
SLAC-R-646

Computer Simulation of Electron Positron Annihilation Processes*

Yue Chen

Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

SLAC-Report-646
August 2003

Prepared for the Department of Energy
under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

* Ph.D. thesis, Stanford University, Stanford, CA 94309.

COMPUTER SIMULATION OF ELECTRON POSITRON

ANNIHILATION PROCESSES

a dissertation

submitted to the department of physics

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Yue Chen

August 2003

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Michael Peskin
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Lance Dixon

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Joanne Hewett

Approved for the University Committee on Graduate

Studies.

iii

Abstract

With the launching of the Next Linear Collider coming closer and closer, there is

a pressing need for physicists to develop a fully–integrated computer simulation of

e+e− anniilation process at center–of–mass energy of 1TeV. A simulation program

acts as the template for future experiments. Either new physics will be discovered,

or current theoretical uncertainties will shrink due to more accurate higher–order

radiative correction calculations. The existence of an efficient and accurate simulation

will help us understand the new data and validate (or veto) some of the theoretical

models developed to explain new physics. It should handle well interfaces between

different sectors of physics, e.g., interactions happening at parton levels well above the

QCD scale which are described by perturbative QCD, and interactions happening at

much lower energy scale, which combine partons into hadrons. Also it should achieve

competitive speed in real time when the complexity of the simulation increases.

This thesis contributes some tools that will be useful for the development of such

simulation programs. We begin our study by the development of a new Monte Carlo

algorithm intended to perform efficiently in selecting weight-1 events when multiple

parameter dimensions are strongly correlated. The algorithm first seeks to model the

peaks of the distribution by features, adapting these features to the function using

the EM algorithm. The representation of the distribution provided by these features

is then improved using the VEGAS algorithm for the Monte Carlo integration. The

two strategies mesh neatly into an effective multi–channel adaptive representation.

We then present a new algorithm for the simulation of parton shower processes

in high energy QCD. We want to find an algorithm which is free of negative weights,

produces its output as a set of exclusive events, and whose total rate exactly matches

the full Feynman amplitude calculation. Our strategy is to create the whole QCD

iv

shower as a tree structure generated by a multiple Poisson process. Working with

the whole shower allows us to include correlations between gluon emissions from

different sources. QCD destructive interference is controlled by the implementation of

“angular–ordering”, as in the HERWIG Monte Carlo program. We discuss methods

for systematic improvement of the approach to include higher order QCD effects.

v

Acknowledgements

Firstly, my deepest thanks go to my advisor Michael Peskin. During my four years of

study with him, I have not only benefited from his tremendous knowledge in physics,

but also from his endless new ideas and strategies in tackling the same problem. He

has lead me to the result of persistent work, and his sole tenacity and optimism will

remain to be my guiding force in facing my future challenges. Above all this, he

has shown me a wonderful personality of patience, modesty and objectiveness. His

gracefulness has uplifted my pressure from being a graduate student into sheer en-

lightenment of making contributions to the eternal journey of knowledge acquisition.

Secondly, my gratitude and love go to my husband Boris, who has given up

his opportunity to return to Germany — his homeland, and chosen to stay here

accompanying me to finish my study. He has helped to establish my emotional

stability, which lead to my single-minded concentration in the research topic. Some

of my work benefited from the inspiration originated from my frequent conversations

with him on the work.

When I look back, my sincere gratefulness goes to the SLAC Theory Group, which

through its calsualness yet exactness, has provided me with a healthy environment to

think and to mature. I thank Prof. Lance Dixon, JoAnne Hewett, Tom Rizzo, Helen

Quinn, Stan Brodsky, Shamit Kachru, Marvin Weinstein, Paul Tsai and other senior

members, for caring to share their knowledge and wisdom with me, for helping me

grow to be fair and think in a wide angle. For my work in MAVEN, my discussions

with Prof. Stanislaw Jadach were tremendously helpful and insightful. During his

two months short visit to SLAC, he has shared with me a lot of valuable experience

from his working in the field for so many years. He has given me a unique and

long-lasting impression of a humbly quiet yet indomitable scholar towards his goal

vi

of perfection.

I also thank theory group’s past and current postdocs — Kirill Melnikov, Thomas

Becher, Gudrun Hiller and all others — for teaching me physics and sharing their

physics and personal experience with me, which is a necessary ingredient of my life

in SLAC. I thank its graduate students — Frank Petrellio, Yasaman Farzan and

all others — for all the help that I need in finishing up my thesis and for a lot of

lengthy discussions which provide me with the insight into many critical issues in the

modern world. My gratitude also extends to my closest friends — Jun Ren, Boaz

Nash, Bruno and Hiroko Strulovici. Without their friendship and accompanionship

I couldn’t have survived through my graduate school years. The width and depth

that my fellow friends have reached is the precious soil for my nourishment.

Finally I thank my family for urging me to start my adventure in America. Par-

ticular thanks go to my father, who through my upbringing, has infused me with the

principle of freedom, equality and justice, who keeps encouraging me to dream and

strive to be a woman who can be resourceful and determined enough to break the

gender difference still existing in people’s ideology.

The work in Chapter 2 is based upon the preprint “MAVEN: A New Algorithm for

Multi–Grid Adaptive Simulation” to appear, written in collaboration with Michael

Peskin. The work in Chapter 3 is based upon the preprint “A New Algorithm for

Parton Shower and Matching with Finite-Order QCD Calculation” to appear, also

written in collaboration with Michael Peskin.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

2 MAVEN: A New Algorithm for Multi–Grid Adaptive Simulation 7

2.1 Introduction . 7

2.2 Basics of event selection . 8

2.3 Feature analysis . 11

2.4 Improvement of features with VEGAS 15

2.5 Results for two–dimensional PDFs . 17

2.6 Results for realistic PDFs . 22

2.7 Conclusions . 23

3 Parton Showering Simulation with Perturbative QCD 25

3.1 Introduction . 25

3.2 Theory of QCD Parton Showering . 26

3.3 PYTHIA and HERWIG . 31

3.4 Algorithmic construction of Parton Shower 33

3.5 Leading-Order perturbative QCD treatments 36

3.5.1 Angular Ordering . 37

3.5.2 Next–to–Leading–Order Reweighting 37

3.6 Physical Simulation of QCD at Q = mZ 39

3.6.1 Jet Rate at O(αs) . 39

viii

3.6.2 Thrust Simulation at O(αs) 40

3.7 Conclusion and Outlook . 41

4 Conclusions 47

A Notes for the use of the MAVEN Software 49

A.1 Bayesian statistics applied to neuron evolution 49

A.2 Structure of the software distribution 51

A.3 Monte Carlo interface . 52

A.4 Initialization and control of MavenMC 52

A.5 Use of vector and matrix classes . 55

A.6 Implementation of Feature Adaptation 55

A.7 Implementation of Grid Adpatation in Each Feature 57

A.8 A More Systematic Estimation of Maxweight 60

B Derivations of Shower Simulation Equations 64

B.1 Monte Carlo based on Poisson Distribution 64

B.2 Suppressing back–to–back Events . 66

B.3 Calculation of the Reweighting Factor 68

B.4 Accompanying software . 70

B.4.1 Variable documentation of a shower event 72

B.4.2 Construction of a shower event 74

B.4.3 Boosting of a shower event . 74

B.4.4 Angular Ordering . 80

B.4.5 Jet Algorithms . 80

B.4.6 reweighting . 80

Bibliography 89

ix

List of Tables

2.1 Comparison of VEGAS and MAVEN on 2–dimensional functions . . . 18

2.2 Comparison of VEGAS and MAVEN on double Gaussians 22

2.3 Comparison of VEGAS and MAVEN on e+e− annihilation processes . 24

A.1 Test run on controlling Maxweight 62

x

List of Figures

2.1 Vegas optimization example . 10

2.2 Transformation map of one feature 13

2.3 Adapted features for Bird Function 19

2.4 Adapted configuration for e+e− → µ+µ− 21

3.1 Collinear Emission . 27

3.2 Multiple Emission . 30

3.3 Gluon Showering . 33

3.4 Gluon Branching . 34

3.5 Dynamic check . 36

3.6 Clustering of Jets . 39

3.7 Jetrates compared with PYTHIA . 42

3.8 Jetrates compared with HERWIG . 43

3.9 Zoomed-in version of kT Jetrate . 44

3.10 Thrust Plot . 45

3.11 special configuration . 46

A.1 Public methods of the class MonteCarlo. 53

A.2 Public methods of the class MavenMC. 54

A.3 prepare function of the class MavenMC. 56

A.4 adaptstep function of the class MavenMC. 57

A.5 update function of the class MavenMC. 58

A.6 grid adaption of the function prepare. 59

A.7 selectively update one feature using one data point 60

A.8 point selection mechanism . 61

xi

B.1 suppression mechanism . 66

B.2 Gluon radiation . 68

B.3 Public methods of the class process. 71

B.4 Public methods of the class shower. 73

B.5 Initialization . 75

B.6 gluon insertion . 76

B.7 gluon instantiation . 77

B.8 color ordering . 78

B.9 boost . 80

B.10 angular ordering . 81

B.11 cross section . 82

B.12 kT algorithm . 83

B.13 JADE algorithm . 84

B.14 E0 algorithm . 85

B.15 jet counting algorithm . 86

B.16 clustering algorithm . 87

B.17 reweighting algorithm . 88

xii

Chapter 1

Introduction

With the launching of the Next Linear Collider coming closer and closer, there is

a pressing need for physicists to develop a fully–integrated computer simulation of

e+e− anniilation process at center–of–mass energy of 1TeV. A simulation program

acts as the template for future experiments. Either new physics will be discovered,

or current theoretical uncertainties will shrink due to more accurate higher–order

radiative correction calculations. The existence of an efficient and accurate simulation

will help us understand the new data and validate (or veto) some of the theoretical

models developed to explain new physics. It should handle well interfaces between

different sectors of physics, e.g., interactions happening at parton levels well above the

QCD scale which are described by perturbative QCD, and interactions happening at

much lower energy scale, which combine partons into hadrons. Also it should achieve

competitive speed in real time when the complexity of the simulation increases.

The core of a simulation program for particle physics events at high energy is

a program that generates paton-level events. In this thesis, we will present some

new methods for parton-level event generator. We will develop a new algorithm

in Chapter 2 which has higher efficiency in generating weight-1 events when some

parameter dimensions exhibit strong correlation. In Chapter 3 we will apply the

philosophy of Chapter 2 to write a parton shower simulation program with matching

to finite order perturbative QCD results.

In Chapter 2, we discuss a general problem at the heart of constructing an event

generator. We are given a process whose possible outcomes are predicted by a known

1

CHAPTER 1. INTRODUCTION 2

probability distribution. To simulate such a process, one selects points in the phase

space (‘events’) according to the given probability. For example, in scattering pro-

cesses, the differential cross sections are known, and the scattering process can be

simulated by selecting events with probability proportional to this cross section. This

issue is trivial in one dimension, but typically one must work with a cross section

formula that depends on many phase space variables and is highly peaked in specific

regions of the multi–dimensional space.

We refer to this problem as that of ‘event sampling’. A number of different

methods for event sampling have been proposed in the high–energy physics literature.

One strategy is to base a method for event sampling on a general–purpose method

for multi–dimensional integration. For example, one might begin from Lepage’s

very effective multi–dimensional integration algorithm VEGAS [1,2], which works in

a fixed coordinate system in the N–dimensional space and adapts a grid with cell

boundaries parallel to the coordinate axes. The adapted grid provides a simple model

of the probability distribution, and this model can be used as a first approximation

for sampling the distribution. This strategy is used in Kawabata’s general–purpose

sampling algorithm BASES and SPRING [3,4], which is used for event simulations

in high–energy reactions.

VEGAS is well–known to have difficulty with probability distributions that have

peaks that run diagonally to the coordinate axes. To overcome this problem, it

is useful to choose new variables so that each singularity is parallel to some axis.

However, this is often impossible to do. As an example, consider a process at center

of mass energy ECM that leads to a final state with three massless particles. The

cross section might be resonant at a specific value of any of the mass combinations

m2
12 = (p1 + p2)

2 , m2
23 = (p2 + p3)

2 , m2
31 = (p3 + p1)

2 . (1.1)

However, the three masses are constrained by the relation m2
12 + m2

23 + m2
31 =

E2
CM, so one set of resonances is always on the diagonal relative to the others. An

effective solution to this problem is multi–channel integration, writing a model for the

probability distribution which is a sum of terms, each of which peaks in a different

relevant kinematic variable. The EXCALIBUR event generator of Berends, Kleiss,

CHAPTER 1. INTRODUCTION 3

and Pittau adapts the weights of the various terms to generate the best representation

of the original distribution [5,6]. Systems such as GRACE and MADGRAPH that

automatically generate cross section formulae from Feynman diagrams have also been

programmed to pick out the relevant phase space variable sets that should appear

in different channels [7,8]. Ohl has developed this approach one step further by

associating a VEGAS grid with the variables of each channel and adapting the set of

grid along with the relative weights of channels. This algorithm, called VAMP [9],

provides the simulation engine for the event generator WHIZARD [10,11].

The difficulty with the usual approach to multichannel integration is that one

must know the correct variables sets to use for a given problem and the mappings

that connect them. It would be preferable, if it were possible, to simply write down

the probability distribution and ask the integration program itself to find the best

variables to use. Perhaps for problems in which one constructs the cross section as

an explicit function, this might be thought as an unnecessary luxury. But even in

this case, there are applications for which the burden should be put on the integrator

to find the best coordinates. For example, in the design of an event generator for

high–energy physics applications using object–oriented programming, it is natural to

construct separate classes to produce the different elements of a scattering process —

the initial–state beam distributions, the core scattering cross sections, and the decay

distributions for each final particle. It is advantageous to make this structure truly

modular, so that different classes might have different authors who need not care

about the internal structure of the other elements. But then the convolution of the

modules will inevitably lead to peaks in the cross section that depend simultaneously

on integration variables from several modules. To represent such peaks well, it is

necessary either to look inside the modules, violating the ‘encapsulation’ of their

methods, or to ask the overall event selection program to find the best optimization.

We have been engaged in constructing a general–purpose event generator for re-

actions of high–energy electrons, positrons, and photons, called pandora [12]. The

program is written in C++ with a modular construction of the kind just discussed.

Currently, the event selection algorithm in pandora is VEGAS, but many processes

exhibit very low efficiency for event sampling due to conflicts of the type just dis-

cussed. It would be advantageous to find a multichannel event selection algorithm

CHAPTER 1. INTRODUCTION 4

compatible with our modular approach. This motivates some of the specific de-

sign choices made in Chapter 2. Typically, we are interested in integrals with 5–40

variables, of which 2–10 form combinations that have peaking structure.

Our algorithm is inspired by neural networks [13] and began as an attempt to

adapt a neural network to carry out the task of event selection. The final algo-

rithm can be thought of as a two–layer neural network, with the features as the

neurons in the first layer and the VEGAS grids as the neurons in the second layer.

We call the final algorithm MAVEN: Multichannel Adaptive integration with Vegas

Enhancement.

A very different approach to adaptive multidimensional event selection is the

FOAM algorithm recently proposed by Jadach [14,15]. The idea of this algorithm

is to recursively divide the integration region into smaller cells until the integrand

is roughly constant over each cell. The algorithm has an advantage that one is

guaranteed to obtain an accurate representation of the integrand, but it also has the

difficulty that this exacts a very large price in function calls and in the size of the

data structure that it requires.

In Chapter 3, we discuss another issue that is important for simulations involving

strong-interacting particles. Quantum field theory predictions are based on pertur-

bation theory, which works with finite observables of elementary particle processes.

However, even in quantum electrodynamics (QED), it is typical that many hard pho-

tons are radiated in high–energy processes. In quantum chromodynamics (QCD),

high–energy reactions of quarks entail the radiation of many gluons, and nonpertur-

bative dynamics then converts the state of quarks and gluons to one of mesons and

baryons. Thus, there are two stages of evolution that require separate treatment.

