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Abstract

The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate)

to its own anti-particle through second-order weak interactions. The measurement

of the mixing frequency can constrain the quark mixing matrix in the Standard

Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator

Center provides a very large data sample that enables us to make measurements with

much higher precisions than previous measurements, and to probe physics beyond

the Standard Model.

The lifetime of the neutral B meson τB0 and the B0-B0 mixing frequency ∆md

are measured with a sample of approximately 14,000 exclusively reconstructed B0 →
D∗−�+ν� signal events, selected from 23 million BB pairs recorded at the Υ(4S) reso-

nance with the BABAR detector at the asymmetric-energy e+e− collider, PEP-II. The

decay position of the exclusively reconstructed B is determined by the charged tracks

in the final state, and its b-quark flavor at the time of decay is known unambiguously

from the charge of the lepton. The decay position of the other B is determined

inclusively, and its b-quark flavor at the time of decay is determined (tagged) with

the charge of tracks in the final state, where identified leptons or kaons give the most

information. The decay time difference of two B mesons in the event is calculated

from the distance between their decay vertices and the Lorentz boost of the center

of mass. Additional samples of approximately 50,000 events are selected for studies

of background events.
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The lifetime and mixing frequency, along with wrong-tag probabilities and the

time-difference resolution function, are measured simultaneously with an unbinned

maximum-likelihood fit that uses, for each event, the measured difference in B decay

times (∆t), the calculated uncertainty on ∆t, the signal and background probabilities,

and b-quark tagging for the other B meson. The results are

τB0 = (1.523 +0.024
−0.023 ± 0.022) ps

and

∆md = (0.492 ± 0.018 ± 0.013) ps−1 ,

where the first error is statistical and the second is systematic. The statistical cor-

relation coefficient between τB0 and ∆md is −0.22.

This result is consistent with the current world average values, the the total errors

are comparable with other most-precise measurements.
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Chapter 1

Introduction and Overview

The time evolution of neutral B mesons is governed by the overall decay rate Γ ≡
1/τB0 , and the B0-B0 oscillation frequency ∆md.

1 The phenomenon of particle-

anti-particle oscillation or mixing has been observed in neutral mesons containing a

down quark and a strange quark (K mesons), or a bottom quark (B mesons) [1, 2].

By interchanging the quark content of B0 (bd) with that of B0 (bd), B0-B0 mixing

changes the bottom quantum number by two units; i.e., |∆B| = 2. In the Stan-

dard Model of particle physics, such a process is the result of second-order charged

weak interactions involving box diagrams containing virtual quarks with charge 2/3,

illustrated in Fig. 1.1. In B0-B0 mixing, the diagram containing the top quark dom-

inates. Therefore, the mixing frequency ∆md is sensitive to the Cabibbo-Kobayashi-

Maskawa quark-mixing matrix element Vtd [3, 4]. Because of this interaction, the

mass eigenstates of this two-state system in B0-B0 space are no longer degenerate.

The mixing frequency ∆md is equal to the difference between the two mass eigen-

values of neutral B meson states. In the neutral K meson system, mixing also has

contributions from real intermediate states accessible to both K0 and K0. As a

1Through out this thesis, the fundamental constant c and h̄ are ignored, that is, units are changed
so that mass and momentum are in the unit of energy, e.g., MeV, or equivalently, in the unit of
inverse time, e.g., ps−1.

1
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Figure 1.1: Second-order charged weak interaction that interchanges bd with bd. The
virtual quark in the loop can be u, c, and t, but the diagram containing the top quark
dominates.

result, the two mass eigenstates of the neutral K system have a large decay rates

difference ∆Γ. For the B0 system, ∆Γ is much smaller than ∆md. Therefore, in this

analysis, ∆Γ is assumed to be negligible.

In the naive spectator model [5], the decay rate of hadrons containing a b quark

and one or two light quarks (u, d, or s) is determined by the decay rate of the b

quark, and therefore their lifetimes should be the same. However, some b-hadrons

have significantly different lifetimes from others2. A precise measurement of the B0

lifetime, along with other b-hadron (e.g., B+, Bs, Λb) lifetimes, can improve our

understanding of the effect of the light quarks in the b-hadron.

In BABAR [7], bb bound states called Υ(4S) are created by the asymmetric-energy

e+e− collider, PEP-II [8], at the Stanford Linear Accelerator Center. More than

96% of the Υ(4S) states decay to a pair of B0B0 or B+B− [6]. The two B mesons

evolve coherently, until one decays. The proper decay-time difference ∆t between two

neutral B mesons is governed by the following probabilities to observe an unmixed

event, i.e., two B mesons decaying to opposite flavors,

P (B0B0 → B0B0) ∝ e−|∆t|/τB0 (1 + cos ∆md∆t) , (1.1)

or a mixed event; i.e., two B mesons decaying to the same flavor because one B0 has

2For example, the lifetime of Λb is about 20% smaller than that of B0 [6].
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oscillated to its anti-particle B0, or vice versa,

P (B0B0 → B0B0 or B0B0) ∝ e−|∆t|/τB0 (1 − cos ∆md∆t) . (1.2)

Therefore, if ∆t is measured and the b-quark flavor of both B mesons at their time

of decay is measured, one can extract the B0 lifetime τB0 and the mixing frequency

∆md.

In this analysis, one B0 (referred to as Brec) is reconstructed in the mode B0 →
D∗+�−ν�,

3 where � is an electron or a muon. The charges of the final state particles

identify the B as a B0 or B0. The remaining charged particles in the event, which

originate from the other B meson (referred to as Btag), are used to reconstructed the

Btag decay vertex, and to determine, or tag, its b-flavor content.

Since the mass of two B mesons is only slightly less than the mass of the Υ(4S),

the B mesons move very slowly (v � 0.06c) in the center-of-mass frame. In BABAR,

because the e+ and e− in the PEP-II storage rings have different energy, the center-of-

mass frame, i.e., the Υ(4S) rest frame, is boosted along the beam axis (� z-axis) with

a known Lorentz factor βγ � 0.55, so that the decay vertices of the B meson pair can

be separated. The decay-time difference ∆t can be calculated from the separation of

the two decay vertices along the z-axis, ∆t ≡ trec−ttag � ∆z/βγc, where trec and ttag

are the proper decay times of the Brec and Btag mesons, respectively. The average

separation is about 250 µm.

The theoretical ∆t distributions of unmixed and mixed events, given in Eq. 1.1

and 1.2, and the time-dependent asymmetry, defined as

A(∆t) =
Nunmixed(∆t) −Nmixed(∆t)

Nunmixed(∆t) +Nmixed(∆t)
, (1.3)

3Through out this thesis, the charge conjugate modes are implied, unless specified otherwise.
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are shown in Fig. 1.2, in which the world average values [9] of the lifetime and mix-

ing frequency are used. The time-dependent asymmetry is equal to cos(∆md∆t),

with the oscillation amplitude equal to unity. In reality, there are three major ex-

perimental complications that affect the ∆t distributions shown in Fig. 1.2. The

tagging algorithms that determine the b-flavor of Btag at its time of decay have a

finite probability of making a mistake, called the mistag probability, ω. As a result,

some mixed events will be tagged as unmixed events, and vice versa. An example of

this effect with ω = 0.1, which represents a quite good tagging power in reality, is

shown in the left plot in Fig. 1.3. The ∆t distributions become

P (∆t) =
e−|∆t|/τB0

4τB0

[1 ± (1 − 2ω) cos∆md∆t] ,

for the unmixed (+) and mixed (−) events, and the asymmetry amplitude becomes

1− 2ω. Second, the resolution for ∆t is comparable to the lifetime and must be well

understood. The effect of non-perfect resolution is shown in the right plot in Fig. 1.3.

A final complication is that the sample of selected B0 → D∗−�+ν� candidates is not

pure signal. Various background levels and their time evolution properties must be

understood, in order to extract the lifetime and mixing frequency.

The Brec is reconstructed in the decay chain B0 → D∗+�−ν�, D
∗+ → D0π+, and

D0 → K−π+, K−π+π0, K−π+π−π+, or KSπ
+π−. Although the neutrino cannot

be detected, the requirement of a reconstructed D∗− → D0π− and an identified

high-momentum lepton that satisfies the kinematic constraints consistent with a

B0 → D∗+�−ν� decay allows the isolation of a signal sample with (65 – 89)% purity,

depending on the D0 decay mode and whether the lepton candidate is an electron or

a muon. To characterize the backgrounds, a set of control samples enriched in each

type of background is selected along with the signal sample to determine the signal

and background probabilities of each events in all samples.
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Figure 1.2: Theoretical expectation of B0 decay ∆t distributions and the asymmetry
between unmixed and mixed events.

The mixing frequency ∆md and the average lifetime of the neutral B meson, τB0 ,

are measured simultaneously with an unbinned maximum-likelihood fit to measured

∆t distributions for events that are classified as mixed and unmixed. This is in

contrast to published measurements in which only ∆md is measured with τB0 fixed to

the world average value, or only τB0 is measured. There are several reasons to measure

the lifetime and mixing frequency simultaneously. The statistical precision for both

τB0 and ∆md is comparable to the uncertainty on the world average. Therefore, it is

appropriate to measure both quantities rather than fixing the lifetime to the world

average. Since mixed and unmixed events have different ∆t distributions, the mixing

information for each event gives greater sensitivity to the ∆t resolution function and

a smaller statistical uncertainty on τB0 . Also, since B+B− events do not mix, the

∆t distributions for mixed and unmixed events can help discriminate between B0B0

signal events and B+B− background events in the lifetime and mixing measurement.
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Figure 1.3: Experimental effects on the expected ∆t distributions and the asymmetry
between unmixed and mixed events. (a) Effect due to non-perfect flavor tagging.
(b) Effect due to a non-perfect ∆t determination and flavor tagging. A resolution
function with a realistic width σ � 1 ps and a somewhat exaggerated negative tail
is used.

This thesis is organized in the following way. The physics that is related to

the neutral B meson time evolution is discussed in Ch. 2. A review of the current

experimental status of B lifetime and mixing measurements is given in Ch. 3. The

detector facility, and the particle reconstruction and identification are described in

Ch. 4 and Ch. 5. The measurements of B decay vertices and decay-time difference are

discussed in Ch. 6. The algorithms that identify the b-flavor of Brec are given in Ch. 7.

The event selection for signal and background control samples, and the calculation

of signal and background probabilities for each event are described in Ch. 8 and

Ch. 9. In Ch. 10, the full analysis of the measured decay time difference is presented,

including physics models and ∆t resolution functions used to describe the measured

∆t distribution for signal and background, the unbinned maximum-likelihood fit and
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the fit results. The validation exercises and systematic uncertainty studies are shown

in Ch. 11. Finally the conclusions and future prospect are presented in Ch. 12.



Chapter 2

Theory and Phenomenology

Overview

In this chapter, I review the theoretical aspects of the time evolution of the neutral B

meson system. The phenomenon of B0-B0 oscillation is governed by the electroweak

interaction in the Standard Model of particle physics, which provides an elegant

theoretical framework and represents our current understanding of the fundamental

building blocks of nature and their interactions, except for gravity. In this chapter,

I start with a brief overview of the Standard Model and focus on the electroweak

interaction that eventually leads to the quark mixing matrix (the CKM matrix). I

then demonstrate the formalisms for the time evolution of the neutral B meson and

the coherent Υ(4S) → BB state, and their implication for C, P and T symmetries.

The phenomenology for b-hadron lifetimes is also discussed. Finally, the kinematics

of semileptonic decays of the B meson are presented.

8
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2.1 Standard Model Physics

Particle physics theory is usually formulated by a Lagrangian that is a function of

matter fields and their first derivatives. The Lagrange density L is related to the

classical action through

S =

∫
d4xL(φ, ∂µφ) ,

where φ ≡ φ(x) is a generalized coordinate as a function of space-time, and ∂µφ ≡
∂φ/∂xµ, in which µ is a space-time index. Through the principle of least action, one

can deduce the Euler-Lagrangian equations for the Lagrange density,

∂L
∂φ(x)

= ∂µ
∂L

∂(∂µφ(x))
,

which lead to the explicit form of equations of motion for the fields. A Lagrangian

(“density” is dropped for convenience) must be a scalar and be invariant under

Lorentz transformations, so that all predictions of the theory are Lorentz invariant.

The existence of symmetries plays an important role in the development of the

Standard Model of particle physics. A physical system is said to have a particular

symmetry if the Lagrangian L that describes this system is invariant under a certain

transformation. A set of transformations that leave a system invariant can have the

algebraic structure of a group, in which case there is said to be a symmetry group.

The types of symmetry transformation can be categorized in various ways; e.g.,

whether the parameters of the transformation are discrete or continuous, whether

the transformation is acting on space-time (geometrical) or on the internal space,

and whether the transformation varies at different space-time points (local) or not

(global). Continuous symmetries of the Lagrangian and constants of motion are

closely related. This connection is embodied in Noether’s theorem [10], which states

that for a system described by a Lagrangian, any continuous symmetry that leaves
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invariant the action leads to the existence of a conserved current Sµ with ∂µSµ = 0.

In the Lagrangian formalism, the interaction arises naturally when local gauge

invariance is imposed on the system. In nature, matter consists of spin-1/2 fermions;

i.e., quarks and leptons. The Lagrangian for a massless spin-1/2 fermion can be

expressed as

L = iψγµ∂µψ ,

where ψ is a Dirac spinor. In order to maintain invariance under the local phase trans-

formation (called gauge transformation for historical reasons) ψ(x) → eiα(x)ψ(x), one

needs to introduce a vector field Aµ and replace the space-time derivative ∂µ with

a covariant derivative Dµ = ∂µ − igAµ, where g represents the coupling strength

and Aµ is the field of a massless spin-1 gauge boson, which mediates this particular

interaction. This formalism does not restrict the symmetry group of the local gauge

transformation.

The Standard Model is based on an SU(3) × SU(2) × U(1) gauge theory. This

is basically saying that the particles in this theory have an internal space that is

invariant under local gauge transformations that belong to SU(3), SU(2) and U(1)

symmetry groups. The U(1) group is a simple (one-dimensional) phase rotation. For

an SU(n) group, the physical state is represented by an n-dimensional multiplet,

and the gauge transformation and the corresponding covariant derivative are

ψ → exp(i
n2−1∑
a=1

θaT
a)ψ ,

Dµ = ∂µ − ign

n2−1∑
a=1

T aGµ
a ,

where θa is a rotation angle, T a represents n2−1 rotation generators of this group, and

Gµ
a are gauge boson fields. SU(3) is the symmetry group of the strong interaction,



2.1. STANDARD MODEL PHYSICS 11

which is described by the theory of quantum chromodynamics, QCD (the charge of

the strong interaction is called color charge). The electroweak part (SU(2) × U(1))

is referred to as the Glashow-Salam-Weinberg model [11, 12, 13].

The full covariant derivative can be written as

Dµ = ∂µ − ig1Y B
µ − ig2T

iW µ
i − ig3Λ

aGµ
a ,

where i = 1 . . . 3, a = 1 . . . 8, and Y , T i, and Λa are generators of U(1), SU(2) and

SU(3), respectively, and Bµ, W µ
i and Gµ

a are the corresponding gauge boson fields.

So far in the Lagrangian the gauge bosons are all massless. However, the fact that

the weak gauge bosons are massive particles shows that electroweak SU(2) × U(1)

is not a symmetry of the vacuum. The massive weak bosons, W± and Z acquire

mass through the spontaneous breakdown of SU(2) × U(1), called the Higgs mech-

anism [14], which requires a single Higgs doublet1 to acquire a vacuum expectation

value. One linear combination of the SU(2) × U(1) generators is left unbroken, the

electric charge generator Q = T 3 + Y/2. The field sources of the electroweak in-

teraction include left-handed quark and lepton iso-doublets, right-handed quark and

lepton iso-singlets and a scalar Higgs iso-doublet. These are summarized in Table 2.1,

including their SU(2) quantum numbers, |T |, T 3, U(1) hypercharge Y , and electric

charge Q.

SU(3)×SU(2)×U(1) gauge invariance also prevents bare mass terms for quarks

and leptons from appearing in the Lagrangian. The quarks and leptons get mass

from the Yukawa couplings to the Higgs doublet,

LYukawa = gij
u u

i
RH

T εQj
L − gij

d d
i

RH
†Qj

L − gij
e e

i
RH

†Lj
L + h.c. , (2.1)

1A single Higgs doublet is the simplest way to achieve the observed spontaneous symmetry
breaking, but a more complicated scalar sector is possible.
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Table 2.1: The three families of leptons and quarks, the single Higgs doublet, and
their electroweak quantum numbers. The index i runs from 1 to 3, representing three
families.

fields |T | T 3 Y Q

Li
L =

(
νe

e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

1/2
1/2

+1/2
−1/2

−1
−1

0
−1

ei
R = eR µR τR 0 0 −2 −1

Qi
L =

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

1/2
1/2

+1/2
−1/2

1/3
1/3

+2/3
−1/3

ui
R = uR cR tR 0 0 +4/3 +2/3
di

R = dR sR bR 0 0 −2/3 −1/3

H =

(
H+

H0

)
1/2
1/2

+1/2
−1/2

1
1

+1
0

where i and j are quark-lepton family indices and are summed if repeated, and h.c.

denotes Hermitian conjugate. The antisymmetric matrix ε is given by

ε =


 0 1

−1 0


 .

The Higgs field has a vacuum expectation value v at the minimum of the Higgs

potential and a charge-neutral field h0 along the symmetry-breaking direction,

H =


 0

(v + h0)/
√

2


 .

The terms in Eq. 2.1 become

gij
x

v√
2
xi

Rx
j
L + gij

x

h0(†)
√

2
xi

Rx
j
L , (2.2)

for x = u , d , or e. The first term gives rise to fermion masses, and the second term
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represents the interaction between fermions and the Higgs boson.

The 3 × 3 quark and lepton mass matrices, M ij
x = gij

x v/
√

2, can be transformed

into diagonal matrices by separate unitary matrices,

VuRMuV
†
uL = Du , VdRMdV

†
dL = Dd , and VeRMeV

†
eL = De ,

where VxL and VxR are unitary matrices and Dx are diagonal and real. The quark

and lepton fields can be transformed accordingly,

um
L = VuLuL , um

R = VuRuR ,

dm
L = VdLdL , dm

R = VdRdR ,

em
L = VeLeL , em

R = VeReR ,

where mass eigenstates are labeled by the superscript m, so that the mass terms in

Eq. 2.2 become diagonal, e.g., um
RDuu

m
L . The weak iso-doublet of left-handed quarks

can be rewritten as


uL

dL


 =


V †

uLu
m
L

V †
dLd

m
L


 = V †

uL


 um

L

V dm
L


 ,

where V = VuLV
†
dL is called the Cabibbo-Kobayashi-Maskawa (CKM) [3, 4] mixing

matrix. The overall unitary transformation by V †
uL has no effect, but the unitary

matrix V changes the form of the weak charged-current interactions; for example,

g2√
2
W+

µuLγ
µdL =

g2√
2
W+

µu
m
L γ

µV dm
L . (2.3)

The quark kinematic energy terms and the weak neutral current and electromagnetic

interactions are unaffected. The right-hand side of Eq. 2.3 shows that the mass
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di

uj

Wµ

Figure 2.1: Diagram for quark flavor changing charged current.

eigenstate of an up-type quark (charge +2/3) can interact with a mixture of the

mass eigenstates of down-type quarks (charge −1/3) of different families at the tree

level through weak charged currents. Conventionally, the mass eigenstates of quarks

of three families are labeled as (u, c, t) and (d, s, b). The weak eigenstates shown

in the weak iso-doublet are labeled in the same way for up-type quarks and with a

prime for down-type quarks,




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d

s

b


 .

The Feynman rule that describes the flavor-changing charged current between a

down-type quark of family i and an up-type quark of family j (Fig. 2.1) is then

−i
(
GFM

2
W√

2

)1/2

ujγµ(1 − γ5)di · Vij ;

i.e., the coupling strength is proportional to the CKM matrix element Vij.

The unitary CKM matrix for three families can in general be parameterized by

nine real numbers. However, one can rotate the phases of the six quarks indepen-

dently (while keeping the relative phase of left- and right-handed quarks of the same

flavor unchanged). An overall phase leaves the CKM matrix unchanged. The re-

maining rotations can eliminate five phases and leave three Euler angles and one
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phase to parameterize the CKM matrix. It has been found that the CKM matrix

has a hierarchical structure; i.e.,

|Vud|2 � |Vcs|2 � |Vtb|2 � 1 and |Vub|2 � |Vcb|2 � |Vus|2 � 1 .

It is best illustrated by the Wolfenstein parameterization [15], which is a power-

series expansion in λ = sin θC � 0.22, where θC is called the Cabibbo angle [3]. Up

to O (λ3), it is expressed as

V =




1 − 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


 + O (λ4

)
. (2.4)

The three Euler angles and one phase in the matrix are now parameterized by the

four real numbers, λ, A, ρ, and η. Their absolute values, except for λ, are all of order

unity.

Since the CKM matrix is a unitary matrix, the products of the elements in any

two columns satisfy
3∑

k=1

VkiV
∗
kj = δij , (2.5)

where δij = 1 if i = j and δij = 0 otherwise. Therefore the three terms in Eq. 2.5

from two different columns (i �= j) can be visualized as a triangle in the complex

plane, called a unitary triangle. There are three such triangles 2. Two of them have

one side of the triangle much smaller than the other two sides by O (λ4) (columns

1 and 2) or O (λ2) (columns 2 and 3). The remaining triangle, which is formed by

columns 1 and 3, has three sides of the same order O (λ3). Therefore the three angles

of this triangle are more likely to be significantly different from 0 or π than the other

2There are actually three more triangles formed by the products of two different rows of the
matrix.
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two triangles. This triangle formed by columns 1 and 3 is most relevant to this thesis,

It is usually presented after each side is divided by VcdV
∗
cb so that one side is unit

length and lies along the real axis. The three angles are denoted by α, β and γ. This

unitary triangle is shown in Fig. 2.1, and the equation is given explicitly by

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (2.6)

ρ

η

γ

α

β

A

0 1

VtdV
∗
tb

VcdV
∗
cb

VudV
∗
ub

VcdV
∗
cb

Figure 2.2: The normalized unitary triangle formed by columns 1 and 3 of the CKM
matrix, where ρ = (1 − λ2/2)ρ and η = (1 − λ2/2)η.

2.2 A Few Words on C, P and T Symmetry

There are three important finite (discrete) symmetry groups in particle physics:

space-inversion (or parity, P ), particle-antiparticle conjugation (C) and time-reversal

(T ) transformations. Each of them contains only two elements, the identity e and

an element g, which satisfies g2 = e. The P and C invariances require that g is rep-

resented by a unitary operator. The T invariance is the only symmetry that requires

an antiunitary operator [16].
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The week interaction violates the C and P symmetries, separately [17]. This is

modeled by the V − A structure of the electroweak theory in the Standard Model.

The combined symmetry of CP was thought to be preserved until the discovery of the

CP violation in the neutral kaon system [18]. The neutral kaon system remained the

sole system that exhibits CP violation until the recent observations of CP violation

in the neutral B system [19, 20]. The conservation of the combined symmetry of

CPT is a consequence of the Lorentz symmetry of local quantum theories (see, for

example, the text book [21]). So far no observation indicates that CPT is not a

perfect symmetry in nature.

The phenomenon of CP violation can be accommodated in the three-family Stan-

dard Model. The magnitude of CP asymmetry is related to the area of the unitary

triangle3 [22]. The evidence of observed CP violation in the neutral B system was a

non-zero β angle in Fig. 2.1.

There are three types of CP asymmetry: (a) CP violation in decay is due to

the differences between the magnitudes of the decay amplitude B → f and its CP

conjugate amplitude B → f , which can occur for both neutral and charged mesons;

(b) CP violation in mixing occurs when the two neutral mass eigenstate are not CP

eigenstates; (c) CP violation in the interference between decays with and without

mixing, caused by an extra phase in the decay amplitude with mixing, occurs in

decays of neutral B into final states that are common to B0 and B0. All these

three types can coexist with each other. To a good approximation, the observed

CP violation in B-factories [19, 20] is solely due to the type (c). The one that is

most relevant to the analysis in this thesis is the CP violation in mixing. It will be

discussed in Sec. 2.3.2.

3All six unitary triangles have the same area.
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2.3 Neutral B Meson System

In this section, I present the phenomenology calculation that leads to a general

description of the time evolution of a neutral B meson. I also show the summary of

the Standard Model calculations of the mass and decay rate differences of the two

mass eigenstates in the B0-B0 system.

2.3.1 Two-state phenomenology

Considering a simplest case in which only two degenerate states |P 0〉 and |P 0〉 exist

and they can neither decay nor transform into each other. An arbitrary state can be

represented by

ψ(t) = a(t)|P 0〉 + b(t)|P 0〉 ≡

a(t)
b(t)


 .

The Hamiltonian in the Schrodinger equation can simply be written as a diagonal

matrix with real elements

H =


 mP 0

0 mP


 ,

and |P 0〉 and |P 0〉 are mass eigenstates with an eigenvalue mP .

If an interaction is turned on so that these two states can turn into each other,

directly or through intermediate states, in a simplest case without expanding the

Hilbert space, the Hamiltonian can be written as

H =


 mP ∆

∆ mP


 ,

where ∆ = 〈P 0|H|P 0〉 = 〈P 0|H|P 0〉. No matter how small ∆ is, the mass eigenstates
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of this Hamiltonian become

|P 0
1,2〉 =

1√
2
(|P 0〉 ± |P 0〉) ,

with eigenvalues mP ± ∆.

In the real B0-B0 system, we have to consider the full Hilbert space including

all final and intermediate states that B0 and B0 can access. A general state is then

given by

ψ(t) = a(t)|B0〉 + b(t)|B0〉 +
∑

n

cn(t)|fn〉 .

The solution of the Schrodinger equation for the full Hamiltonian

ih̄
∂

∂t
Ψ = HΨ ,

where H is an infinite-dimensional Hermitian matrix, is difficult to obtain due to

complex strong dynamics. However one can simplify the situation by restricting

oneself to times that are much larger than a typical strong interaction scale and

assuming there is no interaction between final states4.

We now consider a Hamiltonian

H = H0 + Hw , (2.7)

such that |B0〉, |B0〉 and |fn〉 are eigenstates of H0; i.e.,

H0|B0〉 = mB0 |B0〉 , H0|B0〉 = mB0 |B0〉 , and H0|fn〉 = En|fn〉 ,

and Hw is a perturbative interaction that induces |B0〉 or |B0〉 → |fn〉, a |∆B| = 1

transition, and/or |B0〉 ↔ |B0〉, a |∆B| = 2 transition. Considering an initial state

4This is called the Weisskopf-Wigner approximation [23].



20 CHAPTER 2. THEORY AND PHENOMENOLOGY OVERVIEW

only containing |B0〉 and |B0〉, and a time scale much longer than the reciprocal of

the energy difference between the initial state and any intermediate states, one can

obtain the matrix element of Hw between initial state |i〉 and final state |f〉 using

the second-order time-dependent perturbation calculation,

(Hw)fi = 〈f |Hw|i〉 + P
∑

n

〈f |Hw|fn〉〈fn|Hw|i〉
mB − En

−iπ
∑

n

〈f |Hw|fn〉〈fn|Hw|i〉 · δ(mB −Ef )

(2.8)

where mB = (mB0 −mB0)/2 and P stands for the principal value. The summation

here is in a general sense. If the final or intermediate states have continuous spectra,

the summation should read an integral.

One can then write down a time-dependent equation on the B0-B0 subspace,

ih̄
∂

∂t
ψ(t) = Hψ(t) , ψ(t) = a(t)|B0〉 + b(t)|B0〉 =


a(t)
b(t)


 . (2.9)

The 2× 2 matrix H can be expressed in terms of two Hermitian matrices M and Γ,

H = M− i

2
Γ =


 M11 − i

2
Γ11 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗

12 M22 − i
2
Γ22


 . (2.10)

H is generally not Hermitian since it only describes a subspace of the infinite-

dimensional basis space.
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Comparing Eq. 2.10 and Eq. 2.8 with |i〉 =|B0〉 and |f〉 =|B0〉, one can obtain

M11 = mB0 + 〈B0|Hw|B0〉 + P
∑

n

|〈fn|Hw|B0〉|2
mB − En

(2.11)

M22 = mB0 + 〈B0|Hw|B0〉 + P
∑

n

|〈fn|Hw|B0〉|2
mB − En

(2.12)

M12 = M∗
21 = 〈B0|Hw|B0〉 + P

∑
n

〈B0|Hw|fn〉〈fn|Hw|B0〉
mB −En

(2.13)

Γ11 = 2π
∑

n

|〈fn|Hw|B0〉|2 · δ(mB − Ef) (2.14)

Γ22 = 2π
∑

n

|〈fn|Hw|B0〉|2 · δ(mB − Ef) (2.15)

Γ12 = Γ∗
21 = 2π

∑
n

〈B0|Hw|fn〉〈fn|Hw|B0〉 · δ(mB −Ef ) (2.16)

The matrix elements of Hw in the B0, B0 subspace; i.e., 〈B0 orB0| Hw |B0 orB0〉 rep-

resent the direct “superweak” transitions [24], and are not expected in the Standard

Model.

If the CPT symmetry is conserved, which is the consequence of the Lorentz

symmetry of local quantum theories [21], the diagonal elements of the 2 × 2 matrix

in Eq. 2.10 are identical; i.e., M11 = M22 (that is, mB0 = mB0) and Γ11 = Γ22. The

eigenstates of Eq. 2.9 can be written as

|B±〉 = p|B0〉 ± q|B0〉 , (2.17)

with |p|2 + |q|2 = 1. The eigenvalues µ± and p, q can be solved for,

ω± = M − i

2
Γ ±

√
H12H21

= M − i

2
Γ ±

√(
M12 − i

2
Γ12

)(
M∗

12 −
i

2
Γ∗

12

) (2.18)



22 CHAPTER 2. THEORY AND PHENOMENOLOGY OVERVIEW

where M = M11 = M22 and Γ = Γ11 = Γ22, and

q

p
=

(
H21

H12

)1/2

=

(
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

)1/2

. (2.19)

Since the eigenvalues show up in the exponent in a time-dependent quantum state,

e−iωt, the real part of the eigenvalue is the mass term and the imaginary part is half

the negative decay rate. Therefore one can write

M± = (ω±) = M ±[(H12H21)
1/2] ,

Γ± = −2 · �(ω±) = Γ ∓ 2 · �[(H12H21)
1/2] . (2.20)

Since one mass eigenstate is heavier than the other, we can call |B+〉 the B-heavy

(|BH〉) and |B−〉 the B-light (|BL〉), and define ∆M ≡ MH −ML = M+ −M− and

∆Γ ≡ ΓH − ΓL = Γ+ − Γ−. ∆M and ∆Γ satisfy

∆M2 − 1

4
∆Γ2 = 4

(
|M12|2 − 1

4
|Γ12|2

)

∆M∆Γ = 4(M12Γ
∗
12) .

Eq. 2.19 can be expressed as

q

p
=

∆M − i
2
∆Γ

2
(
M12 − i

2
Γ12

) =
2
(
M∗

12 − i
2
Γ∗

12

)
∆M − i

2
∆Γ

.

As shown in Eq. 2.11–2.16, the intermediate states that contribute to the matrix

elements of M are virtual; i.e., their energy can be different from the B meson mass,

while those contribute to Γ are real (on-shell); i.e., they have the same energies as the

B meson mass and thus represent real decays. The major contribution to the matrix

element M12 is given by the box diagrams (Fig. 1.1) that contain top quarks in the

loop, due to the large mass of the top quark, and the result shows that M12 ∝ m2
t .
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More details will be given in the following paragraphs. On the other hand, the box

diagrams can also provide a good approximation for Γ12, but the internal quarks can

only be up and charm quarks because the top quark is too heavy so that it cannot

contribute to on-shell intermediate states. Because the charm and up quarks are

considerably lighter than the bottom quark, the mass of the latter sets the scale, and

it leads to Γ12 ∝ m2
b . Therefore,

∣∣∣∣ Γ12

M12

∣∣∣∣ = O
(
m2

b

m2
t

)
� 1 . (2.21)

With this approximation, the mass and decay rate differences of two mass eigenstates

and q/p become simply

∆M = 2|M12| , ∆Γ = 2(M12Γ
∗
12)/|M12| . (2.22)

and
q

p
=

M∗
12

|M12|
(

1 − 1

2
�
(

Γ12

M12

))
=

M∗
12

|M12|
(
1 + O (10−3

))
. (2.23)

From Eq. 2.21 and 2.22, we can see that ∆Γ � ∆M . Currently ∆Γ has not been

measured. On the other hand, ∆M for B0 has been measured quite precisely [6],

xd ≡ ∆md/Γd � 0.77 .

This also means ∆Γ � Γ.
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2.3.2 Neutral B decay time evolution

Any neutral B states can be written as a superposition of two mass eigenstates,

|BH(t)〉 = e−ΓH t/2e−iMH t|BH(0)〉 (2.24)

|BL(t)〉 = e−ΓLt/2e−iMLt|BL(0)〉 . (2.25)

The state that is purely |B0〉 at t = 0, denoted as |B0
phys(t)〉, evolves into a mixed

state of |B0〉 and |B0〉,

|B0
phys(t)〉 =

1

2p
(|BL(t)〉 + |BH(t)〉) = g+(t)|B0〉 + (q/p)g−(t)|B0〉 . (2.26)

Likewise

|B0
phys(t)〉 = (p/q)g−(t)|B0〉 + g+(t)|B0〉 . (2.27)

The time dependent functions g±(t) are given by

g+(t) = e−Γt/2e−iMt cos

[(
∆M − i

∆Γ

2

)
t/2

]
(2.28)

g−(t) = e−Γt/2e−iMti sin

[(
∆M − i

∆Γ

2

)
t/2

]
, (2.29)

where M = (MH +ML)/2, Γ = (ΓH + ΓL)/2, and ∆M = MH −ML, ∆Γ = ΓH − ΓL.

In order to study the decay probability, the amplitudes of a B0 or B0 decaying

to an arbitrary final state f are introduced and denoted as Af ≡ 〈f |H|B0〉, and

Af ≡ 〈f |H|B0〉. The decay rate of a B0 or B0 created at t = 0 to the final state f

at time t is then

|〈f |H|B0
phys(t)〉|2 = |g+(t)Af + (q/p)g−(t)Af |2 (2.30)

|〈f |H|B0
phys(t)〉|2 = |(p/q)g−(t)Af + g+(t)Af |2 (2.31)
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In reality, the branching ratio of a B0 decaying to a final state that a B0 can also

decay into is very small (O (10−3)). So to a good approximation, the sum of branching

ratios of those final states with Af �= 0 and Af = 0 is unity. Therefore, the probability

of observing a state that was created as a B0 decaying to a final state that can only

be originated from B0 is

∑
f, Af=0

|〈f |H|B0
phys(t)〉|2 =

∣∣∣∣qpg−(t)

∣∣∣∣
2

=
1

2

∣∣∣∣qp
∣∣∣∣
2

e−Γt [cosh(∆Γt/2) − cos(∆Mt)] .

(2.32)

We call this a mixed event as it decays as a different flavor of b from what was

created. Similarly the probability of |B0
phys(t)〉 decaying to a final state that can only

be originated from B0 is

∑
f, Af =0

|〈f |H|B0
phys(t)〉|2 = |g+(t)|2

=
1

2
e−Γt [cosh(∆Γt/2) + cos(∆Mt)] .

(2.33)

We call this an unmixed event. Exchanging p and q in Eq. 2.32, one gets the prob-

ability of observing a mixed event from |B0
phys(t)〉. The unmixed probability for

|B0
phys(t)〉 is the same as |B0

phys(t)〉.

If CP is conserved, the mass eigenstates must also be CP eigenstates. We can

write down the CP transformation on |B0〉 and |B0〉 with a certain phase convention,

CP |B0〉 = e−iξ|B0〉 , CP |B0〉 = e+iξ|B0〉 .
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If we let CP |BH〉 = ηH|BH〉 and CP |BL〉 = ηL|BL〉, we find

q

p
=
p

q
e−2iξ ,

which means q/p is a pure phase (|q/p| = 1). Therefore if |q/p| �= 1, we have

CP violation. This type of CP violation is called “CP violation in mixing”, which

results from the mass eigenstates being different from the CP eigenstates. In the

neutral K system, this type of CP violation has been observed unambiguously [18].

