

XVIII International Linac Conference Geneva, Switzerland 26-30 August, 1996

CERN/PS 96-32 (DI)

Compendium of Scientific Linacs

J. Clendenin*, L. Rinolfi, K. Takata**, D.J. Warner

*SLAC, Stanford, USA **KEK, Tsukuba, Japan

CERN – PS Division European Organization for Nuclear Research Switzerland November 1996

Foreword

The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose.

Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium.

Each linac found in our research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, material physics, free electron lasers or synchrotron light machines.

Linear accelerators are developed in three continents only : America, Asia, Europe. This geographical distribution is kept as a basis.

The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

In spite of all the care we took to compile all world linacs existing or under development, some are probably missing. The reason is either a lack of information or the fact that no answer was received from the institute.

Many thanks to all persons in the various laboratories who supplied the data about their linacs. We hope that this Compendium will be a useful tool for the Linac community.

L. Rinolfi

Committee and Contributors for the 1996 Compendium

The members of the sub-committee who produced this Compendium are the following :

J. Clendenin (SLAC) L. Rinolfi (CERN) - Chairman K. Takata (KEK) D.J. Warner (CERN)

Y. Yamazaki (KEK) contributed by collecting data from Asian linacs and made useful comments.

S.L. Neboux provided great help using the WWW to obtain information about various linacs and organizing the secretariat. Last but not least, she installed and updated the Compendium on the World-Wide Web.

E. Bryant, T. Kehrer and A. Rogerson have handled the secretarial work in an efficient and enthusiastic way. The clarity of the typing and the efficiency to correct the mistakes have been appreciated. During the elaboration of the Compendium, they kept smiling and that participated to its success.

H. Haseroth, Chairman of the International Committee, proposed the compilation of a Compendium of linacs for this conference.

D. Dekkers, Chairman of the Local Organizing Committee and B. Allardyce made useful comments to finalize the catalogue.

Summary

This compendium comprises 176 scientific linacs distributed over 3 continents :

Americas	:	61
Asia	:	37
Europe	:	78

Altogether the breakdown for the types of particles is the following :

Electrons	:	111
Positrons	:	12
Protons/H ⁻	:	23
Ions	:	30

The lists, without technical details, are published on the World-Wide Web. The address is the following :

http://www.cern.ch/Linac96/Linacs.html

Table of Contents

AMERICA, NORTH AND SOUTH

LOCATION	INSTITUTION	LINACS	FUNCTION	Page
RGENTINA				
Bariloche	Centro Atómico Bariloche	e- : 25 MeV	Pulsed Neutron Source	3
BRAZIL				1.
Campinas		e- : 100 MeV	Injector for LNLS Storage ring	4
São José dos Campos	СТА	e-: 30 MeV	Neutron production and research	5
CANADA				
		e- : 310 MeV	Subatomic physics research	6
Vancouver	TRIUMF	ions : 1.5 MeV/u (ISAC)	Ion accelerator	7
USA				
CALIFORNIA				
Berkeley	LBNL	e- : 50 MeV	ALS Injector	8
		e- : 4 MeV (RTA)	Power source for LC	9
Livermore	LLNL	e- : 165 MeV	e+ production and research	10
		e- : 19 MeV (FXR)	X-ray production	11
		e- : 6 MeV (ETA II)	Radiography development	12
		e- : 5 MeV (AXF-0)	Inj. for FEL + Laser Acc. Exp.	13
Los Angeles	UCLA	e- : 15 MeV (SATURNUS)	Beam Physics Studies	14
Monterey		e- : 100 MeV	Education and research	15
Stanford		e-/e+ : 52 GeV (SLC)	Linear collider	16/17
		e- : 15 GeV (LCLS)	X-ray FEL	18
		e- : 630 MeV (NLCTA)	Test facility for LC	19
	SSRL	e- : 120 MeV	Injector for SPEAR	20
	Stanford University	e- : 50 MeV (SCA)	FEL	21
	SPFELC (Stanford University)		Research sub picosecond	22
FLORIDA		,	-	
	Florida State University	ions : 10 MeV/u	Booster linac	23
	Florida State University			
IDAHO			Neutron source	24
	Idaho State University	p : 2 MeV	Neuron source	1 27
ILLINOIS		(A DC intestor	25/2
Argonne	ANL	e- /e+ : 200/450 MeV	APS injector	23/20
		e- : 22 MeV	Radiation chemistry	28
		e- : 18 MeV (AWA)	Wakefield R&D	E
		H- : 50 MeV	IPNS injector	29
		ions : 20 MeV/u (ATLAS)	Nuclear physics research	30
Batavia	FNAL	H-: 400 MeV	Injector for Booster	31
INDIANA				
Bloomington	University of Indiana	H-:7 MeV	Injector for synchrotron	32
Notre Dame	University of Notre Dame	e- : 10 MeV	Radiation chemistry	33
KANSAS				
	Kansas State University	ions : 5 MeV/u	Booster accelerator	34
LOUISIANA				
Baton Rouge		e- : 200 MeV	Injector for synchrotron	35
MARYLAND		1		
	University of Maryland	e- : 9 MeV	Research	36
Gaithersburg		e- : 32 MeV (MIRF)	Physics research	37
MASSACHUSETTS			l l	
•	MIT/Bates	e- : 1 GeV	Research	38
	MIT/NED	ions : 0.9 MeV/u	Neutron radiography	39
NEW MEXICO				
	e Sandia National Laboratories	ions: 1.9 MeV/u	Post accelerator	40
Los Alamo		e-: 30 MeV (PHERMEX)	Flash radiography	41
		e-: 20 MeV (AFEL)	FEL experiments	42
		e- : 20 MeV (DARHT)	X-ray pulse for radiography	43
		e- : 6 MeV (ITS)	Prototype for DARHT	44
		1 .	Plasma interaction	45
		le-: 8 MeV (EUVL)		1
		e- : 8 MeV (EUVL) n : 20 MeV (LEDA)	Technology	46
		p : 20 MeV (LEDA)	Technology H- for p storage ring	46
			Technology H- for p storage ring Proton, deutron acceleration	

LOCATION	INSTITUTION	LINACS	FUNCTION	Page
NEW YORK				
Ithaca	Cornell University	e- /e+: 350/200 MeV	CESR Injector	50/51
Stony Brook	University of New York	ions : 12 MeV/u	Atomic physics	52
Troy	RPI	e- : 90 MeV	Research experiments	53
Upton	BNL	e- : 120 MeV	NSLS injector	54
		c- : 70 MeV (ATF)	Accelerator physics	55
		H- : 200 MeV	AGS injector	56
NORTH CAROLINA				
Durham	Duke University	e- : 295 MeV	Injector of storage ring	57
		e- : 45 MeV	MKIII FEL Injector	58
TENNESSEE				
Oak Ridge	ORNL	e- : 178 MeV (ORELA)	Nuclear physics	59
VIRGINIA				
Newport News	CEBAF	e- : 4 GeV	Nuclear physics	60
WASHINGTON				
Seattle	Boeing	e- : 100 MeV	FEL	61
		e- : 25 MeV	Injector for 100 MeV linac	62
	University of Washington	ions : 15 MeV/u	Post accelerator	63

ASIA

LOCATION	INSTITUTION	LINACS	FUNCTION	Page
CHINA	· · · · · · · · · · · · · · · · · · ·			
Beijing	IHEP	e-/e+ : 1.8/1.6 GeV	Injector for BEPC	67/68
		e- : 30 MeV	FEL Driver	69
		p : 35 MeV	Proton beam application	70
Hefei	HLS	e- : 225 MeV	Injector for Light Source	71
JAPAN				1
Hirakata, Osaka		e- : 165 MeV	FEL	72
Ibaraki, Osaka	ISIR, Osaka University	e- : 150 MeV (S-Band)	Scientific research	73
		e- : 38 MeV (L-Band)	Scientific research	74
Inage-ku,Chiba	NIRS	ions : 6 MeV/u	Injector for HIMAC	75
Kamigori, Hyogo	SPring-8	e-/e+: 1.15/0.9 GeV	Injector for SPring-8	76/77
	Sumitomo Electric	e- : 120 MeV	Injector for NIJI-III and FEL	78
Kita-ku, Sapporo	Hokkaido University	e- : 45 MeV	Atomic Science	79
Oarai-Machi, Ibaraki	PNC-OEC	e- : 10 MeV	Transmutation	80
	KURRI, Kyoto University	e- : 46 MeV	Neutron source, X-ray, e+ prod.	81
Taihaku-ku, Sendai	Tohoku University	e- : 300 MeV	Nuclear physics	82
Tanashi, Tokyo	INS, University of Tokyo	e- : 15 MeV	Injector for INS synchrotron	83
		ions: 1 MeV/u	ISOL post accelerator	84
Tokai, Ibaraki	JAERI	e- : 23 MeV (SCARLET)	FEL	85
		p: 2 MeV RFQ	Beam test	86
		ions : 30 MeV/u	Booster linac	87
	NERL, University of Tokyo	e- : 35 MeV	Radiation Physics	88
Tokyo	RLNR	ions : 3.4 MeV/u (TIT-IH-2)	Booster Linac Heavy Ion Acc.	89
		ions : 2.4 MeV/u (TIT-IH)	Main Linac Heavy Ion Acc.	90
		ions : 1.7 MeV/u (Deuteron IH Linac)	Radio-isotope Prod. for PET	91
		ions : 0.22 MeV/u (TIT-RFQ)	Plasma experiment	92
Tsukuba, Ibaraki	KEK	e-/e+ : 3 GeV	Injector for PF and TRISTAN	93/94
		e- : 2 GeV	Inj. linac for ATF Damping Ring	95
		p : 40 MeV	Injector for synchrotron	96
		H- : 5 MeV	Test facility for JHP	97
	ETL	e- : 0.5 GeV (TELL)	Injector for 3 SR rings	98
Uji, Kyoto	ICR, Kyoto University	e- : 100 MeV	Injector for KSR	99
		p:7 MeV	Accel. development	100
Wako, Saitama	IPCR (RIKEN)	ions : 3 MeV/u (RILAC)	Basic research	101
KOREA]
	PAL (POSTECH)	e- : 2.0 GeV	Injector PLS	102
TAIWAN]
Hsinchu	SRRC	e- : 50 MeV	Injector for 1.3 GeV storage ring	103

EUROPE

LOCATION	INSTITUTION	LINACS	FUNCTION	Page
ARMENIA	was the state of			
Yerevan	Physics Institute	e-: 10 GeV (U-006)	Applied Research	107
		e-: 0.120 GeV	High-current inj. for YerPHI Syn.	108
		e-: 0.075 GeV	Injector for YerPHI Synchrotron	109
		e-: 0.008 GeV (LAE-8)	Irr. of material + rad. techn.	110
		e-: 0.005 GeV (U-003)	Applied Research	111
		e-: 0.004 GeV (LAE-4)	Irr. of material + sterilization	112
BELGIUM	m) () (Noutron and rediction physics	113
	IRMM	e-: 200 MeV (GELINA)	Neutron and radiation physics	
	Gent University	e- : 15 MeV	Interdisciplinary research	
FRANCE				114
Le Barp	CEA-CESTA	e-: 8 MeV (PIVAIR)	X-ray radiography	115
		e-: 3 MeV (LELIA)	FEL	110
Bruyères-le-Châtel		e- : 20 MeV (ELSA)	FEL, R&D	117
Grenoble		e- : 200 MeV	Injector for Synch. Rad. Fac.	118
Orsay	CNRS-LURE	e-: 2.3 GeV	Physics experiments	119
		e-/e+ : 1 /1.4 GeV	Injector for Super-ACO	120/1
		e-/e+ : 340/350 MeV (EPLUS)	Injector for SOLEIL	122/1
		e- :100 MeV (ELIOS)	Injector for SOLEIL	12
i		e- : 70 MeV (FEL-CLIO)	Injector for FEL	12
	LAL	e- : 100 MeV (NEPAL)	High gradient accelerators	12
		e- : 3 MeV (CANDELA)	Test facility for linear collider	12
Saclay	CEA	e- : 20 MeV (MACSE)	Test facility for SC linacs	12
GERMANY				
Berlin	HMI	e- : 15 MeV	Radiography	12
		ions : 0.36 MeV/u (RQ13)	Ion injector	13
Bonn	Bonn University	e- : 20 MeV (Linac I)	Injector for ELSA booster	13
		e- : 30 MeV (Linac II)	Injector for ELSA booster	13
Darmstadt	GSI	ions : 1.4 MeV/u (Linac I)	Heavy ion injector for UNILAC	13
		ions : 1.4 MeV/u (Linac II)	Heavy ion injector for UNILAC	13
		ions : 15 MeV/u (Linac III)	Synchr. injector, physics exp.	13
	IKP	e- : 130 MeV (S-DALINAC)	Nuclear physics + FEL driver	13
Dortmund	University of Dortmund	e- : 100 MeV (DELTA)	Inj. for 1.5 GeV SR	13
Hamburg	-	e-/e+ : 900/550 MeV (LINAC II)	Injector for PIA	138/
		e- : 600 MeV (TTF)	Test facility for linear collider	14
		e- : 450 MeV (SBTF)	Test facility for linear collider	14
		H-: 50 MeV (LINAC III)	Injector for DESY III	14
Heidelberø	Max Planck Institüt	ions : 13 MeV/u	Atomic physics	14
		ions : 2 MeV/u	Atomic physics	14
Mainz	Kernphysik Institüt	e- : 3.5 MeV	Injector for RTM (MAMI)	14
	Technical University	ions : 6 MeV/u	Post-accelerator	14
ITALY				1
	INFN-LNF	e-/ e+ : 800/550 MeV	Injector for Dafne	147/
Legnaro		ions : 20 MeV/u (ALPI)	Heavy ion linac	14
	Sincrotrone Trieste	e- : 0.1 GeV (ELETTRA)	Preinjector	15
110300		e- : 1.2 GeV (ELETTRA)	Injector for ELETTRA	15
NETHERLANDS				1
Amsterdam	NIKHEE	e- : 800 MeV (MEA)	Injector for AmPS	15
Nieuwegein		e-: 45 MeV (FELIX)	FEL	15
	Twente University	e-: 7 MeV (TEUFEL)	FEL	15
	a nonce on relaty			
POLAND				1

LOCATION	INSTITUTION	LINACS	FUNCTION	Page
RUSSIA				
Dubna	JINR	ions : 5 MeV/u (LU-20)	Injector for nuclotron	156
Moscow	INP	e- : 11 MeV	Nuclear physics	157
	INR	p : 600 MeV (MMFL)	Nuclear physics	158
	ITEP	p : 36 MeV (ISTRA-36)	Test facility	159
		ions : 24.6 MeV (I-2)	Injector for PS	160
		ions : 0.036 MeV/u (TIPr-1)	Ion fusion	161
	Kurchatov Institute	e-: 60 MeV (FAKEL)	Research	162
Novosibirsk	BINP	e-/e+ : 510 MeV (VEPP-5)	Injector for Fi-factory	163/164
Protvino	IHEP	p : 100 MeV (I-100)	Fixed target	165
		p : 30 MeV (URAL-30)	Injector for synchrotron	166
Sarov	RFNC-VNIIEF	e- : 75 MeV (LU-50)	Neutron spectrometry	167
		e-: 10 MeV (LU-10-20)	Radiation technologies	168
SPAIN				
Barcelona	Synchrotron Laboratory	e- : 2.5 GeV	Injector for SR	169
SWITZERLAND				
Geneva	CERN	e-/e+ : 750/650 MeV (LIL)	Pre-injector for LEP	170/171
		e- : 320 MeV (CTF)	Test facility for linear collider	172
		p : 50 MeV (Linac 2)	Injector for PS	173
		H- : 1.85 MeV	Calibration	174
		ions: 4.2 MeV/u (Linac 3)	Injector for PSB	175
UKRAINE				
Kharkov	KPTI	e- : 2 GeV (LUE-2000)	Fixed target experiments	176
		e- : 60 MeV (LUE-60)	Injector for SRS	177
		e- : 40 MeV (LUE-40)	Fixed target experiments	178
		e- : 20 MeV (LIC)	Experimental facility	179
		p : 22 MeV (KMTA)	Nuclear physics	180
		ions: 8.5 MeV/u (MILAC)	Heavy ion accelerator	181
		ions: 1.6 MeV/u (MLUD-3)	Neutron generator	182
UNITED KINGDOM				7
Chilton		H-: 70 MeV (ISIS)	Injector for synchrotron	183
Daresbury	the second se	e- : 15 MeV (SRS)	Injector for SRS booster	184
LINEAR COLLIDER S	STUDIES			185

AMERICA (North & South)

Name of Linac	: Linac
Function	: Electron Linac - Pulsed Source of Neutrons
Institution and address	: Centro Atómico Bariloche - Bariloche - Argentina
Person in charge	: Dr. Rolando Granada
Name of person supplying these data	: Dr. Rolando Granada
	e-mail: granada@cab.cnea.edu.ar
	tel. : + 54 944 45223 fax : + 54 944 45299

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1964	; first beam : 1969	
Present status : O	Dperating	
Cost of facility :		
Present linac staff : 2	man-years	
Present yearly operation	on time : 900 l	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inte	nsity (peak)	:		0.15	Α
Normalize	ed emittance (1	σ):		π mn	n-mrad

Injector

Injector		
Longitudinal mat	ching : Pre-Buncher	
Output :	MeV; intensity :	Α
Pulse width, space	cing : $1.2 \mu s$, $10 ms$	
Normalized emit	tance (1σ) :	π mm-mrad

Acceleration System

Total linac length	:	6		m
No. sections : 1	;1	lengths :	3	m
Field mode : $2\pi/3$; 1	frequency :	2856	6 GHz
Wave type : TW	; 1	filling time :	0.83	μs
v_o/c range : (1)	;(Q :	150	00
Shunt impedance	:	53-0	50	MΩ/m
Iris : aperture : diameter	:	19.2-2	26.7	mm
thickness	:	5.8	3	mm
Attenuation/section	:	0.5	7	Np
Power units, Number :	1	type :	Klys	tron
	M	W; mean :	2.6	kW

Focusing System

Type, No. of elements, and spacing : On the injector and on the beam transport system. None on the WG

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: NA
No. of particles/bunch	: NA
Bunch separation	: NA

Final energy Accel gradient $\Delta E/E$ (FWHM) Rep. rate Pulse length Beam intensity		Normal Operation 0.025 8.3 5 100 1.2 0.020	Max, or Design	GeV MeV/m % Hz µs A
Norm. emit. (10)	:			π mm-mrad

(1)
$$v_g / c = 0.02 - 0.0065$$

Name of Linac :	LNLS *	
Function :	Storage ring injector	
Institution and address	LNLS - CX Postal 6192, Campinas,	Brazil
Person in charge	Lucia C. Jahnel	
Name of person supplying these data :	Lucia C. Jahnel	
	e-mail: Lucia@LNLS.ANSP.BR	
	tel. : + 55 19 257 4520	fax : +55 19 257 4632

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	7	; first beam : 12/1987	
Present status :	(1)	Commissioning	
Cost of facility :	35	MUSD	
Present linac staff :			
Present yearly operation	tion	time :	h

		Normal Operation	Max, or Design	
Final energy	:	> 0.1	0.10	GeV
Accel gradient	:	10	10	MeV/m
$\Delta E/E$ (FWHM)	:		1	%
Rep. rate	:	15	15	Hz
Pulse length	:	0.1	0.1	μs
Beam intensity	:		0.100	Α
Norm. emit. (10)	:		77 × 10 ⁻⁴	π mm-mrad

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inte	nsity (peak)	:		2	Α
Normalize	ed emittance (10):	40	π mr	n-mrad

Injector

Longitudi	nal mate	hing : Pr	e buncher (no	bunche	り	
Output :	0.08	MeV;	intensity :	2	Α	
Pulse width, spacing : 100 ns; 66 ms						
Normalized emittance (1σ) :			π mm-	mrad		

. . .

Acceleration System

Total linac length	: 20.5	m
No. sections : 4	; lengths : 3.07	m
Field mode : $2\pi/3$; frequency : 2.856	GHz
Wave type : TW	; filling time : 0.83	μs
v_g/c range : (2)	;Q : 13000)
Shunt impedance	: 52 - 60 N	MΩ/m
Iris : aperture : diameter	: 26.2 - 19.2	mm
thickness	: 5.8	mm
Attenuation/section	: 0.57	Np
Power units, Number :	2 type : (3) Klys	tron
RF power peak : 25	MW; mean : (4)	kW

Focusing System

Type, No. of elements, and spacing : Solenoids at the first acc. struc., a triplet between the second and the third acc. struc., two quadrupoles and a spectrometer at the end.

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

- * LNLS Laboratório Nacional de Luz Sincrotron (100 MeV Linac)
- (1) The first two structures (50 MeV) have been in operation since 1987. During July 1995, the machine was transferred to the definitive LNLS site where the two remaining accelerating structures were installed. The first beam with energy above 100 MeV was obtained on December 22nd 1995.
- (2) 0.0204 0.0065
- (3) Divided for 2 structures.
- (4) 3.8×10^{-3}

Name of Linac	: IEAv * electron linac				
Function	: Neutron production and radiation dosimetry research				
Institution and address	: CTA/IEAv - Rod, Tamoios km 5.5 São José dos Campos - SP - Brasil				
Person in charge	: C.R.S. Stopa (laboratory) - C. Fuhrmann (linac)				
Name of person supplying these data	a: C.R.S. Stopa				
	e-mail: stopa@ieav.cta.br				
	tel. : + 55 123 413033 (ext. 278) fax : + 55 123 414277				

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : (1)	1986 ; first beam :		
Present status :	Under construction		
Cost of facility :	5 MUSD (1995)		
Present linac staff :	12 man-years		
Present yearly operation time :			

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		4	Α
Normalize	d emittance (1	σ):		π mr	n-mrad

Injector

Longitudinal matching : (2)						
Output :	MeV;	intensity :	2	Α		
Pulse width, spacing : 200 ns - 1.25 ms						
Normalized emi	ttance (1o) :	:	π mm-	mrad		

Acceleration System

Total linac length	:		4		m
No. sections: (3) 2	;	lengths	:	2.0	m
Field mode : $2\pi/3$;	frequency	:	1.3	GHz
Wave type : TW	;	filling time	:	1.0	μs
v_{o}/c range : (4)	;	Q	:	1900	0
Shunt impedance	:		F) 32		MΩ/m
Iris : aperture : diameter	:	44.94	- 39	.40	mm
thickness	:	12	2.00		mm
Attenuation/section	:	0	.23		Np
Power units, Number :		l type	:	Klysti	ron
RF power peak : 20	M	W; mean	ı:	60	kW

Focusing System

Type, No. of elements, and spacing : Eight solenoids up to 30 MeV

Beam Pulse Structure (if applicable) No. of bunches/pulse :

No. of particles/bunch : Bunch separation :

	Normal	Max, or	
	Operation	Design	
Final energy	:	0.030	GeV
Accel gradient	:	9.0	MeV/m
ΔE/E (FWHM)	:	15	%
Rep. rate	•	800	Hz
Pulse length	:	0.200	μs
Beam intensity		2.0	Α
Norm. emit. (1σ)	:		π mm-mrad

- * Instituto de Estudos Avançados
- (1) The linac construction was interrupted during the 90-94 period due to fund shortage.
- (2) L-band prebuncher and buncher.
- (3) The first accelerating structure includes a 0.57 m long bunching region.
- (4) 0.0076 0.0047

Name of Linac	: Saskatchewan Accelerator Laboratory
Function	: Provide c.w. beams for subatomic physics research
Institution and address	: University of Saskatchewan, 107 North Road, Saskatoon, Sask S7N 5C6 Canada
Person in charge	: Dr Dennis M. Skopik
Name of person supplying these dat	a: Dr J.J. Murphy
	e-mail : jjm@skatter.usask.ca
	tel. : +1 306 966 6071 fax : +1 306 966 6058

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	l; first b	eam : 1965	
Present status :	Operational		
Cost of facility :	-		
Present linac staff :	48		
Present yearly operation	tion time :	5000	h

LINAC PARAMETERS

Electron Sources

Types :	Haimson	;	energy :	220	keV
Beam inte	nsity (peak)	:		2	Α
Normalize	ed emittance (1	σ):	23	π mm	n-mrad

Injector

Longitudinal matching :							
Output :	12	MeV;	intensity :	1.3	Α		
Pulse width, spacing : $1.5 \ \mu s$, $2.8 \ ms$							
Normalize	d emitt	ance (10)	: 0.43	π mm-	mrad		

Acceleration System

: 28 m	l
; lengths : 3.3 - 4.83 m	1
; frequency : 2.856 GHz	2
; filling time : 0.78 µs	;
; Q : 15000	
: <i>53-60</i> ΜΩ/m	l
: 0.75-1.0 mm	l
: 5.8 mm	l
: 5.7 Np)
6 type : ITT	
MW; mean : 21 kW	1
	; lengths : $3.3 - 4.83$ m ; frequency : 2.856 GHz ; filling time : 0.78 µs ; Q : 15000 : $53-60$ MΩ/m : $0.75-1.0$ mm : 5.8 mm : 5.7 Np 6 type : ITT

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal Operation	Max, or Design	
Final energy	:0.110-0.295	0.310	GeV
Accel gradient	:		MeV/m
$\Delta E/E$ (FWHM)	: 1		%
Rep. rate	: 180	360	Hz
Pulse length	: 0.36	2	μs
Beam intensity	:0.016-0.060	0.220	Α
Norm. emit. (1σ)): 0.3	0.3	π mm-mrad

OTHER RELEVANT INFORMATION

(1) TM010

(2) 0.020 - 0.0065

ION LINAC

Name of Linac : ISAC * Function Institution and address Function : Accelerator of Light Radioactive Ions : TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada, V6T 2A3 : P.W. Schmor Name of person supplying these data : G. Dutto e-mail: dutto@triumf.ca tel. : +1 604 222 7419 fax: +1 604 222 1074

HISTORY AND STATUS

Const. started : 199	95 ; first b	beam : 2000	
Present status :	Design, prototyp	oing	
Cost of facility :	34 MCDN		
Present linac staff :			
Present yearly oper	at. time :	na	h

LINAC PARAMETERS

Ion Sources

ion boarcos					
No. of sources	:		3		
Types of source	:	CUS	P, SURFACE,	ECR	•••
Species of ions	:		A ≤ 30		
Range of currents	s:		<i>≤1</i>		μAe
Range of output e	energ	ies :	2		keV/u
Pulse length :	dc	μs;	rep. rate :	dc	Hz
Normalized emitt	ance	(1σ):	0.026	π mn	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	RFQ (split	t ring, 4 r	od)/8	m
Output currents :		≤1		μAe
Output energies :	1	50	k	æV/u
Frequency : 35 N	IHz; peal	k RF pow	er: 150	kW
Pulse length : cw	μs; rep	o. rate :	CW	Hz
Normalized emittance	e (1o) :	0.026	π mm-	mrad

Longitudinal Matching

Long	tuaina	al Matchin	g				
Type : 4 Harmonic single gap buncher							
Mod.	0.2	keV; drift	5700	mm at	11.5	MHz	
	0.1	keV; drift	3000	mm at	35	MHz	

Accelerating System

Total linac length :	5.6 m; N°. of tanks : 5
Tank diameters :	<i>l</i> m
Number of drift-tubes :	9, 13, 15, 14, 13
Drift-tube lengths :	<i>25.7 - 80.0</i> mm
Drift-tube diam (range):	<i>20 - 26</i> mm
Gap/cell length (range):	0.43 - 0.55
Aperture diameter :	10 mm to 16 mm
RF frequency(ies) :	105 MHz
Field modes :	
Eff. shunt impedance :	<i>(1)</i> MΩ/m
Q :	(2)
Filling time :	μs
Equil. phases : 0° ;	accel. rate 0 - 0.24 MeV/u-m
RF rep. rate : cw	Hz; pulse : μ s
Beam rate :	Hz; pulse : μ s
RF power peak : 0.08	MW; mean : 0.08 MW

Focusing System

No. elen	nents : 5			
type :	Quad. triplet	order :		
Gradien	ts : 44	to	66	T/m
Other:				

Charge Stripping (Typical)

Type(s): Carbo	n F	oil				
Charge states :	1	to	6	at	150	MeV/u
Charge states :		to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:		A ≤ 30	
Energy	:		(3)	MeV/u
$\Delta E/E$ (FWHM)	:		≤1	%
Mean acc. rate	:			MeV/u-m
Beam current	:		1	μ Ae peak
Norm. emit. (10)	:		0.026	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

- * Isotope Separator and ACcelerator
- (1) (MAFIA) 350, 530, 570, 470, 390 $M\Omega/m$
- (2) (MAFIA) 10500, 14000, 19000, 22000, 23000
- (3) 0.150 1.5 MeV/u

LINAC

- Double Gap Spiral Resonators before IH tanks

RFQ

- 4 rod, split ring, cw

Name of Linac Function Institution and address Person in charge Name of person supplying these data : Charles Kim

: ALS Injector : Electron Injector for the Advanced Light Source : LBL, 1 Cyclotron Road, Berkeley, CA 94720, USA : Charles Kim e-mail: chkim@lbl.gov tel. : +1 510 486 7218 fax: +1 510 486 4960

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	87	7	;	firs	t beam : 02/1991	
Present status	:	Ope	ratio	nal		
Cost of facility	:	(Ì)	3.75	MU	SD	
Present linac staff	:	NA				
Present yearly oper	al	tion	time :		~ 7000	h

LINAC PARAMETERS

Electron Sources

Types : Thermionic triode;	energy :	120	keV
Beam intensity (peak) :		1	Α
Normalized emittance (1σ) :	10	π mm	n-mrad

Injector

.

