
SLAC-R-740         

Measurement of CP Asymmetries and Branching Fractions in Neutral B Meson 
Decays to Charged Pions and Kaons with the BABAR Detector * 

Amir Farbin 

Stanford Linear Accelerator Center 
Stanford University 
Stanford, CA  94309 

SLAC-Report-740                                                                          

Prepared for the Department of Energy 
under contract number DE-AC02-76SF00515 

Printed in the United States of America. Available from the National Technical Information 
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA  22161. 

                                            
* Ph.D. thesis, University of Maryland, College Park, MD 20742 



Abstract

Title of Dissertation: MEASUREMENT OF CP ASYMMETRIES

AND BRANCHING FRACTIONS IN

NEUTRAL B MESON DECAYS TO

CHARGED PIONS AND KAONS

WITH THE BABAR DETECTOR

Amir Farbin, Doctor of Philosophy, 2003

Dissertation directed by: Professor Abolhassan Jawahery

Department of Physics

This disseration presents a measurement of CP asymmetries and branching frac-

tions for neutral B meson decays to two-body final states of charged pions and kaons.

The results are obtained from a data sample of about 88 million Υ (4S) → BB̄

decays collected between 1999 and 2002 with the BABAR detector at the PEP-II

asymmetric-energy B factory located at the Stanford Linear Accelerator Center. A

fit to kinematic, topological, and particle identification information measures the

charge-averaged branching fractions B(B0 → π+π−) = (4.7 ± 0.6 ± 0.2) × 10−6

and B(B0 → K+π−) = (17.9 ± 0.9 ± 0.7) × 10−6; the 90% confidence level upper

limit B(B0 → K+K−) < 0.6 × 10−6; and the direct CP-violating charge asym-

metry AKπ = −0.102 ± 0.050 ± 0.016 [−0.188,−0.016], where the first uncertain-

ties are statistical and the second are systematic and the ranges in square brack-

ets indicate the 90% confidence interval. A fit which adds decay time and b-flavor

tagging information measures the CP-violating parameters for B0 → π+π− decays

Sππ = 0.02±0.34±0.05 [−0.54,+0.58] and Cππ = −0.30±0.25±0.04 [−0.72,+0.12].
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Chapter 1

Introduction

1.1 Matter/anti-matter and the Universe

The scientific endeavor to unravel the mystery of existence is based on the premise

that phenomena at the largest conceivable scale, ie what we observe as we look into

space, is connected to the smallest known scale, i.e. what we know about sub-

atomic particles, at the very beginning of the Universe. Perhaps the most convincing

evidence to support this idea is that some 13 billion years after the instant we believe

the Universe began, we observe the after-glow of the those early moments with the

precise signature predicted by our theories. It would be specious, however, to imply

the picture is complete and all is understood.

One seemingly striking inconsistency in this picture is that though our theory

of fundamental sub-atomic particle interactions (the Standard Model) places matter

and anti-matter at nearly equal footing, our Universe appears to be composed of only

matter. Indeed the Standard Model accounts for small differences (or asymmetries)

in the interactions of matter and anti-matter through a phenomena known as “CP

violation”, and we can conceive of how such a difference leads to the dominance of
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matter. Yet it falls short, by orders of magnitude, in accounting for the observed

matter asymmetry in the Universe. Fortunately there are many reasons to believe

that the Standard Model does not fully describe the fundamental laws leading to the

modern Universe.

Though every experimental measurement of the properties of sub-atomic particles

has precisely agreed with Standard Model predictions, a limitation of this model’s

construction is that it is not the fundamental theory, but is rather what is known

as an “effective” theory describing phenomena to certain distance (or equivalently

energy) scale. The physics of smaller (or higher energy) processes are obscured in

parameters which must be measured, much like the measurement of a spring constant

encapsulates the more complicated and detailed mechanics of a spring. What’s more,

we know that not only is the Standard Model incomplete, but that more importantly,

there is physics beyond it which necessarily sheds light on unexplained phenomena.

Progress in physics is commonly the result of the observation of an inconsistency

with an existing theory. Since the matter/anti-matter difference incorporated in the

Standard Model is manifested in merely one parameter, it is an excellent candidate

for revealing such an inconsistency. Furthermore our speculations (or rather our

only viable predictions) of the physics beyond the Standard Model generally provide

more sources of CP violation. Therefore investigations of the matter/anti-matter

asymmetries hold great prospect for gathering hints of what lies beyond the Standard

Model.

In the previous decade, two powerful particle accelerators were specifically built

to study CP violation in the properties of a particle which promises to be an excellent

probe of such phenomena: the B meson. These colliders, known as asymmetric “B

factories”, provide abundant samples of this particle in an environment condusive to
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detailed measurements of its behavior. At each factory a collaboration of physicists

has assembled an array of detectors to precisely record the remnants of eachB meson’s

decay. A primary goal of these experiments is to look for inconsistencies in the

Standard Model picture of CP violation. Typically this task is represented as a test

of the closure of a triangle (i.e. its angles add to 180) whose angles α, β, and γ

are related to decays of B meson to different final states, and whose area reflects

the magnitude of CP violation in the Standard Model. Already, these projects have

measured sin 2β to be 0.734 ± 0.054 [24], or more significantly, clearly not zero, and

therefore established the B meson as only the second particle which has been directly

observed to demonstrate CP violating behavior in nearly 40 years of searching.

With the current precision, the Standard Model appears to correctly predict the

value of β. In this decade, as records of B meson decays accumulate, physicists will

perform numerous new tests and refine their existing assessment of the consistency

of the Standard Model’s matter/anti-matter asymmetries. This dissertation focuses

on the decays of neutral B mesons to two particle final states containing charged

kaons and pions. These decays promise to yield information on two other important

angles, α and γ, which are vital ingredients in the B factories’ test of CP violation

in the Standard Model. The analysis is based on data collected at the Stanford

Linear Accelerator Center’s asymmetric B factory, which is composed of the PEP-II

electron/positron storage ring and the BABAR detector.

1.2 Overview of the contents

This dissertation attempts to portray a comprehensive picture of BABAR’s analysis of

the B0 decays to the π+π−, K+π−, and K+K− final states. In order to motivate the
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study of these modes, the next chapter focuses on how the angles α, β, and γ relate the

Standard Model, CP violation, and B decays. Chapters 3 and 4 present an overview

of the BABAR detector and its supporting software as a means of facilitating detailed

discussions of the analysis in later chapters. Chapter 5 discusses the experimental

challenges presented by the B0 → π+π−, K+π−, K+K− decay modes and details

the various techniques adopted for the analysis, eventually outlining its blueprint.

Chapter 6 presents the extraction of the branching fractions for these modes. Chapter

7 surveys the remaining ingredients required for the full CP analysis of the B0 → π+π−

decay, which is presented in chapter 8. Finally chapter 9 evaluates the impact of the

measurements presented in this dissertation on our knowledge of Standard Model

parameters, and discusses future prospects.
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Chapter 2

Theory

Our understanding of the sub-atomic phenomena observed in high energy accelerators

and detectors is encapsulated in the Standard Model (SM) of the electromagnetic,

weak, and strong interactions. This chapter is a survey of how CP violation (CPV) in

the SM is explored at the B factories. We’ll begin by summarizing the basic elements

of SM, focusing on the CKM matrix in order to illuminate the origins of CPV in

the theory. After studying the phenomology of CPV, we’ll examine how the neutral

B decays relate to SM parameters. Finally, we’ll focus on the specifics of two-body

B0 decays to charged pions and kaons, revealing the potential significance of the

measurements described in this dissertation.

2.1 A Brief History of Discrete Symmetries

The discrete space-time operations of parity (P : x → −x) and time-reversal (T : t→
−t) have classical interpretations. Testing the parity conservation of a classical theory

corresponds to validating the invariance of its laws of motion under a mirror reflection

about a coordinate plane followed by π-rotation about the axes perpendicular to

that plane. Similarly, time-reversal symmetry of a classical theory indicates no time
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direction preference. These operations were recognized long before the advent of

quantum mechanics and quantum field theory as symmetries of classical theories of

gravity and electromagnetism. Charge-conjugation (C) operation, however, was first

brought to light by relativistic quantum theory’s prediction of anti-particles. This

operation, which corresponds to reversing all quantum numbers of a particle while

keeping the mass unchanged, has no classical analogue.

Before the 1950’s it was generally assumed that each of these discrete operations

were fundamental symmetries of nature. In 1956 Lee and Yang [1], by surveying the

available experimental evidence, determined that parity conservation was “only an

extrapolated hypothesis.” Soon afterwards Wu et al. [2] discovered parity violation in

β decay of 60Co, and Goldhaber et al. [3] found neutrinos emitted in electron capture

by 157Eu were all left-handed (i.e. had opposite spin and momentum directions),

indicating C violation.

Charge-conjugation violation, however, was generally found in conjunction to P

violation. As an illustration, consider charged pion decays to muons where out of

the four possible transitions 1: π+ → µ+
RνµL

, 2: π− → µ−
L ν̄µR

, 3: π+ → µ+
LνµR

, and

4: π− → µ−
Rν̄µL

, only the first two have been observed. P violation accounts for the

absence of the missing decays. However C is also violated because C : (1) → (4) and

C : (2) → (3). Yet since the observed π+ and π− decays are related by the combined

C and P operations, CP is conserved.

CPV was first discovered by Christenson et al. [5] in 1964 with the discovery of

the decay KL → ππ. Soon afterwards Sakharov [4] suggested CPV to be one of the

integral components of any mechanism leading to the matter/anti-matter asymmetry

in our universe. In the next few decades, the SM, which encapsulates the Kobayashi-

Maskawa [6] mechanism of CPV through flavor-changing charge currents between
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Family Electr. Weak Charge

Fermion 1 2 3 charge Color left-hd. right-hd. Spin

Leptons νe νµ ντ 0 n/a 1
2

n/a 1
2

e µ τ -1 n/a −1
2

0 1
2

Quarks u c t 2
3

r,b,g 1
2

0 1
2

d s b −1
3

r,b,g −1
2

0 1
2

Table 2.1: The fundamental particles and their quantum numbers.

Coupling Particle(s) Symmetry

Force Charge Exchanged

Electro-weak Electric/weak Photon (γ), W±, Z0 U(1) × SU(2)

Strong Color 8 Gluons (g) SU(3)

Table 2.2: The fundamental interactions and their mediating particles.

three generations of quarks, became established as the fundamental theory of particles

and interactions.

There was no indication of CPV outside the kaon system until recently (2001),

when the B factories met their first major milestone and observed the phenomena in

B meson decays to CP eigenstates containing charmonium [7].
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2.2 The Standard Model of Fundamental Particles

and Interactions

The building blocks of the Standard Model are three fundamental realizations of

particle physics:

1. three families of particles (listed in table 2.1), each consisting of two quarks and

two leptons, are the building blocks for all matter, including the hundreds of

exotic particles produced in high energy accelerators;

2. the interactions of these particles are the expression of three local gauge sym-

metries of nature (see table 2.2); and

3. interactions with a heavy scalar with a non-zero vacuum expectation value

bestows mass on all of the particles and breaks the electo-weak gauge symmetry.

The aesthetic appeal of the SM is that the elegant interplay of these three basic

elements leads to a theory that describes all known phenomena with high precision.

In order to be predictive, the model relies on 18 experimentally inferable parameters,

most of which are related to the mechanism by which all particles acquire mass:

interactions with the still unobserved Higgs boson. In addition to particle masses,

these Higgs-related parameters encapsulate the flavor changing processes (i.e. the

mechanism by which one generation of quarks couples to another) in the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. The SM predicts that one parameter in this

matrix is the only source of CP violating processes among quarks.
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2.2.1 The Building Blocks

Table 2.3 displays the Minimal Standard Model’s (MSM) three generations of quarks

and leptons and the spin-zero Higgs boson. Note that the suggestive notation used to

express these fields are indicative of experimental observations. For example, the table

lists no right-handed neutrino, reflecting that up to recently there was no evidence

for such a particle.

The dynamics of each fermion is governed by a term f̄ iγµδµf in the Lagrangian,

where γµ are Dirac matrices. The SM, however, requires that the theory obeys the

gauge symmetries U(1) × SU(2) × SU(3). This condition promotes the derivative in

the fermion terms to a “co-variant” derivative

δµ → Dµ = δµ − ig1
Y

2
Bµ − ig2

σi
2
W µ
i − ig3

λa
2
Gµ
a ,

which introduces fermion interactions with new force mediating vector fields. Here

the gi are the coupling constants; Y , σi, and λa are the generators; and Bµ, W µ
i , and

Gµ
a are the mediators of the resulting interactions of the U(1), SU(2), and SU(3)

symmetries, respectively.

Table 2.3 indicates how the fields transform under each of the gauge symmetries.

Once again the table reflects experimental observations. The SU(2) symmetry max-

imally violates parity, thus the left-handed fermion fields are doublets under SU(2)

transformations (and are therefore written in doublet form), while the right-handed

fermions are SU(2) singlets. Also leptons carry no strong charge and are represented

by SU(3) singlets with no color index α.

The simplest model of the Higgs field with a vacuum expectation value adds

LHiggs = (DµH)†(DµH) − λ

4
(H†H − v2/2)2

9



Table 2.3: The Minimal Standard Model matter fields. The L and R subscripts

indicate left and right-handed fields, respectively. The i = 1, 2, 3 index enumerates

the generations. The α = r, g, b is used for the SU(3) transformations of the quarks.

The U(1) column lists the hyper-charge, while SU(2) and SU(3) columns list the

dimension of representation of the fields under the respective gauge transformation.

Field U(1) SU(2) SU(3)

ui,αR 2/3 1 3

di,αR −1/3 1 3

eiR −1 1 1

Qi
L =

⎛
⎜⎝ ui,αL

di,αL

⎞
⎟⎠ 1/6 2 3

LiL =

⎛
⎜⎝ νiL

e−L

⎞
⎟⎠ −1/2 2 1

H =

⎛
⎜⎝ H+

H0

⎞
⎟⎠ 1/2 2 1

10



to the Lagrangian, where the last term is the Higgs potential which is symmetric un-

der the gauge symmetry Q : H → eiφ(x)QH , where Q = σ3

2
+ Y

2
is the electric charge

operator. The U(1) × SU(2) electroweak gauge symmetry of the total Lagrangian

is spontaneously broken when nature selects a particular configuration from the con-

tinuum of degenerate minima of the Higgs potential. Expanding about this specific

minimum and using gauge transformations to eliminate any massless components of

the Higgs,

H(x) =

⎛
⎜⎝ 0

v/
√

2 + Re h0(x)

⎞
⎟⎠ .

As a consquence, the W± and Z bosons acquire masses from the dynamic terms of

the Higgs Lagrangian1:

L =
g2
2v

2

8
(W1W1 +W2W2) +

v2

8
(g2W3 − g1B)2.

The massive charged bosons are then recognized from this expression as W± =

W 1∓iW 2√
2

, with mass MW = g2v
2

. Similarity the neutral boson is Z = cos θWW
3 −

sin θWB with mass Mz = MW

cos θW
, and the massless photon is A = sin θWW

3+cos θWB,

where tan θw ≡ g1/g2.

The introduction of Yukawa couplings of the Higgs to the fermions:

LYukawa = giju ū
i
RH

T (−σ1σ2)Q
j
L − gijd d̄

i
RH

†Qj
L − gije ē

i
RH

†LjL + h.c.,

introduces fermion mass terms when the Higgs is expanded about its minimum, but

still retains the gauge invariance of the Lagrangian. Here σi are the Pauli matrices.

The mass matrices

Mu = vgu/
√

2,Md = vgd/
√

2,Me = vge/
√

2,

1In order to ease notation, color and Lorentz indices are suppressed when possible.
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are not necessarily diagonal, so these Yukawa couplings also introduce mixing between

the different generations. The Lagrangian is therefore not expressed in terms of fields

of definite mass but rather the eigenstates of the interactions. Redefining the fields

using unitarity transformations2

uL = Luu
′
L , uR = Ruu

′
R,

dL = Ldd
′
L , dR = Rdd

′
R,

eL = Lee
′
L , eR = Ree

′
R,

so that Dk = L†
kMkRk is diagonal with positive entries, allows rewriting the La-

grangian in terms of the mass eigenstates. The consequence of this redefinition in the

terms of the Lagrangian is minimal. The kinetic terms and the Z and A couplings

are unaffected by the unitary transformations. Also since neutrinos are assumed to

be massless, the lepton fields may be chosen to be simultaneous mass and weak eigen-

states, so lepton terms are unaffected as well. The only change in the Lagrangian is

in the quark couplings with the W bosons, which only interact with the left-handed

fermions. Defining L†
uLd as the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM,

these terms become

LW± = − g2√
2
ūiLγ

µdiLW
+
µ + h.c.

= − g2√
2
ū′iLγ

µ(VCKM)ijd′jLW
+
µ + h.c.

The flavor mixing introduced by the Yukawa interactions is now encapsulated in

VCKM =

⎛
⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎠

2The convention presented here transforms both the up and down quark fields. We may also

choose to only transform one set of these fields.
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and mediated by the W boson exchanges of the left-handed quarks.

2.2.2 CP Violation in the Standard Model

In order to describe observations, the SM must exhibit C, P, and CP violations. A

quick glance at table 2.3 reveals that P and C violations were built into our con-

struction of the SM through the absence of the right-handed neutrino and the lack of

SU(2) charge for the right-handed fermions. Hence these asymmetries are the conse-

quence of the first building block (see section 2.2) of the SM. Finding CP Violation,

however, requires a more detailed inspection of the model.

Noting that pure gauge Lagrangians are necessarily CP-invariant [8], eliminates

the second building block, the gauge symmetries, as a source of CPV. Hence we are

left with the Higgs mechanism. The scalar potential of one Higgs doublet clearly con-

serves CP3. Therefore, the only remaining element of SM is the Yukawa interactions

of the fermions with the Higgs. However, since the these couplings were explicitly

diagonalized and the fermion field redefined to produce mass terms, CP violation is

not apparent in the interactions with the Higgs. Recalling that the affect of this

redefinition was the addition of Vij to the flavor changing interactions, we may then

identify the CKM as the only potential source of CP violation.

Examining the relevant terms in the SM Lagrangian, we note that

(CP )
g2√
2
ū′iLγ

µ(VCKM)ijd′jLW
+
µ (CP )† = eiφ

g2√
2
d̄′iLγ

µ(VCKM)iju′jLW
−
µ

which when compared to the hermitian conjugate term g2√
2
d̄iLγ

µ(V ∗
CKM)ijdjLW

−
µ implies

that CP conservation requires

V ∗
ij = eiφVij. (2.1)

3More than one Higgs bosons may lead more sources of CPV.
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Here φ is an arbitrary single phase, which may be chosen to satisfy the condition (2.1)

for one CKM element. However, the condition is not necessarily satisfied for all ele-

ments, and if more than one element of the CKM matrix is complex, CP conservation

is violated in the SM.

Another potential source of CP violation in the SM is the likely presence of a P

and T violating term

Lθ = θ̄
g2
s

32π2
F aµνF̃ a

µν

in the QCD Lagrangian. The origin of this effect, known as “the strong CP problem”,

are beyond the scope of the present discussion. The reader may refer to [9][p. 329]

for details regarding this topic. Measurements of the electric dipole moment of the

neutron, Dn, constrain θ̄ < 3 × 10−10 [10], which is significantly smaller than the

observed CPV parameter in the CKM matrix.

2.2.3 The CKM Matrix and Unitarity

The unitarity of the CKM matrix may be viewed as a consequence of its definition

as VCKM ≡ L†
uLd, where the matrices Lu and Ld are required to be unitary so that

|ūLuL| = |ū′Lu′L| and |d̄LdL| = |d̄′Ld′L|4. Since this imposes strong requirements on

CKM elements, we quickly check that CPV through complex elements in CKM matrix

is permitted.

Unitarity imposes the 9 constraints

∑
i

V ∗
ijVik =

∑
i

VijV
∗
ik = δjk, (2.2)

on the matrix’s 18 (9 real + 9 complex) parameters, eliminating 9 of them. Since

the matrix only appears in the Lagrangian contracted with two different fields (i.e.

4Unitarity also insures positive masses for the fermions.
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ūiLγ
µV ijdjL), five phases may be absorbed into uiL and diL. Furthermore, the remaining

4 parameters can be chosen such that only one is complex. This parameter is the

solitary source of CP violation in the quark sector of the SM. It is important to note

that in the accounting performed here, three quark-lepton generations are the minimal

requirement for a complex parameter in the CKM matrix (i.e. two generations would

result in no CPV phases).

A survey of measurements of the magnitudes of CKM elements provide [11]:

|VCKM| =

⎛
⎜⎜⎜⎜⎝

0.97504 ± 0.00049 0.2221 ± 0.0021 0.00270− 0.00371

0.2220 ± 0.0021 0.97414 ± 0.00049 0.00387− 0.00432

0.0072 − 0.0092 0.0380 − 0.0427 0.99907− 0.99926

⎞
⎟⎟⎟⎟⎠ . (2.3)

We observe that transitions within each quark-lepton family is much more probable

than those between the first and second, which are more probable than second and

third, leaving transitions between the first and third generations as the least likely.

A convenient approximate parameterization of the CKM was suggested by Wolfen-

stein [12]5:

VCKM =

⎛
⎜⎜⎜⎜⎝

1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎠ +O(λ4).

The measured quantities in 2.3 reflect that |Vus| and |Vcb| (and therefore λ and A)

can be measure directly and are well known. Current measurements of |Vub| and |Vtd|
(therefore ρ, and η), however, have large uncertainties [24].

5For an exact parameterization of the CKM matrix in terms of 3 real parameters and 1 complex

phase, please see [13].
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cd cb*V   V

udV   Vub*

*td tbV   V

γ

α

β

Figure 2.1: The Unitarity Triangle.

2.2.4 The Unitarity Triangle

The unitarity conditions (2.2) relate the nine complex elements Vij of the CKM ma-

trix to one another. Since these elements are in principle all directly measurable,

the consistency of the unitarity conditions may be experimentally confirmed. Any

evidence of the failure of the unitarity of the CKM matrix is an indication of one

of two possibilities: there are more than three generations of quarks and leptons, or

there is new physics beyond the CKM picture of flavor changing interactions. The

former possibility is constrained by measurements of the number of light neutrino

flavors contributing to Z decays. Therefore discovering that the CKM elements do

not obey the unitarity conditions is a good indication of new physics.

The equations (2.2) form six triangles and three rectangles in the complex plane,

providing convenient geometric representations of the unitarity conditions. In partic-

ular, the relation containing all b quark elements,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0,

is often used to form the Unitarity Triangle (UT) which is pictured in figure 2.1. Here

the resulting angles

α = arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ = arg

[
−VudV

∗
ub

VcdV ∗
cb

]
,
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Figure 2.2: The Unitarity Triangle in the ρ− η plane.

are sensitive to B meson decays to specific final states and are in principle experi-

mentally measurable. Confirming that α+ β + γ = π is a test of the unitarity of the

CKM matrix.

Recalling that unitarity implies that the CKM matrix is composed of only 4 pa-

rameters, we use the Wolfenstein parameterization to represent the UT in terms of

the least well known parameters, ρ and η. The triangle in figure 2.2 is therefore con-

structed by choosing VcdV
∗
cb to be real and scaling the sides of the triangle by VcdV

∗
cb.

This representation of the UT provides a convenient visual means of understanding

and comparing experimental measurements.

2.3 CP Violation Phenomenology

Having identified the source of CPV in the SM, we now turn our attention to how to

observe CPV phenomena in decays of mesons. The elusiveness of this task may be

inferred from the 37 years between the discovery of CPV in the kaon and B meson

17



systems.

2.3.1 Strong and Weak Phases

Consider the transition from the states i and ī to final states f and f̄ with only one

amplitude contributing:

〈f |T |i〉 = Aei(δ+φ),

〈f̄ |T |̄i〉 = Aei(δ−φ),

where T is the transition operator and A is a positive real number. The CP-even

phase that is common to both decays, δ, is referred to as a strong phase, and the CP-

odd phase that changes signs, φ, is referred to as a weak phase6. The CP operator

relates the CP conjugate states by inducing arbitrary phases:

CP |i〉 = eiηi |̄i〉 , CP |̄i〉 = e−iηi |i〉,

CP |f〉 = eiηf |f̄〉 , CP |f̄〉 = e−iηf |f〉. (2.4)

If CP is conserved by T ,

〈f |T |i〉 = 〈f |(CP )T (CP )†|i〉 = ei(ηi−ηf )〈f̄ |T |̄i〉.

Choosing ηi−ηf = 2φ−θ, we see that despite the presence of the CP violating phase

φ in this transition, the observable amplitudes are incapable of indicating any CP

violation in T .

CP violation is observable in transitions with two strong and weak phase contri-

6In general we could also add a spurious phase betweeen the two states which would have no

influence on this discussion. See [9].
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butions. Consider

〈f |T |i〉 = A1e
i(δ1+φ1) + A2e

i(δ2+φ2),

〈f̄ |T |̄i〉 = A1e
i(δ1−φ1+θ) + A2e

i(δ2−φ2+θ).

Here the presence of interference between the two amplitudes allows the construction

of the CP violating observable

|〈f |T |i〉|2 − |〈f̄ |T |̄i〉|2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2). (2.5)

Note however, that in order to obtain CPV, at least two differing strong and weak

phases are necessary. Such expression of CPV is known as direct CP violation.

It is possible to obtain CP violating observables without strong phases when con-

sidering decays to two different final states, or when i and ī decay to the same final

state f = f̄ . We’ll consider this latter case in the discussions that follow.

2.3.2 Neutral Mesons

In the absence of the weak interaction, a P 0 meson such as K0, D0, or B0 would be

stable and have a common mass with P̄ 0. Weak transitions, however, permit P 0 ↔ P̄ 0

mixing, forming mass/lifetime eigenstates which are a mixure of the flavor eigenstates.

Under the Wigner-Weisskopf approximation [14], the Schroedinger equation for the

time evolution and decay of the meson system

|ψ(t)〉 = ψ1(t)|P 0〉 + ψ2(t)|P̄ 0〉

may be written in the |P 0〉/|P̄ 0〉 basis as

i
d

dt

⎛
⎜⎝ ψ1

ψ2

⎞
⎟⎠ = H

⎛
⎜⎝ ψ1

ψ2

⎞
⎟⎠ = (M− i

2
Γ)

⎛
⎜⎝ ψ1

ψ2

⎞
⎟⎠ . (2.6)
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Here the matrices M and Γ may be computed from the weak Hamiltonian HEW in

second-order perturbation theory as

Mij = m0δij + 〈i|HEW|j〉 +
∑
n

P
〈i|HEW|n〉〈n|HEW|j〉

m0 − En
, (2.7)

Γij = 2π
∑
n

δ(m0 − En)〈i|HEW|n〉〈n|HEW|j〉. (2.8)

Since the “Hamiltonian” H in (2.6) is not hermitian, its eigenstates7

|PL〉 = p|P 0〉 + q|P̄ 0〉, (2.9)

|PH〉 = p|P 0〉 − q|P̄ 0〉, (2.10)

have the complex eigenvalues given by

∆µ ≡ ∆m− i

2
∆Γ = (mH −mL) − i

2
(ΓH − ΓL) = 2

√
H12H21,

where (mH , mL) and (Γ−1
H , Γ−1

L ) are the masses and lifetimes of the heavy and light

states |PH〉 and |PL〉. The ratio

p

q
=

∆µ

2M12 − iΓ12
=

2M∗
12 − iΓ∗

12

∆µ
=

√
2M∗

12 − iΓ∗
12

2M12 − iΓ12

will indicate if CP is violated in mixing of P 0 and P̄ 0. Using

CP |P 0〉 = eiη|P̄ 0〉,

CP |P̄ 0〉 = e−iη|P 0〉,

we find that requiring the conditions 2.4 in equation 2.7 implies that CP is conserved

when

M∗
12 = e2iηM12, (2.11)

Γ∗
12 = e2iηΓ12, (2.12)

7CPT invariance is employed here to allow the same p and q to be used for |PL〉 and |PH〉 and

H22 = H11.
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or rather

p

q
= ±eiη ⇒

∣∣∣∣pq
∣∣∣∣ = 1. (2.13)

As expected, this condition shows that CP invariance implies that |PL〉 and |PH〉 are

CP eigenstates. Failure of this condition indicates CP violation in mixing or indirect

CP violation.

2.3.3 CP Violating Observables

Consider the decay of the P 0/P̄ 0 meson to the final states f/f̄ :

Af ≡ 〈f |T |P 0〉 , Āf ≡ 〈f |T |P̄ 0〉,

Af̄ ≡ 〈f̄ |T |P 0〉 , Āf̄ ≡ 〈f̄ |T |P̄ 0〉.

Applying (2.4) and (2.11) to these amplitudes leads to the CP-invariance conditions:

Āf̄ = ei(ηf−η)Af ⇒ |Af | = |Āf̄ |, (2.14)

Af̄ = ei(ηf +η)Āf ⇒ |Af̄ | = |Āf |. (2.15)

As expected, the decay probabilities for P 0 to f and P̄ 0 to f̄ must be the same to

conserve CP. Deviation from these conditions signifies CP violation in decay.

We may construct a more concise CP conservation requirement by combining the

individual conditions for mixing and decay. Taking the ratio of the conditions (2.14)

and (2.15) we find

AfAf̄
Āf Āf̄

= e2iη =
q2

p2
. (2.16)

Defining

Λf ≡ q

p

Āf
Af

, Λf̄ ≡
q

p

Āf̄
Af̄

,

allows (2.16) to be written more simply as

Λf =
1

Λf̄
. (2.17)

21



This condition encapsulates another possible expression of CP violation. In order to

illustrate, let us consider the simplified case when P 0 and P̄ 0 decay to a CP eigenstate

(i.e. CP |f〉 = ηfCP
|f〉, ηfCP

= ±1), and there is no CPV mixing or decay:

Af = Aei(δ+φD), Āf = ηfCP
Aei(δ−φD) ⇒ |Af | = |Āf |, (2.18)

q/p = e2iφM ⇒ |q/p| = 1. (2.19)

As before, we have introduced a strong phase but we have used different mixing and

decay weak phases φM and φD. In this case, Λf = ηfCP
e2i(φM−φD). However, since

f = f̄ , Λf = Λf̄ , and (2.17) becomes

Λf = ±1 = ηfCP
e2i(φM−φD), (2.20)

and a less apparent expression of CPV is revealed: CP violation in interference be-

tween mixing and decay.

In the case of meson decays to CP eigenstates, Λ �= ±1 for any of the three types of

CP violation: CP violation in mixing, |q/p| �= 1; CP violation in decay, |Āf/Af | �= 1;

and CP violation in interference between mixing and decay, non-vanishing relative

phase between q/p and Āf/Af . In the next section we will see how Λf appears in the

time-evolution of neutral mesons, specifically focusing on the B0. We will also see

how Λf is directly related to CKM parameters for specific B decays.

2.4 Neutral B Mesons

We now turn our attention to the B factories, where large numbers of B meson

pairs are produced through the process e+e− → Υ (4s) → BB̄. To a very good

approximation half of these pairs are the neutral B0/B̄0s. Studies of the decay of
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Figure 2.3: The leading diagrams contributing to B0 − B̄0 mixing.

these mesons to CP eigenstates provides a means of measuring angles of the unitarity

triangle.

2.4.1 Time Evolution of B’s

After production, a solitary B0 (or B̄0) will evolve according to the Schroedinger equa-

tion (2.6). Before decaying, the meson may change its flavor several times through

the box diagrams in figure 2.3. The time-dependent mass eigenstates

|BL(t)〉 = e−imLte−ΓLt/2|BL〉,

|BH(t)〉 = e−imH te−ΓH t/2|BH〉,
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are related to the flavor eigenstates by (2.9). Therefore

|B0(t)〉 = (e−(imH+ΓH/2)t + e−(imL+ΓL/2)t)|B0〉 +

q

p
(e−i(mH+ΓH/2)t − e−i(mL+ΓL/2)t)|B̄0〉, (2.21)

|B̄0(t)〉 =
q

p
(e−i(mH+ΓH/2)t − e−i(mL+ΓL/2)t)|B0〉 +

(e−i(mH+ΓH/2)t + e−i(mL+ΓL/2)t)|B̄0〉. (2.22)

Υ (4s) [19] decay, however, will produce two neutral B mesons in a coherent anti-

symmetric state. This two meson system will consist of one B of each flavor until one

particle decays. From that time on, the remaining B will obey (2.21) until its decay.