CP violation in mixing can be tested with semileptonic decays by examining the

asymmetry

Γ(|B0
phys(t)〉 → �+ν�X) − Γ(|B0

phys(t)〉 → �−ν�X)

Γ(|B0
phys(t)〉 → �+ν�X) + Γ(|B0

phys(t)〉 → �−ν�X)
=

1 − |q/p|4
1 + |q/p|4 . (2.34)

This equation basically probes the asymmetry between |B0〉 → |B0〉 → f and |B0〉 →
|B0〉 → f .

In the analysis described in this thesis, ∆Γ is assumed to be negligible and CP

violation in mixing is ignored. After proper normalization, the probability of observ-

ing a unmixed (“+” sign) or mixed (“−” sign) event from a state that was created

as a pure |B0〉 or |B0〉 is

P±(t) =
e−Γ|∆t|

4τ
[1 ± cos(∆M∆t)] (2.35)

where τ = 1/Γ is the average lifetime, and the decay time t is replaced by the decay

time difference ∆t, which is a signed quantity. An extra factor of 1/2 is due to the

fact that the domain of ∆t is now (−∞,+∞), instead of (0,+∞).
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The time integrated mixing probability can be obtained by comparing the inte-

grals of Eq. 2.32 and 2.33,

χB0→B0

=

∫∞
0
dt|〈B0|B0

phys(t)〉|2∫∞
0
dt|〈B0|B0

phys(t)〉|2 +
∫∞

0
dt|〈B0|B0

phys(t)〉|2

=
|q/p|2(x2 + y2)

|q/p|2(x2 + y2) + 2 + x2 − y2
,

(2.36)

where x = ∆M/Γ and y = ∆Γ/(2Γ). Again, exchanging q and p, one can get χB0→B0
.

2.3.3 Standard Model calculation of ∆M

As mentioned before, the matrix element M12 can be calculated from box diagrams.

The amplitude is roughly proportional to the masses of the two quarks in the loop.

Therefore, the contributions of the diagrams with one or two quark lines being up

or charm quark are negligible compared to the one with two top quarks.

With a theoretical tool called operator product expansion (OPE) [25], one can

develop a low-energy effective Hamiltonian H |∆B|=2 that uses a local |∆B| = 2 four

quark operator, Q =dγν(1 − γ5)bdγν(1 − γ5)b. M12 is given by

M12 =
〈B0|H |∆B|=2|B0〉

2mB

(
1 + O

(
m2

b

MW

))
. (2.37)

The result is of the form

H |∆B|=2 =

(
GF

4π

)2

(VtbV
∗

td
)2M2

WS

(
m2

t

M2
W

)
ηBbB(µ)Q(µ) + h.c. , (2.38)

where the function S(x) is the box diagram calculation,

S(x) = x

(
1

4
+

9

4(1 − x)
− 3

2(1 − x)2

)
− 3

2

(
x

1 − x

)3

ln x ,
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and ηB and bB(µ) contain the short-distance QCD corrections. µ is the renormaliza-

tion scale. The matrix element of the local operator Q between two hadronic states

〈B0|Q|B0〉 depends on µ as well, and can be parameterized as

〈B0|Q(µ)|B0〉 =
8

3
BB(µ)f 2

Bm
2
B =

8

3

B̂B

bB(µ)
f 2

Bm
2
B , (2.39)

where fB is the decay constant and B̂B the bag constant. The physical quantity

should not depend on the unphysical parameter µ. Therefore, bB(µ) should be

canceled in Eq. 2.38, and B̂B does not depend on µ. However, in practice, such

calculations involves approximations, so the dependence still exists, and therefore

a “reasonable” range of µ is considered to estimate the theoretical uncertainties.

Combining Eq. 2.39, 2.38 and 2.37, one can obtain the mass difference of two mass

eigenstates

∆md = 2|M12| =
G2

F

6π2
ηBmBB̂Bf

2
BM

2
WS

(
m2

t

M2
W

)
|VtbV

∗
td|2 . (2.40)

The measurement of ∆md can constrain the length of one side of the unitary triangle

shown in Fig. 2.1, from (0,1) to (ρ, η), i.e., |VtdV
∗

tb
|/|VcdV

∗
cb
|. Among these CKM matrix

elements, |Vcd|, |Vcb| and |Vtb| are much better known than |Vtd|. Therefore ∆md can

in principle provide a constraint on |Vtd|. However, currently the best estimates

of fB and B̂B, which are from lattice QCD calculations [26, 27], have much larger

uncertainties (σ(fB

√
B̂B) ∼ 15%) than the experimental uncertainty on ∆md (2%).

The same formalism can be applies to Bs mixing. The only difference is that Bs

contains an s quark instead of a d quark. The mass difference ∆ms takes the same

formula as Eq. 2.40, with |Vtd|2mBB̂Bf
2
B replaced by |Vts|2mBsB̂Bsf

2
Bs

. The lattice
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calculation of the ratio

ξ ≡
(
fBs

√
B̂Bs

)
/

(
fBd

√
B̂Bd

)
(2.41)

is more precise than the individual quantities (σ(ξ) � 4–8% [26, 27, 28]). Therefore,

the ratio of ∆ms to ∆md,

∆ms

∆md
=
mBs

mBd

ξ2 |Vts|
|Vtd| =

1

λ

mBs

mBd

ξ2 1

(1 − ρ)2 + η2 , (2.42)

can provide a much better constraint on |Vtd|. Presently only the lower limit of ∆ms

is available [6].

2.3.4 Coherent BB state

At the PEP-II e+e− collider, the B0 and B0 mesons are produced in pairs from Υ(4S)

decays. A general state consisting of two neutral B mesons can be expressed in terms

of products of mass eigenstates,

|BBphys(t1, t2)〉 = c1e
−i(ω+t1+ω−t2)|B(1)

+ B
(2)
− 〉 + c2e

−i(ω−t1+ω+t2)|B(1)
− B

(2)
+ 〉 ,

where t1 and t2 are the proper time of |B(1)〉 and |B(2)〉, respectively. When spin-0 B

mesons are produced from a spin-1 Υ(4S) decay, they must be in an antisymmetric

p-wave state (L = 1). If they were to decay simultaneously (t1 = t2) into the same

bosonic final state f , there would be two identical bosonic states in an antisymmetric

state. It is forbidden according to Bose statistics [29]. Therefore 〈ff |BBphys(t, t)〉 =

0 in this case, which requires c1 = −c2, that is,

|BBL=1(t1, t2)〉 = e−i(ω+t1+ω−t2)|B(1)
+ B

(2)
− 〉 − e−i(ω−t1+ω+t2)|B(1)

− B
(2)
+ 〉

= e−i2ωt
[
e+i∆ω∆t|B(1)

+ B
(2)
− 〉 − e−i∆ω∆t|B(1)

− B
(2)
+ 〉
]
,

(2.43)
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in which the variables in the second line have been changed to

t ≡ t1 + t2
2

, ∆t ≡ t2 − t1 ,

and

ω ≡ ω+ + ω−
2

= M − i

2
Γ , ∆ω ≡ ω+ − ω−

2
=

1

2

(
∆M − i

2
∆Γ

)
. (2.44)

If one B decays to a final state f1 at time t1, the resulting partially projected state

is

〈f1|BBL=1(t1, t2)〉 = e−i2ωt
[
e+i∆ω∆t〈f1|B(1)

+ 〉 · |B(2)
− 〉 − e−i∆ω∆t〈f1|B(1)

− 〉 · |B(2)
+ 〉
]
,

(2.45)

We define A1 ≡ 〈f1|B0〉 and A1 ≡ 〈f1|B0〉, then

〈f1|B±〉 = pA1 ± qA1 .

Eq. 2.45 can be written in terms of A and A,

〈f1|BBL=1(t1, t2)〉 = e−i2ωt
{
q
[
e−i∆ω∆t|B(2)

+ 〉 + e+i∆ω∆t|B(2)
− 〉
]
A1

− p
[
e−i∆ω∆t|B(2)

+ 〉 − e+i∆ω∆t|B(2)
− 〉
]
A1

}
,

(2.46)

Using Eq. 2.26–2.29, Eq. 2.44, and t = t1 + ∆t/2, one can get

〈f1|BBL=1(t1,∆t)〉 = 2e−i2ωt1pq
[|B0

phys(∆t)〉 · A1 − |B0
phys(∆t)〉 · A1

]
(2.47)

If the state f1 can only be originated from B0 not B0, then f1 can “tag” the flavor

of |B(1)〉 as a B0, and the amplitude A1 = 0. Therefore Eq. 2.47 indicates that the

state at ∆t = 0 is a pure B0. This describes the picture that when a B in this L = 1
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coherent state decays to a flavor eigenstate, the wave function “collapses” to a B

with the opposite flavor.

2.4 Lifetime

2.4.1 Naive expectation

The lifetime of b hadrons, of order picosecond was much longer than anticipated

when it was first measured in 1983 [30, 31]. The b hadron decay width is dominated

by the total width of a b quark. Naively, one can scale the expression of the total

width of a muon decay to estimate the b quark decay width, which is dominated by

the b→ c transition,

Γµ =
GF

192π3
m5

µ =⇒ Γb ∼ GF

192π3
m5

b |Vcb|2 × (2 × 3 + 3) , (2.48)

where the factor of 2×3 comes from two hadronic channels at quark level (the virtual

W−∗ →c s and u d), each with three colors, and the additional factor of 3 from three

leptonic channels (the virtual W−∗ → e− νe, µ
− νµ, and τ− ντ). All these particles

in the final states are assumed to be much lighter than mb for this estimation. The

b quark lifetime is then

τb ∼ τµ(mµ/mb)
5

9|Vcb|2 � 10−15

|Vcb|2 s .

This means that |Vcb| is about 1/30, which is of the order of sin2 θC . |Vcb| is more

suppressed than the sin θC suppression expected for inter-family transitions in the

early 1980’s.
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2.4.2 OPE and spectator model

The total width of a hadron Hb containing a b quark can be written in terms of

the imaginary part of the forward matrix element of the transition operator by the

optical theorem,

Γ(Hb → X) =
1

mHb

�
[
〈Hb|T̂ |Hb〉

]
,

where the transition operator T̂ is given by the time-ordered product T of the relevant

effective weak Hamiltonian Heff ,

T̂ = i

∫
d4xT [Heff(x)Heff(0)] . (2.49)

The dominant space-time separation x is related to the inverse of the energy release,

which is close to the mass of the b quark. One can construct an operator product

expansion (OPE) [25] for the bilocal transition operator (Eq. 2.49) and expand it as

a series of local operators, whose coefficients contain inverse powers of the b quark

mass. The result of the inclusive decay rate can be written [32, 33, 34],

Γ(Hb → X) = |VCKM|2G
2
Fm

5
b

192π3

{
c3

(
1 − µπ(Hb)

2m2
b

)
+ c5

µG(Hb)

2m2
b

+ O
(

1

m3
b

)}
,

(2.50)

where µπ(Hb) and µG(Hb) parameterize the matrix elements of the kinetic-energy

and the chromo-magnetic operators, respectively.

The leading corrections of order 1/m3
b are called spectator effects [5], which is

the effect of a light constituent quark participating in the weak process. This effect

contributes directly to the differences in the lifetimes of different b-hadrons. It is

suppressed by 1/m3
b because the light quark has to be very close to the b quark, and

the b quark inside a hadron only occupies a volume of O ((ΛOCD/mb)
3).
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Figure 2.3: Diagrams for spectator effect. Left, Pauli-interference diagram (for B+).
Right, W -exchange diagram (for B0).

The spectator effects arise from diagrams shown in Fig. 2.3, referred to as Pauli-

interference and W -exchange diagrams. They contribute differently for B0 and B+

mesons. For the Pauli-interference diagram, the two u quarks in the final state

interfere with each other, and thus have a contribution in addition to the simple tree

diagram.

Current experimental result shows that the lifetime of Λb is shorter that that

of B0 by about 20%, which cannot be accounted for by theoretical calculations.

Other lifetime ratios, such as τ(B+)/τ(B0) and τ(Bs)/τ(B
0) are consistent with

the calculations, however the experiment precisions are not high enough to probe in

detail the model dependent calculations.

2.5 B Semileptonic Decays

The signal for this analysis is defined as B0B0 events in which at least one B decays

into a final state satisfying the following criteria: The final state contains a D∗±

and either an electron or a muon of the opposite charge produced by W∓ decay;

the D∗ and lepton originate from a common vertex, within the detector resolution;

and those decays that have the same time-dependent decay structure as the mode

B0 → D∗+�−ν�.

With this definition, the D∗ and lepton must either be the direct decay products
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of the parent B

B0 → D∗+�−ν� (X) ,

or else be the secondary decay products of a short-lived intermediate resonance. The

only types of resonances expected to contribute are the radially and orbitally excited

D states (Yc = D1
+, D′

1
+, D∗

2
+):

B0 → Yc �
−ν� (X) , Yc → D∗+ X ′ .

Table 2.2 summarizes the signal branching ratios which are used in the Monte

Carlo simulations, and defines the signal categories used in this thesis.

Table 2.2: Signal decay modes and their branching fractions in the default generic
Monte Carlo. The branching ratios for the excited D resonances (D1

+, D′
1
+, D∗

2
+)

include their branching ratio into D∗+π0. The branching ratio for radiative decays
B0 → D∗+e−νe γ(γ . . .) is not an explicit model parameter but depends on cutoff
parameters in the PHOTOS [35] decay model. The fractions are relative to the total
signal branching ratio of 10.88%.

Type Decay Mode Branching Ratio Fraction

1 B0 → D∗+e−νe 4.04% 37%
2 B0 → D∗+µ−νµ 4.90% 45%

3 B0 → D∗+e−νe γ(γ . . .) 0.860% 7.9%

4 B0 → D∗+�−ν� π
0 (γ . . .) 0.200% 1.8%

5 B0 → D′
1
+�−ν� (γ . . .) 0.467% 4.3%

6 B0 → D1
+�−ν� (γ . . .) 0.267% 2.5%

7 B0 → D∗
2
+�−ν� (γ . . .) 0.144% 1.3%

TOTAL 10.88% 100%

The phase space of semileptonic decays can be parametrized as

dΦ
(
B0 → X+�−ν�

) ∝ dÊ� dQ̂
2 ,
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where X represents any hadronic state, Ê� is the lepton energy in the B rest frame

and Q̂2 the W± invariant mass, calculated as m2
B0 +m2

X −2mB0ÊX , where ÊX is the

hadron energy in the B rest frame. The variables ÊX and Q̂2 are useful to disentangle

the effects of phase space and dynamics. Figure 2.4 compares the distribution of these

variables (“Dalitz plot”) for three-body phase space and for B0 → D∗+�−ν� decays

with a heavy quark effective theory [36] model of form factors 5

The magnitude of the hadron momentum, p̂X , and the angle between the direction

of the hadron and lepton momenta, θ̂X,�, (both defined in the B rest frame) are

functions of the Dalitz variables,

p̂X =
1

2mB

√(
m2

B
− (Q̂+mX)2

) (
m2

B
− (Q̂−mX)2

)

cos θ̂X,� =
Q̂2 +m2

�
− Ê�(m

2
B

+m2
X
− Q̂2)/mB

2p̂X p̂�

,

and so selection criteria applied to more than two of the following variables are not

independent: Q̂2, Ê�, p̂X , and cos θ̂X,�. Figure 2.5 shows the distribution of p̂X and

cos θ̂X,� for B0 → D∗+�−ν� decays with known form factors and generic three-body

decays whose probability is uniform on the phase space. Figure 2.5(a) shows that

the hadron momentum has a sharp edge at the upper kinematic limit, although

the spectrum is significantly softened by the form factors and helicity correlations.

Figure 2.5(b) shows that the D∗ and lepton tend to be back-to-back in the B decay

frame, and that this effect is mostly due to the phase space constraints.

All kinematic quantities discussed in this section so far are defined in the B rest

frame. Since the mass of Υ(4S) state is just above the threshold of two open B

mesons, the B momentum in the Υ(4S) rest frame is very small, ∼ 340MeV. To

a good approximation, the B rest frame and the Υ(4S) rest frame are equivalent.

Since in general the B flight direction in the Υ(4S) frame is not known, the Υ(4S)

5Form factor values: ρ2 = 0.92, R1 = 1.18, R2 = 0.72.
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Figure 2.4: Dalitz distribution of B0 → D∗+�−ν� using (a) the form factors and helic-
ity correlations, or (b) three-body phase space. The lower plots show the normalized
projections of these variables: (c) Q̂2, and (d) Ê�.

frame is often used for calculating variables that should have been evaluated in the

B rest frame.

Since the neutrino cannot be detected directly in BABAR, its information must be

inferred from other kinematic quantities. The mass of the neutrino can be calculated
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Figure 2.5: Normalized distributions of (a) the hadron momentum, p̂X , and (b) the
angle between the hadron and lepton momenta, cos θ̂X,�, measured in the B0 decay
frame. The plots compare the distributions calculated using either three-body phase
space, or else including the full decay dynamics.

as

m2
ν = p2

ν = (pB0 − pX�)
2

= m2
B0 +m2

X� − 2EB0EX� + 2|�pB0 ||�pX�| cos θB0,X� .
(2.51)

All quantities on the right hand side of the equal sign in the second line of Eq. 2.51

can be measured or calculated in the Υ(4S) rest frame, except cos θB0,X�, which

has a range of (−1,1). If the missing mass is calculated as Mmiss = m2
B0 + m2

X� −
2EB0EX�, its distribution has a peak around zero and an RMS of the order of 1 GeV2.

Apparently, the RMS of Mmiss distribution depends on the coefficient of cos θB0,X�,

i.e., |�pB0 ||�pX�|. Some analyses (for example [37]) select events with a variable Mmiss

range according to |�pB0 ||�pX�|) to increase sensitivity.

In the analysis described in this thesis, an alternative but equivalent approach is

used. The expression in Eq. 2.51 is equal to zero if the only missing particle in the
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event is a massless neutrino. Therefore the quantity

−m2
B0 −m2

X� + 2EB0EX�

2|�pB0 ||�pX�| = cos θB0,X� (2.52)

is in the range (−1,+1) for signal, while for background the distribution can extend

beyond this range. Eq. 2.52 does not need the knowledge of B direction in the Υ(4S)

rest frame, which can not be measured in the case of semileptonic decays. Only the

magnitude of the B momentum is needed, which can be calculated from the center-

of-mass energy and the B mass. The events outside the physical range are removed

to enhance signal to background ratio.



Chapter 3

Current Experimental Status

In this chapter I summarize the current experimental status and analysis techniques

of B0 lifetime and B0-B0 mixing frequency measurements.

3.1 Mixing Measurements

The phenomenon of particle-antiparitcle mixing in the neutral B meson system was

first observed in 1987 by the UA1 [1] and ARGUS [2] collaborations. Both experi-

ments are based on detecting same-sign high (transverse) momentum lepton pairs,

which are predominately from B semileptonic decays. The time-dependent B0 oscil-

lation frequency was first reported by the ALEPH collaboration [38] in 1993. Since

then both time-integrated and time-dependent techniques [9] have been used to mea-

sure the B0 B0 mixing frequency. These experiments are operated at the Υ(4S) res-

onance or the Z resonance at e+e− colliders, or at higher center-of-mass energies at

hadron colliders. In this section, I summarize the techniques and results from major

experiments and the current world average value.

39
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3.1.1 Time-integrated measurements

The basic idea of the time-integrated technique is to directly measure the overall

mixing probability χd, which is the overall probability of a meson that is produced

as a B0 but decays to final states that can only originate from B0, or vice versa (see

Eq. 2.36), by counting the fraction of mixed events; that is, the fraction of events in

which b quarks in both B mesons that are created as opposite flavor decay as the

same flavor (one B going through a |∆B| = 2 process). Although B0 mixing was

discovered in a pp collider by the UA1 Collaboration at CERN (where B mesons are

created through qq → g∗ → bb and gg → bb process), by observing a non-zero χd, the

time-integrated method is mostly used in symmetric e+e− colliders whose center-of-

mass (c.m.) energy is equal to the Υ(4S) mass. At these colliders, B meson pairs are

created almost at rest; their time evolution is not measurable. Only time-integrated

results can be obtained.

Most time-integrated measurements have been made by the ARGUS [39, 40] and

CLEO [41, 42] Collaborations. Both use B mesons from e+e− → Υ(4S) → B0B0

process. One simple method is to measure the fraction of events with same-sign

lepton pairs among all dilepton events whose leptons are directly coming from B

mesons through semileptonic decays [41];

χd =
N(�±�±)

N(�±�±) +N(�±�∓)
.

The sign of the lepton indicates the sign of the virtualW in the b decay, which directly

identifies the flavor of the b quark. Since the B meson pairs from Υ(4S) decays

have opposite flavors, a pair of same-sign direct leptons indicates a mixed event.

The advantage of this method is that the branching fraction and the reconstruction

efficiency are high. The major source of systematic uncertainty is the estimation of

the B0B0 and B+B− fractions in Υ(4S) decays, since charged B mesons do not mix.
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Other sources of systematic uncertainty include b→ c→ � contamination, since the

lepton from the cascade charm decay has opposite sign to that of the primary lepton.

Assuming ∆Γ = 0 and |q/p| = 1, the mixing probability χd can be expressed as

χd = 1
2

x2
d

x2
d+1

(see Eq. 2.36), where xd = ∆md/Γ = ∆md × τB0 . Obviously, in order

to extract ∆md from χd, one needs an independent measurement of τB0 . However,

because the time-integrated mixing probability approaches 1/2 asymptotically as

∆m increases, the time-integrated measurement for Bs is not sensitive to ∆ms due

to its large value (xs ≡ ∆ms × τBs > 19.0 at 95% CL [6]). The mixing of Bs has

not been measured. It is virtually impossible to measure it with time-integrated

methods. The best hope lies in the time-dependent measurements.

Several other techniques are used to improve the B0 purity in dilepton samples.

The most commonly used method is to reconstruct the soft pion from B0 → D∗+�−ν,

D∗+ → D0π+ decay chain [41, 40]. In addition to dilepton events, partially recon-

structed hadronic events have also been used. CLEO [42] uses the sign of the π or ρ

in partially reconstructed B0 → D∗+ → π−, ρ−, D∗+ → D0π+ events (only direct π

(ρ) and soft π from D∗+ are reconstructed) to determine the flavor of the B and a

high-momentum lepton to tag the other B. These measurements greatly reduce the

systematic error due to charged B events in the data sample.

The most precise time-integrated measurement of χd has been made by CLEO [42].

They use 9.6 × 106 BB pairs and find χd = 0.198 ± 0.013 ± 0.014. This measure-

ment dominates the world average of χd using the time-integrated technique, which

is χd = 0.182 ± 0.015 [6]. This number corresponds to the oscillation frequency

∆md = (0.491 ± 0.033) ps−1 if we assume yd = 0 and use the world average B0

lifetime τB0 = (1.542± 0.016) ps [6] (χd = x2

2(1+x2)
, where x = ∆mdτB0). However, as

will be shown in Sec. 3.1.2, ∆md is better measured with time-dependent analyses.
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3.1.2 Time-dependent measurements

The time-dependent analyses study the oscillatory behavior of B0 mesons and ex-

tract the frequency ∆md directly. This method is used in experiments operated at

the Z mass (LEP [43, 44, 45] and SLD [46]), asymmetric B-factories at the Υ(4S)

resonance (BABAR and Belle [47]), and higher center-of-mass energy hadronic col-

liders (Tevatron [48]). The basic ingredients are the proper decay time of the B0

and the flavors of the B0 at the times of its creation and decay. The probability

of observing a B0 meson decaying in the originally produced state (unmixed, “+”

sign) and in the opposite state (mixed, “−” sign), at time t after its production is

proportional to 1 ± cos(∆mt).

The B0 is either fully or partially reconstructed. Fully (or exclusively) recon-

structed analyses usually use hadronic final states or semileptonic decays that con-

tain an open charm meson. Partially reconstructed analyses usually use the lepton

from semileptonic decays and/or the soft pion from D∗ or D∗ itself from B0 → D∗X,

or the topological information such as the detached secondary vertices.

The proper decay time of the B meson at LEP, SLD and Tevatron is measured

by t = mB

p
L, where L is the distance between the production vertex and the decay

vertex, and p is the momentum of the B. At these higher energy experiments,

the reconstruction efficiencies are usually much lower than those operated at Υ(4S),

therefore the fully reconstructed hadronic final states are rarely used because their

branching ratios are an order of magnitude or more smaller than the semileptonic

decays. As a result, the momentum of the B cannot be measured solely from the

detected final particles from the B. The momentum of the B can be calculated

with p =
√
E2

B −m2
B. The energy of the B (EB) can be measured from the c.m.

energy and/or jet energy, and the energies of objects that are not associated with the

reconstructed B. For a partial reconstruction analysis, extra care should be taken

to reject or reduce the weights of particles that belong to the B final state.
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At asymmetric energy B-factories (PEP-II and KEKB [47]), the Υ(4S) decays

to only a pair of B mesons. Both B meson move away from the production vertex

by a few hundred microns before they decay due to a boost in the beam direction,

〈βγ〉 � 0.55 for BABAR and 〈βγ〉 � 0.43 for Belle. Therefore, only the decay time

difference between the two B mesons is measurable, instead of the total time from

production to decay. The decay time difference ∆t is calculated with ∆t = ∆z/(βγc),

where ∆z is the separation between two decay vertices of the B mesons along the

beam direction. Because of the coherence between two B0 mesons from Υ(4S) decays

(see Sec. 2.3), when one B0 decays to a flavor eigenstate, the other one will have the

opposite flavor without a component of the other flavor. So one can start the timer

at the time of the first decay, and replace the decay time t with ∆t and maintain the

formalism for observing an unmixed or mixed event.

The flavors of the B0 meson at its production and decay are determined through

charge correlations between the b quark and the final states. The most commonly

used method is to use the charge of the lepton from b→� decays. Alternative methods

are to use the charge of charged kaons from b→c→s decays or the charged pion from

a D∗ produced from a B. These are what B-factories use to tag the B that is not

being reconstructed. Other methods such as jet-charge [49] and charge dipole [50]

are also used. The jet-charge method sums over charges of relevant tracks weighted

by a function of their momenta. the charge dipole method finds tracks associated

with primary, secondary and tertiary vertices, respectively, and use the fact that the

secondary vertex is more likely to be a B decay and the tertiary vertex is more likely

to be a charm decay. At a high-energy collider, one can tag the initial flavor of the

b quark that the reconstructed B candidate contains (same-side tag), as well as the

recoiling b quark (opposite-side tag). On the same side, the charge of a track from

the primary vertex is correlated with the production state of the B if that track is

a decay product of a B∗∗ or the first particle in the fragmentation chain. Jet-charge
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works on both side, while the charge dipole method only works on the opposite side.

The statistical significance of an oscillation signal can be approximated as [51]

S �
√
N/2fsig(1 − 2ω)e−(∆mσt)2/2 ,

where N and fsig are the total number of candidates and signal fraction, ω is the

total mistag probability, and σt is the resolution on proper time or proper time

difference. At high-energy colliders, the proper time resolution has two compo-

nents — one is the resolution of the decay length, typically about 0.05–0.3 ps; the

other is the relative momentum resolution σp/p, typically about 10–20% for par-

tially reconstructed decays. For B-factories, the decay time difference resolution is

dominated by the uncertainty of the vertex location, which is typically 1–1.5 ps be-

cause of the much smaller Lorentz boost. The mistag probability at LEP can reach

∼ 26%. For SLD it can reach ∼ 22% because the polarized beam produces a sizeable

forward-backward asymmetry in the Z →bb decays, which adds more information

for b-tagging. At BABAR and Belle, effective mistag probabilities of ∼ 24% for full

efficiency are reached.

The current published world average of ∆md is 0.489 ± 0.008 ps−1 [6], which is

dominated by the measurements at BABAR and Belle. The combined precision mea-

sured by these two B-factories is ±0.009 ps−1, while other high-energy experiments

contribute to the world average with a combined uncertainty of about ±0.016 ps−1.

3.2 Lifetime Measurements

The first measurement of the b hadron lifetime was by MAC [30, 31] in 1983.

Since then, like time-dependent mixing measurements, experiments at LEP [52, 53],

SLD [54], Tevatron and B-factories [55, 56] have significantly improved the precision.
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The techniques used for lifetime measurements are very similar to those used in

time-dependent mixing measurements, except the flavor tagging of the B meson at

its production is not necessary.

The current published world average of τB0 is 1.542±0.016 ps. The world average

precision is greatly improved recently by the measurement at B-factories, which have

a combined uncertainty of ±0.020 ps. The experiments at high-energy colliders over

the last decade contribute to the world average with a combined uncertainty of about

±0.025 ps.



Chapter 4

The BABAR Experiment

The analysis described in this thesis is based on data collected at the BABAR detec-

tor [57] at the PEP-II asymmetric-energy e+e− B-factory [8] at the Stanford Linear

Accelerator Center (SLAC) in California. The BABAR Collaboration consists of

approximately 600 physicists and engineers from 72 institutions in 9 countries. In

this chapter I describe the overall design of the BABAR detector, the PEP-II storage

rings [8, 58], the components of the BABAR detector, the trigger and data-acquisition

system.

4.1 Introduction

The BABAR experiment is designed for the systematic study of CP -violating asym-

metries in the decay of neutral B mesons to CP eigenstates. The detector is also

well suited for precision measurements of decays of bottom and charm mesons and

τ lepton, and for searches of rare processes that become accessible with the high

luminosity provided by the PEP-II B-factory.

The PEP-II B-factory is an asymmetric-energy e+e− collider operating at a

center-of-mass (c.m.) energy of 10.58 GeV, the peak of the Υ(4S) resonance, with

46
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a design luminosity of 3 × 1033 cm−2s−1 and above. In the PEP-II storage rings, a

9 GeV electron beam collides head on with a 3.1 GeV positron beam, resulting in a

Lorentz boost of βγ � 0.55 between the center-of-mass and laboratory frames. This

boost enables us to study the decay time difference of the two B mesons from decays

of the Υ(4S).

Decays of B mesons to CP eigenstates have very small branching ratios, typically

10−4 or less, and involve two or more charged particles and often one or more π0

mesons. To fully reconstructing these final states with high efficiency, the BABAR

detector has a large and uniform acceptance, and excellent momentum and energy

resolution and reconstruction efficiencies for both charged particles and photons over

a wide range of momentum. The detector also has very good vertex resolution, both

transverse and parallel to the beam direction.

Another crucial aspect of many studies in the BABAR experiment, including CP

violation and neutral B meson mixing, is the determination of the flavor of the second

B meson at the time of decay, which utilizes several flavor sensitive features, including

lepton charge, kaon charge and the soft pion from D∗ decay. Therefore, excellent

electron and muon identifications and kaon/pion separation are crucial features of

the BABAR detector.

Figure 4.1 shows the longitudinal cross section of the BABAR detector through

its center. Figure 4.2 shows the end view of the detector. A superconducting coil

provides a 1.5-T magnetic field. Inside the solenoid, charged particles are detected

and their momenta measured with a silicon vertex tracker (SVT) and a drift chamber

(DCH). The ionization energy loss (dE/dx) in both detectors is also used for particle

identification. Beyond the outer radius of the DCH is a detector of internally reflected

Cherenkov light (DIRC), which is used primarily for charged-hadron identification.

A CsI(Tl) electromagnetic calorimeter (EMC) located outside the DIRC is used to

detect photons and neutral hadrons, and also to identify electrons. Outside the
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solenoid is the instrumented flux return (IFR), which is used for the identification of

muons and neutral hadrons.

The right-hand coordinate system is anchored on the main tracking system, the

drift chamber, with the z-axis coinciding with its principal axis. The positive y-axis

points upward and the x-axis points away from the center of the PEP-II storage

rings. The beam axis near the interaction point (IP) is rotated relative to the z-axis

by about 20 mrad in the horizontal plane. The positive z direction is defined by

the direction of the high-energy beam (electron), except for the 20 mrad rotation.

To maximize the acceptance, the center of the whole detector is shifted by 0.37 m

relative to the IP along the direction of the high energy beam. The polar angle

coverage extends to within 350 mrad of the beam in the forward (+z) direction

and 400 mrad in the backward direction. The coverage is limited by components of

PEP-II, a pair of dipole magnets (B1).

4.2 The PEP-II Storage Rings

PEP-II is an e+e− storage ring designed to operate at a center-of-mass energy of 10.58

GeV, which corresponds to the peak of the Υ(4S) resonance, with high luminosity.

PEP-II utilizes the original PEP (Positron-Electron Project) beam pipe and magnets

for the high-energy electron storage ring (HER). The circumference of the ring is 2200

m. The low-energy positron ring (LER) is built on top of the HER for most of the

circumference except for about ±60 m from the interaction point, where the LER is

brought to the same horizontal plane as the HER.

The layout of the PEP-II storage ring and the two mile long accelerator is shown

in Fig. 4.3. The linear accelerator is capable of accelerating electrons and positions

to more than 90 GeV. For the operation of the B-factory, only a fraction of the linacs

are used. The parameters of electron and positron beams are shown in Table 4.1.
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Figure 4.1: BABAR detector longitudinal section.

The most challenging part of the the PEP-II design is the interaction region (IR) [59].

As can be seen in Fig. 4.4, because of the zero crossing angle design for the colliding

beams, a pair of bending magnets (B1) have to be placed very close to the IP to

avoid parasitic collisions. This compact design has great impacts on the design of the

BABAR detector. For example, the detector coverage is limited by the B1 magnets,

and the beam-induced backgrounds increase because the final bending of the beams,

which produces strong synchrotron radiations, and the materials near the IP, which

generate electromagnetic showers.

A set of radiation protection and monitoring systems are installed for the SVT,
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Figure 4.2: BABAR detector end view.

Figure 4.3: PEP-II and accelerator layout.
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Table 4.1: PEP-II beam parameters. Values are given both for the design and for
typical colliding beam operation in the first year. HER and LER refer to the high
energy electron and low energy positron ring, respectively. σLx , σLy and σLz refer to
the horizontal, vertical and longitudinal RMS size of the luminous region.

Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 0.7/1.3
Number of bunches 1658 553–829
Bunch spacing (ns) 4.2 6.3–10.5
σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz (mm) 9 9
Luminosity (1033 cm−2s−1) 3 2.5
Luminosity (pb−1/d) 135 120

the DCH electronics and the EMC, to reduce the impact of the beam-induced

background on the experiment and to prolong the lifetimes of the detector com-

ponents. The radiation doses are measured with silicon photodiodes. For the SVT,

12 1 cm×1 cm×300µm diodes are arranged in three horizontal planes, at, above, and

below the beam level, with four diodes in each plane, placed at z = +12.1 cm and

z = −8.5 cm and at a radial distance of 3 cm from the beam line, beneath the SVT

readout electronics [60]. The increase of diode leakage current, due to the electron-

hole pairs generated by the passing of photons or charged particles, is proportional

to the dose rate. For the DCH and the EMC, the PIN diodes are mounted on small

CsI(Tl) crystals. The radiation dose is approximately proportional to the photons

generated in the crystal. These diodes are installed in sets of four, three on the front

face of the endcap calorimeter and one set on the backward end plate of the DCH.

It takes approximately 10–15 minutes to fill the beams. PEP-II typically operates

on a 40–50 minute fill cycle. At the end of each fill, it takes about three minutes

to refill the beams. While most of the data are recorded at the peak of the Υ(4S)
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Figure 4.4: The components near the interaction region, including the final bending
magnets (B1), focusing magnets, synchrotron radiation masks, and the HER/LER
trajectories.

resonance, about 12% are taken at a center-of-mass energy 40 MeV lower to allow

for studies of non-BB background. Energy scans are performed to find the peak

energy of the Υ(4S) by calculating the ratio of the detected multi-hadron event to

the di-muon events (see Fig. 4.5).

The relative luminosity is monitored by detecting radiative Bhabha scattering.

The absolute luminosity is calculated from data collected by BABAR with other QED

processes, such as e+e− and µ+µ− pairs. For a data sample of 1 fb−1, the statistical

error is less than 1%. The total systematic errors for the absolute luminosity is about

1.5%.