.

Longitudinal matching : (2)							
Output :	0.5	MeV;	intensity :	0.2	Α		
Pulse width, spacing : (3)							
Normalize	Normalized emittance (1σ) : 30 π mm-mrad						

Acceleration System

Total linac length	:	4		m
No. sections: 2	; len	gths :	2	m
Field mode : $2\pi/3$; free	quency :	2.9979	GHz
Wave type : TW	; filli	ing time :	0.4	μs
v_g/c range : 0.017	; Q	:	13620)
Shunt impedance	:	56.1	N	/Ω/m
Iris : aperture : diameter	:	23.82	•	mm
thickness	:	5.0		mm
Attenuation/section	:	0.267	,	Np
Power units, Number :	2	type :	Klystra	on –
RF power peak : (4)	MW;	mean :	0.054	kW

Focusing System

Type, No. of elements, and spacing : 7 solenoids for < 25 MeV2 quad triplets at 25 MeV and at 50 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : $4 \sim 12$ No. of particles/bunch : 2 nC / bunch Bunch separation : 8 ns, 1 Hz

		Normal Operation	Max, or Design	
Final energy	:	0.050	0.050	GeV
Accel gradient	:	13	13	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	1	1	Hz
Pulse length	:	0.024	0.08	μs
Beam intensity	:	125	125	A
Norm. emit. (1σ)	:	40	40	π mm-mrad

- (1) Actual US Dollar spent over 1987 1991.
- (2) S Band buncher, 125 MHz Buncher, 500 MHz Buncher.
- (3) 100ps FWHM, 8ns, 4~10 microbunches, 8 ns spacing.
- (4) S Band buncher, section 1, section 2.

Name of Linac :	RTA *				
Function :	RF Power Source Prototype for Linear Colliders				
Institution and address :	LBNL, 1 Cyclotron Road, Berkeley, CA 94720, USA				
Person in charge :	Glen Westenskow, Simon Yu				
Name of person supplying these data :	Glen Westenskow				
	e-mail: gw@llnl.gov				
	tel. : +1 510 486 6728	fax : +1 510 486 5392			

HISTORY AND STATUS

LINAC PERFORMANCE

.

Const. started : 1995	; first beam : (1)	1997
Present status :	Under construction	
Cost of facility :		
Present linac staff :	8	
Present yearly operat	ion time : NA	h

LINAC PARAMETERS

Electron Sources

Types :	Dispenser	;	energy :	1000	keV
Beam inte	ensity (peak)	:		1200	Α
Normaliz	ed emittance (1σ)	:	75	π mm	-mrad

Injector (2)

Longitudinal matching : Chopper					
Output :	4	MeV;	intensity :	600	Α
Pulse width, spacing : $0.3 \mu s$					
Normalize	d emit	tance (10)	: 400	π mm-	mrad

Acceleration System (3)

Total linac length	:	8		m
No. sections : 8	; leng	gths :	1	m
Field mode : TM01	; freq	uency :	11.4	GHz
Wave type : TW	; filli	ng time :	0.001	μs
v_g/c range : 0.26	; Q	:	(4) 80	00
Shunt impedance	:	1.2	1	MΩ/m
Iris : aperture : diameter	:	16		mm
thickness	:	2.5		mm
Attenuation/section	:	NA		Np
Power units, Number :	8	type :	<i>TW</i> &	SW
RF power peak : (5)	MW;	mean :	(6)	kW

Focusing System

Type, No. of elements, and spacing : PPM Quadrupoles Lattice period 20 cm Phase advance 72 degrees

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 3000 No. of particles/bunch : 3×10^{11} Bunch separation : 90 ps

	Normal Operation	Max, or Design	
Final energy :	:	0.004	GeV
Accel gradient	:	0.3	MeV/m
ΔE/E (FWHM)	:	0.3	%
Rep. rate	:	4	Hz
Pulse length	:	0.3	μs
Beam intensity	:	600	Α
Norm. emit. (10)	:	400	π mm-mrad

OTHER RELEVANT INFORMATION

- * Relativistic klystron Two-beam Accelerator
- (1) Gun operation in 1997, full operation in 2002.
- (2) Includes injector, chopper and compression stage.
- (3) The RF parameters listed in this section are for the rf output structures used in the RTA prototype. In the main section of the prototype the induction cells hold the beam energy at about 4 MeV. RF output cavities are used to extract power from the electron beam.
- (4) Wall
- (5) 8 × 180 MW
- (6) $8 \times 0.2 \, kW$

RTA is a linear induction accelerator.

Additional information is available at WEB site "http://rktba.lbl.gov/"

Name of Linac :	100 MeV Electron-Positron Linac
Function :	Positron production; materials science and particle research
	LLNL *, Bldg. 194, L-280 Livermore CA94550 USA
	Thomas E. Cowan
Name of person supplying these data :	Thomas E. Cowan
	e-mail: tcowan@llnl.gov
	tel. : +1 510 422 9678 fax : +1 510 422 0883

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	7; first	t beam : 1969	
Present status :	Operating		
Cost of facility :	4.6 MUSD (19	969)	
Present linac staff :	3	·	
Present yearly operation	tion time :	~ 500	h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	105	keV
Beam inte	nsity (peak)	:		(2) 15 / 1	Α
Normalize	ed emittance (10	σ):		π mm-	mrad

Injector

Longitudinal matching : (3) Output : 2.5 MeV; intensity : (2) 10/0.8 A

Pulse width, spacing : $20ns-0.69ms/3\mu s-3.3ms$ Normalized emittance (1 σ) : π mm-mrad

Acceleration System

Total linac length	: (4) 17	m
No. sections : 5	; lengths : 2.42	m
Field mode : $2\pi/3$; frequency : 2.856	GHz
Wave type : TW	; filling time : 0.65	μs
v_g/c range : 0.019	;Q : 13200)
Shunt impedance	: 53 N	1Ω/ m
Iris : aperture : diameter	: 26 - 19	mm
thickness	: 6.1	mm
Attenuation/section	: 0.29 (0.12 Np/m)	Np
Power units, Number :	5 type : Klystro	ns -
RF power peak : 15 N	MW; mean : 16.2	kW

Focusing System

Type, No. of elements, and spacing : Solenoids for buncher and each TW section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal	Max, or	
	Operation	Design	
Final energy	:0.11/0.08	0.165	GeV
Accel gradient	: 9.1/6.6	13.1	MeV/m
$\Delta E/E$ (FWHM)	: 2-5	< 2	%
Rep. rate	: 720/300	1440 / 300	Hz
Pulse length	: 0.020 / 2.8	0.1/3	μs
Beam intensity	: (5)6/0.7	(5) 10/0.8	Α
Norm. emit. (10):	π	mm-mrad

- * Lawrence Livermore National Laboratory
- (1) Thermionic (BaO in W matrix), modified Pierce geometry.
- (2) The LLNL 100 MeV Linac is designed to operate in both a short and a long pulse mode depending on whether the application requires a narrow pulse width (eg. for time-of-flight applications) or high average flux. Typical applications include materials irradiation and generation of secondary positron and neutron beams. Typical short-pulse mode parameters are 1-20 ns pulse width, 10 A peak current, and variable repetition rate from single pulse up to 1440 Hz. Long pulse parameters are 1-3 μs, 0.7 A peak, and variable rep rate from single pulse to 300 Hz. Parameters are listed by short-pulse mode / long-pulse mode.
- (3) S-band tapered phase velocity buncher.
- (4) Measured to end of TW section # 5.
- (5) Maximum beam intensity values are given for operation at 75 MeV. For 165 MeV operation design beam intensity values are 2 A / 0.1 A for short / long pulse modes.

Name of Linac :	FXR - Linear Induction Linac	
Function :	Production of x-rays	
Institution and address :	LLNL, Livermore CA 94551, USA	
Person in charge :	Ray Scarpetti	
Name of person supplying these data :	Ray Scarpetti	
	e-mail :	
	tel. : + 1 510 423 5356	fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1980 ; first beam : 1982 Present status : Operational Cost of facility : 12 MUSD (1982) Present linac staff : 10 Present yearly operation time : 500 h LINAC PARAMETERS Electron Sources Types : Cold Cathode ; energy : 2500 keV Beam intensity (peak) : 3000 A Normalized emittance (10) : π mm-mrad	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Injector Longitudinal matching : Output : 2.5 MeV; intensity : 3000	

 π mm-mrad

Acceleration	System
--------------	--------

Pulse width, spacing : 80 ns Normalized emittance (1σ) :

Total linac length	: 35	m
No. sections: 14	; lengths :	2.5 m
Field mode :	; frequency :	GHz
Wave type :	; filling time :	μs
v _o /c range :	;Q :	
vg/c range : Shunt impedance	•	MΩ/m
Iris : aperture : diameter	:	mm
thickness		mm
Attenuation/section	:	Np
Power units, Number :	type :	
RF power peak :	MW; mean:	kW

Focusing System

Type, No. of elements, and spacing : Solenoid focusing

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

11

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1988	; first beam : 1989	
Present status : (1)		
Cost of facility :		
Present linac staff: 10		
Present yearly operation	time: NA	h

LINAC PARAMETERS

Electron Sources

Types :	Dispenser	;	energy :	1000	keV
Beam int	ensity (peak)	:		2200	Α
Normaliz	ed emittance (1	σ):	NA	π mm	n-mrad

Injector

Longitudir	nal mat	ching : N	4		
Output :	1	MeV;	intensity :	2200	Α
Pulse widt	h, spa	cing : 7() ns		
Normalize	d emit	tance (1 σ)	: 350	π mm-r	nrad

Acceleration System

Total linac length	:	20		m
No. sections: 60	; len	gths :		m
Field mode : NA	; frec	quency :	NA	GHz
Wave type : NA	; filli	ng time :	NA	μs
vg/c range : NA	; Q	:	NA	
Shunt impedance	:	NA		MΩ/m
Iris : aperture : diameter	r :	NA		mm
thicknes	is :	NA		mm
Attenuation/section	:	NA		Np
Power units, Number :	4	type :	(2)	
RF power peak : NA	MW;	mean :	NA	kW

Focusing System

Type, No. of elements, and spacing : 82 Solenoids 23.5 cm long, 4 cm separation

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

·	Normal Operation	Max, or Design	
Final energy :	0.006		GeV
Accel gradient :			MeV/m
$\Delta E/E$ (FWHM) :	2		%
Rep. rate :		1000	Hz
Pulse length :	0.07		μs
Beam intensity :	2000		Α
Norm. emit. (1σ) :	350		π mm-mrad

OTHER RELEVANT INFORMATION

(1) Preparing for new set of experiments

(2) Magnetic Pulse Compressors

ETA II is a linear induction accelerator

- 60 induction cells
- 6.6 cm pipe radius

Nominal beam parameters

- 6.3 MeV plus or minus 2 % beam energy spread
- 2 to 3 kA beam current
- 70 ns pulse width with 30 ns flat top
- 350 π mm-mrad for 1 σ normalized emittance
- plus or minus 1 mm transverse sweep

Name of Linac	:	AXF-0
Function		Injector for FEL and Laser Acceleration experiments
Institution and address	:	UC Davis Dept. of App. Science / Lawrence Livermore National Laboratory*
Person in charge	:	F.V. Hartemann
Name of person supplying these data	1:	Greg Le Sage
		e-mail : lesage@wente.llnl.gov
		tel. : +1 510 423 6776 fax : +1 510 422 2514

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	94	; first beam : NA	
Present status	(1)		
Cost of facility			
Present linac staff	6		
Present yearly oper	ation tim	e: NA	h

LINAC PARAMETERS

Electron Sources

Types : Photocathode	;	energy :	NA	keV
Beam intensity (peak)	:		(2)	Α
Normalized emittance (10	5):	NA	π mm	n-mrad

Injector

Longitudin	al mat	ching: NA	4		
Output :	5	MeV;	intensity :	1000	Α
Pulse widt	h, spa	cing : 2	µs, 0.1 s		
Normalize	d emit	tance (1σ)	: <1	π mm-i	nrad

Acceleration System

Total linac length	:	0.037	,	m
No. sections : 1	; leng	ths :		m
Field mode : π	; freq	uency :	8.548	GHz
Wave type : Standing	; fillir	ng time :	0.16	μs
v _o /c range : NA	; Q	:	8600)
Shunt impedance	:	93	1	MΩ/m
	:	6.66		mm
thickness	:	6.66		mm
Attenuation/section	:	NA		Np
Power units, Number :	1	type :	Klystr	on
RF power peak : 20	MW;	mean :	(3) 0.4	¢ kW

Focusing System

Type, No. of elements, and spacing : Solenoid bucking pair

Beam Pulse Structure (if applicable)

No. of bunches/pulse	
No. of particles/bunch	$: 6.241 \times 10^{9}$ (1 nc /bunch)
Bunch separation	: 467 ps (every 4th rf cycle)

	Normal	Max, or	
	Operation	Design	
Final energy		0.005	GeV
Accel gradient	:	135	MeV/m
$\Delta E/E$ (FWHM)		0.3	%
Rep. rate	:	10	Hz
Pulse length	:	2	μs
Beam intensity	:		Α
Norm. emit. (10)	:	< 1	π mm-mrad

OTHER RELEVANT INFORMATION

* PO Box 808, L-402, Livermore, CA 94550, USA

(1) Accelerator cavity hot RF testing

(2) 1 kA (1 nC / 1 psec)

(3) 2 μs / pulse * 10 pulses / sec * 20 MW

Drive laser based on AlGaAs semiconductor rf modelocked oscillator, locked to rf drive master oscillator. Repetition rate is fourth subharmonic of rf drive.

References

- [1] "Laser ring photocathode RF linac", F.V. Hartemann, G.P. Le Sage, S. Fochs, D.B. McDermott and N.C. Luhmann Jr., Bull. APS 38, 1941 (October 1993).
- [2] "Photoinjector-Driven Chirped-Pulse Free Electron Maser", G.P. Le Sage, F.V. Hartemann, H.X.C. Feng, S.N. Fochs, J.P Heritage, N.C. Luhmann Jr., M.D. Perry, and G.A. Westenskow. AGARD conference proceedings 564, High Power Microwaves, NATO Symposium, Ottowa, Canada (May 1994).
- [3] "Gigahertz Repetition Rage AlGaAs / Ti: Sapphire (LiSAF) Modelocked Oscillator / Power Amplifier Laser System for Advanced Photoinjectors", P.J. Delfyett, S.N. Fochs, J.P. Heritage, G.P. Le Sage, J.D. McNally, F.V. Hartemann, N.C. Luhmann Jr., and M.D. Perry, Lasers for RF Guns Proceedings, Brookhaven National Laboratory Publication 52435, 41 (May 1994).

Name of Linac	: Saturnus	
Function	: Beam Physics Studies	
Institution and address	: UCLA, Phys. Dep., 405 Hilgard Ave., LA, CA 90095-1547, U	USA
	: Claudio Pellegrini	
Name of person supplying these data	: Claudio Pellegrini	
	e-mail : pellegrini@physics.ucla.edu	
	tel. : fax : + 1 310 206 109	21

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1990 ; first beam : 1993 Present status : Operating	Normal Max, or Operation Design
Cost of facility :	Final energy : 0.015 0.015 GeV
Present linac staff : 3 man-years	Accel gradient : 25 25 MeV/m
Present yearly operation time : 2000 h	ΔE/E (FWHM) : 0.2 0.2 %
	Rep. rate : 5 5 Hz
LINAC PARAMETERS	Pulse length : 2.5 2.5 μ s
	Beam intensity : A
Electron Sources	Norm. emit. (1 σ): 5 5 π mm-mrad
Types: Photoinjector ; energy: 4000 keV	
Beam intensity (peak) : 150 A	OTHER RELEVANT INFORMATION
Normalized emittance (1σ) : 5 π mm-mrad	

Injector Longitudir	ial mai	tching :			
Output :	4	MeV;	intensity :	150	Α
Pulse widt	h, spa	cing : 4	ps		
Normalize				π mm-	mrad

Acceleration System

L			
:	1.5		m
; len	gths :	0.4	m
; frec	quency :	2.856	GHz
; filli	ng time :	0.9	μs
;Q	:	10000)
:	50	N	<i>l</i> Ω/m
:	10		mm
3:	10		mm
:			Np
1	type :	RK5	
MW;	mean :	0.200	kW
	: ; len; ; frec ; filli ; Q : : : :	: 1.5 ; lengths : ; frequency : ; filling time : ; Q : : 50 : 10 : 10 : I type :	: 1.5 ; lengths : 0.4 ; frequency : 2.856 ; filling time : 0.9 ; Q : 10000 : 50 M : 10 5 : 10 : I type : RK5

Focusing System

Type, No. of elements, and spacing : 1 Solenoid

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 No. of particles/bunch : 6×10^9 Bunch separation : NA

Name of Linac	:	Naval Postgraduate School Linac
Function	:	Education and Research
Institution and address	:	Dept. of Physics, Naval Postgraduate School, Monterey, CA 93943, USA
Person in charge	:	Professor Xavier K. Maruyama
Name of person supplying these dat	a :	Professor Xavier K. Maruyama
		e-mail: maruyama@physics.nps.navy.mil
		tel. : +1 408 656 2431 fax : +1 408 656 2834

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 12/196	6; first beam : 02/1967	
Present status : O	perational	
Cost of facility :		
Present linac staff : Po	art time	
Present yearly operatio	n time : h	

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	keV
Beam inter	nsity (peak)	:		Α
Normalize	d emittance (1	σ):		π mm-mrad

Injector

Longitudi	nal mate	ching :		
Output :	0.13	MeV;	intensity :	Α
Pulse wid	th, spac	ing :		
Normalize	ed emitt	ance (1 0)	:	π mm-mrad

Acceleration System

Acceleration System		
Total linac length	: 10	m
No. sections: 3	; lengths :	<i>3.3</i> m
Field mode :	; frequency :	2.856 GHz
Wave type : TW	; filling time :	<i>1</i> μs
vg/c range :	;Q :	
Shunt impedance	:	MΩ/m
Iris : aperture : diameter	:	mm
thickness	:	mm
Attenuation/section	:	Np
Power units, Number :	type :	
RF power peak : 22	MW; mean:	0.1 kW

Focusing System

Type, No. of elements, and spacing : Moveable pole tips on two deflection magnet Quadrupole Doublet

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal Operation	Max, or Design	
Final energy :	0.1		GeV
Accel gradient :	10		MeV/m
$\Delta E/E$ (FWHM) :	0.3		%
Rep. rate :	60		Hz
Pulse length :	1		μs
Beam intensity :	3 × 107		Α
Norm. emit. (1 σ):	300		π mm-mrad

OTHER RELEVANT INFORMATION

Many of the parameters are equivalent to the original Stanford HEPL Mark III Accelerator.

(1) Dispenser Cathode

Name of Linac : SLAC 3-km Linac Function : e⁺/e⁻ Collider, Fixed Target, Injector for B Factory Institution and address Person in charge Name of person supplying these data : F-J. Decker

: SLAC, PO Box 4349, Stanford, CA 94309, USA : Franz-Josef Decker (Linac), Jym Clendenin (Sources) e-mail: decker@slac.stanford.edu tel. : +1 415 926 3606

fax: +1 415 926 2407

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	2; first	beam : 1966	
Present status :	Operating		
Cost of facility :	114 MUSD (1	966)	
Present linac staff :	~ 200	*	
Present yearly operation	ation time :	~ 6000	h

LINAC PARAMETERS

Electron Sources

Types: $P and T (1)$;	energy :	120	keV
Beam intensity (peak)	:		(2)	Α
Normalized emittance (10)	:	(3)	π mn	n-mrad

Injector

Longitudir	nal mate	ching : <i>(4)</i>			
Output :	(5)	MeV;	intensity :	(6)	Α
Pulse widt	th, spac	ing : (7,)		
Normalize	d emitt	ance (1σ)	100 - 200	π mm-	mrad

Acceleration System

Total linac length	:	3000	m
No. sections: 960	;	lengths : 3	8. <i>05</i> m
Field mode : $2\pi/3$;	frequency : 2.	.856 GHz
Wave type : (8)	;	filling time : ().83 µs
v_g/c range : (9)	;	Q :140	00-13000
Shunt impedance	:	53 - 60	MΩ/m
Iris : aperture : diameter	:	26.2 - 19.1	l mm
thickness	:	5.84	mm
Attenuation/section	:	0.57	Np
Power units, Number :	24	40 type : K	lystrons
RF power peak : (10)64	M	W; mean :	27 kW

Focusing System

Type, No. of elements, and spacing : 32 quadrupoles spaced 3-m apart; 32 spaced 6-m apart; and 208 spaced 12-m apart.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : (11) No. of particles/bunch : (12) Bunch separation : 60 ns for C; 350 ps for FT

		Normal Operation	Max, or Design	
Final energy	:	(13)	(13)	GeV
Accel gradient	:	19		MeV/m
$\Delta E/E$ (FWHM)	:	0.25		%
Rep. rate	:	120		Hz
Pulse length	:	(7)		μs
Beam intensity	:	(14)		Α
Norm. emit. (1 σ)	:	(15)		π mm-mrad

OTHER RELEVANT INFORMATION

Linac Operating modes: C= collider, FT= fixed target, I=injector for B factory.

- (1) Types: Polarized (P) using a GaAs photocathode. and thermionic (T). At the end of the linac, the e^{-} polarization is typically 80% for C; 85% for FT. Polarized beams not required for I.
- (2) Beam intensity (peak): 8×10^{10} e^{-/} bunch $\times 2$ bunches / rf-pulse for C and $\times 1$ for I; up to 8×10^8 e'/ bunch × 7000 bunches / rf-pulse for FT at up to 30 GeV final energy; and up to 8×10^9 e^{-/} bunch × 700 for FT at up to 50 GeV. B Factory will use only 1 collider type bunch per rf pulse regardless of whether e^{-} or e^{+} .
- (3) Normalized emittance (1σ) : <100 π mm-mrad for T; ~ 10π mm-mrad for P.
- (4) Two 16th subharmonic bunchers and one 2.8 GHz buncher.
- (5) Output: 1200 MeV into Damping Ring (DR) for C and I; straight into linac for FT. At 1200 MeV there are two DRs, one for damping up to $2 e^{-}$ bunches each for 1-interpulse period and a second for damping up to 2 e⁺ bunches each for 2-interpulse periods. The resulting transverse emittance out of either DR can be either symmetric at $\sim 16\pi$ mm-mrad each plane for round beams, or asymmetric at ~ $30(3)\pi$ mm-mrad for the x(y)-plane respectively.

(Continued on Positron Linac form.)

POSITRON LINAC

Name of Linac	:	SLAC 3-km Linac
Function	:	e ⁺ /e ⁻ Collider, Injector for B Factory
Institution and address	:	SLAC, PO Box 4349, Stanford, CA 94309, USA
Person in charge	:	Franz-Josef Decker (Linac), Jym Clendenin (Sources)
Name of person supplying these data	:	F-J. Decker
		e-mail: DECKER@STANFORD.EDU
		tel. : +1 415 926 3606 fax : +1 415 926 2407

HISTORY AND STATUS

Differences with respect to corresponding e linac, are given in space to right.

Primary Beam (e) at Conversion Target

Energy	:	30000	MeV
Radius (10)	:	0.6	mm
Beam intensity	:	4 × 10 ¹⁰ e ⁻ /bunch	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	W- (²⁰ Re)	
Туре	:	Trolling wheel	
Thickness (rad.length)	:	6	χ
Diameter	:	63 / 89	mm
Mean deposited power	:	9	kW
Solenoidal field ^{a)}	:	Flux concentrator: 5.5 T	
Matching device RF sections ^{a)}	:	Tapered solenoid: 0.127 Flux concentrator 1 × 1.5 m 55 MV/m, then 3 × 3 m 20 MV/m	,
		5 ~ 5 / 1 20 147 / 14	

a) key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e linac, are given in space to right.