If one meson decays to a CP eigenstate, there is no means of identifying its flavor.

We will refer to this meson as BCP with decay time tCP . However, since at time of

the first decay only one meson of each flavor was present, the flavor of BCP may be

inferred from the other meson. We will refer to this meson as Btag with decay time

ttag. Identifying ∆t = tCP − ttag = 0 as t = 0 in (2.21), the probabilities of the two

observable anti-symmetric states (i.e. when Btag is a B0 or B̄0) are

ΓB0(∆t) =
1

2
|〈f |T |B0(t = tCP )〉〈B0(t = ttag)|B̄0(t = ttag)〉 −

〈f |T |B̄0(t = tCP )〉〈B0(t = ttag)|B0(t = ttag)〉|2

=
e−

|∆t|
τ

4τ
(1 + Sf sin (∆md∆t) − Cf cos (∆md∆t)), (2.23)

ΓB̄0(∆t) =
1

2
|〈f |T |B0(t = tCP )〉〈B̄0(t = ttag)|B̄0(t = ttag)〉 −

〈f |T |B̄0(t = tCP )〉〈B̄0(t = ttag)|B0(t = ttag)〉|2

=
e−

|∆t|
τ

4τ
(1 − Sf sin (∆md∆t) + Cf cos (∆md∆t)), (2.24)

where ∆md is the mass difference between BL and BH and the lifetime difference is
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assumed to be negligible8. Here

Sf =
2ImΛf
1 + |Λ2

f |
and Cf =

1 − |Λ2
f |

1 + |Λ2
f |
.

As before,

Λf = ηfCP

p

q

Āf
Af

,

where A = |〈f |T |B0〉|, Ā = |〈f |T |B̄0〉|, and ηfCP
is the CP eigenvalue of the final

state.

Equations 2.23 and 2.24 illustrate that the time structure of B decays to CP eigen-

states depend on Λf , providing an experimental means of accessing the observable

which is sensitive to the three types of CPV. As an example, consider the variable

ACP (∆t) =
ΓB0(∆t) − ΓB̄0(∆t)

ΓB0(∆t) + ΓB̄0(∆t)

= S sin(∆md∆t) − C cos(∆md∆t),

under the conditions (2.18) and (2.19), i.e. no CP violation in mixing or in decay.

Here ACP (t) will exhibit the oscillatory behavior

ACP (∆t) = ηfCP
sin 2(φM − φD) sin (∆md∆t),

with frequency ∆md and an amplitude which is related to the phase difference φD−φM
between the mixing and decay factors in Λf . A non-zero amplitude indicates CP

violation in interference between mixing and decay. Measuring ACP , however, requires

a sophisticated analysis of the Υ (4s) decay where one B meson is identified to decay

to a CP eigenstate, the flavor of the other B meson is determined, and difference

between the decay times of the two mesons is measured. We will detail the specific

requirements of such an analysis in later chapters.

8∆Γ is sensitive to Γ12, which (2.7) shows is small for mesons where only a small fraction of

decays are accessible to B0 and B̄0. B mesons are an example. See [19] for more details.
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Figure 2.4: B → J/ψKs tree and penguin diagrams.

2.4.2 Relating Λf to the CKM matrix

In general, the SM amplitudes for B decays may carry contributions from multi-

ple Feynman diagrams, each carry different CKM matrix elements. Therefore the

amplitude ratio in Λf is of the form:

Āf
Af

=
Aαf e

iα + Aβfe
iβ + Aγfe

iγ + ...

Aαf e
−iα + Aβf e

−iβ + Aγfe
−iγ + ...

.

If all of the amplitudes contributing to A and Ā could be calculated for a given decay,

Λf ’s relation to CKM matrix elements and unitary triangle angles would be easy to

identify. Unfortunately calculating amplitudes for hadronic B decays is rather com-

plex [28, 31]. Though the short distance processes governed by the weak interaction

and hard QCD can be cleanly calculated, long distance processes like hadronization

and rescattering are difficult.

Decays dominated by one phase require no hadronic calculation. As an example,

consider the leading diagrams for the decay B → J/ψKs presented figure 2.4. To

highest order in the Wolfenstein parameter λ, the tree level diagram containing the

factors VcbV
∗
cs ≈ λ2 and the leading loop diagram (known as penguin diagram) con-
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taining the factor VtbV
∗
ts ≈ λ2 +O(λ4)e−iγ carry the same CKM phase [18]. Therefore

ΛJ/ψKs = −VtdV
∗
tb

VtbV ∗
td

VcbV
∗
cs

VcsV ∗
cb

VcdV
∗
cd

VcdV ∗
cs

⇒ ImΛJ/ψKs = sin 2β,

where the first term is q/p (from diagrams in figure 2.3), the last term comes from

K0 − K̄0 mixing, and the middle term is Ā/A. Since ΛJ/ψKs is so cleanly related to

the angle β, this decay of the B meson is often referred to as “the gold-plated mode”.

2.5 B0 → π+π−, K+π−

The B0 decay to the CP eigenstate π+π− is the simplest transition sensitive to the UT

angle α. Consider the tree level diagram in figure 2.5, which carries the CKM elements

VubV
∗
ud ≈ λ3e−iγ . If B0 → π+π− is dominated by the corresponding amplitude,

Λπ+π− =
VtdV

∗
tb

VtdV ∗
tb

VudV
∗
ub

VubV ∗
ud

⇒ ImΛπ+π− = sin 2α.

The dominant penguin contribution to this decay, the t-quark diagram shown in

figure 2.6, carries the CKM elements VtbV
∗
td ≈ λ3eiβ. Therefore, in terms of the

ratio R = P/T of the magnitudes (excluding CKM factors) of the penguin to tree

amplitudes

Λπ+π− =
VtdV

∗
tb

VtdV ∗
tb

VudV
∗
ub

VubV ∗
ud

[
1 +R(VtbV

∗
td)/(VubV

∗
ud)

1 +R(VtdV ∗
tb)/(VudV

∗
ub)

]

= e2iα
1 −Reiδ−α

1 −Reiδ+α
≡ |Λπ+π−|ei2αEff , (2.25)

where δ is a relative strong phase between the two contributing amplitudes, and αEff

is the measurable “effective” angle.
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One indication thatR is non-negligible comes from the measured ratio B(B0→K+π−)
B(B0→π+π−)

.

The b → uūs diagrams contributing to B0 → K+π− are similar to the b → uūd (see

figures 2.5 and 2.6). If both decays are dominated by the tree amplitude, the ratio

B(B0 → K+π−)

B(B0 → π+π−)
≈
∣∣∣∣VubV ∗

us

VubV ∗
ud

∣∣∣∣
2

≈
(
λ4

λ3

)2

= λ2,

would be small. The measured world average of this ratio is 3.89± .85 [11], suggesting

a large contribution from the penguin b → ūus diagram which carries the CKM

elements VtbV
∗
ts ≈ λ2. More precisely, recent estimates suggest R ≈ .2 [15].

In addition to obscuring Λπ+π−’s relation to α, significant penguin contributions

and non-zero strong phase δ leads to CPV in decay for both B0 → π+π− and B0 →
K+π−. Since in the latter case the flavor of the B can be determined from the charge

of the kaon, B0 → K+π− is identical to the example presented earlier of a decay with

two contributing amplitudes leading to (2.5). Therefore if the time averaged quantity

AKπ ≡ B(B̄0 → K−π+) − B(B0 → K+π−)

B(B̄0 → K−π+) + B(B0 → K+π−)

is not zero, CP is violated in B0 → K+π− decays. For B0 → π+π−, where the flavor

of the decaying B is not reconstructible, the cosine coefficient of the time-dependence,

Cπ+π− =
|Aπ+π−|2 − |Āπ+π−|2
|Aπ+π−|2 + |Āπ+π− |2

will be non-zero if CP is violated in decay.

In order to calculate R and δ, some degree of control and understanding of hadronic

matrix elements is necessary. This problem is usually addressed by either relying heav-

ily on several experimental measurements and the symmetries that relate them, or

by focusing on first principle calculations and approximation techniques. Ultimately

the validation of the theoretical approach also relies on experimental measurements.
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Figure 2.6: B → uūd and B → uūs penguin diagrams.
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2.5.1 Disentangling Penguins and Trees using Isospin

One suggested method of extracting α from B → π+π− decays is to use isospin

symmetry to relate the tree and penguin contributions to different two-pion B de-

cays [26]. Applying the Wigner-Eckart theorem to the decays from the initial isospin

states |B0〉 = |1
2
,−1

2
〉 and |B+〉 = |1

2
, 1

2
〉, to the final states

|π0π0〉 =

√
2

3
|2, 0〉 −

√
1

3
|0, 0〉,

|π+π−〉 =

√
1

3
|2, 0〉 −

√
2

3
|0, 0〉,

|π+π0〉 =

√
1

2
|2, 1〉,

indicates that transition amplitudes are restricted to be of the form

A+− ≡ 〈π+π−|T |B0〉 = −
√

1

3
A1/2 +

√
1

6
A3/2 −

√
1

6
A5/2,

A00 ≡ 〈π0π0|T |B0〉 =

√
1

6
A1/2 +

√
1

3
A3/2 −

√
1

3
A5/2,

A+0 ≡ 〈π+π0|T |B0〉 =

√
3

2
A3/2 +

√
1

3
A5/2.

Relating these amplitudes to the leading b → uūd diagrams reveals that the tree level

diagrams contain only ∆I = 3
2

and ∆I = 1
2

transitions while the dominant gluonic

penguin diagrams are purely ∆I = 1
2
. The electroweak penguins which are not in

weak phase with the strong penguins are generally assumed to be small [26] and

therefore ignored. Eliminating A5/2 from above, the transition amplitudes are found

to satisfy the relation:

A+− +
√

2A00 =
√

2A+0.

Following the same procedure for the CP-conjugate processes leads to

Ā+− +
√

2Ā00 =
√

2Ā+0.
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Figure 2.7: The B → ππ isospin triangles.

Representing these two equations as triangles (see figure 2.7) illustrates graphically

how these relations allow the extraction of |A1/2|, |A3/2|, |Ā1/2|, |Ā3/2|, and the phases

θ and θ̄ from the six time integrated rates B0/B̄0 → π+π−, B± → π±π0, and

B0/B̄0 → π0π0. However, these triangles could have been drawn upside-down, so

an ambiguity exists in the determination of the angles θ and θ̄.

Since A3/2 arises from the tree diagram only, it must carry the same phase. There-

fore Λ may be written as

Λπ+π− =
q

p

Ā+−

A+− = −e2iα
|Ā3/2| − 1√

2
|Ā1/2|eiθ̄

|A3/2| − 1√
2
|A1/2|eiθ

,

allowing the extraction of sin 2α (with a 4-fold ambiguity) from time-dependent mea-

surements in B0 → π+π− decays.

Though the effect of theoretical uncertainties due to assuming SU(2) isospin sym-

metry and ignoring electroweak penguins is expected to be negligible for the extraction

of α, experimental difficulties inhibit the use of the isospin method in the near future.

The color suppressed π0π0 decay is expected to have a small branching ratio and has

not yet been observed [33]. This fact, coupled with the difficulties of reconstructing a

high energy four photon final state and the need to tag the flavor of the B, indicates

that the extraction of α through an isospin analysis is not in the immediate reach of
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the current experiments.

Bounds obtained by applying isospin symmetry argument are more likely to aid

in testing of the CKM picture of CPV in the near future. Requiring closure of the

isospin triangles in figure 2.7 leads to the relations [30]

cos 2(α− αEff) ≥ 1 − 2B00/B+0√
1 − C2

π+π−
+

(B+− − 2B+0 + 2B00)2

4B+−B+0
√

1 − C2
π+π−

,

cos 2(α− αEff) ≥ 1 − 4B00/B+0√
1 − C2

π+π−
+

(B+− − 2B+0 − 2B00)2

4B+−B+0
√

1 − C2
π+π−

,

where Bqq′ = 1
2
(|Aqq′|2+|Āqq′|2) are the CP averaged B → π(q)π(q′) branching fractions.

Setting Cπ+π− = 0 leads to the simpler but weaker Grossman-Quinn [29] bound

sin2(α− αEff) <
B00

B+0

which permits the use of the upper limits on the B0 → π0π0 branching fraction and

measurements of the B+ → π+π0 branching fraction to obtain the maximal deviation

of the asymmetry measured in B0 → π+π−, αEff , from the unitary triangle angle α.

2.5.2 SU(3) Flavor Symmetry

Invoking SU(3) flavor symmetry, the penguin contributions to B0 → K+π− and

B0 → π+π− are equal. This assumption leads to a relation which avoids the use of

modes with π0’s [34]:

cos 2(α− αEff) ≥ 1 − 2λ2B+−
Kπ/B+−√

1 − C2
π+π−

.

Here λ is the Wolfenstein parameter. Unfortunately SU(3) flavor symmetry breaking

may cause up to a 30% uncertainty on the amplitudes [74].
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2.5.3 Calculations of Hadronic Decay Amplitudes

Some earlier calculations of hadronic B decay amplitudes assumed that the matrix

element for B → h1h2 factorizes:

〈h1h2|Heff |B〉 = 〈h1|J1|B〉〈h2|J2|0〉.

Predictions were then obtained by using the B → h1 form factor for the first term

and decay constant of the h2 meson for the second. This approach, now known

as “naive factorization”, ultimately proved to be incapable of accurately predicting

certain branching fractions [36]. As a result non-factorizable contributions such as

gluon exchanges between h1 and h2 appear important in many decays.

Formal approaches to isolating dominant non-factorizable contributions to B0 =

b̄d meson decay amplitudes exploit the relatively large mass of the b quark to write an

heavy quark effective field theory (HQFT) that describes the QCD interactions of a

stationary b quark with relativistic d quark [27,31,86]. Under this approximation, the

light quark decouples from the soft QCD interactions simplifying the calculation of

the hadronic decay matrix elements. In the heavy quark limit (mb >> ΛQCD), calcu-

lations are performed using pertubation theory in αs. To leading power in ΛQCD/mb

and αs the results of naive factorization are reproduced. Though much progress has

been made in past few years that have led to successful prediction of various measured

branching fractions, the reliability of calculations based on this technique has not yet

been fully established. Some debate still exists regarding the various corrections

necessary to provide accurate predictions [15].
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Chapter 3

The Detector

Modern accelerator-based high energy experiments are typically the product of large

collaborations of the scientists and engineers who design, build, and maintain the ma-

chines that produce the exotic particles and the detectors that capture their existence.

The data employed in this dissertation was collected by the BABAR detector which

records the e+e− collisions inside the PEP-II storage ring at the Stanford Linear Ac-

celerator Center (SLAC). The BABAR collaboration consists of nearly 600 physicists.

The machine’s concept originated in 1987 with Piermaria Oddone’s suggestion

that an asymmetric electron-positron collider would provide an excellent environ-

ment for studying CP violation in B decays at the Υ (4s) resonance [37]. As we saw

in the previous chapter, B mesons had already been recognized as ideal probes of

CPV and the SM. Two laboratories ultimately accepted the challenge of developing

a program for B meson CPV studies using an asymmetric high luminosity e+e− col-

lider design: KEK in Japan and SLAC in California. At SLAC, the Positron Electron

Project’s (PEP) ring was upgraded to support a high energy electron beam and a

new lower energy positron ring was installed. Four and half years after the start of

construction, PEP-II’s first collisions took place on July 23, 1998. Meanwhile the
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BABAR detector, after a proposal in 1994 and a detailed Technical Design Report in

1995, was assembled in the PEP-II’s interaction region 2 (IR-2) hall. BABAR has been

recording the PEP-II collisions since May 1999.

In order to achieve their physics goals, the machine, detector, software, and per-

sonnel were required to operate as a factory, producing, recording, and analyzing the

decays of tens of millions of B meson pairs a year. In this chapter we’ll examine the

PEP-II and BABAR’s design basics. The next chapter will focus on the computing

aspects of BABAR and the experimental inputs to the physics analyses. The major-

ity of the information in these two chapters are derived from reference [38], which

documents the BABAR hardware and software systems in detail.

3.1 PEP-II

In the previous chapter we demonstrated how the time-evolution of B meson pairs

coming from the Υ (4s) (equation 2.23) are sensitive to CPV and provide a means

of measuring CKM parameters. Experimentally producing an environment which

permits such studies poses two challenges. First, when the Υ (4s) is produced at

rest, the small B lifetime (τB ≈ 1.5ps) and the small boost provided to mesons (the

Υ (4s) is only slightly more massive than the BB̄ pair, so p∗B ≈ 340 MeV/c2) makes

measurements of the separation of the two B meson decay points an experimental

impossibility given today’s technologies. Second, the decays of B’s to CP eigenstates

are very infrequent, having branching fractions that are typically less than 10−4.

These considerations necessitate that the collider designed for CPV studies in B

mesons should be energy asymmetric, producing Υ (4s) with sufficient boost so that

the decay points of the B mesons are distinguishable, and high luminosity, yielding
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significant numbers of B decays to CP eigenstates.

3.1.1 Design

SLAC’s 2 mile linear accelerator feeds 9.0 GeV electrons into a high energy ring

(HER) and 3.1 GeV positrons into a low energy ring (LER) which reside in the 2200

meter PEP-II circular tunnel. These particles, kept in orbit by magnets and radio-

frequency (RF) acceleration, are collided at one interaction region inside the BABAR

detector. Here the beams, while being tuned with a series of quadrapole magnets, are

brought together and then separated by a pair of dipole magnets. High luminosity

is achieved by simultaneously maintaining several hundred bunches of electrons and

positrons in each ring. The two ring design also aids in producing high luminosities

by minimizing interactions between the beams.

With a center of mass energy at the peak of the Υ (4s) resonance, about 10.58 GeV,

the e+e− system is Lorentz boosted in the electron direction with βγ ≈ .55. The

resulting B mesons travel an average of 260 microns along the electron beam before

decaying. At this resonance, e+e− → BB̄ production accounts for nearly a quarter

of the total hadronic cross-section (see table 3.1). The latest technical design and

operating parameters of the PEP-II rings are listed in table 3.2.

3.1.2 Operation and Performance

Though PEP-II operates at the Υ (4s) resonance, a small portion of the running time

(≈ 12%) is dedicated to data taking at a CM energy of 40 MeV below the resonance

in order to aid in background studies for analyses sensitive to e+e− → uū, dd̄, ss̄, cc̄

events, known as continuum background.

Figure 3.1 displays the accumulation of total integrated luminosity from October
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e+e− → Cross-section/nb

BB̄ 1.10

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

µ+µ− 1.16

e+e− ≈ 40

Table 3.1: Approximate production cross sections at PEP-II, including the experi-

mental acceptance of BABAR.

Parameters Design Best

Energy HER/LER (GeV) 9.0/3.1 9.0/3.1

Current HER/LER (A) 0.75/2.15 1.050/1.775

Number of Bunches 1658 800

Bunch spacing (ns) 4.2 6.3 − 10.5

σx (µm) 110 120

σy (µm) 3.3 5.6

σz (mm) 9 9

Luminosity (1033cm−2s−1) 3 4.602

Luminosity (pb−1/day) 135 120

Table 3.2: PEP-II design and highest luminosity operating parameters.
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Figure 3.1: The integrated PEP-II luminosities delivered to and recorded by BABAR.

1999 to June 2002. The analysis in this dissertation employs 82 fb−1 (or 88 million

BB̄ decays) of the on-resonance data. While the beam energies are calculated by

PEP-II from the total magnetic bending strength and the average deviations of the

RF accelerating frequencies from their mean values, the absolute luminosity, luminous

region size, and beam position and angles are determined by BABAR. The B counting

technique will be discussed in the next chapter.

3.2 BABAR

The BABAR detector was designed to meet the stringent requirements of an ambitious

physics program. Given the small branching fractions and high physics backgrounds

of many interesting B decay modes and the sophisticated vertexing and flavor iden-

tification requirements of time-dependent CP analyses, the detector had to possess

large and uniform acceptance, highly efficient and accurate charged and neutral par-
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Figure 3.2: y − z cross-section schematic of the BABAR Detector.

ticle reconstruction, and powerful particle identification, while operating reliably for

long periods in a possibly high radiation environment. In this section we will briefly

discuss various components of the BABAR detector.

Figures 3.2 and 3.3 display the y − z and x − y cross-section schematics of the

BABAR detector, where the electron beam direction is defined as the +z direction

and +y points upward. Five sub-detectors, built as nested concentric cylinders about

the interaction point, are supported by an array of electronics that control, readout,

and monitor every component. Inside a 1.5 Tesla super-conducting solenoid sits

the tracking system, composed of the Silicon Vertex Tracker (SVT) and the Drift

Chamber (DCH); the Detector of Internally Reflected Cherenkov light (DIRC) for

particle identification; and the Electromagnetic Calorimeter (EMC). On the outside,
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the steel Instrumented Flux Return (IFR) of the magnate provides muon identification

and neutral hadron detection. Table 3.3 summerizes each detector’s coverage and

performance.

3.2.1 Design considerations from PEP-II

Sitting 3.5 meters above the floor of the experimental hall, the interaction region

provided by PEP-II constrains the radius of BABAR’s cylindrical design while the

dipole and quadrapole magnets which steer and tune the beams into collision limit

the forward/backward acceptance. The asymmetry of the machine is reflected in

BABAR’s positioning with respect to the interaction point: an offset 37 cm in the

direction of the LER maximizes the acceptance of the boosted system. Finally, in

order to reduce perturbation by the tracking system solenoid, the detector axis is

offset 20 mrad relative to the beam axis in the horizontal plane.

The high luminosity environment provided by PEP-II produces various sources

of large backgrounds and necessitates radiation hard detectors and electronics for

BABAR to protect against damage, aging, and bandwidth limitations from extrane-

ous signals. Though majority of the several kW of synchrotron radiation emanating

from the quadrapole and dipole magnets is diverted by the design of the beam or-

bits, the vacuum-pipe aperture, and the masks, the bending of the beams into col-

lision is still the primary source of machine backgrounds. Beam-gas backgrounds,

caused by bremsstrahlung and Coulomb scattering off of residual gas molecules, are

enhanced after vacuum breeches. The subset of resulting energy-degraded particles

which travel to the interaction region are typically bent by the dipoles, illuminating

the extreme angles in the horizontal plane. Finally interactions of energy degraded

electrons or positrons from radiative Bhabha scattering with various apertures pro-
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Table 3.3: Overview of the coverage, segmentation, and performance of the BABAR

detector systems. The notation (C), (F), and (B) refers to the central barrel, forward

and backward components of the system, respectively. The detector coverage in

the laboratory frame is specified in terms of the polar angles θ1 (forward) and θ2

(backward). The number of readout channels is listed. Performance numbers are

quoted for 1 GeV/c particles, except where noted. The performances for the SVT and

DCH are quoted for a combined Kalman fit (for the definition of the track parameters,

see Section 4.2.1.)

θ1 No. No.

System (θ2) Channels Layers Segmentation Performance

SVT 20.1◦ 150K 5 50-100 µm r − φ σd0 = 55µm

(-29.8◦) 100-200 µm z σz0 = 65 µm

DCH 17.2◦ 7,104 40 6-8mm σφ = 1 mrad

(-27.4◦) drift distance σtanλ = 0.001

σpT /pT = 0.47%

σ(dE/dx) = 7.5%

DIRC 25.5◦ 10,752 1 35 × 17mm 2 σθC
= 2.5mrad

(-38.6◦) (r∆φ× ∆r) per track

144 bars

EMC(C) 27.1◦ 2 × 5760 1 47 × 47mm 2 σE/E = 3.0%

(-39.2◦) 5760 cystals σφ = 3.9mrad

EMC(F) 15.8◦ 2 × 820 1 820 crystals σθ = 3.9mrad

(27.1◦)

IFR(C) 47◦ 22K+2K 19+2 20-38 mm 90% µ± eff.

(-57◦) 6-8% π± mis-id

IFR(F) 20◦ 14.5K 18 28-38 mm (loose selection,

(47◦) 1.5–3.0GeV/c)

IFR(B) -57◦ 14.5K 18 28-38 mm

(-26◦)
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duce backgrounds that scale with the instantaneous luminosity. Comparisons of data

taken with single HER and LER beam with colliding beam runs show that machine

backgrounds constitute a significant portion of all triggers.

The BABAR detector was designed to record PEP-II’s full luminosity for 10 years.

In addition to radiation-hard components, a radiation protection system safe-guards

the detector by determining radiation doses from diode leakage currents in the SVT

and signals from PIN diodes mounted on small CsI(Tl) crystals in the DCH and

EMC. At the same time DCH and IFR high voltage and DIRC and IFR counting

rates are monitored to insure sub-detector safety. BABAR-initiated beam aborts are

generally induced by instantaneous sources of radiation from dust particles trapped

in the beam and non-Gaussian tails from beam-beam interactions.

3.2.2 Physics Constraints

BABAR was designed to provide reliable, high quality collection of B decays through

• low-noise electronics and high bandwidth data-acquisition and detector control

systems,

• detailed monitoring and automated calibration,

• large and uniform tracking acceptance, and

• excellent track reconstruction efficiency/resolution and photon energy/angular

resolution.

However, the characteristics of two-body B decays to charged kaons and pions pre-

sented some specific design requirement for BABAR. These decays are (we will revisit

these issues in next chapter)
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• rare, with branching fractions of order 10−6 − 10−5;

• plagued by high backgrounds from e+e− → light quark pairs;

• kinematically unique, carrying the highest momentum tracks of any B decay;

• and difficult to distinguish from one another.

Most notably, the particle identification requirements of BABAR were heavily influ-

enced by the high momentum pion/kaon discrimination demanded by the analysis

of these modes. Also, in order to make time-dependent analyses feasible, BABAR

needed good vertexing to resolve the B decay points, and excellent lepton and kaon

identification to identify the B flavor. In the remaining sections of this chapter, we

will describe the sub-detectors and sub-systems which permit BABAR to achieve its

various design goals.

3.2.3 Tracking

Bent by the magnetic 1.5 T field of the super-conducting solenoid, the momenta of

charge particles are determined from the curvature of their trajectories reconstructed

from their interactions with the instrumented components of the SVT and DCH.

The field, produced by currents in two layers of 3060 mm diameter, 3513 mm long

niobium-titanium coils, is very uniform in the tracking volume, deviating at most by

2.5% in the direction transverse to the path of high momentum tracks.

The BABAR SVT (pictured in figures 3.4 and 3.5) provides excellent vertexing

as well as low momentum charge particle reconstruction by providing stand-alone

tracking capability with accurate position and impact parameter determination to

the tracking system. Mounted on the beam pipe, this detector’s 0.96 m2 of active
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Figure 3.6: Schematic of the 4 inner layers of the BABAR DCH.

area is composed of five layers of 340 double-sided silicon wafers mounted on a carbon-

fiber frame. On the two faces of every wafer, strip sensors running orthogonal to ones

on the opposite surface detect the passage of a charged particle, measuring both z

and φ ≡ tan−1(x/y). The wafers are organized in half modules which read out at the

two ends of the detector by fanout circuits to custom time-over-threshold (ToT) chips

in a total of 150, 000 channels. The inner three layers are placed close to the beam

pipe, dominating the determination of track position and angles, while the outer two

layers, which are arch-shaped to minimize the silicon use, are placed close to the DCH

in order to aid in track matching with the DCH. Tilting of modules in the inner layers

and dividing the outer layers into two sub-layers produces overlap regions which avoid

gaps in the acceptance.

The DCH’s reconstruction of track trajectories dominates BABAR’s measurement

of charge particle momenta. In this detector’s 3 m long and 81 cm diameter cylin-
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drical volume, 7104 hexagonal cells of one grounded tungsten-rhenium sense wire

surrounded by six aluminum field wires held at > +1900 V1 detect traversing charge

particles’ ionization of a 80:20 mixture of helium:isobutane gas at 4 mbar above atmo-

spheric pressure. This choice of wire and gas minimizes multiple Coulomb scattering,

presenting less that 0.2% of the radiation length (X0) to tracks. The cells (see fig-

ure 3.6), grouped into 16 axial and 24 stereo layers with sense wires running parallel

and at small angles to the beam axis, respectively, provide on average 40 spatial and

ionization loss measurements for each track. The readout electronics, mounted on the

backward end-plate in order to minimize the material in front of the forward calorime-

ter end-cap, measure the drift time, the integrated charge, and provide a single bit to

the trigger. Section 4.2.1 describes the SVT and DCH track reconstruction and the

resolutions of the measured track parameters.

3.2.4 Charged Particle Identification

High momentum particle identification is dominated by the DIRC’s measurements

of the cone angle of the Cherenkov light emitted as charge particles traverse 144

4.9m × 1.7cm × 3.5cm synthetic fused silica bars arranged into a 12-sided polygonal

barrel which encircles the DCH cylinder. Taking advantage of the preservation of

the Cherenkov angle through internal reflection within each bar, this detector images

the ringed projections of the Cherenkov cones emitted out of the backward end of

the bars on an array of photomultiplier tubes (PMT). These PMTs instrument the

1The BABAR data sample has been collected with the DCH at three different high voltages.

Originally the wires were held at 1960 V. After collecting ≈ 10/fb of on-resonance data, the voltage

was changed to 1900 V for another ≈ 10/fb in an effort to extend the lifetime of the chamber.

Eventually 1930 V was chosen as optimal for both the chamber’s longevity and detection efficiency.

47



Mirror

4.9 m

4 x 1.225m Bars
glued end-to-end

Purified Water

Wedge

Track
Trajectory

17.25 mm Thickness
(35.00 mm Width)

Bar Box

PMT + Base
10,752 PMT's

Light Catcher

PMT Surface

Window

Standoff
Box

Bar

{ {
1.17 m

8-2000
8524A6

Figure 3.7: Schematic drawing illustrating the detection of Cherenkov photons by

BABAR’s DIRC.

toroidal rear of a water-filled expansion region, known as the standoff box (see fig-

ure 3.7). The position and arrival time of the PMT signals permit the extraction of

the Cherenkov angles when supplemented with track position and angle information.

The timing information also assists in suppressing background photons. Covering

94% of the azimuth and 83% of the center of mass polar angle cosine, the DIRC

provides Cherenkov angle measurements with a resolution of ≈ 3 mrad for tracks

with momenta starting at the Cherenkov threshold of ≈ 500 MeV and separates pi-

ons/kaons up to 4 GeV. Details regarding the DIRC reconstruction and performance

may be found in sections 4.2.2 and 5.1.3.

Measurements of energy loss (dE/dx) by the tracking system permit charged

particle identification at low momenta and allow separation of < 700 MeV pions

and kaons. In the SVT, ≈ 10 ToT measurements are converted to dE/dx using a
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lookup table and a 60% truncated mean is calculated. In the DCH, an 80% truncated

mean of the ≈ 40 ionization loss measurements for each track provide a 7.5% dE/dx

determination (see figure 4.7).

3.2.5 Calorimetry

The primary tasks of BABAR’s EMC are the detection of photons, reconstruction of π0

and η decays, and the identification of electrons. This detector records the energy of

the electromagnetic showers from photons and electrons in a finely segmented array of

thallium-doped cesium iodide (CsI(Tl)) crystals (properties listed in in table 3.4). The

crystals, with radiation lengths between 16.0 and 17.5 X0, are each instrumented with

a pair of silicon photodiodes. The EMC, divided into two sections (a cylindrical barrel

and a conical forward end-cap) which externally support each of the 6, 580 crystals (see
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Parameter Value

Radiation Length 1.85 cm

Moliere Radius 3.8 cm

Density 4.53 g/cm3

Light Yield 50,000 γ/MeV

Table 3.4: Properties of CsI(Tl).

figure 3.8), determines the energy and direction of 90% of the photons emitted in the

center of mass system. The desired resolution and reliability is achieved through low

noise analog circuits and frequent and precise calibration of the electronics and energy

response over the full dynamic range. Section 4.2.3 describes the EMC reconstruction

and presents the energy and angular resolutions.

3.2.6 Muon Identification

806 Resistive Plate Chambers (RPC) placed inside the steel of the magnate flux return

steel permit BABAR to discriminate muons from hadrons and to detect K0
Ls and other

neutral particles. The RPCs, arranged in 19 barrel and 18 end door layers and

separated by steel of increasing thickness from 2 cm to 10 cm, detect streamers from

ionizing particles via external capacitive readout strips. In order to detect particles

exiting the EMC, two additional layers with four readout plates are placed inside the

magnet cryostat. The RPC strip segmentation provide measurements of track φ/z in

the barrel and x/y in the end-cap.
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3.2.7 The Online System

BABAR’s electronics, trigger, data acquisition (DAQ), and online computing systems

are composed of tightly coupled hardware and software. Maintainability and reliabil-

ity is assured through data flow systems which are separate yet parallel to the monitor

and control systems. Meanwhile standardized interfaces help manage complexity.