We will be concerned with the simulation of multiple gluon radiation in e+e−

annihilation to hadrons. This is the first segment of the evolution described above

for the case of QCD. Our methods will also suggest generalization to problems of

simulating initial– and final–state radiation in QED and the weak interactions. There

are of course highly developed and carefully tuned codes — in particular, PYTHIA

[16–19] and HERWIG [20–22] — that simulate QCD showers with gluon radiation

and also include the stage of transition from quarks and gluons to hadrons. These

codes have been used as the basis for extensive, and extremely sucessful, testing of

CHAPTER 1. INTRODUCTION 5

QCD predictions against the data on final states in e+e− annihilation [23,24]. So,

why is a new code needed, and what can it hope to improve?

Existing algorithms for the generation of QCD showers are based on the idea

of independent evolution and radiation from the various partons produced in the

collision. This idea comes from the analysis of the most collinear regions of the

radiation pattern, in which, for example, the successive gluon emissions from each

quark line can be viewed as an independent Poisson process. The parameters of this

process are given, for the extreme collinear limit, by the Altarelli–Parisi equations

[25]. It is not difficult to write a prescription that includes wide–angle gluon emission

that reproduces the known result in the collinear region and generalizes it to the rest

of phase space. However, such prescriptions are always, to some extent, ad hoc. It

would be excellent if there were a strategy to tune these prescriptions systematically

to the results of QCD perturbation theory in higher orders.

A first step in this direction was the introduction into the HERWIG event gen-

erator of a restriction to ”angular ordering” in parton shower evolution [23]. Here,

one takes account of the angular relation of radiated gluons to quarks and gluons

radiated at previous stages and removes gluons radiated into regions suppressed by

QCD destructive interference.

Recently, in a very beautiful series of papers [26], Frixione and Webber improved

this idea by showing how to construct a QCD shower simulation that could be sys-

tematically adjusted to agree to order αs with the result of a next–to–leading or-

der QCD computation. Remarkably, the correction factors written by Frixione and

Webber contain no soft or collinear singularities; these are absorbed naturally by

the equations of the leading–order QCD shower evolution. However, the Frixione–

Webber prescription still requires that configurations with little gluon radiation are

produced with negative weights, so that cancellations between position and negative

weight configurations are carried through the whole process of Monte Carlo event

generation. Thus, we feel that there is room for improvement of this prescription.

We hope to achieve this by taking a more integral view of QCD shower. As in the

Frixione–Webber analysis, soft and collinear singularities cancel in this comparision.

However, in our approach, we can view the modification as a consistent reweighting

with positive weights, so that the simulation code can be arranged to produce final

CHAPTER 1. INTRODUCTION 6

events with uniform relative weight +1.

Chapter 2

MAVEN: A New Algorithm for

Multi–Grid Adaptive Simulation

2.1 Introduction

In this chapter, we are engaged in the core of a simulation program for particle

physics event generation. A useful problem to solve is : How to improve the efficiency

of current event generators?

Our approach to multichannel event selection begins by representing the peaks

of the given probability distribution by features of a canonical form. The locations,

shapes, and relative weights of the features are chosen initially at some random

values and then adapted to fit the probability distribution. We have found that

the Expectation Maximization (EM) algorithm [27,13] is a very effective method for

adapting these features. Our algorithm also uses features of C++ to allow features to

be created and destroyed according to their importance.

One can think of one feature as one local coordinate. The adapted combination of

such local coordinates (feature map) does a good job of representing the peaks of the

probability distribution, but it often fails to account correctly for the regions away

from the peaks. To ameliorate this problem, we adjust the shapes of the features by

using the VEGAS algorithm. That is, we construct each feature so that it explicitly

is a coordinate system for the integration. Each feature is treated as one channel of a

multi–channel integrator, which means the total integration is a weighted sum of all

7

CHAPTER 2. MAVEN 8

the channels. The construction of the feature through the EM algorithm chooses an

appropriate set of coordinate axes for this part of the function. We can then adjust

the shape of the feature by selecting points in the feature using an adapted grid as

in VEGAS. We call the final algorithm MAVEN: Multichannel Adaptive Integration

with Vegas Enhancement.

In this chapter, we will present our algorithm as follows: Section 2 will present

our general framework for event selection algorithms and review some aspects of

the VEGAS algorithm. Section 3 will discuss our algorithm for representation of a

probability distribution by features. Section 4 will discuss the enhancement of this

algorithm for event selection by the inclusion of VEGAS grids. Section 5 will apply

our algorithm to some two–dimensional and other simple probability distributions.

Section 6 will describe our experience using MAVEN in practical simulation problems

in high–energy physics described by the pandora event generator. Section 7 gives

our conclusions.

We have submitted with the eprint version of this chapter a C++ program that

implements the MAVEN algorithm and some example programs to test it. We discuss

the use of this software in the Appendix. The software also includes a general parent

class for the use of event selection algorithms in C++ code.

2.2 Basics of event selection

We begin by defining our basic framework for event selection. Let x be an N–

dimensional vector whose components satisfy 0 < xi < 1. Let f(x) be a positive

function of x. Define

I =
∫

dNxf(x) . (2.1)

Then f(x)/I is a normalized probability distribution function (PDF). Our problem

is to efficiently select points x with this probability distribution. In this chapter, we

will always take x to be an element of the unit cube, [0, 1]N .

Let p(x) be a positive function that approximates f(x). We will construct p(x) so

that it is normalized and so that there is a definite algorithm for choosing points with

probability p(x). We will refer to p(x) as our ‘model’ for f(x). Write the integral in

CHAPTER 2. MAVEN 9

(2.1) as

I =
∫

dNx f(x) =
∫

dNx p(x)
f(x)

p(x)
. (2.2)

Define the weight of x as

w(x) =
f(x)

p(x)
. (2.3)

Let W be an upper bound for w(x) (the ‘maxweight’). Now we can choose points

according to f(x) from the distribution of p(x) by the ‘hit–or–miss’ algorithm: Select

a point xa with the PDF p(x), compute w(xa), and retain the point xa with prob-

ability w(xa)/W . The points retained have the probability distribution of the PDF

derived from f(x).

The ‘hit–or–miss’ algorithm is extremely unsophisticated. Yet we prefer it for

our purposes to other possible Monte Carlo methods such as the Metropolis algo-

rithm [28]. The reason is that we would like to provide our event selection routine as

a black box to users of our event generator. The ‘hit–or–miss’ algorithm is guaran-

teed to eventually produce the correct probability distribution. Its difficulty is that

it might do this extremely inefficiently. The efficiency of the algorithm is controlled

by the quality of the model p(x). If f(x)/p(x) is never large, the event selection

will be efficient. However, if p(x) underrepresents f(x) even in a small region, the

maxweight will be much larger than the weight of typical points and so the efficiency

of event selection will be low. Our choice is to put our effort into constructing a p(x)

that follows f(x) as closely as possible.

The VEGAS algorithm gives a simple model for p(x): For each dimension i,

1 ≤ i ≤ N , divide the interval [0,1] into Ng segments at the points xi
a. We set

xi
0 = 0, xi

Ng
= 1. Choose xi

a from a random cell, and then randomly within the cell.

This gives the model

p(x) =
∏

i

1

xi
ai
− xi

ai−1

≡ 1/V (x) (2.4)

where ai is the cell in the ith dimension that contains x and V (x) is the volume of

the N–dimensional cell that contains x.

We now adapt the grid to meet an appropriate criterion. In Lepage’s original

CHAPTER 2. MAVEN 10

Figure 2.1: Example of optimization of a VEGAS grid for a PDF with one peak, indicated
by the dark ellipse.

construction, the grid was adjusted in such a way as to minimize the variance

σ2 =
∫

dNxp(x)

∣
∣
∣
∣
∣

f(x)

p(x)
− I

∣
∣
∣
∣
∣

2

. (2.5)

In addition, to obtain the best estimate of the integral, stratified sampling was used

to produce an ensemble of values xa [1,2]. Our goal is to construct the most efficient

selection procedure for single events. In pursuit of this goal, we record, for each

dimension, the maximum value of the weight w(x) obtained in each cell and adjust

the grid to equalize these maximum weights as much as possible over the grid.

An example of the use of the VEGAS algorithm is shown in Fig. 2.1. Evolution

from the grid on the left to the grid on the right equalizes the maximum weight as

much as possible for the cells in each row and in each column. Notice the small

volumes in the upper left and lower right corners, which probably imply that the

weight is underestimated and the event selection efficiency is low in these regions.

It is not difficult to devise PDFs that give uniformly low efficiency. For example.

a PDF that has a peak of uniform height at the values of (x1, x2) such that x1+x2 = 1

gains no advantage from readjustment of a grid aligned with x1 and x2. On the other

hand, such a peak would be treated very well by a grid aligned with the coordinates

(x1 ± x2). It would be attractive to improve the VEGAS algorithm in such a way as

to allow the algorithm to find the best axes for its grid.

The VEGAS algorithm also has important advantages that we should not overlook

as we attempt to generalize it. First, the grid adaptation is very rapid, requiring only

CHAPTER 2. MAVEN 11

about 100,000 function calls in our typical high–energy physics applications. Event

selection is also very rapid. On a Sun2200 workstation, the adaptation step requires

only a few tenths of a second, and after adaptation a point can be chosen on the

grid in 10 µsec. This gives a reasonable rate for generating unweighted events even

if the efficiency of the hit–or–miss selection is 1% or even 0.1%. Finally, the time

required for adaptation has a very mild dependence on the number of dimensions N

of the parameter space, growing more slowly than linearly with N as long as the new

variables added do not have compex peaking structure.

2.3 Feature analysis

As an alternative to modelling f(x) with a grid, we might model f(x) as a sum

of component functions by writing

p(x) =
∑

a

pap(x|Aa) , (2.6)

where pa is a probability (
∑

a pa = 1) and p(x|A) is a PDF of a fixed functional

form that depends on parameters A. As an example, p(x|A) might be a Gaussian

distribution for which A parametrizes the mean and the covariance matrix. In our

algorithm, we will make another choice for p(x|A), explained below. We will refer to

the components in this equation as ‘features’, indexed over a = 1, . . . , nf .

An effective method for adapting the parameters of the features in (2.6) is the

Expectation Maximization (EM) algorithm [13]: We first produce an ensemble of

weighted points for each component. Assume that there is a method for selecting

random points according to the PDF p(x|A). With probability pb, choose the distri-

bution a = b and select a point x from the PDF. Then add x to the ensemble for

each of the features. For the feature a = c, assign x the weight

wc(x) =
f(x)

p(x)
· pcp(x|Ac)

p(x)
. (2.7)

That is, reweight x to have the correct weight for the function we wish to model,

and then divide this weight among the nf features according to the contribution that

CHAPTER 2. MAVEN 12

each feature makes to p(x). For each feature, we can now compute expectation values

according to

〈F (x)〉c =
∑

x

wc(x)F (x)/
∑

x

wc(x) (2.8)

Then assign new probabilities for the features

pc =
∑

x

wc(x)/
∑

x,a

wa(x) (2.9)

and assign new parameters so that the mean and covariance matrix of p(x|Ac) lie

at the mean of the ensemble 〈x〉c and the covariance matrix of the ensemble. After

several iterations, features chosen initially with arbitrary positions and orientations

move to positions and orientations at which they form a good approximation to the

PDF derived from f(x).

For a reason that will become clear in the next section, we choose our features

to be coordinate systems on the unit cube. We choose the following form for the

coordinate transformation: Consider the mapping between [0, 1] and the real line

xi = g(zi) =
1

1 + exp(−zi)
, zi = g−1(xi) = log

xi

1 − xi
. (2.10)

We will use these mappings component by component to transform a point x in [0, 1]

to a point z in RN . Represent these transformations as

x = g(z) , z = g−1(x) . (2.11)

Now define the form of the feature to be given by the mapping [0, 1]N → [0, 1]N

G(x|A, B) = g(Az + B) , with z = g−1(x) , (2.12)

where A is a positive N × N matrix and B is an N–dimensional vector. For each

feature a, a uniform distribution of xa over [0, 1]N gives a distribution for x∗ =

G(xa|Aa, Ba) that is centered at x∗ = g(Ba) and is concentrated in a small volume

around this point if the matrix Aa has small eigenvalues. We give a graphical view

CHAPTER 2. MAVEN 13

Figure 2.2: The transformation (2.12) from [0, 1]N to [0, 1]N that defines one feature in
(2.6).

of the transformation G(xa|Aa, Ba) in Fig. 2.2. Since

∫

dxa =
∫

dx∗

∣
∣
∣
∣
∣

∂x

∂x∗

∣
∣
∣
∣
∣

, (2.13)

the feature p(x|A, B) is the inverse Jacobian of the transformation,

p(x∗|Aa, Ba) =

∣
∣
∣
∣
∣

∂xa

∂x∗

∣
∣
∣
∣
∣
=
∏

i

xi
a(1 − xi

a)

xi
∗(1 − xi

∗)

1

det Aa

. (2.14)

Note that, to compute p(x∗) =
∑

c pcp(x∗|Ac, Bc) it is necessary to map the chosen

point x∗ back to the original x variable in each of the coordinate systems. This is also

a property of Ohl’s VAMP algorithm; the formalism of these mappings is discussed

further in [9].

To evolve the features (2.14), we work in the z∗ space. After taking some data

and creating the weighted ensembles described above, we set the new probabilities

for the feature c equal to (2.9). We assign the new value of Bc by

Bi
c =

〈

zi
∗

〉

. (2.15)

To assign the new value of Ac, we first write

Aij
c = (AcA

T
c)ij =

〈

zi
∗z

j
∗

〉

−
〈

zi
c

〉 〈

zj
c

〉

. (2.16)

The matrix Ac can be diagonalized in the form

Ac = Rσ2RT (2.17)

CHAPTER 2. MAVEN 14

where R is a rotation in N dimensions and σ2 is a diagonal matrix with positive

eigevalues σ2
i . Then we set the new Ac to

Ac = Rσ . (2.18)

This means that the standard coordinates in xc map into the principal axes of the

covariance matrix in (2.16). Note that the fact that the algorithm includes a diago-

nalization allows the sampling of the PDF itself to find the best local set of coordinate

axes.

In the implementation of the algorithm, we store the rotation matrix R and the

eigenvalues of σ for each feature c. The determinant in (2.14) is readily computed as
∏

i σi. To choose a point, we pick a feature c with probability pc, select xc randomly

in the unit cube, map to zc, and then map to z∗ using (2.12),

z∗ = Rcσczc + Bc . (2.19)

The chosen z∗ can be mapped to x∗. This value can also be mapped backwards

through the other coordinate systems to produce the corresponding values

zb = σ−1
b RT

b (z∗ − Bb) . (2.20)

These can then be converted to the xb. As we have already noted, all of the xb

associated with z∗ are needed to compute p(x∗).

To implement the algorithm, it is also necessary to specify the number of features

and the initial positions and sizes of the features. We choose the initial positions

of features randomly in the unit cube, with the initial size fixed to σi = 0.3 for

all i. The user specifies a number nfpd, and the program starts by laying down

N · nfpd features. (That is, we take the initial number of feature to be proportional

to the dimensionality of the phase space.) We also include a 0th feature that is a

uniform mapping of the unit cube into itself, with p0 fixed at the value 10%. This

insures that the representation p(x) cannot collapse onto some peaks of the original

function f(x) while ignoring other peaks of f(x) that were not close to the random

positions of the original features. For the functions that arise in our application, each

CHAPTER 2. MAVEN 15

adaptation step can be done with about 20,000 function calls. After each adaptation

step, features with probability pc < 0.01 are deleted, and a new set of N · nfpd
features in random positions is added. We observe that after about ten steps, the

total number of features equilibrates. We then continue to adapt with the same set

of features for another five steps. The result is a fair representation of the target

PDF with 5–20 features.

2.4 Improvement of features with VEGAS

While the feature map does represent the peaks of the the PDF based on f(x), it

is not necessarily a good representation from the point of view of event generation.

The hit–or–miss algorithm corrects for the difference between the target PDF and

the model p(x) in a manner that is efficient only if the model provided by p(x) is

uniformly of reasonable quality. If the weight (2.3) is exceptionally large in some

small region, the value of the weight in this region will determine the maxweight W .