LINAC PERFORMANCE

	Normal Operation	Max, or Design	
Final energy :	(13)	(13)	GeV
Accel gradient :	19		MeV/m
$\Delta E/E$ (FWHM) :	0.25		%
Rep. rate :	120		Hz
Pulse length :	(7)		μs
Yield (fin.en) :	0.8 - 1.2		e [‡] /e ⁻ x GeV
Beam intensity :	(14)		μA peak
Norm. emit. (1σ) :	(15)		π mm-mrad

OTHER RELEVANT INFORMATION

(Continued from Electron Linac form)

- (5) (cont.) An e⁺ bunch from the Positron Source is injected at the 200 MeV point of the injector. For C, the 2 e⁻ bunches and the single e⁺ bunch are then co-accelerated by a single rf pulse, separated by sign of charge into the 2 Damping Rings, then 2 damped e⁻ bunches and a single damped e⁺ bunch are reassembled in the linac and co-accelerated to high energy. (One e⁻ bunch is separated at the 2/3rd point (30 GeV) for positron production.)
- (6) Intensity: \sim 70% of Source (note 2.)
- (7) Pulse width, repetition rate: 120 ns (3 bunches) before 2/3rd point (note 5) and 60 ns (2 bunches) after with a repetition rate of 120 Hz for C; 5 ps (1 bunch) with a repetition rate up to 120 (60) Hz for I for $e^{-}(e^{+})$ respectively; and 200 ns to 2 μ s with a repetition rate of 120 Hz for FT.
- (8) Wave type: TW, constant gradient
- (9) v_g/c range: 0.0204 0.0065
- (10) RF power peak: 163 MW effective with SLED.
- (11) No. of bunches/pulse: 3 (including e⁺ bunch) in linac before 2/3rd point (note 5) and 2 after for C;
 1 (either e⁻ or e⁺) in linac for I; up to 7000 for FT at up to 30 GeV; up to 700 for FT at up to 50 GeV.
- (12) No. of particles/bunch: ~ 70% of Source (note 2) except e^+ in linac is about 0.9 of e^- in linac.
- (13) Final energy: 46.6 GeV is the normal energy of the linac for producing Z's at C. The maximum (noload) energy is 52 GeV. For FT experiments, the linac runs between 30 and 52 GeV. For I, the energies of the extracted beams will be in the range 2.5 - 12 GeV.
- (14) Beam intensity: about 4×10^{10} particles for each of the colliding bunches for C; similar intensity per bunch for I, and up to 4×10^{11} e^{-/} pulse for FT.
- (15) Norm. emit. (1 σ): For round beams for C or I, ~25 π mm-mrad each plane; for flat beams for C only, 40/6 for x(y) plane.

Name of Linac: LCLS * LinacFunction: Linac for High Brightness X-ray FELInstitution and address: SLAC/SSRL PO Box 4349, Stanford, CA 94309, USAPerson in charge: M. CornacchiaName of person supplying these data: V. Bharadwaje-mail: vinod@slac.stanford.edutel. : +1 415 926 2407

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1999 ; first beam : (1) 2001 Present status : Design Study	Normal Operation	Max, or Design	
Cost of facility : NA	Final energy :	15	GeV
Present linac staff : NA	Accel gradient :	19	MeV/m
Present yearly operation time : NA h	$\Delta E/E$ (FWHM) :	0.1	%
	Rep. rate :	120	Hz
LINAC PARAMETERS	Pulse length :	107	μs
	Beam intensity :	(8)	Α
Electron Sources	Norm. emit. (1 o):	1	π mm-mrad
Types : RF photoinjector ; energy : 5000 keVBeam intensity (peak) : (2) ANormalized emittance (10) : ≤ 1 π mm-mrad	OTHER RELEVANT INFO	RMATIO	N
Injector	* LCLS - Linac Coherent Lig	ght Source	

Longitudin	al mat	ching : No	t required		
Output :	70	MeV;	intensity :	250	Α
Pulse widt	h, spac	cing : <i>(3)</i>) 3 ps, 8.3 ms		
Normalize				π mm-	mrad

Acceleration System

Total linac length	:	1000	m
No. sections : 320	;	lengths : 3	m
Field mode : $2\pi/3$;	frequency : 2.850	6 GHz
Wave type : (4)	;	filling time : 0.83	μs
$v_g/c range : (5)$;	Q : (6,)
Shunt impedance	:	53 - 60	MΩ/m
Iris : aperture : diameter	:	26.2 - 19.1	mm
thickness	:	5.84	mm
Attenuation/section	:	0.57	Np
Power units, Number :	8	type: SLAC.	50/45
RF power peak : (7)	M	W; mean : 25	kW

Focusing System

Type, No. of elements, and spacing : *FODO; Under study*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 - 10No. of particles/bunch : 10^{10} Bunch separation : NA

- (1) Estimated
- (2) 1×10^{10} / bunch
- (3) Bunch width, spacing
- (4) TW constant gradient
- (5) 0.02 0.007
- (6) 14000 13000
- (7) 60 / 130 (SLED)
- (8) $\sim 10^{10}$

The LCLS FEL project plans to use the last 1/3 of the present SLAC linac to inject beam into an undulator to produce a high brightness 1.5 Å x-ray beam. A design study for the LCLS is presently underway. The above parameters are for single bunch operation. Multiple bunch per linac pulse are also being considered.

Name of Linac	NLCTA *		
Function	Test Facility for Linear Collider		
Institution and address	Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309, USA		
Person in charge	Ron Ruth		
Name of person supplying these data	Ron Ruth		
	e-mail: RRUTH@SLAC.STANFORD.EDU		
	tel. : +1 415 926 5390 fax : +1 415 926 5368		

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 05/	/1	992 ; first beam : 07/1996	
Present status	:	Nearing Completion	
Cost of facility	:	20 MUSD	
Present linac staff	:	Under Construction	
Present yearly open	ra	tion time :	h

LINAC PARAMETERS

Electron Sources

Types :	Thermionic	;	energy :	150	keV
Beam inte	ensity (peak)	:		4	Α
Normaliz	ed emittance (10	5):	6	π mm	n-mrad

Injector

Longitudinal matching : (1)							
Output :	90	MeV;	intensity :	2	Α		
Pulse width, spacing : 140 ns, 88 ps							
Normalize	d emitt	ance (1σ)	30	π mm-	mrad		

Acceleration System

Total linac length	:	(2)	m
No. sections : 6	;	lengths : 1.8	m
Field mode : $2\pi/3$;	frequency : 11.424	GHz
Wave type : TW	;	filling time : 0.1	μs
v_{g} /c range : 0.12 - 0.03	;	Q : 6500)
Shunt impedance	:	87-67 N	MΩ/m
Iris : aperture : diameter	:	11.4 - 7.8	mm
thickness	:	1 - 2	mm
Attenuation/section	:	0.54	Np
Power units, Number :		3 type: Klystr	on
RF power peak : (3)	M	W; mean : 0.24	kW

Focusing System

Type, No. of elements, and spacing : Lens, 31 solenoids 32 quadrupoles Main linac, FODO 2m spacing

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1600No. of particles/bunch : 4×10^8 Bunch separation : $88 \ ps$

	Normal	Max, or	
	Operation	Design	
Final energy :	:	0.63	GeV
Accel gradient :	:	50	MeV/m
$\Delta E/E$ (FWHM)	:	0.5	%
Rep. rate	:	10	Hz
Pulse length	:	0.140	μs
Beam intensity	•	0.75	Α
Norm. emit. (1σ)	•	30	π mm-mrad

OTHER RELEVANT INFORMATION

- * NLCTA Next Linear Collider Test Accelerator
- (1) 2 prebuncher cavities, 3 low β cells

(2) $1.8 \times 6 = 10.8$

(3) Klystron 50 MW - 1.5 μs with pulse compressor
 90 MW - 250 ns at the section

Name of Linac :	SSRL Injector Linac *		
Function :	Electron Linac for e injection to the Booster		
	SLAC/SSRL MS 69, PO Box 4349, Stanford, CA 94309, USA		
Person in charge :	: M. Cornacchia		
Name of person supplying these data :	S. Park		
	e-mail: spark@slac.stanford.edu		
	tel. : +1 415 926 2526	fax : +1 415 926 4100	

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1988	; first beam : 1990
Present status : Op	erating
Cost of facility : 2 M	AUSD (1990)
Present linac staff : 3 n	1an-years
Present yearly operation	time: 6000 h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	2900	keV
Beam inter	sity (peak)	:		0.64	Α
Normalize	d emittance (1	σ):	> 5	π mm	n-mrad

Injector

Longitudinal matching : (2)							
Output :	2.9	MeV;	intensity :	0.24	Α		
Pulse width, spacing : 0.3-3 ps, 350 ps							
Normalize	d emitt	ance (1 σ)	: 80	π mm-	nrad		

Acceleration System

Total linac length	:	9		m
No. sections: (3) 3	; leng	ths :	3	m
Field mode : $2\pi/3$; freq	uency :	2.856	GHz
Wave type : TW	; fillir	ng time :	0.83	μs
v_g/c range : (4)	;Q	:	1300)
Shunt impedance	:	53-60) 1	<i>I</i> Ω/m
Iris : aperture : diameter	:	19.1 - 2	6.2	mm
thickness	:	5.84		mm
Attenuation/section	:	0.57		Np
Power units, Number :	2	type : (.	5) Klys	stron
RF power peak : 40	MW;	mean :	1	kW

Focusing System

Type, No. of elements, and spacing : Quadrupoles, two, 3m

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 3 No. of particles/bunch : 5×10^8 Bunch separation : 350 ps

	Normal Operation	Max, or Design	
Final energy :	0.11	0.12	GeV
Accel gradient :	12.2		MeV/m
$\Delta E/E$ (FWHM) :	0.17		%
Rep. rate :	10		Hz
Pulse length :	2.5	2.5	μs
Beam intensity :	(6) 0.24		Α
Norm. emit. (1σ) :	20		π mm-mrad

- * SSRL Stanford Synchrotron Radiation Laboratory
- (1) 1.5-cell thermionic RF gun
- (2) quadrupole triplet, alpha magnet, quadrupole doublet, correctors, and chopper
- (3) Next to the injector, there is one additional section powered by a separate klystron, to be used as a test stand for rf gun with photo/thermionic cathode.
- (4) 0.0065 0.0204
- (5) One klystron (SLAC 5045) powers the rf gun and the first two sections. The last section and the test stand are powered by SLAC XK-5 klystrons
- (6) The intensity is averaged over one RF cycle.

Name of Linac :	SCA *
Function :	Driver for Free Electron Lasers
Institution and address :	HEPL, Stanford University, Stanford, CA 94305-4085, USA
Person in charge :	Todd I. Smith
Name of person supplying these data :	Todd I. Smith
	e-mail: Todd.Smith@Stanford.edu
	tel. : +1 415 723 1906 fax : +1 415 725 8311

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : ~ 1	968	; first beam : ~ 1971	
Present status	Operati	ing	
Cost of facility	?		
Present linac staff	5 man-j	years	
Present yearly oper	ation time	e: 3000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	120	keV
Beam inte	nsity (peak)	:		0.001	Α
Normalize	ed emittance (1	σ):		π mm	n-mrad

Injector

Injector					
Longitudina	al mat	ching : 26	0 MHz SHB		
Output :	5	MeV;	intensity :	10	Α
Pulse width	n, spa	cing : 2	ps, 85.6 ns		
Normalized	l emit	tance (10)	: 5	π mm-	mrad

Acceleration System

Total linac length	:		25		m
No. sections: 4	; I	engths	:	6.5	m
Field mode : π	; 1	requenc	у:	1.3	GHz
Wave type : SW	; 1	filling tin	ne:	1000	μs
v _g /c range :	; (2	:	$2 \times l$	0 ⁶
Shunt impedance	:			1	MΩ/m
Iris : aperture : diamet	er :		~ 50		mm
thickne	ess :		~ 10		mm
Attenuation/section	:				Np
Power units, Number	: 4	tyj	pe:	Klystr	on
RF power peak : 0.01	0 M	V; mea	an :	10	kW

Focusing System

Type, No. of elements, and spacing : Random solenoids and quads.

Beam Pulse Structure (if applicable)

.

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: 84.6 ns

		Normal Operation	Max, or Design	
Final energy	:	0.04	0.05	GeV
Accel gradient	:	1.5	2	MeV/m
	:	0.1	0.1	%
Rep. rate	:	20	20	Hz
Pulse length	:	10000	CW	μs
Beam intensity	:	200	500	Α
Norm. emit. (10)	:	5	5	π mm-mrad

OTHER RELEVANT INFORMATION

* SCA - Superconducting Linear Accelerator

This is a superconducting linac using 55 cell cavities. We are beginning an upgrade to use TESLA 9 cell cavities, operating at 10 MeV/metre. The machine energy range will remain the same, but the output current will increase to 1 mA. The peak current (in a 2 ps micropulse) will increase to 40 A. The emittance will remain at 5 π mm-mrad.

Name of Linac	: SUNSHINE
Function	: Research/educational facility, sub picosecond electron bunches
	: SSRL, P.O. Box 4349, Stanford, CA 94309, USA
Person in charge	: H. Wiedemann
Name of person supplying these data	: H. Wiedemann
	e-mail : WIEDEMANN@slac.stanford.edu
	tel. : fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1992 ; first beam : 1993 Present status : Operating Cost of facility : Present linac staff : Graduate students Present yearly operation time : Daily as desired h

LINAC PARAMETERS

Electron Sources

Types :	RF-gun	;	energy :	2600	keV
Beam inte	ensity (peak)	:		1.3	Α
Normalize	ed emittance (1	σ):	~ 10	π mm	n-mrad

Injector

Longitudinal ma	atching: N	one required	
Output :	MeV;	intensity :	Α
Pulse width, spa	acing :		
Normalized emittance (10):		π mm-mrad	

Acceleration System

Total linac length	: 3.0	m
No. sections : 1	; lengths : 3.0	m
Field mode : $2\pi/3$; frequency : 2.856	GHz
Wave type : (1)	; filling time : 0.83	μs
v_g/c range : (2)	;Q : 1400	0
Shunt impedance	: 53 - 60	MΩ/m
Iris : aperture : diameter	: 26.2 - 19.1	mm
thickness	: 5.84	mm
Attenuation/section	: 0.57	Np
Power units, Number :	l type : Klystr	on
RF power peak : 25	MW; mean:	kW

Focusing System

Type, No. of elements, and spacing : *None required*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : ~ 3000 No. of particles/bunch : $2 - 5 \times 10^8$ Bunch separation : 350 ps

	Normal Operation	Max, or Design
Final energy :	0.033	GeV
Accel gradient :	10	MeV/m
$\Delta E/E$ (FWHM) :	~ 10	~ %
Rep. rate :	10	Hz
Pulse length :	1.5	μs
Beam intensity :	<i>≤0.4</i>	Α
Norm. emit. (1σ) :	< 1	π mm-mrad

OTHER RELEVANT INFORMATION

(1) TW const G

(2) 0.02 - 0.007

Facility is used to generate sub picosecond electron bunches, coherent far infrared radiation, measure sub picosecond pulses, coherent transition radiation, coherent undulator radiation, single pass FEL experiments.

References

[1] Phys. Rev. Lett. vol. 73, Aug. 1994, p. 967.

ION LINAC

Name of Linac	: Florida State University Superconducting Linac
Function	: Heavy ion booster linac for a tandem Van de Graaff
Institution and address	: Florida State University, Physics Dept. Tallahassee, FL 32306 USA
Person in charge	: Prof. K. Kemper
Name of person supplying these data	: E.G. Myers
	e-mail: MYERS@NUCMAR.PHYSICS.FSU.EDU
	tel. : +1 904 644 4040 fax : +1 904 644 9848

HISTORY AND STATUS

Const. started : 1984		first beam : 03/19	87
Present status :	Operation	al	
Cost of facility :	2.75 USD	(1984)	
Present linac staff :	1.5		
Present yearly operation	at. time :	3700	h

LINAC PARAMETERS

Ion Sources				
No. of sources :		3		
Types of source :	Cs .	Sputter, He ⁻ ,	Pol. L	i ⁻
Species of ions :	all io	ns except no	ble ga	ses
Range of currents :		20		μAe
Range of output energ	ies :	(1)		keV/u
Pulse length : cw	μs;	rep. rate :	CW	Hz
Normalized emittance	(10):	12	π m	m-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	Tandem Van de Graaj	ff m
Output currents :	4	μAe
Output energies :	10 000	keV/u
Frequency : cw	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emitta	nce (1 σ): 1.5 π r	nm-mrad

Longitudinal Matching

Type : (2)	U			
Mod.	keV; drift	mm at	48.5	MHz
	keV; drift	mm at	97	MHz

Accelerating System

Accelerating System	
Total linac length :	8 m; N°. of tanks : 3
Tank diameters :	<i>not circular</i> m
Number of drift-tubes :	12 cavities, 2 tubes/cavity
Drift-tube lengths :	Atlas, high beta mm
Drift-tube diam (range):	mm
Gap/cell length (range):	
Aperture diameter :	25 mm to mm
RF frequency(ies) :	97 MHz
Field modes :	split loop resonator
Eff. shunt impedance :	2×10^5 MQ/m
Q :	(3)
Filling time :	cw µs
Equil. phases : 0-15;	accel. rate (4) MeV/u-m
RF rep. rate : cw	Hz; pulse : μ s
Beam rate : cw	Hz; pulse : μ s
RF power peak : cw	MW; mean : 6×10^{-4} MW

Focusing System

No. elements : 6 type : superconducting solenoid order : Gradients : 2 to 4 Tesla T/m Other :

Charge Stripping (Typical)

Type(s): Foils	in Vd	lG tern	ninal and	befo	re lind	ıc
Charge states :	-1	to	+8	at	0.33	MeV/u
Charge states :	+8	to	+12	at	2.8	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	(5)		
Energy	:	10		MeV/u
$\Delta E/E$ (FWHM)	:	0.1		%
Mean acc. rate	:	0.56		MeV/u-m
Beam current	:	(6)		μ Ae peak
Norm. emit. (1 σ)	:	1.0		π mm-mrad

OTHER ION BEAMS

OTHER RELEVANT INFORMATION

- (1) 120 keV
- (2) Gridded pretandem & superconducting posttandem
- (3) 5×10^8 loaded to 10^7 by vcx
- (4) variable
- (5) $^{28}Si^{8+/12+}$
- (6) Beam current : 0.025 μAe

Linac consists of 12, independently phased, superconducting cavities, optimized for beta = 0.105. There is also a superconducting buncher resonator before the linac, and a superconducting rebuncher after the linac. Resonators made by Argonne National Laboratory.

Reference

[1] E.G. Myers et al., Nucl. Instrum. and Meth. B40/41, (1989) 904.

PROTON AND/OR H- LINAC

Name of Linac	: Proton RFQ
Function	: Neutron source for biomedical and NDE / NDA * development
Institution and address	: Idaho State University, Dept. of Physics, **
Person in charge	: John Knox
Name of person supplying these d	ata: Frank Harmon
	e-mail: harmon@physics.isu.edu
	tel. : +1 208 236 2350 fax : +1 208 236 4649

h

keV

Hz

 π mm-mrad

HISTORY AND STATUS

LINAC PARAMETERS

25

Normalized emittance (1σ) :

Type : Duoplasmatron

Ion Source

Output :

Const. started :	08/1991	; first beam : 10/1991
Present status	: Oper	rational
Cost of facility	: USD	850 000 (1991)
Present linac staff	f:	
Present yearly op	erat. tim	e :

Focusing System

No. elements : type: order : Gradients : to T/m Other:

Normal

Max, or

LINAC PERFORMANCE

		Operation	Design	
Energy	:	2	2	MeV
Mean acc. rate	:			MeV/m
$\Delta E/E$ (FWHM)	:	< 1	< 1	%
Beam current	:	10 - 15	20	mA peak
Norm. emit. (10):			π mm-mrad

Pre-accelerator (including RFQ)

Types :	4 vane		; lengths	: 1.5	m
Output :	15	mΑ	at 2	2000	keV
Pulse length:	20 - 160	μs;	rep. rate	: 120	Hz
Normalized emittance (1 σ): 0.4 π mm-					mrad

mA at

Pulse length : $20 - 160 \ \mu s$; rep. rate : 120

30

0.3

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

meeting by st		•		
Total linac length	:		m; No. of	tanks :
Tank diameters	:			m
Number of drift-tubes	::			
Drift-tube lengths	:			mm
Drift-tube diam (range	:):			mm
Gap/cell length (range	;):			
Aperture diameter	:		mm to	mm
RF frequency(ies)	:			MHz
Field modes	:			
Eff. shunt impedance	:			MΩ/m
Q	:			
Filling time	:			μs
Equilibrium phases	:			
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak :		MW;	mean :	MW

OTHER RELEVANT INFORMATION

- * NDE / NDA non-destructive evaluation / nondestructive assay
- ** 785 S. 8th Ave., Box 8106, Pocatello, ID 83209

Machine is AccSys Technology PL2

Name of Linac	Advanced Photon Source Injector Linac		
Function	e ⁺ and e ⁻ injector for the APS Storage Ring		
	Argonne National Laboratory, Argonne, IL 60439, USA		
Person in charge	Linac Manager, Marion M. White		
Name of person supplying these data	: Marion M. White		
	e-mail : mwhite@aps.anl.gov		
	tel. : +1 630 252 5552 fax : +1 630 252 4732		

h

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	90; first beam : 1993				
Present status	: Operational				
Cost of facility	:				
Present linac staff	:				
Present yearly operation time :					

LINAC PARAMETERS

Electron Sources

Types :	Cathode	;	energy :	110	keV
Beam inte	nsity (peak)	:		2.6	Α
Normalize	d emittance (1	lσ):		π mm	n-mrad

Injector

Longitudinal matching : Prebuncher / buncher					
Output :	4.5	MeV;	intensity :	Α	
Pulse width, spacing : 30 ns, 60 Hz rf rate					
Normalized emittance (1 σ): 1.2 π mm-mrad					

Acceleration System

Total linac length	: (1) 5	0 m
No. sections: $5+9=14$; lengths :	3 m
Field mode : $2\pi/3$; frequency :	2.856 GHz
Wave type : TW	; filling time :	μs
vg/c range :	;Q :	
Shunt impedance	:	MΩ/m
Iris : aperture : diameter	•	mm
thickness	:	mm
Attenuation/section	•	Np
Power units, Number :	(2) type :	Klystrons
RF power peak : 35 l	MW; mean:	kW

Focusing System

Type, No. of elements, and spacing : Solenoids, quadrupoles, triplets.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 86 microbunches per pulse No. of particles/bunch : Bunch separation :

		Normal Operation	Max, Desig		
Final energy :	:	0.220	0.65	0	GeV
Accel gradient	:	17			MeV/m
ΔE/E (FWHM)	:	+/-8	+/-	8	%
Rep. rate	:	(3)			Hz
Pulse length	:	0.030			μs
Beam intensity	:	2			Α
Norm. emit. (1 σ)	:				π mm-mrad

- (1) Standard SLAC-type accelerating structures and SLED cavities
- (2) 2 + 3 = 5
- (3) 48 pps @ 60 Hz
- e⁻linac has 5 accelerating structures and 1 SLED;
- 2 Klystrons
- e⁺ linac has 9 accelerating structures and 2 SLEDs;
- 3 Klystrons

POSITRON LINAC

Name of Linac :	Advanced Photon Source Injector Linac
Function :	e ⁺ and e ⁻ injector for the APS Storage Ring
	Argonne National Laboratory, Argonne, IL 60439, USA
Person in charge :	Linac Manager, Marion M. White
Name of person supplying these data :	Marion M. White
	e-mail: mwhite@aps.anl.gov
	tel. : $+16302525552$ fax : $+16302524732$

MaV

HISTORY AND STATUS

OTHER RELEVANT INFORMATION

Differences with respect to corresponding e linac, are given in space to right.

(1) 48 pps (a) 60 Hz. \Rightarrow 24 pulses at a 60 Hz rate each 0.5 s.

Primary Beam (e⁻) at Conversion Target Energy : 200 - 220

Lincigy	•	200 - 220	IVIC V
Radius (10)	:	3 - 5	mm
Beam intensity	:	1.7	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	Tungsten	
Туре	:	disk	
Thickness (rad.length)	:	2	χ
Diameter	:	12	mm
Mean deposited power	:	0.48	kW
Solenoidal field ^{a)}	:	5000 A 1.5 T	
Matching device	:		
RF sections ^{a)}	:	1 SLAC-type accelerating	
		structure 3 m long	
a) I constant of and		Ū.	

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e^{-1} linac, are given in space to right.

LINAC PERFORMANCE

	Normal Operation	Max, or Design	
Final energy :	0.40	0.45	GeV
Accel gradient :			MeV/m
$\Delta E/E$ (FWHM) :	0.1 to 1.5	1.0	%
Rep. rate :	30	(1)	Hz
Pulse length :	0.030	0.030	μs
Yield (fin.en) :	1-200 400		e⁺/e⁻x GeV
Beam intensity :	12000	8000	μA peak
Norm. emit. (1σ) :			π mm-mrad

26

Name of Linac	22 MeV Chemistry			
Function	Pulse Radiolysis - Beam diagnostics			
Institution and address	Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA			
Person in charge	: Charles Jonah			
Name of person supplying these data	: Charles Jonah			
	e-mail: jonah@anlchm.chm.anl.gov			
	tel. : +1 630 252 3471 fax : +1 630 252 4993			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	5; firs	t beam : 1968	
Present status :	Operating		
Cost of facility :	~ 750 kUSD	(1968)	
Present linac staff :	(1)		
Present yearly operation	tion time :	1300	h

LINAC PARAMETERS

Electron Sources

Types :	Hot cathode	;	energy :	135	keV
Beam int	ensity (peak)	:		30	Α
Normaliz	red emittance (1	σ):		π mr	n-mrad

Injector Longitudir	nal mai	tching :			
Output :	4	MeV;	intensity :	20	Α
Pulse widt	th, spa	cing :			
Normalize	d emit	tance (10)	:	π mm-	mrad

Acceleration System

Total linac length	:				m
No. sections: 2		gths		0.845	m
Field mode : TM01				1.307	GHz
Wave type : TW	; filli	ng time	::	0.6	μs
v_o/c range : 0.005	;Q		:	1940	0
Shunt impedance	:			ľ	MΩ/m
Iris : aperture : diameter	:	•	50		mm
thickness	:		12		mm
Attenuation/section	:	0.	228	}	Np
Power units, Number :		type	::		
RF power peak : 16	MW;	mean	1:		kW

Focusing System

Type, No. of elements, and spacing : Lots of quadrupoles

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Norm Operat		
Final energy	: 0.022	?	GeV
Accel gradient	:		MeV/m
$\Delta E/E$ (FWHM)	: 1		%
Rep. rate	: 1	800	Hz
Pulse length	:5 × 10 ⁻⁶	- 3	μs
Beam intensity	: (2)		Α
Norm. emit. (10): 200		π mm-mrad

OTHER RELEVANT INFORMATION

- (1) 1 operator, 20% supervisor
- (2) This machine was built for radiation chemistry and therefore has a wide range of pulse widths. 5 ps to 30 ps with 1000 A peak

4 ns - 40 ns, 15 A peak: transient mode 100 ns - 3 μ s, 1.5 - 3 A peak: steady state mode

Name of Linac	: AWA *		
Function	: Part of facility for Wakefield related R & D		
Institution and address	: Argonne National Laboratory, Argonne, IL 69439, USA		
Person in charge	: J.D. Simpson		
Name of person supplying these data	: J.D. Simpson		
	e-mail : jds@hep.anl.gov		
	tel. $:+1\ 708\ 252\ 6587$ fax $:+1\ 708\ 252\ 5076$		

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 10/	<i>1992</i> ; first b	eam : 10/1994	4
Present status :	Operational		
Cost of facility :	1.2 MUSD (199	1)	
Present linac staff :	2		
Present yearly operation	ation time :	30 %	h

LINAC PARAMETERS

Electron Sources

Types: Photocathode	;	energy :	1700	keV
Beam intensity (peak)	:			Α
Normalized emittance (10	5):		π mn	n-mrad

Injector

Longitudinal matching :							
Output :	MeV;	intensity :	Α				
Pulse width, spacing :							
Normalized emitta	π mm-mrad						

~

Acceleration System

Total linac length	:	2		m
No. sections: 2	; leng	ths :	1	m
Field mode : TM01	; freq	uency :	1.300	GHz
Wave type : SW	; fillir	ng time :	5	μs
vg/c range :	; Q	:		
Shunt impedance	:		ľ	ΛΩ/ m
Iris : aperture : diameter	:	100		mm
thickness	:	10		mm
Attenuation/section	:			Np
Power units, Number :	1	type :	Klystr	on
RF power peak : 30	MW;	mean :	7	kW

Focusing System

Type, No. of elements, and spacing : Solenoidal, Spherically Aberated

Beam Pulse Structure (if applicable)

No. of bunches/pulse : INo. of particles/bunch : 6×10^{11} Bunch separation : $1/30 \sec$

		Normal Operation	Max, or Design	
Final energy	:	0.015	0.018	GeV
Accel gradient	:	7	8	MeV/m
$\Delta E/E$ (FWHM)	:	3 - 8	12	%
Rep. rate	:	10	30	Hz
Pulse length	:,	10-50 × 10 ⁻⁶	25×10^{-6}	μs
Beam intensity	:	(1)	(1)	Α
Norm. emit. (10)	:	50 - 300	250	π mm-mrad

OTHER RELEVANT INFORMATION

* AWA - Argonne Wakefield Accelerator

(1) 2×10^{11} /pulse operation 6×10^{11} /pulse Max.