Data Acquisition

Figure 3.9 presents a schematic diagram of the DAQ system which transports data

from the detector to mass storage. Designed for minimal dead-time, this system

provides standardized interfaces for subsystem calibration, monitoring, and control

of all data-flow.

For every detector subsystem, Front-End Electronics (FEE) perform signal pro-

cessing, digitization, and downstream data transfer. The custom integrated circuits

of these systems consist of amplifiers and digitizer, as well as buffers for trigger de-

cision and transfer latencies. Since the FEEs are mounted on the detector in order

to optimize performance and avoid noise pickup from long cables, they are generally

inaccessible and required high levels of reliability.
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Event Cross Production Level 1

type section Rate (Hz) Trigger

(nb) Rate (Hz)

BB̄ 1.1 3.2 3.2

uu +dd +cc +ss 3.4 10.2 10.1

e+e− ∼53 159 156

µ+µ− 1.2 3.5 3.1

τ+τ− 0.9 2.8 2.4

Table 3.5: Cross sections, production and trigger rates for the principal physics pro-

cesses at 10.58 GeV for a luminosity of 3×1033 cm−2s−1. The e+e− cross section refers

to events with either the e+, e−, or both inside the EMC detection volume.

A two-level hierarchical trigger system is the gate-keeper of the flow of data to the

permanent storage. Configured to reduce beam background events rates, the Level

1 (L1) hardware trigger makes decisions based on number of charged tracks above a

preset transverse momentum in the DCH, showers in the EMC, and tracks in the IFR.

The three sub-system triggers are considered independently, maximizing redundancy

in order to measure and monitor efficiencies. The L1 trigger has a maximum latency of

12µs per beam crossing and is configured to produce an output of ≈ 1 kHz. Table 3.5

gives a break down of the principal physics processes contributing to this rate.

Online Data-flow (ODF), which provides data transport, buffering, and event

building is implemented in a set of VME crates which house 157 Readout Modules

(ROMs) running VxWorks. Configuration and readout of the FEEs are performed

through 1.2 Gbits/s fiber links to the ROMs. These specialized VME-based proces-

sors handle Feature Extraction (FEX) of physics signals, perform gain and pedestal
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corrections, as well as data sparsification and formatting. The calibration data is

stored in a dedicated conditions database. Using a Fast Control and Timing System

(FCTS), events are built from data from the individual subsystems and shipped from

the ROM modules to the Online Event Processing (OEP) workstations via 100 Mb

Ethernet. No dedicated counters are employed to associate events with beam crossings

which occur at 4.2 ns intervals. Instead absolute timing is determined offline using

DCH track segment timing, waveforms from EMC, and accelerator timing fiducials.

Running on a farm of Unix workstations, the OEP software collects and processes

data from the ODF event builders, partially reconstructing the event in order to

apply the Level 3 (L3) trigger algorithms and provide fast monitoring for the data

taking personnel on shift. The L3 software examine the complete event information,

categorizing and flagging physics, diagnostic, and calibration events for logging into

0.8 TB immediate storage. Typically, the L3 trigger is configured to deliver output

rate of ≈ 120 Hz, with an average event size of ≈ 28 kbytes. The combined L1 and

L3 efficiency for generic BB events is > 99.9%.

Online Prompt Reconstruction (OPR) of the collected events occurs in as little

as few hours after logging by farms of several hundred Unix workstations running

in parallel. Using the raw detector signals and the partially reconstructed events

of the L3 trigger, OPR performs full reconstruction of all physics events and select

calibration events, applying preliminary analysis algorithms in order to categorize

potentially interesting events before storing the results into an object database for

further analysis. Monitoring and rolling calibration of reconstructed parameters is

also applied at this stage, allowing examination of the data quality and propagation

of time dependent constants into the conditions database for the processing of the

next run. The following chapter will describe and assess the performance of some of
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these OPR algorithms.

Detector Monitoring and Control

Implemented in Experimental Physics Industrial Control System toolbox (EPICS),

the Online Detector Control (ODC) system controls and monitors the electronics and

environment of the detector and its support systems to assure safety. Monitoring of

machine status, injection inhibition, and beam aborting is achieved through links to

PEP-II systems. All collected data is archived into a browsable ambient database.

The online machinery is tied together by the Online Run Control (ORC) sys-

tem whose logic manages the state of all systems and provides a user interface for

calibrations and starting/stopping runs. Detector configurations are stored in a con-

figurations database for reference during reconstruction.
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Chapter 4

Analysis Computing

The requirements of modern high energy physics experiments place strong demands

on their supporting computing hardware and software systems. Recent discoveries of

the field would have been improbable without the success of Moore’s Law and the

growth of computing budgets which continue to make current and future experiments

feasible. Unburdened by the pressures of marketability yet challenged with the charge

for scientific discovery, particle physics computing has often sat at the forefront of

technology and hence engineered notable innovative developments.

From the onset BABAR computing strove to employ new technologies, arguing

the technical and philosophical advantages of tools previously unused by high en-

ergy experiments [39]. With the migration from science’s old standard programming

language, FORTRAN, to the object oriented C++, BABAR built a powerful software frame-

work which now also serves other experiments. Meanwhile thousands of processors

and hundreds of terabytes of storage provided the backbone. The resulting system

reconstructed the volumes of raw data at nearly the same rate as it was collected,

providing the complete dataset for timely analysis by the collaborators.
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4.1 Overview

The BABAR software framework provides an environment where software modules per-

forming input/output, reconstruction, selection, and analysis tasks are sequentially

executed while sharing standardized data objects through a common dictionary. Each

module provides code to be called at the start, during, and at the end of the each job,

run, or event. Reconstruction and analysis is performed by executables composed

of a collection of these modules and configured and controlled at runtime by scripts

written in TCL. These scripts define the sequence of module execution, build the data

path by setting the input and output of the modules, and configure the behavior of

each module.

Figure 4.1 displays a schematic of the path taken by the recorded data. Event

reconstruction typically begins by reading data files containing the raw digitized out-

put from the detector, the trigger classification, and the preliminary reconstruction

of the L3 trigger. After filtering on the trigger output, interesting events are fed to

sequences of subsystem reconstruction modules which extract and successively refine

event time, tracking, calorimetry, and particle identification information. Eventually

the individual subsystem information are associated and combined to create particle

candidates.

At this stage, selection modules identify and tag physics and calibration events to

be processed by different paths of module sequences for analysis and storage. In the

physics path, selector modules identify well reconstructed charge and neutral particles

and produce lists of candidates likely to be of a particular flavor. Combinatoric mod-

ules create composite candidates of K0
S, π

0, and various D mesons. This information

is then considered by other selection modules provided by analysis groups which tag

events of specific interest.
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The reconstruction algorithms are also applied to Monte Carlo simulated events,

which are produced using JetSet [42] and a specialized decay generator package for

B decays called EvtGen [41]. A Geant4 based detailed simulation of the detector

provides the detector response.

The reconstructed data is stored in federations of object databases built in Objec-

tivity [40]. This system provides a means of storing and retrieving persistent copies of

memory resident (or transient) C++ objects. Physics and calibration events are stored

in different streams (analogous to files) which may be independently accessed or re-

trieved from tape storage. Different depths of detail are stored in separate databases,

named (in ascending order of size) tag, micro, mini, rec, and raw. Though all this

information may be accessed for each event, only the tag and micro databases, which

contain the highest level of reconstructed quantities, are maintained on disk. Events,

which are grouped based on run number and tags acquired during reconstruction,

are referenced by collections of pointers. Throughout the reconstruction, configura-

tion and conditions information is retrieved and recorded into the various databases,

permitting the propagation of rolling calibration constants from one run to the next.

Periodically, the data written to the reconstruction production federations is moved

to analysis federations which are accessible to all collaborators.

After full reconstruction, a skim executable regularly reads the analysis collections,

determining updated tags of events and gathering them into smaller collections. At

the same time the micro database is copied into a ROOT [43] based event store

named KANGA for “Kind ANd Gentle Analysis” [44]. This alternative data format

provides a portable storage solution which is generally used for analysis by the small

computing facilities at various universities.

Typically, executables written by analysis groups scan the event collections by
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Figure 4.1: A schematic diagram of the propagation of the recorded data from the

detector to HBOOK/ROOT where interactive analysis is performed.

examining the tag database and only read the micro database for interesting events.

Detailed reconstruction of signals and more refined selections are then performed. The

resulting candidates are either written back into the database for analysis by other

executables, or outputted to HBOOK [45] or ROOT based ntuples which permit more

interactive analysis.

4.2 Event Reconstruction

BABAR’s online prompt reconstruction (OPR) of events is performed on farms of a

few hundred processors running a specialized version of the reconstruction executable.

When processing a run, events are distributed among the processors, all of which

simultaneously log their output to database servers. In this section we will briefly

survey the reconstruction algorithms and discuss their performance.
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4.2.1 Track Reconstruction

The SVT and DCH’s spatial recognition of the passage of a charge particle permits

the extraction of the five helix parameters which describe the trajectories of tracks

through the magnetic field of the solenoid. These parameters are the curvature (ω),

the x−y and z distance of the point of closest approach (PoCA) to the z-axis (d0 and

z0), the track azimuth angle (φ0) at the PoCA, and the dip angle of the track from

the transverse plane tan(λ). Searching for charged tracks begins in the L3 trigger’s

DCH pattern recognition and track finding based on the L1 trigger’s track segment

finder module algorithms which search for four contiguous track segments (known as

a hit) in two dimensions. The L3 tracks built from these segments provide the first

estimate of d0, φ0, and the event starting time t0, and provide the seeds for the off-line

tracking algorithms.

In the offline reconstruction, drift time-to-distance relations, extracted from e+e−

and µ+µ− events, provide typical position resolution between 0.1 and 0.4 mm in

each cell (see figure 4.2). Here, three track finders and fitters, based on the Kalman

filter algorithm [46], reconstruct trajectories in three dimensions, employing detailed

maps of the detector material and the magnetic field to account for energy loss and

field variations. The first track finder starts with the L3 tracks and then search

for additional hits. Removing the hits associated with these tracks from the event

produces a cleaner environment for determining a t0 and for the reconstruction of

particles that either did not pass through the entire DCH or did not originate from

the interaction point by the two other track finders.

The SVT provides z and φ measurements with typical resolution between 15 and

40 µm (see figure 4.3). The DCH tracks are extrapolated through the intervening ma-

terial into the SVT, where additional segments from the SVT are added. A combined
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Figure 4.2: DCH position resolution as function of the drift distance in layer 18, for

tracks on the left and right side of the sense wire, obtained from fits to track residual

distributions in multi-hadron events. The data are averaged over all cells in the layer.
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Figure 4.3: SVT hit resolution in the (a) z and (b) φ coordinate in microns, plotted

as a function of track incident angle in degrees.
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Figure 4.4: The differences (a) δd0, (b) δz0, (c) δφ0, and (d) δ tanλ between fitted

track parameters of the two halves of cosmic ray muons with pt > 3 GeV.

SVT and DCH Kalman fit produces the final parameters for the resulting tracks. Any

remaining SVT hits are examined by two SVT only track finders. The first builds

tracks from at least four matched φ and z hits (known as space points), while the

second forms helices from φ hit circle trajectories by adding z hits. A final algorithm

attempts to merge tracks found by only one of the two tracking systems.

Track parameter resolutions have been assessed in cosmic ray events by comparing

fits to cosmic track halves before and after the interaction region. Figure 4.4 displays

parameter difference distributions for the two tracks when their transverse momentum

is > 3 GeV. These plots infer resolutions of σd0 = 23µm, σφ0 = 0.43mrad, σz0 = 29µm,

and σtan λ = 0.53 ·10−3. A similar comparison in figure 4.5 provides the pt dependence

of the pt resolution, which is parameterized by σpt = (0.13±0.01)%·pt+(0.45±0.03)%.

Since the SVT and DCH can independently track particles, the absolute DCH

tracking efficiency is determined as the ratio of number of tracks reconstructed by the

DCH to number of tracks detected by the SVT which project into the DCH volume.

This procedure is applied to both data and Monte Carlo events in order to measure the

ratio of the true tracking efficiencies to the expected values from the simulation. This

ratio is then applied as a correction factor when calculating the tracking acceptance

61



0

1.0

2.0

0 4 8
Transverse Momentum  (GeV/c)

σ(
p t

)/
p t

  (
%

)
1-2001
8583A23

Figure 4.5: The transverse momentum resolution determined from cosmic ray muons.

and reconstruction efficiencies for any decay mode from the Monte Carlo simulation.

For each DCH high voltage period (see footnote in section 3.2.3), the efficiencies are

calculated for good quality tracks, defined to satisfy the requirements:

• p < 10 GeV,

• d0 < 1.5 cm,

• |z0| < 10 cm,

• pT > 100 MeV, and

• 12 or more DCH hits,

in bins of track pT , θ, φ, and number of tracks (satisfying the first 3 requirements)

in the event. The results, which indicate that the overall tracking efficiency is above

95%, are displayed in figure 4.6 for runs taken with DCH high voltage of 1930 V, which

represent most of the data available. The systematic uncertainty for determining the

tracking efficiency for B decays is estimated to be 1.3% per track in the decay.
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voltage of 1930 V.
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Figure 4.7: DCH dE/dx measurements as a function of track momenta. The solid

curves represent the Bethe-Bloch expectations for various mass hypotheses.

4.2.2 Particle Identification

Below the Cherenkov threshold of the DIRC, the DCH dE/dxmeasurements dominate

BABAR’s particle identification of tracks. The DCH FEX algorithms extract the

charge collected per single cell. For each track, a 80% truncated mean of ≈ 40 such

measurements, corrected for gas pressure and temperature variations, cell geometry,

signal saturation, non-linearities at large dip angles, and cell entrance angle, provides

a 7.5% resolution on dE/dx. Figure 4.7 displays the momentum dependence of this

measurement in a sample consisting of particles with various masses.

The DIRC’s measurement of the Cherenkov cone angle θc is BABAR’s primary tool

for identifying high momentum tracks. The reconstruction algorithm associates PMT

signals with tracks, extracting a θc measurement when sufficient photons are available

for a fit. Starting from the entrance angle of a track into a particular fused silica bar,

the emission angle and arrival time of possible Cherenkov photons is reconstructed
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Figure 4.8: (a) The θc of kaons and pions versus the track momenta, and (b) the

separation in standard deviations between pions and kaons as function of momentum,

from the control sample described in section 5.1.3.

from the space-time coordinates of candidate PMT signals, providing a measurement

of each photon’s θc and φc (the azimuth angle of the Cherenkov photon around the

track direction) with a 16-fold ambiguity. Timing and geometrical considerations

typically reduce the ambiguities to 3 and the background by a factor of 40. Finally,

a maximum likelihood fit to the photons associated to each track extracts its θc

and number of signal (Nγ) and background photons. The resulting θc resolution

scales as 1/
√
Nγ , where Nγ is around 20 for short track path lengths in the radiator,

typically at small polar angles, and 65 for the longer path lengths at the extreme

polar angles. Section 5.1.3 discusses a technique for assessing the θc resolution. The

average θc resolution is ≈ 3 mrad, which provides pion/kaon separation of > 2.2σ at

4 GeV. Figure 4.8 plots the θc versus momentum profile and the measured standard

deviations of separation between pions and kaons over the momentum range of tracks

from two-body B decays.
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4.2.3 Calorimetry

The electromagnetic shower produced by a charged or neutral particle in the EMC

forms a cluster of energy deposits spread over many adjacent crystals. Meanwhile,

photons from high momentum π0 → γγ decays often illuminate adjacent crystals,

producing two energy maxima (known as bumps) within one cluster. The EMC

reconstruction algorithm searches for seed crystals which register an energy deposit

of E > 10 MeV, and then builds a cluster by adding crystals with E > 1 MeV which

are either adjacent to another E > 3 MeV crystal in the cluster or the seed. Crystals

with energy E satisfying E′/E < 0.5(N − 2.5), where E′ is the highest energy of the

neighboring N crystals with > 2 MeV, are identified as constituting a local maxima.

Bumps are built from these crystals with an energy determined by an algorithm which

iterates the fraction of energy contributed by each crystal in the cluster until the

bump centroid is stable to a tolerance of 1 mm. Another center-of-gravity algorithm

locates the bump position using logarithmic crystal weights. A cluster association

with a charged particle is made if the projection from the bump centroid to the

inner face of the calorimeter is consistent with a track trajectory. Otherwise, the

bump is considered a neutral particle with a trajectory originating at the interaction

point. Good clusters are defined as possessing energy E > 30 MeV/c, lateral shape

parameter λLAT < 1.1 [47], and lab frame polar angle 0.41 < θLAB < 2.409 (i.e.

within the fiducial volume of the EMC).

The photon energy resolution is measured from a radioactive source (at the low

end), e+e− Bhabha scattering events (at the high end), and decays of χc1, π
0, η, and

other particles (in between). A fit over this data provides the energy dependence of
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Figure 4.9: (a) The π0 mass distribution reconstructed from two photon candidates in

hadronic events overlaid with a fit to the data. (b) The ratio of measured to expected

energy for electrons in Bhabha events overlaid with a Gaussian fit. The expected

value is calculated from the production angle. The resolution is 1.9%.

the resolution:

σE
E

=
(2.32 ± 0.30)%

4
√
E(GeV)

+ (1.85 ± 0.12)%.

Similarly studies of π0 and η decays to two photons of approximately equal energy

provide an empirical parameterization of energy dependence of the angular resolution:

σθ = σφ =
(3.87 ± 0.07)√

E(GeV)
+ (0.00 ± 0.04)mrad.

Typical π0 mass resolution in hadronic events is 6.9 MeV/c2 (see figure 4.9a). Fig-

ure 4.9b displays the measured over expected energy ratio for Bhabha events. Fig-

ure 4.10 shows the ratio of deposited energy over the measured momentum for a

sample of electrons.
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Figure 4.10: The ratio E/p of deposited energy in the EMC over the measured mo-

mentum by the tracking system for electrons from γγ → eeee events.

4.2.4 Muon Identification

The IFR reconstruction begins with the grouping of hits in the RPCs into clusters.

One-dimensional IFR clusters are formed from groups of adjacent hits in one of the two

readout coordinates. Adjacent one-dimensional clusters (of the same coordinate) in

different layers are then combined to create two-dimensional clusters. Finally, three-

dimensional clusters are created in each sector from combinations of two-dimensional

clusters in different coordinates with less than three layers missing in one of the

two coordinates. A charged particle is associated to IFR cluster(s) if the cluster

is a predefined distance from the intersection of its trajectory with the RPC planes,

computed by extrapolating the track into the IFR and accounting for the non-uniform

magnetic field, multiple scattering, and average energy loss. The identification of

muons is based on

• comparison of the total number of interaction length traversed with the expec-
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tation for a muon,

• the average number and RMS of the distribution of RPC strips per layer,

• the χ2 of the geometric match between the projected track and the centroids of

its associated clusters in each layer, and

• the polynomial fit to the two-dimensional IFR clusters.

The performance of the muon identification is assessed on kinematically selected sam-

ples of muons from e+e− → µµee, µµγ final states and pions from three-prong τ and

Ks → π+π− decays. Figure 4.11 displays the muon detection efficiency and pion

misidentification probability for a selection which achieves nearly 60% efficiency with

a pion fake rate of < 2.5%. The BABAR IFR has experienced a loss in muon detection

efficiency of approximately 1% per month. Figure 4.12 illustrates the observed effect.

4.3 Analysis Software

A standardized set of C++ classes define the basic building blocks of the analysis ma-

chinery of the BABAR software. This library, known as Beta, provides the objects

which represent the particle candidates as well as common operations and variables.

Analysis executables manipulate lists of these candidates with framework modules

implementing general purpose tasks such as selection, filtering, combinatorics, and

ntuple output. All analyses begin by identifying, reconstructing, and outputting

interesting events in a sequence of these modules. Widely used sets of well main-

tained libraries of such modules provide consistency, reliability, and standardization

to BABAR’s numerous physics analyses. These include publicly maintained and op-

timized particle identification selectors and combinatoric engines with efficiency and
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Figure 4.11: Muon efficiency (left scale) and pion misidentification probability (right

scale) as a function of the track momentum.
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performance calculated by specific groups of collaborators. Higher level analysis tasks

such as B flavor tagging and vertexing are also provided by specific groups as a service

to the collaboration.

4.3.1 Variables

A collection of variables, employed by most B analyses, is implemented in Beta. In

this section, we define and describe the subset used in this analysis.

Kinematics

The beam energy substituted mass (mES) and the energy difference (∆E) [48] are

nearly orthogonal Lorentz-invariants which exploit the kinematic constraints of the

Υ (4s) → BB̄ decay. For a B meson with 4-momenta q∗B = (E∗
B,p

∗
B) in the center of

mass (CM) and qB = (EB,pB) in the laboratory (LAB) frames, these variables are

defined as

mES =
√
q2
B, and

∆E = (2qBq0 − 4E∗2
0 )/4E∗

0 ,

where q∗0 = (E∗
0 , p

∗
0) and q0 = (E0, p0) are the total 4-momenta of the e+e− system in

the CM and LAB frames, respectively. In the CM frame

mES =
√

(E∗
0/2)2 − p∗2B , and

∆E = E∗
B − E∗

0 .

Since the Υ (4s) mass is near the BB threshold, the center of mass momenta p∗B of

the B mesons are very small (≈ 340 MeV/c) when compared to the beam energy E∗
0

of more than 10.5 GeV. Therefore p∗2B << (E∗
0/2)2 and the beam substituted mass is
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dominated by the beam energy resulting in a resolution of ≈ 2.6 MeV which reflects

the spread of the beam energy. In contrast ∆E distributions, which are dominated

by the detector resolutions, are much wider. The standard implementations of these

variables calculate ∆E in the CM frame and mES in the LAB frame using

mES =

√
(
1

2
E∗

0 + p∗
0 · pB)2/E2

0 − |pB|2

which only requires the momentum of the B meson and does not depend on the

masses of the decay products.

Non-hadronic Backgrounds

In addition toBB from Υ (4S) decays, the e+e− collisions at PEP-II produce numerous

final states which are potential backgrounds to B decay analyses. The majority of the

non-hadronic events are eliminated by requiring more than two good tracks (NGT ) in

an event1. In addition, the visible energy, defined as

W =
GoodTracks∑

i

√
m2
π + p2

i +
GoodNeutralClusters∑

j

Ej,

also provides rejection of non-hadronic backgrounds. Figure 4.13 plots the distribu-

tions of these variables for the various physics processes at the Υ (4S) energy. We will

evaluate this selection for the B0 → h+h′− analysis in the next chapter.

Hadronic Backgrounds and Event Shape

Many variables which characterize the topology of events allow discrimination of sig-

nal BB̄ from their hadronic backgrounds. Since the two B mesons produced in Υ (4s)

decays are nearly at rest in the CM, they exhibit no correlation between the direc-

tions of their decay products. Meanwhile the small CM momentum of B creates

1The good track and cluster definitions are listed in in sections 4.2.1 and 4.2.3, respectively.
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Figure 4.13: Distributions of (a) the number of tracks and (b) the visible energy

W, in the main physics processes at the Υ (4S) energy. The distributions are from

simulated events and are normalized to the same area.

nearly isotropic decay products, resulting in characteristically spherical events. Con-

tinuum events produce back-to-back jets of particles resulting in a strongly preferred

direction for all particles. Topological variables also aid in reduction of any remaining

non-hadronic backgrounds.

The sphericity axis Ŝ [49], defined as the eigenvector with largest eigenvalue of

the tensor

Sαβ =

∑
i p

α
i p

β
i∑

i p
2
i

,

where α and β correspond to the {x, y, z} components of the particle momentum

vectors pi. This variable is often calculated for the decay products of each candidate

B meson of the pair in an event. The angle between the resulting axes, which is a

measure of the correlation between directions of the two decaying B mesons, is typ-

ically very small for continuum events and random for BB̄ events. This observation
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is reflected in the distribution of the magnitude of the cosine of this angle, | cos θS|,
displayed in figure 4.14a for Monte Carlo samples of continuum and B0 → π+π−

events, which is highly peaked at 1 for background and nearly flat for BB̄ events.

For this variable one axis is formed from a fully reconstructed two-body B candidate

while the remainder of the particles in the event, which are assumed to originate from

the other B meson, define the second axis. Also, the sphericity of an event, defined

as sum

S =
3

2
(λ2 + λ3)

of the two largest eigenvalues of Sαβ calculated for all the particles of the event,

provides additional discrimination of backgrounds. Figure 4.14b illustrates how the

generally more directional background events have a lower sphericity distribution than

BB̄ events. The sphericity axis is often interchanged with the thrust axis T̂ [50] which

in practice provides nearly equivalent functionality. T̂ is defined as the direction which

maximizes the sum of their longitudinal momenta. | cos θT | distributions, analogous

to | cos θS|, are very similar to figure 4.14a.

Expanding the spatial distribution of events in terms of Legendre polynomials

produces another set of commonly used event shape discriminators, the Fox-Wolfram

moments Hl [51]. They are defined as

Hl =
∑
i,j

|pi||pj|
E2
T

Pl(cos θij),

where Pl are the Legendre polynomials, pi are the particle momenta, θij is the angle

between particles i and j, and ET is the total energy in the event. H0 is constrained

by energy-momentum conservation to be 1 when particle masses are ignored. For

events with two jets of particles, H1 = 0 and the remainder of the moments are ≈ 1

for even l and ≈ 0 for odd l. Of these variables, the ratio R2 ≡ H2/H0, shown in
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Figure 4.14: (a) The | cos θs| and (b) sphericity distributions for BB events with a

B0 → π+π− decay (dashed red) and continuum background (solid black) events. The

distributions are from simulated events and are normalized to unit area.

figure 4.15 is the most commonly used discriminator of BB̄/continuum events.

4.3.2 Measurement of Number of BB Events

Branching fraction measurements require knowledge of the total number of B mesons

in our dataset. BABAR determines this quantity by attributing the increase in the

rate of hadronic events from the off to the on resonance data to Υ (4S) decays. The

number of BB events may then be measured using

NBB =
1

εBB

(
Non

H − Non
µµ

Noff
µµ

· κ ·Non
H

)
,

where

• Non,off
H are the number of events satisfying a hadronic selection in each sample,

• εBB is the efficiency of that selection on BB events,
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• κ ≈ 1 accounts for differences in continuum cross-section and efficiencies at the

different energies, and

• the ratio
Non

µµ

Noff
µµ

of the observed number of e+e− → µ+µ− accounts for the differ-

ence in the collected luminosity.

This relation assumes that B(Υ (4S)) → BB = 1, which is a reasonable approxima-

tion [52].

The hadronic events are identified by requiring NGT > 2, W > 4.5 GeV, R2 < 0.5,

and that the best vertex made from all the tracks in the event are within 5 mm in the

x − y plane and 6 cm in z from the beam-spot. The BB efficiency of this selection

is determined on simulated events, where careful attention has been made to confirm

that all variable distributions are well reproduced [53]. The measured number of BB
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events in the data-sample used in this dissertation is

NBB = (87.9 ± 1.0) × 106,

where the error is dominated by the uncertainty on the efficiency of the number of

tracks (NGT ) selection.
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Chapter 5

Analysis Overview

In the summer of 2000, SLAC’s Asymmetric B-Factory presented several important

analyses at the XXXth International Conference on High Energy Physics (ICHEP)

in Osaka, Japan [54]. Much of the excitement focused on the extraction of sin 2β

with the time-dependent CP analysis of the B0 → J/ψKs decay. A second wave of

interest, fueled by the implications of CLEO’s finding that B0 → K+π− occurred

more frequently than B0 → π+π− [56] (see chapter 2), was focused on the two-body

charmless B decay branching fractions. BABAR’s preliminary analysis advertised its

intention to measure sin 2α while also providing the opportunity to demonstrate the

superiority of its Cherenkov particle identification system by improving on the CLEO

measurement.

After the conference at Osaka, the team performing this analysis submitted the

branching fractions measurement for publication in May of 2001 [58] and shifted

focus to extracting sin 2αEff . This effort lead to the first extraction of time-dependent

CP asymmetries in a rare mode, which was presented at the Summer 2001 Lepton-

Photon Conference in Rome [59] and published later in the year [60]. The branching

fractions and CP asymmetries were updated for Rencontres de Moriond in March of

78



2002 [61]. This dissertation details the most recent measurement of these quantities,

first presented in the summer of 2002 at ICHEP [62] and published in December

2002 [63].

In this chapter we will detail the issues that shaped the analysis of B0 → h+h′−

and eventually outline its blueprint. As in many BABAR analyses, some of the tech-

niques employed to study these rare two-body B decays were inspired by original work

by the CLEO collaboration [64]. Their technique of extracting branching fractions

of rare decays through simultaneous maximum likelihood fits using kinematic, multi-

variate background suppression, and particle identification information has been the

basic analysis method since BABARś first measurement of the branching fractions of

these modes. However, PEP-II’s asymmetry and BABAR’s DIRC required additional

analysis inputs, and eventually the techinque was expanded with flavor tagging and

vertexing information to yield the first time-dependent CP analysis in these B decay

modes.

5.1 The Task at Hand

The isolation of B0 → h+h′− (h = π or K) decays for branching fraction and time-

dependent CP asymmetry measurements is complicated by the rarity of decays, the

significant background rate, and difficulties in separating pions and kaons. In this

section we will detail the origins of these issues and discuss the handles developed to

address them.
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(a) (b)

Figure 5.1: The polar angle (θ) of one track in B0 → h+h′− decays versus the polar

angle of the (a) other track and (b) the track momentum.

5.1.1 Kinematics

The final state hadrons originating from the decay B0 → h+h′− are back-to-back

and monochromatic in the B meson decay frame, carrying momenta of 2.6 GeV/c

in opposite directions. The boost induced by PEP-II’s asymmetry smears the track

momenta to a roughly flat distribution between 1.7 and 4.2 GeV/c, but still preserves

the kinematic correlation between the two hadrons (see figure 5.1a). This boost also

introduces track polar angle (θ) and momentum correlations which are displayed in

figure 5.1b.

Searching for these decays begins with the collection of all events with combina-

tions of oppositely charged track pairs whose 4-momenta add to produce roughly the

B meson invariant mass. Since no particle identification is employed at this level of

reconstruction, the assumption that both tracks are pions simplifies the combinatorics

of selecting the candidate decays. A large invariant mass window of 600 MeV around
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the B mass guarantees the inclusion of all two-body B decays to charged pions and

kaons and also provides large side-band regions for background studies.

Since the mES is sensitive to beam energies but nearly independent of mass hy-

potheses, distributions of any B decay reconstructed with tracks is expected to be

identical to B0 → π+π−, K+π−, and K+K−. Therefore we may derive understating

of this variable from large samples of more abundant B decays (see section 6.1.1).

∆E, however, is sensitive to masses and tracking resolution, which leads to two im-

portant consequences. First, since we assume all tracks are pions, this variable is

shifted by ≈ 42 MeV for each kaon track that is mis-assigned the pion mass. This

shift is exploited to aid in separation of signal modes 1. Second, since the daughters

of the signal two-body Bs are typically the highest momentum tracks of any B meson

decay, the resulting ∆E resolution is unique. Since no other B decay approximates

these events, we derive understanding of ∆E from the Monte Carlo simulation, which

we validate through comparisons with data in other decays (see section 6.1.1).

5.1.2 Backgrounds

The predominant background source of B0 → h+h′− candidates is from mesons pro-

duced in the fragmentation from continuum e+e− → uū, dd̄, ss̄, cc̄ processes. Par-

tially reconstructed B mesons are a negligible background (see section 5.3.2) due

to the unique kinematics of our signal decays. Also, as we saw in section 4.3.1,

non-hadronic background events are also easily recognized through track multiplicity,

event shape, and particle identification and hence can be eliminated. In continuum

events, a high momentum track from one fragmenting quark may be combined with

1In the section 6.1.1 we will quantify the momentum dependence of the ∆E shift due to mass

mis-assignment.
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a similar track from the anti-quark flying in the opposite direction, producing a fake

B0 → h+h′− candidate with kinematics that is very similar to the signal. Extrapo-

lations of the shape of these variables, from the sideband to regions where signal is

expected, provide a means of estimating their yield.