The efficiency of the hit–or–miss event selection will be then be small, of the order

of I/W . We might say that, while the feature map is determined by the bird’s eye

view of the target function f(x), the efficiency of the event selection is determined

by the worm’s eye view.

If we choose p(x) to be the feature map described in the previous section, the

points of maximum weight are typically points in the regions between features. What

we need to do now is to stretch the individual features into these regions in such a

way as to pick up the regions where the weight is large.

One possible way to do this is to generate second–order features for each feature.

However, in our experience, this leads to modifications that are too highly restricted

to the vicinity of the feature, and also produces a complex and time–consuming

procedure for event selection. Instead, we have chosen to improve the features using

VEGAS.

It is at this point that it becomes important that the features are constructed from

mappings G(x|A, B) from [0, 1]N to [0, 1]N . In the previous section, we generated

ponts x∗ by choosing points randomly in the original cube. As an alternative, we

can attach a grid to each mapping and choose points in each cube according to the

CHAPTER 2. MAVEN 16

VEGAS algorithm. The model p(x) is made somewhat more complex. We now have

p(x∗) =
nf∑

c=0

pcgc(x∗) , (2.21)

with

p(x∗|Ac, Bc) =

∣
∣
∣
∣
∣

∂xa

∂x∗

∣
∣
∣
∣
∣
=
∏

i

(

xi
c(1 − xi

c)

xi
∗(1 − xi

∗)

1

σi
c

)

· 1

VC(xc)
(2.22)

where the last term is defined by (2.4) using the grid of feature c. Note that the

sum over features runs from 0 to nf ; as explained above, the 0th feature is a uniform

mapping from [0, 1]N to [0, 1]N .

The final model is thus a multigrid implementation of VEGAS, similar to the

VAMP algorithm [9] except that the multiple coordinate systems are not chosen a

priori but rather are fixed by sampling. A key requirement for multigrid integration

is that the coordinate systems should be chosen so that the coordinate axes line up

with the peaks of the target function f(x). We will see in the examples that the

feature map does succeed, to a great extent, in producing sets of principal axes lined

up along the ridges of f(x).

There are many possible choices to be made in fixing the criterion for updating

the grids. We have found the best results with the following procedure: We first fix

the probabilities, locations, and shapes of the features using the algorithm described

in the previous section. We then adapt the grids in a separate stage. For each chosen

point, we determine which coordinate system c, excluding c = 0, makes the largest

contribution to the weight (2.21). We then assign the weight w(x∗) = f(x∗)/p(x∗)

to the cell of the grid c that contains xc, and also to the cell of the 0th feature that

contains x∗. We then adapt the grids, as explained in Section 2, to equalize as much

as possible the maximum weight in each grid. The updating is done in 8 steps, which

in our practical examples are given about 10,000 function calls each. Features of low

probability have relative few points assigned to them, so, for each grid, we do not

update until 1000 points have been assigned to that grid.

This completes our discussion of the MAVEN algorithm. However, there is a

modification of this algorithm that we have found useful for working with functions

on phase spaces of high dimensionality, N ≥ 10. In Section 2, we recognized the

CHAPTER 2. MAVEN 17

useful feature of the VEGAS algorithm for event selection that its performance dete-

riorates not significantly as the dimensionality increases. MAVEN does not have this

property. When N is larger, it is difficult to collect enough data to determine the

covariance matrix in (2.16) well enough. More importantly, the matrix multiplica-

tions with the N × N matrix R make event selection prohibitively time–consuming.

To deal with this problem, it is very useful to follow [3,4] in separating the coor-

dinates into ‘fast’ dimensions with strong peaking and ‘slow’ dimensions with more

moderate behavior. Our implementation of the MAVEN algorithm requires the user

to mark the fast dimensions explicitly. (The procedure for doing this is described in

the usage notes in the Appendix.) Then the MAVEN algorithm is applied in the fast

dimensions, while simple VEGAS event selection — with a single grid — is used in

the slow dimensions. With this modification, one can add as many slow dimensions

as one wishes to the target function f(x) without substantially slowing down the

event selection.

2.5 Results for two–dimensional PDFs

To understand how the MAVEN algorithm works, it is useful to visualize its be-

havior for two–dimensional functions. In this section, we will present three examples,

two chosen artificially to present problems for VEGAS, and one chosen as a realistic

example from high–energy physics. We will also present results for Lepage’s example

of a double Gaussian on the diagonal in a large–dimensional phase space [1].

The two artificially chosen examples are the ‘V function’

fV (x1, x2) =
b

b2 + (x1 − 0.4x2 − 0.1)2
+

b

b2 + (2x1 + x2 − 1.5)2
(2.23)

and the ‘bird function’

fB(x1, x2) =
b

b2 + (x2
1 + x2

2 − 1)2
+

b

b2 + (x2
1 + x2

2 − 1
2
)2

+
b

b2 + (x1 − x2)2
. (2.24)

In both cases, we take b = 10−3 for the results given below.

The comparison of VEGAS and MAVEN for these two functions is shown in

CHAPTER 2. MAVEN 18

integral W/I σ/I efficiency

V function
VEGAS 4.71 541.8 8.0 1 : 1077.7
MAVEN 4.70 124.3 3.1 1 : 253.3

bird function
VEGAS 10.274 216.833 6.881 1 : 452.8
MAVEN 10.26 37.89 1.408 1 : 73.9

e+e− → µ+µ−

VEGAS 1072.24 66.31 2.31 1 : 130.5
MAVEN 1072.93 30.45 0.70 1 : 63.6

Table 2.1: Comparison of the VEGAS and MAVEN event selection algorithms for three
two–dimensional functions describe in the text. For both algorithms, the adaptation used
106 function calls. The columns give the final value of the integral I, the maxweight
normalized to I, the square root of the variance (2.5) normalized to I, the selection efficiency
for unweighted events, i.e., 1 event get selected out of 1077.7 for the first row

Table 2.1. MAVEN makes a significant improvement in all aspects of the function

modelling, and in particular in the efficiency of the final Monte Carlo event selection.

It should be noted that VEGAS still wins out in terms of the time needed to select

one event. This is because the model p(x) is more complex in the case of MAVEN,

while the function f(x) itself is trivial to compute. In practical examples, the time

for one function call should be dominated by the time to compute f(x) and p(x), and

the time required for both VEGAS and MAVEN should be inversely proportional to

the efficiency with the same constant of proportionality.

In Fig. 2.3, we show a visualization of the working of MAVEN for the example of

the bird function. In Fig. 2.3(a), we show the positions of the 13 features: For each

feature, the interior of the square 0.2 < x1, x2 < 0.8 is mapped into the interior of the

box shown. The light lines are the features given by the algorithm of Section 3; the

dark lines are the final features after VEGAS adaptation. In Fig. 2.3(b), we show

points generated by these features before hit–or–miss event selection. The points

with lighter shading have w(x)/I > 3. The problematic points with w(x)/I > 10 are

shown as stars.

To the simple model functions in (2.23), (2.24), we add the two–dimensional PDF

that arises in the problem of computing the cross section for the high–energy physics

CHAPTER 2. MAVEN 19

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’-’

Figure 2.3: Adapted configuration of MAVEN for the bird function (2.24): (a.) features of
MAVEN before (light, dotted) and after (dark) VEGAS grid adaptation; (b) points chosen
by the model p(x), and their associated weights: light crosses have w(x)/I > 3, dark stars
have w(x)/I > 10.

CHAPTER 2. MAVEN 20

process e+e− → µ+µ− at a center of mass energy ECM = 500 GeV, allowing the

initial electron and positron to radiate photons. The function f(x) is the integrand

in the cross section formula

σ =
∫ 1

0
dz1

∫ 1

0
dz2F (z1)F (z2)σ0(z1, z2, s) . (2.25)

In this formula, σ0(s) is the zeroth–order cross section at a lower center of mass

energy ECM =
√

s, zi is the fracton of the electron or positron energy that enters the

actually annihilation rather than being radiated away, F (z) is the ‘structure function’

for giving the probability of radiating a given fraction (1− z), from [29]. Since F (z)

is strongly peaked at z = 1 and also has a long tail extending to z = 0, it is useful

to map z into a new variable x in which the structure function is relatively flat. Our

choice of x(z) has a discontinuous derivative at x = 1
2
. Flattening F (z) does not

make the integration (2.25) trivial because σ0(s) has a strong peak at the Z boson

mass, s = m2
Z , and mZ is well below 500 GeV. This creates a peak in f(x) that is

not aligned with the x1, x2 coordinate axes.

The comparison of VEGAS and MAVEN for this PDF is shown in Table 2.1.

The features and event weights for the MAVEN adaptation are shown in Fig. 2.4.

The discontinuous behaviour seen at x1 = 1
2

and at x2 = 1
2

correctly reflects the

discontinuity of the mapping from z to x. The peak at s = m2
Z is seen in the upper

left and lower right; it is the features in these regions that are doing the work of

improving the event selection model. Note that the integrand of (2.25) is symmetric

under x1 ↔ x2. However, the features chosen by MAVEN begin at random positions,

and so do not necessarily respect this symmetry. The generated points are more

symmetric and the final accepted points are symmetric to a high degree.

As a final example, we study the behavior of MAVEN for the double Gaussian

function suggested as a test function in [1] and [14,15]:

f(xi) =
1

2

1

(
√

πa)N

{

exp

[

−
N∑

i=1

(xi − 1
3
)2

a2

]

+ exp

[

−
N∑

i=1

(xi − 2
3
)2

a2

]}

. (2.26)

The properties of the event selection with VEGAS and MAVEN are compared in

Table 2.2. Unlike the previous three examples, here we see that as dimensionality of

CHAPTER 2. MAVEN 21

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:21 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:44 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:44 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:44 2002

’-’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sun Sep 22 16:27:44 2002

’-’

Figure 2.4: Adapted configuration of MAVEN for the function (2.25) associated with the
physics process e+e− → µ+µ−: (a.) features of MAVEN before (light, dotted) and after
(dark) VEGAS grid adaptation; (b) points chosen by the model p(x), and their associated
weights: light crosses have w(x)/I > 3, dark stars have w(x)/I > 10.

CHAPTER 2. MAVEN 22

integral W/I σ/I efficiency t(select)

N = 3
VEGAS 0.031 6.7 1.8 1:14.2 0.25
MAVEN 0.031 3.3 0.4 1:6.8 1.06

N = 6
VEGAS 1.75e-4 276.0 6.9 1 : 555.1 5.7
MAVEN 1.74e-4 21.3 0.5 1 : 43.3 7.5

N = 8
VEGAS 5.3e-6 5146.5 6.9 1 : 9993.4 93.0
MAVEN 5.5e-6 68.6 0.5 1 : 135.3 8.4

Table 2.2: Comparison of the VEGAS and MAVEN event selection algorithms for the dou-
ble Gaussian (2.26). For both algorithms, the adaptation used 106 function calls. t(select)
is the amount of time it takes each method to generate 1,000 events after adaption, in
terms of second. The program is being run on Sun 2200 workstation. The other columns
are as in Table 2.1.

strongest correlation increases, Maven starts to show its advantage in the speed of

event selection. It starts to suggest to us that Maven’s advantage lies in handling

problems with large degree of complexity.

2.6 Results for realistic PDFs

As we pointed out in the introduction, we were motivated to consider the prob-

lem of Monte Carlo event selection in order to improve the performance of the event

selection in a particular application, the simulation of scattering events in high en-

ergy electron–positron collisions. We have constructed a general–purpose simulation

program, pandora, which is written in C++ and uses the modular construction that

is natural in that language to separate the treatment of initial beams, particle reac-

tions, and particle decays into different C++ classes linked by well–defined interfaces.

The general structure of pandora is described in [12]. Some physics studies that have

made practical use of this program can be found in [30,31]. The current version of

the pandora code and documentation can be found at [32].

The number of dimensions of the phase space for pandora integrands is typically

very large. The cross section formula given by pandora includes integration over three

CHAPTER 2. MAVEN 23

variables per initial beam (parametrizing intrinsic energy spread from the acclerator,

energy spread due to ‘beamstrahlung’ [33], and energy spread due to initial state

radiation), plus explicit integration over all relevant final state phase space variables.

To use MAVEN with pandora, we have found it necessary to isolate the 4–8 variables

with the strongest peaking and do feature analysis only in these variables.

Table 2.3 shows representative results for four processes whose integral poses

increasing difficulty. First, we consider e+e− annihilation to top quark pairs, adding

in all other important beam effects and also integrating by Monte Carlo over the

final–state angular distribution. The next process is the production of W boson

pairs from e+e−. This adds the complication of a strongly forward–peaked angular

distribution: the peaking gets more obvious in terms of Compton scattering shown

as the last interaction. The third example, Higgs boson production in W +W− fusion,

is a process with e+e− annihilation to a three–body final state, with strong forward

peaking in the distributions of the final neutrino and antineutrino. In these examples,

we see the progressive advantage of MAVEN as the physics becomes more complex.

We also see the relative selection times for MAVEN and VEGAS come into line with

the relative efficiencies, as we expect for more complex target integrands.

2.7 Conclusions

In this chapter, we have introduced a new algorithm for Monte Carlo selection of

points under a probability distribution. The algorithm, called MAVEN (Multichan-

nel Adaptive Integration with Vegas ENhancement), uses feature analysis to locate

the major peaks of the target probability distribution, then applies the VEGAS algo-

rithm to smooth the boundary regions around these peaks. We have shown that the

algorithm is effective both for model problems and for problems of practical interest

in up to 10 dimensions.

The MAVEN algorithm might be the basis of an effective multi–dimensional inte-

grator. For this application, one should add stratified sampling [2] to the algorithm

as we have proposed it. This might be an interesting extension.

There is another direction that we also wish to pursue. The addition of VEGAS

to the feature analysis gives a noticeable gain over pure feature analysis in terms of

CHAPTER 2. MAVEN 24

integral W/I σ/I efficiency t(adapt) t(select)

e+e− → tt: NM = 2; N = 19
VEGAS 721.1 197.8 1.9 1:395 6.3 1124.6
MAVEN 722.0 75.3 3.0 1:147 12.9 947.6

e+e− → W+W−: NM = 2 ; N = 13
VEGAS 14514.3 334.8 4.1 1 : 670 5.3 723.2
MAVEN 14522.2 113.5 9.3 1 : 230 12.2 504.3

e+e− → ννh0: NM = 6 ; N = 26
VEGAS 107.5 4480.1 21.8 1 : 9290 64.5 667.7
MAVEN 106.9 878.0 8.0 1 : 1663 418.0 525.0

W1 W2 W3 t(adapt) t(select)

e−γ → e−γ, e−Z, νW− : NM = 2, 2, 2 ; N = 5, 8, 8
VEGAS 1351.5 743.6 2270.5 6.2 2383.1
MAVEN 98.2 320.7 63.0 27.1 731.9

Table 2.3: Comparison of the VEGAS and MAVEN event selection algorithms for various
reactions in e+e− annihilation at high energy, as simulated by the pandora event generator.
For each process, we give the total number N of dimensions of the phase space and the
number NM of fast dimensions to which feature analysis is applied. For both algorithms,
the adaptation used 106 function calls. The columns are as in Table 2.1. The integral is a
physical cross section, in femtobarns.

decreasing the variance, but it is less impressive in decreasing the maximum weight.

In the example we have discussed, the points of maximum weight are pushed into cor-

ners and crevices but not completely eliminated. Perhaps there is a better adaptation

criterion for the VEGAS grids that would help in this task.

For problems of very high dimensionality, it is possible to treat the fastest dimen-

sions with feature analysis while treating more mild variables with VEGAS. This

gives an event selection algorithm that is more powerful than VEGAS but scales

well with dimensionality. We feel that this approach can be easily incorporated into

practical event generation programs for high–energy physics and other domains.

Chapter 3

Parton Showering Simulation with

Perturbative QCD

3.1 Introduction

In the previous chapter, we have presented a method for choosing weight-1 events

from a probability distribution based on techniques of Monte Carlo integral in many

variables. Correlations between the variables and even strong peaking can be han-

dled by an appropriate Monte Carlo integrator. It is very useful to represent physics

processes as multi-dimensional integrals to which these techniques can be applied.