The total number of BB pairs detected by BABAR is estimated from the selected

multi-hadron and µ+µ− events in both on- and off-resonance data [61] with the
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BBoff-resonance

Figure 4.5: Υ(4S) energy scan. The PEP-II is normally operated at the peak, ∆E =
0. About 12% of data are taken at 40MeV below the peak, indicated by the green
arrow on the left. The BB threshold is indicated by the red arrow on the right.

equation,

NΥ(4S) = (NMH −Nµ+µ− ·Roff · κ)/εBB ,

where NMH and Nµ+µ− are numbers of selected multi-hadron and µ+µ− events, Roff

is the multi-hadron to µ+µ− events ratio for off-resonance data, κ is correction factor

of O (1), and εBB is the efficiency of BB events to satisfy the selection criteria. The

result of the total number of Υ(4S) mesons in data taken in years 1999–2000 is

(22.74 ± 0.36) × 106.
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4.3 Silicon Vertex Tracker

The innermost component of BABAR is the silicon vertex tracker (SVT), located just

outside the beryllium beam pipe, and inside a support tube with a radius of about

22 cm, whose central section is fabricated from a carbon-fiber epoxy composite. The

SVT provides a vertex resolution of 80 µm or better for a fully reconstructed B

decay. It also serves as a stand-alone tracking system for particles with transverse

momentum less than 120 MeV, the minimum that can be measured reliably in the

DCH alone.

The SVT consists of five layers of 300 µm thick, double-sided silicon strip sensors

organized in 6, 6, 6, 16, and 18 modules, respectively. Each module consists of four

(layer 1 and 2) to eight (layer 5) sensors. The strips on the opposite sides of the

module are orthogonal to each other. The strips that are parallel to the beam axis

measure φ of a hit (φ strips). The ones that are transverse to the beam axis measure

z position (z strips). The modules of the inner three layers are straight, while the

modules of layer 4 and 5 are arch-shape. The schematic views of SVT are shown in

Fig. 4.6 and 4.7,

The modules are divided electrically into two half-modules, which are read out

at the ends. The sensors have five different shapes, sizes ranging from 43 × 42 mm2

(z×φ) to 68×53 mm2. Two identical trapezoidal sensors are added to form the arch

modules. The φ strips of sensors in the same half-module are electrically connected

with wire bonds to form a single readout strip. This results in a total strip length

up to 140 mm (240 mm) in the inner (outer) layers. The length of the z strip is

about 50 mm in inner layers. For layer 4 and 5 the number of z strips exceeds the

number of electronics channels available, requiring two z strips on different sensors

be electrically connected (ganged) to a single electronics channel. The total length

of these strips is about 100 mm. The readout pitch for z strips is 100 µm (210 µm)
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for layer 1–3 (layer 4, 5) and for φ 100 µm (110 µm) for layer 1, 4, 5 (layer 2, 3)

with one floating strip between readout strips. Parts of the φ sides of layer 1 (2) are

bounded at 50 µm (55 µm) pitch with no floating strip. The total number of readout

channels is approximately 150,000.

The total active silicon area is 0.96 m2 and the material traversed by particles is

about 4% of a radiation length. The geometrical acceptance of SVT is 90% of the

solid angle in the c.m. system, typically 86% are used in charged particle tracking.

The combined hardware and software efficiencies are about 97%, excluding defec-

tive readout sections (9 out of 208) that were damaged during the installation. As

shown in Fig. 4.8, the hit resolution for tracks at normal incidence is about 15 µm

for layer 1–3 and about 35 µm for outer layers in z coordinate, and about 10 µm for

layer 1 and 2 and about 20 µm for layer 3–5 in φ coordinate.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
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Bkwd.
support
cone

Front end 
electronics

Figure 4.6: Schematic view of SVT: longitudinal section
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Figure 4.8: SVT hit resolution in the z and φ coordinate in microns, plotted as a
function of track incident angle in degrees.

4.4 Drift Chamber

Outside the support tube is the drift chamber (DCH). The principal purpose of the

DCH is the efficient detection of charged particles and the measurement of their
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Figure 4.9: Longitudinal section of the DCH with principal dimensions; the chamber
center is offset by 370 mm from the interaction point (IP).

momenta and angles with high precision. The DCH also supply information for the

charged particle trigger with a maximum time jitter of 0.5 µs (Sec. 4.9). For low

momentum particles, the DCH also provide particle identification by measurement

of ionization energy loss (dE/dx).

Figure 4.9 shows the longitudinal cross section of the DCH with principal dimen-

sions. The DCH has 40 layers of small hexagonal cells providing up to 40 spatial

and ionization loss measurements for charged particles with transverse momentum

greater then 180 MeV. Longitudinal position information is obtained by placing the

wires in 24 of the 40 layers at small angles with respect to the z-axis. Particles

emitted at polar angles between 17.2◦ and 152.6◦ traverse at least half of the layers

of the chamber before exiting through the endplates. The gas used in the DCH is a

80:20 mixture of helium:isobutane.

The DCH consists of a total of 7,104 small hexagonal drift cells of 11.9 mm by

approximately 19.0 mm, arranged in 40 cylindrical layers. The layers are grouped

by four into ten superlayers. The stereo angles of the superlayers alternate between

axial (A) and stereo (U,V) pairs, in the order AUVAUVAUVA, as shown in Fig. 4.10.

Each cell consists of one sense wire surrounded by six field wires. The sense wires
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Figure 4.10: Schematic layout of drift cells for the four innermost superlayers. Lines
have been added between field wires to aid in visualization of the cell boundaries.
The numbers on the right side give the stereo angles (mrad) of sense wires in each
layer. The 1 mm-thick beryllium inner wall is shown inside of the first layer.
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Figure 4.11: DCH position resolution as a function of the drift distance in layer 18,
for tracks on the left and right side of the sense wire. The data are averaged over all
cells in the layer.

are made of tungsten-rhenium with 20 µm diameter. The field wires are made of

aluminum with a diameter of 120 µm. All wires are coated with gold. A positive

high voltage (nominal value is 1960 V) is applied to the sense wires, and the field

wires are at ground potential.

The typical position resolution of charged tracks as a function of the drift distance

is shown in Fig. 4.11. The results are based on multi-hadron events for data averaged

over all cells in layer 18.

The dE/dx, for charged particles traversing the DCH is derived from measure-

ment of the total charge collected in each drift cell through an extraction algorithm

with various corrections. The RMS resolution of the measured dE/dx is typically

7.5%.
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4.5 Cherenkov Light Detector

The detector of internally reflected Cherenkov light (DIRC) is a novel ring-imaging

Cherenkov detector, located outside the outer shell of the DCH. The principal pur-

pose of the DIRC is to provide good π/K separation from 0.7 to 4 GeV/c.

Figure 4.12 shows a schematic of the DIRC geometry that illustrates the principles

of light production, transport, and imaging. The radiator is a set of long, thin bars

made of synthetic, fused silica, with rectangular cross section. These bars also serve

as light guides for the light trapped in the radiator by total internal reflection. The

magnitudes of light angles are preserved by the parallel flat surfaces of the bars.

Mirror
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Trajectory
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Figure 4.12: Schematics of the DIRC fused silica radiator bar and imaging region.
Not shown is a 6 mrad angle on the bottom surface of the wedge (see text).

The mean index of refraction (n) of fused silica is 1.473. The Cherenkov angle

(θC) is related to n and the speed of charged particle (v) through the familiar relation

cos θC = 1/nβ, where β = v/c, and c = velocity of light. Therefore, by measuring

θC and the momentum of the track, one can identify the mass of the particle.
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For particles with β � 1, some photons will always lie within the limits of total

internal reflection, and will be transported to either or both ends of the bar, depend-

ing on the incident angle. A mirror is placed at the forward end, perpendicular to

the bar axis, to reflect incident photons to the backward end, where is instrumented.

Most photons that arrive at the instrumented end will emerge into a water-filled

expansion region, call the standoff box. The photons are detected by an array of

densely packed photo-multiplier tubes (PMTs), which are placed at a distance of

about 1.2 m form the bar end.

The bars are placed into 12 hermetically sealed containers called bar box. The

bar boxes are arranged in a 12-sided polygonal barrel. Each bar box contains 12

bars, for a total of 144 bars. Within a bar box the 12 bars are optically isolated

by a 150 µm air gap between neighboring bars. The bars are 17 mm-thick, 35 mm-

wide, and 4.9 m-long. Each bar is assembled from four 1.225 m pieces that are glued

end-to-end.

The standoff box is made of stainless steel, consisting of a cone, cylinder, and 12

sectors of PMTs. It contains about 6,000 liters of purified water, with an average

index of refraction of about 1.346. Each of the 12 PMT sectors contains 896 PMTs

with 20 mm-diameter, in a closely packed array inside the water volume. A hexagonal

light catcher cone is mounted in front of the photocathode of each PMT, which results

in an effective active surface area light collection fraction of about 90%. The support

structure and geometry of the DIRC are shown in Fig. 4.13 and 4.14.

The radiator bars subtend a solid angle corresponding to about 94% of the az-

imuth and 83% of the c.m. polar angle. The geometric contribution to the single

photon Cherenkov angle resolution due to the sizes of the bars and PMTs is about

7 mrad. This value is slightly larger than the rms spread of the photon production

and transmission dispersions. The overall single photon resolution is estimated to be

about 10 mrad.
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Figure 4.13: Exploded view of the DIRC mechanical support structure.

Figure 4.14: Elevation view of the nominal DIRC system geometry.
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About 80% of the light is maintained after a few hundreds of bounces along the

bars. The overall detection efficiency is dominated by the quantum efficiency of

PMTs (O (20%)). The expected number of photoelectrons (Npe) is about 28 for a

β = 1 particle entering normal to the surface at the center of a bar, and increases by

over a factor of two in the forward and backward direction.

An unbinned maximum likelihood formalism is used to incorporate all information

provided by the space and time measurements form the DIRC. Currently a likelihood

value of each of the five stable particle types (e, µ, π, K, p) is calculated if the track

passes through the active volume of the DIRC. The expected separation between

kaon and pions is about 4.2 σ at 3 GeV/c and about 2.5 σ at 4.2 GeV/c.

4.6 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) is designed to measure electromagnetic show-

ers with excellent efficiency, energy and angular resolution over the energy range from

20 MeV to 9 GeV. This capability allows the detection of photons from π0 and η

decays as well as from electromagnetic and radiative processes. The EMC is also a

major component for electron identification.

The EMC consists of 6,580 Thallium-doped CsI crystals, of which 5,760 crystals

are contained in a cylindrical barrel support structure arranged in 48 distinct rings,

and 820 crystals arranged in eight rings. The EMC has full coverage in azimuth and

extends in polar angle from 15.8◦ to 141.8◦ corresponding to a solid-angle coverage

of 90% in the c.m. system (see Fig. 4.15).

CsI crystals are doped with 0.1% thallium. They are machined into tapered

trapezoids. The transverse dimensions of the crystals vary. The typical area of the

front face is 4.7 × 4.7 cm2 and the back face area is 6.1 × 6.0 cm2. The length of the

crystals increases from 29.6 cm in the backward direction to 32.4 cm in the forward
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direction. The surface of the crystal is polished and wrapped with two layers of dif-

fuse white reflector. A schematic of the crystal is shown in Fig. 4.16. The light yield

is required to be uniform to within ±2% in the front half of the crystal; the limit in-

creases linearly to ±5% at the rear face. The photons of electromagnetic showers in a

crystal are detected by two 2×1 cm2 silicon PIN diodes. The diodes have a quantum

efficiency of 85% for the CsI(Tl) scintillation light. The depletion voltage is about

70 V, at which voltage the typical leakage current is 4 nA and capacitance is 85 pF;

the diodes are operated at 50 V. For each crystal-diode assembly, the light yield is

measured with the 1.836 MeV photon line from a 88Y radioactive source. The result-

ing signal distribution has a mean and RMS of 7300 and 890 photoelectrons/MeV.

The electronics system has an equivalent noise energy of less than 250 keV, which has

negligible impact on the energy resolution of electromagnetic showers from 20 MeV

to 9GeV.

A typical electromagnetic shower spreads over several crystals, called a cluster.

The reconstruction algorithm requires that at least one crystal in a cluster exceeds

10 MeV and the surrounding crystals pass certain thresholds. A cluster can contain

multiple local energy maxima, called bumps. An iterative algorithm is used to deter-

mine the energy of the bumps, by calculating the weight of each crystal associated

with a certain bump according to the distances between crystals and the centroid of

the bump, and calculating the bump centroid according to the weights. The position

of a bump is calculated using a center-of-gravity method with logarithmic, rather

than linear weights.

To determine whether a bump is associated with a charged particle, the track is

projected onto the inner surface of the EMC. If the centroid of the bump is consistent

with the angle and momentum of the track, the bump is associated with this charged

particle, otherwise, it is assumed to originate from a neutral particle.

The energy resolution can be measured with or inferred from several sources,
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including radioactive sources, mass resolutions of π0 and η mesons decaying to two

photons, the decay of χc1 → J/ψγ, and electrons from Bhabha scattering. A fit to

the energy dependence with an empirical function results in

σE

E
=

(2.32 ± 0.30)%
4
√
E(GeV)

⊕ (1.85 ± 0.12)% .

The measurement of the angular resolution is based on the analysis of π0 and η

decays to two photons of approximately equal energy. The resolution varies between

about 12 mrad at low energies and 3 mrad at high energies. A fit with an empirical

parameterization of energy dependence results in

σθ = σφ =

(
3.87 ± 0.07√
E(GeV)

+ 0.00 ± 0.04

)
mrad .
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Figure 4.15: A longitudinal cross section of the EMC (only the top half is shown)
indicating the arrangement of the 56 crystal rings. The detector is axially symmetric
around the z-axis. All dimensions are given in mm.
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Figure 4.16: A schematic of the wrapped CsI(Tl) crystal and the front-end readout
package mounted on the rear face. Also indicated is the tapered, trapezoidal CFC
compartment, which is open at the front. This drawing is not to scale.

The π0 mass resolution reconstructed from two photons over the full photon

energy range in BB events is 6.9 MeV.

The particle identification techniques with the EMC are described in Chapter 5.

4.7 Instrumented Flux Return

The main purpose of the Instrumented Flux Return (IFR) is to identify muons with

high efficiency and good purity, and to detect neutral hadrons (primarily KL and

neutrons) over a wide range of momenta and angles.
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The active detectors in the IFR are single gap resistive plate chambers (RPCs)

with two-coordinate readout. They are installed in the gaps of 18 steel plates in the

barrel and the end doors of the flux return, as illustrated in Fig. 4.17. There are 19

RPC layers with 342 modules in the barrel and 18 RPC layers with 432 modules in

two end doors. The thickness of the steel plates ranges from 2 cm for the inner nine

layers to 10 cm for the outermost ones. The gap between the steel plates is 3.5 cm

in the inner layers of the barrel and 3.2 cm elsewhere. In addition, two layers of

cylindrical RPCs with 32 modules are installed between the EMC and the magnet

cryostat to detect particles exiting the EMC.

RPCs detect streamers from ionizing particles via capacitive readout strips. The

RPCs consist of two 2-mm-thick bakelite (phenolic polymer) sheets, separated by

a gap of 2 mm, in which a gas mixture, typically 56.7% Argon, 38.8% Freon 134a,

and 4.5% isobutane is filled. The external surfaces of bakelite sheets are coated

with graphite and are connected to high voltage (∼8 kV) and ground. The bakelite

surfaces facing the gap are treated with linseed oil except on the cylindrical RPCs.

A cross section of an RPC is shown schematically in Fig. 4.18. The widths of the

strips are between 16 mm and 38 mm.

To calculate the efficiency in a given chamber, nearby hits in a given layer and

hits in different layers are combined to form clusters. The residual distributions from

straight line fits to two-dimensional clusters typically have an RMS width of less than

1 cm. An RPC is considered efficient if a signal is detected at a distance of less than

10 cm from the fitted straight line to either of the two readout planes. Of the active

RPC modules, 75% exceed an efficiency of 90%.

Muons can penetrate many layers of steel plates while other particles (except for

non-detectable neutrinos) can’t. This property enable the IFR to separate muons

from other particles. Details of muon identification is described in Chapter 5.
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Figure 4.17: Overview of the IFR: Barrel sectors and forward (FW) and backward
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Figure 4.18: Cross section of a planar RPC with the schematics of the high voltage
(HV) connection.
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4.8 Solenoid and Magnets

The BABAR magnet system consists of a superconducting solenoid, a segmented flux

return and a field compensating coil. Figure 4.1 shows major components of the

magnets. The main purposes of the magnet system are to provide magnetic field

for measuring charged particle momentum, serve as hadron absorber for separat-

ing muons and hadrons, and provide the overall structure and support for BABAR

detector elements.

The flux return consists of a hexagonal barrel and forward and backward doors.

The coil cryostat is mounted inside the barrel. The coil is made of 16 strand niobium-

titanium Rutherford cable coextruded with pure aluminum stabilizer. Each strand

has a diameter of 0.8 mm and is wound from thin filaments, each less than 40 µm in

diameter. The coil is cooled to 4.5 K by liquid helium and the operating current is

4596 A. The structure of the flux return is designed to sustain the forces produced

by the magnetic field, and earthquake.

The central field produced by the coil is 1.5 T. The samarium-cobalt B1 and Q1

magnets are located inside the solenoid as shown in Fig. 4.1. They cannot sustain

high radial magnetic field. The radial component at Q1 and r = 200mm is kept

below 0.25 T. The stray field leaking into the conventional iron quadrupole Q2, Q4

and Q5 is less than 0.01 T averaged over their apertures.

The magnetic field is mapped by five sets of Br and Bz, and two Bφ movable Hall

probes. One NMR probe located at r = 89mm provides a very precise field reference

near the z-axis. In the tracking volume, Br and Bz fields vary by less than 0.05 T,

and Bφ is less than 1 mT. The variation of bending field for high momentum tracks

is less than 2.5% along the path.
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4.9 Trigger

The trigger system provides a fast filtering before events are recorded. The system

is required to select events of interests (see Table 4.2) with a high, stable and well-

understood efficiency while rejecting background events to keep the event rate under

120 Hz. The trigger should contributes no more than 1% to dead time. The total

trigger efficiency is required to exceed 99% for BB events and at least 95% for

continuum events. Less stringent requirements apply to other types of events.

Table 4.2: Cross sections, production and trigger rates for the principal physics
processes at 10.58 GeV for a luminosity of 3× 1033 cm−2s−1. The e+e− cross section
refers to events with either one, or both e+e− inside the EMC detection volume.

Event Cross Production Level 1 Trigger
type section (nb) rates (Hz) rates (Hz)

bb 1.1 3.2 3.2
other qq 3.4 10.2 10.1
e+e− ∼53 159 156
µ+µ− 1.2 3.5 3.1
τ+τ− 0.9 2.8 2.4

There are two levels in the trigger system. Level 1 (L1) is implemented in hard-

ware, followed by Level 3 (L3)1 in software. L1 is configured to have an output rate

of typically 1 kHz during normal operation. Triggers are produced within a fixed

latency window of 11–12 µs after the e+e− collision, and delivered to the Fast Con-

trol and Timing System. The L1 trigger is based on the track segments in the DCH,

energy deposit in the EMC towers, each of which consists of 19–24 crystals, and the

hits on the triggers in each of the ten IFR trigger sectors. The IFR trigger is used

for triggering on µ+µ− events and cosmic rays.

For a typical L1 rate of 1 kHz, Bhabha and other physics events contribute

1There is no Level 2 due to a historic reason.
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sim130 Hz. There are also about 100 Hz of cosmic ray and 20 Hz of random

beam crossing triggers. The remaining triggers are due to the lost particles (off-

energy/orbit particles from e+e− beams) interacting with the beam pipe and other

components near the interaction region.

The L3 receives the output from L1, performs a further rate reduction, and iden-

tifies and flags the special categories of events needed for luminosity determination,

diagnostic, and calibration purposes. The L3 software runs on the online computer

farm. The L3 filters have access to the complete event data for making their de-

cisions. L3 operates by refining methods used in L1. For example, better DCH

tracking and vertex resolution, and EMC clustering filters allow for greater rejection

of beam backgrounds and Bhabha events. For a typical run on the Υ(4S) peak with

an beverage luminosity of 2.6 × 1033 cm−2s−1, the desired physics events contribute

13% of the total output while the calibration and diagnostic samples comprise 40%.

4.10 Data Acquisition

The BABAR data acquisition system is a chain from the common front-end electronics

through the embedded computing processors, to the logging of event data. The data

acquisition chain supports an L1 trigger accept rate of up to 2 kHz, with an average

event size of ∼32 kbytes, and a maximum output rate of 120 Hz. It should contribute

less than a time-average 3% to dead time during normal data acquisition.

The data acquisition system consists of the following major subsystems: Online

Dataflow, for communication with and control of the detector systems’ front-end

electronics, and the acquisition and building of event data from them; Online Event

Processing, for processing of complete events, including L3 triggering, data quality

monitoring, and the final stages of calibration; and Logging Manager, for receiving

selected events sent from the Online Event Processing and writing them to disk files
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for use as input to the Online Prompt Reconstruction processing. The entire system

is coded primarily in the C++ language, with some Java for graphical user interfaces.

The data from the front-end electronics are routed via optical fiber links to a set

of 157 custom VME readout modules (ROMs), which are then grouped and housed

in 23 data acquisition VME crates. One ROM in each crate aggregates the data and

forwards them for event building to 32 commercial Unix workstations [62]. The crates

and farm computers communicate via full-duplex 100 Mbits/s Ethernet, linked by

a network switch. The 32 online farm computers host the Online Event Processing

and L3 trigger software. The events accepted by the trigger are logged via TCP/IP

to a logging server and written to a disk buffer for later reconstruction and archival

storage.



Chapter 5

Reconstruction and Particle

Identification

5.1 Charged Track Reconstruction

5.1.1 Algorithm

Charged particle tracks are reconstructed by DCH and SVT. The track finding and

the fitting procedures utilize a Kalman filter algorithm [63], which takes into account

the detailed distribution of material and magnetic field that tracks pass through.

The L3 trigger and tracking algorithm provide information for the offline charged

particle track reconstruction. It first estimates the event start time t0 from a fit to

the distance of closest approach to the z-axis, the azimuth angle of the track and

t0 based on the four-hit track segments in the DCH superlayers. Tracks are then

selected by performing helix fits to the hits found by the L3 track finding algorithm.

Additional DCH hits that may belong on these tracks are searched, and t0 is further

improved by using only hits associated with tracks; the noise and background hits

are reduced due to improved t0. Two more tracking procedures designed to find
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tracks that either do not pass through the entire DCH or do not originate from the

IP are performed. These algorithms primarily use tracks that have not been assigned

to other tracks. At the end of this process, tracks are again fit with a Kalman filter

method.

The resulting tracks from the DCH are extrapolated into the SVT. The SVT track

segments that are consistent with the expected error in the extrapolation are added

to the tracks. The SVT segments with smallest residuals and the largest number of

SVT layers are retained and a Kalman fit is performed to the full set of DCH and

SVT hits.

Any remaining SVT hits are passed to two standalone track finding algorithms.

The first reconstructs tracks starting with triplets of space points (matched φ and z

hits) in layers 1, 3, and 5 of the SVT, and adding consistent space points from the

other layers. A minimum of four space points are required to from a good track. The

second algorithm starts with circle trajectories from φ hits and then adds z hits to

from helices.

Finally, an attempt is made to combine tracks that are only found by one of the

two tracking systems and thus recover tracks scattered in the material of the support

tube.

5.1.2 Tracking efficiency

The efficiency of reconstructing tracks in the DCH is determined as the ratio of the

number of tracks reconstructed in the DCH to the number of tracks detected in the

SVT. Figure 5.1 shows the DCH track reconstruction efficiencies as functions of the

transverse momentum and polar angle, for two operating voltage settings. At design

voltage of 1960 V, the efficiency averages 98 ± 1% per track above 200 MeV.

The reconstruction efficiency of the standalone SVT tracking algorithm is esti-

mated with a detailed Monte Carlo study using soft pions (πs) from events of the
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type B → D∗+X followed by D∗+ → D0π+
s → K−π+π+

s . A comparison of the

detected slow pion spectrum with the Monte Carlo prediction, and the reconstruc-

tion efficiency based on Monte Carlo study are shown in Fig. 5.2. The spectrum

between data and Monte Carlo prediction are in good agreement. The slow pion

reconstruction efficiency shown in Fig. 5.2 demonstrates that the SVT significantly

extends the capability of the charged particle detection down to transverse momenta

of ∼ 50MeV; this is especially important for analyses involving charged D∗.

5.1.3 Track parameter resolution

Tracks are parameterized with five parameters, (d0, z0, φ0, ω, tanλ). These are

measured at the point of closest approach to the z-axis. d0 and z0 are the distance

of this point to the origin of the coordinate system in the x-y plane and along the

z-axis, respectively, φ0 the azimuthal angle, ω the curvature (ω = 1/pT ), and λ the

dip angle relative to the transverse plane.

The track parameter resolutions are measured with cosmic ray muons that pass

close to the interaction point by comparing impact parameters of upper and lower

halves of the track, and with multi-hadron events by comparing parameters of a single

track with the vertex reconstructed from the remaining tracks. The resolutions of

tracks with momenta above pT > 3 GeV measured with cosmic rays are:

σd0 = 23µm σφ0 = 0.43 mrad

σz0 = 29µm σtan λ = 0.53 × 10−3 .

The resolutions of parameters d0 and z0 as a function of the transverse momentum

measured with multi-hadron events are shown in Fig. 5.3.

While the position and angle measurements near the IP are dominated by the

SVT measurements, the DCH contributes primarily to the pT measurement. The
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Figure 5.1: The track reconstruction efficiency in the DCH at operating voltages of
1900 V and 1960 V, as a function of a) transverse momentum and b) polar angle. The
efficiency is measured in multi-hadron events as the fraction of all tracks detected in
the SVT for which the DCH portion is also reconstructed.

resolution of pT is measured as

σpT
/pT = (0.13 ± 0.01)% · pT + (0.45 ± 0.03)% ,

where pT is measured in GeV.
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Figure 5.2: Monte Carlo studies of low momentum tracks in the SVT: a) comparison
of data (contributions from combinatoric background and non-BB events have been
subtracted) with simulation of the transverse momentum spectrum of pions from
D∗+ → D0π+ in BB events, and b) efficiency for slow pion detection derived from
simulated events.

5.2 Particle Identification

5.2.1 Electron identification

An electron is separated from other charged particles according primarily to the

shower energy and lateral shape in the EMC, and its momentum. The Cherenkov

radiation angle in DIRC and dE/dx in DCH are required to be consistent with the

particle being an electron [64]. The most important quantity is the ratio of energy

deposited in the EMC to the momentum of the track (E/p). An electron is very likely

to deposit all its energy into the EMC, therefore its E/p distribution is peaked at one,

while other types of charged particles usually deposit only minimum ionizing energy,

or some random amount of energy if nuclear interactions occur between hadrons and

nucleons.
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Figure 5.3: Resolution in the parameters d0 and z0 for tracks in multi-hadron events
as a function of the transverse momentum. The data are corrected for the effects of
particle decays and vertexing errors.

The shower shape also provides important information. The shower shape created

by an electron is usually more regular and narrower, while the shower shape of an

hadron can be irregular and wide when nuclear interaction occurs. Two shower

shape variables are used, lateral energy distribution (LAT) [65] and Zernike moments

(Amn) [66]. LAT measures the spread of the shower:

LAT =

∑n
i=3Eir

2
i∑n

i=3Eir
2
i + E1r

2
0 + E2r

2
0

, E1 ≥ E2 ≥ · · · ≥ En ,

where the sum extends over all crystals in a shower, r0 = 5cm, the average distance

between two crystal front faces, and ri is the distance between crystal i and the shower

center. Electromagnetic showers in the EMC have most of their energy deposited

in one or two crystals, hence LAT is smaller for electromagnetic showers than for

hadronic showers.
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The Zernike moments measures the irregularity of the shower shape:

Anm =
n∑

ri≤R0

Ei

E
fnm

(
rt

R0

)
e−imφi , R0 = 15cm ,

where φ is the orientation of the lateral coordinate system and

fnm(ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!ρn−2s

s!((n +m)/2 − s)!((n−m)/2 − s)!
,

with n,m ≥ 0 integers, n − m even and m ≤ n. In BABAR, only |A42| is used.

Shower shapes and E/p are complementary. If a hadron deposits a large amount of

energy, the shower shape variables tend to have large values as well.

The distance between the centroid of the cluster and the extrapolation of the

corresponding track at the surface of the EMC also help to reject hadrons. The

distribution of this distance (measured by ∆φ) for electrons is narrower than for

hadrons, typically less than 0.05, depending on the track’s transverse momentum.

There are five levels of electron selections used in BABAR analyses: noCal, very

loose, loose, tight and very tight. The noCal is for tracks in the region outside the

EMC acceptance and uses only dE/dx information. The selections relevant to the

analysis described in this thesis are loose and very tight. Both selections require

at least three crystals in the cluster. The loose selection requires that E/p > 0.65

and 500 < dE/dx < 1000; the very tight selection requires that 0.89 < E/p < 1.3,

540 < dE/dx < 860, LAT < 0.6, |A42| < 0.11, and the DIRC cherenkov angle and

∆φ consistent with an electron.

The efficiency for the loose (very tight) selection is higher than 98% (90%) for

tracks more than 1 GeV of momentum, and the average misidentification probabilities

are lower than 0.2% for very tight selection.
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5.2.2 Muon identification

The primary detector for muon identification [67] is the IFR. A muon is expected

to penetrate many layers of steel and leave only minimum ionizing energy in the

EMC. Several variables are used to discriminate muons from other charged particles.

They include (1) the total interaction lengths (λ) from the IP to the last layer of

RPC associated to the track and the difference between the expected and observed

interaction lengths (∆λ ≡ λexp − λ), (2) the average (m) and standard deviation

(σm) of the multiplicity of hit strips per layer, (3) the χ2 per degree of freedom of

the IFR hit strips in the cluster with respect to the track extrapolation (χ2
trk), and

that with respect to a polynomial fit of the two-dimensional IFR cluster (χ2
fit), and

(4) the continuity of the hits in the IFR (Tc), which is defined as the fraction of IFR

hit layers out of total number of layers from the first hit layer to the last one.

The difference between the expected and observed interaction length (∆λ) takes

into account the history of RPC efficiencies, which reduces the dependence on the

status of the IFR detector, and thus increases the overall efficiency. ∆λ for muons

is distributed below 1, while for hadrons, the distribution extends beyond 3 with-

out a clear peak. The interaction length for muons is generally larger than 2 and

peaked around 4. For pions, this distribution is peaked around 2, depending on the

momentum.

Five selection criteria are used in BABAR muon identification: minimum ionizing,

very loose, loose, tight and very tight. The minimum ionizing selection only requires

the energy released in the EMC to be less than 0.5 GeV. All other selections have the

same or tighter cut on EMC energy and always require at least two IFR layers with hit

strips. The selections relevant to this analysis are loose and very tight. The additional

requirements for loose (very tight) selections are EEMC < 0.5 (0.05 < EEMC < 0.4)

if applicable, ∆λ < 2 (0.8), λ > 2 (2.2), χ2
trk < 7 (5), χ2

fit < 4 (3), Tc > 0.2 (0.34) if

applicable, m < 10 (8), and σm < 6 (4).
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The efficiency for loose (very tight) selection is around 80% (50%) at a momentum

of 1 GeV, and increases to higher than 85% (70%) for momentum higher than 2 GeV.

The pion misidentification probability for loose (very tight) selection is about 8%

(2%). The kaon misidentification probability is similar to the pion on average, but

has higher dependence on momentum: it is smaller than pion misidentification at

low momentum and larger at high momentum.

5.2.3 Kaon identification

The BABAR experiment uses a likelihood based kaon selection [68], which uses the

ionization energy loss dE/dx in the SVT and the DCH, and the Cherenkov light

emission angle θC with respect to the direction of the track entering the quartz bar

of the DIRC.

The central dE/dx values for long-lived particles (e.g., e, µ, π, K, and p) in

both the SVT and the DCH are parameterized based on the Bethe-Bloch functions

as functions of momentum. The Bethe-Bloch parameters and the dE/dx resolution

are calibrated by measuring the average charge deposited by a minimum-ionizing

particle for each cell. The relative dE/dx error for the SVT is about 10% and for the

DCH about 8%. The probability density functions for both detectors are modeled

by a Gaussian distribution.

The likelihood for one of the five particle hypotheses (e, µ, π, K, and p) consists

of two parts, which are assumed to be uncorrelated. The first part is a Gaussian

probability based on the measured Cherenkov angle θC , the error on the measurement

(∼2.5 mrad), and the expected Cherenkov angle for each of the five hypotheses, based

on the equation cos θC = 1/(nβ), where n is the index of reflection and β = v/c. This

probability is normalized so that the sum of the five hypotheses equals one. If the

momentum is below the threshold for certain particle hypotheses, their probability

is assigned to be 1/5. The second part is a Poisson probability based on the number
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of photons; i.e., the number of detected photons Nsig, the number of background

photons Nbg (fixed at 3) and the expected number of photons N i
exp for particle type

i. The Poisson probability is then pi = Poisson(Nsig +Nbg, N
i
exp +Nbg). Again, this

probability is then normalized so that the sum of the five probabilities is 1. The

total probability �i for each particle type is the product of these two parts. The

same normalization scheme is applied for the total probabilities.

Five selection criteria are used in BABAR kaon identification: not-a-pion, very

loose, loose, tight, and very tight. The selection criteria relevant to the analysis

in this thesis is not-a-pion and tight. Whether or not a sub-detector is used for

kaon identification depends on the particle’s momentum. For the tight criterion,

the used detectors are: SVT+DCH for p < 0.6 GeV, SVT+DCH+DIRC for (0.6 <

p < 0.7) GeV, and DIRC only for p > 0.7 GeV. For the not-a-pion criterion, the

used detectors are: SVT+DCH for p < 0.5 GeV, DCH for p < 0.6 GeV, and DIRC

for p > 0.6 GeV. The tight criterion accepts particles satisfying both �K > rπ�π

and �K > �p, where rπ = 1 for (0.7 < p < 2.7) GeV, rπ = 80 for p > 2.7 GeV,

and rπ = 15 for (0.5 < p < 0.7) GeV. The not-a-pion criterion rejects particles

satisfying �K < rπ�π and rπ�π > �p, where rπ = 0.1 for p ≤ 0.5 GeV and rπ = 1.0 for

p > 0.5 GeV.
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Vertex and Decay Time Difference

This analysis relies on good vertex resolution to separate the decay points of two B

mesons. The distance between two decay vertices in the z direction, ∆z, to a good

approximation, is proportional to the decay time difference of the two B mesons, ∆t.

In this chapter, the vertexing algorithm and the measurement of ∆z are briefly

summarized in Sec. 6.1, issues about the conversion from ∆z to ∆t are discussed in

Sec. 6.2.1, the behavior of ∆t resolution is discussed in Sec. 6.3, and the measurement

of the beam spot is described in Sec. 6.4.

6.1 Decay Vertices Measurement

The algorithm used to reconstruct decay vertex in BABAR is described in detail

in [69]. This section highlights the most important aspects of vertexing that relate

to the decay vertices separation for this analysis.

In this analysis, the decay chain, B0 → D∗+�−ν�, D
∗+ → D0π+, and D0 →

K−π+ , K−π+π−π+ , K−π+π0 , or KSπ
+π− is reconstructed (see Ch. 8). The vertex

and momentum of the KS candidate are calculated by fitting two charged tracks to a

common vertex, and the result forms a virtual track for the D0 reconstruction. The

83
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π0 candidate is form by combining two neutral clusters and is fit with a constraint

so that the invariant mass of the π0 candidate is equal to the true value [9]. The

momentum of the π0 candidate contributes to the calculation of the D0 invariant

mass, but does not contribute to the information for D0 vertex. The daughter

particles of the D0 candidate are then fit to a common vertex, with a constraint

so that the invariant mass of the D0 candidate is equal to the world average [9].

The resulting momentum and position are combined with the slow pion and lepton

candidate in a vertex fit that assumes the B meson decays within the beam colliding

region (beam spot) on the plane transverse to the beam axis. The beam spot is

assumed to be an ellipsoid with a Gaussian profile. As will be discussed in Sec. 6.4,

the real beam spot size is about 1 cm in the z direction, 100 µm in the x direction,

and 5 µm in the vertical (y) direction. The vertical size provides the most stringent

constraint. However, to account for the flight length of the B meson in the direction

transverse to the beam direction, the vertical size of the beam spot is artificially set

to 30 µm. By including the beam spot information, the RMS of the distribution of

the D∗� vertex residual (zmeasured − ztrue) in Monte Carlo simulation improves from

about 90 µm to about 77 µm. The mean of the residual distribution is consistent

with zero (see Fig. 6.1).

The vertex of the second B meson (called Btag, see Ch. 7) is constructed from all

good quality tracks in the event except the daughter particles of the D∗ � candidate.