As discussed in section 4.3.1, the majority of these continuum events carry charac-

teristics which permit some discrimination from B decays. Hence cuts on event shape

variables such as sphericity, the Fox-Wolfram moments, and the angle between the

candidate axis and the rest of the event eliminate a large fraction of the background

candidates. We obtain further background suppression from a linear combination of

several event shape variables,

F =
N∑
i=1

αixi,

called a Fisher Discriminant (FD) [65], optimized to separate continuum events from

B decays. Here, the coefficients αi providing the maximal separation between a

sample signal and background events are given analytically as

�α =
NSNB

NS +NB
(�̄xS − �̄xB)TW−1.

where NS and NB are their respective number of events of each type, xi are the

variables, and �̄xS,B are vectors of variable means for the signal and background events.

W is the dispersion component of the covariance matrix

Wµν =
1

n

(
NS∑
i

(xiµ − x̄Sµ)(xiν − x̄Sν) +

NB∑
i

(xiµ − x̄Bµ)(xiν − x̄Bν)

)
.

The resulting discriminant exploits the correlations between the inputs to separate

the two event types.

In order to build the optimal discriminant, we extract topological variables for

large numbers of candidate B0 → h+h′− events from Monte Carlo B0 → π+π− and
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e+e− → uū, dd̄, ss̄, cc̄ samples. Many of these variables characterize spatial distri-

butions of tracks and neutral clusters about the thrust axis of the candidate in the

Υ (4s) rest frame. The CLEO collaboration, in their analysis of these modes, used

the energy flow into 9 concentric, mutually exclusive cones about this axis to define

a FD [64]. The separation power of this discriminant was derived from the fact that

the jetty background events had more particles flying at small angles to the B candi-

date daughters tracks, while signal decays had no such correlation. Extensive studies

at BABAR indicated that CLEO’s inputs provided nearly optimal signal/background

separation [66]. Ultimately however, we choose another discriminant, composed of

a simpler choice of variables which exploit the same information, due to its slightly

better background rejection and aesthetic appeal. This new FD is composed of two

variables {L0, L2} defined as

Li =

ROE∑
j

pj | cos θj |i

where the sum includes all tracks and neutrals not in the B candidate (often referred

to as the rest-of-the-event (ROE)) and θj is the angle between particle’s momentum

direction and the axis defined by the B’s two back-to-back daughter tracks. Distri-

butions of the resulting discriminant, defined by

F = 0.5139 − 0.6023L0 + 1.2698L2,

is displayed in figure 5.2 for signal and background events with | cos θS | < .8. Note

that such event shape FDs have strong correlations with most topological variables

so the degree of signal/background separation depends strongly on cuts on cos θS,

sphericity, and R2.
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Figure 5.2: The Fisher Discriminant distribution for signal Monte Carlo (left) and

sideband background (right). The fits to these are a bifurcated Gaussian for signal

and double-Gaussian for background.

5.1.3 Separation of Signal Modes

The four 2-track combinations, π+π−, K+π−, π+K−, and K+K−, which we have

collectively designated as “the signal” are difficult to distinguish and hence are back-

grounds to one another. Measuring the branching fraction for B decays to each of

these final states necessitates separating them. The kinematic difference between

the ππ, Kπ, and KK combinations provides a weak handle on the particle content

of the candidate B decays and negligible separation between K+π− and π+K− (see

section 6.1.1). The high momenta of these tracks also limit the viability of the SVT

and DCH dE/dx measurements as pion/kaon discriminators for these signal decays.

Therefore DIRC θc measurement will serve as our only particle identification tool,

dominating the separation of the signal modes.

Parameterizations of measured θc, obtained from highly pure data control sam-
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Figure 5.3: The (a) ∆M = M(D∗)−M(D0) mass difference and (b) D0 mass in the

control sample used for studying DIRC θc measurements.

ples of charged pions and kaon, were used to calculate π and K likelihoods of each

track. We obtained these samples by reconstructing the decay chain D∗+ → D0π+ →
(K−π+)π+ using only kinematic information and no particle identification. We build

D∗± candidates through four-momentum addition of tracks with appropriate mass

assignment defined by the charge of the slow pion from the D∗ decay. A two stan-

dard deviation cut on the mass difference of the D∗ and D0 (σ∆M =0.9 MeV/c2, see

figure 5.3a), which is measured well due to the small momentum of the slow pion,

removes most mis-reconstructed D0s. Requiring that the D0 momentum in the CM

frame is > 2.5 GeV/c isolates the continuum D∗ candidates and eliminates BB̄ events

which typically have higher combinatoric backgrounds. Removing events where the

kaon track is in line with the D0 flight direction in the D0 rest frame provides fur-

ther suppression of the combinatoric background. The cosine of this angle cos θ∗K is

required to be < 0.8. These selections produce a D0 sample which has a purity of

≈ 96% (see figure 5.3b).
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The most recent study of this control sample calibrates the DIRC response by

separately parameterizing the θc resolution, systematic bias, and charge dependence

of the measured θc of kaons and pions. We only consider tracks which have sufficient

signal Cherenkov photons (Nγ > 4) for a good θc measurement. In addition, since

these tracks do not exhibit the momentum-polar angle dependence of two-body B

decays, we select the subset which fall within the band displayed in figure 5.1b in order

to mimic the B0 → h+h′− kinematics. These selections yield 32, 074 kaon and 26, 736

pion candidate tracks2. We separately study the π+, π−, K+, and K− distributions

of the difference between the measured and expected θc, ∆θc = θc − θExp
c , in bins of

track polar angle (cos θ). In each bin, ∆θc of events within three standard deviations

(σMD0
= 8 MeV/c2) of the D0 mass are background subtracted using events in the

mass sideband. We fit the resulting distributions to Gaussian functions to obtain the

bias and resolution of the θc measurements. Figure 5.4 displays the cos θ dependence

of the measured bias, µ±
π,K(cos θ), and resolution, σ±

π,K(cos θ).

No dependence on other track parameters is observed when this calibration is

applied back to the control sample. In particular, the corrected pull distributions,

which are defined as
(
θc − θExp

c − µ±
π,K(cos θ)

)
/σ±

π,K(cos θ), are all centered at 0 with

width of 1 and show no dependence on momentum (see figure 5.5). Pull distributions

for the whole sample, which provide the likelihoods for discriminating pions and kaons

(see section 6.1.1), are displayed in figure 5.6.

2The asymmetry in the yields is due the difference in π/K mass, which propagates into a difference

in selection efficiency for the momentum cut.
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Figure 5.4: The measured θc resolution (σ±
π,K(cos θ)) and bias (µ±

π,K(cos θ)) for posi-

tively (circles) and negatively charged (triangles) pions (left) and kaons (right).
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Figure 5.5: The mean and sigma of corrected θc pull distributions for positively

(circles) and negatively (triangles) charged pions (left) and kaons (right) in bins of

track momentum. The fits are to double Gaussian functions.
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Figure 5.6: The corrected θc pull distributions for positively (left) and negatively

(right) charged pions (top) and kaons (bottom). The fits are to double Gaussian

functions.

5.2 Extracting the Measurements

As just discussed, our B0 → h+h′− signal events are embedded within a large back-

ground of e+e− → uū, dd̄, ss̄, cc̄. Meanwhile our kinematic, event shape, and particle

identification measurements permit the classification of the data into eight species of

events: the four signal and four background π+π−, K+π−, π+K−, and K+K− final

states. One method of isolating every signal mode would be to perform sets of cuts

which are most efficient for each species, separating the candidate events into en-

riched subsamples. Extracting the branching fractions would then involve measuring

the yields in every subsample and using a matrix of efficiencies for every species and

selection to unfold the results. Typically the cuts employed in these methods are de-

termined through the optimization of the statistical significance of the measurements,

which generally scales as Ns/
√

(Ns +Nb), where, in order to avoid bias, the signal
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and background yields Ns and Nb are derived from Monte Carlo, sidebands, and the-

oretical or previous yield estimates. In instances when the influence of backgrounds

on a measurement is not well understood, the cuts may be chosen to remove the back-

ground instead. Since such cut-and-count or cut-and-fit methods typically discard the

fraction of signal events with ambiguous classification, they are most attractive when

the sacrifices in signal efficiencies are warranted by large signal purity and abundant

signal yields.

We choose to extract measurements using a statistical technique known as Max-

imum Likelihood (ML) fitting which employs parameterizations of the variable dis-

tributions to separate the species and fit for the interesting quantities. This method

provides important benefits to the analysis:

• ML fits are mathematically proven to provide the most statistically signifi-

cant measurement attainable on any sample. Hence stringent selections are

not required, signal efficiencies are high, and every event contributes to the

measurement.

• All measurements are derived in one step providing both technical and proce-

dural advantages.

• Simultaneous fitting of multiple samples provides better and easier assessments

of systematic uncertainties. This benefit is reaped in two distinctive ways.

First, when large signal-free side-band regions are included in the range of ev-

ery variable, the fit projects the background contributions into the signal region.

Consequently when the background parameterizations are determined by the fit,

their systematic uncertainties are reflected in the statistical error of the mea-

surement. Second, the simultaneous extraction of necessary parameters (for
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example resolution function parameters) through the inclusion of supplemen-

tary control samples assures the correct and easy propagation of the systematic

uncertainties of those parameters to the final results.

When properly constructed, ML fits can in one step provide the most statistically

significant measurement possible with small, yet accurate systematic error estimates.

The difficulty lies in the complexity of such fits, which in our case will eventually

extract 6 measurements and 113 parameters from two samples of nearly 100, 000

events. Also such fits require understanding of the underlying physics and extensive

validation studies. The latter was achieved through fits to thousands of toy Monte

Carlo (toy MC) experiments which provide a fast and controlled means of simulating

the fit inputs. For this analysis, these studies ultimately provide the quantitative

and qualitative understanding of the expected behavior of the fit and bounds on the

uncertainties due to various assumptions. They will be detailed in the next three

chapters as we document the various components of the fit.

5.2.1 Maximum Likelihood Fitting

Given the probability distribution function (PDF) P for an observable x, the likeli-

hood of extracting the NT measurements {x1, x2, ..., xN} is defined as the product

L(αj) ≡
N∏
i

P (xi|αj) (5.1)

of the probabilities for the individual measurements, where αj parameterize P . For

example, if x is Gaussian distributed, {αj} will be the mean and width of P . Maxi-

mizing L with respect to αj provides an unbiased estimator of αj which is in general

unique, sufficient (i.e. using all available information), and efficient (i.e. carrying
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the smallest possible variance). We will derive our measurements by applying this

theorem.

The likelihood that describes the events in our sample of B0 → h+h′− candidates

is obtained through a few modification to 5.1. First, we would like to simultane-

ously fit several variables distributions, specifically the variables {xk} = {mES, ∆E,

a fisher discriminant F , the θc for 2 tracks, and eventually flavor tagging and ver-

texing variables}. If these variables are uncorrelated, the probability of obtaining

an event with a specific set of measurements is simply the product of the individual

probabilities

P ({xk}) = P (mES)P (∆E)....

Next, since eight different species of events may populate our sample, we expand the

total probability of observing an event to

P ({xk}) = fSππP
S
ππ({xk}) + fSKπP

S
Kπ({xk}) + fSπKP

S
πK({xk}) + fSKKP

S
KK({xk})

+ fBππP
B
ππ({xk}) + fBKπP

B
Kπ({xk}) + fBπKP

B
πK({xk}) + fBKKP

B
KK({xk}),

where the fS,Bl are the fractions of signal and background for the different final states,

and the Pl({xk}) are the corresponding products of the {xk} probability distributions

for that final state. The resulting likelihood

L(αj , f
S,B
l ) =

NT∏
i

P ({xk}i|αj, fS,Bl ) (5.2)

now fully describes our data sample. A closer look into this likelihood reveals that

the use of fractions does not take into account the Poisson statistics governing the

sample yield. In fact equation (5.2), in its current form, has no constraint enforcing

the fractions sum to 1. We remedy these issues by re-parameterizing (5.2) in terms

of yields Nl by the substituting fl = Nl/
∑8

l′ Nl′, and extending the likelihood by
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multiplying a Poisson term NT
N′

T e−N′
T

NT !
, where N ′

T =
∑

lNl. After simplification, the

final likelihood takes the form

L(αj , N
S,B
l ) =

e−
P

l Nl

NT !

NT∏
i

{ NS
ππP

S
ππ({xk}i) +NS

KπP
S
Kπ({xk}i) +NS

πKP
S
πK({xk}i)

+ NS
KKP

S
KK({xk}i) +NB

ππP
B
ππ({xk}i) +NB

KπP
B
Kπ({xk}i)

+ NB
πKP

B
πK({xk}i) +NB

KKP
B
KK({xk}i)}. (5.3)

In addition to the measurements we are interested in, the variables αj and NS,B
l in-

clude background yields and PDF parameters. When maximizing this likelihood, we

will choose a select set of these parameters to be determined from our sample. Typi-

cally these parameters will include background PDF parameters which this likelihood

will describe well due to the inclusion of large sideband regions. Signal PDF param-

eters will be generally extracted from control samples of more abundant B decays

than our signal. When possible, we will multiply the likelihood which extracts these

signal parameterizations to (5.3), therefore extracting the parameters simultaneously.

An estimator of the quality of the fit may be determined from χ2 = −2 logL +

C(N ′
T ), where C(N ′

T ) is an arbitrary constant which is dependent on the sample size.

Since L and logL share the same maxima, we choose to minimize χ2 when performing

the fit. This is a standard trick which allows the estimation of the errors on our fitted

parameters from the derivatives used to minimize the χ2, and also provides a more

computationally manageable task by converting the large product in (5.3) to a sum.

Finally, large samples of toy MC experiments will provide the distribution of χ2,

allowing the estimation the goodness-of-fit.
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5.2.2 The LMinuit Fitting Package

The development of a new fitting software for this analysis was warranted by the

absence of a viable alternative during the preliminary stages of the investigation of

these modes. In an effort to avoid building software capable of only a single task,

a general interface to the Minuit minimization package was created. The resulting

package, named LMinuit, provides users with a toolbox of commonly used functions,

algorithms, and input/output and organization routines accessible through a full fea-

tured programming language based on LISP. LMinuit also handles the caching of

function evaluations on the data, reducing the number of numerical calculation and

shortening fit times by an order of magnitude. Also, specialized generators provide

a means of producing sophisticated toy Monte Carlo experiments. A LISP library of

support scripts provide object oriented tools for handling parameters and probability

distribution functions (PDFs), writing the likelihoods, configuring and controlling the

fit and toy MC, and producing ntuple and graphical output.

5.2.3 The Toy Monte Carlo

Toy Monte Carlos provide a fast means of generating events by reproducing variables

employed in the analysis from parameterizations of their distributions derived from

the data and the Geant4 Monte Carlo. The goal is to produce an output which, to

the fit, is indistinguishable from the data. For variables which are considered to be

uncorrelated to each-other, such as mES and F , generating the PDFs is a simple

task. The parameterizations of the Cherenkov angles and ∆E, however, depend on

the kinematics of the decay. In particular two important features must be properly

reproduced in order to accurately simulate the particle identification in the data:

the track momentum/polar-angle (θ) dependence induced by the boost, because it
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is essential to model the DIRC resolution’s sensitivity to cos θ; and the correlations

between the two tracks in the decay, since if one track is fast and therefore difficult

to distinguish between a kaon or pion, the other is slow and is easier to identify.

Therefore this analysis warrants a full kinematic generator in the toy Monte Carlo.

LMinuit reproduces the signal by first simulating the two body B decay in its

rest frame, creating two 2.6 GeV back-to-back tracks flying in a random direction.

Full Monte Carlo distributions of the B flight angles and momenta (p∗0) are then used

to boost the tracks into Υ (4s) frame. Finally the system is again boosted into the

lab frame and acceptance corrections are applied. Since the background continuum

events which are considered by this analysis have kinematics which are similar to

the signal decays, they are produced by the same algorithm, but with p∗0 and angle

distributions determined from sideband data.

5.3 Analysis Outline

The analysis method is essentially defined by our choice to extract yields through a

maximum likelihood fit, which derives its ability to distinguish between the eight pos-

sible signal and background species of events populating our sample of B0 → h+h′−

candidates from accurate parameterizations of kinematic, event shape, and particle

identification variables. Since this technique promises to provide the most significant

measurement of the branching fractions possible on any data sample, we choose our

selections of candidates to eliminate only the most obvious background sources, pro-

viding a manageable data sample with the largest possible signal efficiencies to the

fit. In this section we will detail this selection and calculate the signal efficiencies.

In the next chapter we will focus on the parameterizations of the PDFs of the fit
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variables.

The extraction of time-dependent asymmetries in B0 → π+π− from our data

sample necessitates the addition of information on the reconstructed decay vertex and

flavor of the second B meson in the event to the maximum likelihood fit. We choose

to extract signal yields without the added complications of the full CP analysis3. This

choice is warranted by the opportunity to obtain a high precision (≈ 5%) measurement

of the B0 → K+π− branching fraction from the full data sample (see introduction to

chapter 8).

5.3.1 Data Sets

The data sets of of recorded and simulated events employed in this analysis are:

• Events recorded by the BABAR detector:

– On resonance: 81.0 fb−1, (87.9 ± 1.0) million BB pairs from

∗ Run 1 (1999-2000): 11.4 fb−1 DCH HV=1960V, 8.8 fb−1 DCH HV=1900V,

∗ Run 2 (2001-2002): 61.2 fb−1 DCH HV=1900V.

– Off resonance: 9.6 fb−1, from

∗ Run 1 (1999-2000): 1.6 fb−1 DCH HV=1960V, 1.0 fb−1 DCH HV=1900V,

∗ Run 2 (2001-2002): 7.0 fb−1.

• Geant4 simulated events:

– Signal Monte Carlo:

3Though the branching fractions gain statistical precision from the background suppression pro-

vided by the vertexing and flavor tagging, we ignore these variables in order to avoid any possible

systematic effects on the branching fractions. See the introduction to chapter 8.
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∗ B0 → π+π− (99,000 events),

∗ B0 → K+π− (178,000 events),

∗ B0 → K+K− (77,000 events).

– Continuum/background Monte Carlo:

∗ e+e− → uds (147 million events, 70.5 fb−1),

∗ e+e− → cc̄ (92.5 million events, 71.2 fb−1),

∗ e+e− → τ+τ− (68.5 million events, 72.8 fb−1).

∗ e+e− → e+e− (1.7 million events).

– B decay Monte Carlo:

∗ Generic B decay:

· B0/B0 (43.4 million, 82.8 fb−1),

· B+/B− (43.3 million, 82.6 fb−1).

∗ B decay to final states with no charm4:

· B0/B+ (4.8 million, 192 fb−1),

· B0/B− (4.8 million, 192 fb−1).

∗ B Backgrounds:

· B0 → ρ+π−, ρ+ → π+π0 (63,000 events).

· B0 → K∗+π−, K∗+ → K+π− (37,000 events).

· B0 → K∗+π−, K∗+ → K0
sπ

+ (55,153 events).

· B0 → K∗0π0, K∗0 → K+π+ (38,000 events).

4In order to study b-quark backgrounds due to other rare modes these two samples were generated

using the branching fractions and upper limits of all possible B mesons decays to final states with

no charm quarks.
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· B+ → K∗+π0, K∗+ → K+π0 (38,000 events).

· B+ → K∗+π0, K∗+ → K0
sπ

+ (38,000 events).

· B0 → K∗0γ,K∗0 → K+π− (38,000 events).

5.3.2 Selection Criteria and Efficiency

Table 5.1 summarizes the selections criteria imposed on the data, listing the efficiency

of each cut for each signal mode. In order to eliminate the majority of non-hadronic

products of the e+e− collision (see table 5.2) which are typically two-prong, we search

for B0 → h+h′− candidates in events which have three or more tracks reconstructed

and R2 < 0.95. The requirement that the sphericity of the event is > 0.01 further

reduces the number of e+e− → τ+τ− events. Both of these variables are calculated

using all tracks and neutral clusters in the event.

We construct candidates by finding the best common vertex for pairs of oppositely

charged “good quality” tracks (see section 4.2.1), adjusting their momentum vectors

to be consistent with production at the resulting vertex point. Simple four-vector ad-

dition of these momenta, with the assumption of pion mass for each particle, provides

the four-momentum of the B candidate which in conjunction with beam parameters

provided by PEP-II allows the calculation of mES and ∆E. We retain candidates in

the region |∆E| < 0.420 GeV and 5.2 < mES < 5.2895 GeV/c2 for our studies, but

only consider the subset which satisfy |∆E| < 0.150 GeV in the fit. This range in-

cludes nearly all signal decays, and eliminates almost all mis-reconstructed B decays

(such as the charmless decays to three-body final states in tables 5.3 and 5.4), which

typically have a ∆E which is shifted to negative values by more than one pion mass.

Though the Fisher discriminant provides good background suppression to our fit,

the requirement |cos θS| < 0.8 provides additional continuum rejection by using event
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Table 5.1: Summary of detection efficiencies for π+π−, K+π−, and K+K− as deter-

mined in Geant4 signal Monte Carlo samples with about 40k events. The tracking

correction accounts for measured tracking efficiency differences between simulated

and recorded data. The efficiency of each cut is relative to the previous one and the

errors are statistical, except for the PID and tracking efficiency corrections (which

are included in the error on the total efficiency). For a description of each cut, refer

to the text.

ε(π+π−) ε(K+π−) ε(K+K−)

Standard Selection

Reconstruction + R2 < 0.95 +

S + | cos θS | < 0.9 0.7101 ± 0.0024 0.6993 ± 0.0025 0.6835 ± 0.0025

Good track quality 0.8907 ± 0.0020 0.8899 ± 0.0020 0.8881 ± 0.0021

∆E–mES 0.9912 ± 0.0006 0.9888 ± 0.0007 0.9812 ± 0.0009

| cos θS | < 0.8 0.8701 ± 0.0023 0.8773 ± 0.0022 0.8734 ± 0.0024

standard efficiency 0.5455 ± 0.0027 0.5399 ± 0.0027 0.5202 ± 0.0026

PID Selection

θc 0.8281 ± 0.0027 0.8284 ± 0.0028 0.8306 ± 0.0029

Nγ 0.9362 ± 0.0019 0.9324 ± 0.0020 0.9292 ± 0.0021

electron veto 0.9998 ± 0.0001 1.0 ± 0.0 1.0 ± 0.0

proton veto 0.9653 ± 0.0015 0.9652 ± 0.0016 0.9690 ± 0.0015

data/MC correction 0.9800 ± 0.0100 0.9800 ± 0.0100 0.9800 ± 0.0100

PID efficiency 0.7333 ± 0.0081 0.7306 ± 0.0081 0.7329 ± 0.0082

∆t Selection

∆t 0.9852 ± 0.0010 0.9879 ± 0.0009 0.9859 ± 0.0010

σ∆t 0.9803 ± 0.0011 0.9784 ± 0.0012 0.9812 ± 0.0012

∆t efficiency 0.9658 ± 0.0015 0.9666 ± 0.0015 0.9674 ± 0.0015

nominal efficiency 0.3863 ± 0.0047 0.3813 ± 0.0047 0.3688 ± 0.0046

tracking correction 0.983 ± 0.016 0.983 ± 0.016 0.983 ± 0.016

Total Efficiency 0.3798 ± 0.0076 0.3748 ± 0.0076 0.3623 ± 0.0073
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shape information not fully exploited by the Fisher discriminant5 (see table 5.5.). This

selection, by eliminating roughly 50% of the continuum background while retaining

> 87% of the signal, also provides an efficient means of reducing the data sample to

a manageable size for the fit.

Since the fit predominantly relies on the θc measurements for kaon/pion separa-

tion, we only consider candidates which are in the DIRC acceptance and have good

θc fits for both tracks. Studies of kaons and pions in the D∗ control sample indicate

that at least 5 signal photons are required for a reliable θc extraction. Requiring

that each track is within 4σ of the expected pion or kaon θc rejects protons, which

may originate from machine backgrounds or e+e− → baryons production. Electron

rejection is also required due to the presence of e+e− → e+e− events with additional

tracks due to radiation from the final state electrons or the beam hallow or due to

τ decays. We identify and reject tracks which are highly likely to be electrons when

they are 4σ and 3σ consistent with electron hypothesis of the DCH dE/dx and DIRC

θc measurements, are well associated with an EMC cluster which exhibits appropriate

shower shape, and satisfy the strict requirement of 0.89 < E/p < 1.26. In order to

correctly account for the kinematic effects, the efficiency of these requirements for

signal is determined from Monte Carlo and corrected for inconsistencies with data

through comparisons of data and simulated D∗ control samples.

Finally we apply requirements on the quality of the measured time difference

5θS is the angle between sphericity axes of the B candidate and the rest of the good tracks and

neutrals in the event. See section 4.3.1.

6The E/p distribution is centered at 1 (by virtue of the E/p calibration) and has a width of

0.02− 0.03. The cut on the lower side is optimized so that the influence of radiation and energy loss

in dead material in front of the EMC is minimized while keeping a good separation against hadrons.

The upper cut is mainly used for the rejection of annihilating anti-protons.
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Figure 5.7: The mES and ∆E distributions of the 26, 070 selected B0 → h+h′−

candidates in the on-resonance sample.

∆t between the decay of the two B mesons in the event. Chapter 7 will provide a

complete description of these variables as well as the evaluation of the efficiency of

cutting on them. Despite the loss of efficiency, we retain these selections for extracting

the branching fraction due to historical reasons which facilitated comparisons with

the time-dependent analysis. Figure 5.7 displays the mES and ∆E distributions of

the 26, 070 B0 → h+h′− candidates selected in the on-resonance sample.
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Table 5.2: Selection efficiencies for non-hadronic e+e− → τ τ̄ and e+e− → e+e− events

from Geant4 Monte Carlo. The reconstruction efficiency is relative to the number of

generated events in each Monte Carlo sample, and the efficiency of each successive

cut is relative to the previous one. The “expected yield” is the estimated number

of events of the specific background source in the B0 → h+h′− sample. In order to

estimate the background contributions to each signal decay, the ππ, Kπ, and KK

“select” entries reflect the number of events in each Monte Carlo background sample

which are consistent with the specific signal final state. These events are selected

using particle identification and three standard deviation cuts on mES and ∆E. The

listed efficiency for these entries is relative to the ∆t, σ∆t cut.

e+e− → τ τ̄ e+e− → e+e− (Bhabha)

Events Events

Cut Passed Efficiency Passed Efficiency

Reconstruction 105384 1.54 · 10−3 ± 4.74 · 10−6 69 3.985 · 10−5 ± 4.79 · 10−6

NGT > 2, R2 < 0.98 35375 33.57% ± 0.15% 7 10.14% ± 3.63%

R2 < 0.95 34480 97.47% ± 0.08% 4 57.14% ± 18.70%

S > 0.01 32975 95.64% ± 0.11% 3 75.00% ± 21.65%

Good Track 27212 82.52% ± 0.21% 2 66.67% ± 27.22%

∆E–mES 8754 32.17% ± 0.28% 0 0.00% ± 0.00%

| cos θS | < 0.8 2219 25.35% ± 0.46% 0 0.00% ± 0.00%

θc 1719 77.47% ± 0.89% 0 0.00% ± 0.00%

Nγ 1676 97.50% ± 0.38% 0 0.00% ± 0.00%

Electron Veto 1205 71.90% ± 1.10% 0 0.00% ± 0.00%

Proton Veto 1194 99.09% ± 0.27% 0 0.00% ± 0.00%

∆t, σ∆t 563 47.15% ± 1.44% 0 0.00% ± 0

Total Selection Eff 8.22 · 10−6 ± 3.47 · 10−7 0 ± 0

Luminosity ( fb−1) 71.2

Expect Yield (Events) 625.56 ± 0.52 0.00 ± 0.00

ππ Select 25 4.44% ± 0.87% 0 0.00% ± 0.00%

Kπ Select 5 0.89% ± 0.40% 0 0.00% ± 0.00%

KK Select 0 0.00% ± 0.00% 0 0.00% ± 0.00%
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Chapter 6

Measurement of the Branching Fractions

Though by 1999 both B0 → π+π− and B0 → K+π− decays had been discovered

by the CLEO collaboration [56], the sensitivity of theoretical hadronic calculations

to the branching fractions of these and other two-body charmless decays warranted

more precise measurements [15]. In addition, the prospect of discovering direct CP

violation by observing a time-independent decay rate asymmetry between the self-

tagging B0 → K+π− and B̄0 → K−π+ modes has fueled a continuing interest in the

refined measurements made possible by the accumulating data. With the present data

sample of more than 80 million B decays, the extraction of the branching fraction

of the B0 → K+π− decay, which is roughly four times larger and suffers from less

background than B0 → π+π−, is expected to yield ≈ 5% uncertainty and therefore

may be considered a percision measurement. Hence greater understanding of the

performance and behavior of analysis elements is now necessary. Having discussed the

general analysis methods, we turn our attention in this chapter to the determination

of analysis inputs, testing of analysis assumptions, the extraction of the results, and

the evaluation of the systematic errors for the three branching fractions and the time-

independent CP asymmetry.
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6.1 Maximum Likelihood fit for extracting Branch-

ing Fractions

Having selected a sample of events for fitting, the construction of the maximum

likelihood fit may be itemized into the following tasks:

• the recognition of the origins of events which populate the sample,

• the selection of a set of uncorrelated variables which allow the separation of

events into sub-samples,

• the identification of these sub-samples,

• the parameterization of the distributions of every variable for each sub-sample,

and

• the identification of parameters which may be extracted from the sample.

In the previous chapter we noted that in addition to the signal B decays, candidates

mimicking B0 → h+h′− decays may originate from other Υ (4s) decays, the hadronic

e+e− → uū, dd̄, ss̄, cc̄ continuum, QED e+e− → e+e−, µ+µ−, τ+τ− processes, or beam

backgrounds. Our selections virtually eliminated all background sources with the

exception of the continuum events. In order to separate the signal from this back-

ground, we choose the kinematic quantities mES and ∆E, and the event shape Fisher

discriminant F as fit variables. We also selected each track’s θc measurement to iden-

tify the different final states. This choice of variables permit separating the sample

into the eight “species” which we label by the flavor of the particles (π+π−, K+π−,

π+K−, or K+K−) and their source (signal or background).
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Table 6.1: Summary of PDFs and their parameters in the maximum likelihood fit.

Parameters which are determined by the fit (ie floating) have no value or source

specified. The indices’ k indicate species.

Variable Sig PDF Sig Params Bkg PDF Bkg Params

mES Gaussian µmES = 5.280 ± 0.0005GeV/c2, ARGUS ξ

σmES = 2.6 ± 0.1MeV/c2 Function

∆E Gaussian µ∆E = −2+1
−2 MeV, quadratic ∆Ep1, ∆Ep2

σ∆E = 26+1.0
−0.7 MeV

F bifurcated µF = 0.00929 ± 0.01094, double Fµ1 , Fσ1 , Fµ2 ,

Gaussian σLF = 0.69909 ± 0.00676, Gaussian Fσ2 ,Ff1
σRF = 0.39737 ± 0.00699

θc double µ±
π,K(cos θ), same as same as

Gaussian σ±
π,K(cos θ) Signal Signal

from D∗ sample

6.1.1 Fit Inputs

We now turn our attention to the parameterization of fit variables for each species. For

the background events we will only determine which empirical functions adequately

describe each variable and allow the ML fit to extract the parameters of these PDFs.

As discussed in the previous chapter, the simultaneous extraction of these parameters

along with the signal/background yields, which was made possible by the inclusion

of large number of sideband events in our sample, insures the propagation of the
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Figure 6.1: Sample mES distributions in data for (a) signal B− → D0π− decays and

(b) continuum B0 → h+h′− candidates in the sideband region |∆E| > .15 GeV. The

B− → D0π− events are fitted to a Gaussian plus an ARGUS function to account for

continuum backgrounds. The continuum sample is fitted to an ARGUS function.

statistical uncertainties on these parameters to those on our measured quantities.

In contrast, we will determine the signal PDF functions and their parameters from

control samples or Monte Carlo events which provide much larger statistics than the

signal decays in the data. We will evaluate the systematic errors due to the signal PDF

parameters by examining the change in the measured quantities when the sample is

refitted with each parameter varied within its uncertainties. Table 6.1 summarizes

the discussion of the PDFs and their parameters.