For the problem of QCD showers, however, this global approach has another advan-

tage. Since we work with the entire integral at once, we can look at the QCD shower

as a whole and know exactly what cross section we are assigning to each exclusive

multi–parton configuration. This gives us the ability to adjust each multi–parton

cross section in a systematic way to agree with exact finite–order results from QCD.

In this chapter, we apply this philosophy to the simplest problem of QCD event

generation, the generation of parton showers for e+e− annihilation to hadrons. Our

general approach is to write the cross sections for fully exclusive production of quark–

antiquark–gluon final states as multiple integrals. For a maximum number N of

gluons produced, we work with a 5N dimensional integral. From the integration

variables, we produce final states that naturally and exactly respect 4–momentum

conservation and cover all of the available phase space. Starting from this definite

25

CHAPTER 3. PARTON SHOWERING 26

initial situation, we can then set out prescriptions for reweighting the cross sections

to agree with finite–order QCD calculations.

The algorithm first seeks to describe a parton shower using the Altarelli–Parisi

Equations up to the leading–logarithm accuracy: the infra–red divergence cancella-

tion is handled by Sudakov suppression factors. A strategy of “angular–ordering”

is implemented at this stage also, so that gluons radiated into regions suppressed

by QCD destructive interference are strictly prohibited. Each individual event sub-

sequently gets reweighted according to its full cross section calculated by the exact

Feynman diagrams. The purpose of reweighting is that we want to match our exclu-

sive cross sections with QCD perturbative results of inclusive cross sections. Com-

bining the above mentioned two steps together we have an algorithm which agrees

fairly well with finite–order QCD calculations and achieves a competitive speed in

real time.

The detailed analysis of this chapter is organized as follows: In Section 2, we

outline the theory of QCD showers and the summation of collinear radiation by

the Altarelli–Parisi equation. In Section 3, we briefly review the two state-of-art

QCD Monte Carlo algorithms — PYTHIA and HERWIG. In Section 4, we explain

our algorithm for building up the shower configurations, including generation of the

shower tree as a set of multiply–running Poisson processes and our prescription for

the treatment of 4–momentum conservation. In Section 5, we discuss methods for

angular ordering and reweighting the events produced by this algorithm to agree

with the exact order αs 3–jet cross sections from QCD. In Section 6, we present some

comparisions of the algorithm to QCD to experimental data at the Z mass. Section

7 presents some conclusions.

3.2 Theory of QCD Parton Showering

Parton showering exists both in QCD and QED due to the interaction between

fermion and gauge boson. An incoming or outgoing quark or electron can radiate a

gluon or photon, as shown in Fig. 3.1. The amplitude for the process diverges in the

soft and collinear limits, leading to the proliferation of processes with multiple boson

emission.

CHAPTER 3. PARTON SHOWERING 27

p (1− z)p

zp

Figure 3.1: The vertex for emission of a collinear photon or gluon. A gluon comes off of a
parton carrying fraction z of its longitudinal momentum.

In the case of QED, including the effects of pair creation, Gribov and Lipatov

[34] showed that the leading logarithms from collinear singularities can be summed

to all orders in QED coupling constant α. They are called evolution equations, they

take the form

d

d log Q
fγ(x, Q) =

α

π

∫ 1

x

dz

z
{Pγ←e(z)[fe(

x

z
, Q) + fe(

x

z
, Q)]

+Pγ←γ(z)fγ(
x

z
, Q)},

d

d log Q
fe(x, Q) =

α

π

∫ 1

x

dz

z
{Pe←e(z)fe(

x

z
, Q) + Pe←γ(z)fγ(

x

z
, Q)}, (3.1)

d

d log Q
fe(x, Q) =

α

π

∫ 1

x

dz

z
{Pe←e(z)fe(

x

z
, Q) + Pe←γ(z)fγ(

x

z
, Q)}.

fe(x, Q) is defined as the distribution function for an electron relevant to a given

momentum tranfer Q. The splitting functions are given by

Pe←e(z) =
1 + z2

(1 − z)+

+
3

2
δ(1 − z),

Pe←γ(z) =
1 + (1 − z)2

z
, (3.2)

Pγ←e(z) = z2 + (1 − z)2,

Pγ←γ(z) = −2

3
δ(1 − z).

To obtain the distribution function for a physical positron or photon, we should

CHAPTER 3. PARTON SHOWERING 28

integrate these equations with initial conditions

fe(x, Q) = δ(1 − x), fe(x, Q) = 0, fγ(x, Q) = 0, (3.3)

at Q = me. The solutions to these equations are used as in eq.(3.4) to compute cross

sections involving processes induced by electrons, positrons, photons that involve

large momentum transfer.

σ(e−X → e− + nγ + Y) =
∫ 1

0
dxfγ(x, Q)σ(γX → Y),

σ(e−X → nγ + Y) =
∫ 1

0
dxfe(x, Q)σ(e−X → Y). (3.4)

We carry the same analysis into high energy perturbative QCD, taking care of

the non–Abelian gauge group effects and the running coupling constant. The parton

evolution equations are presented as Altarelli–Parisi equations:

d fg(x, Q)

d log Q
=

αs(Q
2)

π

∫ 1

x

dz

z
(3.5)






Pqg(z)

∑

f

[

ff

(
x

z
, Q
)

+ ff

(
x

z
, Q
)]

+ Pgg(z)fg

(
x

z
, Q
)






d ff(x, Q)

d log Q
=

αs(Q
2)

π

∫ 1

x

dz

z

{

Pqq(z)ff

(
x

z
, Q
)

+ Pgq(z)fg

(
x

z
, Q
)}

d ff(x, Q)

d log Q
=

αs(Q
2)

π

∫ 1

x

dz

z

{

Pqq(z)ff

(
x

z
, Q
)

+ Pgq(z)fg

(
x

z
, Q
)}

with their corresponding splitting funtion:

Pqg(z) =
4

3

1 + (1 − z)2

z
(3.6)

Pgg(z) = 6

[

1 − z

z
+ z(1 − z) +

z

(1 − z)+

+

11

12
δ(1 − z) − nf

18
δ(1 − z)

]

(3.7)

Pgq(z) =
1

2

[

z2 + (1 − z)2
]

Pqq(z) =
4

3

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

CHAPTER 3. PARTON SHOWERING 29

The algorithm to be described here will generate final states, containing one pair of

q, q with multiple gluons. We argue that it suffices to simulate the gluon structure

function fg(x, Q), because it corresponds to the leading order in 1/N , where N is

the number of colors. Therefore, we will be mainly concerned with the generation of

the gluon distribution. We will generate this distribution as a Poisson process. The

algorithm will naturally respect the conservation of momentum and quark number.

In (3.5), these conservation laws are guaranteed by the + distribution and the δ

function in (3.7). Our approach will not use these constructions but, rather, will

work with a probability-conserving algorithm.

We present the algorithm first for multiple gluon radiating from a quark line. The

quark to gluon splitting cross section is:

∫ dQ

Q

αs(Q)

π

∫

dz
4

3

1 + (1 − z)2

z
(3.8)

As we can tell, this integral exhibits an infrared divergence, which physically

indicates an arbitrarily large number of soft and collinear gluons radiated off the

quark. However, if one adds up all the Feynman diagrams corresponding to real

and virtual emissions, this infra–red divergence will cancel order by order, this is

illustrated by the KLN Theorem [35], on the condition that there is no interactions

between final and initial states. This condition is usually satisfied by infrared–safe

observables. In the leading–logarithmic (LL) approximation, this resummation can

be exponentiated [25]. The exponent is called the Sudakov factor. For a multiple

gluon emission off of a single quark as being drawn in Fig. 3.2, its LL cross section is

∫

dσ =

[
∫ √s

Λ

dQ1

Q1

αs(Q1)

π

∫ 1

ε
dz1

4

3

1 + (1 − z1)
2

z1

]

[
∫ Q1

Λ

dQ2

Q2

αs(Q2)

π

∫ 1

ε
dz2

4

3

1 + (1 − z2)
2

z2

]

· · · × e−S (3.9)

where

S =

[
∫ √s

Λ

dQ

Q

αs(Q)

π

∫ 1

ε
dz

4

3

1 + (1 − z)2

z

]

(3.10)

CHAPTER 3. PARTON SHOWERING 30

(1− z1) (1− z1)(1− z2) (1− z1)(1− z2)(1− z3)

z1 (1− z1)z2 (1− z1)(1− z2)z3

Figure 3.2: Multiple emissions of gluons off the quark line.

Summing over the number of gluons , the total integral

∫

dσ = 1.

Due to the QCD running coupling constant effect, using the 1–loop β function,

αs(Q) =
αs(MZ)

1 + b0αs(MZ)
2π

log Q

MZ

If we use a transformation

t =
2

b0
log

(

1 +
b0αs(MZ)

2π
log

Q

MZ

)

, (3.11)

the Q generation — dQ
Q

αs(Q)
π

is tranformed into a random generation of t — dt in its

perturbative QCD range. Similarly, using the transformation

z = e−ξ, (3.12)

on z, the very much peaked distribution dz
z
f(z) becomes a relatively flat distribution

dξf(z(ξ))|dz
dξ
|. The Sudakov factor now becomes

CHAPTER 3. PARTON SHOWERING 31

S =
∫

dt
∫

dξ
4

3

(

1 + (1 − e−ξ)2
)

(3.13)

We can now treat this multiple–gluon emission as a Poisson process. The Sudakov

form factor is its exponent. The normalization of the multiple Poisson process and

the corresponding event generation mechanism are presented in the appendix.

3.3 PYTHIA and HERWIG

The ideas of the previous section are implemented in the event generators HER-

WIG and PYTHIA, which represent the current state of the art in QCD shower

simulation. In this section we give a brief description of the shower simulation algo-

rithms used by these programs.

A documentation of HERWIG can be found in [20]. The starting point for the

algorithm is that parton cascade has the structure of a Poisson process, as we have

explained in the previous section. This process is implemented in HERWIG parton-

by-parton. HERWIG adds to this a presumption for treating soft gluons (z � 1),

for which the coherence between gluons that radiate from different parents can be

taken into account. Marchesini and Webber [20] argued that the principal inter-

ference effect is fully destructive (to the leading order). The proper inclusion of

leading-order infrared contribution is very simple: the available phase space of the

successive branching is reduced to an angular-ordered region. The branching angle

decreases as one moves from hard vertex to the final emitted partons. Outside this

angular-ordered region the coherence of different emission graphs leads to destruc-

tive interference. The analysis of leading infrared singularities is performed through

a technique called “eikonal current approximation”. For a parton with momentum

p, radiating multiple gluons with momentum q1, · · · , qn, the result of this technique

is to restrict outgoing partons created by a QCD color singlet to the region:

θpqn
< · · · < θpq1

. (3.14)

CHAPTER 3. PARTON SHOWERING 32

The angular ordering with respect to partons from initial-state QCD radiation de-

pends on the energy of each parton. Since we are simulating e+e− processes with

no hadrons in the initial state, we do not need to worry about the QCD space-like

branchings.

PYTHIA [17,36] is also based on the parton-by-parton realization of the Poisson

process that generates the solutions to the Altarelli–Parisi equations. In PYTHIA’s

approach, a parameter mmin is introduced to regularize soft-parton divergences.

PYTHIA imposes the restriction on the range of longitudinal fraction z (1 > z+(m) >

z > z−(m) > 0), depending on mmin and the parton virtuality. This introduces cor-

relation between the various emissions in a way that is similar to angular ordering

[36]. The condition similar to angular ordering (θ3 ≤ θ1) takes the form

z3(1 − z3)

m2
3

≥ 1 − z1

z1m2
1

.

The paper [17] demonstrates that for a single observable at any fixed energy, it

is possible to find a conventional algorithm which can give the same result as the

coherent algorithm once the hadronization effects are included. However, such an

algorithm does not give consistent results at other energy scales. Thus in our work

we will use a coherent approach by including the phase-space reduction through

angular-ordering.

PYTHIA and HERWIG also include simulation of the hadronization stage of

a QCD reaction, in both cases, by assembling partons into corlor-singlet clusters

which are then decayed to ground state hadrons. This process is controlled by many

parameters which are fit to experimental data. However, the hadronization stage

involves only small momentum transfers, and does not affect the global momentum

flow in the event.

The treatment of QCD showers given by HERWIG and PYTHIA is very effective

at modelling experimental data. However, there is a longstanding problem of how to

make these algorithms represent perturbative QCD results more accurately. Angular

ordering is a leading-order approximation, but it is not simple to improve upon it.

Towards this goal, we need to represent the whole shower at once, so that we can

include more subtle correlation between partons. This is the problem we are trying

CHAPTER 3. PARTON SHOWERING 33

to solve in our work.

3.4 Algorithmic construction of Parton Shower

Our goal is to construct the entire parton shower as a single multi-dimensional

integral.

√

s

z1

z3

z4

z2

Time t

Q1

Q2

Q3

Q4

Figure 3.3: Gluon showering, horizontal lines are represented by branching parameter b[i]

We need to construct a showering event in two steps. The first step is to generate

the tree structure of a shower as in Fig. 3.3 using the Sudakov suppressed Poisson

generation. This step, as we can tell, from the arrow of Fig. 3.3, is going upward,

in the direction of decreasing virtual parton mass Q[i]. Following Appendix B.1, we

have the inputs as: ξ[i], q[i], B[i] (random numbers ∼ [0, 1]).

Starting with T = T (
√

s),

if (q[i] < e−WT), exit;

else {
t[i] = T + 1

W
log(q[i]), t[i] → T, Q[i] = Q(t[i]);

if (B[i] < Wquark/W), quark radiates gluon i, z[i] = zq(ξ[i]);

else if (B[i] < 2Wquark/W), anti–quark radiates gluon i, z[i] = zq(ξ[i]);

else determine jth gluon left (right) side radiates gluon i, z[i] = zg(ξ[i]);

record corresponding weight Wj(z[i])/Wj; }
where,

W = 2Wquark + NgWgluon,

CHAPTER 3. PARTON SHOWERING 34

Wquark =
∫ 1

zmin

dzPqg(z),

Wgluon =
∫ 1

zmin

dzPgg(z).

Here Ng is the number of gluons the algorithm generates at each step. The program

keeps track of the number of gluons that have been created and uses the corresponding

Poisson formulae to generate the next gluon. Q(t) is the inverse transformation to

(3.11), zq is the transformation (3.12). zg is defined as:

zg(ξ) =
e−ξ

1 + e−ξ
, (3.15)

which always yields a number ≤ .5. This transformation is intended to take care

of the fact that gluon splitting function has singularities at both 0 and 1. And it

possesses the symmetry z ↔ 1 − z. So we’ll only work on the generation of z ≤ 1
2
,

and then use branching parameter B[i] to determine if it comes out from the left side

or the right side, as in Fig. 3.4.

Figure 3.4: gluon branching

After the structure of the showering tree is established, we need to focus on

how to get the output as a set of massless partons, expressed in terms of their

Lorentz 4–momentum vectors, linked by a color chain. This is the second step of

the construction, which should be carried out now in a downward direction, each

time starting from the lowest–invariant–mass (Q[i]) virtual parton. In order for

these states to cover the whole phase space, we should allow each local frame to

longitudinally rotate to any direction in the space. We outline the boosting steps in

detail:

One more addition to the Input set: φ[i] (random number ∼ [0, 2π]) as the

transverse rotation angle.

CHAPTER 3. PARTON SHOWERING 35

Start with the lowest invariant mass among unboosted Q’s — labelled Q,

if (Q has no connection to previously boosted systems) Instantiate the 2

partons produced by Q as :

P1 = Q
2
(1, 0, 0, 1), P2 = Q

2
(1, 0, 0,−1);

else if (Q connects to 1 previously boosted system with invariant mass

Q0)

Boost the whole system Q0 from its rest frame (Q0, 0, 0, 0) to frame (E, 0, 0,±p),

instantiate a new massless parton (p, 0, 0,∓p). The sign depends on whether the new

gluon is on the left– or right–hand side, E and p satisfy E+p = Q, E2−p2 = Q2
0;

else (which means Q connects to 2 previously boosted systems Q0 and Q1)

Boost the whole system Q0 from its rest frame (Q0, 0, 0, 0) to frame (E1, 0, 0,±p),

boost the whole system Q1 from its rest frame (Q1, 0, 0, 0) to frame (E2, 0, 0,∓p),

the parameters sastisfy:

E1 + E2 = Q, E2
1 − p2 = Q2

0, E2
2 − p2 = Q2

1.