In order to reduce bias and tails due to long-lived particles, KS and Λ0 candidates

are reconstructed by combining two charged tracks to a common vertex, and are

used as inputs for the fit in place of their daughters. In addition, tracks that are

consistent with photon conversions are excluded. The vertex is also constrained to

the beam spot region in the transverse plane. To reduce the bias contributed by the

charm decay products, the track with the largest vertex χ2 contribution is removed

if the contribution is greater than 6. The fitting procedure is repeated until no track
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contributes more than 6 to the χ2, or there is only one track left. (Because the

beam spot information is used, it is possible to determine a vertex position from

one track.) In this analysis, only the events that use two or more tracks in the Btag

vertex are retained. The RMS of the z-vertex residual distribution in simulation

data (∼155 µm) is much larger than that for Brec, and the mean of the distribution

is significant shifted by ∼34 µm (see Fig. 6.1).
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Figure 6.1: z-vertex residual distributions for Brec and Btag in Monte Carlo samples,
where the Brec is correctly reconstructed.
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6.2 Decay Time Difference

6.2.1 Conversion from ∆z to ∆t

The decay time difference between B mesons can be calculated from the difference

in decay positions along the BABAR z-axis with the following equation:

∆t = t1 − t2 = mB

(
z1
pz

1

− z2
pz

2

)
,

where we define the Υ(4S) decay point to be at z = 0. The decay times t1 and

t2 are defined in the respective B rest frames, which are different due to the small

momentum of the B meson in the Υ(4S) frame, 〈p∗B〉 = 1
2

√
s− 4m2

B0 � 320 MeV.1

In this analysis, the direction of B mesons in the Υ(4S) frame is not known, therefore

this small momentum is ignored and the approximation for decay time difference is

∆t =
∆z

γβzc
, (6.1)

where γ is the boost factor for the Υ(4S) in the lab frame and βz its velocity projected

on the BABAR z-axis. In BABAR, βzγ � 0.55.2

Equation 6.1 ignores two effects. The most important is the finite momentum

of the B meson in the Υ(4S) rest frame, mentioned in the previous paragraph and

quantified below. Second, the Υ(4S) momentum is smeared due to the momentum

spread of the colliding beams. This smearing is about 6 MeV, which corresponds to

0.1% smearing of βγ. The factor of βz accounts for the fact that the direction of the

colliding beams is tilted by 20 mrad with respect to the detector z-axis. The boost

(momentum of the Υ(4S)) along the z-axis is reduced by 1.2 MeV (0.02%) due to this

1We use values used in Monte Carlo simulation: Ee+ = 3.11175 GeV, Ee− = 8.99 GeV,
√

s =
10.5782 GeV and mB0 = 5.2794 GeV.

2The value used in Monte Carlo simulation is βzγ = 0.555596.
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effect. There is also an effective boost of about 118 MeV in the x direction, which

generates an azimuthal asymmetry, but has no direct impact on the estimation of

decay time difference.

For a B meson that decays with polar angle θ∗ with respect to the boost direction

in the Υ(4S) frame, the distance ∆z can be written as [69]

∆z = cγβγ∗(t1 − t2) + cγγ∗β∗ cos θ∗(t1 + t2) , (6.2)

where γ∗β∗ is the boost of the B meson in the Υ(4S) frame. If the acceptance does

not depend on θ∗, the transformation Eq. 6.1 is only biased by a factor γ∗, which is

approximately 1.002, since 〈cos θ∗〉 = 0.

In general we don’t know t1 + t2 event by event, but if the B decay angle θ∗ is

known (as is the case for fully reconstructed B’s), the estimate of event-by-event ∆t

can be improved using the expectation value of t1 + t2. Since both t1 and t2 are

positive, the minimum value of t1 + t2 is |∆t|. By integrating t1 + t2 from |∆t| to

infinity, we get 〈t1 + t2〉 = τB + |∆t|. Substituting this correction in Eq. 6.2, we get

∆z

γβγ∗c
= ∆t+

β∗ cos θ∗

β
(τB + |∆t|) .

In this analysis, we do not measure the B decay direction. The effect of the

second term in Eq. 6.2 is to smear the exponential distribution of ∆z. The RMS of

this term is

cγγ∗β∗√〈cos2 θ∗〉 〈(t1 + t2)2〉 � 21 ·
√

6 τB
√

〈cos2 θ∗〉 (µm) (6.3)

where τB0 is in ps, and β∗ � 0.0606, γ � 1.144 and the expectation value of

〈(t1 + t2)
2〉 = 6τ 2

B are used. The angular distribution for Υ(4S) → BB is given

by (1 − cos2 θ∗)d(cos θ∗), which gives 〈cos2 θ∗〉 = 1/5. The RMS of the ∆z residual
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due to the boost approximation is then about 35 µm, which is about 0.21 ps for

∆t. This result is for integration over the entire (t1, t2) space. For a given ∆t, the

expectation value of (t1 + t2)
2 depends on |∆t|. We can integrate (t1 + t2)

2 from |∆t|
to infinity and get

〈
(t1 + t2)

2
〉 |∆t = 2τ 2

B + 2τB|∆t| + |∆t|2 .

If we further integrate |∆t| from zero to infinity, we get the factor of 6τ 2
B that appears

in Eq. 6.3. Therefore the smearing of ∆t introduced by using the approximation

∆z/(γβγ∗c) can be written as a function of |∆t|:

β∗
√

5β

√
τ 2
B + (τB + |∆t|)2 � 0.0557

√
τ 2
B + (τB + |∆t|)2 . (6.4)

We can demonstrate this effect by plotting the RMS of ∆ztruth/(γβγ
∗c) − ∆ttruth in

bins of |∆ttruth|. Figure 6.2 shows this plot for 80k signal simulation events that pass

all our final signal cuts and 100k events directly from the event generator, and a fit

to a function of the form given in Eq. 6.4: p0 · √p2
1 + (p1 + |∆t|)2.

This smearing effect is visible at the level of reconstructed ∆t. The top plot in

Fig. 6.3 shows the RMS of the pull of reconstructed ∆t in bins of true ∆t, where

the pull is defined as the residual δ∆t ≡ ∆tmeas − ∆ttrue divided by the calculated

error, σ∆t (see Sec. 6.2.2). The dependence of the RMS on ∆ttrue is clearly seen.

The middle plot shows the same sort of distribution except that ∆tmeas is replaced

by ∆ztrue/γβγ
∗c in the calculation of the RMS of the pull. The bottom plot is the

bin-by-bin difference in quadrature between the top two plots. The fact that the

dependence of the pull RMS on ∆ttrue almost disappears after removing the effect

due to boost in the conversion from ∆z to ∆t suggests that the boost approximation

is the major source of the resolution dependence on ∆ttrue. Since this dependence

can be fully understood, in principle we can modify our model to accommodate this
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Figure 6.2: RMS of the distribution of residuals ∆ztruth/(γβγ
∗c) − ∆ttruth in bins

of |∆ttruth| for 80k signal simulation events that pass all event selection criteria
(left) and for 100k events from the event generator (right), and a fit to a function
p0 · √p2

1 + (p1 + |∆t|)2. The ∆z → ∆t conversion factor used here is 166.87µm/ps.

effect.

6.2.2 Calculation of error on ∆t

The calculated uncertainties on the vertex position of the B0 → D∗−�+ν� candidate

and the tagging B account for uncertainties on the track parameters due to SVT and

DCH hit resolution and multiple scattering, our knowledge of the beam spot size,

and the average B flight length in the vertical direction. The calculated uncertainty

does not account for errors in pattern recognition in tracking or errors in associating

tracks with the B vertex. The calculated uncertainties will also be inaccurate if the

assumptions for the amount of material in the detector or the beam spot size or

position are incorrect. The errors on the two vertices directly translate to the error

(σ∆t) on ∆t. The distribution of σ∆t for Monte Carlo events is shown in the left

plots in Fig. 6.4. We use parameters in the resolution model, measured with data,

to account for uncertainties and biases introduced by these effects.
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Figure 6.3: Top: the RMS of the pull (δ∆t/σ∆t) in bins of ∆ttrue for Monte Carlo
simulation. Middle: same plot with ∆t replaced by ∆ztrue/γβγ

∗c in the calculation
of the RMS of the pull. Bottom: bin-by-bin difference in quadrature between the
top two histograms. Note the factor of 10 difference in the vertical scales of the top
and bottom histograms.

6.3 Decay-Time Difference Resolution

The behavior of the ∆t residual (δ∆t ≡ ∆tmeas−∆ttrue) will be modeled for the final

fit (see Sec. 10.1.1). In this section, the residual of measured decay time difference
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∆t and its correlation with the calculated error, σ∆t are studied.

The left-hand plot in Fig. 6.4 shows the distribution of σ∆t values observed in

simulation. If the calculated errors are accurate and the ∆t reconstruction is unbi-

ased, then the distribution of pulls δ∆t/σ∆t is a unit Gaussian with a mean equal

zero, and the resulting resolution function has no free parameters:

R(δ∆t, σ∆t) = G(δ∆t; 0, σ∆t) ,

where we define the Gaussian function

G(x; x0, σ) ≡ 1√
2π σ

· exp
(−(x− x0)

2/(2σ)2
)
. (6.5)
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Figure 6.4: Distribution of calculated vertex errors σ∆t (left-hand side) and pulls
(right-hand side) obtained from correctly reconstructed signal events in the simula-
tion sample. Vertical dashed lines in the σ∆t distribution indicate the slices used to
select subsamples with approximately equal calculated errors for further study. The
solid curve superimposed on the pull distribution is the result of a single Gaussian
fit.

The right-hand plot in Fig. 6.4 shows that the pull distribution observed in signal
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simulation events is approximately Gaussian, but is biased towards negative resid-

uals and has an RMS of about 1.3, which indicates that the calculated errors are

underestimated on average by about 30%.

In order to study these deviations from the ideal case in more detail, we divide

the sample of correctly reconstructed signal Monte Carlo events into slices of σ∆t.

Fig. 6.5 shows the mean and RMS calculated directly from the residuals in each slice,

as a function of each slice’s midpoint σ∆t value. The RMS of the residuals scales

linearly with the calculated error as expected. It is clear from the plot (b) in Fig. 6.5

that the bias also scales with the calculated error.
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Figure 6.5: (a) RMS and (b) mean of the residual distributions obtained from cor-
rectly reconstructed signal Monte Carlo simulation, in slices of σ∆t.
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The explanation for this is the fact that the vertex error ellipse for the D decay

products is oriented with its major axis along the D flight direction, leading to a

correlation between the D flight direction and the per-event D0 error. D mesons

that have a flight direction perpendicular to the z direction in the laboratory frame

will have the best resolution and will introduce the least bias in a measurement of

the z position of the parent B meson. D mesons that travel forward in the laboratory

will have poorer resolution and will introduce a larger bias in the measurement of

ztag. This effect is illustrated in Fig. 6.6, and is first demonstrated in [70].

Charm error ellipse

B decay vertex

Smaller error on Z; smaller bias on Ztag

Larger error on Z; larger bias on Ztag

Z

Figure 6.6: Schematic graph that illustrate the correlation between vertex bias and
calculated error on tag-side z-vertex through charm flight direction. The measured
tag-side vertex in the z direction is somewhat between the B vertex and the charm
vertex if tracks from both vertices are used. The projected vertex error on the z-axis
is smaller when the charm flight polar angle is closer to 90◦

To verify that this is the correct explanation for the scaling of the bias with per-

event error, we study the correlations among D meson direction, σ∆t and ∆t bias

with signal Monte Carlo simulation samples.

From the signal Monte Carlo sample, correctly reconstructed candidates are se-

lected according to Monte Carlo true information. We trace the decay tree for all
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tracks used for determining the tag-side vertex and look for long-lived charm (D+,

D0, Ds
+ and Λc) and τ . There can be up to three such long-lived particles in the

decay tree. For the simplicity of this study, for each event, only the information of

the first charm-tau found in the event is recorded. Events with no charm-tau are

also selected. Since the residual and error on ∆t are dominated by the tag-side, we

only focus on the tag-side.

The correlation between the mean of ∆t residual and σ∆t as seen in Fig. 6.5 can

be reproduced at the tag-side. Figure 6.7 shows the mean tag-side vertex residual

(scaled by γβc) in slices of σ∆t, for events with one and zero charm-tau particle.

Clearly, the correlation in question is due to charm-tau on tag-side, since the events

without charm-tau have no bias.
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Figure 6.7: Mean residual of tag-side vertex (scaled by γβc of Υ(4S) in lab frame) in
slices of σ∆t for simulation events in which at least one track used for tag-vertexing
is produced from charm-tau (black) and for events in which no track used for tag-
vertexing is produced from charm-tau (red)

As shown in Fig. 6.8, the mean residual and the mean σ∆t are highly correlated

with charm-tau flight direction. However, the minimum of σ∆t is not at cos θD = 0
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as one would have expected by charm vertex topology. The fact that the minimum

shifts towards positive cos θD is largely due to the correlation between the tracking

error and the momentum of that track. The charm-tau momentum in the lab frame

is highly correlated with its flight direction due to the boost of the center-of-mass

frame. In general the higher momentum a track has, the smaller its error is, therefore,

the error ellipse of the charm-tau vertex is smaller for high momentum (forward

direction) charm-tau, since they tend to produce higher momentum tracks.

These two effects (topology and momentum correlation) compete with each other.

But since most events are populated in the forward direction, the topology effect

dominates most of the σ∆t range. At the region of large σ∆t, however, the sign of

the correlation between the mean of ∆t residual and σ∆t changes, as shown in plot

(b) in Fig. 6.5 for σ∆t > 1.8 ps. To maintain the sign of this correlation so that

the resolution model discussed in the next paragraphs is valid for the full range of

σ∆t in the event sample, the events with σ∆t > 1.8 is removed. The events that are

removed represent only about 1.5 % of the sample and contribute even less to the

statistical sensitivity, since their vertices are poorly measured.

6.4 Beam Spot Determination

The nominal luminous region (beam spot) of e+e− collision in PEP-II is a thin flat

ribbon-like shape. It can be approximated by a ellipsoid with a Gaussian distribution

along three axes, with σz � 1 cm, σx � 100 µm, and σy � 5 µm. The vertical size,

σy, is much smaller than the tracking and vertexing resolution in BABAR. Therefore,

the knowledge of the y position of the beam spot provides a constraint that can

improve the sensitivity of many measurements, such as the vertex resolution and the

slow pion direction.

The average beam spot position and apparent size are measured on a run-by-run
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Figure 6.8: Tag-side residual (left) and σ∆t (right) in slices of cos θD where θD is
the polar angle of charm-tau (from which at least one track used for tag-vertexing is
produced from) for signal simulation events.

basis. The length of each run is typically two hours. Two different methods are

used to measure the beam spot parameters. They are described in the following

paragraphs.

Measure beam spot parameters with two-prong tracks

This method uses the high momentum tracks from two-prong events (e+e− and µ+µ−

events). The distance of closest approach (doca) of each track with respect to the

BABAR origin on the transverse (x-y) plane is calculated. The doca can be expressed

as doca = −x sin φ + y cos φ, where (x, y) is the coordinate of a point on the track,

and φ is the azimuthal angle. If all tracks originate from the same point (x0, y0),

doca is a sinusoidal function of φ. The doca-φ distribution is shown in Fig. 6.9 for a

typical run, where the doca for horizontal tracks (φ = 0) is equal to y0, for vertical

tracks (φ = π/2) equal to x0, and spread of the distribution represents the apparent

size of the beam spot. Therefore, one can fit the doca-φ distribution to the sinusoidal

function to extract the centroid and the apparent size of the beam spot. This method



6.4. BEAM SPOT DETERMINATION 97

can be expanded to include the z information to account for the � −20 mrad tilt

angle of beam spot on z-x plane. The z information can be calculated from the

interception of two lines projected by the two tracks on the plane that is defined by

the two direction vectors at their points of closest approach.
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Figure 6.9: The doca-φ distribution for two-prong events in a typical run.

The beam spot determination is implemented in the prompt-reconstruction rolling

calibration. The prompt-reconstruction is running on multiple computers in parallel

and the accumulated data on all computers are merged and calculated in a “finalize”

stage. The structure of the data that hold quantities used for calibration does not

allow the accumulation of data with variable sizes (e.g., lists). Therefore accumulat-

ing all information of the selected tracks, iterating over all tracks, and performing

a fit is not possible under this framework. The solution to this problem is to lin-

earize the question; that is, to make the quantities needed in the finalize stage be

summations of some quantities for individual tracks. Information of individual track

is not recorded, but only the summation is. This way, the size of the accumulated
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information is fixed.

A likelihood function for each event is constructed as a nine-parameter function,

assuming the beam spot is a ellipsoid with a Gaussian profile,

L =
2∑

k=1

[
b+

1 − b√
2πσk

d

exp

(
−(dk − dk

0)
2

2(σk
d)

2

)]
1√

2πσz

exp

(
−(zk

v − z0)
2

2σ2
z

)
. (6.6)

where the sum is over the two tracks and

dk = −xk
poca sinφk + yk

poca cosφk,

(σk
d)

2 = σ2
x sin2(φk − φxy) + σ2

y cos2(φk − φxy),

dk
0 = [y0 +mzy(z

k
v − z0)] cosφk − [x0 +mzx(z

k
v − z0)] sinφk.

with φk the track direction and zk
v the z vertex. The parameters to be fit are x0, y0,

z0, σx, σy, σz , the beam spot slopes on z-x and z-y planes, mzx, mzy, and the beam

spot tilt angle on x-y plane, φxy. The σi are measured along the beam axis that is

close to the i-th axis of BABAR coordinates, not the projection on the BABAR axis.

The uniform background term b is kept constant at the value 0.01 in the fit.

The sum of logL over all selected events is Taylor-expanded to the second order.

The maximum can be solved by setting the first derivatives to zero, if the function

is a purely quadratic function, and the errors can be estimated from the second

derivatives. This method satisfies the prompt reconstruction restriction, but needs

the initial parameters to be close to the true values.

The measured σy is about 50 µm for e+e− events and about 25 µm for µ+µ−

events, which are dominated by tracking resolution. Both are well above the true σy.

The statistical error on the mean of the y coordinate is of the order of 1 µm, since

thousands of tracks contribute to the beam spot calculation. However, the vertical

position of the beam can move up to 10 µm/hour during data taking due to machine



6.4. BEAM SPOT DETERMINATION 99

operation and diurnal motion correlated with temperature. The true collision point

of an event can be above or below the calculated mean position by more than a few

µm.

The the beam spot measurements as function of time in the year 2000 are shown

in Fig. 6.10–6.13, including mean positions, error on the means, measured sizes and

tilt angles.
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Figure 6.10: Mean position of the beam spot in year 2000.



100 CHAPTER 6. VERTEX AND DECAY TIME DIFFERENCE

0

2

4

6

8

10
er

ro
r 

x 
(u

m
)

0

1

2

3

4

er
ro

r 
y 

(u
m

)

0

100

200

300

er
ro

r 
z 

(u
m

)

Figure 6.11: Error on the mean position of the beam spot in year 2000.

Measure beam spot parameters with event vertices

Another method is to simply to select a two-prong or hadronic events, perform a

vertexing algorithm, and accumulate the first and second moment of x, y, and z

coordinates of each vertex. This method is simpler than the method described in

the previous paragraphs, but it depends on the vertexing algorithm and has worse

resolution, especially for hadronic events, which can be larger than 70 µm.
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Figure 6.12: Measured size of the beam spot in year 2000.
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Figure 6.13: Tilt angle of the beam spot in year 2000.



Chapter 7

Flavor Tagging

In this analysis, one B0 from Υ(4S) decay is reconstructed exclusively (except for

the neutrino). After all tracks originating from this reconstructed B0 are removed,

for signal events, the remaining charged tracks are from the other B meson. In this

chapter, the technique that identifies (tags) the flavor of the second B meson using

these remaining tracks at the time of its decay is described. High efficiency and

low mistag rate of tagging techniques are essential for B0B0 mixing measurements,

because the statistical uncertainty for mixing measurement is roughly proportional

to 1/
√
Q ≡ 1/

√
ε(1 − 2ω)2, where ε is the tagging efficiency; i.e., the probability

that a certain tagging technique can be used to separate B0 decays from B0, and ω

is the mistag rate; i.e., the probability that this technique makes a incorrect decision.

The quantity Q is often called quality factor or effective tagging efficiency.

In BABAR, five different types of flavor tag, or tagging categories are used. The

first two tagging categories rely on the presence of a prompt lepton, or one or more

charged kaons, in the event. They are described in Sec. 7.1.1. The other three

tagging categories exploit a variety of inputs with a neural-network algorithm, which

is described in Sec. 7.1.2. Finally, the correlation between flavor tagging and decay

vertexing is discussed in Sec. 7.2.

103
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7.1 Algorithm

7.1.1 Single variable-based tagging — lepton tag and kaon

tag

The lepton and kaon tagging categories use the correlation between the flavor of

the decaying b quark and the charge of a primary lepton from a semileptonic decay

or the charge of a kaon from the decay chain b→ c→ s.

The lepton category uses both electrons and muons, which are required to satisfy

the “very tight” and “tight” selections, respectively (see Sec. 5.2). A minimum

requirement of 1.0 (1.1) GeV on the electron (muon) center-of-mass momentum is

applied to reduce the contamination from softer, opposite-sign lepton coming from

cascade semileptonic decays of charm mesons. In each event, the electron or muon

with the highest momentum in the center-of-mass frame is used for flavor tagging.

For a tiny fraction of events, where both electron and muon are present, the electron

is used for flavor tagging. The existence of a positively (negatively) charged primary

lepton indicates a B0 (B0) decay.

The kaon content in an event is evaluated from the sum of the charges of the

kaons identified by a neural network algorithm, called K subnet, which is described

in Sec. 7.1.2. This kaon identification algorithm has be optimized to maximize the

quality factor, Q. A positive (negative) charged kaon is more likely to come from a

B0 (B0) decay. On average there are 0.8 charged kaons per B decay, and roughly

15% of these have the wrong sign. The wrong-sign kaons are primarily from B decays

to a charm-anti-charm pair of mesons, or from right-sign D+ decays to a wrong-sign

kaon (see Sec.7.2).

An event is assigned to the lepton category if a high momentum lepton is iden-

tified, and no identified kaon has the opposite sign. Otherwise, an event is assign
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to the kaon category if no high momentum lepton is identified and the sum of the

charges of the identified kaons is non-zero. The flavor of the B is assigned according

to the charge of the lepton, or the sum of the charges of kaons.

The lepton tagging category has the lowest mistag probability among the five

tagging categories. The kaon tagging category has a higher mistag rate than the

lepton category, but the efficiency is also higher. About 45% of events belong to

these two categories. The remaining events are passed to the neural-network based

algorithm.

7.1.2 Neural network tagging

A multi-variate analysis based on a neural network is carried out for the events

that do not belong to lepton and kaon tagging categories. Three different neural

networks, called “subnet”, have been trained to identify primary leptons (L subnet),

kaons (K subnet) and soft pions from D∗ decays (SoftPi subnet). More details are

described in [71].

The L subnet uses the output of the electron and muon identification algorithm,

the center-of-mass momentum of the input track, and two kinematic variables that

use the information of missing momentum and are sensitive to the primary lepton

from semileptonic decays. The K subnet uses the input track momentum in the

laboratory frame, together with the three relative likelihoods LK/(Lπ + LK) for the

SVT, the DCH and the DIRC. The SoftPi subnet uses the center-of-mass momentum

of the input track, the angle of the input track with the thrust axis calculated with

all charged tracks and neutral clusters in the Btag, and the center-of-mass momentum

of the minimum momentum track. The direction of a soft π from a D∗ decay is likely

to be aligned with the D∗ direction, which is correlated with the trust angle. Each

of these subnets is applied to each charged track in the event.

The final neural network that is trained to distinguish between B0 and B0 uses
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the following inputs: the maximal values over each track in the event of the L and

SoftPi subnet outputs and the highest and the second-highest values of the K subnet

output, all subnet output values multiplied by the charge of the corresponding input

track; the center-of-mass momentum of the maximum momentum track multiplied

by its charge; and the number of tracks with significant impact parameters, which is

an indicator of the presence of KS mesons.

The output from the final neural network, xNT , is mapped onto the interval (−1,

1). The assigned flavor is B0 if the xNT is positive, and B0 otherwise. Events

with |xNT | > 0.5 are assigned to NT1 category, events with 0.2 < |xNT | < 0.5 are

assigned to NT2 category, and the remaining events are assigned to NT3 category.

The distribution of the neural network output can be seen in Fig. 7.1. About 30% of

the total events are in NT3 category which carries very little tagging power; i.e., their

mistag probability is close to 50%, but they increase the sensitivity to the lifetime

measurement

7.2 Mistag and Vertexing Correlation

A strong correlation between the mistag fraction and calculated error on B decay

time difference, σ∆t for kaon tagging category (KTag) is found. Figure 7.2 shows

the mistag fractions for five different tagging categories in slices of σ∆t in Monte

Carlo samples. The mistag fraction for KTag increases almost linearly for small σ∆t

and levels off at larger σ∆t, while mistag fractions for other categories are basically

independent of σ∆t.

Apart from detector effects (e.g. kaon mis-id), wrong-sign kaons can originate

from many physics processes, e.g., double charm decays, fragmentation, wrong-sign

kaon from singly/doubly Cabibbo-suppressed charm decays.

In this section I study the sources of this ω–σ∆t correlation using B0 → D∗�ν
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Figure 7.1: The distribution of neural network output for the events that are not
assigned to lepton and kaon categories. The points are from an analysis of fully
reconstructed hadronic B events [72], and the histogram from simulation.

signal Monte Carlo sample by studying the tag-side B0 decays in the events where

the Brec candidate is correctly reconstructed.

7.2.1 Transverse momenta of used tracks

It was first confirmed by Art Snyder [73] that the ω–σ∆t correlation is (almost) solely

due to the correlations between ω, σ∆t and transverse momenta of used charged

tracks. Here I demonstrate the effect with B0 → D∗+�−ν� simulation sample.

Roughly speaking the error of the tracking parameters is proportional to 1/p,

where p is the magnitude of the momentum. A single track i contributes to the error
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Figure 7.2: Mistag fractions in slices of σ∆t for five tagging categories for true signal
events in B0 → D∗�ν signal Monte Carlo sample. The values are calculated by
counting the numbers of incorrectly tagged events by comparing the observed and
true mixing status. The plots are fitted with a straight line. Only KTag shows a
significant slope.

of the vertex position, projected on the z-axis is,

σi
z ∝ 1/(pi sin θi) = 1/pi

t .

The error on a vertex in the z direction, after summing contributions from all used



7.2. MISTAG AND VERTEXING CORRELATION 109

tracks, is then given by

1

(σz)2
=
∑

i

1

(σi
z)

2
∝
∑

i

(pi
t)

2 .

So σ∆t (dominated by σztag) should be a linear function of 1/
√∑

i (p
i
t)

2. The left

plot in Fig. 7.3 shows this relation along with a linear fit. The mistag fraction is

also strongly correlated with 1/
√∑

i (p
i
t)

2, as shown in the right plot. To under-

stand whether the correlation between the mistag probability and σ∆t is due to pt

correlation, or due to other effect, we can “predict” the mistag probability using

pt and plot the ratio of measured to predicted mistag probability as a function of

σ∆t. According to a linear fit to mistag versus 1/
√∑

i (p
i
t)

2, the expected mistag is

ω′ = 0.151/
√∑

i (p
i
t)

2 + 0.009. The relation ω/ω′ versus σ∆t is shown in Fig. 7.4.

The correlation is basically eliminated by this transformation. This confirms that

the ω–σ∆t correlation is basically due to the correlations between ω, σ∆t and pt.

This conclusion suggests that the events with wrong tagging information have a

softer pt spectrum. The pt spectra of correctly and incorrectly tagged events by KTag

are plotted explicitly in Fig. 7.5.

To understand the sources of pt differences, I use the BABAR event generator to

examine the types of events from B0 decays that produce at least one charged kaon

in the final state. The charges of the final charged kaons are summed. If the sum is

positive (negative) the B meson is tagged as B0 (B0). If the sum is zero, there is no

tagging information.

We first look at the tagging efficiencies for events with 0, 1, and 2 charm mesons

(D0, D+, Ds), and also for events that have at least one fragmentation kaon, B0 →
K(∗)X. The efficiencies, separated by tagging information, are summarized in Ta-

ble 7.1. The wrong tag fraction is about 10% for all tagged events.

We further break down the wrong tag events by the sources of the wrong-sign
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Figure 7.3: Mean of σ∆t (left) and mistag (right) as functions of 1/
√∑

i (p
i
t)

2 in
signal Monte Carlo simulation.

kaons. The percentages for different sources are listed and ranked in Table 7.2. The

major sources of wrong-sign kaons are: two charm yielding wrong-sign D decaying

to its right-sign K, one right-sign charged D decaying to wrong-sign K, and kaons

from fragmentation.

I compare the
√∑

i p
2
t spectrum among no-, one-, and two-charm events, and

events that have at least one fragmentation kaon. The comparison is shown in

Fig. 7.6. For the double charm and B fragmentation events, the spectra are softer.

The primary reasons are that two charm events have lower momentum due to the
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Figure 7.5: The
√∑

i p
2
t spectra for correctly and incorrectly tagged events by KTag

in signal Monte Carlo simulation. The summation is over all charged tracks used for
tag-side vertexing.

production of two heavy quarks, and the fragmentation decays lose momentum to

“spin energy” [74], etc.

We also compare right and wrong tag events for 0–2 charm events. As shown

in Fig. 7.7, the wrong tag spectra are always softer than the right tag, driving the

ω–σ∆t correlation. The differences are most noticeable in one-charm events, which
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Table 7.1: The kaon tagging efficiencies at generator level, for events with 0, 1, and 2
charm mesons (D0, D+, Ds), and also for events that have at least one fragmentation
kaon, B0 → K(∗)X. The fragmentation kaon sample is not a proper subset of the
“No charm” sample because X can contain charm.

Tag info
Event type Right Wrong No Total

No charm 2.8% 0.6% 7.0% 10.4%
One charm 29.1% 1.9% 36.6% 67.6%
Two charm 9.8% 2.2% 10.0% 22.0%
Total 41.6% 4.7% 53.6%

Frag. K 8.8% 1.0% 3.1% 12.8%

Table 7.2: The percentages of wrong sign kaons from different sources for wrong tag
events estimated from Monte Carlo generator. The values are weighted by number
of wrong sign kaons.

Source %
Wrong-sign D0, two charm 25.1
Right-sign D+, one charm 21.5
Fragmentation B0 → K(∗)X 17.8
Right-sign D+, two charm 7.6
Wrong-sign D+, two charm 7.1
Wrong-sign Ds

+, two charm 5.8
B0 → ResX, Res → KY 4.4
Other K mother (Λc, etc) 4.1
Right-sign D0, one charm 1.9
Wrong-sign D0, one charm 1.6
Right-sign D0, two charm 1.5
Right-sign Ds

+, one charm 1.0
Wrong-sign D+, one charm 0.4
Right-sign Ds

+, two charm 0.3

is dominated by D+. The reason for the dominance of D+ in the wrong-sign sample

is that the branching ratio for a D0 decaying to a right sign K− (53%) is twice as
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Figure 7.6:
√∑

i p
2
t spectra for all, 0–2 charm, and fragmentation kaon events. His-

tograms are normalized to the same area.

large as a D+ to K− (24%), while for wrong sign K+, D0 is only about half (3.4%)

of D+ (5.8%). The right versus wrong tag spectra for events with only one right

sign D+ are shown in Fig. 7.8. This case is particularly easy to understand. Since

the right sign D+ decay produces a K−, charge conservation requires at least two

more charged particles in the final state. It results in a higher multiplicity of charged

tracks for right-sign decay than the wrong-sign decay. Figure 7.10 shows the B and

D multiplicities for right and wrong sign K for events with exactly one charged K

in the final state. The minimum number of charged tracks for D+ to right sign

K (D+ → K−) is three, because two extra positively charged tracks are needed to

conserve charge. But for the wrong sign K (D+ → K+), the dominant channels

are K+K(∗)(π0), which have only one charged track. Since a lot of momentum is

carried away by neutrals and fewer charged tracks are left, the wrong sign decay from

charged D has softer
√∑

i p
2
t spectrum than right sign decay.

The same spectra are compared for events with at least one kaon from B frag-

mentation, as shown in Fig. 7.9.
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Figure 7.7: Right and wrong tag event spectra for 0–2 charm events. Histograms are
normalized to the same area.

All these spectrum comparisons show the same pattern, that ultimately con-

tributes to the increase of mistag fraction as σ∆t increases.
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Figure 7.8: Right and wrong tag event spectra for events with only one right sign
D+. Histograms are normalized to the same area.
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Figure 7.9: Right and wrong tag event spectra for events with at least one kaon from
B fragmentation. Histograms are normalized to the same area.
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Figure 7.10: Charge multiplicities for B and D.



Chapter 8

Event Selection

8.1 Introduction

The events in this analysis are selected from the semileptonic decay of neutral B

mesons, which contains a charged D∗ and an electron or muon. The main source

of signal events is B0 → D∗+�−ν� decays1. A few percent originates from B0 →
D∗+X�−ν� decays, where D∗X can be from higher charm resonances or simply from

fragmentation. In both cases the decay time structures are identical to that of the

main decay mode.

The D∗ is reconstructed through the D∗+ → D0π+ channel, and the D0 through

four decay modes, D0 → K−π+, K−π+π0, K−π+π−π+, or KSπ
+π−. A charged D∗

is fully reconstructed and is combined with an identified oppositely-charged electron

or muon. This D∗� pair is then required to pass kinematic cuts that enhance the

contribution of semileptonic B0 → D∗−�+ν� decays. In addition to the signal sam-

ple, several background-enriched control samples that are used to characterize the

main sources of background are also selected. These backgrounds can be categorized

1Be reminded that throughout this thesis, unless explicitly specified otherwise, charged conjugate
modes are implied.

117
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according to the D∗ reconstruction status and the source of the lepton candidate:

1. events with a correctly reconstructed D∗+ candidate,

(a) events originating from BB events,

i. events with a correctly identified lepton candidate,

A. signal: B0 → D∗+�−ν�X decays,

B. or, charged B background: B− → D∗+�−ν�X
−,

C. or, correlated background: B0 or B− → D∗+X, X → �−Y ,

D. or, uncorrelated background: B0 or B− → D∗+X, and the

other B through B → �−Y ,

ii. or, fake-lepton background: events with a misidentified lepton

candidate.

(b) or, continuum background: cc→ D∗+X.

2. or, combinatoric background: events with a mis-reconstructed D∗ candi-

date, either from BB events or continuum.

The data analyzed in this thesis are collected during 1999–2000 of BABAR opera-

tion, of which 20.6 fb−1 are on peak and 2.6 fb−1 are at 40 MeV below the peak. The

total number of BB pairs collected by BABAR during this period of time is estimated

to be about 23 million (see Sec. 4.2). A total amount of 68,000 events are selected, of

which 27,000 events are in signal samples, including combinatoric background, and

the remainder are in background control samples.

The common selection criteria for signal and background control samples are

described in Secs. 8.2–8.8. Sec. 8.9 describes the selections specific to signal and

different control samples.
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8.2 Track Selection

All charged tracks reconstructed in the DCH and/or SVT are categorized hierarchi-

cally according to the selection requirements.

The pions for KS reconstruction are selected from all charged tracks without

additional requirements.

The soft pion candidate from the D∗ decay is selected from a list that uses very

loose requirements, which are (1) the momentum measured in the lab frame is less

than 10 GeV and (2) the distance of closest approach (doca) to the nominal beam

spot centroid calibrated for each run is less than 1.5 cm on the transverse plane and

less than 10 cm along the z-axis.

The remaining charged tracks, except the lepton candidates, are selected from

a list that imposes additional requirements: (1) the transverse momentum is larger

than 100 MeV, and (2) at least 20 hits are recorded in the drift chamber, out of a

possible maximum of 40 hits for tracks perpendicular to the beam pipe.

The lepton candidates are selected from a tight list that requires, in addition to

those requirements shown above, the distance of closest approach to be less than

1 cm on the transverse plane and less than 3 cm along the z-axis.

At the final stage of event selection, the same doca requirement for lepton can-

didates is imposed on all charged tracks in the final state except those used for KS

reconstruction.

8.3 Event Shape

To reduce continuum background, we calculate the angle θthrust between the thrust

of the D∗� candidate and that of the rest of the event in the e+e− center-of-mass

frame. Events from continuum tend to be jetty, therefore the angle between two
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thrusts tends to be close to zero or 180 degrees, so that the angle is peaked near

| cos θthrust| = 1, while the decay topology of BB events is more spherical since two

B mesons decay almost at rest, therefore the directions of the two trusts are not

correlated and the angular distribution is flat. Figure 8.1 shows the | cos θthrust|
distributions of BB and continuum events. We select events with | cos θthrust| < 0.85.

