 

a Jpc struc$re: 

o-+ + cl--+ + 1--. 

So far, CP seems to be conserved. Nevertheless, in order to conserve angular 

momentum, the final state must be in an orbital p-wave, adding an extra factor 

of -1 to the parity transformation, and making this mode to be CP forbidden. 

The branching ratio per neutrino flavor is calculated following the lines of the 

Appendix, where hadronic form factors are determined by relating this amplitude 

to that for Ke3 decay: 

B(K; + ?r”z&) = 2.1 x lo-’ IVud12 I(tz - it)Re C, + iIm Cylz . (6.2.1) 

The term proportional to Re C, gives a negligible contribution and 

Im C, = Im - C,c) , (6.2.2) 

with the rephase invariant quantity Im (Vt~&/v$vUd) M ~2~3~6 in the original 

parametrization of Kobayashi and MaskawaP Therefore 

B(K; + T’v$+) X 2.1 X 10-5(s3s3sa)2 IEV,t - EV,c12 . (6.2.3) 
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0.5 - 

0 I I 

Figure 6.2. The quantity I&,, - &,c12, which enters the branching ratio for the CP 

violating decay KL -+ x”@t, as a function of ml. 

Theoretical predictions are much cleaner here than in the case of I<L + n’.@e- 

due to the absence of electromagnetic coupling to neutrinos. First of all, we do 

not expect large CP conserving amplitudes here, which in the previous case were 

mediated by two photons. A CP conserving amplitude mediated by two 2 is 

certainly negligible. Second, recent estimates of long distance contributions show 

that these are negligible as welhl’ Finally, the quantity Ic,t - eV,e12, which is 

shown in Figure 6.2, is completely dominated by the top contribution, where QCD 

corrections should be very small. As ~2~3~6 is of order 10e3, the branching ratio 

with three generations of neutrinos is of order 10-l’. The major contribution to 
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KL + W’UY has to come directly from a CP violating decay amplitude, which is 

calculable with very small theoretical uncertainties. This is clearly an ideal place to 

test the validity of the Kobayashi-Maskawa phase as the origin of CP violation in 

the three generation Standard Model. Unfortunately, the experimental difficulties 

to measure a process of this kind are very formidable.? 
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Appendix 

In this appendix we want to show some details involved in the calculation of 

the decay rates, such as phase conventions, notation and the like. Starting from 

the effective Hamiltonian (2.18) for K + re+e-, expressed as: 

we calculate the amplitude < e+e-n’l’HIKL >. In order to define all phases 

consistently, we choose the states K” and I(’ such that: 

(CP)K’ = 71;” 

(CP)? = K” 
(A-2) 

We choose this basis to be the one where the amplitude for K” + mr(I = 0) 

is real, after taking out the phase shift coming from ~7r strong interactions. In this 

basis, we can express KL as the combination: 

KL = pK” - q?. (A-3) 

The coefficients p and q are slightly different, to take into account CP violation in 

the mixing of K” and ?: 

p=$(l+6) q=-+) (A4 

If we choose another phase for the K”, ?, as it is the case when working in 
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a quark basis, then the CP transformation on the K’s become: 

(CP)KO = e2;t 3? 

(Cp)f;io = ,-2it K” 

and a corresponding phase appears in p and q. For t small: 

+l+r-iC) q= $1 - c + it) 

(A-5) 

(A-6) 

Now we turn our attention to the amplitude < e+e-r”IHIKL >. In the phase 

convention where the pion and K wave functions are expressed as: 

7r+ = & 

T- = Ed 

K0 = sd 

K’ = s;i 
(A-7) 

we define the hadronic charged current form factors f+ and f-: 

< 7r+(p’)pypslK”(p) > = < 7qp’)lqfpuIK0(p) > E 

f+(q2)(p + 20, + f-(q2)qp 
(A.8) 

with q = p - p’. Doing an isospin rotation, we can also obtain similar relations for 

the neutral currents: 

< ~“kwh14mP) > = < r”(p’)Is~pdlKo(p) > E 

-- & (f+k2)(P + P’)r + f-(q2h). (A.9) 

Now we are in position to calculate the amplitude < e+e-r”13CIKL > from 

the effective Hamiltonian (A.l). The only non-vanishing matrix elements of the 
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operators Qv and QA that contribute to this amplitude are: 

< e+e-?r”lQvlKo > = Q < T’IZ~~(~ - 7s)dlK’ > (z7pe) 

< e+e-~OIQ~l? > = Q < 7r”l&p(1 - 75)sjP > (E,e) 

< e+e-~“k.hlKO > = cy < ~‘jSy,(l - 7s)dlK” > (i+ypy~e) 

< e+e-r”[Qf41? > = Q < T”127p(l - 75)sl? > (E7p7se) 

(A.lO) 

Due to parity, only the vector part of the hadronic currents survives, which 

can be expressed in terms of f+ and f-. Moreover, the term proportional to qp 

vanishes when contracted with the electron current, so that only f+ is relevant in 

our calculation. 