Finally, apply longitudinal plane rotation with angle θ (cos θ is defined to be

1 − 2z), transverse plane rotation φ for all the partons in the newly established

system Q.

Recursively repeat above steps until we reach the center–of–mass sys-

tem
√

s

Note that we can establish the color ordering of the final partons through above

operation as well: it is realized when we decide if the new parton is added to the left

or the right side of the boosted system.

The last question we would like to address is: are all the partons instantiated in

this way physically real? There are several constraints to this problem:

1. Each time a new gluon is radiated, we should check that energy–momentum

conservation is not violated. i.e., in Fig. 3.5, if all three of the partons are

off–shell, then we should make sure that Q2 + Q3 ≤ Q1;

2. Because each zi is a relative fraction, i.e. the longitudinal fraction of the last

parton that is emitted, we would like to make sure that the absolute value of

its energy should be within the range of perturbative QCD, namely, ≥ ΛQCD.

Symbolically, this constraint is written as :

CHAPTER 3. PARTON SHOWERING 36

Q1

Q2 Q3

Figure 3.5: Dynamic check: When virtual parton Q1 branches off to give two partons, and
their mass (virtualities) are Q2 and Q3, Q2 + Q3 ≤ Q1 should be satisfied.

ΠP
i {zi, 1 − zi} ×

√
s ≥ ΛQCD.

P indicates the path from
√

s vertex to the interaction point.

Any of the partons which fail to concord with these constraints will not get

instantiated in the second step. However, their weights are still being accumulated

in the first step.

In summary, this prescription exactly observes the probability in the Poisson

process. It achieves the following at the parton shower level:

1. It automatically conserves energy–momentum.

2. It fills all of the physically possible multi–parton phase space.

3. It precisely implements the parton shower by realizing the multi–dimensional

integral.

4. It achieves competitive speed in real time. The event selection happens at a

rate of 1 per 10 millisecond.

3.5 Leading-Order perturbative QCD treatments

Now we have finished the basic construction of the parton shower. For our final

states to match perturbative QCD results, we have to apply modifications to our

CHAPTER 3. PARTON SHOWERING 37

simulation in order to make it more accurate. Currently, this includes schemes for

angular ordering and reweighting of 3-jets distributions.

3.5.1 Angular Ordering

We impose coherence on the branching process following the strategy laid out in

[23]. For the branching a → bc, ζ = pb · pc/EbEc ' 1 − cos θ, where θ is the emssion

angle. We would like to impose ζ
′

< ζ for the successive branchings ζ
′

.

Appendix B.2 gives the detailed kinematics of the constraints for a 3–parton–

final state. However, because ζ is not Lorenz invariant, in our current treatment,

we perform the angular ordering after the boosting stage is finished. To ensure

ζ = 1− cos θ strictly, both pb and pc have to be massless, so we apply this condition

to the momenta of the final partons. Note that this is a criterion that requires

construction of the whole event. We feel this is a safe measure because in this way the

color–chain ordering will also be automatically preserved. Nevertheless this global

approach introduces some disadvantages: Because we assign all the events which

violate angular ordering the weight of 0, the normalization of the shower integral

is no longer exactly 1. One possible way to remedy this will be to recalculate the

Sudakov factor, in this case, in eq. (3.10) the upper integration limit for z will

be f(Q), instead of being 1. The event generation scheme must be modified to

accomodate this. For the present, we have not included this effect.

3.5.2 Next–to–Leading–Order Reweighting

In addition to the imposition of angle-order, we can attempt to match our parton

showering Monte Carlo to a finite–order QCD calculation. The motivation for the

matching is due to the fact that the parton shower is only accurate to the leading–

logarithm accuracy (αs log2(Q2

s
))n. We want our simulation to yield finite results

which can be compared with experiments. This means not only that all orders of

infra–red divergence in our simulation rate should cancel, but also that the finite

number left over should correspond to the more exact quantum field theory calcula-

tion.

We propose to implement this matching order by order. For now, we work at the

lowest order — O(αs). We choose our starting point to be the simplest 3-parton final

CHAPTER 3. PARTON SHOWERING 38

state, whose exact Feynman calculation to O(αs) is well–understood. It is

1

σ0

d2σ

dx1dx2

(e+e− → qqg) =
2

3

αs(Q)

π

x2
1 + x2

2

(1 − x1)(1 − x2)
(3.16)

Our strategy is to “tag” each parton coming out of showering with this cross

section, i.e., they have to be reweighted by a factor of

full
︷ ︸︸ ︷
∣
∣
∣
∣
∣
∣

q q̄g

+

∣
∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣
∣

q q̄g
∣
∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

Leading−− log peaking approx.

(3.17)

This can be pursued in two ways:

1. Perform such a reweighting at each branching;

2. Perform such a reweighting on the final states clustered into 3 jets.

It is not clear apriori which approach is better. For simplicity, we have applied the

second approach. We apply a cluster (jet) algorithm in order to cluster a multiple–

parton final state into 3 jets. The first step is, among pairs of nearest neighbors in

the color chain, to find the pair which has lowest invariant mass and combine the

two partons. We then carry out this process recursively until there are only 3 jets

left. There are different schemes for the combination of two partons into a jet [24].

Each scheme conserves different physical quantities. We choose to use the E0 scheme

which combines the two partons in the following way:

E = Ei + Ej, ~p =
E

|~pi + ~pj|
(~pi + ~pj). (3.18)

As one can see, E0 scheme conserves energy, but violates momentum conservation.

The reason we choose this scheme is because it is the scheme for which, in full QCD

simulation at the Z mass QCD simulation, the parton level distributions are closest

to the hadron level distributions. A diagrammatic way to understand the clustering

process is shown in Fig. 3.6.

CHAPTER 3. PARTON SHOWERING 39

x1
︷︸︸︷

x2
︷ ︸︸ ︷

x3
︷ ︸︸ ︷

Figure 3.6: Clustering of final states into 3 jets.

After 3 jets are formed, we calculate the jet variables according to:

x1 =
2Ejetq√

s
, x2 =

2Ejetq√
s

(3.19)

We use these parameters to calculate the O(αs) Feynman cross section in eq. (3.16).

This gives the implementation of (3.17). We still need the denominator to O(αs).

Appendix B.3 demonstrates the calculation.

When we compute the reweighting factor of each event, we need to apply it

to various physical observables, like global shape variables and jet rates. Instead

of counting each event with weight 1 as after showering, now we count it with the

reweighting factor. In this way, the preservation of total rate up to O(αs) is achieved.

3.6 Physical Simulation of QCD at Q = mZ

3.6.1 Jet Rate at O(αs)

Extensive experimental efforts have been directed at understanding how the jet

rates vary according to the cut–off criterion. Using cluster algorithms such as those

described in the previous section, we can define the cross section for e+e− annihilation

CHAPTER 3. PARTON SHOWERING 40

into n jets σn. These quantities depend on a parameter

ycut = Q2
cut/s, (3.20)

where Qcut is the maximum mass of a pair of clusters that are conglomerated by the

jet algorithm. Our simulation results are plotted in Fig. 3.7 and Fig. 3.8.

Fig. 3.7 compares our simulation result, using clustering with the E0 algorithm,

to the experimental results and to PYTHIA simulations using the E0 algorithm. In

[24], it is shown that the experimental and PYTHIA parton level jet rates closely

agree with each other. The experimental results are interpolated by a smooth curve.

Our simulation results have the same shapes as the data curve for ycut > 0.02, but

are offset by a constant factor. This suggests the necessity of including higher–order

corrections into our algorithm. Both in our simulation and in PYTHIA, the jet rates

at parton level do not vary significantly with the different jet clustering schemes.

In Fig. 3.8, we have plotted our jet rate using kT (or Durham) jet algorithm [23].

The result of our simulation is compared to HERWIG results at parton level [37].

One can observe that our 2, 3 and 4-jet rates agree quite well with HERWIG for

ycut ≥ 0.01. Fig. 3.9 is a zoomed-in version of Fig. 3.8 for ycut < 0.1. We hope

to better improve our algorithm by inclusion of higher order perturbation results.

Currently we do not understand why our simulation agrees with HERWIG in the kT

scheme, nevertheless does not agree with PYTHIA in the E0 scheme.

3.6.2 Thrust Simulation at O(αs)

A list of collinear–safe measures of the topology of hadronic final states is given in

[38]. Out of these, we have simulated the thrust: T = max~n

∑

i |~pi · ~n|/
∑

i |~pi| [39,40].

An exactly back–to–back 2 jet event has T = 1. Very evenly distributed 3 identical

jets have T = 2
3

= 0.67, all the other 3–jet–like or 2–jet–like events should have their

thrust value between these two values. Thrust distributions have been measured

experimentally, for example, the results from OPAL [41] are shown in Fig. 3.10.

We can tell in this plot that reweighting has mildly improved the performance of

the parton Shower Monte Carlo. Our thrust plot agrees with the data in terms of its

shape. However, there is an offset between our simulation curve and the data curve.

We hope to remove this by inclusion of higher-order perturbative results.

CHAPTER 3. PARTON SHOWERING 41

3.7 Conclusion and Outlook

We have presented a new algorithm of Parton Shower Monte Carlo matching to

a finite–order QCD calculation. The algorithm is set up so that we can introduce

arbitrary correlations between radiated partons, to mimic the results of finite-order

QCD computation. As examples , we have incorporated the “angular ordering”

mechanism to suppress QCD destructive interference in the parton shower simulation

stage. It uses O(αs) exact QCD calculation to reweight the generated events. The

advantage of this method lies in the fact that it successfully avoids the appearance

of negative weights. It generates events at a very fast speed (1 per 40 milliseconds

after “angular ordering”).

However, compared to data and second-order simulation curves, our simulation

results have significant offset. This shows that this work at O(αs) is definitely not

state-of-art. Further work including higher order correction needs to be implemented.

This will involve the following:

1. Use 2-loop β function in the running αs(Q);

2. Take into account the 1-loop threshold effects in αs(Q) corresponding to the

self-energy of c and b quarks;

3. The exact result of σtot to O(α2
s);

4. The exact formula of e+e− → qqgg to O(α2
s);

These items are not diffcult to incorporate them into our current algorithm. However,

there is one detail which needs special attention.

In fig. 3.11, the final state two gluons are in a region of phase space where one

results from hard emission, while the other is collinear. This configuration corre-

sponds to the subleading logarithmic term α2
slog

2(q). To include such term properly,

a seperate reweighting is needed in this region.

CHAPTER 3. PARTON SHOWERING 42

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:20 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

global angular ordering

Mon Aug 18 11:17:21 2003

’-’

Figure 3.7: Jet rates as a function of the paramter ycut defined by eq.(3.20). The solid
lines are a smooth fit of the OPAL data we collected in [23]. Since in [24], PYTHIA’s
parton level simulation yields a jet rate plots sitting right on top of the data, this can also
be viewed as the comparison of our O(αs) simulation against PYTHIA’s simulation. In
all cases, clustering is done with the E0 algorithm. The discrete points are our simulation
results. For 2-jet, 3-jet, 4-jet curves, +, ×, star lines are produced by purely showering,
while ×, star, box lines are produced by the combination of showering and reweighting.
One can see that in this case the reweighting scheme seems to have little effect.

CHAPTER 3. PARTON SHOWERING 43

Figure 3.8: Jet rates as a function of the paramter ycut defined by eq.(3.20). Solid lines
are parton level results from HERWIG [37], discrete boxes are our simulation. Both cases
are using kT (or Durham) scheme for the jet algorithm. Our data deviates the HERWIG
curve for ycut ≤ 0.01, which is roughly the scale that perturbative QCD breaks down.

CHAPTER 3. PARTON SHOWERING 44

Figure 3.9: This is the zoomed-in version of Fig. 3.8.

CHAPTER 3. PARTON SHOWERING 45

0.1

1

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Wed Aug 20 23:04:11 2003

’-’

0.1

1

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Wed Aug 20 23:04:11 2003

’-’

0.1

1

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Wed Aug 20 23:04:11 2003

’-’

0.1

1

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Wed Aug 20 23:04:11 2003

’-’

Figure 3.10: Thrust plot at
√

s = mZ . The discrete squares are taken from OPAL data, the
dashed curve simulates showering, the solid curve is the reweighted version of the dashed
ones, the dotted curve is an O(αs) perturbative theory calculation fit to the data, with αs

chosen at 0.265 according to [23].

CHAPTER 3. PARTON SHOWERING 46

x1
x2

Figure 3.11: The final 4-parton state consists of 3 jets, quark x1, gluon x2, and anti-quark
combined with a collinear gluon as the third jet.

Chapter 4

Conclusions

We have discussed several issues in physics simulation of high energy e+e− annihila-

tion. Our research on MAVEN algorithm suggests a bright future of borrowing ideas

from other fields and applying them successfully in open questions in physics. How-

ever, MAVEN, as well as VEGAS, FOAM, etc., is only the starting point during the

journey of achieving a universally effective multi–dimensional integrator. VEGAS

is efficient enough to handle distributions which have relatively flat landscapes, this

includes necessary coordinate transformation like what we have implemented in the

Parton Shower simulation. For an unknown, highly complicated distribution with

several dimensions strongly correlated with each other, MAVEN is a good method

for trial. In fact, our research shows that the more complicated a distribution is, the

more powerful MAVEN shows itself to be. However, it does suffer from the curse

of dimension. And in simple cases, it is more cumbersome than VEGAS. We hope

that MAVEN’s birth due to a simple application of neural network theory can help

contribute to further, more effective simulation algorithms. Nevertheless, it is useful

to enrich the pool of event generation algorithms so that people will have more tools

in solving challenging problems. Although we didn’t use MAVEN to generate parton

shower, the philosophy of viewing the whole process of particle creation and decaying

as a multi–dimensional integrator guides the writing of simulation for parton show-

ers. Because the structure of each subdistribution function is well–known before the

simulation starts, and because of its suitability to modularization, VEGAS turns out

to be the most efficient algorithm. Its main appealing properties are the speed, and

47

CHAPTER 4. CONCLUSIONS 48

the avoidance of negative weights. However, it remains as an open question as to if

this algorithm can achieve as good simulation behavior as HERWIG and PYTHIA.

To test that, the inclusion of higher–loop radiative corrections is necessary.

In summary, I hope that my experience through these explorations in simulation

of high energy e+e− interaction process can help contribute to the improvement of

simulation methods or schools–of–thinking. It is essential to make the MC simula-

tions meet the ever–demanding needs of experimentalists, and the improvement on

both efficiency and accuracy of algorithms is vital for the fast–advancing scientific

knowledge acquiring. We will only achieve improvement through persistent trial–

and–error.

Appendix A

Notes for the use of the MAVEN

Software

To accompany Chapter 2, we have posted in eprint archive a tar file that contains the

code for a C++ class that implements the MAVEN algorithm. The distribution also

contains a program that exercises the MAVEN event selection and a useful parent

class for Monte Carlo event selection. In this Appendix, we give some documentation

for these programs. But first let’s review the mathematical foundation of the core

equations in neuron construction and evolution.

A.1 Bayesian statistics applied to neuron evolution

If the random variable ~x has distribution f(~x), according to information theory

this distribution’s entropy is

S =
∫

Ω
dnxf(~x) ln(f(~x)) (A.1)

Furthermore, if one uses an approximation p(~x) to sample ~x, a standard measure of

the distance between f(~x) and p(~x) is in the form

L = −
∫

Ω
dnxf(~x) ln(

p(~x)

f(~x)
) (A.2)

49

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 50

known as Kullback–Leiber distance [42]. Using function variation method, one can

show that L ≥ 0, the equality holds true if and only if p(~x) is exactly f(~x).