Beam substituted mass, mES

As noted in chapter 4, the reconstructed mES distribution of all B decays into fi-

nal states composed of only charged tracks is expected to be identical. Figure 6.1a

illustrates a sample distribution for B− → D0π− decays, which Monte Carlo com-

109



parisons indicate agree well with all B0 → h+h′− decays. From this sample we

determine that signal mES decays are well represented by a Gaussian PDF with mean

µmES = 5.280 ± 0.0005 GeV/c2 and resolution σmES = 2.5 ± 0.1 MeV/c2.

No underlying physics governs fake candidates from the continuum. However,

their mES and ∆E distributions reflect the size of the available phase space and are

therefore decay channel specific. The fall off of the mES distribution of the continuum

sample at the beam energy, shown in figure 6.1b for B0 → h+h′− candidates in the

side-band region |∆E| < .15 GeV, is well modeled by the one parameter ARGUS

function [67] defined as:

dN

dmES
= N ·mES ·

√
1 − x2 · exp

(−ξ · (1 − x2)
)

where x = mES/mmax and mmax = 5.2895 GeV/c2 is largest mES value observed. Fits

to sub-sets of this sideband sample where π+π−, K±π∓, or K+K− have been selected

using particle identification information indicate no dependence on the particle con-

tent of the candidate and hence justify a common ξ for all continuum background

species. We allow this parameter, which is typically around 22 (see section 6.3), to

be determined by the ML fit.

The Energy Difference, ∆E

Monte Carlo studies (see figure 6.2a) suggests that ∆E distribution of B0 → π+π−

events is well described by a single Gaussian function centered at 0 MeV with a width

of 25 MeV. As figure 6.3a illustrates, the mean ∆E of B0 → K+π− and B0 → K+K−

decays is shifted by ≈ −42 MeV and ≈ −95 MeV, when they are reconstructed as

B0 → π+π−. Also, since ∆E is calculated in the CM of the B and is therefore

sensitive to the boost, the incorrect mass hypotheses causes this shift to exhibit the

momentum dependence displayed in figure 6.3b. We account for this feature in the
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Figure 6.2: Distribution of ∆E for (a) signal B0 → π+π− decays in Geant4 simulated

events and (b) background continuum events from the sideband mES < 5.26 GeV/c2.

The signal is fit with a Gaussian and the background is fit with a quadratic.
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Figure 6.3: (a) Simulated ∆E distributions for (from right to left) B0 → π+π−,

B0 → K+π−, and B0 → K+K− decays reconstructed assuming both final state

tracks are pions (a). (b) ∆E of simulated B0 → K+π− (green) and B0 → π+π− (red)

events versus the momentum of one of the final state tracks.
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Table 6.2: Comparison of data and Monte Carlo ∆E resolution in B− → D0π− →
(K−π+)π− decays for different DCH high voltages. The fits to the data are displayed

in figure 6.4.

DCH High Voltage Data σ∆E ( MeV) MC σ∆E ( MeV)

1900 V 18.1 ± 0.7 16.0 ± 0.3

1960 V 16.9 ± 0.7 16.1 ± 0.2

1930 V 16.5 ± 0.3 16.0 ± 0.1

Average 16.8 ± 0.3 16.0 ± 0.1

Scale Factor 1.05 ± 0.02

∆E distribution of B0 → K+π− by employing the analytical expression of the shift

µ∆E(Kπ) = −γ
[√

m2
K + p2 −

√
m2
π + p2

]
, (6.1)

for the mean of the PDF which represents its ∆E distribution. An analogous relation

provides the shift for B0 → K+K−.

Since the kinematics of the tracks from the B0 → h+h′− decays dictate a unique

∆E distribution for the signal modes (see section 5.1.1) we cannot simply rely on

the reconstruction of more abundant B decays to assess the ∆E resolution in data.

Also, comparisons of the data and Geant4 simulated events (see below) suggest that

the Monte Carlo simulation generally under-estimates the resolution and does not

accurately reproduce an observed negative shift in the mean of ∆E. In light of these

facts, we choose to estimate the parameters of the signal ∆E PDF by correcting

B0 → h+h′− Monte Carlo with the measured discrepancy of simulated events with

data in more abundant modes. Ultimately, we find our estimates are consistent

with the mean and resolution determined directly from the fit to the B0 → h+h′−
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Table 6.3: Comparison of data and Monte Carlo ∆E mean in B− → D0π− →
(K−π+)π− decays for difference DCH high voltages. The fits to the data are displayed

in figure 6.4.

Sample Data µ∆E ( MeV) MC µ∆E ( MeV)

1900 V −4.8 ± 0.8 0.1 ± 0.3

1960 V −4.8 ± 0.8 −0.4 ± 0.2

1930 V −3.1 ± 0.5 −0.3 ± 0.1

candidates (see section 6.3.3).

Our understanding of ∆E is based on several key observations, predominately

from studies of B− → D0π− → (K−π+)π− decays, which approximate the track

momenta of the B0 → h+h′− final states better than any other B decay with a large

branching fraction. From the comparisons of data and Monte Carlo presented in

tables 6.2 and 6.3, we conclude:

• Both data and Monte Carlo suggest that neither the mean nor resolution of

∆E exhibit a clear dependence on the DCH high voltage. Such a dependence

could have been caused by correlations between the high voltage and the average

number of hits on tracks.

• As figure 6.4 illustrate, ∆E for B decays are well represented by a single Gaus-

sian function.

• The Monte Carlo underestimates the ∆E resolution by a factor of 1.05 ± .02.

• The mean of ∆E in data is shifted negatively.
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Figure 6.4: Distribution of ∆E for B− → D0π− → (K−π+)π− reconstructed events

in data taken with DCH voltage at (a) 1960 V, (b) 1900 V, and (c) 1930 V. The fits

are to a Gaussian with a polynomial background component.
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We scale the Monte Carlo B0 → h+h′− ∆E resolution of 25 MeV by the observed

data/Monte Carlo discrepancy in B− → D0π− decays. This procedure leads to

σ∆E = 26+1.0
−0.7 MeV where the upper error has been conservatively increased and the

lower error is unchanged since the resolution in data is not expected to be smaller

than in the simulation.

Almost all samples of fully reconstructed B decays at BABAR demonstrate a nega-

tive ∆E shift, which the Geant4 simulation confirms in direction but under-estimates

in magnitude. This bias is most likely the consequence of a combination of three

effects [68]:

1. insufficient material employed in the calculation of the energy loss of charged

tracks in detector (specifically the DCH),

2. uncertainty in the strength of the magnetic field, or

3. the assumption that all tracks are pions in the tracking algorithms.

The magnitude of the bias generally depends on particles contributing to the final

state. Therefore despite the apparent large shift of > 4 MeV in B− → D0π− decays,

most other modes present smaller shifts. For example, B0 → J/ψK+ decays exhibit

only a small shift of −1.7 ± 0.2 MeV. Some studies indicate that the shift in B− →
D0π− may be due to the presence of a low momentum kaon in the final state which

would be most significantly affected by (3). Considering that the Geant4 simulation

demonstrate no shift for the B0 → h+h′− decays, we assign µ∆E = −2+1
−2 MeV for our

signal decays. This choice includes the possibility of a small shift, while allowing the

values as large as that of B− → D0π− decays.

Figure 6.2b displays ∆E distribution for continuum B0 → h+h′− candidates, ob-

tained in the sideband region mES < 5.26 GeV/c2. This distribution is well described
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by a second order polynomial. As with mES, the continuum ∆E exhibits no signifi-

cant dependence on the particles comprising the candidates. Therefore we choose to

extract one set of parameters for all background species in the ML fit.

The Fisher Discriminant, F

Figure 6.5 displays the signal and continuum background Fisher discriminant distri-

butions obtained from B0 → π+π− Monte Carlo and B0 → h+h′− candidates in the

mES sideband. We parameterize the signal distribution with a bifurcated Gaussian (a

Gaussian with a different width on the left and right sides of the mean) and the contin-

uum with a double Gaussian (the sum of two Gaussians). Once again, we permit the

ML fit to extract the parameters of the double Gaussian for the background. When

evaluating systematics, we also consider a triple Gaussian which better describes the

≈ 0.05% of background events not well described by the the double Gaussian param-

eterization.

The Cherenkov Angles, θ+
c , θ−c

The D∗ control sample described in 5.1.3 provides the parameterizations of the polar-

angle dependence of the resolution and bias of the measured Cherenkov angle. We

represent π+, π−, K+, and K− tracks by the different probability distribution func-

tions of (
θc − θExp

c − µ±
π,K(cos θ)

)
/σ±

π,K(cos θ)

displayed in figure 5.4 and assign each species the appropriate PDFs product for

one positive and a negative particle. Since the measured resolutions and biases are

considered to be a calibration, we derive the systematic errors due to θc from the

statistical errors of the double Gaussian fits to the pull distributions in the control
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Figure 6.5: Distribution of F in signal B0 → π+π− Monte Carlo (left) and on-

resonance mES < 5.26 GeV/c2 sideband data (right), on linear (top) and logarithmic

(bottom) scales. The signal is fit to a bifurcated Gaussian and the background is to

the sum of two Gaussians.
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samples. We evaluate these uncertainties by varying the fit parameters within their

error and then reperforming the ML fit on the data. In order to account for the

correlations between these parameters, we use the diagonalized correlation matrices

of the double Gaussian fits to determine the eight variations magnitudes and their

four independent directions.

6.1.2 Correlations Between Variables

In section 5.2.1 we relied on the assumption that the fit variables are uncorrelated in

order to write total probability for each event as the product of individual variable

PDFs. As a precaution, we check this assumption by explicitly calculating the linear

correlations between pairs of input variables {xi}, defined as

cij = s2
ij/siisjj

where

sij =
1

N − 1

Events∑
k

(
xki − x̄i

) (
xkj − x̄j

)
.

These are tabulated for signal and background samples in table 6.4. The largest

observed correlation is ≈ −13% between mES and ∆E for signal decays.

6.1.3 Fit Parameters

Table 6.5 summarizes the parameters of the ML fit. The fit extracts 16 param-

eters from the B0 → h+h′− sample, 12 of which describe the background. The

four signal parameters are the asymmetry in the Kπ final state and the yields,

from which we may calculate the branching fractions. To simplify the interpreta-

tion of the B0 → K+π− branching fraction and asymmetry, we reparameterize the

signal and background yields NS,B
K+π− and NS,B

K−π+ as NS,B
Kπ = NS,B

K+π− + NS,B
K−π+ and
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Table 6.4: Linear correlation coefficients for the variables {mES,∆E,F , θ+
c , θ

−
c } calcu-

lated for events in the 5.2 < mES < 5.26 GeV/c2 sideband region and the B0 → π+π−

Monte Carlo events.

Variables Sideband ππ MC

(mES,∆E) 0.00426 -0.12767

(mES,F) 0.01350 0.00086

(mES, θ
+
c ) 0.00041 0.01223

(mES, θ
−
c ) -0.00536 0.00384

(∆E,F) -0.03508 0.00317

(∆E, θ+
c ) 0.02527 -0.00393

(∆E, θ−c ) 0.01923 0.00967

(F , θ+
c ) 0.00891 -0.01662

(F , θ−c ) 0.00571 -0.01425

(θ+
c , θ

−
c ) 0.04335 -0.04814
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AB
Kπ = NS,B

K−π+ − NS,B
K+π−/N

S,B
K−π+ + NS,B

K+π−. Also since the B0 → K+K− yield is

expected to be small, we permit Minuit to explore negative values of NS
KK in order

to obtain proper calculation of the derivatives of the likelihood with respect to this

parameter.

6.2 Fit Validations

The maximum likelihood fit that we have constructed is essentially a black box which

when provided with a set of measured quantities for a sample of events, statisti-

cally extracts some measurements from the whole dataset. This fit’s complexity and

opaqueness necessitates scrutiny of its performance. The required testing is especially

important since, in an attempt to minimize biases which we may propagate to the

measurements, we have choosen to blind ourselves to the direct influence of our anal-

ysis decisions on the results by avoiding using the final data-set while determining

our selections and developing the fit. Ideally, once the analysis technique is fully

defined and reviewed, we freeze it and fit the data without the possibility of change.

The discovery and correction of a mistake after “unblinding” may compromise our

objectivity, so we must be confident that the analysis is sound before fitting the data.

6.2.1 Toy Monte Carlo Tests

Fits to large samples of toy Monte Carlo experiments test the ML fit’s ability to

properly measure parameters which we input. Since our toy Monte Carlo reproduces

features of the data which have not been explicitly built into the ML fit (such as the

kinematics of the decays and their correlations with the DIRC), these studies also

test some of the fit’s assumptions about the dataset. We produce toy Monte Carlo
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Table 6.5: Summary of parameters in the branching fraction maximum likelihood fit.

Parameter Status Description

NS
ππ float number of signal ππ events

NS
Kπ float number of signal Kπ events

NS
KK float number of signal KK events

AS
Kπ float charge asymmetry in signal K±π∓ events

NB
ππ float number of background ππ events

NB
Kπ float number of background Kπ events

NB
KK float number of background KK events

AB
Kπ float charge asymmetry in background K±π∓ events

µmES fixed signal mES mean

σmES fixed signal mES resolution

ξ float background mES ARGUS shape parameter

µ∆E fixed signal ∆E mean

σ∆E fixed signal ∆E resolution

∆Ep1 float background ∆E linear term

∆Ep2 float background ∆E quadratic term

µF fixed signal F mean

σLF fixed signal F left width

σRF fixed signal F right width

Ff1 float background Fisher fraction of first Gaussian

Fµ1 float background Fisher mean of first Gaussian

Fσ1 float background Fisher width of first Gaussian

Fµ2 float background Fisher mean of second Gaussian

Fσ2 float background Fisher width of second Gaussian
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Figure 6.6: The distribution of the pulls of NS
ππ, N

S
Kπ, AS

Kπ, and NS
KK from fits to

toy Monte Carlo experiments, fitted to Gaussian functions.
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experiments which simulate the expected data sample by using the signal parameters

(discussed in the section 6.1.1) and yields and background parameters from our earlier

measurements of these modes based on smaller data-sets. In each experiment, we use

Poisson distributions with means at the expected yields for the full data set to select

how many events of each species to generate. Since B0 → K+K− decays have not

been observed, we generate no events for this species.

Figure 6.6 displays pull distributions for the four signal yield parameters derived

from fits to an ensemble of such experiments. In each experiment, the pull for a

parameter x is defined as (xFit − xIn)/σxFit
, where xFit and σxFit

are the fitted value

and error, and xIn is the inputed value. We deduce two important observations

from the mean and width of these distributions: the fit exhibits no large biases and

the fitted errors correctly estimate the spread in the distributions of fitted values.

The behavior of the NS
KK pull is the typical consequence of negative background

fluctuations when there is no signal in the sample. Since we calculate the upper limit

on the B0 → K+K− branching fraction by integrating the likelihood (see section 6.3),

we ignore the fitted value of NS
KK.

6.2.2 Geant4 Monte Carlo Tests

Although limited by the available background Monte Carlo statistics, Geant4 simu-

lated events reproduce correlations between the variables which the toy Monte Carlo

ignores. Hence, despite the disagreements between variable distributions from sim-

ulated events and data, these samples are an important complement to the toy MC

tests. For consistency we use parameterizations of PDF parameters derived from the

simulated events. For example we repeat the θc study using D∗ Monte Carlo.

As table 6.6 indicates, fits to large signal samples display a very small π ↔ K
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Table 6.6: Summary of test fits on signal Monte Carlo samples of 50, 000 B0 →
π+π− and 200, 000 B0 → K+π− events. The choice of number of events roughly

approximates the ratio of the branching fractions.

200k B0 → K+π− +

Parameter 50k B0 → π+π− 200k B0 → K+π− 50k B0 → π+π−

NS
ππ 49722 ± 223 63.3 ± 19.7 50688 ± 238

NS
Kπ 114 ± 14 199560 ± 447 198860 ± 453

NS
KK 0.5 ± 1.2 2.7 ± 8.9 2.0 ± 8.5

AS
Kπ 0.15 ± 0.12 −0.004 ± 0.002 −0.001 ± 0.002

NB
ππ 158 ± 15 65.6 ± 10.1 179 ± 17

NB
Kπ 6.1 ± 3.9 303 ± 21 280 ± 21

NB
KK 0.0 ± 0.7 2.1 ± 3.6 2.0 ± 3.7

AB
Kπ −1.0 ± 1.5 0.059 ± 0.068 0.075 ± 0.072

(<< 1%) cross-feed and negligible signal to background migration. Also the results

of a fit to the available simulated background sample, shown in table 6.7, provides

confidence that the background events are unlikely to be misidentified as signal (≈ 1

in 10000 background to signal feed through). This table also illustrates that the fit

performs as expected when signal events are mixed with the background sample.

6.2.3 Test Fits on Data

The evaluation of the fit on recorded data is limited to fits to the small off resonance

subsample of background events, where no signal events are expected. Table 6.8

summarizes the result. We observe no signal events and find that the background
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Table 6.7: Summary of test fits on the continuum Monte Carlo samples, with and

without appropriate number of signal events mixed in.

150 B0 → π+π− + 500 B0 → K+π− +

Parameter 20274 continuum 20274 continuum

NS
ππ 0 ± 1.4 149 ± 17

NS
Kπ 2.4 ± 3.8 497 ± 25

NS
KK −4.9 ± 5.7 −2.5 ± 6.4

AS
Kπ 1.0 ± 1.9 −0.008 ± 0.051

NB
ππ 10699 ± 105 10721 ± 106

NB
Kπ 5666 ± 79 5657 ± 80

NB
KK 3912 ± 64 3909 ± 64

AB
Kπ −0.015 ± 0.014 −0.016 ± 0.014
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Table 6.8: Summary of ML fit on the off-resonance data sample.

Parameter Fitted Value

NS
ππ 0.0 ± 6.3

NS
Kπ 2.7 ± 2.7

NS
KK −7.2 ± 2.3

AS
Kπ 0.5 ± 1.5

NB
ππ 1451 ± 40

NB
Kπ 984 ± 35

NB
KK 696 ± 28

AB
Kπ 0.064 ± 0.035

species composition agrees with expectation from the sidebands. Similarly, we find

that all of the fitted background parameters are also consistent with expected values.

6.3 Results

The results of the ML fit to the full on-resonance data sample is displayed in table 6.9.

We calculate the branching fractions from the yields using

B =
N

εNBB

,

where N is the measured yield, ε is the efficiency (from table 5.1), and NBB =

87.9 ± 1.0 million is the measured number of BB events in the on-resonance sam-

ple (see section 4.3.2). We find B(B0 → π+π−) = (156.5 ± 18.9) × 10−6, B(B0 →
K+π−) = (588.5 ± 29.6) × 10−6, and B(B0 → K+K−) = (0.8 ± 7.7) × 10−6, where

the errors are statistical only. We calculate the 90% confidence upper limit on
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Table 6.9: The values of parameters from the branching fraction fit to the full on-

resonance dataset.

Parameter BR Fit

NS
ππ 156.5 ± 18.9

NS
Kπ 588.5 ± 29.6

AS
Kπ −0.102 ± 0.050

NS
KK 0.8 ± 7.7

NB
ππ 12200 ± 117

NB
Kπ 7984 ± 102

AB
Kπ 0.014 ± 0.013

NB
KK 5155 ± 77

ξ 22.0 ± 0.7

∆Ep1 −0.749 ± 0.074

∆Ep2 0.683 ± 0.952

Ff1 0.846 ± 0.025

Fµ1 0.367 ± 0.005

Fσ1 0.380 ± 0.006

Fµ2 0.104 ± 0.030

Fσ2 0.640 ± 0.020
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B(B0 → K+K−) = 15.9 × 10−6 by determining the point N .9
KK where the likelihood

Lmax(NKK), maximized with respect to all free fit parameters while NS
KK is fixed to

NKK , satisfies
∫ N .9

KK

0
Lmax(NKK)dNKK/

∫∞
0
Lmax(NKK)dNKK = 0.9. For this upper

limit we also reduce the efficiency by its systematic uncertainty. In the remainder

of this section we perform a detail examination of these results, testing that the fit

has behaved as expected by estimating the goodness of fit, comparing the errors of

the fitted parameters with the toy MC, and visually verifying the consistency of the

PDFs and results with the data.

6.3.1 Comparison with Toy Monte Carlos and Investigation

of Possible Biases

We assess the quality of the fit to the data by using the results in table 6.9 to

generate and fit toy Monte Carlo experiments. This test allows us to quantify the

likelihood of obtaining our data set, assuming our fit results are the true values

of the fit parameters. In an alternative interpretation, we test whether our basic

assumptions, which we have incorporated into the toy Monte Carlo, are compatible

with our data set. Figure 6.7 displays the yield parameter errors and −2 logL = χ2−C
(see section 5.2.1) for 500 such experiments. The arrows, which indicate the values

obtained from the fit to the data, illustrate that the fit is typical. The −2 logL

distribution suggests that the probability of obtaining a worst fit is ≈ 13%.

We also examine distributions of the difference between the fitted yield parameters

and their generated values in order to quantify any fit bias. As figure 6.8 illustrates,

we find a bias of +1.2 events (0.8%) on NS
ππ and −3.3 events (0.6%) on NS

Kπ. This

effect, which appears to shift events between different species, is not fully understood.

The yields of the background species, which cannot be separated by ∆E, suffer from
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Figure 6.7: The distribution of fitted errors on NS
ππ, NS

Kπ, and AS
Kπ, and the

−2 logL = χ2 − C of fits to 500 toy Monte Carlo experiments generated with the

parameters obtained from the fit to the data. The errors indicate the result from the

data fit.
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Figure 6.8: The distribution of the difference between fitted NS
ππ, N

S
Kπ, AS

Kπ, and

NS
KK and inputed values for 500 toy Monte Carlo experiments generated with the

parameters obtained from the fit to the data.
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a larger manifestation of this bias. This fact suggest that the source of the effect

may originate in the DIRC PDFs. However studies have been unable to pin point

whether it originates in generation, fitting, or a wrong assumption in the analysis.

An independent fit/toy Monte Carlo, based on ROOT rather than LMinuit, has also

observed the same bias. Since we cannot eliminate the toy Monte Carlo generation

as the source of this effect, we choose not to correct for the bias and instead include

the observed bias in the systematic error.

6.3.2 Plots

The production of plots which visually validate our measurement is complicated by

our choice to extract results from a ML fit on a loosely selected sample in which the

three different signal decays are mixed together along with a very large background.

Certainly themES and ∆E distributions in figure 5.7 are not very illuminating. There-

fore, we choose to plot variable distributions after cuts which isolate the various signal

decays in the manner described in the first paragraph of section 5.2. For comparison

to the fit, we then overlay the PDFs after correcting for the selection efficiency.

We make the selections using likelihoods constructed from the PDFs used in the

ML fit. When plotting variable x, we isolate signal by cutting on the likelihood

Lsig =
P S
ππ + P S

Kπ + P S
πK + P S

KK

P S
ππ + P S

Kπ + P S
πK + P S

KK + PB
ππ + PB

Kπ + PB
πK + PB

KK

,

where P S,B
i is the product of all signal or background PDFs for species i, excluding the

variable x. We further isolate an individual signal species i by performing a second

cut on the likelihood

Li =
P S
i

P S
ππ + P S

Kπ + P S
πK + P S

KK

.

We determine the Lsig and Li cut values which produce the most statistically signifi-
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cant selection, by maximizing

S(L′
sig, L

′
i) =

Ni(L
′
sig, L

′
i)√∑

j Nj(L
′
sig, L

′
i)
,

where Ni(L
′
sig, L

′
i) is the number of expected events of species i in the 3σ signal

region of variable x with Lsig > L′
sig and Li > L′

i. Since the Geant4 simulation does

not adequately reproduce the data likelihoods, we rely on toy Monte Carlo events

generated with the parameters of the data fit to estimate Ni(L
′
sig, L

′
i).

Figure 6.9 plots the mES and ∆E distributions for samples enhanced in B0 →
π+π− or B0 → K+π− decays, overlayed with the appropriate PDFs. Similarly fig-

ure 6.10 displays the Fisher distribution for a sample enhanced in signal decays.

6.3.3 Consistency of Fitted Signal Parameters

Though we choose to fix the parameters of the signal PDFs in our nominal fit, we

check the consistency of our estimates of their values by directly measuring these

parameters in separate fits to the data sample. Table 6.10 summarizes the results of

fits where the signal mES, ∆E, and F parameters were floated. In all cases we find

that the direct fits are consistent with their values in the nominal fit.

6.4 Systematics

Table 6.11 lists the estimated systematic errors on the measured yields due to PDF

parameterizations. For the signal mES, ∆E, and F PDFs, we calculated the sys-

tematics by noting the shift in the fitted yield and asymmetries after varying each

parameter within its estimated uncertainties. F3G refers to the possible bias resulting

from events on the signal side beyond the double Gaussian tail in the Fisher discrimi-

nant, discussed in section 6.1.1. As described in section 6.1.1, we varied θc parameters
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Figure 6.9: Distributions of mES and ∆E for samples enhanced in (a,b) signal π+π−

and (c,d) K∓π± decays. Solid curves represent projections of the maximum likelihood

fit, dashed curves represent qq̄ and ππ ↔ Kπ cross-feed background.
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Table 6.10: Comparison of the nominal values of signal PDF parameters and their

fitted values on the data. The errors listed on the nominal values are used in the

evaluation of the systematic error.

Fit Parameter Nominal Value Fitted Value

Signal µmES 5.2800 ± 0.0005 GeV/c2 5.2802 ± 0.0001 GeV/c2

mES σmES 2.5 ± 0.1 MeV/c2 2.58 ± 0.11 MeV/c2

Signal µ∆E −2+1
−2 MeV −1.3 ± 1.5 MeV

∆E σ∆E 26+1.0
−0.7 MeV 28.1 ± 1.4 MeV

Signal µF 0.00929 ± 0.01094 0.08549 ± 0.07006

F σLF 0.69909 ± 0.00676 0.75952 ± 0.04251

σRF 0.39737 ± 0.00699 0.37228 ± 0.05109
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Figure 6.10: The Fisher discriminant distribution for a sample enhanced in signal

decays. The solid curve represents the projection of the maximum likelihood fit. The

dashed curve represents the signal contribution.

coherently. Table 6.12 summarizes all of the systematics considered along with their

quadrature sum. In addition to the uncertainties listed table 6.11, we include

• Fit Bias — We account for the possibility of a fit bias of 1.6% for ππ and 0.7%

for Kπ based on the fits to pure signal Monte Carlo samples in table 6.6. We

consider this to be conservative, since the signal migration appears to be related

to PID and we have already accounted for variations in the θc PDFs.

• Toy MC bias — We apply any bias observed in the nominal toy Monte Carlo

configuration as a systematic error (section 6.2.1).

• Detector Charge Bias — Since the h+h′− final state includes one track of

each charge, our measurements are unaffected by any charge asymmetry in the

tracking efficiency. However any potential charge dependence in the particle

identification could bias AKπ. We estimate an upper bound on such an effect by
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comparing different measurements of the asymmetry AD = (ND0−ND̄0)/(ND0+

ND̄0) in the D∗ control sample (see section 5.1.3). We measure AD [69]

– kinematically using the correlation of the kaon charge with the slow pion,

but no other selections,

– kinematically when both tracks satisfy the θc selections in section 5.3.2,

and

– using the DIRC in a ML fit to the D0 mass and the θc measurements.

A conservative estimate of the variation between these measurements leads to

a systematic error of ±0.01 on AKπ.

• Efficiency and NBB — These are the estimated error on the determination of

the efficiency (see table 5.1 and section 4.2.1) and the number of BB events

(see section 4.3.2).

6.5 Summary

Table 6.13 lists our measurements of the branching fractions, including the systematic

errors. The B0 → K+K− upper limit is increased by the systematic error on its yield.

We measure the direct CP asymmetry in B0 → K+π− to be −0.102± 0.050± 0.016.

We find −0.188 < AS
Kπ < −0.016 at 90% confidence level.
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Table 6.11: Detailed summary of systematic errors on yields and CP asymmetries

due to uncertainty in the parameterization of the PDFs.

Source Nππ (%) NKπ (%) AKπ NKK

µ∆E −1.58 +0.68 −0.29 +0.40 −0.0015 +0.0007 −1.03 +0.46

σ∆E −1.21 +0.62 −1.30 +0.63 −0.0007 +0.0000 −0.93 +0.45

µmES −1.31 +0.81 −0.31 +0.00 −0.0022 +0.0022 −0.80 +0.96

σmES −1.38 +1.17 −0.96 +0.80 −0.0006 +0.0005 −0.11 +0.02

µF −0.91 +0.91 −0.56 +0.54 −0.0007 +0.0007 −0.05 +0.02

F3G 0.00 +2.55 0.00 +1.35 0.0000 +0.0050 −7.00 0.00

σFL −0.35 +0.34 −0.20 +0.20 −0.0002 +0.0002 −0.85 +0.84

σFR −0.50 +0.51 −0.32 +0.31 −0.0005 +0.0005 −0.12 +0.11

F3G 0.00 +2.55 0.00 +1.35 0.0000 +0.0050 −7.00 0.00

θK−
c −1.45 +0.10 −0.03 +0.47 −0.0045 +0.0036 −0.02 +0.28

θK+
c 0.00 +1.42 −0.44 +0.00 −0.0034 +0.0046 −0.12 +0.19

θπ−
c −0.17 +1.77 −0.05 +0.14 −0.0065 +0.0066 −0.80 +0.26

θπ+
c −1.83 +0.00 −0.13 +0.06 −0.0063 +0.0072 0.00 +1.11

Table 6.12: Global summary of systematic errors on branching fractions and CP

asymmetry.

Source Bππ (%) BKπ (%) AKπ NKK

mES −1.90 +1.42 −1.01 +0.80 −0.0023 +0.0022 −0.81 +0.96

∆E −1.99 +0.92 −1.33 +0.75 −0.0017 +0.0007 −1.39 +0.64

F −1.10 +2.78 −0.68 +1.50 −0.0009 +0.0051 −7.1 +0.85

θc −2.34 +2.28 −0.46 +0.49 −0.0107 +0.0114 −0.81 +1.19

Fit bias 0.00 +1.6 −2.00 0.00 −0.0005 0.0000 0.00 0.00

Toy MC bias 0.00 +0.77 −0.56 0.00 0.0028 0.0028 0.00 +2.40

Det q bias 0.00 0.00 0.00 0.00 −0.01 +0.01 0.00 0.00

efficiency −2.0 +2.0 −2.0 +2.0 0.0000 0.0000 −2.0% +2.0%

NBB −1.1 +1.1 −1.1 +1.1 0.0000 0.0000 −1.1% +1.1%

Total −4.4 +4.9 −3.6 +3.0 −0.0152 +0.0164 −8.9 +3.0
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Table 6.13: Summary of branching fraction results in the on-resonance (87.9 ± 1.0

million BB pairs). The errors are statistical and systematic, respectively.

Mode NS ε (%) B(10−6)

π+π− 156.5 ± 18.9 ± 6.5 37.98 ± 0.76 4.6 ± 0.6 ± 0.2

K+π− 588.5 ± 29.6+11.3
−16.5 37.48 ± 0.76 17.9 ± 0.9 ± 0.7

K+K− 0.8 ± 7.7 (< 15.9) 36.23 ± 0.73 < 0.6 (90% C.L.)
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Chapter 7

Ingredients of a Time-dependent CP

Analysis

In chapter 2 we found that the time evolution of the B0B0 system, when one of the

B’s decays into a CP eigenstate is described by

ΓB
0

B̄0(∆t) =
e−

|∆t|
τ

4τ
(1 ± Sf sin (∆md∆t) ∓ Cf cos (∆md∆t)), (7.1)

where ΓB
0

B̄0 corresponds to the flavor of the other B0 (B0), and Sf and Cf measure CP

violation. Having isolated candidate B0 → h+h′− decays, we now turn our attention

to extracting these parameters from the B0 → π+π− decays. Equation (7.1) requires

two inputs: the flavor of the other B meson in our signal events and the difference,

∆t, in the decay times of the two B mesons. In this chapter we’ll discuss the strategy

for measuring these quantities. In the next chapter, we will add these new analysis

ingredients to the branching fraction analysis to extract Sπ+π− and Cπ+π− .