PROTON AND/OR H- LINAC

Name of Linac :	ANL Linac*
Function	H ⁻ Injector for IPNS **
Institution and address	Argonne National Laboratory, Argonne, IL 60439, USA
Person in charge	V. Stipp
Name of person supplying these data:	V. Stipp
	e-mail : vstipp@anl.gov
	tel. : $+1\ 630\ 252\ 6604$ fax : $+1\ 630\ 252\ 9987$

HISTORY AND STATUS

Const. started :	1959	; first beam : I	962
Present status	: Operatio	nal	
Cost of facility	: 5 MUSD	(1962)	
Present linac staff	: 5		
Present yearly ope	erat. time :	4500	h

LINAC PARAMETERS

Ion Source

Type : H [*] Magnetron					
Output : 50	mA	at	20		keV
Pulse length : 60 - 90	μs;	rep. r	ate :	30	Hz
Normalized emittance (1	σ):	1.	8	π mm-	mrad

Pre-accelerator (including RFQ)

Types :	Cock	croft-Wal	ton	; leng	ths :		m
Output	:	45	mA	at	750)	keV
Pulse ler	igth:	60 - 90	μs;	rep. r	ate :	30	Hz
Normali	zed en	nittance (1	σ):			πmm-	mrad

Longitudinal Matching

Type:	One l	buncher				
Mod.	25	keV; drift	890	mm at	200.06	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length	:	33.5	m; No. 0	of tanks	: 1
Tank diameters	:		0.95		m
Number of drift-tubes	:		124		
Drift-tube lengths	:		49 - 35	4	mm
Drift-tube diam (range):		250 - 14	17	mm
Gap/cell length (range)):		0.22 -	0.25	
Aperture diameter	:	12.7	mm to	5 <i>31.75</i>	mm
RF frequency(ies)	:		200.06		MHz
Field modes	:		TM01	0	
Eff. shunt impedance	:		30	J	MΩ/m
Q	:		80000)	
Filling time	:		125		μs
Equilibrium phases	:		26°		
RF rep. rate : 30		Hz;	pulse :	220	μs
Beam rate : 30		Hz;	pulse :	60 - 90	μs
RF power peak : 3.5	;	MW;	mean :	0.022	MW

Focusing System

No. elements :	124			
type :	DC	order :	+-+-	
Gradients :	45	to	8	T/m
Other:				

LINAC PERFORMANCE

Beam current : 12

Norm. emit. (1σ) :

		Normal Operation	Max, or Design	
Energy	:	50		MeV
Mean acc. rate	:	1.89		MeV/m
$\Delta E/E$ (FWHM)	:	±0.25		%

mA peak π mm-mrad

- * ANL Argonne National Laboratory IPNS 50 MeV H[•] Linac
- ****** IPNS Intense Pulsed Neutron Source

ION LINAC

Name of Linac: ATLAS *Function: Heavy Ion Acceleration for basic research in Nuclear and Atomic PhysicsInstitution and address: Argonne National Laboratory, Argonne, IL 60439, USAPerson in charge: Dr. Jerry NolenName of person supplying these data :R. Pardoe-mail :pardo@anlphy.phy.anl.govtel.:fax :

HISTORY AND STATUS

Const. started : 19	977;f	irst beam : 06/197	8
Present status	: Operating 7	7 days / week	
Cost of facility	: 80 MUSD (current)	
Present linac staff	: 26		
Present yearly ope	erat. time :	> 5000	h

LINAC PARAMETERS

Ion Sources

No. of sources :		2	
Types of source :		(1)	
Species of ions :	Lithia	um through U	Iranium
Range of currents :		0.10 - 50	μAe
Range of output ene	rgies :	33	keV/u
Pulse length : cw	μs;	rep. rate :	Hz
Normalized emittand	æ (1o) :	0.1 - 0.25	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	18 independent resor	<i>nators 9.9</i> m
Output currents :	0.05 - 0	μΑε
Output energies :	1300	keV/u
Frequency : (2)	MHz; peak RF pov	ver: (3) kW
Pulse length : cv	ν µs; rep. rate :	(4) Hz
Normalized emitta	nce (1σ) : (5)	π mm-mrad

Longitudinal Matching

Type :	Harmo	nic buncher & sin	ewave 2'	" buncl	her
		keV; drift 23500			
	5 - 10	keV; drift 1500	mm at	24.25	MHz

Accelerating System

Total linac length :	24.6 m; N°. of tanks : (6)
Tank diameters :	Resonator 0.37 m
Number of drift-tubes :	(7)
Drift-tube lengths :	<i>55/94</i> mm
Drift-tube diam (range):	25 mm
Gap/cell length (range):	βλ / 2
Aperture diameter :	25 mm to 25 mm
RF frequency(ies) :	97 MHz
Field modes :	βλ / 2
Eff. shunt impedance :	$\approx 3 \times 10^4$ MΩ/m
Q :	$\geq 10^8$
Filling time :	cw µs
Equil. phases : 15°;	accel. rate 0.7 MeV/u-m
RF rep. rate : cw	Hz; pulse : μs
Beam rate : 12.125	Hz; pulse : (8) μs
RF power peak : (9)	MW; mean : MW

Focusing System

No. elements : 21			
type: S.C. Solenoids	order :		
Gradients : 3	to	8.5 T	T/m
Other : Effective length 7 -	19 cm		

Charge Stripping (Typical)

Type(s): Carbon foil				
Charge states : varies	to	at	1.3	MeV/u
Charge states : varies	to	at	3-5	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Li to U		
Energy	:	5 - 17	20	MeV/u
$\Delta E/E$ (FWHM)	:	0.04	0.2	%
Mean acc. rate	:	0.7	0.8	MeV/u-m
Beam current	:	0.05 - 0.5	5	μ Ae peak
Norm. emit. (1 σ)	:	0.1 - 0.25	≈0.4	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
see above		

OTHER RELEVANT INFORMATION

- * Argonne Tandem-Linac Accelerator System
- (1) ECR scource and negative ion sputter source
- (2) 48.5 / 72.75
- (3) 2.7 kW cw total
- (4) 12.125 MHz (microstructure)
- (5) 0.4 (max.), 0.2 (typical)
- (6) 7 cryostats
- (7) 2 / resonator, 44 accelerating resonators
- (8) 0.25×10^{-3}
- (9) CW, 6 kW total

Pre-accelerators:

- 1. Postive Ion Injector, ECR Ion Source on 350 kV HV platform, 18 independent resonator linac $\lambda/4$ split coaxial.
- 2. Tandem Electrostatic Injector, Neg. Ion Sputter Source on 200 kV platform, 8.5 MV tandem accelerator.

PROTON AND/	OR H ⁻ LINAC
Name of Linac Fermilab 400 MeV H ⁻	Linac
Functions 400 MeV Injector for	8 GeV Booster Synchrotron and
<u>66 MeV for Neutron C</u>	Cancer Therapy
Institution and address Fermi National Accele	a IL, USA
Person in charge C W Schmidt	
Person in charge C. W. Schmidt E-mail, phone and fax cschmidt@fnal.gov.	630-840-4414 (fax)630-840-8590
WWW Linac information <u>http://fnnews.fnal.gov</u>	<u>/acc tour linac.html or http://garlic.fnal.gov/</u>
Data supplied by, date <u>L. Allen, E. McCrory.</u>	A. Moretti, M. Popovic : March 11, 1996
HISTORY AND STATUS	High Energy Linac -
0.75-116 MeV Linac	116-401 MeV side-coupled-structure Linac
Const. started: 12/1968; first beam: 11/30/1970	•
Present status: Operational, originally 200 MeV	Longitudinal Matching Type: multi-cell SCS buncher and vernier
Cost of facility: <u>\$12.7M / 1968</u> currency/date	Mod.: <u>1600</u> keV ; drift: <u>2675</u> mm at <u>805</u> MHz
116-401 MeV Linac	Mod.: <u>220</u> keV; drift: <u>1128</u> mm at <u>805</u> MHz
Const. started: 8/1989 ; first beam: 8/28/1993 Present status: Operational	Accelerating System
Present status: Operational Cost of facility: <u>\$22M / 1992</u> currency/date	Total linac length: 64 m ; no. modules: 7
Present linac staff: 12 (5 staff, / techs)	Total linac length: <u>64</u> m; no. modules: <u>7</u> Cell diameters: <u>269</u> mm; no. cells: <u>448</u>
Present yearly operating time: 8,000+ h	Cell lengths: 86.3-132.3 mm
LINAC PARAMETERS	Cell bore diameter: 30 mm
Ion Source	RF frequency: 805 MHz; field modes: TM01 Eff shunt impedance: 41-56 MQ/m
Type: H ⁻ Magnetron source	Eff. shunt impedance: $41-56$ M Ω /m Q: 24,000-28,000 ; filling time: 6 μ s Equilibrium phase: -32°
Type: <u>H⁻ Magnetron source</u> Output: <u>60-100</u> mA at <u>18</u> keV Pulse length: <u>80</u> µs ; rep. rate: <u>15</u> Hz	Equilibrium phase:
Pulse length: 80 µs; rep. rate: 15 Hz	RF rep. rate: 15 Hz; pulse: 120 (flat top - max) μ s
Pre-Accelerator	Beam rate: <u>15 (max)</u> Hz ; pulse: <u>60</u> µs
Type: <u>Cockcroft-Walton (two)</u> Accelerating column length: <u>0.23 and 0.30</u> m	i i <u> </u>
Accelerating column length: 0.23 and 0.30 m	Focusing System
Output: <u>60-70</u> mA at <u>750</u> keV Pulse length: <u>80</u> µs ; rep. rate: <u>15</u> Hz	No. elements: <u>28</u> ; type: <u>pulsed magnetic</u> Order: <u>FODO</u> ; gradient: <u>25</u> T/m
Pulse length: <u>80</u> μ s, lep. late. <u>15</u> 1- σ normalized emittance: <u>(out)</u> 0.1 π mm-mrad	
Low Energy Linac -	LINAC PERFORMANCE
0.75-116 MeV Alvarez Linac	Normal operation
	Energy: 0.75-116 MeV
Longitudinal Matching Type: one single-gap buncher	Mean acc. rate: 1.5 MeV/m Energy: 116-401 MeV
Mod.: <u>35 keV</u> ; drift: <u>750 mm at 201.25 MHz</u>	Mean acc. rate: 4.4 MeV/m
	ΔE/E(%):FWHM
Accelerating System Total length: 78 m; no. tanks: 5 for 116 MeV	Beam current: 50 mA peak
originally 144.8 m; 9 tanks; (200) MeV	$1 - \sigma$ normalized emittance: <u>(out)</u> 1.5 π mm-mrad
Tank diameters: 0.94-0.84 m	OTHER RELEVANT PARAMS., REFS., ETC.
No. drift tubes: 209 (277)	The original Linac had achieved 300 mA of
Drift-tube lengths: <u>47.4-410.0 (450)</u> mm Drift-tube diameter: <u>160</u> mm	protons. The Linac now delivers H ⁻ beams which
Gap/cell length (range): 0.20-0.41 (0.47)	are time shared between injection into the
RF frequency: 201.25 MHz; field modes: TM010	Booster for the high energy and accelerator
Eff. shunt impedance: <u>27-15</u> MΩ/m	physics programs, and for neutron cancer therapy.
Q: <u>50,000-60,000</u> ; filling time: <u>100</u> µs	The Linac was recently increased in energy by
Equilibrium phase: <u>-320</u>	removing the last four tanks of the original Linac
RF rep. rate: <u>15</u> Hz ; pulse: <u>150 (flat top)</u> μs Beam rate: <u>15 (max)</u> Hz ; pulse: <u>60</u> μs	and replacing them with seven accelerating side-
RF power peak: 21 MW; mean: 0.045 MW	coupled structure modules to achieve 400 MeV in
· · ·	the same enclosure. Reference publications:
Focusing System No. elements: 219 ; type: pulsed magnetic	1. <i>Particle Accelerators</i> <u>1</u> , 93 (1970).
(No. elements: 295 for 200 MeV)	2. "Commissioning and First Operation of the
Order: FD ; gradient: 70 to 7 T/m	400 MeV Linac at Fermilab" 1994 European Part.
$1-\sigma$ normalized emittance: (in) 0.2 π mm-mrad	Acc. Conf.

Name of Linac: AccSys Technology Model PL-7 LinacFunction: Booster Synchrotron H⁻ Pre-injector AcceleratorInstitution and address: Indiana Univ. Cyclotron Facility, Bloomington, IN 47408, USAPerson in charge: Dennis FRIESELName of person supplying these data : Dennis FRIESELe-mail : friesel@iucf.indiana.edutel. : +1 812 855 2944fax : +1 812 855 6645

HISTORY AND STATUS

Const. started : 05/1995 ; first beam : ~07/1996 Present status : Under construction Cost of facility : 1.2 MUSD Present linac staff : 85 tech staff @ IUCF Present yearly operat. time : 4000 (projected) h

LINAC PARAMETERS

Ion Source

Type: (1)					
Output : ≤ 1.0	mA	at	25.0)	keV
Pulse length : ≤ 400	μs;	rep.	rate :	1 - 5	Hz
Normalized emittance (1	σ):	0.	30	π mm-	mrad

Pre-accelerator (including RFQ)

Types :	RFQ		; lengths	: 2.3	m
Output :	≤1.0	mA	at 3	000	keV
Pulse length:	<i>≤ 400</i>	μs;	rep. rate	: 1-5	Hz
Normalized em	nittance (1	σ):	≤1.0	πmm-	mrad

Longitudinal Matching

Type:			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	1.54	m; No. c	of tanks	:
Tank diameters :		0.57		m
Number of drift-tubes :		22		
Drift-tube lengths :		25.4		mm
Drift-tube diam (range):				mm
Gap/cell length (range):				
Aperture diameter :		mm to	•	mm
RF frequency(ies) :		425		MHz
Field modes :				
Eff. shunt impedance :				MΩm
Q :		30000		
Filling time :				μs
Equilibrium phases :				
RF rep. rate : 1 - 5	Hz;	pulse :	≤ 400	μs
Beam rate : $1-5$	Hz;	pulse :	<i>≤400</i>	μs
RF power peak : 0.360	MW;	mean :	0.300	MW

 Focusing System

 No. elements :

 type :
 Quadrupole

 order :

 Gradients :
 to

 Other :

LINAC PERFORMANCE

		Operation	Design	
Energy	:	7.0	7.0	MeV
Mean acc. rate	:	1.75	1.75	MeV/m
$\Delta E/E$ (FWHM)	:	1.0	1.0	%
Beam current	:	≤1.0	10.0	mA peak
Norm. emit. (10)	:	≤1.0	≤1.0	π mm-mrad

Normal

Max or

OTHER RELEVANT INFORMATION

(1) i) Duoplasmatron H⁻;
ii) Atomic Beam Polarized H⁻

This linac is a commercially available system manufactured by AccSys. Technology Inc, Pleasanton, CA. It is a 7 MeV H⁻ linac, a model PL-7. The RFQ (3 MeV H⁻) and DTL (4 MeV H⁻) are coupled directly together to form a single 4 m long accelerator which produces 7 MeV H⁻ for injection into a 2.24 Tm Synchrotron. The linac and synchrotron are now under construction, with first beam operation scheduled for mid-1998.

References

[1] CIS, A Low Energy Injector for IUCF Cooler, IEEE 0-7083-3 (1996) 336.

Name of Linac	: Notre Dame Radiation Laboratory Linac Facility			
Function	Pulse Radiolysis for Chemical Kinetics			
Institution and address	: Notre Dame Radiation Laboratory, Notre Dame, IN 46556-0579, USA			
Person in charge	: KD. Asmus			
Name of person supplying these data	: John Bentley			
	e-mail : bentley.1@nd.edu			
	tel. : +1 219 631 6117 fax : +1 219 631 8068			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 10/1	1993 ; fi	irst beam : 10/19	94
Present status :	Operationa	l	
Cost of facility :	2 MUSD (1	993)	
Present linac staff :	1 man-year	,	
Present yearly operation	tion time :	2000	h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	130	keV
Beam inter	nsity (peak)	:		8	Α
Normalize	d emittance (1	σ):		π mm	n-mrad

Injector (2)

Longitudinal m	atching :		
Output :	MeV;	intensity :	Α
Pulse width, sp	acing :		
Normalized em	ittance (1o) :	*.	π mm-mrad

Acceleration System

Total linac length	:	0.7		m
No. sections : 1	; len	igths :	0.7	m
Field mode : $2\pi/3$	-	quency :	2.856	GHz
Wave type : TW	; fill	ing time :	0.35	μs
vg/c range :	; Q	:	1350	0
Shunt impedance	:	55	1	MΩ/m
Iris : aperture : diameter	:			mm
thickness	:			mm
Attenuation/section	:	0.07		Np
Power units, Number :	1	type :X	KS Klys	stron
RF power peak : 16	MW;	mean :	4	kW

Focusing System

Type, No. of elements, and spacing : Bucking coil, focus lens, eight air core focus coils in Helmholtz geometry.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : ~ 7 per 2 ns pulse No. of particles/bunch : ~ 10^{10} Bunch separation : 350 ps

		Normal Operation	Max, or Design	
Final energy :	:	0.008	0.0095	GeV
Accel gradient :	:	11.4	12.5	MeV/m
$\Delta E/E$ (FWHM) :	:	2	2.5	%
Rep. rate :	:	1	60	Hz
Pulse length :	:	0.002	0.002 to 1.5	μs
Beam intensity :	:	4	4	A
Norm. emit. (1 σ):	:		π	mm-mrad

OTHER RELEVANT INFORMATION

(1) Thermionic cathode

(2) Prebuncher is integral with accelerator section

Linac was built by Titan Beta, Dublin, CA.

Beam intensity is 4 A @ 10 ns, $2 A @ 1.5 \mu s$.

ION LINAC

Name of Linac	Superconducting Linac
Function	Booster Accelerator & Decelerator for heavy ions
	James R. Macdonald Lab., Kansas State Univ. Manhattan, KS, USA
Person in charge	: Tom J. Gray
Name of person supplying these data :	: Tom J. Gray
	e-mail: tgray@phys.KSU.edu
	tel. : +1 913 5326782 fax : +1 913 532 6806

HISTORY AND STATUS

Const. started :	1987	; first beam :	1989
Present status	: Operat	tional	
Cost of facility	:~2×10	0 ⁶ USD (1987)	
Present linac staff	: 7	. ,	
Present yearly ope	erat. time	: ≤1000	h

LINAC PARAMETERS

Ion Sources

No. of sources	:		2		
Types of source	:	Cs spa	utter & diod	e neg. i	on
Species of ions	:		H -U		
Range of currents	3:		1 - 20		μAe
Range of output e	energ	gies :	≤60		keV/u
Pulse length :	2	μs;	rep. rate :	12 M	Hz
Normalized emitt	ance	(1σ) :	?	π mn	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	EN Tandem	m
Output currents :	<i>≤ 10</i>	μAe
Output energies :	<i>≤ 3000</i>	keV/u
Frequency :	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : π m	n-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	15 m; N°. of tanks :	3
Tank diameters :	(1) 1.5 (not full circle)	m
Number of drift-tubes :	(2)	
Drift-tube lengths :	(3)	mm
Drift-tube diam (range):	(3)	mm
Gap/cell length (range):	(3)	
Aperture diameter :	(3) mm to (3)	mm
RF frequency(ies) :	97 N	/Hz
Field modes :	(3)	
Eff. shunt impedance :	<i>(3)</i> MS	Ω/m
Q :	$\leq 2 \times 10^{-7}$ loaded	
Filling time :		μs
Equil. phases : ;	accel. rate MeV/	u-m
RF rep. rate :	Hz; pulse :	μs
Beam rate : 12×10^6	Hz; pulse : $(4) 0.1$	μs
RF power peak : (5)	MW; mean :	MW

Focusing System

No. elements : 3		
type : Solenoid triplets	order :	
Gradients :	to	T/m
Other:		

Charge Stripping (Typical)

Type(s): Carbon foils - post stripping mode						
Charge states :	+1	to	bare	at	2	MeV/u
Charge states :		to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	F^{g_+}	Cu	
Energy	:	5	3	MeV/u
$\Delta E/E$ (FWHM)	:	0.1	0.1	%
Mean acc. rate	:	2.8	3.0	MeV/u-m
Beam current	:	0.1	~ 0.1	μ Ae peak
Norm. emit. (1σ)	:	?	?	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
$C_2O_2Si_7Cl$	E≤130 MeV	
T_i	depending on	
	ion species	

OTHER RELEVANT INFORMATION

Our Linac is superconducting like ATLAS. We used their technology. We have the Argonne Split ring Nb resonator.

- (1) "bath tub" cryostats
- (2) 2 per resonator 14 resonators
- (3) See Argonne National Laboratory
- (4) Same as ATLAS using split ring resonators: see I. Sheppard, ANL
- (5) 200×10^6

Name of Linac: CAMD*Function: Injector for synchrotron light sourceInstitution and address: LSU-CAMD, 6980 Jefferson Hwy., Baton Rouge, LA 70806, USAPerson in charge: Hans BluemName of person supplying these data :Hans Blueme-mail :bluem@rocamd.camd.lsu.edutel.: +1 504 9257070x203fax :+1 504 9257078

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started :	; first	beam : 1991	
Present status	: Operating		
Cost of facility	:		
Present linac staff	: 0.5 man-year		
Present yearly ope	ration time :	500	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	50	keV
• •	nsity (peak)	:	07	<i>0.3</i>	Α
	d emittance (1	σ):		π mr	n-mrad

Injector

Longitudinal matching : (1)							
Output :	4	MeV;	intensity :	A			
Pulse width, spacing : 2 ns-200 ns, 100 ms							
Normalized emittance (1σ) : π mm-mrad							

Acceleration System

Total linac length	:		14		m
No. sections: 2	; leng	ths	:	6	m
Field mode : $2\pi/3$; freq	uency	:	2.9986	GHz
Wave type : TW	; fillin	ng time	::	1.5	μs
v_{o}/c range : (2)	; Q		:	13500)
Shunt impedance	:			N	/Ω/m
Iris : aperture : diameter	:	26	5-10	6	mm
thickness	:				mm
Attenuation/section	:				Np
Power units, Number :	2	type	::	Klystro	on
RF power peak : 35	MW;	mean	:	1.4	kW

Focusing System

Type, No. of elements, and spacing : Solenoïd on buncher, triplet between sections

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	0.180	0.200	GeV
Accel gradient	:	14.7	16.3	MeV/m
$\Delta E/E$ (FWHM)	:	1.0	2.0	%
Rep. rate	:	10	10	Hz
Pulse length	:	0.2	0.2	μs
Beam intensity	:	25	70	Α
Norm. emit. (1 σ)	:	0.4	<1	π mm-mrad

OTHER RELEVANT INFORMATION

* Center for Advanced Microstructures and Devices

(1) 500 MHz prebuncher, S-band buncher(2) 0.0068- 0.032

Linac built by GE-MeV.

Name of Linac :	Dept. of Materials and Nuclear Engineering			
Function :	: Research			
Institution and address :	Univ. of Maryland, College Park, Maryland, USA			
Person in charge :	Vince Adams			
Name of person supplying these data :	Vince Adams			
-	e-mail : vja@eng.umd.edu			
	tel. : 1 301 405 7355 fax : 1 301 314 9467			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1985 ; first beam : 1985 Present status : Operational	Normal Max, or Operation Design
Cost of facility : 400 000 USD	Final energy : 0.007 0.009 GeV
Present linac staff : 1/3 technician	Accel gradient : MeV/m
Present yearly operation time : 200 h	$\Delta E/E$ (FWHM) : 10 %
	Rep. rate : 300 Hz
LINAC PARAMETERS	Pulse length : 3 µs
	Beam intensity : A
Electron Sources	Norm. emit. (1σ) : π mm-mrad
Types: Electron ; energy: 1000-9000 keV	
Beam intensity (peak) : 0.25 A	OTHER RELEVANT INFORMATION
Normalized emittance (1 σ): π mm-mrad	
Injector	
Longitudinal matching :	
Output : MeV; intensity : A	
Pulse width, spacing : $3 \mu s$, variable	
Normalized emittance (1 σ): π mm-mrad	

Acceleration System

Total linac length	: 1.5	m
No. sections : 1	; lengths :	<i>1.5</i> m
Field mode :	; frequency :	GHz
Wave type : S	; filling time :	μs
vg/c range :	;Q :	
Shunt impedance	:	MΩ/m
Iris : aperture : diameter	:	mm
thickness	•	mm
Attenuation/section	•	Np
Power units, Number :	type :	
RF power peak : 2.0	MW; mean:	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable) No. of bunches/pulse :

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

Name of Linac :	MIRF *
Function :	Physics and Dosimetry Research
Institution and address :	NIST, Gaithersburg, MD 20899, USA
Person in charge :	Dr. Charles E. Dick
Name of person supplying these data :	C.E. Dick
	e-mail : cedick@enh.nist.gov
	tel. : fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1973	; first beam : 1974	
Present status : Oper	ating	
Cost of facility :		
Present linac staff : 1.5 n	nan-years	
Present yearly operation ti	me: 2000	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	40	keV
Beam inte	nsity (peak)	:		<0.300	Α
Normalize	ed emittance (10	5) :		π mm	-mrad

Injector

Longitudi	nal mate	:hing : <i>(1)</i>				
Output :	7-32	MeV;	intensi	ty :	0.1	Α
Pulse wid	th, spac	ing :	7 μs,	10 1	nsec	
Normalize	ed emitt	ance (1σ)	:		π mm-	mrad

Acceleration System

Total linac length	:	1	0		m
No. sections: 2	;	lengths	:	2.29/3.32	m
Field mode : $\pi/2$;	frequency	:	2.998	GHz
Wave type : TW	;	filling time	:	0.5	μs
vg/c range :	;	Q	:		
Shunt impedance	:			Μ	Ω/m
Iris : aperture : diameter	:				mm
thickness	:				mm
Attenuation/section	:				Np
Power units, Number :		l type	:	Klystro	n
RF power peak : 25	M	W; mean	:	10	kW

Focusing System

Type, No. of elements, and spacing : Solenoids

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.025	0.032	GeV
Accel gradient	:	6	6	MeV/m
$\Delta E/E$ (FWHM)	:	5	5	%
Rep. rate	:	100	100	Hz
Pulse length	:	7	7	μs
Beam intensity	:	10 ⁵	10 ⁵	Α
Norm. emit. (1 σ)	:			π mm-mrad

OTHER RELEVANT INFORMATION

* Medical Industrial Radiation Facility

(1) S-band Prebuncher and Buncher

This machine was originally built as a therapy machine for use at Yale New Haven hospital. In 1992 it was dismantled and setup at NIST as a Medical and Industrial Radiation Facility.