Since the vector and axial vector lepton currents do not interfere, the square 

of the amplitude separates into two terms: 

1 <w’e+e-(‘HIKL > I2 = 5 Q y]2(K.F.)x 
Jz 

(A.ll) 

{ 1 c &‘,q(P v;v,cf - q &$;)I2 + 1 c ETA,& vp*,sd - q I/gss:)i2}. 
Q B 

The kinematic factor (K.F.) comes from the square of the lepton currents 

contracted with the meson momenta, and is the same for both vector and axial 

vector pieces. 

The form factor f+(q2) cannot be calculated exactly. Fortunately, we do not 

need to, since it can be determined from the experimental value of the charged K 

81 



decay K+ + roe+,: 

1 < r’e?vltilK+ > I2 = 2 [ gq] 2(K.F.) IVus12. 

The important point here is that the kinematics of this process is identical to that of 

KL -+ n’e+e-, since the electron mass is negligible. This means that the invariant 

mass of the lepton pair, q2, is the same for both decays, so there is no need for 

a model to extrapolate the value of the form factor at two different momentum 

scales. 

After using (A.6), we can express (A.ll) in a form that separates the direct 

(i.e. ImV,‘,V,d) from the indirect (i.e. N c ) CP violating contributions: 

An important remark about this expression is that the unitarity relations of the 

Kobayashi-Maskawa elements for three generations of quarks allows us to write the 

direct CP violating pieces in terms of a single factor: 

Also, the term proportional to (c - it) is negligible compared to 1rr~[V:~V~d]. Con- 

sequently, we neglect this term in the sum involving C~,J,~. However, we do not 

neglect it in the sum that contains C7v,q. It is true that in this last case the term 
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is also negligible but, as it is, it only takes into account the short distance con- 

tributions to the decay K1 + ?r ’ + e e -. Since we know the decay K+ + r+e+e- 

contains important long distance contributions, we expect the same to happen 

here. Therefore, instead of neglecting the term under discussion, we reexpress it 

in terms of the decay rate of the charged K. After appropriate normalizations, we 

obtain for the branching ratio: 

TtKL) B(KL + r’e+e-) = B(K+ --) r’e+v)- 
TtK+) {I 

ia(s2s3&7V,t - E7v,c) 

+ 1+2s3@7A,t - aA,c)12}- (A.13) 

In this last expression, all branching ratios and lifetimes on the right hand side, 

except I’(K1 + r’e+e-), are experimentally known quantities. Our predictions are 

for the direct CP violating terms, which involve the factor ~2~3.~6; the unknown 

quantity I( K1 + ?r’e+e-)/I’( K+ -+ ?r+e+e-) may hopefully be determined in 

future experiments through the measurement of I’(Ks + r’e+e-), pinning down 

in this manner the long distance contributions to this rare decay. An estimated 

value of 1 is obtained for this ratio if only A1 = l/2 transitions are assumed, but 

in the presence of 

possible. 

The derivation 

lines as above, but 

comparable AI = 3/2 transitions, any value for this ratio is 

of the branching ratio for I(+ -+ rr+v~ goes along the same 

with the use of the effective Hamiltonian (2.19) expressed as: 
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and the hadronic matrix elements: 

< ~+b’P7,w+(d > = < a-(P’)l~7/,slK-(p) > s 

f+b2)(P + P’)cc + f-k72)!lP 
(A.15) 

obtained from (A.8) also by means of an isospin transformation. 

Normalizing the amplitude with that for K+ + roe+, our result takes the 

form: 

< n+vi7f’HIK+ > 2 
< 7r”e+vl’FIIK+ > / (A.16) 

After reducing the sum over q = c,t with the use of the unitarity relation 

(2.20), the only coefficients that enter the expression (A.16) are eU,, - eV,, and 

&,t - E”,U. Moreover, the u quark contribution can be neglected in both cases, so 

that actually the only important coefficients are ey,c and &. Even though the 

first of these coefficients is much smaller than the second, it cannot be neglected, 

since they become comparable after taking the Kobayashi - Maskawa factors into 

account. The branching ratio is then expressed within this order of approximation 

as: 

B(K+ + T+ZE) = B(K+ + r”e+v)2cv2 (l&l2 Ev,f$$$ - cv,, 
2 

. 
tfs ud 

(A.17) 

Now, let us turn to the CP violating decay KL + rr’~~. The expression for its 

branching ratio has a strong resemblance to that for the decay into charged leptons. 

Proceeding in a similar way, after the corresponding change in the coefficients c, 

we can express the branching ratio as: 

84 



T(KL) 2a2 B(KL -+ T’VF) = B(K+ --) r’e+v)-- 
T(K+) I& I2 

xIC~Y,q{(~-i~)Re[l/disv,,] + i~m[~:%d])12* (A-18) 

4 

From a theoretical perspective, however, we are here in a more fortunate situa- 

tion, since the indirect CP violating terms (those proportional to c) do not receive 

important long-distance contributions and so can be actually neglected. The main 

contribution to the decay comes directly from a CP violating amplitude, where the 

only uncertainty besides the top quark mass is the CP violating parameter (A.13) 

of the Kobayashi - Maskawa matrix. QCD corrections are also negligible in this 

case, since the coefficients cV,, - and Cv,t appear now as a simple difference: 

B(KL -+ ~‘~77) = B(K+ + r’e+v)- Taco (1mVt*,%d)2 - - 2 

w+ 1 
p/42 (co - %c> * 
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