The efficiencies for signal and continuum events to satisfy this requirement are about

85% and 46%, respectively.
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Figure 8.1: (a) Distributions of the angle between the thrusts of the D∗� candidate
and the rest of the event for signal events (solid histogram),D∗-hadron events (dashed
histogram) from BB Monte Carlo, and events that are selected from off-resonance
data (dotted histogram). (b) Efficiencies of making cut on cos θthrust for these types
of events.

8.4 π0 Reconstruction

Neutral pion candidates are formed from pairs of EMC bumps with energy greater

than 30 MeV, assumed to be photons originating from the interaction point. The
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invariant mass of the photon pair is required to be between 119.2 MeV and 150.0 MeV,

which is about ±2.5σγγ of the nominal π0 mass, where σγγ is the γγ mass resolution,

with a minimum total energy of 200 MeV. Selected γ candidates are kinematically

fitted so that γγ invariant mass is equal to the nominal π0 mass. The χ2 probability

of the fit is required to be greater than 1%. Within the acceptance of the EMC,

efficiencies for this selection vary from about 55% to 65% for π0 energies from 0.3 to

2.5 GeV, the range of π0 energies in B decays [75].

The γγ mass distribution and the χ2 probability of mass-constraint are shown in

Fig. 8.2.
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Figure 8.2: (a) γγ invariant mass invariant mass distribution for π0 candidates. (b)
χ2 probability of the kinematic fit for π0 candidates. The plotted distributions are
from data within m(D∗)−m(D0) peak (see Sec. 8.8), with selection criteria close to
the final set except that no D0 mass cut (see Sec. 8.6) and no χ2 probabilities for
any vertex fits (see Sec. 8.8) are applied.

8.5 KS Reconstruction

KS candidates are formed from pairs of charged tracks, assumed to be pions. These

two tracks are fitted to a common vertex. The fit χ2 probability is required to be
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greater than 1%. The ππ invariant mass, calculated at the vertex of the two tracks,

is required to be within ±15 MeV of the nominal KS mass [9].

The ππ mass distribution evaluated at the vertex, and the χ2 probability of mass-

constraint fit are shown in Fig. 8.3.
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Figure 8.3: (a) π π invariant mass for KS candidates. Curve is a Gaussian plus a
flat distribution. The width of the Gaussian is about 3.3 MeV. (b) χ2 probability
of π π vertexing for KS candidate. The plotted distributions are from data within
m(D∗) − m(D0) peak (see Sec. 8.8),, with selection criteria close to the final set
except that no D0 mass cut (see Sec. 8.6) and no χ2 probabilities for any vertex fits
(see Sec. 8.8) are applied.

8.6 D0 Reconstruction

TheD0 candidates are obtained from reconstructingD0 → K−π+,D0 → K−π+π−π+,

D0 → K−π+π0 and D0 → KSπ
+π− decay modes. Charged kaon of D0 → K−π+

(D0 → K−π+π−π+, D0 → K−π+π0) is required to pass not-a-pion (tight) criteria

(see Sec. 5.2.3 for definitions). No particle identification is applied for D0 → KSπ
+π−

modes.

The raw invariant mass distributions of D0 candidates are shown in Fig. 8.4.

The widths of the peak Gaussian are about 14 MeV for K−π+π0 mode and about
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7 MeV for other three modes, which do not have a π0 in their final states. The

selection windows are chosen to be ±34 and ±17 MeV from nominal D0 mass [9]

for K−π+π0 and other three modes, respectively, which are about 2.5 sigmas. The

D0 candidates are then reconstructed with the invariant mass constrained to be the

nominal D0 mass. The χ2 probability of the fit is required to be larger than 0.1%.

This probability distributions is shown in Fig. 8.5

The D0 → K−π+π0 and D0 → KSπ
+π− modes are known to have resonance

substructure [76, 77]. The major resonances are K−ρ+, K∗−π+ and K∗0π0 for

D0 → K−π+π0 mode and K∗−π+,K0ρ0, K0f0, K
0f2, etc., for D0 → KSπ

+π− mode.

One can take advantage of these structures by selecting D0 candidates near these

resonances to increase signal to background ratios. Figure 8.6 shows the Dalitz

plots [78] for these two modes, in which the density is calculated based on the decay

amplitudes and phases found in [77] (Details are discussed in Appendix. C.). The

event density (Dalitz weight) distributions and the cut efficiencies for the signal and

flat background are also shown in Fig. 8.6.

For each event, its expected density on the Dalitz plot is calculated. The event is

kept if this value is larger than 10 % of the maximum value (within the red contours

in plots (a) and (d) in Fig. 8.6). This cut is very effective against flat background.

It is worth noticing that the Dalitz plot for D0 → KSπ
+π− is not symmetric

under the exchange of π+ and π−. It is due to the fact that a D0 can produce the

resonance K∗−π+ but not K∗+π−, and vice versa for D0. Therefore, we need to

know whether the flavor of the mother particle is a D0 or D0, (which cannot be

determined from the final state KSπ
+π− alone), before the Dalitz density can be

calculated correctly. We need to rely on the charge association between the D∗ and

soft π, i.e., D∗+ → D0π+, and D∗− → D0π− to determine the flavor of D0.
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Figure 8.4: Raw D0 candidate mass distributions for (a) K−π+, (b) K−π+π−π+, (c)
K−π+π0, and (d) KSπ

+π− modes. The plotted distributions are from data within
m(D∗) − m(D0) peak (see Sec. 8.8), with selection criteria close to the final set
except that no χ2 probabilities for any vertex fits (see Sec. 8.8) are applied, and
the mass windows for π0 and KS are tightened to 125–145 MeV and 495–505 MeV,
respectively. Fitted curves are double-Gaussian. Backgrounds are not flat because
the events are pre-selected such that at least one D0 candidate in each event has
mass within ±35 MeV of nominal D0 mass for K−π+π0 mode and ±20 MeV for
other three modes.

8.7 D∗ Reconstruction

D∗ candidates are reconstructed by combining the D0 candidate with a charged π

(called the soft pion or π+
s ) that has transverse momentum greater than 50 MeV and

charge opposite to the charge of the kaon candidate. For the KSπ
+π− mode, the
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Figure 8.5: χ2 probability of D0 mass-constraint fit.

charge of the soft pion is used to identify the flavor of D0 candidates, so that the

Dalitz density can be calculated correctly (see Sec. 8.6.).

Since we are selecting D∗ candidates from a B decay, D∗ candidates are required

to have momentum less than 2.5 GeV in the Υ(4S) rest frame. As shown in Fig. 8.7,

this cut preserves all signal events but removes a significant amount of D∗ from

continuum events.

The spectrum that is used to determine whether a D∗ is reconstructed correctly

is the difference between the candidate D0π+
s mass with the candidate D0 mass

constrained to the true D0 mass, and the true D0 mass (m(D∗) − m(D0)), after

the π+
s is refitted with D∗-� vertex and beams-pot constraint (See Ch. 6.). The

spectrum is peaked around 145.5 MeV with a width less than 1 MeV, depending

on the soft pion reconstruction status (See Ch. 10 for more details.). Figure 8.8

shows the m(D∗) − m(D0) distribution for signal sample in data. All events with

m(D∗) −m(D0) < 165 MeV will be used in the final fit. There is no explicit cut on

this quantity for signal, but this distribution is used for determining the probability

of a given event being a certain type of background in the final fit.
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8.8 D∗ � Vertex and Tag-side B Requirement

D∗ � candidates are retained if the χ2 probability that the daughter tracks form a

common vertex is greater than 1%. Events are selected if the fit that determines the

distance ∆z converges, the decay time difference ∆t calculated from ∆z is between

±18 ps, the error on ∆t estimated from the tracking resolution (σ∆t) is less than

1.8 ps, and at least two tracks are used to determine the vertex of the other B

(tagging B). The motivation of the last two criteria to reduce outlier events on ∆t

residual space and to keep the linearity between σ∆t and the mean of ∆t residual

valid (See Sec. 10.1.1 for details.).

8.9 Background Control Samples

As discussed in Sec. 2.5, the cosine of the angle between the D∗ and � momenta in the

Υ(4S) rest frame (cos θ∗D∗�) peaks at −1, and the cosine of the angle between the B0

and D∗� candidate momenta (cos θ∗B0,D∗�, see Eq. 2.52.) is between ±1. Figure 8.10

shows these two distributions for signal and background events.

For the events in the signal sample, the lepton satisfies electron or muon selection

and is on the “opposite-side” of the D∗ candidate, where opposite-side is defined as

cos θ∗D∗� < 0 and | cos θ∗B0,D∗�| < 1.1. The range ±1.1 is used instead of ±1 to

include some signal events outside of ±1 due to detector resolution. A background

control sample, enhanced in uncorrelated-lepton background and called the “same-

side” sample is composed of D∗� candidates with cos θ∗D∗� > 0 and | cos θ∗B0,D∗(−�)| <
1.1, which is calculated by Eq. 2.52 in the Υ(4s) rest frame after the lepton candidate

is flipped with respect to its origin by 180◦ (�p� → −�p�, denoted as −�). The quantity

cos θ∗B0,D∗(−�) is used instead of cos θ∗B0,D∗� because the distribution of cos θ∗B0,D∗(−�)

in the background control sample is similar to the distribution of cos θ∗B0,D∗� for
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uncorrelated-lepton background in the signal sample, based on simulation, whereas

the distribution of cos θ∗B0,D∗� in the background control sample is systematically

different.

Events in the signal sample must be selected from on-resonance events. The

lepton candidates for the signal sample must satisfy a “very-tight” particle identifi-

cation criteria for either electrons or muons. A lepton candidate is also selected if it

fails “loose” criteria for both electron and muon identification. This sample is called

“fake-lepton” control sample. We define three categories for lepton identification,

satisfying electron or muon selection, or failing both selections, two for the angular

relation between lepton and D∗ candidates, and two for on or off Υ(4S) resonance

at which events are recorded. Out of the 12 possible combinations of these three

attributes, two represent the signal sample and the remaining ten are background

control samples (see Table 8.2). Of the ten control samples, five are primary samples

that we use to directly study backgrounds that contribute to the signal sample, and

the remaining five are secondary samples that we use to study backgrounds in the

primary control samples. The description of these three attributes is listed in the

upper half of Table 8.1.

Each of the 12 samples is further divided into 30 subsamples according to three

additional reconstruction characteristics listed in the lower half of Table 8.1: DCH

hits of the soft pion (svtDch, two choices), D0 reconstruction modes (Dmode, three

choices), and tagging categories (tagCat, five choices, detail described in Ch.7). The

svtDch category is useful to isolate the subsample (of about 20%) of candidates for

which the D∗ mass is more precisely determined because the slow pion has higher

momentum and DCH hits are available. Dmode and tagCat, are used to account for

the different amounts and properties of the combinatoric background that we observe

in these subsamples. The sample is also subdivided by tagCat in order to separate

events with different flavor tagging performances and ∆t resolution to improve the
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Table 8.1: Attributes used to subdivide the signal and control samples for the pur-
poses of background characterization and extraction of lifetime and mixing parame-
ters.

Attribute Ncat Description

angCut 2 What are the angular correlations between the D∗ and �?
(1) candidates satisfy the “opposite-side” (OS) criteria
(2) candidates satisfy the “same-side” (SS) criteria

onOffRes 2 At what center-of-mass energy was the event recorded at?
(1) near the Υ(4S) resonance
(2) below the Υ(4S) resonance

leptID 3 Is the kinematically-selected � candidate lepton-like?
(1) candidate satisfies “very-tight” electron selection
(2) candidate satisfies “very-tight” muon selection
(3) candidate fails “loose” electron and muon selections

svtDch 2 How was soft-pion candidate track reconstructed?
(1) in the SVT only
(2) in the SVT and the DCH

Dmode 3 How was the D0 candidate reconstructed?
(1) D0 → Kπ
(2) D0 → Kππ0

(3) D0 → Kπππ or D0 → KSππ
tagCat 5 How was the flavor of the non-D∗� B determined?

(1) with the lepton category algorithm,
(2) with the kaon category algorithm,
(3) with the NT1 category algorithm
(4) with the NT2 category algorithm
(4) with the NT3 category algorithm

sensitivity to mixing oscillations in decay-time fits.
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Table 8.2: Summary of the signal and control samples selected for lifetime and mixing
analysis. Samples 1–2 are signal, 3–7 are primary background control samples, and
8–12 are secondary background control samples.

Sample angCut onOffRes leptID Sample enriched in...

1 OS On pass e electron signal
2 OS On pass µ muon signal
3 OS On fail e & µ fake BG to samples 1 and 2
4 OS Off pass e continuum BG to sample 1
5 OS Off pass µ continuum BG to sample 2
6 SS On pass e uncorrelated BG to sample 1
7 SS On pass µ uncorrelated BG to sample 2
8 OS Off fail e & µ fake BG to samples 4 and 5
9 SS On fail e & µ fake BG to samples 6 and 7

10 SS Off pass e continuum BG to sample 6
11 SS Off pass µ continuum BG to sample 7
12 SS Off fail e & µ fake BG to samples 10 and 11
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Figure 8.6: (a) Dalitz plots calculated with the amplitudes and phases measured
by [77] for D0 → K−π+π0. Red contours represent the regions where the density is
higher than 10 % of the maximum value. (b) Distributions of density on the Dalitz
plot for signal (solid histogram) and flat background (dashed histogram). (c) Cut
efficiencies against signal (solid line) and flat background (dashed line). (d)–(f) Same
plots as (a)–(c) for D0 → KSπ

+π−.
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Figure 8.8: The distribution of m(D∗) −m(D0) for signal samples in data.
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Figure 8.9: χ2 probability of vertex fit for D∗ � candidate. The plotted distribution
is from data within m(D∗) −m(D0) peak, with selection criteria close to the final
set except that no D0 mass cut and χ2 probabilities for any vertex fits are applied.
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Figure 8.10: (a) Distributions of cos θ∗D∗� for signal (solid dots) events and for back-
ground events (open circles) whose D∗ and � candidates are from different B mesons;
(b) distributions of cos θ∗B0,D∗� calculated by Eq. 2.52 for all selected BB events (solid
dots) and for all background events (open circles). Both angles are evaluated in the
Υ(4S) rest frame. The plotted distributions are from signal Monte Carlo simulation.



Chapter 9

Background Characterization

In this section, the procedure of determining the components of major backgrounds

is described. Since the neutrino in a event cannot be detected, the energy and mass

of a B candidate are not available for discriminating signal and background. The

distribution of the D∗−D0 mass difference (δm ≡ m(D∗)−m(D0)) is therefore used

as one of the discriminating variables. It determines whether the D∗ in an event is

correctly reconstructed. As described in Sec. 8.9, several background control samples

are selected for estimating levels of major background in the signal sample. The off-

resonance data are used to estimate the continuum contribution in on-resonance data.

Events whose lepton candidate fails the lepton identification (“fake-lepton” sample)

are used to calculate the contamination due to lepton mis-identification. Finally,

the events whose lepton and D∗ candidates are in the same hemisphere (“same-side”

control sample) are used to project the contribution from uncorrelated leptons.

9.1 Lepton Identification

As will be shown in Sec. 9.6, the momentum- and angle-weighted particle identifi-

cation efficiencies are used to disentangle the hadron contribution in each control

133
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sample. In this section, the procedure of calculating these efficiencies is discussed.

We use the “very tight” electron and muon selectors (see Sec. 5.2) to select the

e and µ signal samples. The lepton candidates that fail both the “loose” electron

and “loose” muon selectors are defined as the fake sample. In Fig. 9.1, we show

the number of events that pass a particular selector and fail the tighter selectors,

for electrons and muons in signal Monte Carlo simulation. In order to calculate the

efficiency of the lepton selection and the contribution of non-lepton backgrounds, we

use angle- and momentum-weighted selector efficiencies ε(x → y) measured in data,

weighted according to the angular and momentum distributions in the lab frame for

the relevant particles in B0B0 and B+B− generic Monte Carlo samples. The notation

x → y means the efficiency for selecting a particle of type x with the selector for

particle of type y. We define the angle- and momentum-averaged efficiencies as

ε(x→ y) ≡ 1

N

∫
dp d cos θ dφ

dN

dp d cos θ dφ
· ωx→y(p, cos θ, φ) , (9.1)

where ωx→y(p, cos θ, φ) is the selector efficiency as a function of particle momentum

and direction measured in the lab frame, and the function

1

N

dN

dp d cos θ dφ

describes the distribution of these variables in the relevant physics samples. The

lab momentum distributions of lepton and hadron tracks (according to Monte Carlo

truth) from generic Monte Carlo simulation are shown in Fig. 9.2.

The lepton candidate momentum distributions for opposite-side (OS) and same-

side (SS) (defined in Table 8.1) samples are significantly different. As can be seen

in Fig. 9.3, the SS sample has a lower peak at 1 GeV, while OS sample peaks at

2 GeV. Therefore, we calculate two sets of PID efficiencies for OS and SS samples

separately.
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Figure 9.1: Number of events that pass one of the standard lepton selectors and fail
the tighter selectors, for electrons (left plot) and muons (right plot) in signal Monte
Carlo.

The electron and muon selector efficiencies ωx→y(p, cos θ, φ) are estimated with

particle identification efficiency and misidentification tables calculated from electron,

muon, pion, kaon and proton control samples in data [64, 67]. The efficiencies and

misidentification rates are tabulated in bins of (p, θ, φ), measured in the lab frame.

For each particle type determined from the Monte Carlo truth (electron, muon, π,

K, or p), a list of particle momenta and angles, {(p, θ, φ)�}N
�=1, from generic B0B0

and B+B− Monte Carlo events are generated to calculate the momentum- and angle-

weighted selector efficiency:

ε(x→ y) � 1∑
s fsNs

m∑
n=1

(
∑

s

fsNn;s)ωx→y(n) ,

where m is the total number of bins and s = B0B0, B+B−. Ns is the total number

of events in sample s and Nn;s is the number of events in sample s that fall in bin

n. The scaling factor fs is the ratio of the equivalent luminosity of the B0B0 Monte

Carlo sample to that of sample s. The uncertainty on ε(x → y) is calculated with
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Figure 9.2: Upper plots: distributions of momentum (left) and polar angle (right) in
the lab frame of real leptons and real hadrons (according to Monte Carlo information)
for the events that pass all the cuts except lepton identification, and the D∗ is
reconstructed correctly, in generic B0B0 and B+B− Monte Carlo samples, without
reweighting. Lower plots: The relative π, K and proton contributions to the hadron
sample.

the following formula:

δε(x→ y) =

1∑
s fsNs

√√√√√ m∑
n=1



(∑

s

fsNn;s

)2

δ2
x→y(n) +

(∑
s

f 2
sNn;s

)(
ω2

x→y(n) − ε2(x→ y)
) .

The first term in the sum over bins (n = 1 to m) corresponds to the uncertainty

due to the uncorrelated statistical errors δx→y(n) on the efficiency calculated from
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Figure 9.3: Distributions of lab momentum for real lepton (left) and real hadron
(right) in generic B0B0 and B+B− Monte Carlo samples for opposite-side (OS) and
same-side (SS) samples. The areas of the histograms are normalized to one. Event
are required to satisfy all selections except lepton identification.

the data control samples. The second term corresponds to the statistical uncertainty

due to the Monte Carlo sample used for the angle and momentum weighting. To

demonstrate the source of each term, we consider a simple example with only two

bins and calculate the error on the efficiency ε. Assume the total number of tracks

in the Monte Carlo sample is N . The number of events that pass the selection is

Np = Nε = N1ε1 +N2ε2 ,

where Ni is the number of tracks that fall in bin i, and εi is the efficiency for bin i.

The error on Np will be

(δNp)
2 = (δN)2ε2 +N2δε2 = (δN1)

2ε21 +N2
1 δε

2
1 + (δN2)

2ε22 +N2
2 δε

2
2 .

Using δNi =
√
Ni and N = N1 +N2, we find that the error on the efficiency is

δε2 =
1

N2
(N2

1 δε
2
1 +N2

2 δε
2
2 +N1ε

2
1 +N2ε

2
2 − (N1 +N2)ε

2) .
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When scaling factors f are included, Ni is replaced by fNi and δNi is replaced by

f
√
Ni.

The candidate leptons and hadrons used here are those with a true reconstructed

D∗ in the event, according to the Monte Carlo information. In addition, the event

is required to pass all D∗ � (real or fake lepton) selection criteria, except the lep-

ton identification requirements. The momentum- and angle-weighted efficiencies are

shown in Table 9.1.

Table 9.1: Momentum- and angle-weighted lepton identification efficiencies and fake
rates for very tight and loose selectors, for leptons and hadrons from B0B0 and
B+B− simulation events that pass all cuts except lepton identification, and the D∗

is reconstructed correctly.

OS SS
Eff. very tight (%) loose (%) very tight (%) loose (%)
e→ e 90.948 ± 0.044 98.587 ± 0.019 90.99 ± 0.13 98.418 ± 0.057
π → e 0.1671 ± 0.0087 5.715 ± 0.042 0.1409 ± 0.0071 5.622 ± 0.051
K → e 0.124 ± 0.037 2.59 ± 0.11 0.115 ± 0.046 3.34 ± 0.22
p → e 0.82 ± 0.19 15.8 ± 1.0 0.53 ± 0.15 14.9 ± 1.1
µ→ µ 69.60 ± 0.12 86.726 ± 0.095 64.54 ± 0.85 83.59 ± 0.77
π → µ 2.37 ± 0.11 7.26 ± 0.11 2.27 ± 0.34 7.09 ± 0.34
K → µ 3.052 ± 0.093 8.54 ± 0.14 2.61 ± 0.15 7.67 ± 0.25

For the overall rate of misidentifying a hadron as an electron or muon, ε(h→ �),

we use the average of the misidentification rates for π, K, and p, weighted by the

relative fraction of true π, K, and p candidates predicted by generic Monte Carlo

for B0B0 and B+B−:

ε(h→ �) = fπ ε(π → �) + fK ε(K → �) + fp ε(p → �) .

The relative fractions fπ, fK , and fp are given in Table 9.2.

In the final selection in the lifetime and mixing analysis, the electron (muon)
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Table 9.2: Relative contributions of π, K and protons to hadron sample used for
calculating misidentification probabilities.

Sample π K p total

B0B0 +B+B− 12138 1226 83 13447
Relative Fraction 90.3% 9.1% 0.62%

sample is required to pass the very tight electron (muon) selector and fail the very

tight muon (electron) selector. The fake sample is required to fail both the loose

electron and loose muon selectors. We denote the efficiency for species x to satisfy

two criteria y and z based on the very tight criteria as εVT
x (y; z) and loose crite-

ria as εLS
x (y; z). The relations between these efficiencies and the individual selector

efficiencies are

εVT
e (e; !µ) = εVT(e→ e)(1 − εVT(e→ µ)) � εVT(e→ e)

εVT
µ (e; !µ) = εVT(µ → e)(1 − εVT(µ→ µ)) � 0

εVT
h (e; !µ) = εVT(h→ e)(1 − εVT(h→ µ))

εVT
e (!e;µ) = εVT(e→ µ)(1 − εVT(e→ e)) � 0

εVT
µ (!e;µ) = εVT(µ → µ)(1 − εVT(µ → e)) � εVT(µ → µ)

εVT
h (!e;µ) = εVT(h→ µ)(1 − εVT(h→ e))

εLS
e (!e; !µ) = (1 − εLS(e→ e))(1 − εLS(e→ µ)) � 1 − εLS(e→ e)

εLS
µ (!e; !µ) = (1 − εLS(µ → e))(1 − εLS(µ → µ)) � 1 − εLS(µ→ µ)

εLS
h (!e; !µ) = (1 − εLS(h→ e))(1 − εLS(h→ µ))

Here we assume that ε(e → µ) � 0 and ε(µ → e) � 0 for both the very tight and

loose selectors.
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9.2 Angular Variables

As discussed in Sec. 8.9, the opposite-side and same-side samples are selected, ac-

cording to angular variables, cos θ∗D∗�, cos θ∗B0,D∗�, and cos θ∗B0,D∗(−�), to disentangle

the uncorrelated-lepton background events in the signal sample. Distributions of

these variables and correlations between them are shown in Figs. 9.4–9.6 for signal

events, D∗-hadron events, and D∗-lepton events in B0B0 Monte Carlo simulation.

The regions defining the opposite- and same-side control samples are also shown in

the figures.

The upper-right plot in Fig. 9.6 demonstrates why we use the flipped variable

cos θB0,D∗(−�) to select events in the uncorrelated-lepton sample: the distribution of

this flipped variable in the control sample is similar to the distribution of the un-

flipped variable cos θB0,D∗� for uncorrelated background in the signal sample, whereas

the distribution of cos θB0,D∗� in the control sample is systematically different. In

other words, we use the flipped variable in order to select a control sample that is

more representative of the background we would like to study.

To determine the contribution from uncorrelated-lepton background, the relative

efficiencies for a true signal or a true uncorrelated event to pass the opposite-side or

same-side selection criteria are needed. They are obtained from generic Monte Carlo

simulation. The result is tabulated in Table 9.3.

The efficiencies for SVT-only events and SVT+DCH events are significantly dif-

ferent so we treat them separately. The efficiency difference between SVT-only and

SVT+DCH events originates from the correlation between the cos θD∗� distribution

and D∗ momentum in the semileptonic decay process: the higher the D∗ momentum

in the Υ(4S) rest frame is, the stronger the cos θD∗� is peaked at −1. Since the avail-

able energy in the D∗ decay is very small (6 MeV), the soft π pt is highly correlated

with the D∗ momentum. As a result, cos θD∗� is more strongly peaked at −1 for high
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Figure 9.4: Angular variable distributions for signal events. cosBY and cosBYflp
cuts mean | cos θB0,D∗�| < 1.1 and | cos θB0,D∗(−�)| < 1.1, respectively. Selected events
for the opposite-side and same-side samples are in the left-middle rectangle in the
lower-left and lower-right plots, respectively.

pt soft π events, which leads to a higher opposite-side efficiency for events whose soft

π has DCH hits.
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Figure 9.5: Angular variable distributions forD∗-hadron events. cosBY and cosBYflp
cuts mean | cos θB0,D∗�| < 1.1 and | cos θB0,D∗(−�)| < 1.1, respectively. Selected events
for the opposite-side and same-side samples are in the left-middle rectangle in the
lower-left and lower-right plots, respectively.

9.3 D∗-D0 Mass Difference

We use the variable δm to calculate signal probability on an event by event basis. In

this calculation, the daughter momenta are those from a simultaneous constrained
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Figure 9.6: Angular variable distributions for uncorrelated lepton events. cosBY
and cosBYflp cuts mean | cos θB0,D∗�| < 1.1 and | cos θB0,D∗(−�)| < 1.1, respectively.
Selected events for the opposite-side and same-side samples are in the left-middle
rectangle in the lower-left and lower-right plots, respectively.

vertex fit for the D∗� candidate that properly accounts for correlations between

the D0 and D∗. [79, 80] The algorithm and its performance are described further in

[69, 81]. TheD0 andD∗ vertices are fit simultaneously to properly handle correlations

between them. The D0 daughters are constrained to a common D0 vertex, which
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Table 9.3: Relative efficiencies for passing opposite-side or same-side selection crite-
ria, calculated from Monte Carlo simulation events.

Event opposite-side same-side
SVT-only; signal 0.9761 ± 0.0012 0.0239 ± 0.0012
SVT+DCH; signal 0.9958 ± 0.0011 0.0042 ± 0.0011
SVT-only; uncorr 0.553 ± 0.015 0.447 ± 0.015
SVT+DCH; uncorr 0.623 ± 0.047 0.377 ± 0.047

is separated explicitly from the D∗� candidate by including a constraint for the D0

flight direction and allowing a D0 decay length. This constrained fit is used only

for the calculation of δm and not for the calculation of the distance between two B

decay vertices.

A fit to the δm distribution can determine a) a model for the shape of the peak

due to candidates with a correctly reconstructed D∗, b) a model for the shape of

the combinatoric background due to candidates with an incorrectly reconstructed

D∗, and c) a parameterization of the yields of peak and combinatoric components in

each sample. The yields are then used to calculate the fractions of different sources

of peaking background, i.e., backgrounds that contains a real D∗. Finally, we will

use the calculated amounts and fitted shapes of each background source to estimate

the probability of each candidate to be due to signal or each type of background we

consider (combinatoric, continuum, fake-lepton, or uncorrelated) in our fits to obtain

the lifetime and mixing parameters.

The function used to model the the shape of the peak in a δm distribution is a

double Gaussian, which has five free parameters:

Fpeak(δm) =
f√
2πσ1

exp

(
−(δm− δm1)

2

2σ2
1

)
+

1 − f√
2πσ2

exp

(
−(δm− δm2)

2

2σ2
2

)
. (9.2)
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The shape of the combinatoric background is modeled with a function

Fcomb(δm) =
1

N

[
1 − exp

(
−δm− δm0

c1

)] (
δm

δm0

)c2

, (9.3)

where N is a normalization constant and δm0 is the kinematic threshold equal to

mπ.

If we are only interested in determining shape parameters, and not absolute yields,

we can simply combine these models with one additional parameter fpeak:

F(δm) = fpeak · Fpeak(δm) + (1 − fpeak) · Fcomb(δm) . (9.4)

The value of fpeak corresponds to the fraction of peak events in the entire sample

being fit (including the sideband).

Once the model F(δm) has been specified, we next need to identify subsamples

that will be fit with a single set of shape parameters. At one extreme, we could fit

the entire sample (which includes background control samples) at once to a single

set of shape parameters. We choose not to do this because we find that different

subsamples have significantly different shapes (see Figures 9.7–9.12). Instead, we

account for these differences to improve our statistical sensitivity, and more impor-

tantly, to reduce possible systematic biases in lifetime and mixing fits. At the other

extreme, we could independently fit each of the 360 subsamples we obtain with the

full breakdown by the attributes listed in Table 8.1. This approach provides the

maximum statistical sensitivity, in principle, but suffers from problems with fitting

small samples.

The compromise we have chosen is to divide the sample into six groups that each

share a common set of 5 peak shape parameters, peakGroup (6) = svtDch (2) ×
Dmode (3). We select this breakdown through a process of trial and error to determine

which subdivisions of the sample result in statistically significant differences in peak
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shape. In particular, we find that the peak shape does not depend on whether

an event is recorded on or off the peak (onOffRes), whether a candidate passes

or fails the angular cuts (angCut), or whether the lepton candidate passes or fails

lepton ID requirements (leptID). Using the same peak shape (within a peak group)

for the signal and its control samples will simplify the characterization of peaking

backgrounds later.

Within each of the six peak groups, we further subdivide the sample into 12 sub-

groups that each share a common set of 2 combinatoric background shape parame-

ters. We again use the shape variations observed in data to determine an appropriate

breakdown. The on-resonance, opposite-side sample is divided by tagging category

(5 choices) and whether the lepton candidate belongs to signal sample or fake lepton

sample (2 choices; e and µ samples combined). The remaining two subgroups are

all off-resonance events and all same-side events in the on-resonance sample, both of

which are smaller than each of the ten on-resonance, opposite-side subgroups.

In order to determine the 5 peak + 12×2 background shape parameters for each

peak group, we perform a simultaneous fit of each group using a likelihood

L ≡
12∏

k=1

∏
evts j

{
f

(k)
peak · Fpeak(δmj ; �q) + (1 − f

(k)
peak) · Fcomb(δmj; c

(k)
1 , c

(k)
2 )
}
,

�q = (m1, σ1, m2, σ2, f1) ,

where each candidate’s contribution is calculated with the PDF in this product corre-

sponding to its background group k. With this approach we introduce 12 additional

relative normalization parameters f
(k)
peak for a total of 5 (peak) + 24 (bkg) + 12

(fractions) = 41 parameters in each simultaneous fit.

Figures 9.7–9.12 show the results of the simultaneous fits to each of the 6 peak

groups. Note that these plots only list values for c
(k)
1 , c

(k)
2 , and f

(k)
peak even though
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a common set of peak shape parameters was also allowed to vary in each fit. The

combined data and the sum of the 12 models in each of the six peak groups are

shown in Fig. 9.13, in which the peak shape parameters are shown.

Once we have determined the peak and combinatoric background shape distribu-

tions expected for all candidates in our sample, we calculate the absolute yields of

peak and combinatoric events within each of the 360 subsamples resulting from our

most detailed decomposition by svtDch (2) × Dmode (3) × onOffRes (2) × angCut

(2) × leptID (3) × tagCat (5). The main advantage of such a detailed breakdown is

that it offers the maximum flexibility for later regrouping subsamples. The potential

disadvantage is that our procedure involves fits to some categories with very few

events (even zero events in some cases).

In fact, we find that these fits are stable and give reasonable results once the shape

parameters are fixed. This is not surprising since, to a good approximation, the fits

could simply be replaced by counting the number of events inside and outside of the

peak region (with some assumption about the extrapolation of the sideband under

the peak). The refinement that the fits provide is to account for the variations in the

expected peak width and sideband extrapolation based on the actual composition of

events in each of the 360 subsamples. For example, consider a sample consisting of

a single candidate with δm = 146 MeV. By assuming an average shape for the peak

and combinatoric BG, we would calculate that this event is more likely to be in the

peak than the background. With our approach, if in fact the candidate’s soft pion

is measured in the SVT and DCH, we correctly identify it as being background.

The peak and combinatoric models are combined into an unbinned extended
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maximum-likelihood fit1 with

L(N ′
peak, N

′
comb) =

∏
evts j

{
Npeak

Ntot

· fpeak(δmj) +
Ncomb

Ntot

· fcomb(δmj)

}
· P (Ntot) ,

where Ntot ≡ Npeak + Ncomb and P (Ntot) is the Poisson probability of the observed

number of events whenNtot are expected. The actual fit parameters in this likelihood,

N ′
peak and N ′

comb, are yields calculated within a signal window (δm1, δm2)

N ′
peak ≡ Npeak ·

∫ δm2

δm1

fpeak(δm)d(δm) , N ′
comb ≡ Ncomb ·

∫ δm2

δm1

fcomb(δm)d(δm) .

The choice of signal window does not affect the subsequent analysis since we calculate

per-event signal probabilities over the full range of δm. We use 143–148 MeV for all

categories of events.

9.4 Combinatoric Background

We define combinatoric background as events in which the selected D∗ candidate is

either not a real D∗ or else is misreconstructed. This background then corresponds

to the extrapolation of the upper δm sideband to the region under the peak, and we

determine its contribution to each subsample directly from the combinatoric yield

parameter, N ′
comb, in the δm fits described in the previous section.

1All modeling and fitting in this analysis are using the RooFit packages [82, 83, 84], which are
developed by D. Kirkby and W. Verkerke in the ROOT [85] environment. The core fitting engine
is MINUIT [86].
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9.5 Continuum Background

The continuum background contribution (cc → D∗X) can be estimated using off-

resonance data. We scale the peak contribution by the ratio of on-resonance lu-

minosity to off-resonance luminosity, which is approximately 7.9. The fractions of

events in the δm peak that are due to continuum background are shown as fcont in

Table 9.4.

9.6 Fake Lepton Background

After subtracting continuum contributions from off-resonance data, the remaining

portion in the peak region of the δm distributions will contains events with a real

D∗ and a real or misidentified lepton from BB events, The observed numbers of

candidates in the D∗ peak, after continuum subtraction, in the lepton signal and

fake control samples (Ne, Nµ, Nf) are related to the numbers of D∗ � candidates

where the lepton candidate is a true lepton or a true hadron (ηe, ηµ, ηh) through a

set of linear equations:




Ne

Nµ

Nf


 =




εe(e; !µ) εµ(e; !µ) εh(e; !µ)

εe(!e;µ) εµ(!e;µ) εh(!e;µ)

εe(!e; !µ) εµ(!e; !µ) εh(!e; !µ)






ηe

ηµ

ηh


 . (9.5)
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The true numbers of events (ηe, ηµ, ηh) can easily be found by inverting the matrix.

The fake fractions in the signal and control samples are therefore

fe = ηhεh(e; !µ)/Ne

fµ = ηhεh(!e;µ)/Nµ

ff = ηhεh(!e; !µ)/Nf

This calculation of fake fractions is done with the lepton and fake yields extracted

from each of the 60 separate subdivisions of the on-resonance data: angCut (2) ⊗
svtDch (2) ⊗ Dmode (3) ⊗ tagCat (5). We use two different sets of efficiencies εx(y; z)

for opposite-side (OS) and same-side (SS) sample, and assume they are valid for all

samples with the same angCut.