Suppose p(~x) is a linear superpostion of basis functions. According to Chapter

2, each basis function is called one feature. Typically a feature is represented by its

first and second moment. i.e., its center of location and its one–sigma radius. It is

computationally convenient to use the same basis function with different parameters

to build up p(~x). For example, it can be a Gaussian, or more sophiscatedly, a

nonlinear funtion with the mechanism of emphasizing important parameter range

while suppressing the unimportant ones into background(such as the one being used

in Chapter 2). We write down p(~x) in the form

p(~x) =
M∑

i=1

p(~x|j)P (j) (A.3)

M is the number of features in the density p(~x). p(~x|j) is the probablity of ~x

conditioned on the jth feature. It is a function of the parameters — center µj and

one sigma matrix Σj, possibly with more parameters {Aj,...}. P(j) is the probability

that jth feature gets selected, we treat P as priors in our statistical modeling. All

these parameters will be determined through iterative adaption.

Substituting (A.3) into (A.2), and using the Lagrange muliplier, we get,

∑

~x

f(~x)

p(~x)

δp(~x|i)
δ{µi, Σi, ...}

= 0 (A.4)

∑

~x

f(~x)

p(~x)
p(~x|i) = λ =

∑

~x

f(~x) (A.5)

If p(~x|i) has the Gaussian distribution with µi and Σi, and taking into acount of the

Bayesian formula

p(i|~x) =
P (i)p(~x|i)

p(~x)
(A.6)

then (A.4) and (A.5) will turn out to be

~µ =

∑M
i=1 f(~x)p(i|~x)~x
∑M

i=1 f(~x)p(i|~x)
(A.7)

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 51

Σ =
1

d

∑M
i=1 f(~x)p(i|~x)(~x − ~µ)(~x − ~µ)T

∑M
i=1 f(~x)p(i|~x)

(A.8)

P (i) =
1

M

∑

~x p(i|~x)f(~x)

f(~x)
(A.9)

which lays out the rule for iteration. The right hand side is calculated using the

parameters from the current iteration, the left hand side will be fed into the next

iteration.

Some statistics insight from the above equation. p(j|~x) is the probability that

given ~x(data) and the basis funtion(model), the jth basis function(model) is the

correct one reproducing ~x(data). Thus p(j|~x) is the posterior knowledge, indicating

the credibility of the jth basis function(model). (A.9) shows that the prior P (j)(which

can be regarded as the overall credibility of jth basis function) is the average of ~x’s

posterior knowledge with jth basis(p(j|~x)) weighted by its true probability f(~x).

The same line of thought extends to (A.7) and (A.8). When one changes the basis

function from Gaussian to another continuous positive function, holding on to the

parametrization in terms of feature’s geographic location, the above equations will

still stand intact as the core of the algorithm. With this analysis, we have finished

introduction of EM(Expectation Maximization) algorithm.

A.2 Structure of the software distribution

The software is presented as a tar distribution which unpacks to a directory

maven. This directory contains the MavenMC class and various associated programs,

all written in C++. Theses include definitions of vector and matrix classes and class for

files to be read by the graphing program gnuplot [43]. The program testMaven.cpp

carries out adaptation and event selection with VEGAS and MAVEN for one of a set

of two–dimensional functions listed in myfunctions.h. To compile this program, put

the correct name of the C++ compiler in the makefile, then type make testMaven.

The program will write VEGAS and MAVEN statistics to the terminal and will

produce three gnuplot files, MC.gp, MCFeatures.gp, and MCWeights.gp. These

show, respectively, the final event selection with VEGAS and MAVEN, the adapted

features as in Fig. 2.3(a), and the generated points with weights as in Fig. 2.3(b).

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 52

A.3 Monte Carlo interface

The MAVEN and VEGAS event generators MavenMC and VegasMC are constructed

as subclasses of a general interface for Monte Carlo event selection, the class

MonteCarlo. This class defines the basic operations of event selection and gath-

ers the statistics of a selection operation while leaving the actual method of event

selection abstract. The public methods of MonteCarlo are shown in Fig. A.1. The

function f(x) is called surface(X) in the code. The class is operated by first calling

prepare, giving the number of function calls to be used in the initialization. Then

one calls getPoint to return a weighted or unweighted point x. Note that the im-

portant functions surface, prepare, and getPoint are virtual functions to be filled

in by the subclass. We have incorporated this general interface into pandora as a

way to easily swap in and out different algorithms for event selection.

The random number generator is chosen at the top of MonteCarlo.h to be ran2()

from [2], which is defined in random.h. Any other random number generator could

be substituted at this point.

A.4 Initialization and control of MavenMC

The public interface of the class MavenMC is shown in Fig. A.2. The constructor

for the class MavenMC is

MavenMC M(N); (A.10)

givien the total number of dimensions N. To mark fast dimensions, one calls them

out by number. The following sequence of commands marks dimensions 1, 2, 7, 8,

turns on feature analysis for these dimensions with 3 initial features per dimension

per initialization step, and then calls prepare requesting a total of 106 function calls:

M.mark(1); M.mark(2); M.mark(7); M.mark(8);

M.usemultigrid(3);

M.prepare(1000000); (A.11)

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 53

class MonteCarlo{

public:

int N; /* number of variables integrated over [0,1] */

MonteCarlo(int N); /* initializes MonteCarlo variables */

virtual double surface(DVector & X)=0; /* function integrated */

virtual void prepare(int nevents, int nseed = 1)=0;

virtual DVector getPoint()=0;

virtual DVector getPoint(double & weight)= 0;

void reset();

void resetMC(); /* reset Monte Carlo counters only */

void resetseed(int nseed = 1);

double integral(double & sd);

void setThreshold(double x);

void printTitle();

void printIntegral(int mycalls = 0, int info = 0);

/* call printTitle at the beginning of the run

then call printIntegral after each step,

passing the calls/step */

void printStatistics();

/* call printStatistics at the end of the run for statistics on

the Monte Carlo selection */

void quiet();

void verbose();

};

Figure A.1: Public methods of the class MonteCarlo.

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 54

class MavenMC : public MonteCarlo {

public:

MavenMC(int N);

virtual ~MavenMC();

void mark(int i);

void usemultigrid(double nfpd);

void prepare(int nevents, int nseed = 1);

DVector getPoint();

DVector getPoint(double & weight);

void visualizeFeatures(gnuplot & G, int k, int l);

void visualizeWeights(gnuplot & G, int k, int l);

};

Figure A.2: Public methods of the class MavenMC.

We can then simply call

nextx = M.getPoint(); (A.12)

to fill a vector nextx with a point chosen according to the target PDF.

The class MavenMC contains as a protected member a list of pointers to feature

classes. This structure allows features to be created and destroyed as they are needed.

We also specify a class VegasGrid that takes care of VEGAS grid accounting and

updating.

The command

M.visualizeFeatures(G,k,l) (A.13)

draws the adapted features of the MAVEN event selector — projected into the two–

dimensional (k, l) plane — into a file G that can be read by gnuplot. The command

M.visualizeWeights(G,k,l) (A.14)

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 55

selected 1,000 weighted points and plots their projection into the (k, l) plane in a file

G that can be read by gnuplot. The points are drawn with a color–coding command.

It draws the adapted features of the MAVEN event selector into a file G that can be

read by gnuplot. The command gives each point a color–coding: blue if w(x)/I < 3,

green if w(x)/I < 10, red if w(x)/I < 100, and purple otherwise.

A.5 Use of vector and matrix classes

The programs in the maven directory make use of double and integer vector

and matrix classes defined in the files DClasses and IClasses. These vectors and

matrices are indexed between arbitrary limits; for example, a vector indexed from 1

to N is constructed by

DVector V(1,N); . (A.15)

In MavenMC, we avoid costs in speed from vector initialization by initializing in ad-

vance all vectors and matrices needed in event generation. Overloaded addition

and multiplication are defined for the vector and matrix classes, but they are not

used into the code, except in one specific place. Because the feature updating de-

scribed in (2.15)–(2.18) is called only at the end of each iteration, it is reasonable

to allow operations in that step that involve memory allocation. Thus, the function

feature::update() freely uses vector algebra methods, including matrix diagonal-

ization, defined in DClasses. Users who would like to substitute their own vector

and matrix classes should take care to rewrite this function.

A.6 Implementation of Feature Adaptation

This section will outline the essential parts of the code MavenMC.cpp, which im-

plements the adapted iteration. We’ll cover this in two sections. This section will

be focused on feature adaption part of prepare() function, as shown in Fig. A.3.

Feature adaption is realized through nasteps iteration. In each adaption, subrou-

tine adaptstep() in Fig. A.4 is performed, where knowledge of the object function

is obtained, with each data point selected incorporating (2.15). Afterwards, subrou-

tine update() is in Fig. A.5 carried out, where Bayesian analysis, (A.7) to (A.9) are

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 56

void MavenMC::prepare(int nevents, int nseed){

int k;

int nasteps = 10; /* steps for feature adaptation */

int ngasteps = 8; /* steps for grid adaptation */

int ngssteps = 2;

int mustrepeat;

int rgasteps, rgssteps; /* steps remaining */

double amaxweight;

resetseed(13);

reset(); /* reset MonteCarlo integration buffers */

if (suppressPrinting == 0) printTitle();

int ncalls = nevents/(nasteps + ngasteps + ngssteps);

if (nfeatures == 0){

ngasteps = 5;

ncalls = nevents/(ngasteps + ngssteps);

} else {

if (suppressPrinting == 0) cout <<

" features adaptation: "

<< " no. of features "<< endl ;

/* feature adaptation */

int print = 0;

for (k = 1; k <= nasteps; k++){

adaptstep(ncalls);

if (k < nasteps-2){

int nadd = (int) (NM * nfpd);

addfeatureblock(nadd);

}

}

}

finishfeatures();

}

Figure A.3: prepare function of the class MavenMC.

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 57

void MavenMC::adaptstep(int ncalls){

flist[0]-> p = background;

maxweight = 0.0;

double weight;

for (int i =1; i <= ncalls; i++){

findPoint(weight);

adddatum(weight);

}

update();

if (suppressPrinting == 0) printIntegral(ncalls, nfeatures);

}

Figure A.4: adaptstep function of the class MavenMC.

realized in each flist[k]->update(), correspondingly, its details are in (2.16) to

(2.19).

To ensure the numerical stability, features with too small priors get deleted. After

each adaptstep(), nadd random features are added into the feature pool, this intends

to introduce a repulsive force among features which might later get conglomerated

into one piece, thus leading the program into malfunctioning. finishfeatures()

makes sure that the priors are normalized so that their sum is 1.

A.7 Implementation of Grid Adpatation in Each Feature

We’ll continue to show the remaining part of prepare() function. We propose to

let each feature carry with it a Vegas grid, and for the “unmarked” dimensions, we

use one Vegas grid to cover it all, assuming(or after some dimensional analysis) that

these dimensions of the phase space don’t have strong correlations with each other

or the “marked” dimensions. The adaption of the grids are in Fig. A.6

makegrids() subroutine switches on the mentioned VEGAS grids. These grids

are going through ngasteps rounds of adaption and ngssteps rounds of searching

for the worst maxweight for the finally established features. gridadaptstep() is

similar to adaptstep() programatically, except that adddatum() part is replaced

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 58

void MavenMC::update(){

int k, l;

for (k = 0; k <= nfeatures; k++) {

flist[k]->update();

}

k = 1;

while (k <= nfeatures){

if (flist[k]->p < smallestp){

deletefeature(k);

} else {

k++;

}

}

for (k=0; k <= nfeatures; k++) flist[k]->resetdata();

}

Figure A.5: update function of the class MavenMC.

by:

addgriddatum(weight);

if (Slow) Slow->recorddatum(weight,1); (A.16)

Slow is a pointer which points to the “unmarked” space Vegas grid. Slow being a

NULL pointer means that all the dimensions are strongly correlated with each other

and thus each feature spans the whole phase space. Now weight is the updated weight

calculated by (2.22) to (2.23). Special attention needs to be paid to the method

addgriddatum() in Fig. A.7, only the feature which has the largest contribution

from the data point selected gets updated.

Finally, combining the VEGAS grids and features, let’s see how points get se-

lected in Fig. A.8. One feature is being selected by choose() method in class

fnoodle, which is representing the feature priors. When Slow is a NULL pointer,

choosePoint() and calculation of modelvalue are repeated after discussions in sec-

tion 2.3. Now when Slow is pointing to a physical subspace(“unmarked” region) and

the grids have been switch on, in this region, choosePoint() is adopting VEGAS

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 59

{

makegrids();

rgasteps = ngasteps;

rgssteps = ngssteps;

omaxweight = 1.0e30;

// omaxweight = maxweight;

do {

while (rgasteps > 0){

rgasteps--;

gridadaptstep(ncalls,rgasteps);

}

omaxweight = maxweight;

maxweight = 0.0;

mustrepeat = 0;

rgssteps = ngssteps;

while (rgssteps > 0){

rgssteps--;

gridsearchstep(ncalls);

if (maxweight > 3.0 * omaxweight){

if (suppressPrinting == 0)

cout << " A surprisingly large maximum weight"

<< " requires more grid adaptation." << endl;

rgasteps = 3;

mustrepeat = 1;

break;

}

}

} while (mustrepeat > 0);

resetMC();

Figure A.6: grid adaption of the function prepare.

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 60

void MavenMC::addgriddatum(double weight){

if (nfeatures) {

flist[0]->addgriddatum(weight,totalxvalue);

int imax = 0;

double pmax = 0.0;

for (int i=1; i <= nfeatures; i++) {

double p = flist[i]->featurexvalue;

if (p > pmax) {

pmax = p;

imax = i;

}

}

flist[imax]->addgriddatum(weight,totalxvalue);

}

}

Figure A.7: selectively update one feature using one data point

point selection method, and the associated VEGAS probability of this subspace con-

tributes a factor , which is multiplied with its corresponding brother’s probability

from the feature space to give the total probability of this one point. shufflex()

is an operation to reindex the dimensions, so that marked and unmarked space can

go into two seperate continuous blocks in the phase space. This concludes our pre-

sentation of the algorithm and its implementation. A few of the parameters in this

algorithm are still experimental, like the prior of flist[0], and the addgriddatum()

method of features(when the best feature gets selected to update its grid data, is it

going to update it with weight 1 or with weight proportional to its fraction of con-

tribution in the total Bayes probability?). But all in all, they will not significantly

change the performance of the algorithm.

A.8 A More Systematic Estimation of Maxweight

The work presented in this section owes its originality to Jadach. After my presen-

tation of all the previous materials, I had a very instructive discussion with Jadach,

and later with my advisor Michael Peskin on the extraction of Maxweight. The

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 61

void MavenMC::findPoint(double & weight, int isgrid){

double fvalue = 0.0;

double modelvalue, p=0.0;

owner = fnoodle->choose();

if (Slow) {

DVector sx(1,N-NM);

for (int i=1;i<=N-NM;i++)

sx[i] = ran();

if (isgrid) {

Slow->choosePoint(sx,p);

sx = Slow->xg;

}

flist[owner]->choosePoint(sx);

}

else {

flist[owner]->choosePoint();

}

x = flist[owner]->myxstar;

zstar = flist[owner]->myzstar;

if (isgrid && Slow) {

modelvalue = value()*p;

}

else

modelvalue = value();

shufflex();

fvalue = surface(xshuffled);

weight = fvalue/modelvalue;

recordI(weight);

}

Figure A.8: point selection mechanism

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 62

Maxweight t(select)

N = 3:
VEGAS 1.5 0.19
MAVEN 2.5 0.53

N = 6
VEGAS 97 1.72
MAVEN 50 12.79

N = 8
VEGAS 122 2.48
MAVEN 36 10.92

Table A.1: Maxweight obtained more systematically and its corresponding event selection
time

question is due to the oscilation of Maxweight in a numerical range. The adaptions

show the decrease of Maxweight in scale, but within each scale, it oscilates in a quite

uncontrollable way, making the comparison of two algorithms rather artificial if they

happen to have Maxweight in the same scale. In order to have stability over the

oscilating Maxweight, we propose to do following. After the finishing of adaption,

we create a histogram of the Maxweight, each time when an event is being selected,

we record its weight into the histogram, i.e., let the bin corresponding to weight

increases by 1. When a statistics of 10,000 is reached, we have a distribution of

weights displayed by this histogram. Let’s take the center value of ith bin as wc[i],

the number of points in this bin as N [i], we choose our Maxweight as wc[j], such that

j is the first j satisfying
∑Nbin

j wc[i]N [i]
∑Nbin

1 wc[i]N [i]
≥ ε (A.17)

where ε is a fixed small number, like 0.001.