Name of Linac	: MIT Linac *	
Function	: Research	
Institution and address	: PO Box 846, Middleton, MA 01949,	USA
Person in charge	: Prof. Stanley Kowalski	
Name of person supplying these dat	a : Prof. Stanley Kowalski	
	e-mail: sk@mitlns.mit.edu	
	tel. : +1 617 253 9200	fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	67 ; first bea	am : <i>1971</i>	
Present status	: Operating		
Cost of facility	: 6 MUSD (1967)		
Present linac staff	: 83 FTE (1)		
Present yearly open	ation time :	4000	h

LINAC PARAMETERS

Electron Sources

Types :	(2)	;	energy :	370	keV
Beam inten	sity (peak)	:	-	0.04	Α
Normalized	l emittance (10	5):	10	π mm	n-mrad

Injector

Longitudinal matching : 120°						
Output :	20	MeV;	inte	nsity :	0.04	Α
Pulse width, spacing : $16 \mu s$, $1-6 m s$						
Normalize	d emitt	ance (1 σ)	:	10	π mm-i	mrad

Acceleration System

Total linac length		:	1	50		m
No. sections :	22	; 1	engths	:	(3)	m
Field mode :	2π/3	; f	requency	:	2.856	GHz
Wave type :	TW	; f	filling time	::	1.27	μs
vg/c range :	(4)	; (2	:	1375	0
Shunt impedance		:	-	53	1	MΩ/m
Iris : aperture : dia	ameter	:	24	- 2	9	mm
th	ickness	:	5.	.84		mm
Attenuation/section	m	:	0.	825		Np
Power units, Nur	nber :	12	? type	::	Klystre	ons
RF power peak :	5	M۷	V; mean	:	100	kW

Focusing System

Type, No. of elements, and spacing : Solenoids over first four sections; six quad doublets spaced 17 & 34 m in remainder of linac

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 46000No. of particles/bunch : 9×10^6 Bunch separation : 350 ps

		Normal Operation	Max, or Design	
Final energy	:(.	5) 0.1 - 1.0	1.06	GeV
Accel gradient	:	3	9	MeV/m
$\Delta E/E$ (FWHM)	:	0.3	0.3	%
Rep. rate	:	600	1000	Hz
Pulse length	:	16	16	μs
Beam intensity	:	0.004	0.04	A
Norm. emit. (10):	10	10	π mm-mrad

- * MIT-Bates Linac Massachussets Institute of Technology-Bates Linear Accelerator Centre
- (1) Full Time Equivalent
- (2) Thermionic & polarized sources
- (3) 4 sections at 3.7 m and 18 sections at 7.35 m
- (4) 0.0389 0.0093
- (5) Energies above 0.5 GeV achieved using a recirculator to send the beam through the linac a second time.

ION LINAC

Name of Linac :	MIT / FAA AccSys DL-1			
Function :	Neutron radiography, fast neutron analysis			
Institution and address :	Massachusetts Institute of Technology, Cambridge MA, USA			
	Richard Lanza			
Name of person supplying these data :	Richard Lanza			
	e-mail: lanza@mit.edu			
	tel. : +1 617 253 2399 fax : +1 617 253 2343			

HISTORY AND STATUS

Const. started :	1989	; first beam :	1989
Present status	: Runnir	ıg	
Cost of facility	: USD 4	00 000 (1989)	
Present linac staff	: 3		
Present yearly op	erat. time	: 1000	h

LINAC PARAMETERS

Ion Sources		
No. of sources :	1	
Types of source :	Duoplasmatron	
Species of ions :	D^+	
Range of currents :	(peak) 8000	μAe
Range of output energies :	25	keV/u
Pulse length : $\leq 100 \mu s$;	rep. rate : ≤ 640	Hz
Normalized emittance (10):	$0.15 \pi \mathrm{mr}$	n-mrad

Pre-accelerators (including RFQ)

(
0.7	m
(peak) 6000	μΑε
900	keV/u
MHz; peak RF power	: 60 kW
)0 μs; rep. rate : ±	≤ <i>640</i> Hz
$ce(1\sigma): 0.2$	πmm-mrad
	0.7 (peak) 6000 900 MHz; peak RF power 00 μs; rep. rate : =

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	m; N°. of ta	anks :
Tank diameters	:		m
Number of drift-tubes	:		
Drift-tube lengths	:*		mm
Drift-tube diam (range)	:		mm
Gap/cell length (range)	:		
Aperture diameter	:	mm to	mm
RF frequency(ies)	:		MHz
Field modes	:		
Eff. shunt impedance	:		MΩ/m
Q	:		
Filling time	:		μs
Equil. phases :	; accel.	rate	MeV/u-m
RF rep. rate :	Hz;	pulse :	μs
Beam rate :	Hz;	pulse :	μs
RF power peak :	MW;	mean :	MW

Focusing System

No. elements :			
type :		order :	
Gradients :		to	T/m
Other :			
Charge Strippin Type(s) :	g (Typio	cal)	
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:			
Energy	:			MeV/u
$\Delta E/E$ (FWHM)	:			%
Mean acc. rate	:			MeV/u-m
Beam current	:			μ Ae peak
Norm. emit. (10)	:			π mm-mrad

Energy range

OTHER ION BEAMS

Particle

Other info.

Manufactured by:	AccSys Technology
	Pleasanton, CA

ION LINAC

Name of Linac	Sandia Tandem Booster			
Function	Heavy Ion Post Accelerator			
Institution and address	Sandia National Labs, PO Box 5800, ABQ, NM 87185 USA			
Person in charge	: Harald Schone			
Name of person supplying these data	: Harald Schone			
	e-mail : hschon@somnet.sandia.gov			
	tel. : +1 505 844 2598 fax : +1 505 844 7775			

HISTORY AND STATUS

Const. started :	1/1994	; first beam :	10/1995
Present status	: Develop	oment	
Cost of facility	: 1.6 MU	SD (1995)	
Present linac staff	: 1/2 mar	1-year	
Present yearly ope	rat. time :	400	h

LINAC PARAMETERS

Ion Sources		
No. of sources :	3	
Types of source :	(1)	
Species of ions :	most elements Au	
Range of currents :	0.1 - 10	μAe
Range of output energies :	0.3 - 60	keV/u
Pulse length : DC µs;	rep. rate : DC	Hz
Normalized emittance (1σ)	: πm	m-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	EN-TANDEM	20 m
Output currents :	10	μAe
Output energies :	$50 - 12 \times 10^3$	keV/u
Frequency : DC	MHz; peak RF pov	ver: <i>n.a.</i> kW
Pulse length : n.a.	μs; rep. rate :	<i>n.a.</i> Hz
Normalized emittan	$ce(1\sigma): 0.2$	π mm-mrad

Longitudinal Matching

Type :	none					
Mod.	n .a.	keV; drift	n .a.	mm at	n .a.	MHz
	n.a.	keV; drift	n.a.	mm at	n.a.	MHz

Accelerating System

Total linac length :	6.2 m; N°. of tanks :	2
Tank diameters :	0.5	m
Number of drift-tubes :	n .a.	
Drift-tube lengths :	n.a	mm
Drift-tube diam (range):	n .a.	mm
Gap/cell length (range):	- 16 mm - 45 mm	
Aperture diameter :	1.5 mm to	mm
RF frequency(ies) :	<i>425</i> N	MHz
Field modes :	<i>TE210</i>	
Eff. shunt impedance :	2 M	Ω/m
Q :	7000	
Filling time :	10	μs
Equil. phases : ;	accel. rate 0.276 MeV/	/u-m
RF rep. rate : 1-1000	Hz; pulse : 10-110	μs
Beam rate : 1-1000	Hz; pulse : 10-110	μs
RF power peak : 0.76	MW; mean : 8×10^{-3}	ŃW

Focusing System

No. elements	: 7			
type: dc da	oublet triplet	order :	-	
Gradients :	2	to	3.5	T/m
Other:				

Charge Stripping (Typical)

Type(s): carbon for	oil			
Charge states : 7+	to	<i>28</i> +	at 0.25	MeV/u
Charge states :	to		at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Au ²⁸⁺		
Energy	:	1.91		MeV/u
$\Delta E/E$ (FWHM)	:	0.4		%
Mean acc. rate	:	8×10^{-3}		MeV/u-m
Beam current	:		3×10^{-5}	μ Ae peak
Norm. emit. (1 σ)	:	0.2		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

(1) Li-exch., Sputter, Duo-plasmatron

Name of Linac	: PHERMEX*	
Function	: Flash Radiography - Intense e beam Study	
Institution and address	: Los Alamos National Laboratory, Los Alamos, NM 87545, U	USA
Person in charge	: Scott A. Watson	
Name of person supplying these dat	: Scott A. Watson	
	e-mail : scottw@lanl.gov	
	tel. : $+15056656233$ fax : $+1505665439$	6

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	57 ; first b	eam : 1963	}
Present status	: Operational		
Cost of facility	: ~ 5 MUSD (year	り	
Present linac staff	: 6		
Present yearly open	ration time :	500	h

LINAC PARAMETERS

Electron Sources

Types Thermionic cathode;	energy :	500	keV
Beam intensity (peak) :		20	Α
Normalized emittance (1σ) :	500	π mm	n-mrad

Injector

Injector					
Longitudir	nal mate	ching :			
Output :	0.5	MeV;	intensity :	1000	Α
Pulse wid	th, spac	ing : 20	00 ns, 10 s		
Normalize	d emitt	ance (1σ)	: 500	πmm-r	nrad

Acceleration System

Total linac length	: 20	m
No. sections : 3	; lengths :	<i>2.6</i> m
Field mode :	; frequency :	0.05 GHz
Wave type :	; filling time :	1000 µs
v_g/c range : Beta = 1	;Q :	100000
Shunt impedance	:	MΩ/m
Iris : aperture : diameter	: 150	mm
thickness	:	mm
Attenuation/section	:	Np
Power units, Number :	8 type:	
RF power peak : 5 1	vIW; mean :	kW

Focusing System

Type, No. of elements, and spacing : 9 Solenoïds

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 10 No. of particles/bunch $: \sim 10^{15}$ Bunch separation : 20 ns

		Normal Operation	Max, or Design	
V 31 1		-	Design	C V
Final energy	:	0.03		GeV
	:	5.0	6.5	MeV/m
$\Delta E/E$ (FWHM)	:	50	80	%
Rep. rate	:	0.1	1	Hz
Pulse length	:	0.2	0.2	μs
Beam intensity	:	(1)		Α
Norm. emit. (10)	:	500	500	π mm-mrad

- Pulsed High Energy Machine Emitting X Rays *
- (1) 1000 A e beam at 30 MeV focused to a 3 mm spot size.

Name of Linac: AFEL *Function: Electron Accelerator and FELInstitution and address: Los Alamos National Laboratory, Los Alamos, NM 87545, USAPerson in charge: R. SheffieldName of person supplying these data :R. Sheffielde-mail :Sheff@lanl.govtel. : + 1 505 667 1237fax : +1 505 667 8207

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	0; first be	eam : 1992	
Present status :	Operating		
Cost of facility :	6 MUSD (1992)		
Present linac staff :	2		
Present yearly operation	tion time :	2000	h

LINAC PARAMETERS

Electron Sources

Types: Photocathode	;	energy :	0.0004	keV
Beam intensity (peak)	:		200	Α
Normalized emittance (10)	:	0.5	π mm	-mrad

Injector

Longitudi	nal mat	ching : nc	ne			
Output :	1.5	MeV;	intensity :	200	Α	
Pulse width, spacing : 5-20 ps, 10 ns						
Normalize				π mm-	mrad	

Acceleration System

Total linac length	:	1.2		m
No. sections : 1	; len	gths :	1.2	m
Field mode : $\pi/2$; frec	quency :	1.3	GHz
Wave type : SW	; filli	ng time :	2	μs
vg/c range :	;Q	:	800	0
Shunt impedance	:	45		MΩ/m
Iris : aperture : diameter	:	24		mm
thickness	5:			mm
Attenuation/section	:			Np
Power units, Number :	1	type :	Klystr	on
RF power peak : 20	MW;	mean :	50	kW

Focusing System

Type, No. of elements, and spacing : One solenoid around first several cells of accelerator

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 2000No. of particles/bunch : $6 - 40 \times 10^9$ Bunch separation : 10 ns

		Normal Operation	Max, or Design	
Final energy :	:	0.017	0.02	GeV
Accel gradient :	:	19	22	MeV/m
$\Delta E/E$ (FWHM)	:	0.3	0.3	%
Rep. rate	:	1	60	Hz
Pulse length :	:	20	20	μs
Beam intensity	:			Å
Norm. emit. (1σ) :	:	2	10	π mm-mrad

OTHER RELEVANT INFORMATION

- * Advanced Free-Electron Laser
- (1) For 1 nC

References

- [1] Sheffield, R.V. et al., (1992) Nucl. Inst. and Methods in Phys. Res. A318, 282 - 289.
- [2] Nguyen, D.C. et al., (1995) Nucl. Inst. and Methods in Phys. Res. A 358, 27 - 30.

Name of Linac	: DARHT *	
Function	: **	
Institution and address	: Los Alamos National Laboratory, Los	s Alamos, NM 87545, USA
Person in charge	:	
Name of person supplying these data	: Michael J. Burns	
	e-mail: burns_michael_j@lanl.gov	
	tel. : $+15056675069$	fax: +1 505 667 8316

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 05,	/1	994	;	first beam : 01/1999	
Present status	:	(1)			
Cost of facility	:	(2)			
Present linac staff	:	N/A			
Present yearly open	ra	tion tim	e:	N/A	h

LINAC PARAMETERS

Electron Sources

Types :	(3)	;	energy :	N/A	keV
Beam inter	nsity (peak)	:		(4)	Α
Normalize	d emittance (1	σ):	(5)	π mr	n-mrad

Injector

Injector					
Longitudi	nal mate	ching : N/A	!		
Output :	3.75	MeV;	intensity :	4000	Α
Pulse wid					
Normalize	ed emitt	ance (1σ) :	(5)	πmm-r	nrad

Acceleration System (7)

Total linac length	:	33.5	m
No. sections : 8	;	lengths : 3.65	m
Field mode : N/A	;	frequency : N/A	GHz
Wave type : N/A	;	filling time : (8) 5	μs
v_g/c range : N/A	;	Q : < 5	
Shunt impedance	:	(9) ~ 0.001 N	1Ω/ m
Iris : aperture : diameter	:	none	mm
thickness	:	N/A	mm
Attenuation/section	:	N/A	Np
Power units, Number :	ź	32 type: (10)	
RF power peak : N/A	M	W; mean : <i>N/A</i>	kW

Focusing System

Type, No. of elements, and spacing : (11)

Beam Pulse Structure (if applicable)

No. of bunches/pulse : see notes No. of particles/bunch : 1.5×10^{15} (4kA, 60 ns) Bunch separation : see notes

		Normal	Max, or	
		Operation	Design	
Final energy	:		0.02	GeV
Accel gradient	:		0.5	MeV/m
$\Delta E/E$ (FWHM)	:		< 1rms	%
Rep. rate	:		see below	Hz
Pulse length	:		0.06	μs
Beam intensity	:		4000	Α
Norm. emit. (10)	:		(6)	π mm-mrad

OTHER RELEVANT INFORMATION

- * Dual-Axis Radiographic Hydrodynamic Test facility
- ** Two high-current electron beam accelerators to generate bremsstrahlung x-ray pulses for flash (-60 ns) radiography of very dense (areal mass - 100's g/sq.cm) objects moving very quickly (object velocities of many mm/microsecond)
- (1) Construction resumed after 15-month suspension
- (2) 106 MUSD (1st accel. all facilities) 187 MUSD (full, 2-machine facility)
- (3) cold-cathode field emitter or ArF eximer-laser driven photocathode
- (4) ~ 60-65 A/sq. cm
- (5) Normalized 4 × rms 700-1000 π mm-mrad (Lapostolle)
- (6) 60 ns flat-top, single square-wave pulse
- (7) Linear Induction Accelerator
- (8) Pulsed power charging time
- (9) (peak ~800MHz)
- (10) Water Blumlein PFLs
- (11) quadrufilar-wound, square-hollow Cu tube solenoids with iron homogonizer rings at injector anode, within 64 accelerating cells, and within HEBT. Peak field about 2.8 kG, 5.5 kG, iron-clad final focus solenoid for ~ 1.2 mm (2 rms) beam diameter on bremsstrahlung conversion target

DARHT will consist of two LIAs oriented perpendicular to each other to generate either two simultaneous radiographs containing 3D information or two time-sequenced radiographs.

The first machine (operational in 1999) will generate a single pulse. The second machine (operational in 2001) may generate 4 or more pulses at 2-5 MHz rep. rate.

Name of Linac	: DARHT ITS *
Function	: Engineering prototype for DARHT **
Institution and address	: Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Person in charge	:
Name of person supplying these d	ata : Michael J. Burns
	e-mail: burns_michael_j@lanl.gov
	tel. : +1 505 667 5069 fax : +1 505 667 8316

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 11/	(1990	; first beam : 05/	/1991
Present status	: (1) Oper	ational	
Cost of facility	: (2) 10 M	'USD	
Present linac staff	:~8		
Present yearly oper	ation time	: ~ 1000	h

LINAC PARAMETERS

Electron Sources

Types :	(3)	;	energy :	N/A	keV
Beam inter	nsity (peak)	:		(4)	Α
Normalize	d emittance (10)):	(5)	π mn	n-mrad

Injector

Longitudi	nal mate	ching: <i>N/A</i>	1		
Output :	<i>3.75</i>	MeV;	intensity :	4000	Α
Pulse wid	th, spac	ing :	(6)		
Normalize	ed emitta	ance (1σ) :	(5)	πmm-r	nrad

Acceleration System (7)

Total linac length	:	3.65		m
No. sections : 1	; len	igths :	3.65	m
Field mode : N/A	; fre	quency :	N/A	GHz
Wave type : N/A	; fill	ing time :	5	μs
vg/c range : N/A	; Q	:	< 5	5
Shunt impedance	:	(9) ~ 0.0	01	MΩ/m
Iris : aperture : diameter	:	none		mm
thickness	:	N/A		mm
Attenuation/section	:	N/A		Np
Power units, Number :	4	type :	(10)) -
RF power peak : N/A	MW;	mean :	N/A	kW

Focusing System

Type, No. of elements, and spacing : (11)

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 No. of particles/bunch : 1.5×10^{15} (4 kA, 60 ns) Bunch separation : single pulse

	Normal	Max, or	
	Operation	Design	
Final energy	: 0.0055	0.006	GeV
Accel gradient	: 0.5	0.5	MeV/m
$\Delta E/E$ (FWHM)	: (12)	(12)	%
Rep. rate	: single shot	single shot	Hz
Pulse length	: 0.062	0.06	μs
Beam intensity	: 3000-4000	3000	Â
Norm. emit. (1σ)	: (5)	(5)	π mm-mrad

- * Integrated Test Strand
- ** Dual-Axis Radiographic Hydrodynamic Test Facility
- (1) See comment on original
- (2) include 3.5 MUSD building
- (3) cold-cathode field emitter or ArF eximer-laser driven photocathode
- (4) ~ 60-65 A/cm^2
- (5) Normalized 4 × rms 700-1000 πmm-mrad (Lapostolle)
- (6) 60 ns flattop, single square-wave pulse
- (7) Linear Induction Accelerator
- (8) Pulsed power charging time
- (9) (peak ~ 800 MHz)
- (10) Water Blumlein PFLs
- (11) quadrufilar-wound, square-hollow Cu tube solenoids with iron homogonizer rings at injector anode, within 8 accelerating cells, and within HEBT. Peak field about 1.2 kGauss.
- (12) 0.05 % (rms) Operation < 1 % (rms) Design

Name of Linac	: Subpicosecond High-Brightness A	ccelerator Facility				
Function	: Short bunch compression / plasma	Short bunch compression / plasma interaction experiments				
Institution and address	: Los Alamos National Laboratory,	Los Alamos National Laboratory, Los Alamos, NM 87545, USA				
Person in charge	: B. Carlsten	: B. Carlsten				
Name of person supplying these da	ata : B. Carlsten					
	e-mail: bcarlsten@lanl.gov					
	tel. : +1 505 667 5657	fax : +1 505 667 8207				

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 10/1994	; first beam : 04/19	95
Present status : Opera	iting	
Cost of facility : $0.5 M$	USD (1995)	
Present linac staff : 1 man	-year	
Present yearly operation tin	ne: 500	h

LINAC PARAMETERS

Electron Sources

Types : Photoinjector	;	energy :		keV
Beam intensity (peak)	:		1000	Α
Normalized emittance (10	5):	5	π mm	-mrad

Injector

Longitudinal ma	tching :				
Output :	MeV;	intensity :	Α		
Pulse width, spacing :					
Normalized emi	ttance (1σ)	:	π mm-mrad		

Acceleration System

Total linac length	:	0.	5		m
No. sections : 1	;	lengths	:	0.5	m
Field mode : $\pi/2$;	frequency	:	1.3	GHz
Wave type : SW	;	filling time	:	2	μs
vg/c range :	;	Q	:	1000	0
Shunt impedance	:	~	20]	MΩ/m
Iris : aperture : diameter	:				mm
thickness	:				mm
Attenuation/section	:				Np
Power units, Number :		1 type	:	Klystr	on
RF power peak : 5	M	W; mean	:	0.050	kW

Focusing System

Type, No. of elements, and spacing : Quadrupoles 8 (all electromagnets)

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: 10 - 20
No. of particles/bunch	: ~ 10''
Bunch separation	: 9 ns

	Normal Operation	Max, or Design	
Final energy :	0.008		GeV
Accel gradient :	20		MeV/m
$\Delta E/E$ (FWHM) :	1		%
Rep. rate :	1		Hz
Pulse length :	10		μs
Beam intensity :	(1) 1000		Α
Norm. emit. (1σ) :	5		π mm-mrad

OTHER RELEVANT INFORMATION

Uses a chicane to compress an initial 10 - 20 ps bunch to ~ 1 ps.

(1) peak

Name of Linac: LEDA*Function: TechnologyInstitution and address: Los Alamos National Laboratory, Los Alamos, NM 87545, USAPerson in charge: J. David SchneiderName of person supplying these data:J. David Schneidere-mail:: jdschneider@lanl.govtel.: +1 505 667 5454fax: +1 505 667 4344

HISTORY AND STATUS

Const. started : 04/01/1996 ; first beam : Present status : Design & construction Cost of facility : 165 MUSD Present linac staff : 65 Present yearly operat. time : 0 (except injector) h

LINAC PARAMETERS

Ion Source

Type : Microwave (2.45 GHz)							
Output : 13	10	mA	at	75	keV		
Pulse length :	CW	μs;	rep.	rate :	Hz		
Normalized emi	ttance (1	σ):	0	.2	π mm-mrad		

Pre-accelerator (including RFQ)

Types :	RFQ		; lengt	hs :	8.0	m
Output :	100	mA	at	670	0	keV
Pulse length:	CW	μs;	rep. ra	te :		Hz
Normalized en	ittance (lσ) :	0.2		πmm-	mrad

Longitudinal Matching

Type : In	tegrated into struci	tures	
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	23	m; No. c	of tank	is: 4
Tank diameters	:				m
Number of drift-tub	es :				
Drift-tube lengths	:				mm
Drift-tube diam (ran	ge):				mm
Gap/cell length (ran	ge):		2 or	3	
Aperture diameter	:		mm to)	mm
RF frequency(ies)	:		350 & 700	0	MHz
Field modes	:				
Eff. shunt impedance	e :				MΩ/m
Q	:				
Filling time	:		20		μs
Equilibrium phases	:				
RF rep. rate :		Hz;	pulse :		μs
Beam rate :		Hz;	pulse :		μs
RF power peak : 6	.0	MW;	mean :	6.0	MW

Focusing System

No. elements : type : Electro Quads order : Gradients : to T/m Other :

LINAC PERFORMANCE

	Normal Operation	Max, or Design	
Energy	:	20	MeV
Mean acc. rate	:	1.0	MeV/m
$\Delta E/E$ (FWHM)	:		%
Beam current	:	100	mA peak
Norm. emit. (1 σ)	•	0.2	π mm-mrad

OTHER RELEVANT INFORMATION

* LEDA - Low Energy Demonstration Accelerator

Use of new coupled-cavity drift-tube linac structures.

Approximately 20 MeV output energy.