Prior to the time-dependent analysis of the B0 → π+π− decay, b-flavor tagging

and ∆t extraction were used in the measurement of ∆md and sin 2β. For this analysis

we adopted the same techniques, which, having been developed for a more precise

measurements, are more than adequate. Both methods avoid the inefficiencies of
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the exclusive reconstruction of the other meson by inclusively inferring its flavor and

decay vertex from its final decay products. In order to assess their performance, the

flavor mis-tag probabilities and vertexing resolution are measured on a sample of fully

reconstructed B decays to self-tagging final states, where the physics of the flavor and

time structure of the events are known.

7.1 b-Flavor Tagging

Neutral B mesons often decay to final states, which are only accessible to either

a b or b̄-quark, therefore revealing the meson’s flavor. For example, a positively

charged lepton from B0 → D(∗)−l+ν identifies the presence of a b̄-quark and allows

the meson to be tagged as a B0. Despite the impressively large number of B decays

recorded by BABAR, the reconstruction efficiency of such self-tagging modes, coupled

with the small branching fraction of CP final states, produces insufficient yields of

exclusively reconstructed BB pairs for any time-dependent measurement. However

inclusive methods, which using kinematic and particle identification select particles

who’s charges are likely to correlate with the b-quark flavor, provide adequate b-flavor

determination for CP measurements.

BABAR’s flavor tagger is designed to exploit correlations between the b-flavor and

the charges of the final products of four distinct b-quark decay modes. It is tuned and

tested on Monte Carlo events where the flavor of the B mesons are known. However,

since the Monte Carlo does not perfectly mimic the data recorded by the detector,

the performance of the tagger is assessed in samples of fully reconstructed B decays.

The influence of the tagger on measured time-dependent asymmetries is quantified in

the parameter Q = εt(1−2w)2 = εtD2, which takes into account the tagging efficiency

140



(εT ) and the probability of mis-identifying the flavor of the B meson (w).

7.1.1 Flavor Tagging Decays

The b-flavor tagging algorithm employs two layers of decisions, labeled sub-net and

dispatch-net due to their heavy use of neural networks, to recognize different sources of

flavor carrying tracks and then combine all available information to determine a best

tag of a B meson’s flavor. Seven independent sub-nets use kinematic and particle

identification information to identify the signature of four specific flavor revealing

processes. We will survey these processes in this section.

Leptons from Semi-leptonic Decays

b c u,

νl

l
+

W
+

d d

b

W
+

νl

s

W
���
���
���
���
���

���
���
���
���
���

a) b)

d d

c

l
−

−

Figure 7.1: Leading lepton producing neutral B meson decays. The b-quark and

lepton charges are correlated in (a) B → Xlν (a) and anti-correlated in the (b)

b̄→ c̄→ s̄.

Semi-leptonic B → Xlν decays (figure 7.1a), which constitute roughly 20% of

the B branching fraction, produce electrons or muons whose charge has same sign

as the b-quark. Since these leptons are the primary product of the virtual W boson

emitted by the b-quark, they carry large momenta p∗l in the center of mass of the B

and may therefore be distinguished from softer secondary leptons from b̄ → c̄ → s̄

transitions (figure 7.1b) which exhibit the opposite lepton/b-quark correlation. The
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primary leptons are also faster than most pions and kaons produced by B decays,

allowing additional discrimination of misidentified leptons and also permitting purely

kinematic selection of the B → Xlν lepton when no particle identification is available.

Three separate neural network sub-nets recognize primary leptons, two of which

examine identified electrons or muons, and one which only considers kinematics. In

addition to p∗l , these three sub-nets also moderately benefit from two other kinematic

variables: the total energy in the hemisphere defined by W direction, which is gener-

ally smaller for B → Xlν than its inclusive backgrounds, and the CM angle between

missing momentum (i.e. the ν direction) and the primary lepton, which is also small

for real semi-leptonic decays. Ultimately kinematics and strict lepton identification

render the semi-leptonic B decays the cleanest and hence most reliable flavor tagging

signature. As we shall see in table 7.8, though tagging using leptons is not very

efficient (εt1 ≈ 9%), it is very accurate (w1 ≈ 3%), resulting in Q1 ≈ 0.08.

Kaons from b→ c→ s
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Figure 7.2: An example of a b̄→ c̄→ s̄ transition which produces kaons whose charge

has both the same and opposite sign as the b-quark.

The correlation of final state kaons and the b-quark charge is illustrated by the

observation that the average number of positively charged kaons (the K+ multiplic-
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ity) in B0 decay products is 0.58 ± 0.01 ± 0.08, while the negatively charged kaon

multiplicity is 0.13± 0.01± 0.05 [70]. Figure 7.2 displays an example a of b̄→ c̄→ s̄

transition which produces each of the three kaon sources which dominate to this ob-

servation. The s̄-quark in the b̄→ c̄→ s̄ cascade is the primary source of the positive

(or right-sign) correlation between the b-quark and kaon charge. However, this cas-

cade also emits two virtual W -bosons which occasionally also hadronize to kaons. In

the specific process diagramed in figure 7.2, the W+ boson produces a Cabbibo sup-

pressed us̄, which results in another right-sign kaon. Similarly, the W−-boson from

the c̄ decay results in a wrong-sign kaon. Unlike the primary leptons, no kinematic

separation between the right and wrong sign kaons has been observed, leaving kaon

identification as the only signature. Therefore the tagger identifies kaons using one

sub-net which examines the three best kaon candidates and determines the b flavor

from the sum of the product of each kaon’s charge and likelihood to be a kaon, which

is calculated using the DCH dE/dx and DIRC θc measurements. Flavor tags from

kaons are generally more efficient than lepton tags, but less accurate. Looking ahead

at table 7.8, we see that the best kaon tagged events have εt2 ≈ 17% and D2 ≈ 0.8

resulting in Q2 ≈ 0.11.

Soft Pions from D∗± Decays

In the decay D∗+ → D0π+, the D∗+ and D0 masses are so close (≈ 142 MeV/c2) that

the resulting pion carries very little momentum and flies in the same direction as the

D0. This pion is usually described as slow or soft. When the D∗ originates from a

B meson decay, as in figure 7.3, the D∗’s charge and hence its slow-pion’s charge are

opposite to that of the original b-quark. The slow-pion sub-net is a neural network

which examines pions with CM momentum p∗πs
less than 250 MeV and identifies a slow-
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Figure 7.3: B0 → D∗−π+, ρ+, a+
1 decays which produce a soft pion whose charge has

the opposite sign as the b-quark. In contrast the π+, ρ+, or a+
1 from the B carries

the same charge as the b-quark.

pion from its momentum p∗πs
, the angle between its flight direction and the thrust

axis of the rest of the B meson products, and particle identification information.

Another sub-set attempts to exploit correlations between the kaon and slow-pion

from the D∗ to produce a more reliable tag. This neural network-based sub-net

examines all oppositely charged slow pion and kaon combinations along with the

kaon likelihood, the slow-pion sub-net output, and the angle between the kaon and

slow-pion.

Hard Pions from B0 → D∗−π+, ρ+, a+
1 Decays

The charge of the virtual W+ boson in figure 7.3 carries the same sign as the b-

quark charge. When this boson hadronizes into a pion, the b-quark flavor may be

identified from the characteristically fast momentum of prompt B meson products. A

maximum p∗ sub-net attempts to capture the b-flavor from these particles by selecting

the track with the highest CM momentum which originate from less than 1 mm in the
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x− y plane from the beam. This procedure also captures prompt leptons which were

missed by the lepton sub-nets and which fortunately have the same charge/b-flavor

correlation.

7.1.2 Combining Tag Signatures

A given set of particles belonging to a B meson may exhibit the signature of any

number of the four flavor-tagging physics processes in section 7.1.1, and therefore

may be identified by several of the seven sub-nets. In general, each sub-net i may

provide an output ri1 whose sign and magnitude reflect the B flavor and the confidence

in the result. The dispatch-net attempts to optimally combine these outputs in order

to produce an output r2 which captures the most reliable tag of the meson flavor

considering all available information.

The sub-net and dispatch-net outputs, ri1 and r2, are fed to a decision algorithm

which assigns the tag to one of nine hierarchical physics-signature categories (in de-

scending order of reliability): electron-kaon, muon-kaon, electron, muon, kaon-slow

pion, kaon I, slow pion, kaon II, and other (mostly hard pions). The presence of

two kaon categories reflects the wide range of reliability of the kaon sub-net’s output.

Events which do not satisfy the requirements of any of these categories are marked

as untagged.

Unfortunately assessing the performance of nine different types of B flavor tags

is impractical. The number of events populating some categories is too little and

too many parameters are required for reliable fits to current data samples. Therefore

these physics-signature categories are regrouped into five tagging categories based on

the similar flavor tagging ability as follows: category 1- electron-kaon, muon-kaon,

electron, muon; category 2- kaon-slow pion, kaon I; category 3- slow pion, kaon II,
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category 4- other; and category 5- untagged.

7.1.3 Tagging Imperfections

The Monte Carlo event generator’s incomplete knowledge of B branching fractions

and the Geant4 simulation’s imperfect reproduction of the detector’s response war-

rants the extraction of parameters which quantify the tagger’s performance from data

recorded by the detector. This is made possible through the recognition that B0 mix-

ing may be exploited to measure tagging parameters. The arguments in section 2.23,

when applied to B decays to a flavor eigenstate, lead to the time-dependent proba-

bility distributions for four different possible flavor combinations:

ΓB0,B̄0(∆t) = ΓB̄0,B0(∆t) =
e−

|∆t|
τ

4τ
(1 + cos (∆md∆t)),

ΓB0,B0(∆t) = ΓB̄0,B̄0(∆t) =
e−

|∆t|
τ

4τ
(1 − cos (∆md∆t)), (7.2)

where the deviations from the exponent, the cos (∆md∆t) terms, are due to mix-

ing. These two decay distributions are usually referred to as the unmixed and mixed

probabilities, respectively.

For the extraction of the tagging performance, one B meson is fully reconstructed,

so its flavor is known. The tagger then is supplied the particles which are not part of

this meson in order to determine the flavor of the other B. Several imperfections in

this procedure modify (7.2). In particular for a tagging category i:

1. The tagging algorithm may produce a wrong-tag. We’ll denote this mis-tag

probability as w̄i.

2. There may be different mis-tag probabilities, wi+ and wi−, for B0 and B̄0 tags.

So w̄i = (wi+ + wi−)/2.
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3. There may be different efficiencies, εti+ and εti−, for tagging a B0 and B̄0.

4. There may be different efficiencies, εri+ and εri−, for fully reconstructing a B0

and B̄0.

5. There is an inherent resolution in the measurement of ∆t. We will address this

issue in section 7.3.

Using these definitions and (7.2), the probability distribution for observing an event

with a tagged flavor T = ± (+ = B0, − = B̄0) for one meson and reconstructed

flavor R = ± for the other is

Pi(∆t, T, R) =
εri(R)

εri(R) + εri(−R)

[
εti(T )(1 − wi(T ))Γ(R),(T ) + εti(−T )wi(−T )Γ(−R),(T )

]
,

where the first term in the sum is for the correct (T,R) tags and the second term

accounts for mis-tags which are actually (−T,R). Reorganizing this expression and

properly normalizing in each category1, leads to

P (∆t, T, R; q̂i) =
ε̄ti
8τ

1 +Rνi
1 − µiνiξ

e−
|∆t|

τ × (7.3)

([µiTDi +Bi] − [TDi + µiBi]R cos (∆md∆t)) ,

Bi = (1 + T
∆Di

2
),

where ξ ≡ 1
1+(τ ·∆md)2

and the parameters q̂i are

• Di ≡ 1 − 2w̄i which is known as the dilution,

• the dilution difference ∆Di ≡ 2(wi− − wi+),

1The normalization requires that the probabilities of observing each of the four flavor combina-

tions in each category add to the probability of tagging in that category, i.e.
∑

T,R Pi(∆t, T, R) = εt
i.

See 8.2.2 for more details.
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• the reconstruction efficiency asymmetries νi ≡ εri+−εri−
εri++εri−

,

• tagging efficiency asymmetries µi ≡ εti+−εti−
εti++εti−

, and

• the average tagging efficiency ε̄ti ≡ 1
2
(εti+ + εti−).

The effect of tagging on time-dependent CP measurements, where the flavor of

the fully reconstructed B meson is unknown, is similar. Incorporating the tagging

flaws into (7.1) leads to the probability distributions

P (∆t, T ; q̂i) =
ε̄ti
4τ

1

1 − µiξCf
e−

|∆t|
τ × (7.4)([

µiTDi + (1 + T
∆Di

2
)

]
+

[
TDi + µi(1 + T

∆Di

2
)

]
A(∆t)

)
,

where A(t) ≡ Sf sin (∆md∆t) ∓ Cf cos (∆md∆t). Setting νi = µi = ∆Di = 0 in this

equation illustrates the result of mistakes by the tagging algorithm. In this case,

Pi(∆t, T ) =
ε̄ti
4τ
e−

|∆t|
τ [1 + TDi (Sf sin (∆md∆t) ∓ Cf cos (∆md∆t))] .

and the only change in the functional form of (7.1) is the suppression of the ampli-

tude of the sine and cosine by Di. This effect, which is the dominate by-product of

the tagging algorithm, dilutes the difference between B0 and B̄0 tags. To a good

approximation, the error on the determination of Sf and Cf in category i is inversely

proportional to Qi ≡ εtiD
2
i .

7.2 Measurement of ∆t

The two-body Υ (4s) → BB decay produces back-to-back B mesons with an average

momentum of 340 MeV in the CM. With a lifetime of ≈ 1.5 ps and βγ ≈ 0.06, these Bs

separate by only ≈ 34 µm along each Cartesian axis before decaying. However in the
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lab frame, which is boosted in the z direction by βγ = .55, the mean difference ∆z in

the z coordinates of these decay vertices extends to ≈ 260µm, a distance which is by

design larger than the SVT’s vertex resolution and therefore permits a measurement

of ∆z. The conversion of this ∆z to the time difference between the decays of the

two B, ∆t, is then a simple special relativity problem.

The full reconstruction of the B meson provides an accurate measurement of its

decay vertex, producing a resolution of ≈ 30 − 50 µm, depending on the final state.

However, since exclusively reconstructing the other B meson is not practical, its decay

vertex is inclusively determined from a subset of its final state tracks and kinematic

constraints from the Υ (4s) decay. This procedure leads to a typical vertex resolution

of ≈ 180µm. ∆z is then calculated from the distance between the vertices of the fully

reconstructed B meson, BRec, and its inclusively reconstructed partner, BTag. Clearly

its resolution is dominated by BTag.

7.2.1 The Algorithm

∆t is calculated in three which successively add information: the determination of

the BRec vertex, the fit for the ∆z, and the conversion to ∆t. This section briefly

outlines this procedure.

Determination of the BRec Vertex

Reconstructing a B candidate begins with the search for possible intermediate decay

products such as D mesons or neutral pions and kaons in track and neutral cluster

combinations in an event. Eventually the particles contributing to the decay are

identified in the form of a tree representing all decays. The vertices are then simulta-

neously found in a fit which alters the momentum vector of the tracks and neutrals
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with appropriate constraints on the masses and directions of the composite particles.

Neutral particles reconstructed in the EMC do not contribute to the vertex determi-

nation due to the lack of spatial information near their production. The procedure

for finding the best vertex for B0 → h+h′− candidates described in section 5.3.2 is a

simple application of this technique.

Fit for the BTag Vertex

The BTag vertexing algorithm examines the tracks which were not used in the re-

construction of BRec. Though these particles are generally the final products of the

BTag decay, those from intermediate states with long lifetimes do not originate from

the B decay vertex and must be eliminated. Therefore, oppositely charged track pair

combinations are removed when they are consistent with Ks → π+π− or λ+ → p+π−

decays or γ → e+e− conversions. Due to the large number of possible final states

for D mesons, their decay products are more difficult to eliminate directly. Instead,

particles from secondary D meson vertecies are removed in an iterative fit for the

BTag vertex, where each successive fit only considers tracks which contributed less

than 6 units to the χ2 of the previous iteration. This process stops when either all

tracks satisfy the χ2 requirement or only two tracks remain.

Since the beam energies, beam spot, and the momentum and decay vertex of BRec

are well determined, the kinematic and geometric constraints that BTag originates at

the beam spot with the momentum vector pBTag
= pΥ (4s)−pBRec

improves the precision

of the vertex fit. Also, in order to correctly account for the correlations between the

BTag and BRec vertices induced by these constraints, σ∆z is directly measured in the

fit, so it reflects the errors on each track’s parameters, the beam energies, and the

beam spot. Tests of this algorithm on Monte Carlo events indicate that the difference
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between the true and measured values of ∆z are well described by a triple Gaussian

with less than 1% in the widest component (see section 7.3). The events which do not

lie in this Gaussian have an RMS of 190 µm and the events in the smallest Gaussian

have an RMS of 100 µm.

Conversion to ∆t

The naive conversion ∆z = βγc∆t provides a good estimate of the time difference

between the decays of the two B mesons. However, the relation

∆z = βγγ∗Recc∆t+ γβ∗
Recγ

∗
Rec cos θ∗Rec c 〈tRec + tTag〉, (7.5)

which takes into account the B momenta in the Υ (4s) rest frame and the 20 mrad

rotation of the beams with respect to the z-axis improves, ∆t resolution by ≈ 5%.

Here β∗
rec, γ

∗
rec, and θ∗rec respectively describe the velocity, boost, and polar angle of

BRec with respect to the beam axis. 〈tRec + tTag〉, which is the expected value of the

sum of the decay times, is estimated by τB + |∆t|.

7.3 The ∆t Resolution Function

Since the ∆t resolution is dominated by the BTag vertex, it is generally insensitive

to the final state of the fully reconstructed BRec. Nonetheless, if the error on ∆t is

properly calculated, it must provide a measurement of the resolution of ∆t in every

event, consequently reflecting any differences between decays. We may then expect

to be able to describe the ∆t resolution for all BRec final states with single function

of ∆t and σ∆t.

As illustrated in figure 7.4a, studies of simulated events indicate that the measured

σ∆t is directly proportional to the RMS of ∆t in simulated events. Therefore σ∆t is
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Figure 7.4: (a) the RMS spread and (b) the mean of the residual δt = ∆tmeas −∆ttrue

versus the measured σ∆t in simulated B decays.

indeed a measure of the σ∆t resolution. In fact, the difference δt = tmeas−ttrue between

the measured and true ∆t is well described by the sum of three Gaussian,

R(δt, σ∆t ; v̂i) =
∑core,tail

k

fk

Skσ∆t

√
2π

exp

(
−(δt − bikσ∆t)

2

2(Skσ∆t)2

)
+ (7.6)

foutl

σoutl

√
2π

exp

(
− δ2

t

2σoutl
2

)
,

with descending fractions of events fcore, ftail, and foutlier, and outlier width σoutl =

8 ps. The parameters, v̂i, are

• the fractions fk,

• the scale factors Sk, and

• the scaled biases bik.

Note that the widths of the core and tail Gaussians are scaled by with the measured

σ∆t for each event, taking advantage of this error’s estimate of the ∆t resolution.

Under ideal conditions, Sk, which corresponds to the slope in figure 7.4a, would be 1.

This resolution function also provides a shift in the means of the core and tail

Gaussians to account for any bias from secondary vertices of charm decays (i.e. D
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mesons) due to residual tracks which are not removed by the iterative procedure. The

size of this bias is different depending on the direction of the D meson. A D meson

traveling parallel (as opposed to perpendicular) to the beam axis pulls harder on the

z coordinate of the BTag vertex. As figure 7.4b illustrates, this bias is proportional

to the ∆t resolution. Therefore in order to better estimate the bias for each ∆t

measurement, the resolution function (7.7) exploits this correlation and scales the

mean of the core and tail Gaussians by σ∆t. Finally, since b-flavor tagging separates

events based on the signatures of a specific set of B decays, the charm content of the

final state depends on the tagging category. Therefore, a different bias is used for

each tagging category.

7.4 The Self-tagged BRec Sample

Table 7.1 lists the seven self-tagging B0 decays which are fully reconstructed to com-

prise the fully BRec sample. This section summarizes the selection of these B meson

candidates, their parameterization in mES and ∆t, and the measurement of the tag-

ging performance and ∆t resolution function.

7.4.1 Selection

In events with at least 3 good tracks and a visible energy W > 4.5 GeV, the decays

are built in reverse from the final state tracks and neutrals, to the light intermediate

particles, to the heavier charmed mesons, and finally the B meson. The reconstruction

procedure was described in section 7.2.1. Table 7.2 summarizes the lightest mesons,

their reconstructed decay modes, and the selections performed on them.

D0 or D− mesons are reconstructed in the decay modes listed in 7.3 with very
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Decay mode Branching fraction (%)

B0 → D∗−π+ 0.28 ± 0.02

B0 → D∗−ρ+ 0.73 ± 0.15

B0 → D∗−a+
1 1.30 ± 0.27

B0 → D−π+ 0.30 ± 0.04

B0 → D−ρ+ 0.78 ± 0.14

B0 → D−a+
1 0.60 ± 0.33

Table 7.1: The measured branching fraction of the fully reconstructed self tagging B

decays in the BRec sample.

Particle Final Nominal Measure Mass Cut (MeV/c2) Other Selections

State Mass (MeV/c2) Width (MeV/c2) Low High

π+ N/A 140 N/A N/A Good Track (see sec 4.2.1)

K+ N/A 494 N/A N/A Good Track (see sec 4.2.1)

π0 γγ 135 6.9 115 155 Eγ > 200 MeV

K0
s π+π− 498 3.2 462 534 Vertex probability > .1%

ρ+ π0π+ 767 150∗ 617 917 Eπ0 > 300 MeV

a+1 π+π−π+ 1230 250 − 600∗ 1000 1600 Vertex probability > .1%

Table 7.2: Particles with u, d, and/or s quarks used in the reconstruction of B mesons.

Composite particles rely on those above them. ∗ designates a Breit-Wigner width.
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Meson Mass ( MeV/c2) Decay mode Branching fraction (%)

D0 1865 K+ π− 3.80 ± 0.09

K+ ρ− 10.2 ± 0.9

K+ π− π+ π− 7.5 ± 0.3

K0
S π

+ π− 3.0 ± 0.2

D− 1869 K+ π− π+ 9.1 ± 0.6

K0
S
π− 1.4 ± 0.1

Table 7.3: Selected decay modes of D0 and D− mesons and their branching fractions.

loose particle identification requirements2 on charge kaons and cuts on the π0 mass

and CM momentum 120 < mπ0 < 150 GeV/c2 and p∗π0 > 400 MeV/c. The D can-

didates are selected when their reconstructed mass, m, satisfies (m − m0)/σm < 3,

where m0 is the nominal mass and σm is the error on the mass calculated from the

measured error matrices of parameters of the charged tracks. In addition, requiring

that the CM momenta of these D mesons are consistent with originating from a B, i.e.

p∗D < 2.5 GeV, reduces e+e− → cc̄ contributions and requiring p∗D > 1.3 GeV lowers

combinatoric backgrounds. For the D0 → K+ρ− decay where background are large

due to the wide ρ mass, an additional cut of | cos θDπ| > 0.4, where θDπ is the angle

between the direction of the D and the π− from the ρ−, exploits angular momentum

conservation to reduce random combinations by 40%.

2For tracks in momentum ranges, p < .5 GeV/c, .5 < p < .6 GeV/c, and p > .6 GeV/c, likelihoods

from SVT and DCH, DCH only, and DIRC only (respectively) are used to select kaons. Pions and

protons are rejected with requirements LK/Lπ < r and LK/Lp < r, where r = .1 for p < .5 GeV/c

and r = 1 otherwise. Kaon efficiency is flat for p > 1 GeV/c at 96%, with pion mis-id of no more

than 30%.
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D∗− mesons are reconstructed in the D0π− decay, which constitutes 68% of its

branching fraction, using tracks with momenta 70 < p < 450 MeV/c and constraints

from the beam spot to improve the D∗− vertex. Candidates are selected using the

requirement that the mass difference m(D∗−) −m(D0) is less than 2.5 standard de-

viations from its nominal value of 145.4 MeV/c2.

B Mode D0 mode | cos θT | Other

D∗− π+ K+ π− — pπ, pK > 200 MeV/c

K+ π− π0 — pπ, pK > 200 MeV/c

K+ π− π+ π− — pπ, pK > 200 MeV/c

K0
S
π− π+ — pπ, pK0

S
> 200 MeV/c

D∗− ρ+ K+ π− < 0.9 pπ, pK > 200 MeV/c

K+ π− π0 < 0.9 pπ, pK > 200 MeV/c

K+ π− π+ π− < 0.8 pπ, pK > 200 MeV/c

K0
S
π− π+ < 0.8 pπ, pK0

S
> 200 MeV/c

D∗− a+
1 K+ π− < 0.8 pπ, pK > 150 MeV/c

K+ π− π0 < 0.8 pπ, pK > 150 MeV/c

K+ π− π+ π− < 0.7 pπ, pK > 150 MeV/c

K0
S
π− π+ < 0.7 pπ > 150 MeV/c

pK0
S
> 200 MeV/c

Table 7.4: Selection criteria for B0 → D∗−π+/ρ+/a+
1 decays.

Finally the B0 mesons are built by combining a D∗− or D− with a π+, ρ+, or

a+
1 . Various levels of continuum and combinatoric backgrounds for every decay mode

necessitate different cuts on the pion/kaon momenta and the event shape variable
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B Mode D− mode | cos θT | Other requirements

D− π+ K0
S π

− < 0.9 pπ, pK > 200 MeV/c

K+ π− π+ < 0.9 pπ, pK0
S
> 200 MeV/c

D− ρ+ K0
S
π− < 0.8 pπ, pK > 200 MeV/c

K+ π− π+ < 0.8 pπ, pK0
S
> 200 MeV/c

D− a+
1 K0

S
π− < 0.7 pπ, pK > 150 MeV/c

K+ π− π+ < 0.7 pπ > 150 MeV/c

pK0
S
> 200 MeV/c

Table 7.5: Selection criteria for B0 → D−π+/ρ+/a+
1 decays.

| cos θT |. Tables 7.4 and 7.5 summarize these selections. For the BRec sample, B

candidates are retained when |∆E| < 3σ∆E , where σ∆E is the measured ∆E resolu-

tion. Table 7.6 lists the signal yields, purities3, and mES and ∆E resolutions for the

selected BRec candidates. The mES distribution of all events which satisfy this ∆E

requirement is shown in figure 7.5.

7.4.2 The Composition

The signal decays in the BRec sample are significantly more pure than those in the

sample of B0 → h+h′− candidates, and therefore do not warrant the complication

of a Fisher discriminant. In analogy to the B0 → h+h′− case, though the BRec

backgrounds may originate from multiple sources mES and ∆t allow the identification

of three types of events: signal B decays, peaking backgrounds, and combinatoric

backgrounds.

3Purity is defined as the ratio of signal to all events under the signal peak.
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Mode Nsig P(%) σmES( MeV/c2) σ∆E( MeV)

B0 → D∗−π+ 7333 ± 143 92 2.69 ± 0.06 19.2 ± 0.3

B0 → D∗−ρ+ 4668 ± 199 85 3.11 ± 0.13 31.4 ± 1.2

B0 → D∗−a+
1 3471 ± 150 79 2.69 ± 0.10 13.1 ± 0.4

B0 → D−π+ 8222 ± 205 82 2.62 ± 0.06 18.2 ± 0.3

B0 → D−ρ+ 4669 ± 201 77 3.00 ± 0.12 31.8 ± 1.1

B0 → D−a+
1 2634 ± 156 66 2.58 ± 0.14 12.6 ± 0.4

Table 7.6: Signal yield Nsig, purity P, ∆E resolution σ∆E, and mES resolution σmES

for all reconstructed B0 flavor eigenstates.

Signal B decays

Properly reconstructed B decays in the BRec sample exhibit the familiar peak in mES

which is centered about the B meson mass. Meanwhile, their ∆t distribution is de-

scribed by the time evolution of the mixed and unmixed B meson pairs (equation 7.2),

corrected for b-flavor tagging imperfections (Pi in equation 7.3), and convoluted with

the ∆t resolution function (Ri in equation 7.7). Therefore the likelihood to be a

signal event is

Psig(mES,∆t, σ∆t, R, T, i) = G(mES;µ
i
mES

, σimES
)·P (∆ttrue, R, T ; q̂sig

i )⊗R(δt, σ∆t; v̂
sig
i )

(7.7)

where R is the flavor of the reconstructed B, T is the flavor of the tagged B, i is the

tagging category, G(mES;µ
i
mES

, σimES
) is a Gaussian describing the mES distribution,

and q̂sig
i and v̂sig

i are the signal tagging and vertexing parameters.
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Figure 7.5: Distribution of mES for selected B0 candidates the BRec sample.

Peaking backgrounds

Mis-reconstructed B decays generally peak at the same mES value as the signal B0

decays. Those candidates which originate from a real neutral B decay have the same

∆t structure as the signal and are therefore properly accounted for in the signal

likelihood. However when the origin of the B0 candidate is a B± meson the time-

structure is different. Under the assumption that this “peaking background” has the

same mES distribution as the signal, the likelihood of obtaining such an event is

Ppeak(mES,∆t, σ∆t, R, T, i) = G(mES;µ
i
mES

, σimES
) × (7.8)

ε̄ti
4τB+

e|∆ttrue|/τB+ (1 − RTDB+
i ) ⊗R(δt, σ∆t; v̂

sig
i ),

where the time structure reflects the expectation from a B± meson with a lifetime

τB+ and pseudo dilutions DB+
i which account for the possibility of an apparent flavor

correlation between the reconstructed and tagged flavors. Note that since the mES

PDF for this background is the same as the signal, it is only distinguished from the

signal in ∆t.
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Combinatoric backgrounds

The presence of events in the side-band region mES < 5.26 GeV/c2 is the signature of

backgrounds made of random combinations of tracks from variety of possible sources.

In mES these events are well described by the ARGUS function. However, since the

origins of these events are not identifiable, two possible behaviors are empirically

considered in ∆t:

• backgrounds with no lifetime:

Pτ=0(∆t, σ∆t, R, T, i) = A(mES; ξ
comb
i )

εbkg
i

2

(
1−RTDτ=0

i

)
δ(∆ttrue)⊗R(δt; v̂bkg)

• backgrounds with an effective lifetime τbkg:

Pτ �=0(∆t, σ∆t, R, T, i) = A(mES; ξ
comb
i )

εbkg
i

4τbkg

(
1−RTDτ �=0

i

)
e−|∆ttrue|/τbkg⊗R(δt; v̂bkg).

Here A is the ARGUS function and εbkg
i are the background tagging efficiencies in

category i. The ∆t resolution function for these events is described by different

parameters v̂bkg than the signal. Specifically, the fraction in the tail Gaussian is set

to 0, and a common bias is used for all tagging categories.

7.4.3 ML Fit

The likelihood for the BRec sample is constructed from the individual likelihoods for

the signal and background species discussed in the previous section. Its expression is

LBRec
(q̂sig
i , v̂sig, âsig

i , v̂
bkg, q̂bkg, âbkg

i ) =

e−(NS
Rec+N

B
Rec)

NT
Rec

NT
Rec∏
i

{NS
Rec ((1 − fpeak)Psig(xj) + fpeakPpeak(xj)) +

NB
Rec (fτ=0Pτ=0(xj) + (1 − fτ=0)Pτ �=0(xj))},

160



where the product is over the NT
Rec events in the BRec sample with xj = { mES,

∆t, σ∆t,R, T ,i}j representing the measured quantities for event j. The likelihood

parameters and their fitted values on the BRec sample are summarized in4:

• table 7.7- the signal ∆t resolution function parameters, v̂sig
i ,

• table 7.8- the signal tagging parameters, q̂sig
i ,

• table 7.9- the signal yield and mES parameters, âsig
i ,

• table 7.10- the background ∆t resolution function parameters, v̂bkg,

• table 7.11- the background tagging parameters, q̂bkg
i , and

• table 7.12- the background yield and mES parameters, âbkg
i .