The fractions of events in the δm peak that are due to fake leptons are shown as

ffake in Table 9.4.

9.7 Uncorrelated Lepton Background

After subtracting the fake and continuum peaking background contributions, the

remaining events in the δm peak in on-resonance data come from B0B0 and B+B−

events. To estimate the uncorrelated background, defined as a real D∗ from one

B and a real lepton from the other B, we use the same-side control samples and

the relative efficiencies for a true signal or a true uncorrelated event to pass the

opposite-side or same-side selection criteria from generic Monte Carlo simulation

(see Sec. 9.2).

The measured yields of opposite-side (NOS) and same-side (NSS) events, after

subtracting fake and continuum fractions, are related to the true number of signal
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(ηsig) and uncorrelated background (ηunc) events by


 NOS

NSS


 =


 εsigOS εunc

OS

εsigSS εunc
SS




 ηsig

ηunc


 . (9.6)

After solving for (ηsig, ηunc), the uncorrelated background fractions can be expressed

as

fOS = εunc
OS ηunc/NOS

fSS = εunc
SS ηunc/NSS

Note that although we normalize the relative efficiencies for passing the OS or SS

selections so that the sum of the efficiencies is 1, the resulting background fractions

do not depend on this normalization. In other words, we are depending on the Monte

Carlo for the relative efficiencies within each class of events (signal or uncorrelated

lepton) but not the absolute efficiencies or the relative efficiencies between the two

classes of events.

This calculation of uncorrelated background fractions is done with the OS and

SS yields extracted from each of the 90 separate subdivisions of the data: leptID

(3) ⊗ svtDch (2) ⊗ Dmode (3) ⊗ tagCat (5). We have assumed that one efficiency

matrix is valid for all SVT-only samples and one for all SVT+DCH samples.

The fractions of events in the δm peak that are due to uncorrelated leptons are

shown as funcorr in Table 9.4.
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9.8 Sample Composition

In order to summarize the results of the procedures described here, we regroup

the 360 subsamples used for the final 2-parameter yield fits into a smaller number

of “supersamples” for the purposes of display. The curves in the resulting plots

are obtained by summing the results of the individual fits that contribute to each

supersample.

Figures 9.14 and 9.15 show the combined results when the sample is divided

according to angCut, onOffRes and leptID. Table 9.4 summarizes the background

fractions calculated in each of these 12 supersamples. Figures A.1–A.3 summarize the

results of the background studies when the sample is divided according to svtDch,

Dmode, and tagCat, respectively. The supersamples used in Figures A.1–A.3 are

signal samples only (i.e., they do not include any background control samples) and

show electron and muon results separately.

We also study the background contribution for unmixed, mixed and untagged

events separately. The uncorrelated background for mixed events is significantly

higher than for others. The reason is that for mixed events the probability of getting

a lepton with correct charge from different B is higher since two B decay as the same

flavor. The combinatoric background for mixed events is also higher for the similar

reason. The mixed events tend to have more D∗ with the same sign so that there are

more combinations to form a D∗ candidate from their daughter particles. We will

take into account the differences of background levels among events with different

tagging information for lifetime and mixing fits.
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Table 9.4: Peak yields and fake, continuum and uncorrelated fractions of the peak
yield, and the combinatoric fraction of total events in δm window for the various sub-
samples shown in Figs. 9.14 and 9.15. Peak yields include the peaking backgrounds.

Category Peak Yield fcont.(%) ffake(%) funcorr.(%) fcomb.(%)
On OS e 7008 ± 91 1.53 ± 0.42 0.1678 ± 0.0042 3.14 ± 0.39 17.89 ± 0.24

µ 6569 ± 88 2.27 ± 0.57 2.669 ± 0.067 2.85 ± 0.48 18.36 ± 0.25
f 8770 ± 108 12.8 ± 1.3 72.4 ± 1.8 0.7 ± 1.6 31.40 ± 0.24

SS e 306 ± 21 0.0 ± 0.0 0.533 ± 0.039 56.9 ± 7.0 34.0 ± 1.3
µ 299 ± 20 5.1 ± 3.6 8.89 ± 0.64 48.9 ± 8.0 34.4 ± 1.3
f 1350 ± 45 20.4 ± 4.1 74.4 ± 5.4 3.6 ± 7.8 42.59 ± 0.61

Off OS e 13.6 ± 3.8 100 0 0 21.0 ± 4.5
µ 18.9 ± 4.7 100 0 0 25.1 ± 4.3
f 142 ± 14 100 0 0 44.2 ± 1.8

SS e 0.0 ± 0.0 100 0 0 100 ± 100
µ 1.9 ± 1.4 100 0 0 38 ± 14
f 34.9 ± 7.1 100 0 0 52.5 ± 3.6
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Figure 9.7: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → Kπ and their soft pion reconstructed
in the SVT only. The dashed curves show the fitted contributions of combinatoric
background.
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Figure 9.8: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → Kπ and their soft pion reconstructed
in the SVT and DCH. The dashed curves show the fitted contributions of combina-
toric background.
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Figure 9.9: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → K3π or D0 → KSππ and their soft
pion reconstructed in the SVT only. The dashed curves show the fitted contributions
of combinatoric background.
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Figure 9.10: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → K3π or D0 → KSππ and their
soft pion reconstructed in the SVT and DCH. The dashed curves show the fitted
contributions of combinatoric background.
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Figure 9.11: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → Kππ0 and their soft pion recon-
structed in the SVT only. The dashed curves show the fitted contributions of com-
binatoric background.
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Figure 9.12: Results of the simultaneous fit described in the text to the peak group
consisting of candidates reconstructed as D0 → Kππ0 and their soft pion recon-
structed in the SVT and DCH. The dashed curves show the fitted contributions of
combinatoric background.



160 CHAPTER 9. BACKGROUND CHARACTERIZATION

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0

200

400

600

800

1000

1200

1400

 0.025± =  0.400 1f
 0.011 MeV± =  145.407 1m
 0.025 MeV± =  145.583 2m

 0.018 MeV± =  0.347 1σ
 0.035 MeV± =  1.074 2σ

SVT

Kpi

=11150evtsN

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0
100
200
300
400
500
600
700
800
900

 0.047± =  0.492 1f
 0.019 MeV± =  145.321 1m
 0.0092 MeV± =  145.3320 2m

 0.028 MeV± =  0.524 1σ
 0.012 MeV± =  0.198 2σ

DCH

Kpi

=3373evtsN

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0

200

400

600

800

1000

1200

1400

 0.053± =  0.469 1f
 0.015 MeV± =  145.376 1m
 0.055 MeV± =  145.605 2m

 0.027 MeV± =  0.380 1σ
 0.085 MeV± =  1.040 2σ

SVT
K3pi

=27274evtsN

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0

100

200

300

400

500

600

700

 0.030± =  0.692 1f
 0.0085 MeV± =  145.3360 1m

 0.063 MeV± =  145.363 2m
 0.010 MeV± =  0.234 1σ

 0.12 MeV± =  0.88 2σ

DCH
K3pi

=6347evtsN

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0

200

400

600

800

1000

 0.034± =  0.559 1f
 0.015 MeV± =  145.415 1m
 0.080 MeV± =  145.794 2m

 0.024 MeV± =  0.529 1σ
 0.11 MeV± =  1.55 2σ

SVT

Kpipi0

=15212evtsN

Refitted m(D*)-m(D0) (MeV)
140 145 150 155 160 165

E
ve

nt
s 

/ (
 0

.2
7 

M
eV

 )

0

100

200

300

400

500

 0.023± =  0.721 1f
 0.011 MeV± =  145.309 1m
 0.087 MeV± =  145.540 2m

 0.011 MeV± =  0.342 1σ
 0.12 MeV± =  1.26 2σ

DCH

Kpipi0

=4548evtsN

Figure 9.13: Results of the simultaneous fit described in the text to each of the 6
peak groups over the peak region 143–149 MeV. The dashed curves show the fitted
contributions of combinatoric background.
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Figure 9.14: Uncorrelated D∗ �, fake � and continuum D∗ X, and fake D∗ contri-
butions for Opposite-Side samples. From top to bottom: electron, muon and fake
control samples; left column: on-resonance and right column: off-resonance.
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Figure 9.15: Uncorrelated D∗ �, fake �, continuum D∗ X, and fake D∗ contribu-
tions for Same-Side samples. From top to bottom: electron, muon and fake control
samples; left column: on-resonance and right column: off-resonance.



Chapter 10

Analysis of B0 Decay Time

Evolution

In this chapter, the analysis procedure leading to final fitting is described, including

the background characterization, fit model building and fit results.

After the signal and background control samples are selected, combinatoric and

peaking background probabilities of each event are determined in a procedure de-

scribed in Ch. 9. The lifetime τB0 and oscillation frequency ∆md are measured si-

multaneously with an unbinned maximum likelihood fit [82, 83, 84] that use, for each

event, the measured decay time difference ∆t, the calculated uncertainty on ∆t, the

combinatoric and peaking background probabilities, and tagging information from

the rest of the event. The resulting statistical uncertainties are approximately 0.02 ps

for the lifetime measurement and about 0.02 ps−1 for the oscillation frequency. For

comparison, the uncertainty on the world average in the year 2000 [9] is 0.032 ps for

τB0 and 0.017 ps−1 for ∆md. The challenge in this analysis is to reduce the system-

atic uncertainties so that they do not dominate the total uncertainty. In order to do

so, the types and sizes of backgrounds, the ∆t resolution function for signal and the

∆t distributions for combinatoric and peaking backgrounds have to be understood.

163
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There are several advantages to fitting the B0 lifetime and oscillation frequency

simultaneously.

1. The expected precision for both τB0 and ∆md is not much larger than that of

world average [9] in the year 2000. Therefore, there is little or no benefit from

fixing either values to the world average, depending on their correlation that

is caused by the resolution on ∆t.

2. Mixing information improves the measurement of τB0 in two distinct ways:

(a) Since mixed and unmixed events have different ∆t distributions, the mix-

ing information for each event gives greater sensitivity to the ∆t resolution

function and a smaller statistical uncertainty on τB0 . The improvement is

about 15%.

(b) Since B+B− and B0B0 events have different mixing behavior, we can use

the ∆t distributions for mixed and unmixed events to help discriminate

between B0B0 signal events and peaking B+B− background events.

10.1 Resolution Models

10.1.1 Function forms

A resolution model R specifies the expected distribution of residuals δ∆t ≡ ∆tmeas−
∆ttrue for an event with measured ∆tmeas and calculated vertex error σ∆t. We assume

that the resolution is independent of ∆tmeas, but expect a strong correlation with

σ∆t; i.e., R = R(δ∆t, σ∆t).

As discussed in Sec. 6.3, the mean and RMS of the δ∆t distribution strongly

depend on σ∆t. In order to accommodate these effects, we consider two different

models for the “core” of the resolution function (loosely defined as |δ∆t| < 5 · σ∆t).
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The first core model consists of a double Gaussian whose biases and widths are scaled

by the measured σ∆t:

RG+G(δ∆t, σ∆t; b1, b2, s1, s2, f) ≡ f ·G(δ∆t; b1σ∆t, s1σ∆t)

+ (1 − f) ·G(δ∆t; b2σ∆t, s2σ∆t) .

The second model is the sum of a single Gaussian and the same Gaussian convo-

luted with a one-sided exponential E(δ∆t; κ):

RGExp(δ∆t, σ∆t; κ, s, f) ≡ f ·G(δ∆t; 0, s σ∆t)+

(1 − f) · 1

2 κσ∆t

∫ 0

−∞
du exp

(
+u/(κ σ∆t)

) ·G(u− δ∆t; 0, s σ∆t) . (10.1)

The decay constant κ is introduced to account for residual charm decay products

included in the Btag vertex. The integral in this definition can be performed analyt-

ically to give

RGExp(δ∆t, σ∆t; κ, s, f) = f G(δ∆t; 0, s σ∆t)+

(1 − f)
1

2 κσ∆t
exp

(
s2 + 2 δ∆t · κ/σ∆t

2κ2

)
erfc

(
s2 + δ∆t · κ/σ∆t√

2 s κ

)
.

Note that the widths of Gaussian functions in G+G model and GExp models, and

the decay constant in GExp model are scaled by σ∆t.

Once the parameters of a resolution model are known, we can calculate the cor-

responding moments of the residual distribution directly in terms of the moments of

the per-event error distribution. For the G+G model, the first and second moments
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are

〈δ∆t〉G+G =
(
fb1 + (1 − f)b2

) · 〈σ∆t〉 (10.2)

〈(δ∆t)2〉G+G =
(
f(s2

1 + b21) + (1 − f)(s2
2 + b22)

) · 〈(σ∆t)
2〉 , (10.3)

from which we calculate the G+G RMS squared

(δ∆t)2
RMS =

(
fs2

1 + (1 − f)s2
2

) · 〈(σ∆t)
2〉 + f(1 − f)

(
b1 − b2

)2 · 〈σ∆t〉2

+
(
fb21 + (1 − f)b22

) · (σ∆t)
2
RMS .

For comparison, the first and second moments of the GExp model are

〈δ∆t〉GExp = −(1 − f) κ · 〈σ∆t〉 (10.4)

〈(δ∆t)2〉GExp =
(
s2 + 2 (1 − f) κ

) · 〈(σ∆t)
2〉 , (10.5)

from which we calculate the GExp RMS squared

(δ∆t)2
RMS = s2 · 〈(σ∆t)

2〉 + (1 − f 2) κ · 〈σ∆t〉2

+ 2 (1 − f) κ · (σ∆t)
2
RMS .

Both of these models predict a mean and RMS residual that scale linearly with

σ∆t and vanish in the limit of zero measured error. The predicted slopes for the

dependence of the mean residual with the measured error are

f b1 + (1 − f) b2 for G+G, − (1 − f) κ for GExp ,
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and the predicted slopes for the RMS are

√
f s2

1 + (1 − f) s2
2 + f(1 − f) (b1 − b2)2 for G+G,

√
s2 + (1 − f 2) κ for GExp .

Both models perform similarly on the fit to ∆t residual.

In addition to the core of the resolution function, we model the contribution of

“outliers”: candidates whose residual δ∆t is (on average) at least 5 times larger

than their calculated error σ∆t (and which are therefore poorly vertexed.) Outliers

represent less than 1% of the candidates selected in the signal Monte Carlo sample.

We model outliers with a single Gaussian whose width and bias are not scaled by

the calculated error

Rout(δ∆t; bout, sout) ≡ G(δ∆t; bout, sout) .

The reason for not scaling the outlier model by σ∆t is that most outlier events are

from those where the vertexing algorithm for tag-side B mistakenly finds a secondary

vertex, instead of the primary vertex, and σ∆t does not contain any information on

the distance between the primary and second vertices.

We combine the two core and outlier models using an extra parameter fout that

specifies the relative fraction of events in the outlier contribution:

RG+G+G(δ∆t, σ∆t; b1, b2, bout, s1, s2, sout, f, fout) ≡
f ·G(δ∆t; b1σ∆t, s1σ∆t) + (1 − f − fout) ·G(δ∆t; b2σ∆t, s2σ∆t) + fout · Rout ,

(10.6)
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and

RGExp+G(δ∆t, σ∆t; κ, s, f, bout, sout, fout) ≡ f ·G(δ∆t; 0, s σ∆t)+

(1 − f − fout) · 1

2 κσ∆t

∫ 0

−∞
du exp

(
+u/(κ σ∆t)

) ·G(u− δ∆t; 0, s σ∆t)

+ fout · Rout(δ∆t, σ∆t; bout, sout) . (10.7)

10.1.2 Model test on lifetime

In this subsection, a series of fits to the signal Monte Carlo sample is performed.

The model used here is a simple lifetime model (exp(−|∆t|/τ)) convoluted with a

resolution model. All of the candidates used in these studies have been selected by

the signal sample selection and are correctly reconstructed according to the truth

information. Three kinds of fits are carried out:

• fit the true ∆t and ∆z distributions for the lifetime,

• fit the distribution of residuals δ∆t and σ∆t, to obtain the parameters of the

two resolution models G+G+G and GExp+G, and

• fit the reconstructed ∆t distribution to obtain the lifetime, using the two resolu-

tion models, and with the resolution parameters either fixed (to values obtained

in the previous step) or floating in the fit.

The resulting lifetimes derived from these fits is shown in Table 10.1.

The fit to ∆ttrue reveals any bias introduced by the event selection. By compar-

ing the lifetimes extracted from the fits to ∆ttrue and ∆ztrue, we can estimate any

additional bias due to the boost approximation (Sec. 6.2.1). However, the difference

between the lifetime from these two fits is probably an overestimate of the boost

effects since some of the bias will be absorbed into the resolution model. When we
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Table 10.1: Results of fitting lifetime compared with reference values in various
stages. τgen = 1.548 ps is the value used in the Monte Carlo generator; τ(∆ttrue) is
the result from a fit to true ∆t; τ(∆ztrue) is the result from a fit to true ∆z; τ(∆t)
is the result from a fit to measured ∆t.

Type R fixed R floating
τ(∆ttrue) − τgen (fs) −3.4 ± 5.0 -
τ(∆ztrue) − τgen (fs) 1.3 ± 5.0 -
GExp+G, τ(∆t) − τ(∆ttrue) (fs) −11.8 ± 5.9 3.4 ± 10.2
G+G+G, τ(∆t) − τ(∆ttrue) (fs) −9.8 ± 5.0 2.0 ± 15.7

fit to the ∆ttrue distribution, we measure a lifetime of 1.5446 ± 0.0051 ps, which

is (3.4 ± 5.1) fs below the generated value. When we fit to the ∆ztrue distribution

and scale the fit parameter by the average value of βγγ∗c = 166.87 µm/ps for the

generated simulation sample, we measure a lifetime of 1.5494±0.0054 ps. This value

is 4.8 fs higher than that extracted from ∆ttrue, which is significant, given that the

events are identical.

This bias, however, is expected. The reason is the following. Fitting to a pure

exponential e−|x|/τ is mathematically identical to calculating the average of the value

|x|. According to Eq. 6.2, for large t1 − t2 and small t1 + t2, ∆z is always positive,

independent of cos θ∗. The average of |∆t| is equal to that of |∆z|/βγγ∗c for these

events since 〈cos θ∗〉 = 0. However, for small t1 − t2 and large t1 + t2, ∆z can be neg-

ative even if t1 − t2 > 0. After taking the absolute value, these events will contribute

in positive values, the average over cos θ∗ will not cancel, which will therefore bias

the average high.

To estimate this bias, we generate 100 toy experiments of ≈81k events simply

using e−t/τ and (1 − cos2 θ∗) angular distribution of the B mesons in the Υ(4S)

frame, and using Eq. 6.2 to calculate ∆z. We then calculate the average of |∆t| and

|∆z|/βγγ∗c. The histogram of the shifts is shown in Fig. 10.1. The blue line shows
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the value found in the fit to the signal simulation. The mean bias is 4.7 fs with an

RMS of 0.76 fs. Signal simulation fit is consistent with the toy experiments.
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Figure 10.1: Shift of 〈|∆z|/βγγ∗c〉 from 〈|∆t|〉 with 100 toy experiments. Blue line
indicates the value found in signal simulation fit.

Table 10.1 also shows the difference between the fit to the measured ∆t with

resolution floating and fixed at the values from fits to residual. When the resolution

function is fixed at the result from a fit to ∆t residual, the lifetime result is signifi-

cantly lower then the fit to ∆ttrue and the simultaneous fit for lifetime and resolution

function. This implies that the resolution model may not be totally accurate. We

already know that the RMS of the residual ∆ztrue − ∆ttrue depends on |∆ttrue|. We

can check the significance of this dependence at the level of reconstructed ∆t. The

top plot in Fig. 6.3 shows the RMS of the pull of reconstructed ∆t in bins of true ∆t.

We can clearly see the dependence on ∆ttrue. The middle plot shows the same sort of

distribution except that ∆tmeas is replaced by ∆ztrue/γβγ
∗c in the calculation of the

RMS of the pull. The bottom plot is the bin-by-bin difference in quadrature between

the top two histograms. The fact that the dependence of the pull RMS on ∆ttrue

almost disappears after removing the effect due to boost in the conversion from ∆z
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to ∆t suggests that the boost approximation is the major source of the dependence

of resolution on ∆ttrue. Since this dependence can be fully understood, in principle

the model can be modified to accommodate this effect.

The effect of not modeling this ∆ttrue dependence of resolution is studied with toy

Monte Carlo simulations. A set of datasets are generated with the same number of

events as in the full signal Monte Carlo. The pull of ∆t is smeared by double-Gaussian

or GExp resolution models, whose RMS varies as a function of ∆ttrue according to

the shape found in the signal Monte Carlo simulation (first plot in Fig. 6.2). A simple

double-Gaussian or GExp model without ∆ttrue dependence is then used to fit the

residual, τB0 , ∆md, and mistag fraction with and without fixing the resolution to the

fits to the residual. The mean values of bias on lifetime are listed in Table 10.2. In

the table the biases in fits to the full signal simulation data are also compared [87].

Table 10.2: Lifetime fit biases in the toy study described in the text and in the fits
to full signal simulation data.

GExp toy G+G toy GExp+G full MC G+G+G full MC
Fix R −4.6 −5.5 −7.9 ± 6.3 −5.8 ± 6.3
Float R 4.2 −2.4 7.5 ± 9.1 3.2 ± 9.4

This effect, however, does not exhibit statistically significant bias when the res-

olution is floating in the fit. The resolution function is able to absorb this small

systematic effect and leave the physical parameters unbiased.

By fitting the mixing frequency simultaneously, the improvement of the statistical

uncertainty on lifetime is observed. With this simulation sample, fitting to the

lifetime and the resolution function only results in a statistical error of 11 fs on

lifetime. While fitting to the mixing frequency at the same time, this error reduces

to better than 9.5 fs, which represents a 15% improvement.
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10.2 Fit Method

We perform an unbinned fit simultaneously to events in each of the 12 signal and con-

trol samples (indexed by s) that are further subdivided into 30 subsamples (indexed

by c) using a likelihood

L =

12∏
s=1

30∏
c=1

N(s,c)∏
k=1

Ps,c(�xk ; �p) , (10.8)

where k indexes the N(s, c) events �xk in each of the 360 subsamples. The probability

Ps,c(�xk ; �p) of observing an event �xk = (δm,∆t, σ∆t, g) is calculated as a function of

the parameters �p = (f comb
s,c , �p comb

s,c , �p peak
c , �q comb

s,c , f pkg
s,c,1, f

pkg
s,c,2, f

pkg
s,c,3, �q

pkg
s,c,1, �q

pkg
s,c,2, �q

pkg
s,c,3, �q

sig
c )

as

Ps,c(δm,∆t, σ∆t, g ; �p) =

f comb
s,c · F comb(δm ; �p comb

s,c ) · G comb(∆t, σ∆t, g ; �q comb
s,c ) +

(
1 − f comb

s,c

) · F peak(δm ; �p peak
c )·[

3∑
j=1

f pkg
s,c,j · G pkg

j (∆t, σ∆t, g ; �q pkg
s,c,j) +

(
1 −

3∑
j=1

f pkg
s,c,j

)
· Gsig(∆t, σ∆t, g ; �q sig

c )

]
,

(10.9)

where j indexes the three sources of peaking background and δm = m(D∗)−m(D0).

The index g is +1 (−1) for unmixed (mixed) events. Functions labeled with F are

peak and combinatoric components of δm distributions, defined in Eqs. 9.2 and 9.3,

and thus describe the probability of observing a particular value of δm. Functions

labeled with G give probabilities for values of ∆t and σ∆t in category g, which are

discussed in detail in Secs. 10.2.1 and 10.2.2. By allowing different effective mistag

rates for apparently mixed or unmixed events in the background functions G comb

and G pkg, we accommodate the different levels of backgrounds observed in mixed

and unmixed samples. Parameters labeled with f describe the relative contributions
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of different types of events. Parameters labeled with �p describe the shape of a δm

distribution, and those labeled with �q describe a (∆t, σ∆t) shape.

Note that we make explicit assumptions that the δm peak shape, parameterized

by �p peak
c , and the signal (∆t, σ∆t) shape, parameterized by �q sig

c , depend only on

the subsample index c. The first of these assumptions is supported by data, and

simplifies the analysis of peaking background contributions. The second assumption

reflects our expectation that the ∆t distribution of signal events does not depend

on whether they are selected in the signal sample or appear as a background in a

control sample.

The ultimate aim of the fit is to obtain the B0 lifetime and mixing frequency,

which by construction are common to all sets of signal parameters �q sig
c . Most of the

statistical power for determining these parameters comes from the signal sample,

although the fake and uncorrelated background control samples also contribute due

to their signal content (see Table 9.4).

We bootstrap the full fit with a sequence of initial fits using reduced likelihood

functions to a partial set of samples, to determine the appropriate parameterization

of the signal resolution function and the background ∆t models, and to determine

starting values for each parameter in the full fit.

1. We first find a model that describes the ∆t distribution for each type of event:

signal, combinatoric background, and the three types of backgrounds that peak

in the m(D∗)−m(D0) distribution. To establish a model, we use Monte Carlo

samples that have been selected to correspond to only one type of signal or

background event based on Monte Carlo truth information. These samples are

used to determine the ∆t model and the categories of events (e.g., tagging

category, fake or real lepton) that can share each of the parameters in the

model. Any subset of parameters can be shared among any subset of the

360 subsamples. We choose parameterizations and sharing of parameters that



174 CHAPTER 10. ANALYSIS OF B0 DECAY TIME EVOLUTION

minimize the number of different parameters while still providing an adequate

description of the ∆t distributions.

2. We then find the starting values for the background parameters by fitting to

each of the background-enhanced control samples in data, using the model (and

sharing of parameters) determined in the previous step. Since these background

control samples are not pure, we start with the purest control sample (combi-

natoric background events from the m(D∗)−m(D0) sideband) and move on to

less pure control samples, always using the models established from earlier steps

to describe the ∆t distribution of the contamination from other backgrounds.

The result of the above two steps is a ∆t model for each type of event and a set of

starting values for all parameters in the fit. When we do the final fit, we fit all signal

and control samples simultaneously (≈68k events), leaving essentially all parameters

free in the fit (72 free parameters). The physics parameters τB0 and ∆md were kept

hidden until all analysis details and the systematic errors were finalized, to eliminate

experimenters’ bias. However, statistical errors on the parameters and changes in

the physics parameters due to changes in the analysis were not hidden.

10.2.1 Signal ∆t model

For signal events in a given tagging category c, the probability density function

(PDF) for ∆t consists of a physics model convolved with a ∆t resolution function:

Gsig(∆t, σ∆t, g ; �q sig
c ) =

{
1

4τB0

e−|∆ttrue|/τB0 (1 + g(1 − 2ωc) cos(∆md∆ttrue))

}

⊗R(δ∆t, σ∆t; �qc) ,

where R is a resolution function, which can be different for different event categories,

g is +1 (−1) for unmixed (mixed) events, and δ∆t is the residual ∆t − ∆ttrue. The
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GExp+G resolution model (Eq. 10.7) is used in the final fit. Be reminded that width

of the core Gaussian and the decay constant of the exponential in the resolution

are scaled by σ∆t, while the width and bias for the outlier Gaussian are not. The

G+G+G model (Eq. 10.6) is used for systematic studies. The physics model shown

in the above equation has seven parameters: ∆md, τB0 , and mistag fractions ωc for

each of the five tagging categories. To account for an observed correlation between

the mistag rate and σ∆t in the kaon category (described in Sec. 7.2), we allow the

mistag rate in the kaon category to vary as a linear function of σ∆t:

ωkaon = mkaon · σ∆t + ωoffset
kaon . (10.10)

In addition, we allow the mistag fractions for B0 tags and B0 tags to be different.

We define ∆ω = ωB0 − ωB0 and ω = (ωB0 + ωB0)/2, so that

ωB0/B0 = ω ± 1

2
∆ω .

The mean and RMS spread of ∆t residual distributions in Monte Carlo simulation

vary significantly among tagging categories. For example, the mean of kaon-tagged

events is −0.233 ± 0.006 ps and that of lepton-tagged events is −0.105 ± 008 ps.

This is due to the fact that a kaon-tagged event is more likely to contain a charm

decay, which causes a bias on Btag vertex. We study several ways to accommodate

this effect by allowing some parameters in the resolution function to be different

for each tagging category. We find that by allowing the core Gaussian fraction f

in GExp+G model, or the core Gaussian bias b1 in G+G+G model to be different

for each tagging category, the resolution function can accommodate this effect. In

addition, we find that the correlations among the three parameters describing the

outlier Gaussian (bout, sout, f out) are large and that the outlier parameters are highly

correlated with other resolution parameters. Therefore, we fix the outlier bias bout
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Table 10.3: All 13+10 parameters of default fit to signal event in signal Monte Carlo
sample with GExp+G model, in which the core Gaussian fraction is split by tagging
category. For this particular set of results, we do not hold either of the outlier shape
parameters to be constant, since the statistical power of the full signal simulation
sample is sufficient for direct measurement.

GExp+G
par. value par. value
∆md 0.4714 ± 0.0043 ps−1 f 1

LT 0.841 ± 0.035
τB0 1.5523 ± 0.0096 ps f 1

KT 0.686 ± 0.024
ωLT 0.0561 ± 0.0035 f 1

N1 0.853 ± 0.029
ωN1 0.1840 ± 0.0061 f 1

N2 0.740 ± 0.026
ωN2 0.3392 ± 0.0054 f 1

N3 0.719 ± 0.022
ωN3 0.4617 ± 0.0040 κ 1.16 ± 0.07
ωoffset

KT 0.0672 ± 0.0085 s1 1.001 ± 0.021
mKT 0.128 ± 0.012 ps−1 bout −1.680 ± 1.05 ps
∆ωLT 0.0044 ± 0.0058 f out 0.0044 ± 0.0022
∆ωKT −0.01403 ± 0.0045 sout 5.44 ± 0.86 ps
∆ωN1 0.0120 ± 0.0098
∆ωN2 −0.04155 ± 0.0083
∆ωN3 −0.07418 ± 0.0061

and scale factor sout, and vary them over a wide range to evaluate the systematic

uncertainty on the physics parameters due to fixing these parameters (see Sec. 11.2).

The resolution model then has 8 free parameters: s, κ, f out, and five fractions fc

(one for each tagging category c).

This signal model is tested on the correctly reconstructed signal Monte Carlo

events. The result is shown in Table 10.3, and the simulation data and signal ∆t

model projection are shown in Fig. 10.2. Both τB0 and ∆md are consistent with

generated values and the results from a fit to true ∆t and tagging information.
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Figure 10.2: ∆t distributions for unmixed and mixed events on a log scale, and the
asymmetry plots for the signal Monte Carlo sample for the five tagging categories.
The curves are projections of the signal model from the GExp+G fit to signal Monte
Carlo sample.
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10.2.2 Background ∆t model

Although the true ∆t and resolution on ∆t are not well-defined for background

events, we still describe the total ∆t model as a “physics model” convolved with a

“resolution function”.

The background ∆t physics models we use in this analysis are each a linear

combination of one or more of the following terms, corresponding to prompt (zero

lifetime), exponential lifetime, and oscillatory distributions:

Gpmt
phys(∆ttrue, g) = (1/2) · δ(∆ttrue) ·

(
1 + g · (1 − 2ωpmt)

)
,

Glife
phys(∆ttrue, g) = (1/4) · exp(−|∆ttrue|/τbg) · (1 + g · (1 − 2ωlife)

)
,

Gosc
phys(∆ttrue, g) = (1/4) · exp(−|∆ttrue|/τbg) · (1 + g · (1 − 2ωosc) cos ∆mbg∆ttrue

)
,

where δ(∆t) is a δ-function, g = +1 for unmixed and −1 for mixed events, and

τbg and ∆mbg are the effective lifetime and mixing frequency for the particular

background.

For backgrounds, we use a resolution function that is the sum of a narrow and a

wide Gaussian distribution:

RG+G(δ∆t, σ∆t; b, s, f, b
w, sw)

= f ·G(δ∆t; bσ∆t, sσ∆t) + (1 − f) ·G(δ∆t; bwσ∆t, s
wσ∆t) .

Combinatoric background

Events in which the D∗ candidate corresponds to a random combination of charged

tracks (called combinatoric background) constitute the largest background in the
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signal sample. We use two sets of events to determine the appropriate parameteri-

zation of the ∆t model for combinatoric background: events in data that are in the

upper m(D∗)−m(D0) sideband (above the peak due to real D∗ decays); and events

in Monte Carlo simulation that are identified as combinatoric background, based on

the true information for the event, in both the m(D∗) −m(D0) sideband and peak

region. The data and Monte Carlo ∆t distributions are described well by a prompt

plus oscillatory term convolved with a double-Gaussian resolution function:

Gcomb =
[
f oscGosc

phys(∆ttrue, g; τ
comb,∆mcomb, ωosc) + (1 − f osc)Gpmt

phys(∆ttrue, g;ω
pmt)

]
⊗RG+G(δ∆t, σ∆t; b, s, f, b

w, sw) . (10.11)

The parameters ωpmt, ∆mcomb, τ comb, f , bw, and sw are shared among all control

samples. The parameters ωosc, f osc, b, and s are allowed to be different depending on

criteria such as tagging category, whether the data was recorded on- or off-resonance,

whether the candidate lepton passes real- or fake-lepton criteria, whether the event

passes the criteria for same-side or opposite-side D∗ and �, and how many identified

leptons are in the event. The total number of free parameters in the combinatoric

background ∆t model is 24.

The bias and width of the resolution are scaled by σ∆t. We justify this model by

fitting to the sideband data in slices of σ∆t with combinatoric ∆t model. We still

maintain the scaling in the model. If the bias and width of the resolution do not

scale by σ∆t, we should see the scale factors decrease as σ∆t increases. If the model is

adequate, the scale factors should be consistent to each other for different σ∆t slices.

The scale factor for width changes by only less than 20%, although the mean of σ∆t

changes by about factor of three. This study shows that scaling the bias and width

is a adequate approach for combinatoric model.

The relative fraction of B0B0 and B+B− events in the combinatoric background
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depends slightly on m(D∗) − m(D0). However, no significant dependence of the

parameters of the ∆t model on m(D∗) −m(D0) is observed in data or Monte Carlo

simulation. The sample of events in them(D∗)−m(D0) sideband is used to determine

the starting values for the parameters in the final full fit to all data samples.

To reduce the total number of free parameters in the fit, parameters that describe

the shape of the wide Gaussian (bias and width) are shared between combinatoric

background and the three types of peaking background: continuum, fake-lepton, and

uncorrelated-lepton. The outlier fraction is allowed to be different for each type of

background.

Continuum background

All cc events that have a correctly reconstructed D∗ are defined as continuum peaking

background, independent of whether the associated lepton candidate is a real lepton

or a fake lepton. The cc Monte Carlo sample and off-resonance data are used to

identify the appropriate ∆tmodel and sharing of parameters among subsamples. The

combinatoric-background ∆t model and parameters described in the previous section

are used to model the combinatoric-background contribution in the off-resonance ∆t

distribution in data.

Events with a real D∗ from continuum cc production should have vanishing ∆t

in the case of perfect reconstruction. Therefore, we use the following model for the

∆t distribution of these events:

Gcont = Gpmt
phys(∆ttrue, g;ω

pmt) ⊗RG+G(δ∆t, σ∆t; b, s, f, b
w, sw) .

Dependence on the flavor tagging information is included to accommodate any dif-

ferences in the amount of background events classified as mixed and unmixed.

By fitting to the data and Monte Carlo control samples with different sharing of
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parameters across subsets of the data, we find that the apparent “mistag fraction”

for events in the kaon category is significantly different from the mistag fraction for

other tagging categories. We also find that the core Gaussian bias is significantly

different for opposite-side and same-side events. We introduce separate parameters

to accommodate these effects.

The total number of parameters used to describe the ∆t distribution of continuum

peaking background is six. The off-resonance control samples in data are used to

determine starting values for the final full fit to all data samples.

Fake lepton background

To determine the ∆t model and sharing of parameters for the fake-lepton peaking

backgrounds, we use B0B0 and B+B− Monte Carlo events in which the D∗ is cor-

rectly reconstructed but the lepton candidate is misidentified. In addition, we use

the fake-lepton control sample in data. The combinatoric and continuum peaking

background ∆t models and parameters described in the previous two sections are

used to model their contribution to the fake-lepton ∆t distribution in data. For this

study, the contribution of the signal is described by the signal parameters found for

signal events in the Monte Carlo simulation.