Name of Linac "Los Alamos Neutron Science Center" (LANSCE) Linac Function(s) High intensity proton beams and H⁻ for Proton Strorage Ring Institution and address Los Alamos National Laboratory, Los Alamos, NM 87545 Person in charge Stanley O. Schriber Name, e-mail, telephone and fax no. of person supplying these data Frank E. Merrill fmerrill@lanl.gov 505-665-1396 505-665-0046 date 5/1/96 Earl W. Hoffman earl@lanl.gov 505-667-7816 505-665-8604 date 5/1/96

HISTORY AND STATUS

LINAC PARAMENTERS

H⁻ Ion Source

Type..H⁻ Converter type surface Plasma Source Output......17...mA at.........80...keV Pulse length.....825...µs; rep. rate.......120...Hz

H⁻ Pre-accelerator (including RFQ)

Type; le	ngthm
Output17mA at	
	0.2πmm-mrad

H⁻Longitudinal Matching

Type	2 Bunchers
Mod	3keV; drift4714mmat201MHz
	6keV: drift1795mmat201MHz

H⁺ Ion Source

Туре	duo-Plasmatron	
Output	30mAat	30keV
	th825µs; rep. rate	

H^+Pre -accelerator (including RFQ)

Туре	CW; length	nm
		750keV
		0.03 <i>π</i> mm-mrad

H⁺ Longitudinal Matching

Type2 Bunchers			
Mod5 keV; drift	5853	mm at 201.25	MHz
16 keV: drift	1795	mm at 201.25	MHz

DTL Focusing System

No. Elements...135...type....Quad....order......FODO...... Gradients.....74.0...to.....5.0...T/m

SCL Focusing System No. Elements...104...type....Quad....order......FDO...... Gradients.....20.0...to....30.0...T/m

LINAC PERFORMANCE

LINACIERIONNA			
Energy Mean Acc. rate ΔE/E (%) H ⁺ Beam current H ⁺ 1-σ norm emit. H ⁻ Beam current	Normal Operation 800 1.0 0.1 17 mA 0.3 11 mA	Max, or Design 800 1.0 0.1	MeV MeV/m FWHM mA peak π mm-mrad mA peak
H^{-} 1- σ norm emit.	0.3		π mm-mrad
Total linac length (No. tanks		DTL 62 4	SCL 731 104
Tank diameters (m No. drift-tubes/cell Drift-tube lengths (Drift-tube dias (mr Gap/cell length Aperture dias. (mn	ý (mm) n)	0.9 165 48-373 160-180 0.16-0.4 15 to 30.0	0.26 4960 n/a n/a 31.8 to 44.5
RF frequencies (M Field modes Eff. shunt imps. (M Q Filling time (µs) Equil. phases RF rep. rate (Hz)	fΩm)	201.25 TM010 50-70 60-75x10 ³ 150 26° 120	805 TM010 25-38 18-25x10 ³ 15 31°- 42° 120
RF pulse (µz) RF pulse (µs) Beam rate (Hz) Beam pulse (µs) RF power peak (M RF mean power (1		120 1035 120 825 3.0 0.26	985 120 825 1.25 0.09

OTHER RELEVANT PARAMS., REFS. ETC.

R. E. O. Ericson, V. W. Hughes and D. E. Nagle, *The Meson Factories*, (University of California Press, Los Angeles, 1991).

M. Stanley Livingston, "LAMPF A Nuclear Research Facility," LA-6878-MS, September 1977.

M. Stanley Livingston, "Origins and History of the Los Alamos Meson Physics Facility," LA-5000.

Name of Linac: PL-2 RFQFunction: Proton, Deuteron accelerationInstitution and address: Los Alamos National Laboratory, Los Alamos, NM 87545, USAPerson in charge: Richard MorgadoName of person supplying these data:Charlene Cappiello
e-mail:ccappiello@lanl.gov
tel.: +1 505 667 7728fax: +1 505 665 3457

h

HISTORY AND STATUS

Const. started :	; first beam : 1994
Present status :	(1)
Cost of facility :	USD 750 000 (1994)
Present linac staff :	None
Present yearly operation	it. time : 200

LINAC PARAMETERS

Ion Source

Type : Duoplasmatron	1			
Output : > 30	mA	at	30	keV
Pulse length :	μs;	rep.	rate :	Hz
Normalized emittance ((10) :	<	50	π mm-mrad

Pre-accelerator (including RFQ)

Types :	RFQ		; leng	ths :	1.92	m
Output :	0.5	mA	at	17	50	keV
Pulse length:	5 - 50	μs;	rep. r	ate :	(2)	Hz
Normalized en					π mm-	mrad

Longitudinal Matching NA

Type :	Ū.		
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System NA

Total linac length	:		m; No. of ta	inks :
Tank diameters	:			m
Number of drift-tubes	:			
Drift-tube lengths	:			mm
Drift-tube diam (range	;):			mm
Gap/cell length (range):			
Aperture diameter	:		mm to	mm
RF frequency(ies)	:			MHz
Field modes	:			
Eff. shunt impedance	:			MΩ/m
Q	:			
Filling time	:			μs
Equilibrium phases	:			•
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak :		MW;	mean :	MW

Focusing System		
No. elements :		
type :	order :	
Gradients :	to	T/m
Other:		

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy :	1.75	MeV
Mean acc. rate :		MeV/m
$\Delta E/E$ (FWHM) :	2.790	%
Beam current :	25	mA peak
Norm. emit. (1σ) :	< 50	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Currently on loan to Oak Ridge National Laboratory, located at Western Kentucky University.
- (2) 150 1500

Also capable of deuteron acceleration. Coupled with a beryllium target, it produces neutrons.

Name of Linac :	CRITS RFQ *
Function	Test CW RFQ Operations
Institution and address	AOT Division, LANL *, Los Alamos, NM 87545, USA
	J. David Schneider
Name of person supplying these data:	Joseph Sherman
	e-mail : jsherman@lanl.gov
	tel. : +1 505 667 3511 fax : +1 505 665 2509

HISTORY AND STATUS

Const. started : 06/1993 ; first beam : Present status : Awaiting funding Cost of facility :		No. elements : type : Gradients : Other :	order : to	T/m
Present linac staff :				
Present yearly operat. time :	h	LINAC PERFORMAN	NCE	

LINAC PARAMETERS

Ion Source

Type : Microwave proton source					
Output :	90	mA	at	50	keV
Pulse length :	DC	μs;	rep.	rate :	Hz
Normalized en					π mm-mrad

Pre-accelerator (including RFQ)

Types :	RFQ		; len	gths :	1.47	m
Output :	75	mA	at	(2)	1250	keV
Pulse length:	CW	μs;	rep.	rate :		Hz
Normalized em	ittance (lσ) :	(2)	0.50	πmm-	mrad

Longitudinal Matching

Type:			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:		m; No. of tank	as:
Tank diameters	:			m
Number of drift-tubes	:			
Drift-tube lengths	:			mm
Drift-tube diam (range):			mm
Gap/cell length (range)):			
Aperture diameter	:		mm to	mm
RF frequency(ies)	:			MHz
Field modes	:			
Eff. shunt impedance	:			MΩ/m
Q	:			
Filling time	:			μs
Equilibrium phases	:			
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak :		MW;	mean :	MW

LINAC PERFORMANCE

Focusing System

		Normal Operation	Max, or Design	
Energy	:		1.25	MeV
Mean acc. rate	:		0.82	MeV/m
$\Delta E/E$ (FWHM)	:		5	%
Beam current	:		55	mA peak
Norm. emit. (10)	:		0.4	π mm-mrad

OTHER RELEVANT INFORMATION

* Radiofrequency quadrupole

** Los Alamos National Laboratory

- (1) Estimated
- (2) Design

Linac completed at Chalk River Laboratories, Ontario, Canada.

Name of Linac :	CESR Linac
Function :	Electron filling of CESR Storage Ring
	Cornell University, Wilson Laboratory, Ithaca, NY 14853
	Roy Cutler (of Linac)
Name of person supplying these data :	
	e-mail: RIC@LNS62.LNS.CORNELL.EDU
	tel. : +1 607 255 4882 fax : +1 607 255 8061

HISTORY AND STATUS

0.15 MeV;

8

 $2\pi/3$

TW

(5)

thickness :

Beam intensity (peak)

Injector

Output :

Normalized emittance (1σ) :

Longitudinal matching : (3)

Pulse width, spacing : Normalized emittance (1σ) :

Acceleration System

Iris : aperture : diameter :

Total linac length

No. sections :

Field mode :

Wave type :

vg/c range :

Shunt impedance

Attenuation/section

Power units, Number :

RF power peak : 21 MW;

LINAC PERFORMANCE

Const. started : 1965 ; first beam : (1) Present status : Operating	_	Iax, or Design
Cost of facility : 1.9 MUSD (1966)		0.35 GeV
Present linac staff : ~ 1 man-year	Accel gradient : 10	10 MeV/m
Present yearly operation time : 6000 h	$\Delta E/E$ (FWHM) : 0.25	%
	Rep. rate : 60	Hz
LINAC PARAMETERS	Pulse length : (6)	μs
	Beam intensity :	Α
Electron Sources Types : Triode ; energy : 150 keV	Norm. emit. (1σ) :	π mm-mrad

 π mm-mrad

 π mm-mrad

2856 GHz

Α

Α

m

m

μs

MΩ/m

mm

mm

Np

kW

(2)

intensity :

; lengths

; Q

:

:

8

; frequency :

; filling time :

45

•

(5)

(5)

(5)

(5)

type :

mean:

: 3×3m;

(4)

(5)

Klystron

6

OTHER RELEVANT INFORMATION

All eight sections used to accelerate electrons for CESR filling. For positrons, W target is inserted after section 4 (150 MeV). Positrons accelerated by sections 5 - 8 to 200 MeV. 7 - 21 μ bunch / pulse for either electron or positron operation.

- (1) 1966 electrons, 1976 positrons
- (2) 5×10^{10} (pos.), 3×10^{9} (elec.)
- (3) Two 214 MHz subharmonic Bunchers
- (4) 0.55 0.82 μs
- (5) Linac consists of 4 different types of sections all constant gradient (average 10 MeV/m). Section 1 - SLAC type Sections 2 - 8 and energy compressor - Varian

(6) RF pulse length 2.2 μ s on the flat-top

Focusing System

Type, No. of elements, and spacing : Solenoid coils for injector and section 1. Quad doublets or triplets between other sections.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 7 - 21 No. of particles/bunch : 2×10^9 Bunch separation : 14 - 220 ns

POSITRON LINAC

Name of Linac	:	CESR Linac
Function	:	Electron Filling of CESR Storage Ring
Institution and address	:	Cornell University, Wilson Laboratory, Ithaca, NY 14853, USA
Person in charge	:	Roy Cutler
Name of person supplying these data	:	Roy Cutler
		e-mail: RIC@LNS62.LNS.CORNELL.EDU
		tel. : +1 607 255 4882 fax : +1 607 255 8061

HISTORY AND STATUS

Differences with respect to corresponding e^{-1} linac, are given in space to right.

Primary Beam (e⁻) at Conversion Target

Energy	:	150	MeV
Radius (10)	:	2 - 3	mm
Beam intensity	:	(1)	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	W	
Туре	:	Stationary	
Thickness (rad.length)	:	2	χ
Diameter	:	20	mm
Mean deposited power	:	0.3	kW
Solenoidal field ^{a)}	:	0.24 T, 10 m long, D	С
Matching device RF sections ^{a)}	: :	λ/4 0.95 T Pulsed Sole (2)	noid

a) key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e linac, are given in space to right.

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Final energy	:	0.2		GeV
Accel gradient	:	10		MeV/m
$\Delta E/E$ (FWHM)	:	1		%
Rep. rate	:	60		Hz
Pulse length	:	(3) 2.2		μs
Yield (fin.en)	:	1.3 ×10 ⁻²		e⁺/e⁻x GeV
Beam intensity	:	(4)		μA peak
Norm. emit. (1σ)	:			π mm-mrad

OTHER RELEVANT INFORMATION

- (1) 3×10^{10} Electrons / microbunch
- (2) $4 \times 5 m + 1 \times 5 m$ energy compressor
- (3) RF pulse length on the flat-top
- (4) $6 \times 10^7 e^+ / microbunch$

7 - 21 microbunch / pulse

Energy compression at output to reduce energy spread by $\sim 10 X$. Consists of an achromatic bend and 5 m long linac section operated at $\sim 5 MeV$ (peak).

ION LINAC

Name of Linac Function Institution and address Person in charge Name of person supplying these data	e-mail: John.noe@sunysb.edu
	tel. : +1 516 632 8156 fax : +1 516 632 8573

HISTORY AND STATUS

Const. started : Present status	1980 • Full_time	; first beam : Operation	1983
Cost of facility	: 4 MUSD	(1982)	
Present linac staff	: About 5 ((FTE)	
Present yearly ope	rat. time :	About 4000	h

LINAC PARAMETERS

Ion Sources

No. of sources :	1	
Types of source :	Negative-ion sputter	
Species of ions :	Protons to Bismuth	
Range of currents :	0.1 - 10	μAe
Range of output energy	gies : (1) 200 - 400	keV/u
Pulse length : cw	• • •	Hz
Normalized emittance	$e(1\sigma): 5 - 10 \pi mr$	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	FN tandem Van de Graaf	<i>f/14</i> m
Output currents :	≤10	μAe
Output energies :		keV/u
Frequency : cw	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emitta	nce (1σ) : ~ 1.0 π r	nm-mrad

Longitudinal Matching

Type : (2)

Mod.	500	keV; drift 8000	mm at	150	MHz
		keV; drift	mm at		MHz

Accelerating System

Total linac length :	16	m; N°. of ta	nks : <i>(3)</i>
Tank diameters :			m
Number of drift-tubes :	Reso	nators = 16	+ 24
Drift-tube lengths :			mm
Drift-tube diam (range):			mm
Gap/cell length (range):			
Aperture diameter :	19	mm to	mm
RF frequency(ies) :		150.4	MHz
Field modes :		βλ / 2	
Eff. shunt impedance :			MΩ/m
Q :		~ 10 ⁸	
Filling time :		10	μs
Equil. phases : - 15°; a	accel. 1	rate	MeV/u-m
RF rep. rate : cw	Hz;	pulse :	μs
Beam rate : cw	Hz;	pulse :	μs
RF power peak : (4)	MW;	mean :	MW

Focusing System

No. elemen			
type :	(5)	order :	
Gradients :		to	T/m
Other:			

Charge Stripping (Typical)

Type(s): $5 \mu g/cm^2$	¹ carbon afi	er tandem	
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Li6 - Zr90		
Energy	:	≤12		MeV/u
$\Delta E/E$ (FWHM)	:	0. I		%
Mean acc. rate	:	~ 0.4		MeV/u-m
Beam current	:	0.01 - 1.0	(6) 3	μ Ae peak
Norm. emit. (1σ)	:	~ 0.5		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Protons	1 - 20 MeV	Tandem only
Gold	50 - 100 MeV	without linac

OTHER RELEVANT INFORMATION

- (1) Unit = keV
- (2) Double-drift harmonic buncher & s/c resonator
- (3) Cryostats = 12
- (4) cw = 7 kW total
- (5) Room temperature quadrupole doublet
- (6) µAe cw

Linac has 16 superconducting QUARTER-WAVE RESONATORS with β opt = 0.07 c and 24 s/c split-loop resonators with β opt = 0.10 c. Energy gain per resonator is approx. 500 keV per unit charge. Superconductor is lead-tin on copper.

References

[1] J.W. Noé, Rev. Sci. Instr. 57, 757 (May 1986)

Name of Linac :	Gaerttner
Function :	Electron LINAC for Various Research Experiments (1)
Institution and address :	Rensselaer Polytechnic Institute, Tibbits Ave., Troy, NY 12180, USA
Person in charge :	Dr Robert C. Block, Director
Name of person supplying these data :	Peter J. Brand
	e-mail: brandp@rpi.edu
	tel. : +1 518 276 6406 fax : +1 518 276 4007

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	58	; first beam : 1960	
Present status	: Operati	ing	
Cost of facility	:		
Present linac staff	: 4 man-y	years	
Present yearly open	ration time	e: 700	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	75	keV
Beam inte	nsity (peak)	:		0 - 40	Α
Normalize	d emittance (1	σ):		π mm	i-mrad

Injector

Longitudinal matching :						
Output :	MeV;	intensity :	Α			
Pulse width, spacing :						
Normalized emitt	ance (1 σ)	:	π mm-mrad			

Acceleration System

Total linac length	:		20.1		m
No. sections : 8	;	lengths	:	1	m
Field mode : $\pi/4$;	frequenc	у:	1.3	GHz
Wave type : TW	;	filling tin	ne:	1.25	μs
vg/c range :	;	Q	:		
Shunt impedance	:		12.0		MΩ/m
Iris : aperture : diameter	:				mm
thickness	:				mm
Attenuation/section	:		0.36		Np
Power units, Number :	8	8 tyj	pe:	Klyst	ron
RF power peak : 10	М	W; mea	an :	15	kW

Focusing System

Type, No. of elements, and spacing : Axial magnetic field incorporated in accelerator section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	(2)	0.090	GeV
Accel gradient	:	7.5	11	MeV/m
$\Delta E/E$ (FWHM)	:	10	10	%
Rep. rate	:	(3)	720	Hz
Pulse length	:	0.015 - 5	5	μs
Beam intensity	:	≤3		Α
Norm. emit. (10)	:			π mm-mrad

- (1) Neutron cross-section, isotope generation, electronic testing, gemstone coloration and other research needs, as required.
- (2) Two extraction ports are available. One provides energy from 5 to 25 MeV, the second from 25 to > 60 MeV.
- (3) Single to 720

Name of Linac :	NSLS *
Function	Electron Injector for NSLS Booster Synchrotron
	Brookhaven National Laboratory, Upton, NY 11973-5000, USA
	Eric Blum
Name of person supplying these data :	Eric Blum
	e-mail: BLUM@BNLLS1.BNL.GOV
	tel. : +1 516 344 2438 fax : +1 516 244 3029

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1978 ; first	beam : 1980)	
Present status : Operating			
Cost of facility : Unknown			Final energy
Present linac staff : 2			Accel gradient
Present yearly operation time :	7100	h	ΔE/E (FWHM
			Ren rate

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		~1	Α
Normalize	ed emittance (10)	:	~ 100	π mn	n-mrad

Injector

Longitudinal matching : S-Band Prebuncher						
Output :	0.2	MeV;	intensity :	Α		
Pulse width, spacing : $2.5 \mu sec$, $1.2 sec$						
			• • • • •	π mm-mrad		

Acceleration System

neccici ation bystem		
Total linac length	: 9.5	m
No. sections : 3	; lengths :	4.5, 3, 3 m
Field mode : $2\pi/3$; frequency :	2.856 GHz
Wave type : TW	; filling time :	1.2, 0.8 µs
v _g /c range :	;Q :	13000
Shunt impedance	: 53	MΩ/m
Iris : aperture : diameter	:	mm
thickness	:	mm
Attenuation/section	:	Np
Power units, Number :	<i>3</i> type :	Klystrons
RF power peak : 21	MW; mean:	0.044 kW

Focusing System

Type, No. of elements, and spacing : *None*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 7 No. of particles/bunch : 3×10^{10} Bunch separation : 95 ns

		Normal Operation	Max, or Design	
Final energy	:	0.12	0.12	GeV
Accel gradient	:	12.6	12.6	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	0.83	2	Hz
Pulse length	:	2.5	2.5	μs
	:			Α
Norm. emit. (10)	:	1	1	π mm-mrad

OTHER RELEVANT INFORMATION

* National Synchrotron Light Source injector Linac

The linac was built from a Varian buncher section that was originally installed at Cornell University and two SLAC sections.

Name of Linac	:	ATF *
Function	:	Users's Facility for Accelerator and Beam Physics
Institution and address	:	Brookhaven National Laboratory, Upton, NY 11973-5000, USA
Person in charge	:	Ilan Ben-Zvi
Name of person supplying these data	ι:	Ilan Ben-Zvi
		e-mail : ILAN@BNL.GOV
		tel. : +1 516 3445143 fax : +1 516 3443029

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1987	; first beam : 1991
Present status : Op	erating
Cost of facility : 5 M	MUSD (1993)
Present linac staff : 8 n	nan-years
Present yearly operation	time: 1100 (1995) h

LINAC PARAMETERS

Electron Sources

Types: Photoinjector	;	energy :	4500	keV
Beam intensity (peak)	:		100	Α
Normalized emittance (10	5):	2	π mm	n-mrad

Injector

Longitudinal ma	tching : In	$iector \equiv Source$	2
Output :		intensity :	Α
Pulse width, spa	acing :		
Normalized emi	ttance (10)	:	π mm-mrad

Acceleration System

Total linac length	:	6	m
No. sections: 2	;	lengths :	<i>3.05</i> m
Field mode : $2\pi/3$;	frequency :	2.856 GHz
Wave type : TW	;	filling time :	0.83 µs
v_{g}/c range : (1)	;	Q :	13000
Shunt impedance	:	52	MΩ/m
Iris : aperture : diameter	:	<i>19.2</i>	mm
thickness	:	5.842	mm
Attenuation/section	:	0.57	Np
Power units, Number :		l type:	Klystron
RF power peak : 25	M	W; mean :	0.25 kW

Focusing System

Type, No. of elements, and spacing : 1 Solenoid following photoinjector. Nothing in linac.

Beam Pulse Structure (if applicable)

No. of bunches/pulse	:	Variable 1-200
No. of particles/bunch	:	Variable up to 3×10^{9}
Bunch separation	:	12.5 ns or 25 ns

		Normal Operation	Max, or Design	
Final energy :	:	0.05	0.07	GeV
Accel gradient :	:	8	11	MeV/m
ΔE/E (FWHM) :	:	0.5	0.2	%
Rep. rate :	:	1-3	6	Hz
Pulse length :	:	2.5	4	μs
Beam intensity :	:	100	300	Α
Norm. emit. (1o):	:	2	1	π mm-mrad

OTHER RELEVANT INFORMATION

- * Accelerator Test Facility
- (1) 0.0204 0.0065

The ATF has 3 beam lines and 15 User Experiments approved by a peer review committee.

High power (multi GW) laser beams, synchronized with the e^- beam are provided.

More information is on the World Wide Web from http://www.BNL.GOV. Select the Accelerator Test Facility link.

Name of Linac: BrookhaFunction: H' injecInstitution and address: BrookhaPerson in charge: D.I. LowName of person supplying these data : J. Alessi

Brookhaven 200 MeV H⁻ Linac
H⁻ injector for the AGS Booster
Brookhaven National Laboratory, Upton, NY 11973-5000, USA
D.I. Lowenstein / T. Roser
J. Alessi

e-mail: ALESSI@BNL.GOV
tel.: +1 516 344 7563
fax: +1 516 344 5011

HISTORY AND STATUS

Const. started : 04/1967 ; first beam : 11/1970Present status : OperationalCost of facility : 22.4 MUSD (1970)Present linac staff : 9Present yearly operat. time : 4000 h

LINAC PARAMETERS

Ion Source

Type : Magnetron H ⁻					
Output : 80 - 100	mA	at	35		keV
Pulse length : 500	μs;	rep.	rate :	7.5	Hz
Normalized emittance (1			37	πmm	mrad

Pre-accelerator (including RFQ)

Types :	4-1	ane RF	2	; length	s:	1.6	m
Output	:	65	mA	at	750)	keV
Pulse leng	th:	500	μs;	rep. rat	e :	7.5	Hz
Normalize	d em	ittance (1σ) :	0.4		πmm-	mrad

Longitudinal Matching

Type :	Three	e buncher (5.9 n	n transport)	
Mod.	(1)	keV; drift	mm at	MHz
		keV; drift	mm at	MHz

Accelerating System

Total linac length :	144.	m; No. of	tank	s: 9
Tank diameters :		0.94 - 0.84	1	m
Number of drift-tubes :		277		
Drift-tube lengths :		47 - 446		mm
Drift-tube diam (range):		180 - 160		mm
Gap/cell length (range):		0.20 - 0.4	47	
Aperture diameter :	20	mm to	40	mm
RF frequency(ies) :		201.25		MHz
Field modes :		TM010		
Eff. shunt impedance :		50.15		MΩ/m
Q :	5	3000 - 400	00	
Filling time :		< 100µs		μs
Equilibrium phases :		-32°		•
RF rep. rate : 7.5	Hz;	pulse :	600	μs
Beam rate : 7.5	Hz;	pulse : .	300	μs
RF power peak : 30.0	MW;	mean: ().14	MW

Focusing System

No. elements	: 286						
type :	Pulsed	order :	FODO				
Gradients :	80	to	7	T/m			
Other : Pulsed flat-top ~ 650 μ s							

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy :	200	MeV
Mean acc. rate :	1.45	MeV/m
$\Delta E/E$ (FWHM) :	±0.2	%
Beam current :	35 - 40	mA peak
Norm. emit. (1σ) :	1.9	π mm-mrad

OTHER RELEVANT INFORMATION

 Mod. 28 keV; drift: 2986 mm at 201.25 MHz Mod. 12 keV; drift: 1454 mm at 201.25 MHz Mod. 24 keV; drift: 729 mm at 201.25 MHz

Original machine described in Part. Accel. 9 (1979), 1-156.

Converted to H^* acceleration in 1982.

Converted from Cockcroft-Walton to RFQ in 1989.

AGS Booster accepts approx. 4 pulses/3 sec; all remaining pulses go to Brookhaven Linac Isotope Producer (BLIP).

Beam Pulse width will be increased to 500µs during 1996 running period.

Name of Linac	: Duke Linac
Function	: Storage Ring Injection, Beam Transport Experiments, Free-Electron
Institution and address	: Duke University, PO Box 90305, Durham, NC 27708-0319, USA
Person in charge	: Patrick O'Shea
Name of person supplying these data	: Patrick O'Shea
	e-mail : oshea@fel.duke.edu
	tel. : +1 919 660 2652 fax : +1 919 660 2671

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : (1)	; first beam	: 10/1994
Present status	: Operational	
Cost of facility	: (1)	
Present linac staff	:	
Present yearly ope	ration time : 50	0 h

LINAC PARAMETERS

Electron Sources

Types :	(2)	;	energy :	keV
Beam inter	nsity (peak)	:		Α
Normalize	d emittance (1	lσ):		π mm-mrad

Injector

Longitudinal mate	ching : <i>(2)</i>				
Output :	MeV;	intensity :	Α		
Pulse width, spacing :					
Normalized emitt	ance (1σ) :		π mm-mrad		

Acceleration System

Total linac length		:	4	14		m
No. sections:	11	;	lengths	:	3.05	m
Field mode : 2	π/3	;	frequency	:	2.856	GHz
Wave type : 7	ſW	;	filling time	:	0.8	μs
v _o /c range :	(3)	;	Q	:	1300	0
Shunt impedance		:	-	58]	MΩ/m
Iris : aperture : diar	neter	:	26.22	- 19	9.23	mm
thic	kness	:	5.	84		mm
Attenuation/section	l	:	0.	57		Np
Power units, Num	ber :	ź	3 type	:	Klystr	on
RF power peak :	32 N	Л	W; mean	:	0.32	kW

Focusing System

Type, No. of elements, and spacing : Quad doublets spaced every 4 accelerator sections

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: 100 - 3000
No. of particles/bunch	: 10 ⁸ - 10 ⁹
Bunch separation	: 350 ps

		Normal	Max	, or	
		Operation	Desi	ign	
Final energy	:	(4) 0.280	(4) (.295	GeV
Accel gradient	:	6.4	б.	7	MeV/m
$\Delta E/E$ (FWHM)	:	0.1	0.	1	%
Rep. rate	:	2	4	5	Hz
Pulse length	:	0.03	1	!	μs
Beam intensity	:	0.04	0.	2	Α
Norm. emit. (10):		1	0	π mm-mrad

- (1) The linac began its life as the MkIII linac at Stanford University in the early 1960s. The accelerator sections are from some of the early production runs of the SLAC constant gradient structures. New rf, vacuum and magnet systems were added at Duke. Therefore, a construction cost is difficult to estimate. Installation of the linac at Duke began in 1993.
- (2) The electron source/injector is a single-cell rf thermionic gun with α-magnet for longitudinal matching. The cathode material is LaB₆. The gun operates at a nominal energy of 1 MeV.
- (3) 0.0204 0.0065
- (4) The linac sits in a 150m long tunnel, and will be extended to reach 1.2 GeV. An upgrade to 500 MeV is currently underway. A description of the linac can be found in a paper by P.G. O'Shea et al., to appear in the Proceedings of the 1995 IEEE Particle Accelerator Conference, Dallas, May 1995.