4In order to save space, we list the results obtained from the simultaneous fit to the BRec and

B0 → h+h′− samples. The values of these parameters are dominated by the Brec sample which

contains ≈ 50× more signal B decays than the B0 → h+h′− sample. Therefore fits to only the Brec

candidates yield nearly identical results.
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Parameter Value Error Description

ftail 0.92208 · 10−1 0.20332 · 10−1 Tail Fraction

foutl 0.40541 · 10−2 0.12248 · 10−2 Outlier Fraction

b1core 0.43728 · 10−1 0.62087 · 10−1 Cat. 1 core bias

b2core −0.22345 0.50391 · 10−1 Cat. 2 core bias

b3core −0.22217 0.43899 · 10−1 Cat. 3 core bias

b4core −0.18565 0.45151 · 10−1 Cat. 4 core bias

b5core −0.18527 0.33962 · 10−1 Cat. 5 core bias

Score 1.1063 0.42013 · 10−1 Core scale factor

Stail 3.0000 fixed Tail scale factor

btail −1.5898 0.38907 Tail offset

Table 7.7: ∆t resolution function parameters extracted from the simultaneous fit to

the BRec and B0 → h+h′− samples.
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Parameter Value Error Description

ε̄t1 0.92037 · 10−1 0.17286 · 10−2 Cat. 1 tagging eff.

ε̄t2 0.16576 0.23569 · 10−2 Cat. 2 tagging eff.

ε̄t3 0.19780 0.25767 · 10−2 Cat. 3 tagging eff.

ε̄t4 0.20110 0.26034 · 10−2 Cat. 4 tagging eff.

D1 0.93720 0.13137 · 10−1 Cat. 1 dilution

D2 0.80729 0.14518 · 10−1 Cat. 2 dilution

D3 0.58765 0.16326 · 10−1 Cat. 3 dilution

D4 0.36206 0.17742 · 10−1 Cat. 4 dilution

∆D1 0.32885 · 10−1 0.26870 · 10−1 Cat. 1 dilution diff.

∆D2 0.60220 · 10−1 0.28273 · 10−1 Cat. 2 dilution diff.

∆D3 0.10799 0.28710 · 10−1 Cat. 3 dilution diff.

∆D4 0.64346 · 10−1 0.28304 · 10−1 Cat. 4 dilution diff.

µ1 0.54642 · 10−2 0.31257 · 10−1 Cat. 1 tag eff. asym.

µ2 −0.58309 · 10−1 0.27804 · 10−1 Cat. 2 tag eff. asym.

µ3 −0.26496 · 10−1 0.28900 · 10−1 Cat. 3 tag eff. asym.

µ4 0.32557 · 10−1 0.30199 · 10−1 Cat. 4 tag eff. asym.

Table 7.8: Tagging parameters extracted from the simultaneous fit to the BRec and

B0 → h+h′− samples. See 7.1.1 for the definition of the categories.
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Parameter Value Error Description

NS
Rec 30319. 198.78 Signal yield

µ1
mES

5.2803 0.52734 · 10−4 Cat. 1 mES mean

µ2
mES

5.2802 0.42817 · 10−4 Cat. 2 mES mean

µ3
mES

5.2802 0.40193 · 10−4 Cat. 3 mES mean

µ4
mES

5.2802 0.39549 · 10−4 Cat. 4 mES mean

µ5
mES

5.2802 0.32210 · 10−4 Cat. 5 mES mean

σ1
mES

0.26219 · 10−2 0.43288 · 10−4 Cat. 1 mES res.

σ2
mES

0.26638 · 10−2 0.37005 · 10−4 Cat. 2 mES res.

σ3
mES

0.26601 · 10−2 0.35736 · 10−4 Cat. 3 mES res.

σ4
mES

0.26286 · 10−2 0.36533 · 10−4 Cat. 4 mES res.

σ5
mES

0.27134 · 10−2 0.28393 · 10−4 Cat. 5 mES res.

ν1 −0.22885 · 10−1 0.27642 · 10−1 Cat. 1 reco. eff. asym.

ν2 −0.18824 · 10−1 0.22703 · 10−1 Cat. 2 reco. eff. asym.

ν3 −0.15312 · 10−1 0.22488 · 10−1 Cat. 3 reco. eff. asym.

ν4 −0.45361 · 10−1 0.23044 · 10−1 Cat. 4 reco. eff. asym.

ν5 −0.27252 · 10−2 0.10678 · 10−1 Cat. 5 reco. eff. asym.

Table 7.9: Signal yield and mES parameters extracted from the simultaneous fit to

the BRec and B0 → h+h′− samples.

164



Parameter Value Error Description

τbkg 1.2983 0.37362 · 10−1 Peaking bkg lifetime

Sbkg
core 1.3400 0.12250 · 10−1 Comb. bkg. core scale factor

bbkg
core −0.26661 · 10−1 0.92543 · 10−2 Comb. bkg. core mean

fbkg
outl 0.17470 · 10−1 0.14810 · 10−2 Comb. bkg. outlier fraction

Table 7.10: Background ∆t parameters extracted from the simultaneous fit to the

BRec and B0 → h+h′− samples.

Parameter Value Error Description

DB+

1 0.91010 fixed Cat. 1 peaking bkg dilution

DB+

2 0.75100 fixed Cat. 2 peaking bkg dilution

DB+

3 0.62110 fixed Cat. 3 peaking bkg dilution

DB+

4 0.29880 fixed Cat. 4 peaking bkg dilution

Dτ=0
1 1.3820 0.33421 Cat. 1 τ = 0 bkg dilution

Dτ=0
2 0.66647 0.32446 · 10−1 Cat. 2 τ = 0 bkg dilution

Dτ=0
3 0.39005 0.24889 · 10−1 Cat. 3 τ = 0 bkg dilution

Dτ=0
4 0.16270 0.24869 · 10−1 Cat. 4 τ = 0 bkg dilution

Dτ �=0
1 0.20403 0.12234 Cat. 1 τ �= 0 bkg dilution

Dτ �=0
2 0.26428 0.45905 · 10−1 Cat. 2 τ �= 0 bkg dilution

Dτ �=0
3 0.29215 0.40363 · 10−1 Cat. 3 τ �= 0 bkg dilution

Dτ �=0
4 0.35997 · 10−1 0.44136 · 10−1 Cat. 4 τ �= 0 bkg dilution

Table 7.11: Background tagging parameters extracted from the simultaneous fit to

the BRec and B0 → h+h′− samples.
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Parameter Value Error Description

NB
Rec 38409. 218.19 Bkg yield

ξcomb
1 67.751 6.9167 Cat. 1 ARGUS func. ξ

ξcomb
2 33.149 1.9819 Cat. 2 ARGUS func. ξ

ξcomb
3 30.565 1.5538 Cat. 3 ARGUS func. ξ

ξcomb
4 33.446 1.5733 Cat. 4 ARGUS func. ξ

ξcomb
5 30.472 0.98651 Cat. 5 ARGUS func. ξ

εbkg
1 0.12000 · 10−1 0.68685 · 10−3 Cat. 1 bkg. tag eff.

εbkg
2 0.12139 0.18601 · 10−2 Cat. 2 bkg. tag eff.

εbkg
3 0.19580 0.22495 · 10−2 Cat. 3 bkg. tag eff.

εbkg
4 0.19382 0.22530 · 10−2 Cat. 4 bkg. tag eff.

fbkg
outl 0.17470 · 10−1 0.14810 · 10−2 Comb. bkg. outlier fraction

fpeak 0.15000 · 10−1 fixed Peaking bkg fraction

f 1
τ=0 0.26854 0.64440 · 10−1 Cat. 1 τ = 0 comb. bkg. fraction

f 2
τ=0 0.59764 0.22346 · 10−1 Cat. 2 τ = 0 comb. bkg. fraction

f 3
τ=0 0.63249 0.19361 · 10−1 Cat. 3 τ = 0 comb. bkg. fraction

f 4
τ=0 0.65991 0.18374 · 10−1 Cat. 4 τ = 0 comb. bkg. fraction

f 5
τ=0 0.71467 0.14294 · 10−1 Cat. 5 τ = 0 comb. bkg. fraction

Table 7.12: Background yield and mES parameters extracted from the simultaneous

fit to the BRec and B0 → h+h′− samples.
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Chapter 8

Analysis of the Time-dependent

Asymmetries

After BABAR’s first measurement of the B0 → h+h′− branching fractions in the sum-

mer of 2000, attention shifted to developing an analysis of the time-dependent CP

asymmetries in B0 → π+π−. This task required the merger of elements of two distinct

analyses: the b-flavor tagging/∆t measurement techniques, described in the previous

chapter, and the extraction of rare charmless signals, described in chapter 6. The

most natural course of progression suggested mimicking the two steps of the sin 2β

analysis, where the signal events are first isolated and then passed to an indepen-

dent fit which extracted the CP asymmetries. Ultimately this procedure proved not

to be optimal for the B0 → π+π− decays, which have significantly smaller braching

fractions than the B decays to charmonium final states and suffer from much larger

backgrounds from both continuum and B decays (i.e. B0 → K+π−).

Several arguments led to the development of a ML fit to the whole B0 → h+h′−

sample which included background processes, rather than a subset enriched in B0 →
π+π− decays. The most compelling reason for such a fit was that it guaranteed ob-

taining the most statistically significant result while also facilitated the accounting of
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Figure 8.1: The measured error on B0 → π+π− and B0 → K+π− yields from fits to

toy Monte Carlo experiments, with (solid) and without (dashed) ∆t in the ML fit.

systematic errors due to the parameterizations of the backgrounds (see appendix A).

Another argument for fitting the full B0 → h+h′− sample centered about the

virtues of extracting all branching fractions and CP asymmetries simultaneously.

With the addition of ∆t and flavor tagging, the ML fit, aware of the shorter effective

lifetime (section 8.2.1) and lower tagging efficiency (section 8.2.2) of the continuum

events, better separates signal and background events, resulting in gains in the sta-

tistical precision of fitted yields. For example, figure 8.1 illustrates how the errors on

the yields improve when ∆t is added to the likelihood. Indeed, this particular effect

had been advertised as a possible advantage of rare branching fraction analysis at the

asymmetric machines which are able to measure the B lifetime. However, for this

analysis, the small improvement in the statistical precision of the branching fractions
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(≈ 1.0% in B0 → π+π− and ≈ 0.2% in B0 → K+π−) does not warrant understanding

the influences of tagging and vertexing on the yield measurements such that the in-

crease in systematic errors are smaller than the statistical gain. Therefore we choose

not to extract the branching fractions from fits which include the variables necessary

for the time-dependent analysis. But, in order to facilitate comparisons with the

branching fraction fit, we retain the events which were not tagged in the fit, despite

the fact that they do not directly influence the time-dependent measurement.

8.1 Time Structure of Tagged B0 → h+h′− Decays

Of the four B0 → h+h′− decays, the π+π− and K+K− final states are CP eigenstates

so their time structure is described by

ΓB
0

B̄0(∆t) =
e−

|∆t|
τ

4τ
(1 ± Sf sin (∆md∆t) ∓ Cf cos (∆md∆t)), (8.1)

where the asymmetry defined as

AππCP(∆t) =
ΓB0 − ΓB̄0

ΓB0 + ΓB̄0

= Sππ sin (∆md∆t) − Cππ cos (∆md∆t),

is between the two possible flavors of the tagged meson. Since we did not observe

a significant signal from B0 → K+K− decays, we fix NS
KK = 0 and ignore the

asymmetry in this mode by setting SKK = CKK = 0. Integration of these relations

lead to the total number of signal π+π− events tagged as B0 or B̄0:

NB0

ππ =

∫ ∞

−∞
ΓB0d(∆t) = Nππ

(
1 − Cππ

1 + (∆mdτ)2

)
,

N B̄0

ππ =

∫ ∞

−∞
ΓB̄0d(∆t) = Nππ

(
1 +

Cππ
1 + (∆mdτ)2

)
, (8.2)

and the time integrated CP asymmetry Aππ = −Cππ.
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Meanwhile, since the kaon charges of the K+π− and K−π+ final states carry the

same sign as the b-quark from which they originate, these decays are self-tagging and

are described by

Γunmixed
mixed (∆t) =

e−
|∆t|

τ

4τ
(1 ± cos (∆md∆t)). (8.3)

Here the the asymmetry is between mixed and unmixed events

AKπmix(∆t) =
Γunmixed − Γmixed

Γunmixed + Γmixed

= cos (∆md∆t),

and the total number of mixed events is

Nmixed
Kπ =

(
1 − 1

1 + (∆mdτ)2

)
NKπ ≈ (17%)NKπ.

Comparison of ΓB0 and ΓB̄0 for ππ and Kπ final states demonstrates the influence

of K±π∓ events which are mis-identified as π+π−. The B0/B̄0-tagged Kπ decay

distributions are

ΓKπB0 =
Γmixed · B(B0 → K+π−) + Γunmixed · B(B0 → K−π+)

B(B0 → K+π−) + B(B0 → K−π+)

= 1 − AKπ cos (∆md∆t),

ΓKπB̄0 =
Γunmixed · B(B0 → K+π−) + Γmixed · B(B0 → K−π+)

B(B0 → K+π−) + B(B0 → K−π+)

= 1 + AKπ cos (∆md∆t), (8.4)

leading to the time-dependent CP asymmetry AKπCP (∆t) = AKπ cos (∆md∆t), where

AKπ is the time-integrated CP asymmetry we measured in chapter 6. This suggests

that Kπ events which are mis-identified as ππ carry a “fake” ππ CP asymmetry

Cππ = −AKπ. The use of all kinematic and particle identification information, the

proper accounting of the time-distributions, and allowing AKπ to float along with Sππ

and Cππ, insures that the influence of the signal Kπ background to ππ is reflected in

the measured errors on Cππ.
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All the expressions we have discussed in this section are fundamental relations

which do not account for b-flavor tagging and ∆t corrections. The observable relations

may be calculated from the convolution of the ∆t resolution function (7.7) with

equation (7.4) for CP events and (7.3) for mixing events.

As discussed in the previous chapter, we expect that the tagging and resolution

function parameters of B0 → h+h′− decays are the same as the signal events in the

BRec sample and choose to simultaneously fit both samples in order to propagate the

parameters from the latter to the former. We validate this assumption by comparing

ML fits to samples of simulated BRec and B0 → h+h′− events. As table 8.1 illustrates,

the resolution function parameters extracted from D(∗)−π+/ρ+/a+
1 and B0 → π+π−

Monte Carlo are consistent. For tagging, we fit B0 → D(∗)−π+/ρ+/a+
1 and B0 →

K+π− Monte Carlo because B0 → π+π− decays are not self-tagging. Table 8.2

shows that these parameters are also consistent. We find that in all cases the B0 →
D(∗)−π+/ρ+/a+

1 and B0 → h+h′− parameterizations agree well.

8.2 Time and Flavor Structure of Background Can-

didates to B0 → h+h′−

As with the kinematics and event shape, we parameterize the ∆t and flavor tagging

structure of the continuum backgrounds to B0 → h+h′− decays empirically. However,

in addition to the particle identification information which allowed us to separate the

background into the species π+π−, K+π−, K−π+, and K+K− for the branching

fraction fit, we may now also separate these events using tagged flavor and tagging

category.
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Parameter B0 → D(∗)−π+/ρ+/a+
1 MC B0 → π+π− MC

ftail 0.0952 ± 0.0115 0.1046 ± 0.0207

foutl 0.0024 ± 0.0006 0.0050 ± 0.0009

b1core −0.1067 ± 0.0319 −0.1707 ± 0.0579

b2core −0.2565 ± 0.0265 −0.2425 ± 0.0467

b3core −0.2557 ± 0.0237 −0.2563 ± 0.0387

b4core −0.2094 ± 0.0237 −0.2780 ± 0.0387

Score 1.1794 ± 0.0258 1.1785 ± 0.0389

btail −0.9088 ± 0.1761 −1.5157 ± 0.3446

Table 8.1: ∆t resolution function parameters extracted from simulated B0 →
D(∗)−π+/ρ+/a+

1 and B0 → π+π− events.

8.2.1 ∆t

The quarks from e+e− → uū, dd̄, ss̄ hadronize after production, resulting in a single

vertex for the event at the production point and ∆ttrue = 0 for the sub-set which

mimic the kinematical features of a B decay. Detector resolution smears this value

to produce a ∆t distribution that is narrower than that of BB events, which have

a lifetime. Meanwhile the c-quark lifetime causes e+e− → cc̄ events to contain two

vertecies, which are typically less separated than that of the longer living B meson

pairs. B0 → h+h′− candidates from e+e− → cc̄ events are usually constructed from

one track from each oppositely flying jet, producing pseudo-decay vertecies for the

two fake B’s which are between the two real vertecies in the event. The result is

a ∆t distribution which is also significantly narrower than B decays, but slightly

wider than the lighter quark backgrounds. Figure 8.2 plots the ∆t distributions for
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Parameter B0 → D(∗)−π+/ρ+/a+
1 MC B0 → K+π− MC

ε̄t1 0.103 ± 0.001 0.110 ± 0.001

ε̄t2 0.175 ± 0.001 0.177 ± 0.002

ε̄t3 0.200 ± 0.001 0.195 ± 0.002

ε̄t4 0.198 ± 0.001 0.198 ± 0.002

D1 0.9301 ± 0.0063 0.9421 ± 0.0100

D2 0.8201 ± 0.0063 0.8289 ± 0.0105

D3 0.5765 ± 0.0075 0.5780 ± 0.0127

D4 0.3815 ± 0.0082 0.3957 ± 0.0137

∆D1 0.0188 ± 0.0109 0.0068 ± 0.0174

∆D2 0.0031 ± 0.0104 −0.0011 ± 0.0174

∆D3 0.0531 ± 0.0118 0.0525 ± 0.0200

∆D4 0.0638 ± 0.0128 0.0478 ± 0.0213

Table 8.2: Tagging parameters extracted from simulated B0 → D(∗)−π+/ρ+/a+
1 and

B0 → K+π− events.
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these two background sources along with signal B0 → π+π− decays. Since the visible

difference in the ∆t distributions of the charm and light quark events (uū, dd̄, ss̄) is

not very significant and we have no other means of distinguishing the two sources,

we choose not to parameterize them separately.

There are no known physics processes which induce a CP asymmetry in the con-

tinuum backgrounds to B0 → h+h′− decays. As figure 8.3 illustrates, the ∆t dis-

tributions of the B0 and B̄0 tagged candidates in the mES < 5.26 GeV/c2 sideband

region exhibit no CP asymmetry ACP (∆t). As a test we measure the asymmetries

Sbkg = −0.0648± 0.06267 and Cbkg = −0.0153 ± 0.0214, using the B0 → π+π− PDF

for ∆t to fit these events. Finding no CP asymmetry, we choose to not distinguish

the flavor tag in the background ∆t parameterization. In addition, we searched for

significant differences in the ∆t distributions for the different background species and

different tagging categories and found none. We therefore describe all background

species, flavor tags, and tagging categories by a single ∆t PDF.

In our studies, we consider two PDFs for the continuum ∆t distribution. The first

is the sum of the convolution of an exponential with a Gaussian plus two Gaussian

functions:

Rbkg(∆t; v̄
bkg
EXP) = (1 − fbkg

tail − fbkg
outl)[E ⊗ G](∆t; τbkg, σbkg

core)

+ fbkg
tail G(σbkg

tail , µ
bkg
tail ) + fbkg

outlG(σbkg
outl, µ

bkg
outl),

where τbkg may be thought of as the effective lifetime of the background, and σbkg
outl and

µbkg
outl are fixed to 8 ps and 0 ps, respectively. The second is R(∆ttrue, σ∆t; v̄

bkg
3GS), i.e.

the signal ∆t resolution function in equation (7.7) with different core and tail Gaussian

fractions, biases, and scale factors. Figure 8.4 displays the result of fitting these two

PDFs to the side-band regionmES < 5.26 GeV/c2. Due to concerns regarding observed

correlations between σ∆t and F and ∆t (see section 8.3), we quote the central values
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Figure 8.2: The measured ∆t of B0 → h+h′− candidates from (in order of increasing

width) simulated e+e− → uū, dd̄, ss̄, e+e− → cc̄, and signal B0 → π+π− events. The

RMS of these distributions are 1.320±0.002 ps, 1.697±0.005 ps, and 2.370±0.007 ps,

respectively. All distributions are normalized to same area.

Figure 8.3: The ∆t distribution of candidate B0 (solid) and B̄0 (dashed) B0 → h+h′−

decays (top), and their apparent CP asymmetry (bottom), for events in the sideband

region mES < 5.26 GeV/c2.
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Figure 8.4: The ∆t distribution of candidates in the B0 → h+h′− sample in

the sideband region mES < 5.26 GeV/c2, fitted with Rbkg(∆t; v̄
bkg
EXP) (left) and

R(∆ttrue, σ∆t; v̄
bkg
3GS) (right). The top and middle plots display the data (points) and

fit results (line), on linear and log scales, respectively. The bottom plot shows the

residual of the data minus the fit function.

of the measured quantities from the first PDF.

8.2.2 Flavor Tagging

The separation of theB0 → h+h′− (orBRec) sample into tagging categories creates five

sub-samples, each with a different signal and background yield for every species which

must be extracted in the ML fit. The choice in the previous chapter to normalize

the signal ∆t PDFs to the tagging efficiencies provides a reparameterization of these

yields, so that the number of events in category i belonging to species j is simply

NS,B
i εtij , where εtij is the tagging efficiency, and the total yield of each species (NS,B

i )

is directly extracted in the fit. For consistency we normalize the background ∆t PDFs
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Figure 8.5: The mES distribution of the tagged events in the B0 → h+h′− sample,

separated by tagging category.
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in the same manner, and rely on the fit to determine background tagging efficiencies

from the sideband events in the B0 → h+h′− sample.

The advantage of using tagging efficiencies rather yields becomes clear when we

consider the signal to background ratio in each category, visually presented in fig-

ure 8.5. Category 1, which contains the events tagged with electrons and muons, is

very pure because the hadronizing u, d, s, and c quarks of the continuum background

do not produce high momentum leptons. Therefore a B0 → h+h′− candidate which

is tagged in category 1 is significantly more likely to be signal than background. The

tagging efficiencies incorporated into the the ∆t PDFs properly account for the sig-

nal purities in each category. Effectively, the tagging category becomes a discrete

discriminating variable, with signal and background PDFs, which are simply the tag-

ging efficiencies, determined by the signal BRec and sideband B0 → h+h′− events,

respectively.

We find that the background tagging efficiencies exhibit a correlation between

species, flavor tag, and tag category. Kaons in continuum events are a good example

of a mechanism which causes such an effect. Kaons mostly originate from e+e− →
ss̄, cc̄, where each q or q̄ quark preferentially produces a kaon with opposite flavor

than that of the anti-quark. In such an event, one kaon may be used to build a

B0 → h+h′− candidate while the other may provide the tagged flavor. The result is

that background K+π− candidates are more likely to reside in the kaon category than

π+π−, and more likely to carry a B0 tag than K−π+. We account for these effects

by introducing separate tagging efficiencies for each background species, tag flavor T ,

and tag category i:

• π+π−: ε̄ππi (1 + Tµππi ),

• K+π−: ε̄Kπi (1 + TµKπi ),
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• K−π+: ε̄Kπi (1 − TµKπi ), and

• K+K−: ε̄KKi (1 + TµKKi ).

Note that the µji parameterize the tagging efficiency asymmetry between B0 and B̄0

tags for ππ and KK, and between mixed and unmixed candidates for Kπ.

8.3 Correlation Studies

The addition of b-flavor tagging and ∆t information to the branching fraction fit

warrants an examination of any correlations between the variables used previously

and those which have been newly introduced. In this section we survey the observed

correlations as a means of documenting how these issues were addressed with specific

features in the ML fit or Toy MC prior to performing the measurement. When practi-

cal we account for a specific correlation in the parameterizations in the fit. Otherwise

we reproduce the correlation in toy Monte Carlo experiments and evaluate the effect

of ignoring it in the fit. When the correlation is neither easily parameterizable in

the fit nor reproducible in the toy Monte Carlo, we compare fits which include and

exclude one variable in data with expectations from toy Monte Carlo.

8.3.1 F and σ∆t

Table 8.3 lists the corresponding linear correlation coefficients determined in the same

manner as in section 6.1.2. The only noteworthy entry, the correlation between F and

σ∆t, is due the sensitivity of both variables to the number and momenta of the tracks

which were not used in the construction of each B0 → h+h′− candidate. Figure 8.6

plots the mean and RMS of the F distribution for background events as a function

of σ∆t, illustrating that the events with small σ∆t are on average more signal-like in

179



Table 8.3: Linear correlation coefficients for the variables

{mES,∆E,F , θ+
c , θ

−
c ,∆t, σ∆t,

∆t
σ∆t

}. The on-resonance sideband region is defined as

5.2 < mES < 5.26 GeV/c2.

Variables Sideband ππ MC

(mES,∆t) -0.01194 0.00190

(mES, σ∆t) -0.04032 0.00418

(mES,
∆t
σ∆t

) -0.00612 0.01060

(∆E,∆t) 0.03312 0.00022

(∆E, σ∆t) 0.01960 0.00160

(∆E, ∆t
σ∆t

) 0.02896 -0.00168

(F ,∆t) -0.02121 -0.01612

(F , σ∆t) -0.15843 0.03870

(F , ∆t
σ∆t

) -0.01836 -0.00666

(θ+
c ,∆t) -0.00440 0.01333

(θ+
c , σ∆t) 0.00509 0.01599

(θ+
c ,

∆t
σ∆t

) -0.00297 0.01854

(θ−c ,∆t) -0.00904 -0.02120

(θ−c , σ∆t) 0.00153 0.00109

(θ−c ,
∆t
σ∆t

) -0.00900 -0.01584

(∆t, σ∆t) 0.08751 -0.03951
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Figure 8.6: Mean (top) and RMS (bottom) of F versus the error on ∆t.

F . Several factors led us to assume that the influence of this correlations on the

measurement of Sππ and Cππ is negligible. Specifically,

• the correlation is only ≈ 16%,

• σ∆t is not used in the description of background events, and

• the signal’s dependence on σ∆t is only in the resolution function.

In section 8.6.2 we validate this assumption by confirming that the difference in the

CP asymmetries when F is included and excluded from the ML fit is consistent with

the expected change of statistical precision.

8.3.2 F and Tagging Category

As figure 8.7 illustrates, we observe that the separation between signal and back-

ground in F is better for the tagging categories with high Q. Accounting for this

difference between the categories requires the addition of 20 floating parameters for
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Figure 8.7: Fisher PDFs for signal (left) and qq̄ (right) separated by tagging category.

background and 12 parameters for signal to the ML fit. In order to avoid the complica-

tion of multiple F PDFs, we choose to use the average. To evaluate the impact of this

decision, we generate the distributions in figure 8.7 in toy Monte Carlo studies. We

find that fitting with category averaged PDFs produces no bias in the measurement

of Sππ or Cππ.

8.3.3 ∆t and σ∆t in Background

Figure 8.8 shows that the mean and RMS of the ∆t distribution of candidates in the

sideband region mES < 5.26 GeV/c2, exhibit a dependence on σ(∆t). The underlying

source of this correlation is the B meson boost correction and beam axis correction

in the ∆z to ∆t conversion in equation (7.5). These corrections have no meaning in

the continuum background events and are purely artificial. Though future versions of

this analysis will likely use ∆z, which does not suffer from this effect, to parameterize

the time-structure of the background, the analysis presented in this dissertation relies
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Figure 8.8: Projection plots of the mean and RMS of ∆t as a function of σ(∆t) from

the on-resonance mES sideband sample.

on ∆t. However, we reproduce the effect of the ∆z to ∆t conversion in our nominal

toy Monte Carlos, and we find no bias in the measurement Sππ and Cππ.

8.3.4 σ∆t and Tagging Category

The distributions of ∆t error for both signal and background candidates are slightly

different for each tagging category. However, no parameterization of the σ∆t shape

is explicitly employed in the ML fit. Once again we rely on the toy Monte Carlo to

assess the impact of this correlation by generating different σ∆t distributions for each

tagging category for both signal and background and find no bias.
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8.3.5 Background mES and Tagging Category

We observe that continuum mES shape is dependent on the tagging category. We

therefore allow different ARGUS function parameters ξi for each category i. The

values of these parameters, extracted from the full ML fit, are listed in table 8.5.

8.4 Maximum Likelihood Fit

We fit the time-dependent asymmetries in B0 → π+π− in a simultaneous fit to the

B0 → h+h′− and BRec samples, extracting a total of 119 parameters, including

• the yield in each B0 → h+h′− species (table 8.4- 8 fitted parameters),

• the parameterization of the ∆t resolution function (table 7.7- 9 fitted parame-

ters),

• the parameterization of the signal tagging performance (table 7.8- 16 fitted

parameters),

• the descriptions of the mES, ∆E, and F shapes of the B0 → h+h′− background

(table 8.5 13 fitted parameters),

• the B0 → h+h′− background tagging efficiencies (table 8.6- 12 fitted parameters)

and tagging efficiency asymmetries (table 8.7- 12 fitted parameters),

• the description of the ∆t shape for the B0 → h+h′− background (table 8.8- 6

fitted parameters),

• the yield of BRec signal events and their parameterization in mES (table 7.9- 16

fitted parameters),
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• the parameters describing the BRec background in ∆t (table 7.10- 4 fitted pa-

rameters),

• the tagging parameters for the BRec background (table 7.11- 8 fitted parame-

ters), and

• the yield of BRec background events and their mES parameters (table 7.12- 16

fitted parameters).

These tables list the final fitted values of the parameters from the full fit which

also measures the asymmetries Sππ and Cππ. As in the branching fraction analysis

discussed in chapter 6, we chose to determine and freeze every aspect of the analysis

while blind to the measured values of the asymmetries. In order to be able to perform

full fits to the data before examining Sππ and Cππ, we obscured their measured values

by applying a separate random sign change and shift to each quantity. Therefore,

while performing blind studies, the asymmetries reported by the fit are

SBlind
ππ = ±STrue

ππ + SOff
ππ

CBlind
ππ = ±CTrue

ππ + COff
ππ ,

where STrue
ππ and CTrue

ππ are the asymmetries internally supplied to the signal PDFs

by the fit, and the ± signs, SOff
ππ , and COff

ππ are picked by a deterministic random

algorithm based on an input key. In order to remain blind to unphysical fit results,

which is possible in light of the large expected errors on the measured asymmetries,

we choose the acceptable range for the SOff
ππ and COff

ππ offsets to be between -5 and 5.
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Table 8.4: Summary of B0 → h+h′− yields in the CP maximum likelihood fit.

Parameter Value Error Description

NS
ππ 154.46 17.377 signal ππ events

NS
Kπ 603.99 28.728 signal Kπ events

AS
Kπ −0.99605 · 10−1 0.47389 · 10−1 signal K±π∓ charge asym.

NS
KK 0.0000 fixed signal KK events

NB
ππ 12191. 116.25 bkg. ππ events

NB
Kπ 7974.0 101.23 bkg. Kπ events

AB
Kπ 0.12586 · 10−1 0.12566 · 10−1 bkg. K±π∓ charge asym.

NB
KK 5146.9 76.760 bkg. KK events

8.5 Validations

Before unblinding the results, we validate that the complicated fit which we have

constructed properly extracts Sππ and Cππ. In addition to the toy and Geant4 Monte

Carlo tests which were available to us for the branching fraction analysis, we may

also use the B0 → K+π− events in our sample to confirm that the time-structure and

flavor tags of B decays have been properly accounted for in the fit.

8.5.1 Toy Monte Carlo

We generate toy Monte Carlo experiments using the parameters extracted from the

blind fit to the full B0 → h+h′− sample (see section 8.4). For the time-structure of

events, we rely on algorithms which first simulate the underlying physics and then

smear the results to reproduce the measured ∆t resolution and tagging dilutions,
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Table 8.5: Summary of B0 → h+h′− background mES, ∆E, and F parameters in the

CP maximum likelihood fit.

Parameter Value Error Description

ξ1 22.662 10.761 bkg. mES ARGUS param. in cat. 1

ξ2 18.988 2.2888 bkg. mES ARGUS param. in cat. 2

ξ3 26.336 1.7391 bkg. mES ARGUS param. in cat. 3

ξ4 21.077 1.5575 bkg. mES ARGUS param. in cat. 4

ξ5 21.507 0.97583 bkg. mES ARGUS param. in cat. 5

∆Ep1 −0.74419 0.73426 · 10−1 bkg. ∆E linear term

∆Ep2 0.67151 0.95063 bkg. ∆E quadratic term

Ff1 0.86594 0.20233 · 10−1 bkg. Fisher fraction of first Gaussian

Fµ1 0.36373 0.46050 · 10−2 bkg. Fisher mean of first Gaussian

Fσ1 0.38332 0.47418 · 10−2 bkg. Fisher width of first Gaussian

Fµ2 0.92302 · 10−1 0.28783 · 10−1 bkg. Fisher mean of second Gaussian

Fσ2 0.65322 0.19546 · 10−1 bkg. Fisher width of second Gaussian
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Table 8.6: Summary of B0 → h+h′− background tagging efficiencies in the CP maxi-

mum likelihood fit.