When we apply this idea into the testing of Maven and VEGAS codes, some

results are collected. e.g., a revisit to the double Gaussian profiles gives Table A.1.

We can tell that the definitive advantage of Maven over VEGAS seems to shrink to

some extent. Further understanding in this methodology is still needed, thus it is not

employed either in Maven or in pandora. But this serves as an illustrative example

APPENDIX A. NOTES FOR THE USE OF THE MAVEN SOFTWARE 63

in terms of how to control statistically oscillating parameters, and the principle can

be applied to other simulation work.

Appendix B

Derivations of Shower Simulation

Equations

B.1 Monte Carlo based on Poisson Distribution

The most general form of Poisson distribution is

P (n) =
λne−λ

n!
(B.1)

It normalization is

∑

P (n) = 1

Now if λ =
∫

0 Tω, temporarily we set ω to be a constant, then

P (n) =
∫

dt1 · · ·dtnP (n, t1, · · · , tn)

= [
∫ T

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnωn]e−Tω

The question we want to address is: What is the probablity distribution of the first

(or the highest) t, i.e. t1? Integrating out the other t’s gives

P̃ (n, t1) =
∫ T

0
dt1

ωntn−1

(n − 1)!
e−Tω (B.2)

64

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 65

summing over n, integrating over t, gives

∫

dtP̃ (t) =
∫ T

0
dtωe−(T−t)ω = 1 − e−Tω (B.3)

Usually T or ω is large enough to render the above result to be 1. This leads us to

an algorithm for generating Poisson random variables.

1. Generate a random variable y ∈ [0, 1];

2. if y < e−Tω, stop and go back to 1;

3. otherwise, we get t = T + 1
ω
log(y), substitute T with t and go back to 1;

These steps will be repeated until the stopping criterion is met.

Now when ω is a distribution function ω(z), we’ll generate t as above, and gen-

erate z according to distribution ω(z). Since the Poisson distribution on t is well-

normalized, we need only to update the weight ω(z), so that the overall normalization

of this process becomes
∫

dzω(z).

To accomodate the parton showering in Sec. 2, we analyze the case in which ω is

replaced by
∑

ωi. The event generation process will be slightly modified. Process j

gets instantiated according to probability Wj∑
Wi

, where Wi =
∫

dzωi(z). Correspond-

ingly, the weight ωj(z)

Wj
gets updated to make sure the overall normalization is 1. In

our problem,

∑

Wi =
∫

dt[2
∫

dzPqg(z) + Ng

∫

dzPgg(z)]

Its proof of normalization is presented as:

∫

dt[2
∫

dzPqg(z) + Ng

∫

dzPgg(z)]
∑

Wi

=
∫

dt[2
Wq
∑

Wi

∫

dz
Pqg(z)

Wq

+ Ng

Wg
∑

Wi

∫

dz
Pgg(z)

Wg

]

where,

Wq =
∫

dzPqg(z),

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 66

Wg =
∫

dzPgg(z),
∑

Wi = 2Wq + NgWg.

Note that because of the Sudakov suppression, the + and δ functions in splitting

functions go away, thus,

Pgg(z) = 6[
1 − z

z
+ z(1 − z) +

z

(1 − z)
]

should be used in the code.

B.2 Suppressing back–to–back Events

Q0 Q

3 1

2

Figure B.1: suppression mechanism

All our calculation is done according to Fig. B.1. The question we ask is: When is

parton 2 being emitted out of the region spanned by parton 1 and 3? To answer this

question we work in the rest frame of their parent–mass Q. If we align them along

their longitudinal axis, their 4-momentum are: P1 = Q
2
(1, 0, 0, 1), P2 = Q

2
(1, 0, 0,−1).

Following the strategy mentioned in Section 3, assign cos θ = 1 − 2z to rotate the

partons in the longitudinal plane, and φ in the transverse plane. With this the

4–momentums become:

P1 =
Q

2
(1, sin θ cos φ, sin θ sin φ, cos θ) , (B.4)

P2 =
Q

2
(1,− sin θ cos φ,− sin θ sin φ,− cos θ) . (B.5)

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 67

Now we transform to the rest frame of parton Q0. We boost the Q parton system

from frame (Q, 0, 0, 0) to frame (E, 0, 0,±p), the third parton is asigned momentum

(p, 0, 0,∓p). One can solve E and p as mentioned, furthermore, one can determine

the Lorenz boost factors for the Q system

β = (Q2
0 − Q2)/(Q2

0 + Q2), γ = (Q2
0 + Q2)/(2Q0Q).

We apply the same Lorenz boost to parton 1 and 2, which are in Q’s rest frame, and

achieve:

P1 = (
Q0

4
(1 + cos θ) +

Q2

4Q0
(1 − cos θ),

Q

2
sin θ cos φ,

Q

2
sin θ sin φ,

Q0

4
(1 + cos θ) − Q2

4Q0
(1 − cos θ)),

P2 = (
Q0

4
(1 − cos θ) +

Q2

4Q0

(1 + cos θ),

−Q

2
sin θ cos φ,−Q

2
sin θ sin φ,

Q0

4
(1 − cos θ) − Q2

4Q0
(1 + cos θ)) (B.6)

P3 = (
Q0

2
− Q2

2Q0
)(1, 0, 0,−1)

Applying the angular ordering,

p1 · p3

E1E3
>

p1 · p2

E1E2
, (B.7)

we get

z <
1 − 2Q2/Q2

0

1 − Q2/Q2
0

. (B.8)

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 68

B.3 Calculation of the Reweighting Factor

In perturbative QCD, the cross section for (e+e− → 3–jets) can be written as

d2σ
dx1dx2

(e+e− → qqg)

σ(e+e− → qq)
=

4

3

αs

2π

x2
1 + x2

2

(1 − x1)(1 − x2)
(B.9)

With x1 =
2Ejetq√

(s)
, x2 =

2Ejetq√
(s)

. In order to express the right-hand side using jet–

variables, we need to relate variables z, Q to x1, x2. We go through these steps in the

case of a gluon jet coming out of the quark line. Following appendix B.2 we make the

correspondences Q1 → Q, Q → √
s, in Fig. B.2, and temporarily ignore the rotation

in the transverse plane. We have:

P1 =
Q

2
(
s + Q2

2
√

sQ
+

s − Q2

2
√

sQ
cos θ, sin θ, 0,

s + Q2

2
√

sQ
cos θ +

s − Q2

2
√

sQ
)

P2 =
Q

2
(
s + Q2

2
√

sQ
− s − Q2

2
√

sQ
cos θ,− sin θ, 0,

s + Q2

2
√

sQ
cos θ − s − Q2

2
√

sQ
) .

Since 1 + cos θ = 2(1 − z), 1 − cos θ = 2z, we have

P1 = (

√
s

2
[(1 − z) +

Q2

s
z],

Q

2
sin θ, 0,

√
s

2
[(1 − z) − Q2

s
z]),

P2 = (

√
s

2
[z +

Q2

s
(1 − z)],−Q

2
sin θ, 0,

√
s

2
[z − Q2

s
(1 − z)]),

P3 =

√
s

2
(1 − Q2

s
)(1, 0, 0,−1) .

q q̄g

Figure B.2: Gluon radiation

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 69

Applying the definition of xi’s, we get

x1 = (1 − z) +
Q2

s
z, x2 = 1 − Q2

s
, x3 = z +

Q2

s
(1 − z)

To check these equations we add them together and confirm that the sum is 2.

Therefore we can write

Q2 = s(1 − x2), z =
1 − x1

1 − Q2/s
or z =

1 − x1

x2

This leads us to calculate the Jacobian of the transformation from Q, z coordinates

to x1, x2 coordinates

z, Q2

x1, x2
= [

x1, x2

z, Q2
]−1 =

∣
∣
∣
∣
∣
∣

−(1 − Q2

s
) z

s

0 −1
s

∣
∣
∣
∣
∣
∣

−1

=
s

x2

then

αs

π

dQ

Q
dz

4

3

1 + (1 − z)2

z
=

4

3

αs

π
dx1dx2Σ(x1, x2) (B.10)

=
4

3

αs

2π
dx1dx2

1

(1 − x1)(1 − x2)
[x2

2 + (x1 + x2 − 1)2]
1

x2
2

.

The same procedure can be applied to the process where the gluon jet originates

from an anti–quark line, in this case we will achive the above result with x1 and x2

reverted. Now we have to involve the supression mechanism into the calculation of

above AP amplitude.

In order to achieve that, we need to do a little exercise. In eq. (B.8), z will not

be valid if Q2

Q2

0

> 1
2
. In our case, Q0 =

√
s. This means for quark emitting gluon

obeying angular ordering, x2 has to be greater than 1
2
. However, since the phase

space requires x1 + x2 > 1, it is possible that the gluon can be radiated from q. The

exact possibility of such an emission depends on z. In the case of quark emission,

eq. (B.8) translates to z < 2 − 1
x2

. We therefore multiply Σ(x1, x2) by this factor.

Similar treatments are applied to the q emission. The reweighting factor for the

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 70

parton shower cross section eq. (3.17) can then be written

x2
1 + x2

2

D
, (B.11)

where

D =
1

2
(Σ(x1, x2)(2 − 1

x2

) + Σ(x2, x1)(2 − 1

x1

))

for events with x1 > 0.5 and x2 > 0.5,

D = Σ(x1, x2)(2 − 1

x2

)

for events with x2 > 0.5 and x1 < 0.5,

D = Σ(x2, x1)(2 − 1

x1

)

for events with x1 > 0.5 and x2 < 0.5. Note that this is not the best reweighting

scheme. But it is the scheme which can assign a positive, finite value to the part of

the phase space which is consistent with global angular ordering.

Therefore we can tell the following traits about this reweighting factor:

1. When x1 = 1 and x2 = 1, this factor is 1;

2. When x1 = 1 or x2 = 1, this factor is a finite number < 1;

3. In the other parts of the phase space consistent with global angular ordering,

this factor is a positive, finite number of O(1).

B.4 Accompanying software

In this section, we give some documentation of the programs which are responsible

for the showering and reweighting.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 71

class process{

public:

int n; /* number of integration variables X[i] in [0,1]

needed to specify the final state of the process */

char * name;

/* identifying name, e.g. " e+e- -> q qbar "*/

int ninitial, nfinal;

/* number of initial and final helicity states to be summed over */

CMatrix Camps;

/* ninitial X nfinal CMatrix containing production amplitudes */

DMatrix cs;

/* 3 X 3 DMatrix containing helicity-dependent

differential cross section */

process(int n, int ninitial, int nfinal);

virtual int computeKinematics(double & J, DVector & X,

double s, double beta) = 0;

virtual void crosssection() = 0;

virtual double prefactor() = 0;

virtual void amplitudes() = 0;

virtual LEvent buildEvent() = 0;

/* return the parton-level LEvent determined by the kinematic

variables fixed by computeKinematics */

virtual LVlist buildVectors() = 0;

/* use the results of computeKinematics to compute the list

of 4-vectors determined by the kinematic variables */

double simplecrosssection();

};

Figure B.3: Public methods of the class process.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 72

B.4.1 Variable documentation of a shower event

The parton shower simulator shower is constructed as the subclass of a general

interface for high energy physics interaction processes process. This class defines the

basic operations like computing the kinematics for an interaction and documenting

all the final states. The public methods of process are shown in Fig. B.3. In Fig. B.4,

the virtual functions left blank in the class process get implemented specifically for

the high energy gluon showering of the process e+e− → hadrons.

Member function computeKinematics determine whether the event, boosted lon-

gitudinally by β, satisfies the kinematic cuts defining the cross section. It also com-

putes the kinematic variables which determine the final-state momenta and writes

the answers into appropriate class variables of the process. Note that the compu-

tation of kinematic variables can be aborted whenever the variables are determined

to lead to invalid kinematics. This function should return 1 for valid kinematics, 0

for invalid kinematics. The variable J is the Jacobian of the transformation to the

variables Xi from the usual variables for expressing differential cross sections.

Member function crosssection() computes the cross section (in fb) from the

kinematic variables fixed by computeKinematics. The cross section should be re-

turned by filling the class variable cs(-1,1,-1,1), a 3 × 3 matrix which can hold the

cross sections for various initial helicities from [-1,-1] to [1,1].

Member function simplecrosssection() acts as a check on the cross section

computation, this function produces 1
4
× prefactor ×∑

i,j |Campsij|2.
In Fig. B.4, shower class creates QCD showers at the leading order in 1/N .

Its integration variables for each gluon are: X[5n-4], which gives the Q2, X[5n-3]

which gives the z, X[5n-2] which gives the azimuthal angle φ, X[5n-1] which gives

the branching, and finally, an optional X[5n], which is used to modify the angular

ordering, currently it is not being used in this version. It is worth mentioning that

the vertices are labelled i = 0, 1, .. , Ngmax. 0 indicates qq vertex. The partons

are labelled j = 1(q), 2(q) , 3, 4, .., Ngmax +2. At vertex i, parton to its left is

called “left”, parton to its right is called “right”. Their values will be 0 if the parton

is not realized. Its previous vertex is called “origin”, its next vertex to the left is

called “nextl”, its next vertex to the right is called “nextr”. Again they will be 0 if

unassigned. “showerlist” is the list of final particle 4-vectors in color order.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 73

class shower: public process{

public:

shower();

int computeKinematics(double J, DVector X, double s, double beta);

void crosssection();

LVlist buildVectors();

LEvent buildEvent();

int npartons();

protected:

int Ng; /* number of realized gluons */

int Nv; /* number of vertices */

DVector Q, t, z, phi;

double tmin, wquark, wgluon;

IVector origin, left, right, nextl, nextr, type;

IVector birth, recent;

DVector currentz;

IVector showerlist;

LVlist showervectors;

double Qtot(double Q);

double ttoQ(double t);

double p(double Q1, double Q2, double Q3);

double E2(double Q1, double Q2, double Q3);

double E3(double Q1, double Q2, double Q3);

double qnumerator(double z);

double gnumerator(double z);

double qSudakov(double zmin);

double gSudakov(double zmin);

int locate(int j);

void makeShowerVectors();

/* extra methods and data for interference of amplitudes */

IVector fhelicities, ihelicities;

bool angulorder;

void hLabel(IVector & helicities, int Label);

complex qsplit(int hg, double z, double phi);

complex qbarsplit(int hg, double z, double phi);

complex gsplit(int hg1, int hg2, int hg3, double z, double phi);

void AngOrder();

};

Figure B.4: Public methods of the class shower.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 74

B.4.2 Construction of a shower event

Fig. B.5 starts establishing a shower event by having all the vectors properly

initialized, and using input s(center of mass energy) to fix the scale of the coupling

constant. Notice that the boolean variable “angulorder” is initialized to be “true”,

later to be checked by the angular ordering process. Fig. B.6 shows the choice of

a position to insert gluon using the scheme discussed in Sec. 3.4. First Poisson

selection of next t for gluon emission is performed, then the position of its insertion

is decided. Fig. B.7 instantiates the gluon and determines its relation to all the other

existing gluons.