Name of Linac: MKIII FEL Linac-DriverFunction: Driver for mid-infrared MKIII FELInstitution and address: Duke University, FEL Lab., PO Box 90305, Durham, NC 27708-0319, USAPerson in charge: Prof. John M.J. Madey, DirectorName of person supplying these data: John M.J. Madeye-mail :
tel.: +1 919 660 2643fax : +1 919 660 2671

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1982 ; first beam : 1984		
Present status : Operational		
Cost of facility : (1) 250 KUSD		Final energy
Present linac staff : 4		Accel grad
Present yearly operation time : 2500	h	ΔE/E (FW
		Rep. rate
LINAC PARAMETERS		Pulse leng

Electron Sources

Normalized emittance (1σ)	:	2×8	π mm	n-mrad
Beam intensity (peak)	:		0.6	Α
Types : Microwave Gun	;	energy :	860	keV

Injector (2)

Longitudinal mat	ching : (3)			
Output :	MeV;	intensity :	(4) 40	Α
Pulse width, space	cing :	-		
Normalized emit	tance (1 σ):	2 × 8	πmm-r	nrad

Acceleration System (5)

Total linac length	:		m
No. sections : 1	; lengths	:	3 m
Field mode :	; frequency	:	GHz
Wave type :	; filling time	:	μs
vg/c range :	;Q	:	•
Shunt impedance	:		MΩ/m
Iris : aperture : diameter	:		mm
thickness	:		mm
Attenuation/section	:		Np
Power units, Number :	<i>l</i> type	:	Klystron
RF power peak : 30 N	MW; mean	:	9 kW

Focusing System

Type, No. of elements, and spacing : Quadrupole, triplet at input to linac, doublet pair to match into FEL

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 2×10^4 No. of particles/bunch : 5×10^8 Bunch separation : 350 ps

		Normal Operation	Max, or Design	
Final energy :	:	0.043	0.045	GeV
Accel gradient :	:	14		MeV/m
$\Delta E/E$ (FWHM) :	:	0.3		%
Rep. rate :	:	30		Hz
Pulse length :	:	8		μs
Beam intensity :	:	0.25		Â
Norm. emit. (1 σ):		(6)		π mm-mrad

- (1) Linac only
- (2) Integrated microwave thermionic gun
- (3) α -magnet momentum analyzer/bunch compressor
- (4) Peak
- (5) Acceleration system = SLAC-type
- (6) Vertical : 2 Horizontal : 8

Name of Linac	ORELA*
Function	Electron Linac for Production of Neutrons and Slow Positrons
Institution and address	Oak Ridge National Lab, Bldg. 6010, MS-6354, Oak Ridge, TN 37831, USA
Person in charge	D.C. Larson
Name of person supplying these data	T.A. Lewis
	e-mail : lewista@ornl.gov
	tel. : +1 423 574 4594 fax : +1 423 576 8746

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	56	; first beam : 1	969
Present status	Operati	ing	
Cost of facility	4.8 MU	SD (1969)	
Present linac staff	2		
Present yearly oper	ation time	e: 1600	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	150	keV
Beam inte	nsity (peak)	:		60	Α
Normalize	ed emittance (1	lσ):		π mm	n-mrad

Injector

Longitudinal mat	ching : (1))	
Output :	MeV;	intensity :	Α
Pulse width, spa	cing :		
Normalized emit	tance (1o)	:	π mm-mrad

Acceleration System

Total linac length	:	10	5.4		m
No. sections : 4	;1	lengths	:	4.1	m
Field mode : $2\pi/3$; 1	frequency	:	1.3	GHz
Wave type : TW	; 1	filling time	:	1.85	μs
v_{p}/c range : 0.007	;(Q	:		
Shunt impedance	:				MΩ/m
Iris : aperture : diameter	:	Var	iabi	le	mm
thickness	:				mm
Attenuation/section	:	0.	41		Np
Power units, Number :	4	type	:	Klysti	ron
RF power peak : 24	M	W; mean	:	65	kW

Focusing System

Type, No. of elements, and spacing : Solenoid over LINAC length.

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: NA
No. of particles/bunch	: NA
Bunch separation	: NA

		Normal		Max, or		
		Operation		Design		
Final energy	:	0.140		0.178		GeV
Accel gradient	:	10		10		MeV/m
$\Delta E/E$ (FWHM)	:					%
Rep. rate	:	to 1000		to 1000		Hz
Pulse length	:	0.002-0.05	().002-0.05		μs
Beam intensity	:	15		25		Α
Norm. emit. (10)):				π m	ım-mrad

OTHER RELEVANT INFORMATION

* Oak Ridge Electron Linear Accelerator

(1) Buncher part of first section

Linac used to produce intense, pulsed bunches of neutrons at repetition rates from 15-1000 Hz. Burst widths from 4-30 ns. Flight tube lengths from 8-200 m. Intensity 10^{14} n/sec. Has attached an intense pulsed source of slow positrons.

Home Page : http://www.phy.ornl.gov/orela/orela.html

Name of Linac	: CEBAF *	
Function	: Electron Linac for Nuclear Physics	
Institution and address	: CEBAF, Newport News, VA 23606, 1	USA
	: A. Hutton, Director of Operations	
Name of person supplying these data		
	e-mail: bisognano@cebaf.gov	
	tel. : + 1 804 249 7521	fax : +1 804 249 5024

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	7 ; first	beam : 1994	
Present status :	Operating		
Cost of facility :	600 MUSD		
Present linac staff :	approx. 500		
Present yearly operation		5000	h

LINAC PARAMETERS

Electron	Sources	

Types :	(1)	;	energy :	100	keV
Beam inter	nsity (peak)	:		< 0.01	Α
Normalize	d emittance (1	lσ):	0.19	π mm	-mrad

Injector

Longitudir	al mat	ching : <i>(2,</i>)		
Output :	45	MeV;	intensity :	0.200	Α
Pulse widt	h, spac	cing : C	W		
Normalize	d emit	ance (1σ)	: 0.25	π mm-1	mrad

Acceleration System

Total linac length	:	(3)	m
No. sections :	; leng	gths :	m
Field mode : π	; freq	uency :	1.497 GHz
Wave type : SW	; filli	ng time :	μs
vg/c range :	;Q	:	(4)
Shunt impedance	:	480.0	MΩ/m
Iris : aperture : diameter	:	70	mm
thickness	s :		mm
Attenuation/section	:		Np
Power units, Number :	320	type :	Klystrons -
RF power peak :	MW;	mean :	5 kW

Focusing System

Type, No. of elements, and spacing : FODO in 2 antiparallel 400 MeV linacs; 9 recirculation arcs for 5 pass acceleration.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : CWNo. of particles/bunch : $< 1.25 \times 10^6$ Bunch separation : $667 \ ps \ or \ 2 \ ns$

		Normal Operation	Max, or Design	
Final energy	:	4	4	GeV
Accel gradient	:	5	5	MeV/m
$\Delta E/E$ (FWHM)	:	104	0.5 104	%
Rep. rate	:	na	na	Hz
Pulse length	:	na	na	μs
		50 × 10 ⁻⁶	200 × 10 ⁻⁶	Â
Norm. emit. (1 σ):	:	1	1	π mm-mrad

- * CEBAF Continuous Electron Beam Accelerator Facility superconducting recirculating linac
- (1) Thermionic or photoemission
- (2) Room temperature chopper & buncher 18 superconducting cavities
- (3) 320 0.5m active length, 5-cell superconducting cavities in 40 8-cavity cryomodules
- (4) 6.6×10^9 loaded (2.4 × 10⁹ from cavity walls)

Name of Linac	: Boeing Linac
Function	: FEL Driver*
Institution and address	: FEL Program, Boeing D&SG, PO Box 3999 M/S 2T-50, Seattle, WA 98124, USA
Person in charge	: John L. Adamski
Name of person supplying these da	ta: A.M Vetter
	e-mail : vetamx00@ccmail.ca.boeing.com
	tel. : + 1 206 544 5922 fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 03/	1996 ; first beam : 03/1997	
Present status :	Under construction	
Cost of facility :		
Present linac staff :	10	
Present yearly operation	ation time :	h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	NA	keV
Beam inter	nsity (peak)	:		(2) 0.10	Α
Normalize	d emittance (1	σ):	7 @ 3.6 n	$C \pi mm$	-mrad

Injector

Injector						
Longitudin	al mate	ching : <i>(3)</i>	l i			
Output :	20	MeV;	intensity :	(2)	0.10	Α
Pulse width	h, spac	ing : 80	ю µs, 33.3	ms		
Normalized	l emitt	ance (1σ)	: 7	π	mm-n	nrad

... . .

Acceleration System

Total linac length	:	(4) 2	20	m
No. sections: 6	; len	igths :	1.5	m
Field mode : $3\pi/4$; fre	quency :	1.3	GHz
Wave type : (5)	; fill	ing time :	5	μs
v_g/c range : 0.003	; Q	:	200	00
Shunt impedance	:	(6) 10	5.6	MΩ/m
Iris : aperture : diameter	:	55		mm
thickness	:	14.:	5	mm
Attenuation/section	:	2.6 dB (p	ower)	Np
Power units, Number :	4	type :	Klyst	ron
RF power peak : 10	MW;	mean :	60	kW

Focusing System

Type, No. of elements, and spacing : Quadrupole triplets between section pairs

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NA No. of particles/bunch : 3.6 nC Bunch separation : 36.9 ns

	Normal Operation	Max, or Design	
Final energy	:	0.100	GeV
Accel gradient	:	6.7	MeV/m
$\Delta E/E$ (FWHM)	:	0.5	%
Rep. rate	:	30	Hz
Pulse length	:	200	μs
Beam intensity	•	0.10	Α
Norm. emit. (1 σ)	•	10	π mm-mrad

OTHER RELEVANT INFORMATION

- * FEL - Free Electron Laser
- (1) RF photocathode (K, Cs Sb)
- (2) During RF macropulse.
- (3) Injector is 20 MeV linac described on separate sheet, interfaced to main linac by a 1.3 GHz linac section and chicane buncher to compress 60 ps bunch to 7 ps.
- (4) Excluding injector described on separate sheet.
- (5) TW const. Z
- (6) $R = V_a^2/2P_c$

References

- [1] J.L. Adamski, et al., "A Kilowatt Class Visible Free Electron Laser Facility," Proc. 1995 Particle Acc. Conf., Dallas TX, May 1-5, 1995.
- [2] D. Dowell and A. Vetter, "Magnetic Pulse Compression using a Third Harmonic RF Linearizer," Proc. 1995 Particle Acc. Conf., Dallas TX, May 1-5, 1995.

Name of Linac : Boeing Linac Function : FEL Driver Injector* Institution and address : FEL Program, Boeing D&SG, PO Box 3999 M/S 2T-50, Seattle, WA 98124, USA Person in charge : John L. Adamski Name of person supplying these data : A.M. Vetter e-mail: vetamx00@ccmail.ca.boeing.com tel. : +1 206 544 5922 fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 06/1	1994	; first beam	: 06/1995	
Present status :	Operatio	onal		
Cost of facility :	-			
Present linac staff :	10			
Present yearly operation	tion time	: 10	00	h

LINAC PARAMETERS

Electron	Sources	
T	(1)	

Types :	(1)	;	energy :	NA	keV
	nsity (peak)	:		(2) 0.25	Α
Normalize	d emittance (1	σ): :	7 @ 3.6 n	$C \pi \mathrm{mm}$	-mrad

Injector

Longitudinal matching : (3) MeV; intensity: (2) 0.25 A Output : 2 Pulse width, spacing : 800 µs, 33.3 ms Normalized emittance (1σ) : 7 π mm-mrad

Acceleration System

Total linac length	:	8.5		m
No. sections : 4	; le	engths :	(4)	m
Field mode : π	; fr	requency :	0.433	GHz
Wave type : SW	; fi	lling time :	5	μs
vg/c range :	;Q	:	2700	0
Shunt impedance	:	(5) 1.	3]	MΩ/m
Iris : aperture : diameter	:	50		mm
thickness	:	166		mm
Attenuation/section	:	NA		Np
Power units, Number :	2	type :	Klystr	on -
RF power peak : 4	MW	; mean :	(6) 100	kW

Focusing System

Type, No. of elements, and spacing : Axial field coils between cavities

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: NA
No. of particles/bunch	: 3.6 nC
Bunch separation	: 36.9 ns

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.02	0.025	GeV
Accel gradient	:	3	3	MeV/m
$\Delta E/E$ (FWHM)	:		1	%
Rep. rate	:	30	30	Hz
Pulse length	:	800	8300	μs
Beam intensity	:	0.1	0.23	A
Norm. emit. (10)	:	9	7	π mm-mrad

OTHER RELEVANT INFORMATION

- * FEL - Free Electron Laser
- (1) RF photocathode ($K_2C_s Sb$)
- (2) During RF macropulse.
- (3) Photocathode is in side wall of a 433 MHz single cell cavity with 3 cm gap; following is a second single cell cavity with a 4.5 cm gap.
- (4) 2 sections of 1 m, 2 sections of 1.7 m.
- (5) $R = V_a^2/2P_a$
- (6) Quantity given is for operation as injector for 100 MeV linac. RF duty factor up to 25% is possible.

References

- [1] T.D. Hayward et al., "A High Duty Factor Electron Linac for FEL," Proc. 1995 Particle Acc. Conf., Dallas TX, May 1-5, 1995.
- [2] J.L. Adamski, et al., "A Kilowatt Class Visible Free Electron Laser Facility," Proc. 1995 Particle Acc. Conf., Dallas TX, May 1-5, 1995.

ION LINAC

Name of Linac	: University of Washington Superconducting Booster
Function	: Post-accelerator for heavy ions
Institution and address	: Nuclear Physics Lab, Box 354290, Univ of Washington, Seattle WA 98195 USA
Person in charge	: Derek W. Storm
Name of person supplying these dat	a: D.W. Storm
	e-mail: storm@npl.washington.edu
	tel. : +1 206 543 4085 fax : +1 206 685 4634

HISTORY AND STATUS

Const. started :	11/1983	; first beam :	10/1987
Present status	: Operati	onal	
Cost of facility	: 9.6 MU	SD (1985)	
Present linac staff	i : 7 people	e, 3 FTE (1)	
Present yearly op	erat. time :	3000	h

LINAC PARAMETERS

Ion	Sources

Ion bouleds		
No. of sources :	3 (all negative	2)
Types of source :	(2)	
Species of ions :	any mass up to	64
Range of currents :	1 - 20	μAe
Range of output energies :	5 - 35	keV/u
Pulse length : CW µs	; rep. rate :	Hz
Normalized emittance (1σ)	: 0.15	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	FN tandem van de Gr	<i>raaff</i> m
Output currents :	1 - 10	μAe
Output energies :	16000 - 1500	keV/u
Frequency : 12.5	MHz; peak RF power	: kW
Pulse length : CW	μs; rep. rate :	Hz
Normalized emittanc	$e(1\sigma): 0.4 - 3 \tau$	t mm-mrad

Longitudinal Matching

Type : Single	supercondu	cting	resonato	r	
Mod. < 500	keV; drift	4m	mm at	162.5	MHz
	keV; drift		mm at		MHz

Accelerating System

Total linac length	: 18	m; N°. of tank	s: 12
Tank diameters	:		m
Number of drift-tubes :		(3)	
Drift-tube lengths			mm
Drift-tube diam (range):			mm
Gap/cell length (range)			
Aperture diameter	: 20	mm to	mm
RF frequency(ies)	:	150	MHz
Field modes		TEM (λ/4)	
Eff. shunt impedance	:	2×10^{5}	MΩ/m
Q		$5 \times 10^7 - 2 \times 10^8$	
Filling time	:		μs
Equil. phases : - 20°	; accel.	rate N	ſeV/u-m
RF rep. rate : CW	Hz	; pulse :	μs
Beam rate : CW	Hz	; pulse :	μs
RF power peak : < 500	WMW	; mean : < 500	W MW

Focusing System

No. eleme	nts : 13		
type :	dc doublets	order :	
Gradients	: 47	to	T/m
Other :			

Charge Stripping (Typical)

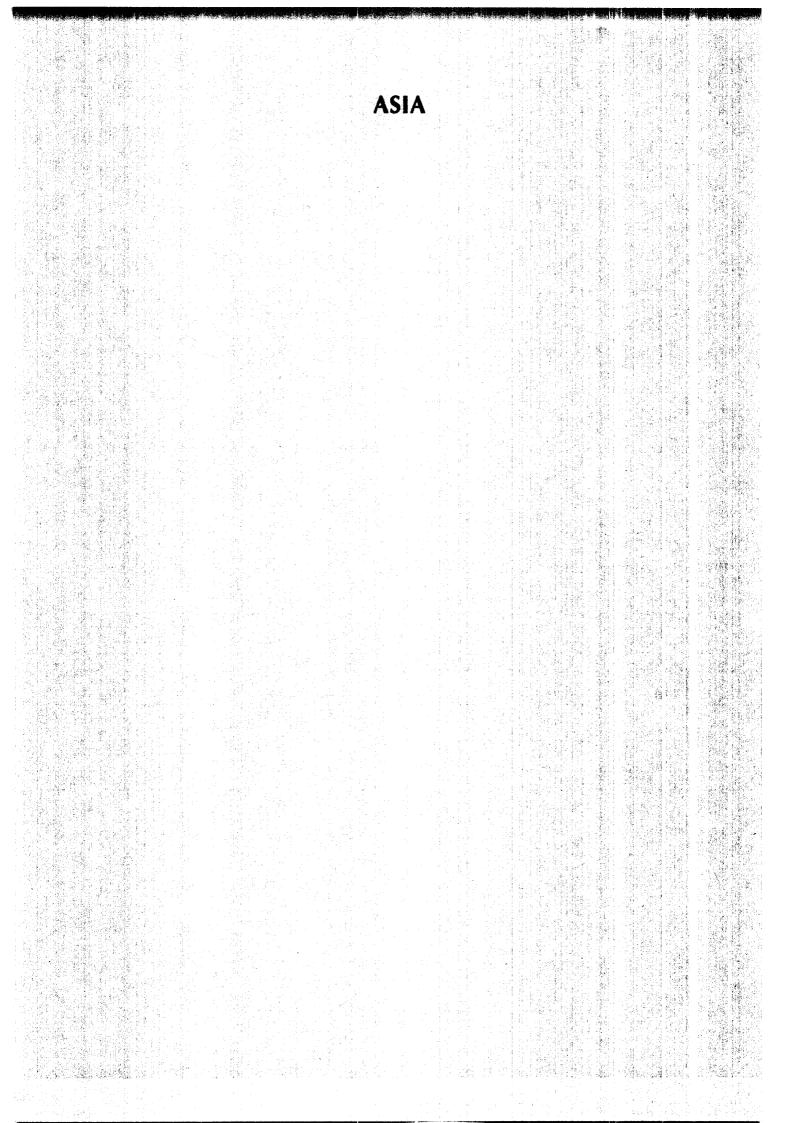
Type(s): c foil follo	wing Fl	N tanden	n injector	
Charge states :	to	19	at > 1	5 MeV/u
Charge states :	to		at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	$A \leq 64$		
Energy	:	5 - 15		MeV/u
$\Delta E/E$ (FWHM)	:	0.1		%
Mean acc. rate	:			MeV/u-m
Beam current	:	0.01 1		μ Ae peak
Norm. emit. (1 σ)	:			π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------


OTHER RELEVANT INFORMATION

- (1) Full Time Equivalent
- (2) Sputter, DEIS, Duoplasmatron w/exchange
- (3) No drift-tubes, number of resonators: 24; 12

24 Superconducting quarter wave resonators of 0.18m diameter, optimum velocity 0.1 c. Lead plated copper construction. Independently phased. Accelerating fields 3.0 MV/m in resonators.

References

[1] Project described in D.W. Storm et al., IEEE Trans. Nucl. Sci. NS-32 (1985) 3262.

Name of Linac	: Beijing Electron-Positron Linac
Function	: Injector of Beijing Electron-Positron Collider
Institution and address	: Institute of High Energy Physics, P.O. Box 918, Beijing, China
Person in charge	: Wang, Jin
Name of person supplying these data	: J. Wang
	e-mail: wangj@bepc2.ihep.ac.cn
	tel. : +86 10 6821 3344 ext.2268 fax : +86 10 6821 3374

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 10/1984 ; first beam : 11/1987	Normal	Max, or
Present status : Operating	Operation	Design
Cost of facility : 12 MUSD (1984)	Final energy : 1.3	1.8
Present linac staff : 45 man-years	Accel gradient : 10	10
Present yearly operation time : 6000 h	ΔΕ/Ε (FWHM) : 0.8	
	Rep. rate : 12.5	25
LINAC PARAMETERS	Pulse length : 3.0	3.0
	Beam intensity : 0.6	2.4
Electron Sources	Norm. emit. (1 σ):	π
Types : Triode ; energy : 80 keV		
Beam intensity (peak) : 6 A	OTHER RELEVANT INFO	RMATION
Normalized emittance (1 σ): π mm-mrad		
	(1) S-band pre-buncher and b	uncher
Injector		
Longitudinal matching : (1)		
Output : MeV; intensity : A		
Pulse width, spacing : 2.5 ns, 80 ms		
Normalized emittance (1σ) : π mm-mrad		
Acceleration System		
Total linac length : 202 m		
No. sections: 56 ; lengths : 3.05 m		
Field mode : $2/3\pi$; frequency : 2.856 GHz		
Wave type : TW ; filling time : 0.83 µs		
$v_o/c \text{ range}$: 0.012 ; Q : 11000		
Shunt impedance : $53 \text{ M}\Omega/\text{m}$		
Iris : aperture : diameter : $26 \sim 20$ mm		
thickness : 5 mm		
Attenuation/section : 0.57 Np		
Power units, Number : 16 type : Klystron		
RF power peak : 25 MW; mean : 2 kW		
Focusing System		

Focusing System

Type, No. of elements, and spacing : Triple Q 14 sets Steering 9 sets Solenoid 9 m

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 7 No. of particles/bunch : Bunch separation :

(1σ): π mm-mrad

GeV

%

Hz

μs

Α

MeV/m

POSITRON LINAC

Name of Linac	: Beijing Electron / Positron Linac
Function	: Injector of Beijing Electron - Positron Collider
Institution and address	: Institute of High Energy Physics, P.O. Box 918, Beijing, China
	: WANG, Jin
Name of person supplying these data	: J. Wang
	e-mail: wangj@BEPC2.IHEP.AC.CN
	tel. : +86 10 6821 3344 * fax : +86 10 6821 3374

HISTORY AND STATUS

OTHER RELEVANT INFORMATION

Differences with respect to corresponding e linac, are given in space to right.

Primary Bear	n (e ⁻) at	Conversion	Target	
Energy	:	150		MeV
Radius (10)	:			mm
Beam intensity	:	2.4		Α

LINAC PARAMETERS

Conversion Target	and	Capture	
Material	:	Tungsten	
Туре	:		
Thickness (rad.length)	:	(1)	χ
Diameter	:	10	mm
Mean deposited power	:		kW
Solenoidal field ^{a)}	:	0.35 T 9 m long	
Matching device	:	(2)	
RF sections ^{a)}	:		

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e linac, are given in space to right.

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Final energy :	:	1.3	1.6	GeV
Accel gradient :		10	10	MeV/m
$\Delta E/E$ (FWHM) :		1		%
Rep. rate :	:	12.5	25	Hz
Pulse length :	:	3	3	μs
Yield (fin.en) :	:	0.025		e⁺/e⁻x GeV
Beam intensity :		3000	9000	μA peak
Norm. emit. (1σ) :				π mm-mrad

* Ext. 2268

- (1) 5 mm
- (2) Taped solenoid :
 2.7 T max.; 0.35 T min.; 12 cm long

Name of Linac	: Beijing FEL Facility Linac	
Function	: FEL-driver	
Institution and address	: Institute of High Energy Physics, P.O. Box 918, Beijing, Chin	a
Person in charge	: Jialin Xie	
Name of person supplying these data	a : Jialin Xie	
	e-mail : XIEJL@BEPC3.IHEP.AC.CN	
	tel. : fax : +86 10 8213374	l

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	88 ; first be	eam : 1991	1	
Present status	: Operating			
Cost of facility	: 1 MRMB (1990)			Fi
Present linac staff	: 6			Α
Present yearly open	ration time :	1000	h	Δ
				~

LINAC PARAMETERS

Electron Sources

Types :	RF-gun	;	energy :	1200	keV
Beam inte	ensity (peak)	:		0.200	Α
Normalize	ed emittance (10	5):	20	π mm	-mrad

Injector

Longitudir	al mate	ching :			
Output :	1.2	MeV;	intensity :	0.200	Α
Pulse widt	h, spac	cing : 4	5 μs , 100 ms		
Normalize	d emitt	ance (1 σ)	: 20	π mm-	mrad

Acceleration System

Acceleration System		
Total linac length	: 3.05	m
No. sections : 1	; lengths :	<i>3.05</i> m
Field mode : $2\pi/3$; frequency :	2.856 GHz
Wave type : TW	; filling time :	0.83 µs
v_g/c range : (1)	;Q :	(2)
Shunt impedance	: 53	MΩ/m
Iris : aperture : diameter	: 26.231/19.	243 mm
thickness	: 5.844	mm
Attenuation/section	: 0.57	Np
Power units, Number :	<i>I</i> type :	XK-5
RF power peak : 20	AW; mean:	10 kW

Focusing System

Type, No. of elements, and spacing : No

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 12852No. of particles/bunch : 9.7×10^8 Bunch separation : 350 ns

		Normal Operation	Max, or Design	
Final energy	:	0.03		GeV
Accel gradient	:	10		MeV/m
$\Delta E/E$ (FWHM)	:	1		%
Rep. rate	:	10		Hz
Pulse length	:	4.5		μs
Beam intensity	:	0.200		Α
Norm. emit. (10)	:	30		π mm-mrad

- (1) 0.0208/0.007
- (2) 13800/13900

PROTON AND/OR H- LINAC

Name of Linac: Beijing 35 MeV Proton LinacFunction: Proton Beam ApplicationInstitution and address: Institute of High Energy Physics, P.O. Box 918, Beijing, ChinaPerson in charge: S.H. WangName of person supplying these data:Z.H. Luoe-mail : luozh@bepc3.ihep.ac.cntel.:fax : +86 10 8213374

HISTORY AND STATUS

Const. started :1982; first beam : 08/1985Present status:OperatingCost of facility:4 MUSD (1982)Present linac staff :40Present yearly operat. time :~ 4000 h

LINAC PARAMETERS

Ion Source

Type : Duoplasmatron					
Output : 250	mA	at	750		keV
Pulse length : 150	μs;	гер. га	ate :	12.5	Hz
Normalized emittance (16	σ):	3.0)	πmm-	mrad

Pre-accelerator (including RFQ)

Types :	Cockcroft-Walton			; length:	m	
Output	:	180	mA	at	750	keV
Pulse ler	ngth:	150	μs;	rep. rate	e: 12.5	Hz
Normaliz				3.0		

Longitudinal Matching

Type:	Dout	ole Bunchers				
Mod.	55	keV; drift	950	mm at	201.25	MHz
	25	keV; drift	800	mm at	402.5	MHz

Accelerating System

Total linac length :	21.8	m; No. of	tank	s: 1
Tank diameters :		0.94 ~ 0.90)	m
Number of drift-tubes :		105		
Drift-tube lengths :		48 ~ 274		mm
Drift-tube diam (range):		180 ~ 160		mm
Gap/cell length (range):		0.21 ~ 0	31	
Aperture diameter :	20	mm to	30	mm
RF frequency(ies) :		201.25		MHz
Field modes :		TM 010		
Eff. shunt impedance :		30 ~ 55		MΩ/m
Q :		45000		
Filling time :		150		μs
Equilibrium phases :		-40°~ -25	0	
RF rep. rate : 12.5	Hz;	pulse :	150	μs
Beam rate : 12.5	Hz;	pulse :	150	μs
RF power peak : 5.0	MW;	mean: 0	0.03	MW

Focusing System

No. elements	i: <i>105</i>			
type :	Pulsed	order :	FODO	
Gradients :	<i>92</i>	to	20	T/m
Other: Pulse	ed flat top ≈2	250 µs		

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Energy	:	35.5	35.5	MeV
Mean acc. rate	:	1.59	1.59	MeV/m
$\Delta E/E$ (FWHM)	:	± 0.6	±0.8	%
Beam current	:	40	60	mA peak
Norm. emit. (1 σ)	:	6	8	π mm-mrad

- Post coupled Alvarez Structure
- Used for Nuclear Physics Experiment, Radioisotope production and Neutron Therapy for Cancer.
- Original one was 10 MeV proton Linac, constructed during 1978 1982, then up-graded to 35 MeV.