Parameter Value Error Description

ε̄ππ1 0.49425 · 10−2 0.67441 · 10−3 Cat 1 ππ bkg. tag. eff.

ε̄ππ2 0.86002 · 10−1 0.26804 · 10−2 Cat 2 ππ bkg. tag. eff.

ε̄ππ3 0.15559 0.34736 · 10−2 Cat 3 ππ bkg. tag. eff.

ε̄ππ4 0.21164 0.38869 · 10−2 Cat 4 ππ bkg. tag. eff.

ε̄Kπ1 0.31830 · 10−2 0.76804 · 10−3 Cat 1 Kπ bkg. tag. eff.

ε̄Kπ2 0.12530 0.41046 · 10−2 Cat 2 Kπ bkg. tag. eff.

ε̄Kπ3 0.19557 0.49963 · 10−2 Cat 3 Kπ bkg. tag. eff.

ε̄Kπ4 0.19128 0.50170 · 10−2 Cat 4 Kπ bkg. tag. eff.

ε̄KK1 0.60731 · 10−2 0.11518 · 10−2 Cat 1 KK bkg. tag. eff.

ε̄KK2 0.78240 · 10−1 0.40500 · 10−2 Cat 2 KK bkg. tag. eff.

ε̄KK3 0.14343 0.52913 · 10−2 Cat 3 KK bkg. tag. eff.

ε̄KK4 0.22097 0.61763 · 10−2 Cat 4 KK bkg. tag. eff.
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Table 8.7: Summary of B0 → h+h′− background tagging asymmetries in the CP

maximum likelihood fit.

Parameter Value Error Description

µππ1 0.20314 0.13201 Cat 1 ππ bkg. tag. asym.

µππ2 −0.72759 · 10−2 0.32418 · 10−1 Cat 2 ππ bkg. tag. asym.

µππ3 0.52518 · 10−1 0.24117 · 10−1 Cat 3 ππ bkg. tag. asym.

µππ4 0.78856 · 10−1 0.20468 · 10−1 Cat 4 ππ bkg. tag. asym.

µKπ1 0.99517 · 10−1 0.23733 Cat 1 Kπ bkg. tag. asym.

µKπ2 −0.69524 0.26340 · 10−1 Cat 2 Kπ bkg. tag. asym.

µKπ3 −0.43122 0.25904 · 10−1 Cat 3 Kπ bkg. tag. asym.

µKπ4 −0.18246 0.28508 · 10−1 Cat 4 Kπ bkg. tag. asym.

µKK1 0.43547 · 10−1 0.18754 Cat 1 KK bkg. tag. asym.

µKK2 −0.53178 · 10−2 0.53629 · 10−1 Cat 2 KK bkg. tag. asym.

µKK3 0.80033 · 10−1 0.39518 · 10−1 Cat 3 KK bkg. tag. asym.

µKK4 0.64678 · 10−1 0.31345 · 10−1 Cat 4 KK bkg. tag. asym.
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Table 8.8: Summary of B0 → h+h′− background ∆t parameters in the CP maximum

likelihood fit.

Parameter Value Error Description

τbkg 0.68128 0.13414 · 10−1 bkg. effective lifetime

σbkg
core 0.22672 0.16934 · 10−1 bkg. Core width

fbkg
tail 0.20960 · 10−1 0.15740 · 10−1 bkg. Tail fraction

µbkg
tail 2.2487 1.1752 bkg. Tail mean

σbkg
tail 1.6065 0.35732 bkg. Tail width

fbkg
outl 0.21910 · 10−1 0.15521 · 10−2 bkg. Out fraction

µbkg
outl 0.0000 fixed bkg. Out mean

σbkg
outl 8.0000 fixed bkg. Out width

dilution differences, efficiencies, and efficiency asymmetries. We find this approach

more rigorous than generating events directly from the PDFs, since it explicitly tests

the fit’s consistency with the resolution and tagging performance models. We also

reproduce the effects discussed in section 8.3. Specifically we include:

• Different σ∆t distributions for each category for signal.

• Proper background ∆t and σ∆t modeling, using

– different σ∆z distributions for each category for background,

– parameterization of ∆z/σ∆z , and

– (∆z, σ∆z) → (∆t, σ∆t) conversion using the kinematics of the background

events.
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Figure 8.9: Pull distributions of Sππ andCππ from fits to toy Monte Carlo experiments.

• Different signal and background Fisher discriminant distributions for each cat-

egory.

• Different background mES distributions for each category.

For each experiment we choose random input values for Sππ and Cππ that satisfy

S2
ππ+C

2
ππ ≤ 1, which reflects the requirement that the CP ∆t probability distributions

(equation 8.1) are always positive and therefore physical. Finally, for simplicity, we

do not include BRec events in the toy Monte Carlo tests and only produce and fit

B0 → h+h′− events.

Figure 8.9 displays the pull distributions of Sππ and Cππ from a sample of toy

Monte Carlo experiments. These plots demonstrate that the fit produces no signifi-

cant bias on the measured asymmetries and properly estimates the errors. Figure 8.10

shows the mean and width of these pulls versus the generated value of Sππ and Cππ.

We observe no indication of a dependence of the central value or error on the true

value. In order to quantify our assessment of the bias, we examine the residual be-
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Figure 8.10: The mean and width of Sππ and Cππ as a function of their generated

values from toy Monte Carlo experiments.
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Figure 8.11: The distributions of residual (measured minus generated values) of Sππ

and Cππ from fits to toy Monte Carlo experiments.

tween the measured and generated value of the asymmetries (see figure 8.11), and

find Sππ − SGen
ππ = −0.0231 ± 0.01515 and Cππ − CGen

ππ = 0.0142 ± 0.0104.

8.5.2 Geant4 Monte Carlo

Table 8.9 lists the results of test fits to large samples of simulated signal B0 → h+h′−

events. The extracted values of Sππ and Cππ indicate no bias in the fit to pure sample

of B0 → π+π− decays or the fit with B0 → K+π− events added in the appropriate

ratio. Since the B0 → K+π− decays are self tagging, they also permit measurement

of the mixing frequency ∆md. We measure both the B lifetime, τB, and mixing

frequency, ∆md, in the simulated B0 → K+π− decays. The small bias which we

observe is consistent with the expectation from the particular resolution function

model used in this analysis [71].
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Table 8.9: Summary of test fits on signal Monte Carlo samples of 50, 000 B0 → π+π−

and 200, 000 B0 → K+π− events with Sππ = −0.40, Cππ = 0, τB = 1.54 ps, and

∆md = 0.472/ps. The choice of number of events roughly approximates the ratio of

the branching fractions.

200k Kπ 200k +

Parameter 50k B0 → π+π− 50k B0 → π+π− 200k B0 → K+π

Sππ −0.392 ± 0.015 −0.384 ± 0.016 0 (fixed)

Cππ −0.004 ± 0.010 −0.001 ± 0.011 0 (fixed)

τB(ps) 1.54 (fixed) 1.54 (fixed) 1.553 ± 0.005

∆md (ps−1) 0.472 (fixed) 0.472 (fixed) 0.478 ± 0.002

8.5.3 B0 → K+π− Decays

A measurement of τB and ∆md in the B0 → h+h′− sample tests the ML fit’s sen-

sitivity to the time and CP structure of B decays which are embedded in a large

background sample as well as the accuracy of the parameterizations of tagging and

∆t. Such measurements are dominated by the signal B0 → K+π− events which make

up roughly 80% of the B decays in the sample. In the B0 → h+h′− sample, we

measure τB = 1.56 ± 0.07 ps and ∆md = 0.52 ± 0.05 ps−1, both consistent with the

world averages τB = 1.542±0.016 ps and ∆md = 0.489±0.008 ps−1 [25]. In addition,

by selecting samples enriched in B0 → K+π− and B0 → K−π+, we plot Amix
Kπ (∆t) in

figure 8.12, and visually confirm that the data agrees with the parameterization used

in the fit.

In section 8.1 we saw that for B0 → K+π− decays, the time-dependent asym-

metry between B0 and B0 tagged decays exhibits the asymmetries SKπ = 0 and
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Figure 8.12: The time-dependent mixing asymmetry, Amix
Kπ (∆t), from samples enriched

in B0 → K+π− and B0 → K−π+ decays. The curve represents the expectation

including all signal and background decays, calculated from the PDFs used in the fit.
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CKπ = −AKπ (see equation 8.4). As a test, we replace the mixing PDFs for the

signal B0 → K+π− species with CP PDF and measure these asymmetries. We find

SKπ = 0.022934 ± 0.15030 and CKπ = 0.091753 ± 0.11214, which is consistent our

measurement of AKπ = −0.102±0.050±0.016. Note that these two measurements of

the CP asymmetries in this decay rely on different information. CKπ is only sensitive

to the flavor of the tagged B meson and is blind to the flavor of the reconstructed

mesons, which is the quantity the measurement of AKπ depends on.

8.6 Results

The full ML fit to the combined B0 → h+h′− and BRec samples finds Sππ = 0.024096±
0.34036 and Cππ = −0.30296 ± 0.24796, where the errors are statistical only. Fig-

ures 8.13a and 8.13b plot the ∆t distributions B0 and B̄0 tagged events in a sample

enriched in B0 → π+π− decays. The selection of this sample follows the same pro-

cedure described in section 6.3.2. Figure 8.13c plots the asymmetry between the B0

and B0 events, ACP
ππ (∆t). The curve on this plot represents the result of the fit to

the full B0 → h+h′− fit, with the PDFs of each of the 8 species adjusted with the

efficiency for appearing in the enriched sample.

8.6.1 Alternative Measurements of Cππ

Equation 8.2 illustrates that total number of B0 and B0 tagged B0 → π+π− events

are related to Cππ, such that a large asymmetry between the B0 and B0 yields are

indicative of a large magnitude for Cππ. In the full CP fit, Cππ is sensitive to both

the ∆t PDF shape and integral, producing a result which is some average of the two.

Therefore the fit has two handles on Cππ. This fact contributes to a more precise
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Figure 8.13: The ∆t distribution for (a) B0 and (b) B0 tagged events and (c) the

asymmetry ACP
ππ (∆t), from a sample enriched in B0 → π+π− decays. The dashed

curve represents the expected background contributions, primarily from continuum

and B0 → K+π− decays. The solid curve plots the signal and background contribu-

tions assuming the result from the fit to the full B0 → h+h′− sample.
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measurement of Cππ than Sππ
1.

Using the branching fraction fit in chapter 6, we find NB0

ππ = 47.070 ± 9.8669 and

N B̄0

ππ = 47.838 ± 9.5297, suggesting Cππ ≈ 0. In order to properly extract a time-

integrated measurement of Cππ, we remove the ∆t dependence of the likelihood by

integrating all ∆t PDFs in analogy to equation (8.2). The resulting expressions are

functions of Cππ, the tag, dilutions, tagging efficiencies and efficiency asymmetries.

Using this likelihood, we fit Cππ = −0.03792±0.30931. As a cross-check, appendix B

describes a measurement of Cππ using time-integrated and ∆t shape separately.

8.6.2 Fit without F

As discussed in section 8.3 we expect that the correlations of the Fisher discriminant

with the ∆t error and tagging category produce no bias on the fitted values of the time-

dependent asymmetries. We test this by removing F from the ML fit and comparing

the change in the result with expectation from toys. Without F , the full fit measures

Sππ = −0.14576 ± 0.35751 and Cππ = −0.26962± 0.27320, that is a change of −0.16

on Sππ and +0.03 on Cππ from the full fit. We find that ≈ 15% and ≈ 85% of toy

Monte Carlo experiments exhibit a difference in Sππ and Cππ, respectively, which is

larger than what we observe in the B0 → h+h′− sample. Therefore we conclude that

this correlation is unlikely to produce a bias in the results.

8.6.3 Yields

The time-dependent CP fit also provides a measurement of the yields of each species

in the B0 → h+h′− sample. A comparison of this result (table 8.4) and the branching

1The fact that B lifetime provides more B decays at the maximum of the cosine rather than sine

term in (8.1), also contributes to a smaller errors on the measurement of Cππ than Sππ.
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fraction fit (table 6.9), reveals that the time-dependent fit finds 1.3% less signal

B0 → π+π− and 2.6% more signal B0 → K+π− events. Since the fits rely on the

same kinematic, event shape, and particle identification measurements, we would

naively expect that the yields would be the same. However, as we discussed in the

introduction to this chapter, ∆t and flavor tagging provide sufficient background

discrimination to the time-dependent fit to significantly influence the yields. We

fit toy Monte Carlo experiments with both the branching fraction and CP fits in

order to evaluate the probability of obtaining the observed differences ∆NS
ππ = 2 and

∆NS
Kπ = −15.5 between the signal yields from the fits on the data. We find that

≈ 80% of experiments have |∆NS
ππ| > 2 and ≈ 5% have |∆NS

Kπ| > 15.5.

8.6.4 Goodness of Fit

We assess the quality of the fit by comparing the errors and the likelihood from the

data fit with expectations from toy Monte Carlo studies. Since the toy experiments

only contain signal and background B0 → h+h′− events, we do not include the BRec

events in this comparison and fix the tagging and ∆t parameters of signal. Figure 8.14

plots the Sππ and Cππ errors and the χ2 = −2 logL+ C (see section 5.2.1) at the fit

minimum. We find that ≈ 17% of the toy experiments have a smaller likelihood than

the fit to data.

8.7 Systematics

Tables 8.10 and 8.11 summarize the systematic errors of the CP asymmetries. We

follow the same procedures as the branching fraction analysis (see section 6.4) to

calculate the systematic errors which originate in mES, ∆E, F , and θc. For the time-
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Figure 8.14: The error on Sππ and Cππ (left) and the −2 log likelihood from toy MC

experiments (right). The arrows point to the values from the data fit.

dependent asymmetries we also consider additional potential sources of systematic

errors:

• Toy MC bias — We apply any bias observed in the nominal toy Monte Carlo

configuration as a systematic error (see section 8.5.1).

• SVT alignment — Since reconstruction of the B decay vertices is dominated

by the SVT’s measurement of track parameters, ∆t is very sensitive to the

knowledge of the relative positions of this detector’s 340 silicon wafers. The

translation/orientation parameters of each wafer, known as the SVT local align-

ment, are determined from e+e− → µ+µ− and cosmic-ray muons events [73] and

used in the reconstruction of charged tracks. We model potential systematic

biases in the measurement of these parameters by considering possible deforma-

tions of the SVT with respect to a perfect alignment. We measure Sππ and Cππ
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in simulated B0 → π+π− decays that have been reconstructed using three dif-

ferent misalignment scenarios, and assign the differences with no misalignment

reconstruction as systematic errors.

• Boost/z scale — Knowledge of the z scale (i.e. distances in the direction of

the beams) and the boost directly impact the measurement of ∆t. Studies of

the interactions of beam electrons and positrons with the beam pipe material

suggest an uncertainty on z distance of 0.6% at the interaction region [72].

Meanwhile, errors in the measurement of the PEP-II beam energies translates

to an uncertainty of 0.1% on the boost [38] (i.e. σγβ = (0.55) · (0.001)). In

order to account for the influence of these possible effects, we refit the data

sample with ∆t and σ∆t multiplied by 1.0066, and assign the differences with

the nominal fit as systematic errors.

• ∆md/τB — The nominal fit assumes the world average values of τB = 1.542 ±
0.016 ps and ∆md = 0.489 ± 0.008 ps−1 [25]. In order to account for these un-

certainties, we refit the data sample, varing ∆md and τB by their uncertainties.

• BRec/Kπ — In order to assess any potential differences between the BRec and

B0 → h+h′− decays (see tables 8.1 and 8.2), we fit the recorded data twice:

using signal ∆t resolution function and tagging parameters determined from

either B0 → K+π− or B0 → D(∗)−π+/ρ+/a+
1 simulated events. We assign

the difference in Sππ and Cππ measured using these two parameterizations as

systematic errors.

The total additive systematic error is calculated as the sum in quadrature of the

individual uncertainties. The final results are listed in table 8.12.
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Table 8.10: Detailed summary of systematic errors on yields and CP asymmetries

due to uncertainties in the PDF parameterizations, τB, and ∆md.

Source Cππ Sππ

µ∆E −0.0074 +0.0141 −0.0038 +0.0080

σ∆E −0.0059 +0.0041 −0.0031 +0.0023

µF −0.0016 +0.0011 −0.0038 +0.0038

σFL −0.0008 +0.0004 −0.0012 +0.0011

σFR −0.0014 +0.0010 −0.0018 +0.0018

µmES −0.0186 +0.0205 −0.0048 +0.0061

σmES −0.0020 +0.0022 −0.0056 +0.0054

θK−
c −0.0119 +0.0066 −0.0089 +0.0007

θK+
c −0.0057 +0.0099 −0.0008 +0.0075

θπ−
c −0.0017 +0.0071 −0.0083 +0.0006

θπ+
c −0.0070 +0.0020 −0.0011 +0.0057

∆md −0.0104 +0.0099 −0.0009 +0.0002

τB0 −0.0009 +0.0006 −0.0003 +0.0002

Table 8.11: Global summary of systematic errors on CP asymmetries.

Source Cππ Sππ

mES −0.0187 +0.0206 −0.0074 +0.0081

∆E −0.0095 +0.0147 −0.0049 +0.0083

F −0.0022 +0.0015 −0.0044 +0.0043

θc −0.0151 +0.0140 −0.0122 +0.0094

Toy MC bias 0.0000 +0.0142 −0.0231 0.0000

SVT LA −0.01 +0.01 −0.01 +0.01

boost/z scale −0.003 +0.003 −0.001 +0.001

∆md −0.01 +0.01 −0.01 +0.01

τB0 −0.0009 +0.0006 −0.0003 +0.0002

BRec/Kπ −0.0040 +0.0040 −0.0067 +0.0067

Total −0.0300 +0.0356 −0.0320 +0.0221
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Table 8.12: Central values and 90% C.L. intervals for Sππ and Cππ from the maximum

likelihood fit. The errors are statistical and systematic, respectively.

Parameter Central Value 90% C.L. Interval

Sππ 0.02 ± 0.34 ± 0.05 [−0.54,+0.58]

Cππ −0.30 ± 0.25 ± 0.04 [−0.72,+0.12]
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Chapter 9

Conclusions

In this dissertation we detailed measurements of the branching fractions

B(B0 → π+π−) = 4.6 ± 0.6 ± 0.2,

B(B0 → K+π−) = 17.9 ± 0.9 ± 0.7, and

B(B0 → K+K−) = < 0.6 (@90% CL),

the time-integrated CP asymmetry

A(B0 → K+π−) = −0.102 ± 0.050 ± 0.016,

and the time-dependent CP asymmetries

Sππ = 0.02 ± 0.34 ± 0.03,

Cππ = −0.30 ± 0.25 ± 0.03,

using BABAR’s sample of 87.9 million BB decays. These results complement the

current knowledge of all B → hh′ branching fractions and direct CP asymmetries,

compiled in table 9.1. Recently, the Belle collaboration has measured Sππ = −1.23±
0.41+0.08

−0.07 and Cππ = −0.77 ± 0.27 ± 0.08 [84].
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As we discussed in chapter 2, the B0 → h+h′− decays are potentially pow-

erful probes of CKM matrix parameters. However, unlike the CP asymmetry in

B0 → J/ψK0
s decays, hadronic uncertainties and not fully understood final state

interactions prohibit a straight-forward interpretation of our measurements. Many

strategies have been suggested for using these decays to extract the unitarity tri-

angle angles α and γ with different degrees of theoretical and experimental uncer-

tainty [26–32]. Reference [74], by A. Höcker et al., systematically compares the ap-

plication of some of these methods to our results using the CKMfitter [11] software.

We will summerize the main conclusions of this document in this chapter. We will

also briefly discuss one suggested method for interpreting the B → Kπ decays [31].

Note that the literature on this subject is extensive and our discussion does not aim

to be comprehensive.

9.1 The CKM matrix without B0 → h+h′− decays

In section 2.2.4 we drew the unitarity triangle in the ρ − η plane because these

two Wolfenstein parameters are the most poorly known of the four which describe

the CKM matrix. Figure 9.1 compiles several independent measurements of CKM

parameters (listed in table 9.2), most notably εk, ∆ms, ∆md, |Vud|, |Vus|, |Vub|, |Vcd|,
and sin 2β. The apparent agreement of these measurements, which is a non-trivial test

of the consistency of the CKM model, permits the identification of an experimentally

preferred area in the ρ̄− η̄ plane1, where ρ̄ = ρ(1 − λ2/2) and η̄ = η(1− λ2/2). Note

that the |Vub/Vcb| constraint clearly prefers one of the solutions from the measurement

of sin 2β.

1We will refer to this region as the “Standard CKM Fit” in the remainder of this chapter.
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Figure 9.1: Confidence levels in the ρ̄ − η̄ place based on inputs listed in table 9.2.

The shaded areas indicate regions of ≥ 90% and ≥ 5% CLs, respectively. Also shown

are the ≥ 5% CL domains of the individual constraints and the ≥ 32% and ≥ 5% CL

constraints from the world average value of sin 2β.
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Parameter Value ± Error(s) Source

|Vud| 0.97394 ± 0.00089 neutron and nuclear β decay

|Vus| 0.2200 ± 0.0025 K → π�ν decays

|Vub| (4.08 ± 0.61 ± 0.47) × 10−3 LEP inclusive

|Vub| (4.08 ± 0.56 ± 0.40) × 10−3 CLEO inclusive & moments b→ sγ

|Vub| (3.25 ± 0.29 ± 0.55) × 10−3 CLEO exclusive

|Vcd| 0.224 ± 0.014 di-muon production: νN (DIS)

|Vcs| 0.969 ± 0.058 W → XcX (OPAL)

|Vcb| (40.4 ± 1.3 ± 0.9) × 10−3 excl./incl. & CLEO moments analysis

|εK | (2.271 ± 0.017) × 10−3 PDG 2002

∆md (0.496 ± 0.007) ps−1 BABAR, Belle, CDF, LEP, SLD (2002)

∆ms Amplitude spectrum 2002

sin 2βWA 0.734 ± 0.055 BABAR, Belle, CDF

mc (1.3 ± 0.1) GeV PDG 2000

mt(MS) (166.0 ± 5.0) GeV CDF, D0 (PDG 2000)

mK (493.677 ± 0.016) MeV PDG 2002

∆mK (3.4885 ± 0.0008) × 10−15 GeV PDG 2002

mBd
(5.2794 ± 0.0005) GeV PDG 2002

mBs (5.3696 ± 0.0024) GeV PDG 2002

mW (80.423 ± 0.039) GeV PDG 2000

GF (1.16639 ± 0.00001) × 10−5 GeV−2 PDG 2002

fK (159.8 ± 1.5) MeV PDG 2002

BK 0.86 ± 0.06 ± 0.14 CERN CKM workshop 2002

η̄cc 1.46 ± 0.41
Herrlich & Nierste;

update: CERN CKM workshop

η̄ct 0.47 ± 0.04
Herrlich & Nierste;

update: CERN CKM workshop

η̄tt 0.573 ± 0.007
Buras, Jamin, Weisz;

update: CERN CKM workshop

η̄B(MS) 0.55 ± 0.01 Buras et al.

fBd

√
Bd (230 ± 28 ± 28) MeV Lattice 2000

ξ 1.16 ± 0.03 ± 0.05 Lattice 2000

Table 9.2: Inputs to the global CKM fit. If not stated otherwise: the first error

includes statistics and experimental systematics and the second represent the sys-

tematic theoretical uncertainties.
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9.2 Interpreting Sππ and Cππ

Reference [74] considers four hierarchical strategies for extracting CKM parameters

from measurements of Sππ and Cππ:

1. Figure 9.2 — Assuming strong SU(2) isospin symmetry with no electro-weak

penguins and using the branching fractions for various B → ππ final states,

as described in section 2.5.1. Limited by the large B0 → π0π0 upper limit,

this method essentially provides no constraints in the ρ̄ − η̄ plane and gives

|θ| ≡ |α− αEff | < 51◦ at 90% CL.

2. Figure 9.3 — Assuming SU(3) flavor symmetry [34] and using (1) along with

B(B0 → K+π−), as described in section 2.5.2. As the figure illustrates, though

this method provides a stronger limit than (1) (|θ| < 29◦ at 90% CL), it still

produces very weak constraints in the ρ̄− η̄ plane.

3. Figure 9.4 — Using (1) and assuming naive factorization (see section 2.5.3) to

estimate |R| = |P/T | (see equation 2.25) with no constraints on the relative

strong phase δ [32]. Here the penguin only B(B+ → K0π+) decay is used to

estimate

P =

√
τB0

τB+

fπ
fK

1

Rth

|PK0π+ |,

where fπ = 130.7 ± 0.4 MeV and fK = 159.8 ± 1.4 MeV [85] are the pion and

kaon decay constants, Rth = 0.98 ± 0.05 [31] is a theoretical estimate of SU(3)

breaking, and |PK0π+ |2|V ∗
tbVts| = |PK0π+ |2|V ∗

cbVcs| = B(B0 → K0π+). The tree

amplitude, T , is deduced from B(B0 → π+π−) and the calculated value of P .

This method constrains |θ| < 20◦ at 90% CL and excludes some ρ̄− η̄ regions,

but it is limited by the lack of information on δ, which prohibits exploiting
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the sign of Cππ. Note that no theoretical errors have been assigned for the

dynamical assumptions.

4. Figure 9.5 — Using (1) and predictions of the |R| and δ from QCD factor-

ization [27] (see section 2.5.3). The constraints provided in the figure, which

include the theoretical uncertainties quoted by the authors, are limited by the

experimental uncertainties on Sππ and Cππ. Negative η̄ values are preferred due

to the negative central value of Cππ and the prediction of small δ. Note that

the fundamental limitation of this method is that the reliability of the calcu-

lation have not been fully established at this time [87]. For example, another

calculation known as pQCD [86] predicts a large relative strong phase δ.

Figure 9.6 presents a comparison of the predictions of the angle α from these

methods, adding |Vub| to constrain the radius
√
ρ̄2 + η̄2. Note that each successive

strategy exchanges experimental limitations with theoretical uncertainties. Generally

we find that estimates of P/T , which compensate for the lack of strong experimen-

tal limits (most notably on B(B0 → π0π0)), are necessary to produce a significant

constraint in the ρ̄ − η̄ plane. With the addition of information on δ, strategy (4)

permits comparison with limits from other measurements, discussed in the previous

section and overlaid on each plot. Figure 9.5 illustrates that experimental accuracy

is already competitive with the other CKM constraints and that consistency with the

Standard Model is likely, assuming QCD factorization predictions are correct.

9.3 Constraints from B0 → K+π−

Ratios of asymmetries and branching fractions of various B → Kπ decays have

been recognized to provide non-trivial constraints on γ. For example reference [31],
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Figure 9.2: Confidence levels in the ρ̄ − η̄ plane for strategy (1). Overlayed is the

prediction from the SM fit. Refer to the text for a discussion.
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prediction from the SM fit. Refer to the text for a discussion.
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area represent the prediction from the SM fit.

assuming SU(3) flavor symmetry and using factorization to estimate SU(3) breaking

effects, compares the quantities⎧⎪⎨
⎪⎩

R

A0

⎫⎪⎬
⎪⎭ ≡

[B(B0 → π−K+) ± B(B̄0 → π+K−)

B(B+ → π+K0) + B(B− → π−K̄0)

]
τB+

τB0

,

⎧⎪⎨
⎪⎩

RC

AC0

⎫⎪⎬
⎪⎭ ≡ 2

[B(B+ → π0K+) ± B(B− → π0K−)

B(B+ → π+K0) + B(B− → π−K̄0)

]
, and

⎧⎪⎨
⎪⎩

Rn

An0

⎫⎪⎬
⎪⎭ ≡ 1

2

[B(B0 → π−K+) ± B(B̄0 → π+K−)

B(B0 → π0K0) + B(B̄0 → π0K̄0)

]
,

with expectations, given different values of γ and the relative penguin-tree strong

phase in B → Kπ. Though the statistical errors of the experimental results prohibit

a strong conclusion, this analysis suggests that the data prefers large values of γ than

the global CKM in figure 9.1.
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9.4 Prospects for α

As the B factories continue to collect data and eventually upgrade in order to support

even higher luminosities, we will obtain the two ingredients which are required for

a measurement of the angle α with reduced sensitivity to theoretical uncertainties:

the precise extraction of Sππ and Cππ and all of the B → ππ branching fractions.

Figure 9.7 displays projections of the statistical errors on Sππ and Cππ up to total

recorded luminosity of 10000 fb−1 at the Υ (4s), where σSππ = 0.03 and σCππ = 0.02

is expected. In order to interpret such results without substantial input from model-

dependent theoretical descriptions, we are likely to select the isospin analysis (see

section 2.5.1) as the preferred strategy of extracting α. Using this method, figure 9.8

displays the projected distribution of the residual θ = α−αEff , measured at different

recorded luminosities. For this study, electroweak penguins were ignored, |λπ0π0| = 1,

and the tagged B0 → π0π0 and B0 → π0π0 branching fractions were assumed to be

available with the central values of the world average in table 9.2. The figure indicates

that an extraction of α with a clear solution for the value of θ may require 10000 fb−1.

However at lower integrated luminosities, the measurements in B → ππ may test the

SM if discrepancies with the expectations is large.
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Appendix A

Uncertainties on Time-dependent

Measurements

Consider the approximate expression for the error on the measured time-dependent

asymmetry Sππ on a sample with Nsig signal and Nbkg background events:

σSππ =
Σ(Sππ, τB/∆md, σ̄∆t)√

Nsig

√∑
i=1 ε̄

t
iD

2
i

√
1 +Nbkg/Nsig

1 + (Asig/Abkg)(Nsig/Nbkg)

where Asig and Abkg are the amplitudes of CP asymmetry in the signal and back-

ground events, and Σ(Sππ, τB/∆md, σ̄∆t) and Qi = ε̄tiD
2
i quantify the influence of the

∆t resolution σ̄∆t (see [19]) and the tagging performance, respectively. As expected

this error is small for large values of the signal significance, Nsig/
√
Nsig +Nbkg. Since

the branching fraction ML fit discussed in chapter 5 maximizes this quantity, ex-

tending it to extract Sππ also guarantees the smallest possible error σSππ . However,

if selections produce a sufficiently pure sample of B0 → π+π− to permit ignoring

backgrounds, statistical precision may be traded for gains in systematic uncertainties

and simplicity. Unfortunately, the extremely small signal yield of any such selection

on the available data-set renders extracting a measurement impractical. Therefore,

since understanding the background events is unavoidable, it is preferable to include
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a significant number of background candidates in order to facilitate parameterizing

them and accounting for systematic errors. The fit to the full B0 → h+h′− sample

also provides this benefit.
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Appendix B

Comment on Information on Cππ from ∆t

Shape

The nominal ML fit described in chapter 8 is sensitive to both the ∆t shape and

the asymmetry in the total number of B0 and B0 events. Extracting a shape only

measurement of Cππ requires renormalization of the B0 → π+π− ∆t PDF. We redefine

ΓB
0

B̄0(∆t) =

(
1 + CNorm

ππ

1+(∆mdτ)2

)
(
1 + CShape

ππ

1+(∆mdτ)2

) e− |∆t|
τ

4τ
(1 ± Sππ sin (∆md∆t) ∓ CShape

ππ cos (∆md∆t)),

thereby decoupling the coefficient of the cosine term, CShape, from CNorm, which

contributes to the integral. Toy MC studies indicate that in a fit, both these quantities

are unbiased estimators of Cππ. Using this PDF, we measure Sππ = 0.046468 ±
0.28352, CShape

ππ = −0.67683 ± 0.25082, and CNorm
ππ = −0.0044425 ± 0.30337. Since

tagging information from the same events are used to measure CShape
ππ and CNorm

ππ ,

they are correlated and an average cannot be easily calculated for a direct cross-

check with the results of the standard ML fit with only one Cππ parameter. However

when toy Monte Carlo experiments are fit using both the Cππ and the CShape
ππ /CNorm

ππ

parameterizations, we find that differences of CShape
ππ − CNorm

ππ > 0.67 occur at 15%

when Cππ = −0.30.
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