Since the fake-lepton peaking background is due to B decays in which the fake

lepton and the D∗ candidate can originate from the same B or different B mesons,

we include both prompt and oscillatory terms in the ∆t model:

Gfake =
[
f osc · Gosc

phys + (1 − f osc) · Gpmt
phys

]⊗RG+G(δ∆t, σ∆t; b, s, f, b
w, sw) .

We find that the apparent mistag rates for both the prompt and mixing terms, and

the bias of the core Gaussian of the resolution function, are different between some

tagging categories. The total number of parameters used to describe the fake-lepton
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background is 14. The fake-lepton control samples in data are used to determine

starting values for the final full fit to all data samples.

Uncorrelated background

To determine the ∆t model and sharing of parameters for the uncorrelated-lepton

peaking backgrounds, we use B0B0 and B+B− Monte Carlo events in which the

D∗ is correctly reconstructed but the lepton candidate is from the other B in the

event or from a secondary decay of the same B. In addition, we use the same-side

control sample in data, which is only about 30% uncorrelated-lepton background in

the m(D∗) −m(D0) peak region due to significant contributions from combinatoric

background and signal. The combinatoric and other peaking background ∆t mod-

els and parameters described in the previous two sections are used to model their

contribution to the same-side ∆t distribution in data. For this initial study, the con-

tribution of the signal is described by the signal parameters found for signal events

in the Monte Carlo simulation.

Physics and vertex reconstruction considerations suggest several features of the

∆t distribution for the uncorrelated-lepton sample. First, we expect the recon-

structed ∆t to be systematically smaller than the true ∆t value since using a lepton

and a D∗ from different B decays will generally reduce the separation between the

reconstructed Brec and Btag vertices. We also expect that events with small true ∆t

will have a higher probability of being misreconstructed as an uncorrelated lepton

candidate because it is more likely that the fit of the D∗ and � to a common ver-

tex will converge for these events. Finally, we expect truly mixed events to have a

higher fraction of uncorrelated-lepton events because in mixed events the charge of

the D∗ is opposite that of primary leptons on the tagging side. These expectations

are confirmed in the Monte Carlo simulation.

We do not expect the uncorrelated-lepton background to exhibit any mixing
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behavior and none is observed in the data or Monte Carlo control samples. We

describe the ∆t distribution with the sum of a lifetime term and a prompt term,

convolved with a double-Gaussian resolution function:

Guncor =
[
f life · Glife

phys(∆ttrue, g; τ
uncor, ωlife) + (1 − f life) · Gpmt

phys(∆ttrue, g;ω
pmt)

]⊗
RG+G(δ∆t, σ∆t; b, s, f, b

w, sw) . (10.12)

The effective mistag rates ωpmt and ωlife accommodate different fractions of uncor-

related-lepton backgrounds in events classified as mixed and unmixed. We find that

the apparent mistag rate for the lifetime term is different between some tagging

categories. All other parameters are consistent among the different subsamples. The

total number of parameters used to describe the uncorrelated-lepton background is

six. The uncorrelated-lepton control samples in data are used to determine starting

values for the final full fit to all data samples.

10.2.3 Charged B model

The charged-B peaking background is due to decays of the type B± → D∗�ν�X.

Since charged B’s do not exhibit mixing behavior, our strategy is to use the ∆t

and tagging information to discriminate charged-B peaking background events from

neutral-B signal events, in the simultaneous fit to all samples. We use the same

resolution model and parameters as for the neutral-B signal since the decay dynamics

are very similar. The signal model, with the charged B background term, becomes

Gsig(∆t, σ∆t, g ; �q sig
c ) = [

1 − fB+

4τB0

e−|∆ttrue|/τB0 (1 + g(1 − 2ωc
B0) cos(∆md∆ttrue))+

fB+

4τB+

e−|∆ttrue|/τB+ (1 + g(1 − 2ωc
B+))] ⊗R(δ∆t, σ∆t; �qc) ,
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where ωc
B0 (ωc

B+) is the mistag fraction for neutral (charged) B mesons for tagging

category c.

Given that the ratio of the charged B to neutral B lifetime is close to one and

the fraction of charged B mesons in the peaking sample is only a few percent [71],

sensitivity of this analysis is too low to distinguish the B0 and B+ lifetimes in the fit.

We parameterize the physics model for the B+ in terms of the lifetime ratio τB+/τB0 ,

and fix this ratio to the world average value in 2002 [6]. We vary the ratio by the

error on the world average to estimate the corresponding systematic uncertainties on

τB0 and ∆md (see Sec. 11.2).

The fit is sensitive to only two parameters among ωB+ , ωB0 and the charged B

fraction (fB+). The reason is that, given the fact that the two lifetimes are very close,

the time evolution of mixed and unmixed events can be expressed approximately

as [88]

U ∝ (1 + fB±DB±)/2 + ((1 − fB±)DB0 cos ∆md∆t)/2

M ∝ (1 − fB±DB±)/2 − ((1 − fB±)DB0 cos ∆md∆t)/2 ,

where D ≡ 1 − 2ω. Only two quantities, fB±D±
B and (1 − fB±)D0

B are measurable.

Therefore we fix the ratio of mistag rates, ωB+/ωB0 , to the value of the ratio measured

with fully reconstructed charged and neutral hadronic B decays in data, for each

tagging category.

The ability of this model to distinguish charged B background from neutral B

signal is tested with fits to Monte Carlo simulation, in which 17290 events are real

signal and 952 are B+ → D∗−�+X events, and there are no other backgrounds. The

charged B fraction in this mixture is 5.2%. The lifetime ratio τB+/τB0 and mistag

ratio ωB+/ωB0 are set to be 1.069 and 0.97, respectively. The lifetime ratio is based

on the world average in 2000, which is the value used in the event generator of
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the Monte Carlo samples. The mistag ratio is calculated from the overall mistag

fractions for B0B0 and B+B− samples by counting event in the sample based on

the true Monte Carlo information. The fit results for ∆md, τB0 and the charged B

fraction are shown in Table 10.4, along with the results of the fit to the B0 signal

only. In all fits, the resolution function and mistag fractions are free parameters.

The fitted charged B fraction is consistent with the true value, and the τB0 and ∆md

are consistent with the true values and the fit to B0 events only.

Table 10.4: Signal model fit to B0 signal with or without B+ peaking background in
signal and generic Monte Carlo simulation. In all fits, resolution function and mistag
fractions are floating, except for the two outlier model parameters. ∗Note that the
fit to signal Monte Carlo events differs slightly from that shown in Table 10.3 because
of the fixed outlier model shape.

parameter Sig MC∗ Gen B0B0 Gen B0B0, B+B−

∆md (ps−1) 0.4715 ± 0.00427 0.4640 ± 0.0101 0.4617 ± 0.0132
τB0 (ps) 1.5523 ± 0.00915 1.5749 ± 0.0227 1.5656 ± 0.0227
fB+ - - 0.047 ± 0.030

10.3 Fit Result

The total number of free parameters in the final fit is 72: 22 of them in the signal

model, 24 in the combinatoric background model, and 26 in peaking background

models. The ratio of B+ to B0 lifetimes is fixed at the world average in 2002 [6],

1.083±0.017. The ratios of B+ to B0 mistag fractions are fixed at the central values

extracted from tagging performance analysis with hadronic events [72]. They are

summarized in Table 10.5. The outlier Gaussian bias and width are fixed at −5 ps

and 6 ps (see Sec. 11.2 for details.). The fit is done “blind”, that is, the central

values of τB0 and ∆md are randomize by Gaussian distributions with width 0.06 ps
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and 0.04 ps−1, respectively. The actual shifts are kept hidden to avoid human bias

due to experimenters’ expectation. These hidden shifts are consistent through out

the whole analysis so that the effects of changing analysis parameters or strategies

can be studied. The hidden values are revealed after all analyses are finalized.

Table 10.5: B+ to B0 mistag fraction ratios extracted from hadronic events analy-
ses [72], except the NT3 category, which is not available. We calculate the ratio for
NT3 from generic Monte Carlo sample.

Category ratio
LTag 0.54 ± 0.10
KTag 0.68 ± 0.05
NT1 0.99 ± 0.12
NT2 1.05 ± 0.07
NT3 1.12 ± 0.12∗

The fitted signal ∆t model parameters are shown in Table 10.6, and the com-

binatoric and peaking background model parameters are shown in Table 10.7 and

Table 10.8, respectively. The error on τB0 is slightly asymmetric.

The statistical correlation coefficient between τB0 and ∆md is ρ(∆md, τB0) =

−0.22. The global correlation coefficients for τB0 and ∆md, and some of the correla-

tion coefficients between τB0 or ∆md and other parameters, are shown in Table 10.9.

Figure 10.3 shows the ∆t distributions for unmixed and mixed events in the

signal sample (opposite-side D∗-lepton candidates in on-resonance data). The points

correspond to data. The curves correspond to the sum of the projections of the

appropriate relative amounts of signal and background ∆t models for the signal

sample in the δm range between 143 and 148 MeV. Figure 10.4 shows the asymmetry

A =
Nunmixed(∆t) −Nmixed(∆t)

Nunmixed(∆t) +Nmixed(∆t)
.
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Table 10.6: Results of full fit to data — signal model and resolution function param-
eters. A small correction, described in Sec. 11.1, has been applied to τB0 and ∆md.
The parameters without errors are kept constant in the fit.

Signal Model and ∆t Resolution Function Parameters
parameter value parameter value parameter value
∆md (ps−1) 0.492 ± 0.018 fB+ 0.082 ± 0.029 s 1.201 ± 0.063
τB0 (ps) 1.523 +0.024

−0.023 ωlepton 0.071 ± 0.015 κ 0.86 ± 0.17
- - ωoffset

kaon 0.002 ± 0.024 f lepton 0.72 ± 0.10
- - mkaon 0.229 ± 0.036 fkaon 0.609 ± 0.088
- - ωNT1 0.212 ± 0.020 fNT1 0.69 ± 0.13
- - ωNT2 0.384 ± 0.018 fNT2 0.70 ± 0.10
- - ωNT3 0.456 ± 0.012 fNT3 0.723 ± 0.078
- - ∆ωlepton −0.001 ± 0.022 fout (%) 0.27 ± 0.17
- - ∆ωkaon −0.024 ± 0.015 bout (ps) −5.000
- - ∆ωNT1 −0.098 ± 0.032 sout (ps) 6.000
- - ∆ωNT2 −0.112 ± 0.028 - -
- - ∆ωNT3 −0.023 ± 0.019 - -

The unit amplitude for the cosine dependence of A is diluted by the mistag proba-

bility, the experimental ∆t resolution, and backgrounds.

Additional plots that compare data and the fit result for background-enriched

samples are shown in Appendix B.

Since we float many parameters in the model, it is interesting to see how the

errors on τB0 and ∆md, and their correlation change when different parameters are

free in the fit, or fixed to their best value from the full fit. We perform a series of

fits, fixing all parameters at the values obtained from the default fit, except (a) ∆md

and τB0 , (b) ∆md, τB0 , and all mistag fractions in the signal model, (c) ∆md, τB0 ,

and fB+ , (d) ∆md, τB0 , fB+ , and all mistag fractions in the signal model, (e) all

parameters in the signal ∆t model. The one-sigma error ellipses for these fits and

for the default fit are shown in Fig. 10.5.
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Table 10.7: Result of the full fit to data — ∆t model parameters for combinatoric
background, G(comb). The parameters without errors are kept constant in the fit.

Final Fit to Data, Combinatoric ∆t Model Parameters

parameter value parameter value
∆mcomb (ps−1) 0.422 ± 0.020 b1LNT12 −0.056 ± 0.021
τ comb (ps) 1.234 ± 0.024 ps b1KNT3 −0.104 ± 0.012
ωosc

Fake;LTag 0.434 ± 0.026 f osc
Off 0.099 ± 0.035

ωosc
Fake;KTag 0.128 ± 0.017 f osc

SS 0.385 ± 0.023
ωosc

Fake;NT1 0.443 ± 0.032 f osc
NoLept 0.526 ± 0.019

ωosc
Fake;NT2 0.507 ± 0.024 f osc

OneLept 0.894 ± 0.022
ωosc

Fake;NT3 0.589 ± 0.020 f osc
TwoLept 1.000

ωosc
Lept;LTag 0.156 ± 0.023 s1

OffSS 1.337 ± 0.024
ωosc

Lept;KTag 0.297 ± 0.010 s1
On;OS 1.259 ± 0.021

ωosc
Lept;NT1 0.377 ± 0.025 f 1 0.9666 ± 0.0071

ωosc
Lept;NT2 0.401 ± 0.016 bout −0.98 ± 0.24

ωosc
Lept;NT3 0.491 ± 0.011 sout 4.60 ± 0.42

ωpmt 0.3960 ± 0.0093 - -

We can see that the error on τB0 changes very little until we float the signal reso-

lution function. Floating the background parameters adds a very small contribution

to the error. The contribution from the charged B fraction and mistag fractions

to the τB0 error is negligible. On the other hand, the charged B fraction changes

the error on ∆md the most. The contributions from floating the mistag fractions,

resolution functions, and background ∆t models are relatively small.
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Table 10.8: Result of the full fit to data — ∆t model parameters for peaking back-
grounds. The outlier bias (µout) and scale factor (σout) for these peaking background
are shared with combinatoric background parameters. The parameters without er-
rors are kept constant in the fit.

Final Fit to Data, Peaking BG Model Parameters
cont. par. value fake par. value unco. par. value
ωKT 0.083 ± 0.028 ∆mfake 0.444 ± 0.031 τunco 1.07 ± 0.17
ωLNT 0.457 ± 0.040 τ fake 1.416 ± 0.060 ωlife

KNT 0.71 ± 0.13
b1

OS 0.04 ± 0.11 ωosc
LT 0.248 ± 0.038 ωlife

LT 0.9998
b1

SS −0.08 ± 0.13 ωosc
KT 0.142 ± 0.029 ωpmt 0.0 ± 0.00064

s1 1.300 ± 0.090 ωosc
NT1 0.342 ± 0.044 f life 0.877 ± 0.085

f1 0.909 ± 0.040 ωosc
NT2 0.377 ± 0.039 b1 −0.30 ± 0.18

- - ωosc
NT3 0.512 ± 0.042 f1 1.000

- - ωpmt
KNT3 0.46 ± 0.14 s1 1.34 ± 0.24

- - ωpmt
LNT12 0.64 ± 0.15 - -

- - fosc 0.852 ± 0.046 - -
- - b1

KNT3 −0.208 ± 0.062 - -
- - b1

LNT12 −0.078 ± 0.065 - -
- - f1 0.944 ± 0.023 - -
- - s1 1.159 ± 0.091 - -

Table 10.9: Global correlation coefficients for ∆md and τB0 from the full fit to data
and other correlation coefficients for pairs of key parameters in the fit.

∆md global correlation 0.74
τB0 global correlation 0.69
ρ(∆md, τB0) −0.22
ρ(∆md, fB+) 0.58
ρ(τB0 , σ1

sig) −0.49
ρ(τB0 , f out

sig ) −0.26
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Figure 10.3: The ∆t distribution for unmixed and mixed events in the signal sample
(opposite-side D∗-lepton candidates in on-resonance data) and the projection of the
fit results. The left-hand plots are for unmixed events; the right-hand plots for mixed
events. The shaded area shows the background contribution to the distributions. The
bottom row is the Poisson probability of observing n events or smaller (larger) if n
is smaller (larger) than the expected value; i.e., y =

∑n
i=0 P (i;µ) for n < µ and

y =
∑∞

i=n P (i;µ) for n > µ.
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Figure 10.4: The asymmetry plot for mixed and unmixed events in the signal sample
(opposite-side D∗-lepton candidates in on-resonance data) in the δm range from 143
to 148 MeV, and the projection of the fit results. The lower plot shows the bin-by-bin
difference normalized by the error estimated from data on each bin.
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Figure 10.5: Comparison of one-sigma error ellipses in the ∆md-τB0 plane for fits
in which different sets of parameters are free. From the innermost to the outermost
ellipse, the floating parameters are (∆md, τB0), (∆md, τB0 , mistag fractions), (∆md,
τB0 , fB+), (∆md, τB0 , fB+ , mistag fractions), all signal ∆t parameters, and the
default fit (72 floating parameters).



Chapter 11

Validation and Systematic Study

In this chapter, validation exercises on both data and simulation, and systematic

uncertainty studies are described. A correction that is comparable to a full statistical

error in data is applied for both τB0 and ∆md. Detail is described in Sec. 11.1.1.

11.1 Validation and Consistency Checks

In Sec. 11.1.1, I describe several tests of the fitting procedure that are performed

with both fast parameterized Monte Carlo simulations and full detector simulations.

In Sec. 11.1.2, the results of consistency checks on data are given, including fitting

to different subsamples of the data and fitting with variations to the standard fit.

A bias on the fit values of τB0 and ∆md is observed when fitting a combination of

signal and background Monte Carlo events. A correction (approximately equivalent

to the statistical uncertainty on τB0 and ∆md in data) for this bias is applied to

the final fit results in data and apply a systematic uncertainty equivalent to the

statistical uncertainty on the Monte Carlo fit result.

193
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11.1.1 Tests of fitting procedure with Monte Carlo simula-

tions

Fast parameterized (toy) Monte Carlo simulation

A test of the fitting procedure is performed with fast parameterized Monte Carlo

simulations, where 87 experiments are generated with signal and background control

sample sizes and compositions corresponding to the data. The ∆t, mixing status, and

the flavor of the tagging B are generated with a random generator with probabilities

according to the full model with parameters obtained from the full likelihood fit to

data. Because the fitting function does not model the σ∆t and δm distribution and

category variables, for each event σ∆t, δm and category variables are taken from the

corresponding events in data. In other words, the random generator goes through

each event in data, chooses the parameters according to this event’s σ∆t, δm and

category variable values, and generates ∆t, mixing status and Btag flavor according

to the full model. The full fit is then performed on each of these experiments. The

distributions of the fit values of ∆md, τB0 and fB± are shown in Fig. 11.1. The mean

and RMSs of ∆md, τB0 and fB± are:

∆m mean = 0.5280 ± 0.0018 ps−1 RMS = 0.0171 ± 0.0013 ps−1

τB0 mean = 1.5390 ± 0.0024 ps RMS = 0.0223 ± 0.0017 ps

fB± mean = 0.076 ± 0.004 RMS = 0.034 ± 0.003 ,

and should be compared with the central value and statistical error on the (blind)

fit values from data:

∆md = 0.527 ± 0.018 ps−1 (blind) ,
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τB0 = 1.539 ± 0.023 ps (blind) ,

and

fB± = 0.082 ± 0.029 .

The central values of ∆md, τB0 and fB± from the fit to data (used to generate the toy

samples) are shown as vertical dashed lines in Fig. 11.1. Both means and RMS’s are

consistent between fits to toy sample and data. The correlation coefficient calculated

from the ∆md-τB0 distribution is −0.21, which is in a good agreement with the fit

to data, −0.22.

The distribution of minimized negative log-likelihood (minNll) is shown in Fig. 11.2.

Seventeen of the fits to the 87 experiments result in a value of the negative log like-

lihood that is smaller (better) than that found in data.

We also check the statistical errors on data by measuring the increase in negative

log likelihood in data in the two-dimensional (τB0 , D−) space in the vicinity of the

minimum of the negative log likelihood. We found that the positive error on τB0 is

about 6% larger than that predicted by the fitting program, whereas the other errors

are the same as predicted. We increased the positive statistical error on τB0 by 6%.

Full simulation

We also fit two types of Monte Carlo samples that include full detector simulation:

pure signal and signal plus background. To check whether the selection criteria

introduce any bias in the lifetime or mixing frequency, we fit the signal physics

model to the true lifetime distribution, using true tagging information, for a large

sample of signal Monte Carlo events that pass all selection criteria. We also fit the

measured ∆t distribution, using measured tagging information, with the complete

signal ∆t model described in Sec. 10.2.1. We find no statistically significant bias in

the values of τB0 or ∆md extracted in these fits.
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Figure 11.1: The distributions of τB0 , ∆md and fB± from 87 toy Monte Carlo sample
fits. The values from the default fit to data, which were used to generate the toy
samples, are indicated by vertical dashed lines. Note that the values shown here are
before the hidden values for τB0 and ∆md are revealed. Therefore, the mean values
cannot be compared with the result shown in Table 10.6.

The B0B0, B+B−, and cc Monte Carlo samples that provide simulated back-

ground events along with signal events are much smaller than the pure signal Monte

Carlo samples. In addition, they are not much larger than the data samples. In or-

der to increase the statistical sensitivity to any bias introduced when the background
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Figure 11.2: The distribution of minimized negative log-likelihood (minNll) from 87
toy Monte Carlo sample fits. The value from default fit to data is indicated by the
vertical dashed lines. The number of fits that result in a smaller (better) value of
minNll is 17.

samples are added to the fit, we compare the values of τB0 and ∆md from the fit to

signal plus background events, and pure signal events from the same sample. We find

that when background is added, the value of τB0 increases by (0.022± 0.009) ps and

the value of ∆md increases by (0.020±0.005) ps−1, where the error is the difference in

quadrature between the statistical errors from the fit with and without background.

We correct our final results in data for these biases, which are each roughly the same

size as the statistical error on the results in data. We conservatively apply a system-

atic uncertainty on this bias equal to the full statistical error on the measured result

in Monte Carlo simulation with background: ±0.0178 ps for τB0 and ±0.0123 ps−1

for ∆md.

11.1.2 Data consistency checks

We perform the full maximum-likelihood fit on different subsets of the data and find

no statistically significant difference in the results for different subsets. The fit is
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performed on datasets divided according to tagging category, b-quark flavor of the

D∗ � candidate, b-quark flavor of the tagging B, and D0 decay mode. We also vary

the range of ∆t over which we perform the fit (maximum value of |∆t| equal to

10, 14, and 18 ps), and decrease the maximum allowed value of σ∆t from 1.8 ps to

1.4 ps. These checks are summarized in Figs. 11.3 and 11.4. Again, no statistically

significant changes in the values of τB0 or ∆md are found.

11.1.3 Change in kaon mistag slope

The kaon mistag is modeled as a linear function of σ∆t in signal model. The slope

from the fit to signal only in B0B0 Monte Carlo simulation is 12%, while the slope

from the full fit to signal and background events is 20 ± 4%. The change is due to

the fact that we ignore a similar effect in background events; i.e., the kaon mistag in

the background model is independent of σ∆t. We can confirm that the kaon mistag

in background events do increase as σ∆t increases by calculating the observed mixed

events in background in slices of σ∆t. Kaon tagged events have a slope similar to

kaon tagged signal events, while events in other tagging categories do not have a

non-zero slope.

The correlation coefficients between this slope and (∆md, τB0) are very small, so

that fixing this slope at 12% does not change τB0 and ∆md by more than 0.001 ps

or ps−1. Therefore, we can safely ignore the slope for backgrounds.

11.1.4 Sensitivity to NT3 tagging information

Using the tagging information for events in the NT3 category allows us to treat all

events on an equal footing for the lifetime and mixing measurement. Since the Q

value (effective statistical power of an event for mixing measurement, defined as

ε(1 − 2ω)2, where ε is the tagging efficiency and ω is the mistag fraction) for this
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Figure 11.3: These plots show the ∆md differences from the standard fit for various
fits to the Data sample. The units of the plots are ns−1. The errors shown on
the plots are the sample and subsample errors subtracted in quadrature. The line
marked with (#) represents a fit that only converged when fB+ was fixed to the
nominal value.

category is estimated to be about 0.3 %, it has only a small impact on the mixing

measurement. This analysis is currently the only analysis in BABAR that uses tagging

information from the NT3 category. Since the NT3 tagging performance is not well

verified in BABAR, we also perform a fit to data in which we assume the tagging power
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Figure 11.4: These plots show the τB0 differences from the standard fit for various
fits to the Data sample. The units of the plots are fs. The errors shown on the plots
are the sample and subsample errors subtracted in quadrature.

of NT3 is 0. It is equivalent to assuming that all events in this tagging category have

a mistag rate of 50%.

We fix the NT3 mistag rates (ωNT3) in signal and background ∆t models to be 0.5.

In a few parameters in background models, NT3 is grouped with other categories, we

maintain the original parameter grouping, without separating NT3 from them, and
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still let these parameters float.

The change in parameters are all very minor. When the NT3 tagging information

is not used, the lifetime increases by 0.0022 ps and the statistical error increases by

0.002 ps (in quadrature); the change in ∆m is +0.0008 ps−1 with an error that is

larger by 0.0036 ps−1 (in quadrature). We therefore conclude that extracting NT3

mistag rates from data is warranted, and is slightly beneficial.

11.2 Systematic Uncertainties

Outlier in signal model

The outlier portion of the resolution function is intended to describe the ∆t dis-

tribution for candidates whose residual is not consistent with the calculated error.

These outliers are typically due to errors in tag-side vertex reconstruction, when a

secondary vertex (e.g., charm decays) is identified instead of the primary vertex.

Since there is little reason to expect the mean and width of the signal outlier Gaus-

sian to scale with the ∆t error, the outlier resolution function is parameterized as a

Gaussian as a function of ∆t residual.

We found that the fit to data is not very robust when all three parameters for

the outlier Gaussian of the resolution function are allowed to float in the fit. In

particular, the best fit value for the bias of the outlier function is always at the lower

end of the allowed range, even when the lower limit is set at −18 ps. This is likely

due to the negative tail in the ∆t distribution for events in the signal sample; see

Fig. 10.3. In addition, when all outlier parameters are free, many fits fail to converge

or have an error matrix that is not positive definite. Therefore, we repeated the full

fit with 36 different fixed values of the outlier bias and outlier width, covering a wide

range for each parameter (−1 to −10 ps in bias, 4 to 11 ps in width).

Figure 11.5 shows the negative log-likelihood surface as a function of outlier bias
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and width. The negative log-likelihood has been offset so that the minimum value

over the plot is zero. For fixed width, the minimum in negative log-likelihood always

occurs at the most negative bias. For fixed bias, the likelihood curve as a function

of resolution becomes broader as the bias becomes more negative. Note that there is

a local minimum at small bias. Also note that the change in negative log-likelihood

is less than 0.5 for most of the values of bias and width scanned in this study.
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Figure 11.5: The negative log-likelihood surface in the space of outlier bias and
outlier width for the outlier Gaussian of the signal resolution model in Data. The
vertical scale has been offset so that minimum is at 0. The surface is constructed
from 36 fits to the Data with different fixed values of the signal outlier parameters.
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A scatter plot of the resulting values of ∆md and τB0 is shown in Fig. 11.6.

Note that the spread in values of τB0 and ∆md is small compared to the statistical

uncertainty on each quantity. This is consistent with the fact that the change in

ln-likelihood is small as the outlier bias and width are varied (see Fig. 11.5).

In order to choose an outlier bias and width for the default fit to data, we select

a point near the middle of the cluster of points in the τB0 versus ∆md scatter plot

(Fig. 11.6) and use the corresponding bias and width. We choose a bias of −5 ps

and a width of 6 ps.

m∆
0.526 0.527 0.528

τ

1.53

1.535

1.54

1.545

1.55

Figure 11.6: Scatter plot of the set of (blinded) ∆md, τB0 values obtained from data
for 36 fits with different fixed values of the outlier bias and width in the range −1 to
−10 ps for bias and 4 to 11 ps for width. The cross indicates the mean and RMS of
the ∆md, τB0 distribution.

We assign half the full spread of lifetime and mixing results as the systematic

uncertainty due to the outlier parameters, 0.005 ps for τB0 and 0.001 ps−1 for ∆md.
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Event selection bias and Monte Carlo Correction

The largest source of systematic uncertainty on both parameters is the limited sta-

tistical precision for determining the bias due to the fit procedure (in particular, the

background modeling) with Monte Carlo events. We assign the statistical errors of

a full fit to Monte Carlo samples including background to estimate this systematic

uncertainty: ±0.018 ps for τB0 and ±0.012 ps−1 for ∆md. See Sec. 11.1.1 for more

details.

PEP-II boost and z scale uncertainty

Since ∆t is directly proportional to the measured average PEP-II boost, and the

measured ∆z, the errors on τB0 and ∆md are directly related to the uncertainty on

the boost and the z scale. The PEP-II boost is found to be accurate at 0.1% level [57]

based on the knowledge of beam energies. The z scale uncertainty is determined by

reconstructing protons scattered from the beam pipe and comparing the measured

beam pipe shape with the optical survey data that are taken before the beam pipe

is covered [89]. The z scale uncertainty is less than 0.4%

The systematic uncertainties due to these effects are ±0.0015 and ±0.0005 ps−1

for ∆md, and ±0.0060 and 0.0015 ps for τB0 .

B+ mistag rate and lifetime

The B+ to B0 lifetime ratio is fixed at the world average [6], i.e., 1.083 ± 0.017 ps

We vary this ratio up and down by one sigma and repeat the full fit. The mixing

and lifetime results are shown in Fig. 11.1. We assign the systematic errors to be

half of the observed difference.

The B+ to B0 mistag ratios for all five tagging categories are also fixed. We

move all five mistag ratios up and down by one sigma according to Table 10.5 and
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Table 11.1: Results of full fits to data for the two physics parameters for different
values of the fixed B+ to B0 lifetime ratio. All other fit parameters were nearly
identical.

Parameter (τB+/τB0) + 1σ (τB+/τB0) − 1σ diff./2
δ(∆m) (ps−1) −0.00002 0.0006 0.0003
δ(τB0) (ps) −0.0016 0.0021 0.0019

repeat the full fit. The results are shown in Table 11.2. Again we assign half of the

difference as the systematic error due to fixing mistag ratios.

Table 11.2: Results of fits to data for the two physics parameters for different values
of the fixed B+ to B0 mistag rate ratio.

(ωB+/ωB0) + 1σ (ωB+/ωB0) − 1σ diff./2
δ(∆m) (ps−1) −0.00007 −0.00023 0.00008
δ(τB0) (ps) −0.0002 0.0004 0.0003

SVT alignment

The vertex precision is sensitive to the knowledge of the positions of charged track

hits on the SVT, which in turn relies on the knowledge of the position of each silicon

wafers. Several sets of constants describing the deviation of these wafers from their

nominal location are produced by studying the hit residual from dimuon events and

cosmic ray data with the SVT alone [57]. The optical survey information taken during

the assembly of the SVT is also used to improve the precision. These constants are

then used to re-process charged tracks.

The sets of constants used to process data events for this analysis are called

alignment set “D” and “E”. However, a much accurate set of constants (called set

“L”) is calculated after the data used in this analysis have been processed.



206 CHAPTER 11. VALIDATION AND SYSTEMATIC STUDY

The SVT wafer location in Monte Carlo simulation is known perfectly. To esti-

mate the effect of using less accurate alignment constants, Monte Carlo events are

reprocessed with the SVT wafers moved by the amount that is described by the dif-

ference between alignment constant set D or E and L (called “diffDL” and “diffEL”),

and repeat the fit to signal events with the signal model. The signal event sample

used here is a mixture of four D0 decay modes according to their branching ratios,

and it size is equivalent to 20 fb−1.

By comparing the best-fit values for τB0 and ∆md between the nominal “per-

fect” alignment and the degraded models of real detector alignment, we estimate the

uncertainty in the result from data due to the uncertainty about the true internal

alignment of the SVT. Table 11.3 summarizes the change in physics and resolution

parameters in the two (mis)alignment scenarios diffDL and diffEL with respect to

the default case. We assign the average change of these two cases as the systematic

uncertainties: 0.0056 ps for τB0 and 0.0030 ps−1 for ∆md.

Table 11.3: Parameter values and their change from nominal values for a full signal ∆t
fit (with Monte Carlo truth tagging information) to the signal Monte Carlo cocktail
in two different SVT alignment scenarios.

Parameter Nominal Value ∆ diffDL ∆ diffEL
∆m 0.477 ± 0.00516 −0.00316 −0.00292
τB0 1.53 ± 0.0155 0.0057 0.0055
κ 0.812 ± 0.131 0.0452 0.00591
s1 0.969 ± 0.0423 0.0569 0.108
f 1

KT 0.507 ± 0.0767 −0.0213 0.0159
f 1

LT 0.687 ± 0.0812 −0.0254 0.00904
f 1

N1 0.831 ± 0.0839 −0.0997 0.0589
f 1

N2 0.555 ± 0.084 0.0059 −0.0105
f 1

N3 0.566 ± 0.069 −0.05 0.00131
bout −0.440 ± 0.551 0.112 0.368
f out 0.0291 ± 0.00498 0.000435 0.00319
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Beam spot

The beams pot is used as a constraint in both the tag-side and reconstructed-side

vertices. We investigate the dependence of the fitted values of τB0 and ∆md on

the beam-spot parameters by varying the beam spot position in y direction, which

provides most constraining power. The Monte Carlo signal event vertices are recal-

culated after the beam spot position is shifted consistently for every event by up to

80 µm, or randomly for each event according to a Gaussian distribution with widths

up to 80 µm, and refitted with signal ∆t model. The results are listed in Table. 11.4.

Based on these observations, and knowing that the difference in estimated beams

pot position between different algorithm is less than 10 µm, and that average resolu-

tion of the beam spot size in y direction is about 30 µm, we estimate the systematic

error due to uncertainties in the beams pot position to be ±0.005 ps for τB0 and

±0.001 ps−1 for ∆md.

Table 11.4: Difference in final parameter values from the full signal fit to the signal
Monte Carlo samples for different variations applied to the beam spot parameters.

Beams pot Variation [µm ]

Parameter shift 10 shift 30 shift 80 shift/random 20
∆m −0.0005 −0.0013 −0.0020 0.0001
τB0 −0.0042 −0.0001 0.0012 −0.0024

Parameter random 20 random 40 random 80 shift/random 80
∆m 0.0005 −0.0002 −0.0030 −0.0056
τB0 −0.0050 −0.0036 −0.0029 0.0024

Background fractions

In this analysis, the signal and background probabilities are calculated based on the

fitted m(D∗)−m(D0) shapes, and peak and combinatoric background yields of small
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subsamples. The shape parameters and yields are kept constant in the final ∆t fit.

The uncertainty on τB0 and ∆md due to the statistical fluctuation of the signal and

background probability calculation is estimated in the following way. The δm shape

parameters and peak and background yields are perturbed randomly according to the

errors from the fit results, assuming Gaussian distribution and taking into account

all correlations, and then the ∆t fit is carried out to estimate this contribution to

uncertainties.

A faster test, where only τB0 and ∆md are floating in the full ∆t model, is

performed on 111 different perturbations of the δm parameters. A full test with all

72 parameters floating is also performed on 20 different random perturbations to

verify that the 2-parameter fit results are not an inappropriate estimate. The results

are shown in Fig. 11.7 and Tab. 11.5. A systematic error of ±0.0029 ps−1 on ∆md

and ±0.0032 ps on τB0 is assigned, according to the 2-parameter fit distributions.

Table 11.5: Characteristics of the distribution of fitted results for ∆md and τB0 (with
respect to the baseline) from the 111 fits with perturbed background fraction when
floating only the two physics parameters.

δ(∆md) (ps−1) δ(τB0) (ps)
Mean −0.0013 ± 0.0003 −0.0006 ± 0.0003
RMS 0.0029 ± 0.0002 0.0032 ± 0.0002

Resolution models

The data is fitted with an alternative resolution function for signal ∆tmodel, a triple-

Gaussian (G+G+G). The outlier Gaussian shape is kept the same; i.e., σout = 6 ps

and bout = −5 ps. The biases and widths of the other Gaussians are scaled by

σ∆t. The number of free parameters is 74, two more than that of default fit. In

comparison with the default fit, the lifetime shifts by +0.0034 ps and ∆md shifts by
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Figure 11.7: Histograms of the spread in fitted results with respect to the default fit
result from Data with 111 different statistical variations of the input m(D∗)−m(D0)
parameters and floating only τB0 and ∆md in the final ∆t fits. The superimposed
shaded histograms show the distribution of fit results for the 20 fits where the entire
∆t model was floating in the fit.

−0.0009 ps−1. The minimized negative log-likelihood is 795904.4, (for reference, the



210 CHAPTER 11. VALIDATION AND SYSTEMATIC STUDY

value for the default fit is 795903.8.).

Although most of the parameters in the ∆t distributions for the backgrounds are

floating, there could be a bias in the result due to the choice of models. Since the

largest background contribution is from combinatoric events, only the combinatoric

model is studied for the systematic error. An important feature of the background

∆t model is its effort to accommodate the mixing structure of the combinatoric

background. As a suitable variation, the model is changed with a pure lifetime-

based model. Comparing the results from a full fit to data gives us an estimate of

our systematic error due to the choice of model for the largest background.