B.4.3 Boosting of a shower event

Fig. B.8 implements the operation that the partons are listed in the order of the

color chain, as later to be fed into a hadronization process. Fig. B.9 then uses the

information of partons’ relevant positions towards each other to boost them backward

until all the partons are in the center-of-mass frame.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 75

computeKinematics(double & J, DVector & X, double s, double beta){

Q.zero(); t.zero(); z.zero(); phi.zero();

origin.zero(); left.zero(); right.zero();

nextl.zero(); nextr.zero();

type.zero();

currentz.zero(); birth.zero(); recent.zero();

angulorder = true;

Npre++;

int i, j, k;

Q[0] = sqrt(s);

if (Q[0] < Qmin) return 0;

Q[1] = sqrt(s);

double tcurrent = Qtot(Q[0]);

t[0] = tcurrent;

currentz[1] = 1.0;

currentz[2] = 1.0;

birth[1] = 0;

birth[2] = 0;

recent[1] = 0;

recent[2] = 0;

left[0] = 1;

right[0] = 2;

z[0] = 0.0;

phi[0] = 0.0;

J = 1.0;

/* build a directory of Q, z, phi, links */

Ng = 0;

Nv = 0;

Figure B.5: Initialization

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 76

for (i = 1; i <= Ngmax; i++){

double tremaining = tcurrent - tmin;

double wtotal = 2.0 * wquark + Ng * wgluon;

double y = X[5*i-4];

if (y <= exp(- tremaining * wtotal)) break;

Nv++;

tcurrent += log(y)/wtotal;

t[i] = tcurrent;

Q[i] = ttoQ(tcurrent);

phi[i] = 2.0 * PI * X[5*i-2];

int leftright = 0;

double insert = wtotal * X[5*i-1];

if (insert <= wquark){

j = 1;

type[i] = qtoqgtype;

J /= wquark;

z[i] = exp(- X[5*i-3] * lzmin);

J *= lzmin;

} else if (insert <= 2.0*wquark){

j = 2;

type[i] = qbtoqbgtype;

J /= wquark;

leftright = 1;

z[i] = exp(- X[5*i-3] * lzmin);

J *= lzmin;

} else {

int iinsert = (int)(2.0 *(insert - 2.0 * wquark)/wgluon);

j = 3 + iinsert/2;

J /= 0.5 * wgluon;

leftright = iinsert%2;

type[i] = gtoggtype;

double zz = exp(- lzmin2 * (1.0-X[5*i-3]));

z[i] = zz/(1.0 + zz);

J *= lzmin2;

}

Figure B.6: gluon insertion

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 77

int ii = recent[j];

double znext = z[i] * currentz[j];

if (znext > zmin){

double Qo = Q[ii] - Q[i];

if (nextl[ii] > 0) Qo -= Q[nextl[ii]];

if (nextr[ii] > 0) Qo -= Q[nextr[ii]];

if (Qo > 0.0){

/* realize the parton */

Ng++;

int Np = Ng+2;

birth[Np] = i;

recent[Np] = i;

recent[j] = i;

currentz[Np] = znext;

currentz[j] *= (1-z[i]);

if (leftright == 0){

left[i] = j;

right[i] = Np;

} else {

left[i] = Np;

right[i] = j;

}

origin[i] = ii;

if (j == left[ii]){

nextl[ii] = i;

} else if (j == right[ii]){

nextr[ii] = i;

} else {

therror(" inconsistent shower tree ");

}

}

}

}

return 1;

}

Figure B.7: gluon instantiation

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 78

int shower:: locate(int j){

int k = 1;

while (j != showerlist[k]) k++;

return k;

}

void shower::makeShowerVectors(){

showervectors.zero();

clusterparent.zero();

int i, j, jl, jr, jp, k, kp, kl, kr, km;

int leftright; double mycos;

showerlist[1] = 1;

showerlist[2] = 2;

for (i = 1; i <= Ngmax; i++){

if (left[i] == 0) continue;

/* if parton created at i is not realized */

jl = left[i];

jr = right[i];

if (jl < jr){

kp = locate(jl);

for (k = i+1; k > kp; k--) showerlist[k+1] = showerlist[k];

showerlist[kp+1] = jr;

} else {

kp = locate(jr);

for (k = i+1; k >= kp; k--) showerlist[k+1] = showerlist[k];

showerlist[kp] = jl;

}

}

Figure B.8: color ordering

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 79

for (i = Ngmax; i >= 0 ; i--){

if (left[i] == 0) continue;

jl = left[i]; jr = right[i];

jp = MIN(jl,jr); double Q1 = Q[i];

double Qleft, Qright, Eleft, Eright, plr;

kl = locate(jl); kr = locate(jr);

if (clusterparent[kl] == 0){

if (clusterparent[kr] == 0) {

showervectors[kl][0] = Q1/2.0;

showervectors[kl][3] = Q1/2.0;

showervectors[kr][0] = Q1/2.0;

showervectors[kr][3] = -Q1/2.0;

} else {

while(clusterparent[kr+1] ==jr){ kr++;}

Qright = Q[nextr[i]];

plr = p(Q1,0.0,Qright);

Eright = E3(Q1,0.0,Qright);

showervectors[kl][0] = plr;

showervectors[kl][3] = plr;

showervectors.boostset(kl+1,kr,-plr/Eright);

}

} else { if (clusterparent[kr] == 0) {

while(clusterparent[kl-1] == jl){ kl--;}

Qleft = Q[nextl[i]];

plr = p(Q1,Qleft,0.0);

Eleft = E2(Q1,Qleft,0.0);

showervectors[kr][0] = plr;

showervectors[kr][3] = -plr;

showervectors.boostset(kl,kr-1,plr/Eleft);

}

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 80

else { km = kl;

while(clusterparent[kl-1] == jl){ kl--;}

while(clusterparent[km+1] == jl){ km++;}

while(clusterparent[kr+1] == jr){ kr++;}

Qleft = Q[nextl[i]];

Qright = Q[nextr[i]];

plr = p(Q1,Qleft,Qright);

Eleft = E2(Q1,Qleft,Qright);

Eright = E3(Q1,Qleft,Qright);

showervectors.boostset(kl,km,plr/Eleft);

showervectors.boostset(km+1,kr,-plr/Eright);}}

for (k = kl; k <= kr; k++) clusterparent[k] = jp;

showervectors.rotateinplaneset(kl,kr,1.0 - 2.0*z[i]);

showervectors.rotateset(kl,kr,phi[i]);}}

Figure B.9: boost

B.4.4 Angular Ordering

Fig. B.10 implements the angular ordering discussed in Sec. 3.5.1. If the checking

finds out that this shower event violates the global angular ordering, then the boolean

variable “angulorder” is set to be false. Consequently, the value of the cross section

for this event in Fig. B.11 is set to be 0. Otherwise, the calculation of the cross

section will proceed according to Sec. 3.4

B.4.5 Jet Algorithms

Fig. B.12, Fig. B.13 and Fig. B.14 are three jet algorithms which we use to cluster

our final partons into 3 jets. The jet counting algorithm with fixed ycut is presented

in Fig. B.15. The clustering algorithm is presented in Fig. B.16. It returns the jet

variables x1 , x2 in the DVector VX.

B.4.6 reweighting

Fig. B.17 presents the reweighting scheme we have discussed in 3.5.2.

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 81

void shower::AngOrder(){

int jl, jr, kl, kr;

DVector angle(0, Ngmax);

angle.zero();

for (int i = 0; i <= Ngmax; i++){

if (left[i] == 0) continue;

if (!(angulorder)) break;

jl = left[i];

jr = right[i];

kl = locate(jl);

kr = locate(jr);

LVector L1 = showervectors.readout(kl);

LVector L2 = showervectors.readout(kr);

angle[i] = dot(L1, L2)/(L1[0]*L2[0]);

if (i>0) {

int ii = origin[i];

if (ABS(angle[ii])>1e-10)

if (angle[i]>angle[ii]) {

angulorder = false;

double dd = Q[i]/Q[ii];

}

}

}

}

Figure B.10: angular ordering

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 82

void shower::crosssection(){

double wgt = 1.0;

for (int i = 1; i <= Nv; i++){

if (type[i] == qtoqgtype || type[i] == qbtoqbgtype){

wgt *= qnumerator(z[i]);

} else {

wgt *= gnumerator(z[i]);

}

}

makeShowerVectors();

AngOrder();

if (!(angulorder)) {cs.zero(); return;}

cs[1][1] = wgt;

cs[1][-1] = wgt;

cs[-1][1] = wgt;

cs[-1][-1] = wgt;

Nvalid++;

}

Figure B.11: cross section

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 83

double LVlist::FindMin(int & i, double Q) {

int j = 1;

double f = SQR(Q);

while (j<index) {

LVector L1 = readout(j);

LVector L2 = readout(j+1);

tVector t1 = L1.tvector();

tVector t2 = L2.tvector();

t1 /= t1.length();

t2 /= t2.length();

double d1 = 2*MIN(SQR(L1[0]), SQR(L2[0]))*(1-t1*t2);

if (d1<f) {

f = d1;

i = j;

}

j++;

}

return f;

}

Figure B.12: kT algorithm

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 84

double LVlist::FindMin(int & i, double Q) {

int j = 1;

double f = SQR(Q);

while (j<index) {

LVector L1 = readout(j);

LVector L2 = readout(j+1);

tVector t1 = L1.tvector();

tVector t2 = L2.tvector();

t1 /= t1.length();

t2 /= t2.length();

double d1 = 2*L1[0]*L2[0]*(1-t1*t2);

if (d1<f) {

f = d1;

i = j;

}

j++;

}

return f;

}

Figure B.13: JADE algorithm

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 85

double LVlist::FindMin(int & i, double Q) {

int j = 1;

double f = SQR(Q);

while (j<index) {

LVector L1 = readout(j);

LVector L2 = readout(j+1);

LVector L = L1+L2;

double p = L.masssq();

if (p<f) {

f = p;

i = j;

}

j++;

}

return f;

}

Figure B.14: E0 algorithm

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 86

int LEvent::NumberJets(double ECM, double cut) {

LVlist jet(LV);

double fm = 2*SQR(ECM);

while (jet.index>2) {

int i1;

fm = jet.FindMin(i1, ECM);

if (fm/SQR(ECM)>cut)

return jet.index;

else {

LVector L1 = jet.readout(i1);

LVector L2 = jet.readout(i1+1);

tVector t1 = L1.tvector();

tVector t2 = L2.tvector();

t1 += t2;

double d1 = t1.length();

double E1 = L1[0]+L2[0];

double r1 = E1/d1;

t1 *= r1;

LVector L(E1, t1);

jet.read(i1, L);

jet.remove(i1+1);

}

}

return 2;

}

Figure B.15: jet counting algorithm

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 87

void LEvent::IdentifyJets(double Q, DVector & VX){

LVlist jet(LV); double ycut;

int i,j, r, col; LVector L1, L2;

double fm = 2*SQR(Q);

while (jet.index>2) {

if (jet.index==3) break;

else { int i1;

fm = jet.FindMin(i1, Q);

L1 = jet.readout(i1);

L2 = jet.readout(i1+1);

tVector t1 = L1.tvector();

tVector t2 = L2.tvector();

t1 += t2;

double d1 = t1.length();

double E1 = L1[0]+L2[0];

double r1 = E1/d1; t1 *= r1;

LVector L(E1, t1);

jet.read(i1, L);

jet.remove(i1+1);

}

}

if (jet.index==3) {

LVector L1 = jet.readout(1);

double E1 = L1[0];

tVector t1 = L1.tvector();

double p1 = t1.length();

LVector L3 = jet.readout(3);

double E3 = L3[0];

tVector t3 = L3.tvector();

double p3 = t3.length();

VX[1] = 2*E1/Q;

VX[2] = 2*E3/Q;

}

else

return;

}

Figure B.16: clustering algorithm

APPENDIX B. DERIVATIONS OF SHOWER SIMULATION EQUATIONS 88

double LEvent::ExactSurf(DVector X) {

return (SQR(X[1])+SQR(X[2]));

}

double LEvent::Approxsurf(DVector VX) {

double p;

double d1 =1.0 + SQR(VX[1]+VX[2]-1)/SQR(VX[2]);

double d2 =1.0 + SQR(VX[1]+VX[2]-1)/SQR(VX[1]);

if (VX[1]>.5 && VX[2]>.5) {

return .5*(d1*(2-1.0/VX[2])+d2*(2-1.0/VX[1]));

}

else if (VX[1]>.5)

return d2*(2-1/VX[1]);

else if (VX[2]>.5)

return d1*(2-1/VX[2]);

}

double LEvent::Reweight(double ECM, DVector & VX){

double q;

IdentifyJets(ECM, VX);

double f = ExactSurf(VX);

f /= Approxsurf(VX);

return f;

}

Figure B.17: reweighting algorithm

Bibliography

[1] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C (Cambridge University Press, 1992).

[3] S. Kawabata, Comput. Phys. Commun. 41, 127 (1986).

[4] S. Kawabata, Comp. Phys. Commun. 88, 309 (1995).

[5] R. Kleiss and R. Pittau, Comput. Phys. Commun. 83, 141 (1994), hep-

ph/9405257.

[6] F. A. Berends, R. Pittau, and R. Kleiss, Comput. Phys. Commun. 85, 437

(1995), hep-ph/9409326.

[7] E. E. Boos et al., Int. J. Mod. Phys. C5, 615 (1994).

[8] F. Maltoni and T. Stelzer, JHEP 02, 027 (2003), hep-ph/0208156.

[9] T. Ohl, Comput. Phys. Commun. 120, 13 (1999), hep-ph/9806432.

[10] W. Kilian, WHIZARD 1.0, LC-TOOL-2001-039.

[11] T. Ohl, hep-ph/0011287.

[12] M. E. Peskin, hep-ph/9910519.

[13] C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University

Press, 1995).

[14] S. Jadach, Comput. Phys. Commun. 130, 244 (2000), physics/9910004.

89

BIBLIOGRAPHY 90

[15] S. Jadach, Comput. Phys. Commun. 152, 55 (2003), physics/0203033.

[16] H.-U. Bengtsson and T. Sjöstrand, Comput. Phys. Commun. 46, 43 (1987).

[17] M. Bengtsson and T. Sjöstrand, Nucl. Phys. B289, 810 (1987).

[18] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).

[19] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001), hep-ph/0010017.

[20] G. Marchesini and B. R. Webber, Nucl. Phys. B310, 461 (1988).

[21] G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992).

[22] G. Corcella et al., (2002), hep-ph/0210213.

[23] R. K. Ellis, W. J. Stirling, and B. R. Webber, Cambridge Monogr. Part. Phys.

Nucl. Phys. Cosmol. 8, 1 (1996).

[24] S. Bethke, J. Phys. G17, 1455 (1991).

[25] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory

(Addison-Wesley, 1995).

[26] S. Frixione, (2002), hep-ph/0211435.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, J. Royal Stat. Soc. B39 (1977).

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

J. Chem. Phys. 21, 1087 (1953).

[29] M. Skrzypek and S. Jadach, Z. Phys. C49, 577 (1991).

[30] C. T. Potter, J. E. Brau, and M. Iwasaki, eConf C010630, P118 (2001).

[31] D. M. Asner, J. B. Gronberg, and J. F. Gunion, Phys. Rev. D67, 035009 (2003),

hep-ph/0110320.

[32] M. Peskin, Pandora, http://www-sldnt.slac.stanford.edu/nld/new/Docs/Gen-

erators/PANDORA.htm.

BIBLIOGRAPHY 91

[33] K. Yokoya and P. Chen, Frontiers of Particle Beams: Intensity Limitations

(Springer Verlag, 1992).

[34] V. G. Gorshkov, V. N. Gribov, L. N. Lipatov, and G. V. Frolov, Phys. Lett. 22,

671 (1966).

[35] T. Kinoshita, J. Math. Phys. 3, 650 (1962).

[36] M. Bengtsson and T. Sjöstrand, Phys. Lett. B185, 435 (1987).

[37] Richardson, personal communication., We are grateful to P. Richardson and B.

Webber for providing us with this unpublished data.

[38] P. N. Burrows, (1997), hep-ex/9705013.

[39] A. De Rujula, J. R. Ellis, E. G. Floratos, and M. K. Gaillard, Nucl. Phys. B138,

387 (1978).

[40] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).

[41] DELPHI, P. Abreu et al., Z. Phys. C54, 55 (1992).

[42] T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley

& Sons, Inc., 1991).

[43] Open Source, Gnuplot, http://www.gnuplot.info.