The fit result with this combinatoric model shows that the lifetime shifts by

+0.0063 ps and ∆md shifts by −0.0012 ps−1. It is worth noticing that the minimized

negative log-likelihood is 795996.3, which is much larger than the default fit value,

795903.8. The charged B fraction, fB± , also changes from 8% to 6%. Although this

is an extreme test for exposing our sensitivity to assumptions about the functional

form of the background ∆t distributions, the size of this shift is used as an estimate

of the systematic uncertainty.

Summary

The results of this section are summarized in Table 11.6, which lists each source of

systematic uncertainty and our evaluation of its contribution to the error on τB0 and

∆md, and the sum in quadrature.
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Table 11.6: Summary of systematic uncertainties of τB0 and ∆md.

Source δ(∆m) (ps−1) δ(τB0) (ps) Note

Selection and fit cor-
rection

±0.0123 ±0.0178 Stat. error on generic
MC fit

z scale ±0.0020 ±0.0060 0.4%
PEP-II boost ±0.0005 ±0.0015 0.1%
SVT alignment ±0.0030 ±0.0056 test on modified align-

ment constants with sig
MC

Beam spot position ±0.0010 ±0.0050 Move/smear BS in sim-
ulation

Bkg / signal prob. ±0.0029 ±0.0032 Vary m(D∗)−m(D0) fit
result

Fixed B+/B0 life-
time ratio

∓0.0003 ±0.0019 Vary lifetime ratio by
±1σ [6]

Fixed B+/B0 mistag
ratio

∓0.0001 ∓0.0003 Vary mistag ratios by
±1σ [72]

Fixed signal outlier
shape

±0.0010 ±0.0054 Vary outlier width &
bias

Signal resolution
model

±0.0009 ±0.0034 G+G+G vs GExp+G

Bkg ∆t models ±0.0012 ±0.0063 Vary combinatoric bkg
model

Total syst. error ±0.013 ±0.022



Chapter 12

Conclusion and Outlook

With approximately 14,000 exclusively reconstructed B0 → D∗−�+ν� signal events,

the B0 lifetime τB0 and B0-B0 oscillation frequency ∆md have been measured simul-

taneously, with an unbinned maximum-likelihood fit. The results are

τB0 = (1.523 +0.024
−0.023 ± 0.022) ps ,

and

∆md = (0.492 ± 0.018 ± 0.013) ps−1 ,

where the first uncertainty is statistical and the second is systematic. The statistical

correlation coefficient between τB0 and ∆md is −0.22. Both the lifetime and mixing

frequency have combined statistical and systematic uncertainties that are comparable

to those of most precise previously-published experimental measurements [6]. The

results are consistent with the world average measurements of τB0 = (1.542±0.016) ps

and ∆md = (0.489 ± 0.008) ps−1 [6].

The comparisons of the results in this thesis and other measurement, along with

the improved world average including the results in this thesis are shown in Figs. 12.3

and 12.4. Figures 12.1 and 12.2 show the comparisons among the most precise

212
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measurements.

)-1m (ps∆
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BABAR excl. had. (32 M) 

DELPHI vertex (94-00)

Figure 12.1: Mixing frequency comparison with most precise measurements [90, 91,
92, 93, 94, 95, 96, 97]. The numbers in the parentheses are either the number of BB
that particular experiment uses (e.g., 23 M), or the years the data are collected in
(e.g., 91–00). The dashed box indicates the measurement in this thesis.

This analysis is still statistically limited. In addition to τB0 and ∆md, a large

number of parameters are floating in the fitting process. The statistical uncertainty

is increased because of the correlations between τB0 , ∆md and other floating pa-

rameters. However, the advantage of this approach is that one can avoid making
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Figure 12.2: Lifetime comparison with most precise measurements [98, 52, 53, 54,
55, 99, 93, 56]. The numbers in the parentheses are either the number of BB that
particular experiment uses (e.g., 23 M), or the years the data are collected in (e.g.,
91–00). The dashed box indicates the measurement in this thesis.

many assumptions, such as the charged B fraction, resolution functions and back-

ground behaviors, so that complex systematic uncertainty studies can be reduced.

This analysis tries to use data as much as possible, so that the dependence on the

simulation can be minimized, thus the systematic uncertainties due to the possible

inconsistency between data and simulation can be reduced.

Although the systematic uncertainties are not very small compared to the statisti-

cal uncertainties, the dominant systematic uncertainties for both lifetime and mixing
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Figure 12.3: Mixing comparison with world average and other experiments [98].
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Figure 12.4: Lifetime comparison with world average and other experiments [98].

frequency are due to the small size of simulation data, which can be improved in the

near future. Up to summer of 2002, BABAR already accumulated about four times

as much data as those used in this analysis. With existing data, and assuming that

ten times as much simulation data will be available soon, the naive projection of

this analysis shows that the total uncertainty for ∆md can reach 2% and for τB0

1.3%. This precision is approaching the Standard Model expectations of the decay
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width difference ∆Γ between BH and BL, and CP violation in mixing. The physics

probability functions for observing an unmixed or mixed events have to be modified

to incorporate ∆Γ and q/p,

P+ =
e−|∆t|/τ

4τ
[cosh(∆Γ∆t/2) + cos(∆m∆t)] (12.1)

P− =
e−|∆t|/τ

4τ
[cosh(∆Γ∆t/2) − cos(∆m∆t)] · 1

2

(∣∣∣∣pq
∣∣∣∣
2

+

∣∣∣∣qp
∣∣∣∣
2
)
. (12.2)

The cosh(∆Γ∆t/2) term will make the overall probability larger than the pure ex-

ponential since it is always greater than one, and thus bias the measured lifetime

higher than the true value if this term is ignored. The factor of 1
2
(|p/q|2 + |q/p|2)

will have a very small impact on the overall mixing probability since

1

2

(∣∣∣∣pq
∣∣∣∣
2

+

∣∣∣∣qp
∣∣∣∣
2
)

− 1 � 2

(∣∣∣∣qp
∣∣∣∣− 1

)2

= O (10−4–10−6
)

if we take |q/p| = 1 + O (10−2–10−3). The decay rate asymmetry between |B0
phys(t)〉

and |B0
phys(t)〉 shown in Eq. 2.34 has a better sensitivity to |q/p| − 1, but a better

understanding of charge asymmetry in the detector is needed.

As the statistical uncertainties quickly decreases due to large amount of data,

to carry this analysis forward, many cares should be taken to reduce the systematic

uncertainties:

• First of all, the bias observed in the simulation data must be understood. A

very large amount of Monte Carlo simulation must be generated, and a better

tuning on simulation to match real data is needed.

• The resolution functions and background time dependent models must be re-

visited to describe the behaviors in data with higher precisions. Especially it is

already known (Sec. 6.2.1) that the resolution is correlated with the true decay
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time difference. This effect must be modeled properly. In addition, the resolu-

tion function for the charged B component should be separated from the signal

resolution function since an extra soft charged particle from the B+ decay is

in principle included in the tagging side vertex.

• With a larger data size, the outlier component of resolution model should be

easier to handle. Nevertheless, better understanding of the origin and behavior

of these outliers, and reducing them are essential.

• The distribution of cos θB0,D∗� contains information of charged B background.

It will increase the sensitivity to the estimation of charged B fraction.

• Better models for mistag-σ∆t correlation, including all tagging categories be-

sides kaon tag, for both signal and background are necessary.

• The mistag rate for charged B in this analysis needs more study because it

can be different from the mistag rate for pure B± events since an extra soft

charged track can be included in the tagging side.

• It is better to understand the more fundamental cause of the m(D∗) −m(D0)

resolution difference between whether or not the soft pion has DCH hits, so

that a more sensible separation of data sample can be applied to increase

sensitivities.

This list is certainly not complete. The underline true ∆t distribution can be com-

plicated by many interference terms [100] from effects such as CPT violation and

CP violation in decay, and doubly-CKM suppressed decays in Btag that will fake

tagging flavors.

With future upgrades of PEP-II and BABAR, the accumulative data size will reach

∼500 fb−1 in four years.BABAR will have a good chance to observe the CP violation
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and make a strong constraint on CPT symmetry, or discover new phenomena that are

forbidden or highly suppressed in Standard Model. The analysis and the technique

in this thesis can be carried forward and contribute to this process.



Appendix A

Sample Composition

This appendix summarizes the peak yields and background fractions for different

“supersamples” other than those shown in Sec. 9.8 to demonstrate the fact that the

background levels are significantly different for some event categories.

Table A.1: Peak yields and fake, continuum and uncorrelated fractions of the peak
yield, and the combinatoric fraction of total events in m(D∗) −m(D0) window for
signal samples (e/µ, opposite-side and on-Resonance) for the soft pion in the SVT
only or SVT+DCH (Fig. A.1).

Category Peak Yield fcont.(%) ffake(%) funcorr.(%) fcomb.(%)
e;SVT 5427 ± 81 1.26 ± 0.44 0.1468 ± 0.0045 3.71 ± 0.48 19.50 ± 0.29
e;DCH 1581 ± 41 2.5 ± 1.1 0.240 ± 0.010 1.19 ± 0.47 11.83 ± 0.37
µ;SVT 5053 ± 78 2.62 ± 0.69 2.352 ± 0.073 3.20 ± 0.53 20.31 ± 0.31
µ;DCH 1517 ± 41 1.08 ± 0.83 3.73 ± 0.16 1.7 ± 1.1 11.14 ± 0.37

220
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Table A.2: Peak yields and fake, continuum and uncorrelated fractions of the peak
yield, and the combinatoric fraction of total events in m(D∗)−m(D0) window for sig-
nal samples (e/µ, opposite-side and on-Resonance) for different D0 modes (Fig. A.2).

Category Peak Yield fcont.(%) ffake(%) funcorr.(%) fcomb.(%)
e;Kπ 2623 ± 53 0.89 ± 0.51 0.1692 ± 0.0063 3.19 ± 0.57 7.02 ± 0.27
e;Kπππ 2219 ± 54 2.47 ± 0.93 0.1531 ± 0.0083 3.34 ± 0.77 28.63 ± 0.50
e;Kππ0 2166 ± 51 1.36 ± 0.75 0.1811 ± 0.0073 2.89 ± 0.68 16.85 ± 0.45
µ;Kπ 2491 ± 52 1.53 ± 0.70 2.657 ± 0.098 2.81 ± 0.80 7.38 ± 0.29
µ;Kπππ 1939 ± 51 3.0 ± 1.3 2.61 ± 0.14 2.71 ± 0.81 30.93 ± 0.54
µ;Kππ0 2139 ± 50 2.5 ± 1.0 2.73 ± 0.11 3.01 ± 0.86 16.10 ± 0.44

Table A.3: Peak yields and fake, continuum and uncorrelated fractions of the peak
yield, and the combinatoric fraction of total events in m(D∗) −m(D0) window for
signal samples (e/µ, opposite-side and on-Resonance) for different tagging categories
(Fig. A.3).

Category Peak Yield fcont.(%) ffake(%) funcorr.(%) fcomb.(%)
e;LTag 783 ± 29 0.0 ± 0.0 0.1711 ± 0.0079 2.41 ± 0.99 8.20 ± 0.57
e;KTag 2565 ± 55 3.00 ± 0.95 0.1693 ± 0.0075 3.61 ± 0.66 17.86 ± 0.40
e;NT1 630 ± 27 1.2 ± 1.2 0.153 ± 0.013 3.7 ± 1.3 14.26 ± 0.76
e;NT2 921 ± 33 1.6 ± 1.1 0.193 ± 0.011 3.1 ± 1.1 20.87 ± 0.72
e;NT3 2108 ± 51 0.39 ± 0.51 0.1580 ± 0.0081 2.68 ± 0.71 20.74 ± 0.46
µ;LTag 746 ± 28 0.0 ± 0.0 2.68 ± 0.12 3.2 ± 1.2 8.34 ± 0.60
µ;KTag 2393 ± 53 2.9 ± 1.1 2.71 ± 0.12 2.95 ± 0.80 18.59 ± 0.42
µ;NT1 545 ± 25 1.3 ± 1.4 2.65 ± 0.23 4.5 ± 1.5 15.09 ± 0.83
µ;NT2 958 ± 34 3.1 ± 1.5 2.77 ± 0.15 3.0 ± 1.7 19.37 ± 0.69
µ;NT3 1928 ± 49 2.2 ± 1.1 2.58 ± 0.13 2.02 ± 0.73 21.76 ± 0.49
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Figure A.1: Signal, and combinatoric and peaking background contributions for the
signal samples. Left: electron sample; right: muon sample. Up: SVT-only; bottom:
SVT+DCH.
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Figure A.2: Signal, and combinatoric and peaking background contributions for the
signal samples. Left: electron sample; right: muon sample. From top to bottom,
D0 → Kπ,D0 → Kπππ, and D0 → Kππ0 modes.
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Figure A.3: Signal, and combinatoric and peaking background contributions for the
signal samples. Left: electron sample; right: muon sample. From top to bottom,
LTag, KTag, NT1, NT2, and NT3 tagging categories.



Appendix B

Additional ∆t-Projection Plots

In this appendix, additional plots that illustrate the performance of the full fit result

to data, especially the background components. Events are selected according to the

signal and background probabilities based on m(D∗)−m(D0) fits. Figure B.1 shows

the ∆t distribution and mixed-unmixed asymmetry for a subsample that are 99.5%

pure combinatoric background events. Figure B.2 shows the same distributions for

a subsample that are 60% pure fake-lepton background events.
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Figure B.1: The ∆t distribution and mixed-unmixed asymmetry for combinatoric
background and the projection of the fit results. The left-hand plots are for unmixed
events and the right-hand plots for mixed events. The bottom plot is the mixed-
unmixed asymmetry. The events plotted here are from a sample of 99.5% pure
combinatoric background events.
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Figure B.2: The ∆t distribution and mixed-unmixed asymmetry for fake-lepton back-
ground and the projection of the fit results. The left-hand plots are for unmixed
events and the right-hand plots for mixed events. The bottom plot is the mixed-
unmixed asymmetry. The events plotted here have an average purity of 60% being
fake-lepton events. The red-dashed curves are the contribution from events that are
not signal (including combinatoric background).



Appendix C

Dalitz Plot Calculation

For a three-body decay M → a+ b+ c, the full kinematics can be described by two

parameters; e.g., the invariant mass of a+b and a+c systems (mab, mac). See, for

example, a review in [9]. The phase space factor is uniform on (mij , mik) plane within

the kinematically allowed range, where i �= j �= k, i �= k. The event distribution in

this plane is called the Dalitz plot. If a fraction of this three-body decay amplitude

comes from a resonance that decays to particles 1 and 2; i.e., M → (ab)+c→ a+b+c,

a peak will show up in a + b invariant mass distribution and a higher-density band

perpendicular tomab axis will show up in the Dalitz plot. By studying the Dalitz plot,

one can extract the fractions of decay amplitudes and phases through resonances.

For the analysis descirbed in this thesis, the known resonance structure on the

Dalitz plot is used to select events within the high density regions in order to increase

signal to background ratios (see Sec. 8.6). In this appendix, I document the formulas

and parameters (based on the E687 experiment at the Fermilab [77]) used to calculate

the expected Dalitz plot density.
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The total amplitude of a three-body decay can be expressed as

Atotal = A0e
iφ0 +

∑
i

Aie
iφiBbwS ,

where the first term represents the non-resonant component, Ai and φi are the ampli-

tude and phase for resonance i, respectively, Bbw is the Breit-Wigner function [101],

and S is an angular correlation function due to the spin of the resonance. In partic-

ular, for a resonance r → a + b, Bbw can be written as

Bbw(a, b|r) =
FDFr

m2
r −m2

ab − iΓmr

,

where mr is the peak of the resonance r, Γ an energy-dependent width, and FD

and Fr are Blatt-Weisskopf peneration factors [102]. The angular functions S are

different for different resonance spin:

S = 1 for spin= 0 ,

S = 2pbpc cos θbc for spin= 1 ,

S = 2p2
bp

2
c(3 cos2 θbc − 1) for spin= 2 ,

where pb and pc are the magnitudes of three-momentum of b and c and θbc is the

angle between �pb and �pc, all measured in the a+b rest frame.

The factors FD and Fr are chosen to be

F ∼ 1 for spin= 0 ,

F ∼ 1√
R2p2

b

for spin= 1 ,

F ∼ 1√
9 + 3R2p2

b +R4p4
b

for spin= 2 ,
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where R = 1.5 GeV−1 is the Blatt and Weiskopf meson radius1.

The energy-dependent width for spin=s is

Γ = Γ0
mr

mab

(
pb

pR
b

)2s+1
F 2

F 2
R

,

where pR
b is the b momentum in the a+b rest frame when mab = mr, and FR is the

F factor when pb is substituted by pR
b .

The parameters used to calculate the Dalitz plot density are taken from the E687

result [77], and are shown in Table C.1. The results presented [77] are in terms of

Table C.1: Parameters used for Dalitz plot calculations.

D0 →K−π+π0

resonance A φ Γ0 (GeV) mr (GeV) spin
K∗0 0.0862 −2◦ 0.0507 0.8961 1
ρ+ 0.1942 0◦ 0.1502 0.7693 1
K∗− 0.0813 162◦ 0.0508 0.8917 1
non-res 0.1784 −122◦ - - -

D0 →K0 π+ π−

resonance A φ Γ0 (GeV) mr (GeV) spin
K∗− 0.1703 0◦ 0.0508 0.8917 1
K∗0 (1430) 0.1222 −166◦ 0.294 1.412 0
ρ0 0.1324 −136◦ 0.1502 0.7693 1
f0(975) 0.0283 38◦ 0.07 0.98 0
f2(1270) 0.6032 −174◦ 0.1851 1.2754 2
f0(1400) 0.1622 −45◦ 0.35 1.4 0

decay fractions, not amplitude A. Here I have normalized the amplitudes so that the

ratio of the integration of the signal intensity for a certain mode to the integration

with all modes combined matches the decay fractions in [77].

1In principle this value should be different for different resonances, but the final result is not
sensitive to the choice of R.



Bibliography

[1] C. Albajar et al., [UA1 Collaboration], “Search for B0 B0 oscillations at

the CERN proton-antiproton collider,” Phys. Lett. B 186, 247–254 (1991),

[Erratum: ibid B197, 565 (1987)].

[2] H. Albrecht et al., [ARGUS Collaboration], “Observation of B0-B0 mixing,”

Phys. Lett. B 192, 245 (1987).

[3] N. Cabibbo, “Unitary symmetry and leptonic decays,” Phys. Rev. Lett. 10,

531–532 (1963).

[4] M. Kobayashi and T. Maskawa, “CP violation in the renormalizable theory of

weak interaction,” Prog. Th. Phys. 49, 652–657 (1973).

[5] M. Neubert and C. T. Sachrajda, “Spectator effects in inclusive decays of

beauty hadrons,” Nucl. Phys. B 483, 339 (1997).

[6] K. Hagiwara et al., [Particle Data Group Collaboration], “Review of par-

ticle physics,” Phys. Rev. D 66, 010001+ (2002).

[7] “The BABAR collaboration, letter of intent for the study of CP violation and

heavy flavor physics at PEP-II,” Technical Report (1994). SLAC-443.

[8] “PEP-II: An asymmetric B factory, conceptual design report,” Technical Re-

port (1993). SLAC-418, LBL-5379.

231



232 BIBLIOGRAPHY

[9] D. Groom et al., [Particle Data Group Collaboration], “Review of parti-

cle physics,” Eur. Phys. Jour. C 15, 1+ (2000).

[10] E. Noether, Nachr. Kgl. Ges. Wiss. Gottingen page 235 (1918).

[11] Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579

(1961).

[12] S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).

[13] A. Salam, “Elementary particle theory: relativistic groups and analyticity,”

Nobel Symposium 8, 367 (1968).

[14] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys.

Lett. 12, 132 (1964).

[15] L. Wolfenstein, “Parameterization of the Kobayashi-Maskawa matrix,” Phys.

Rev. Lett. 51, 1945 (1983).

[16] L. Schiff, Quantum Mechanics, McGraw-Hill, New York, 3rd edition (1955).

[17] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson,

“Experimental test of parity conservation in beta decay,” Phys. Rev. 105,

1413–1414 (1957).

[18] J. H. Christenson et al., “Evidence for the 2 π decay of the K0
2 meson,” Phys.

Rev. Lett. 13, 138 (1964).

[19] B. Aubert et al., [BABAR Collaboration], “Observation of CP violation in

the B0 meson system,” Phys. Rev. Lett. 87, 091801 (2001).

[20] K. Abe et al., [Belle Collaboration], “Observation of large CP violation

in the neutral B meson system,” Phys. Rev. Lett. 87, 091802 (2001).



BIBLIOGRAPHY 233

[21] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,

Addison-Wesley (1995). Reading, USA. 842 p.

[22] C. Jarlskog, “Phenomenology of CP violation,” (1988). Based on lectures given

at Int. Meeting on Fundamental Physics, CP Nonconservation and B Physics,

Peniscola, Spain, Apr. 25–29.

[23] V. F. Weisskopf and E. P. Wigner, “Calculation of the natural brightness of

spectral lines on the basis of Dirac’s theory,” Z. Phys. 63, 54 (1930).

[24] L. Wolfenstein, “Violation of CP invariance and the possibility of very weak

interactions,” Phys. Rev. Lett. 13, 562 (1964).

[25] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, “Weak decays beyond

leading logarithms,” Rev. Mod. Phys. 68, 1125 (1996).

[26] L. Lellouch and C. J. D. Lin, [UKQCD Collaboration], “Standard Model ma-

trix elements for neutral B meson mixing and associated decay constants,”

Phys. Rev. D 64, 094501 (2001), hep-ph/0011086, Revised Feb 2002.

[27] A. Ali Khan et al., “B meson decay constant from two-flavor lattice QCD with

non-relativistic heavy quarks,” Phys. Rev. D 64, 054504 (2001).

[28] A. S. Kronfeld and S. M. Ryan, “Remark on the theoretical uncertainty in

B0-B0 mixing,” submitted to Phys. Rev. Lett. (2002), hep-ph/0206058.

[29] W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716–

722 (1940).

[30] E. Fernandez et al., [MAC Collaboration], “Lifetime of particles containing

b quarks,” Phys. Rev. Lett. 51, 1022 (1983).



234 BIBLIOGRAPHY

[31] N. Lockyer et al., [Mark II Collaboration], “Meausrement of the lifetime

of bottom hadrons,” Phys. Rev. Lett. 51, 1316 (1983).

[32] I. I. Bigi, N. G. Uraltsev, and A. I. Vainshtein, “Nonperturbative corrections

to inclusive beauty and charm decays: QCD versus phenomenological models,”

Phys. Lett. B 297, 477 (1993).

[33] A. V. Manohar and M. B. Wise, “Inclusive semileptonic B and polarized Λb

decays from QCD,” Phys. Rev. D 49, 1310 (1994).

[34] M. Neubert, “A fresh look at the B semileptonic branching ratio and beauty

lifetimes,” (1996), hep-ph/9605256.

[35] E. Richter-Was, “QED bremsstrahlung in semileptonic B and leptonic tau

decays,” Phys. Lett. B 303, 163 (1993).

[36] M. Neubert, “Heavy quark symmetry,” Phys. Rep. 245, 259 (1994), and refer-

ences there in.

[37] B. Barish et al., [CLEO Collaboration], “Measurement of the B0 → D∗+�−ν�

branching fractions and |Vcb|,” Phys. Rev. D 51, 1014 (1995).

[38] D. Buskulic et al., [ALEPH Collaboration], “Observation of the time depen-

dence of B0-B0 mixing,” Phys. Lett. B 313, 498 (1993).

[39] H. Albrecht et al., [ARGUS Collaboration], “A New determination of the

B0-B0 oscillation strength,” Z. Phys. C 55, 357 (1992).

[40] H. Albrecht et al., [ARGUS Collaboration], “A Study of B0 → D∗+�−ν�

and B0-B0 mixing using partial D∗+ reconstruction,” Phys. Lett. B 324, 249

(1994).



BIBLIOGRAPHY 235

[41] J. Bartelt et al., [CLEO Collaboration], “Two measurements of B0-B0 mix-

ing,” Phys. Rev. Lett. 71, 1680 (1993).

[42] B. H. Behrens et al., [CLEO Collaboration], “Precise measurement of B0-B0

mixing parameters at the Υ(4S),” Phys. Lett. B 490, 36 (2000).

[43] D. Decamp et al., [ALEPH Collaboration], “ALEPH: a detector for electron-

positron annihilations at LEP,” Nucl. Instr. Meth. A 303, 393 (1991).

[44] K. Ahmet et al., [OPAL Collaboration], “The OPAL detector at LEP,” Nucl.

Instr. Meth. A 305, 275 (1991).

[45] P. A. Aarnio et al., [DELPHI Collaboration], “The DELPHI detector at

LEP,” Nucl. Instr. Meth. A 303, 233 (1991).

[46] A. K et al., [SLD Collaboration], “Precise measurement of the left-right

cross-section asymmetry in Z boson production by e+e− collisions,” Phys. Rev.

Lett. 73, 25 (1994).

[47] A. E. Bondar et al., [Belle Collaboration], “KEKB performance,” Nucl.

Instr. Meth. A 462, 139 (2001).

[48] F. Abe et al., [CDF Collaboration], “The CDF detector: an overview,” Nucl.

Instr. Meth. A 271, 387 (1988).

[49] K. Ackerstaff et al., [OPAL Collaboration], “Investigation of CP violation

in B0 → J/ψKS
0 decays at LEP,” Eur. Phys. Jour. C 5, 379 (1998).

[50] J. Thom, [SLD Collaboration], “Search for Bs-Bs oscillations with a charge

dipole technique at SLD,” (2002), SLAC-R-585.

[51] H. G. Moser and A. Roussarie, “Mathematical methods for B0-B0 oscillation

analyses,” Nucl. Instr. Meth. A 384, 491 (1997).



236 BIBLIOGRAPHY

[52] [DELPHI Collaboration], “A precise measurement of the B+, B0 mesons and

mean b-hadron with the DELPHI detector at LEP I,” July 2002, paper con-

tributed to the International Conference ICHEP 2002 July 24–31, Amsterdam,

Holland.

[53] G. Abbiendi et al., [OPAL Collaboration], “Measurement of the B0 lifetime

and oscillation frequency using B0 → D∗+�−ν� decays,” Phys. Lett. B 493,

266 (2000).

[54] [SLD Collaboration], “Measurements of the B+ and B0 lifetimes using topo-

logical vertexing at SLD,” July 1999, paper contributed to the international

conference, EPS-HEP 99, July 15–21, 1999, Tampere, Finland, SLAC-PUB-

8206.

[55] B. Aubert et al., [BABAR Collaboration], “Measurement of the B0 and B+

meson lifetimes with fully reconstructed hadronic final states,” Phys. Rev. Lett.

87, 201803 (2001), hep-ex/0107019.

[56] K. Abe et al., [BELLE Collaboration], “Precise measurement of B meson

lifetimes with hadronic decay final states,” Phys. Rev. Lett. 88, 171801 (2002),

hep-ex/0202009.

[57] B. Aubert et al., [BABAR Collaboration], “The BABAR detector,” Nucl. Instr.

Meth. A 479, 1–116 (2002), hep-ex/0105044.

[58] J. Seeman et al., “Status report on PEP-II performance,” (2000), Proceedings

of the IEEE Particle Accelerator Conference (EPAC 2000), Vienna, Austria.

[59] M. Sullivan, “B-factory interaction region designs,” (1997), Proceedings of the

IEEE Particle Accelerator Conference (PAC 1997), Vancouver, B.C., Canada,

SLAC-PUB-7563.



BIBLIOGRAPHY 237

[60] T. I. Meyer, “PIN photodiodes for radiation monitoring and protection in the

BABAR Silicon Vertex Tracker,” (2000), Proceedings of the Meetings of the

Division of Particles and Fields of the American Physical Society (DPF 2000),

Columbus, OH, USA (2000), SLAC-PUB-8651.

[61] C. Hearty, [BABAR Collaboration], “Measurement of the number of Υ(4S)

mesons produced in run 1 (B counting),” BABAR Analysis Document 134,

v.01 (2001).

[62] Sun Ultra 5, with single 333 MHz UltraSPARC-IIi CPUs and 512 Mbytes of

RAM, Sun Microsystems, Inc. Palo Alto, CA, USA.

[63] P. Billoir, “Track fitting with multiple scattering: a new method,” Nucl. Instr.

Meth. A 225, 352 (1984).

[64] U. Langenegger et al., [BABAR Collaboration], “Cut-based electron identifi-

cation,” BABAR Analysis Document 90, v.03 (2000).

[65] A. Drescher et al., “Calibration and monitoring of the Argus shower counters,”

Nucl. Instr. Meth. A 237, 464 (1985).

[66] R. Sinkus and T. Voss, “Particle identification with neural networks using a

rotational invariant moment representation,” Nucl. Instr. Meth. A 391, 360

(1997).

[67] F. Fabozzi et al., [BABAR Collaboration], “Muon identification in the BABAR

experiment,” BABAR Analysis Document 60, v.01 (2000).

[68] S. M. Spanier and G. Mancinelli, [BABAR Collaboration], “Kaon selection at

BABAR,” BABAR Analysis Document 116 (2001).



238 BIBLIOGRAPHY

[69] F. Martinez-Vidal and M. Carpinelli, [BABAR Collaboration], “The BABAR

vertexing,” BABAR Analysis Document 102, v.06 (2001).

[70] F. Martinez-Vidal et al., [BABAR Collaboration], “Vertexing and data quality

studies for analyses using fully reconstructed B events are described in this sup-

porting document for summer 2001 conferences,” BABAR Analysis Document

254, v.01 (2001).

[71] B. Aubert et al., [BABAR Collaboration], “A study of time dependent CP -

violating asymmetries and flavor oscillations in neutral B decays at the Υ(4S),”

(2002), hep-ex/0201020, Submitted to Phys. Rev. D .

[72] J. Beringer and D. Payne, [BABAR Collaboration], “B tagging in BABAR:

status for the sin 2β winter conference results,” BABAR Analysis Document

119, v.04 (2001).

[73] A. Snyder, “Dilution Resolution Correlation Explained,” Ver-

texing and Composition Tools HyperNews September 2001,

http://babar-hn.slac.stanford.edu:5090/HyperNews/get/VertexTools/

227.html, (and others in same thread).

[74] C. Boros and Z. Liang, “Spin content of Lambda and its longitudinal polariza-

tion in e+e− annihilation at high energies,” Phys. Rev. D 57, 4491 (1998).

[75] A. L. and other, [BABAR Collaboration], “Studies on π0 reconstruction: sta-

tus report,” BABAR Analysis Document 20, v.03 (2000).

[76] J. C. Anjos et al., [E691 Collaboration], “A Dalitz plot analysis of D →
Kππ decays,” Phys. Rev. D 48, 56 (1993).

[77] P. L. Frabetti et al., [E687 Collaboration], “Analysis of three D → Kππ

Dalitz plots,” Phys. Lett. B 331, 217–226 (1994).



BIBLIOGRAPHY 239

[78] R. H. Dalitz, Phil. Mag. 44, 1068 (1953).

[79] G. Raven, “D∗-D0 vertexing in B → D∗�ν� events,” September 2000,

http://www.slac.stanford.edu/BFROOT/www/Organization/CollabMtgs/

2000/detSep2000/Thu3a/raven.ps, Presented at the BABAR Collaboration

Meeting.

[80] P. Avery, “Directly determining lifetime using a 3-D Fit,” (1999),

http://www.phys.ufl.edu/∼avery/fitting/lifetime.ps.

[81] F. Martinez-Vidal and M. Carpinelli, [BABAR Collaboration], “Vertexing per-

formances and systematic checks with fully reconstructed B events,” BABAR

Analysis Document 130, v.04 (2001).

[82] W. Verkerke and D. Kirkby, “RooFit toolkit for data modelling,”

(2002), http://www.slac.stanford.edu/BFROOT/www/Computing/Offline/

ROOT/RooFit/.

[83] D. Kirkby et al., [BABAR Collaboration], “A user’s guide to the RooFitTools

package for unbinned maximum likelihood fitting,” BABAR Analysis Document

18 (2000).

[84] D. Kirkby and W. Verkerke, [BABAR Collaboration], “Core design of analysis

modeling tools for ROOT,” .

[85] R. Brun and F. Rademakers, “ROOT: An object-oriented data analysis frame-

work,” Nucl. Instr. Meth. A 389, 81 (1997).

[86] F. James et al., “MINUIT: Function minimization and error analysis,” (1998),

http://wwwinfo.cern.ch/asdoc/minuit/, CERN Program Library Long

Writeup D506.



240 BIBLIOGRAPHY

[87] C.-H. Cheng, “Status of lifetime and mixing with the semileptonic sample,”

June 2001, http://www.slac.stanford.edu/BFROOT/www/Organization/

CollabMtgs/2001/detJun2001/Tues4a/cheng.pdf, Presentation at the

BABAR Collaboration meeting.

[88] R. Cahn, B0-B0 Mixing Analysis HyperNews January 2002,

http://babar-hn.slac.stanford.edu:5090/HyperNews/get/Bmixing/330/

2/1.html.

[89] W. Dunwoodie et al., [BABAR Collaboration], “Study of Material Interactions

with Gamma Conversions and Protons,” .

[90] O. Leroy et al., [LEP B Lifetimes Working Group Collaboration],

“Averages for Amsterdam, ICHEP 2002,” July 2002,

http://lepbosc.web.cern.ch/LEPBOSC/, and references therein.

[91] B. Aubert et al., [BABAR Collaboration], “Measurement of B0-B0 flavor

oscillations in hadronic B0 decays,” Phys. Rev. Lett. 88, 221802 (2002),

hep-ex/0112044.

[92] B. Aubert et al., [BABAR Collaboration], “Measurement of the B0-B0 oscil-

lation frequency with inclusive dilepton events,” Phys. Rev. Lett. 88, 221803

(2002), hep-ex/0112045.

[93] B. Aubert et al., [BABAR Collaboration], “Simultaneous measurement of B0

meson lifetime and mixing frequency with B0 → D∗−�+ν� decays,” (2002),

hep-ex/0207071, Contributed to the 31st International Conference on High

Energy Physics, Amsterdam, The Netherlands.

[94] T. Tomura et al., [Belle Collaboration], “Measurement of the oscillation

frequency for B0-B0 mixing using hadronic B0 decays,” hep-ex/0207022.



BIBLIOGRAPHY 241

[95] K. Hara et al., [Belle Collaboration], “Mesurement of the B0-B0 mixing

parameter ∆md using semileptonic B0 decays,” hep-ex/0207045.

[96] K. Abe et al., [Belle Collaboration], “Measurement of B0-B0 mixing rate

with B0(B0) → D∗∓π± partial reconstruction,” BELLE-CONF-0204.

[97] K. Abe et al., [Belle Collaboration], “Measurement of B/d0 - anti-B/d0

mixing rate from the time evolution of dilepton events at the Upsilon(4S),”

Phys. Rev. Lett. 86, 3228–3232 (2001), hep-ex/0011090.

[98] L. Di Ciaccio et al., [LEP B Oscillations Working Group

Collaboration], “Averages for Summer 2002,” July 2002,

http://lepbosc.web.cern.ch/LEPBOSC/lifetimes/lepblife.html, and

references therein.

[99] B. Aubert et al., [BABAR Collaboration], “Measurement of the B0 lifetime

with partially reconstructed B0 → D∗+�−ν� decays,” Phys. Rev. Lett. 89,

011802 (2002), hep-ex/0202005.

[100] D. Kirkby and R. Cahn, [BABAR Collaboration], “A general model for neutral

B decay time distributions,” BABAR Analysis Document 188, v.05 (2002).

[101] J. D. Jackson, “Remarks on the phenomenological analysis of resonances,”

Nuovo Cim. 34, 1644 (1964).

[102] B. J. M. and W. V.F., Theoretical Nuclear Physics, John Wiley & Sons, New

York (1952).


	slac-r-645-Frontmatter.pdf
	slac-r-645-ch01.pdf
	slac-r-645-ch02.pdf
	slac-r-645-ch03.pdf
	slac-r-645-ch04.pdf
	slac-r-645-ch05.pdf
	slac-r-645-ch06.pdf
	slac-r-645-ch07.pdf
	slac-r-645-ch08.pdf
	slac-r-645-ch09.pdf
	slac-r-645-ch10.pdf
	slac-r-645-ch11.pdf
	slac-r-645-ch12.pdf
	slac-r-645-zAppendix.pdf
	slac-r-645-zBibliography.pdf