Name of Linac :	HIL *
Function :	Electron Injector Linac for HLS **
Institution and address :	USTC NSRL, Hefei, Anhui 230026 P.R. China
Person in charge :	Xiaofeng Shen
Name of person supplying these data :	Sai Dong
	e-mail: sdong@mail.nsrl.ustc.edu.cn
	tel. : +86 551 3602011 fax : +86 551 5561078

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198-	4 ; first	beam : 1987	,
Present status :	Operating		
Cost of facility :	7.6 MYuan (19	87)	
Present linac staff :	14 man-years		
Present yearly operation	tion time :	5500	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inte	nsity (peak)	:		0.5	Α
Normalize	ed emittance (10)	:	21	π mn	n-mrad

Injector

Longitudinal matching : (1)						
Output :	26	MeV;	intensity :	> 0.1	Α	
Pulse width, spacing : $1 \ \mu s$, 20 ms						
Normalize	πmm-r	nrad				

Acceleration System

Total linac length	:	35.128	8 m
No. sections : 8	;	lengths :	3 m
Field mode : $2\pi/3$;	frequency :	2.856 GHz
Wave type : TW	;	filling time :	0.83 µs
v_g/c range : 0.012	;	Q :	13500
Shunt impedance	:	57.6	MΩ/m
Iris : aperture : diameter	:	21.977	7 mm
thickness	:	5.0	mm
Attenuation/section	:	0.54	Np
Power units, Number :	4	4 type :	Klystrons
RF power peak : 15	M	W; mean:	1.875 kW

Focusing System

Type, No. of elements, and spacing :

2 magnetic lenses at between the gun and the buncher; solenoids up to 10 MeV; 3 quadrupole lenses pair between sections to 200 MeV.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 2856No. of particles/bunch : 3.1×10^{11} Bunch separation : 350 ps

		Normal Operation	Max, or Design	
Final energy	:	0.20	0.225	GeV
Accel gradient	:	12		MeV/m
$\Delta E/E$ (FWHM)	:	1.0	0.8	%
Rep. rate	:	50	300	Hz
Pulse length	:	1.0	0.2 - 1.0	μs
Beam intensity	:	0.07	0.05	Α
Norm. emit. (10)):		0.45	π mm-mrad

OTHER RELEVANT INFORMATION

- * HIL HLS Injector Linac
- ** HLS Hefei Light Source
- (1) S-band pre-buncher, buncher and pre-accelerator

References

- [1] Yuan Ji Pei, An injector 200 MeV electron LINAC for HESYRL storage ring, R.S.I. Vol. 60, No. 7, 1701 (1991).
- [2] Yuan Ji Pei, "The Design of a 200 MeV linear Accelerator", Proceedings of '80 National Conference on Particle Accelerators, 1984, 10.
- [3] De-Fa Wang, Yuanji Pei, Duohui He, "The 200 MeV LINAC at HESYRL", Proc. of International Conference on Linac Accelerator, 1986, SLAC.

Function : Institution and address	FELI* Electron Linac for Free Electron Laser FELI, 2-9-5 Tsudayamata, Hirakata, Os Takio Tomimasu T. Tomimasu e-mail :	saka, Japan
	tel. : +81 720 96 0414 fai	x: +81 720 96 0421

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1994	; first beam : 1994	
Present status :	Operating	
Cost of facility :	$9 \times 10^8 JPY$	
Present linac staff :		
Present yearly operat		h

LINAC PARAMETERS

Electron Sources

Types :		;	energy :	120	keV
	ensity (peak)	:		2.3	Α
Normalize	ed emittance (10)	:	5	π mn	n-mrad

Injector

Longitudinal matching :						
Output :	6	MeV;	intensity :	(1) 60	Α	
Pulse width, spacing : 10 ps, 44.8 ns						
Normalize	d emit	tance (1σ)	: 12	π mm-r	nrad	

Acceleration System

Total linac length	:	4	6		m
No. sections: 7	; ler	igths	:	3	m
Field mode : $2\pi/3$; fre	quency	:	2.856	GHz
Wave type : TW		ing time			μs
v_g/c range : (2)	;Q	-	:	1350	<i>i</i> 0
Shunt impedance	:	53	- 51	7	MΩ/m
Iris : aperture : diameter	:	26	- 20)	mm
thickness	:	5.	0		mm
Attenuation/section	:	0.4	- 0.	7	Np
Power units, Number :	2	type	:	Klystr	ons
RF power peak : 50 N	MW;	mean		Í.2	kW

Focusing System

Type, No. of elements, and spacing : 5 Solenoids up to 6 MeV A doublet at every 4 m up to 165 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 535 No. of particles/bunch : 4×10^9 electron/bunch Bunch separation : No

		Normal Operation	Max, or Design	
Final energy	:	0.165	0.165	GeV
Accel gradient	:	7. 6	7. 6	MeV/m
$\Delta E/E$ (FWHM)	:	0.9	0.5	%
Rep. rate	:	10	10	Hz
Pulse length	:	24	24	μs
Beam intensity	:	60	80	A
Norm. emit. (10)	:	26	30	π mm-mrad

OTHER RELEVANT INFORMATION

- * FELI Free Electron Laser Research Institute
- (1) 0.6 nC/10 ps = 60 A
- (2) $0.01 \sim 0.02$

References

- [1] T. Tomimasu et al., Nucl. Instr. Meth. A358 (1995) ABSli
- [2] T. Tomimasu, IEEE Trans. N5-28, No.3 (1981) 3523
- [3] T. Tomimasu et al., IEEE Proc. Pac '95 (Dallas, May 1-5) 257
- [4] T. Tomimasu et al., Nucl. Instr. Meth. A375 (1996) 626
- [5] T. Tomimasu et al., First lasings at 0.28 ~ 0.63 μA using a S-band linac with a thermionic gun. Submitted to Nucl. Instr. Meth. (June 1996).

Name of Linac	ISIR S-Band Linac			
Function	Scientific Research			
Institution and address	ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan			
	Seiichi Tagawa			
Name of person supplying these data	S. Okuda			
e-mail : s-okuda@sanken.osaka-u.ac.jp				
	tel. : fax :			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	87	; first beam : 1989	
Present status	: Operatio	onal	
Cost of facility	:		
Present linac staff	: 3		
Present yearly open	ration time	: 500	h

LINAC PARAMETERS

Electron Sources

Types :	Thermionic	;	energy :	100	keV
Beam inte	ensity (peak)	:		0.65	Α
Normaliz	ed emittance (10	5) :	50	π mm	n-mrad

Injector

Longitudinal matching :						
Output :	MeV;	intensity :	Α			
Pulse width, spacing :						
Normalized emit	tance (1σ)	:	π mm-mrad			

Acceleration System

Total linac length	:	10		m
No. sections : 3	; 1	engths :	3	m
Field mode : $2/3 \pi$; f	frequency :	2.856	GHz
Wave type : TW	; f	filling time :	0.68	μs
v_g/c range : 0.0147	; (Q :	1260	0
Shunt impedance	:	53	ľ	MΩ/m
Iris : aperture : diameter	:			mm
thickness	:			mm
Attenuation/section	:	0.459		Np
Power units, Number :		type :		
RF power peak : 35	M٧	V; mean:	12	kW

Focusing System

Type, No. of elements, and spacing : Triplet Q magnet - 4

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 4300No. of particles/bunch : 1.4×10^9 Bunch separation : 350 ps

		Normal Operation	Max, or Design	
Final energy	:	0.10	0.15	GeV
Accel gradient	:	19.3	20	MeV/m
$\Delta E/E$ (FWHM)	:	2		%
Rep. rate	:	60		Hz
Pulse length	:	1.5		μs
Beam intensity	:	0.65		Â
Norm. emit. (10):			π mm-mrad

Name of Linac	: ISIR L-Band Linac
Function	: Scientific Research
Institution and address	: ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan
Person in charge	: Seiichi Tagawa
Name of person supplying these data	
	e-mail : S-okuda@sanken.osaka-u.ac.jp
	tel. : fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1975 ; first beam : 1978 Present status : Operational	Normal Max, or Operation Design
Cost of facility :	Final energy : 0.03 0.038 GeV
Present linac staff : 4	Accel gradient : 10 13 MeV/m
Present yearly operation time : 2300 h	$\Delta E/E$ (FWHM) : 1 1 %
	Rep. rate : 120 720 Hz
LINAC PARAMETERS	Pulse length : 0.020 0.020 µs
	Beam intensity : (1) A
Electron Sources	Norm. emit. (1σ) : 400 π mm-mrad
Types: Thermionic ; energy: 110 keV	
Beam intensity (peak) : 30 A	OTHER RELEVANT INFORMATION
Normalized emittance (1 σ): π mm-mrad	

Injector Longitudinal matching :		
Output : MeV	; intensity :	А
Pulse width, spacing :		
Normalized emittance (1	σ):	π mm-mrad

Acceleration System

Total linac length	: <i>3</i> m
No. sections : 1	; lengths : 3 m
Field mode : $2/3 \pi$; frequency : 1.3 GHz
Wave type : TW	; filling time : 1.96 µs
v_g/c range : 0.0075	;Q : 19000
Shunt impedance	: 40 MΩ/m
Iris : aperture : diameter	: 36 - 43 mm
thickness	: <i>13</i> mm
Attenuation/section	: 0.2832 Np
Power units, Number :	2 type : Klystron
RF power peak : 20 N	WW; mean : 50 kW

Focusing System

Type, No. of elements, and spacing : Triplet Q Magnet - 4

Beam Pulse Structure (if applicable)

No. of bunches/pulse : INo. of particles/bunch : 4.2×10^{11} Bunch separation : 9.2 ns

(1) 67 nC bunch

Name of Linac: HIMAC InjectorFunction: Injector for HIMACInstitution and address: NIRS, 4-9-1 Anagawa, Inage-ku, Chiba 263, JapanPerson in charge: S. YamadaName of person supplying these data: S. Yamadae-mail : yamada_s@nirs.go.jptel.: +81 43 256 0122fax : +81 43 251 1840

HISTORY AND STATUS

Const. started :	03/1987	; first beam :	03/1993
Present status	: Operati	onal	
Cost of facility	: 3 BJPY	(1987)	
Present linac staf	ff : <i>13</i>		
Present yearly op	erat. time :	4000	h

LINAC PARAMETERS

Ion Sources

No. of sources :		2		
Types of source :	16	6 GHz ECR &	e PIG	
Species of ions :		He to Ar		
Range of currents:		100 to 100	0	μAe
Range of output end	ergies :	8		keV/u
Pulse length : 30	00 µs;	rep. rate :	3	Hz
Normalized emittar	nce (1σ) :	0.6	π mr	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	4 vane RFQ, 7.	3 m
Output currents :	60 to 600	μAe
Output energies :	800	keV/u
Frequency : 100 MHz	; peak RF powe	er: 260 kW
Pulse length : 700μ	s; rep. rate :	3 Hz
Normalized emittance (10	i): 0.6	π mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	23.9 m; N°. of tanks :	3
Tank diameters	:	2.20/2.18/2.16	m
Number of drift-tubes	:	107	
Drift-tube lengths	:	98.5 - 257.3	mm
Drift-tube diam (range)):		mm
Gap/cell length (range)	:	0.21 - 0.26	
Aperture diameter	:	20 mm to 30	mm
RF frequency(ies)	:		MHz
Field modes	:	TM010	
Eff. shunt impedance	:	25 - 36 M	Ω/m
Q	:	96 000 / 99 200 / 100 80)
Filling time	:	250	μs
Equil. phases : (1)	;	; accel. rate 0.22 MeV	/u-m
RF rep. rate : 3		Hz; pulse : 1,200	μs
Beam rate : 3		Hz; pulse : 500	μs
RF power peak : (2))	MW; mean : 0.0043	MW

Focusing System

No. element	s : 55			
type :	pulsed	order :	FODO	
Gradients :	60	to	24	T/m
Other:				

Charge Stripping (Typical)

Type(s): C foil					
Charge states : Ar6+	to	18+	at	6	MeV/u
Charge states :	to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	С	Ar	
Energy	:	6.0	6.0	MeV/u
$\Delta E/E$ (FWHM)	:	±0.2	±0.2	%
Mean acc. rate	:	0.22	0.22	MeV/u-m
Beam current	:	250	200	μ Ae peak
Norm. emit. (10)	:			π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Ne	6.0	
Si	6.0	

OTHER RELEVANT INFORMATION

(1)	-30°, -25°
(2)	12 (manu)

(2) 1.2 (max)

Name of Linac : SPring - 8 Linac Function : Injector for SPring - 8 Institution and address : SPring - 8, Kamigori, Hyogo, 678-12 Japan Person in charge : Hideaki YOKOMIZO Name of person supplying these data : Hideaki YOKOMIZO e-mail: yokomizo@haru01.spring8.or.jp tel. : +81 7915 8 0885 fax: +81 7915 8 0850

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199.	l ; firs	t beam : (1)	
Present status :	Under constru	uction	
Cost of facility :	5 BJPY (1996))	
Present linac staff :	12		
Present yearly opera	tion time :	5500 (plan)	h

LINAC PARAMETERS

Electron	Sources (2)				
Types :	Triode	;	energy :	200	keV
Beam inte	nsity (peak)	:		20	Α
Normalize	d emittance (10	J):		π mm	n-mrad

Injector

Injector					
Longitudin	al mat	ching : <i>(3)</i>			
Output :	9	MeV;	intensity	: 0.1 -	100 A
Pulse widtl	n, spac	cing: 1.	ns - 1 μs, .	16.6 ms	
Normalized					nm-mrad

Acceleration System

Total linac length	:	140		m
No. sections : 26	; ler	ngths :	3	m
Field mode : $2\pi/3$; fre	quency :	2.856	GHz
Wave type : TW	; fill	ling time :	0.6	μs
v_g/c range : 0.016	;Q	:	13500)
Shunt impedance	:	52	N	/Ω/ m
Iris : aperture : diameter	:	20 - 2	6	mm
thickness	6 :	5		mm
Attenuation/section	:	0.4		Np
Power units, Number :	14	type :	Klystra	on -
RF power peak : 80	MW;	mean :	20	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 9 MeV and triplets up to final energy

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : **Bunch** separation :

	Normal Operation	Max, or Design	
Final energy	:	1.15	GeV
Accel gradient	:	17	MeV/m
$\Delta E/E$ (FWHM)	:	1	%
Rep. rate	:	60	Hz
Pulse length	:	1	μs
Beam intensity	:	0.100	A
Norm. emit. (1σ)	:		π mm-mrad

OTHER RELEVANT INFORMATION

- (1) 1996 (Expected)
- (2) The electron gun has three modes of pulse length : *1ns*, 10 - 40 ns and 1 - 2 μs.
- (3) S-band pre-buncher and buncher

References

[1] H. Yoshikawa et al., Proc. of 1996 Int. Linac Conf., to be published.

POSITRON LINAC

Name of Linac:SPring-8 LinacFunction:Injector for SPring-8Institution and address:SPring-8, Kamigori, Hyogo, 678-12, JapanPerson in charge:Hideaki YokomizoName of person supplying these data:Hideaki Yokomizoe-mail :yokomizo@haru01.spring8.or.jptel.:+81 7915 8 0855fax : +81 7915 8 0850

- - - -

HISTORY AND STATUS

Differences with respect to corresponding e⁻linac, are given in space to right.

Primary Beam (e^{*}) at Conversion Target

Energy	:	230	MeV
Radius (10)	:	< 1.0	mm
Beam intensity	:	10	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	90% W 10% Cu	
Туре	:	Stationary	
Thickness (rad.length)	:	2.0	χ
Diameter	:	10	mm
Mean deposited power	:	1.0	kW
Solenoidal field ^{a)}	:	0.4 T over 2.5 m; DC	
Matching device	:	2 T pulsed solenoid	
RF sections ^{a)}	:	19 × 3 m	

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e^{-1} linac, are given in space to right.

LINAC PERFORMANCE

	Normal	Max, or	
	Operation	Design	
Final energy :		0.9	GeV
Accel gradient :		17	MeV/m
$\Delta E/E$ (FWHM) :		1.0	%
Rep. rate :		8	Hz
Pulse length :		0.040	μs
Yield (fin.en) :		1.2	e [‡] /e ⁻ x GeV
Beam intensity :		30000	µA peak
Norm. emit. (1σ) :			π mm-mrad

OTHER RELEVANT INFORMATION

In order to avoid ion trapping in the storage ring, SPring-8 Linac is able to provide positron beam. In the electron mode, the tungsten target is pulled out from the beam line.

The pulsed solenoid coil has adjustable mechanism for tilting and parallel movement to search the best position to have maximum positron yield.

Name of Linac		
Function	Electron Injector Linac for NIJI-III a	nd FEL
	Sumitomo Electric*	
Person in charge :	Dr. H. Takada	
Name of person supplying these data :	K. Emura	
	e-mail : emura@okk.sumiden.co.jp	
	tel. : +81 7915 8 0659	fax : +81 7915 8 0670

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1993	; first beam : 1993	
Present status : Ope	erating	
Cost of facility :	-	
Present linac staff : 2 m	an-years	
Present yearly operation	•	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	200	keV
Beam inte	ensity (peak)	:		5	Α
Normalize	ed emittance (10)	:	7	π mm	n-mrad

Injector

Longitudinal matching : S-band, SHPB / PB / B							
Output :	4	MeV;	intensity :	2	Α		
Pulse width, spacing : 10 ps, 2.1 ns							
Normalized emittance (1σ) :				π mm-	mrad		

Acceleration System

Total linac length	:	10		m
No. sections : 2	; leng	ths :	3	m
Field mode : $2\pi/3$; frequ	iency :	2.856	GHz
Wave type : TW	; fillin	g time :	0.6	μs
vg/c range :	; Q	:	13500	0
Shunt impedance	:	50	N	<i>l</i> Ω/m
Iris : aperture : diameter	:	20		mm
thickness	:			mm
Attenuation/section	:			Np
Power units, Number :	2	type :	Klystro	on –
RF power peak : 45 1	MW;	mean :	6	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 4 MeV. 2 Triplets

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal Operation	Max, or Design	
Final energy :	0.10	0.12	GeV
Accel gradient :	18	22	MeV/m
$\Delta E/E$ (FWHM) :	1.0	1.0	%
Rep. rate :	2	2	Hz
Pulse length :	1 and 10	1 and 10	μs
Beam intensity :			Å
Norm. emit. (1σ) :	60	60	π mm-mrad

OTHER RELEVANT INFORMATION

* Harima Science Garden City, Kamigori, Hyogo, 678-12 Japan

References

[1] K. Emura, K. Tsumori, M. Moriguchi and H. Takada, "Development of a Compact Linear Accelerator for SR Injection", Sumitomo Electric Technical Review, No. 39 (1995).

Name of Linac	:	45 MeV Electron Linear Accelerator Laboratory
Function	:	Electron Linac for the study of atomic science and nuclear engineering
Institution and address	:	Hokkaido Univ., N-13 W-8, Kita-ku, Sapporo 060, Japan
Person in charge	:	T. Enoto
Name of person supplying these data	a :	T. Enoto
		e-mail : tem@hune.hokudai.ac.jp
		tel. : +81 11 706 7128 fax : +81 11 706 7128

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 197	i ; first be	am : 1974	
Present status :	Operating		
Cost of facility :	250 MJPY (1971))	
Present linac staff :	3 men		
Present yearly operation	tion time :	2000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		2.0	Α
Normalize	d emittance (1	l σ):		π mm	n-mrad

Injector Longitudinal mate	hing · S-i	hand huncher	
Output :	-	intensity :	Α
Pulse width, spac Normalized emitt	-	:	π mm-mrad

Acceleration System

Total linac length	:	23		m
No. sections : 3	; leng	ths :	2	m
Field mode : $2\pi/3$; freq	uency :	2.856	GHz
Wave type : TW	; fillir	ig time :	0.56	μs
$v_{g}/c range : 0.00783$; Q	:	1220	0
Shunt impedance	:	60	1	MΩ/m
Iris : aperture : diameter	:	19.0 - 2	0.0	mm
thickness	:			mm
Attenuation/section	:	0.628	3	Np
Power units, Number :	3	type :	Klystr	on
RF power peak : 5	MW;	mean :	3	kW

Focusing System

Type, No. of elements, and spacing : Q-magnet, 10 section steering magnet, 4 section

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: 30-10000
No. of particles/bunch	$: 1.5 \times 10^{11} - 4.4 \times 10^{8}$
Bunch separation	: 350 ps

		Normal Operation	Max, or Design	
Final energy	:	0.045	0.045	GeV
Accel gradient	:	7.5	7.5	MeV/m
$\Delta E/E$ (FWHM)	:	15	15	%
Rep. rate	:	100	200	Hz
Pulse length	:	0.01 - 3	0.01 - 3	μs
Beam intensity	:	1.5	2	Α
Norm. emit. (1σ)	:			π mm-mrad

Name of Linac: PNC LinacFunction: Electron Linac for TransmutationInstitution and address: PNC-OEC * 4002 Oarai-machi, Ibaraki-ken 311-13, JapanPerson in charge: Takashi EmotoName of person supplying these data: Takashi Emotoe-mail : emoto@oec.pnc.go.jp: +81 29 267 4141 ext.3130fax : +81 29 266 3868

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1994	; first beam : 1996
Present status :	Under the commissioning
Cost of facility :	5000 MJPY
Present linac staff :	17 man-years
Present yearly operate	-

LINAC PARAMETERS

Electron Sources

Types :	Triode ;	;	energy :	200	keV
Beam inte	nsity (peak) :			0.400	Α
Normalize	ed emittance (1o):	:	NA	π mm	-mrad

Injector

Longitudi	nal mate	ching : <i>(1)</i>)		
Output :	2.0	MeV;	intensity :	0.100	Α
Pulse wid	th, spac	ing : 4	ms, 16 ms		
Normalize	ed emitt	ance (1σ)	: NA	π mm-r	nrad

Acceleration System

Total linac length	:	Ì	8		m
No. sections : 8	; lei	ngths	:	1.2	m
Field mode : $2\pi/3$; fre	equency	:	(2)	GHz
Wave type : TW	; fil	ling time	:	(3) 13	μs
v_g/c range : (4)	; Q		:	(5)	•
Shunt impedance	:	16.2	- 3	9.1 N	/Ω/m
Iris : aperture : diameter	:	24.5	- 3	2.4	mm
thickness	:	1	2		mm
Attenuation/section		0.04076	- 0	.06082	Np
Power units, Number :	2	type	:	Klystro	on -
RF power peak : 1.2 N	MW;		: ((6) 240	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 3.5MeV; a doublet at 3.5MeV and between sections to 10 MeV; a triplet at 10 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

	Nor Opera		Max, or Design	
Final energy	0.0	1	NA	GeV
Accel gradient	1.0 -	1.4	NA	MeV/m
$\Delta E/E$ (FWHM)	0.2	2	NA	%
Rep. rate	0	50	NA	Hz
Pulse length :	10 - 4	000	NA	μs
Beam intensity	0.10	00	NA	A
Norm. emit. (1σ)	N/2	4	NA	π mm-mrad

- * Power Reactor & Nuclear Fuel Development Co. Oarai Engineering Centre
- (1) L-band pre-buncher and buncher
- (2) 1.249135
- (3) Resonant Ring filling time
- (4) 0.011-0.025
- (5) 20130-15392
- (6) 1.2MW klystron only

Name of Linac: KURRI *-LINACFunction: **Institution and address: KURRI, Kumatori-cho, Sennan-gun, Osaka, 590-04, JapanPerson in charge: Y. FujitaName of person supplying these data: K. Takami
e-mail : takami@rri.kyoto-u.ac.jp
tel. : +81 724 52 0901 ext. 2278 fax : +81 724 53 0488

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196.	5; first bea	.m : <i>1967</i>	
Present status :	Operating		
Cost of facility :	1.1 MUSD (1965)		
Present linac staff :	3		
Present yearly opera	tion time :	1900	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	85	keV
Beam inter	nsity (peak)	:		~ 20	Α
Normalize	d emittance (1	σ):		π mm	-mrad

Injector

Longitudinal matching : L-band pre-buncher							
Output :	MeV;	intensity :	Α				
Pulse width, spacing : $10 \text{ ns} \sim 4 \mu \text{s}$, 2 ms							
Normalized emitta	ance (1σ) :	:	π mm-mrad				

Acceleration System

Total linac length	: 5	m
No. sections : 2	; lengths :	2 & 2.5 m
Field mode : $2\pi/3$; frequency :	1.3 GHz
Wave type : TW	; filling time :	2 μs
vg/c range :	;Q :	
Shunt impedance	:	MΩ/m
Iris : aperture : diameter	:	mm
thickness	:	mm
Attenuation/section	:	Np
Power units, Number :	2 type :	Klystrons
RF power peak : 20 1	MW; mean:	30 kW

Focusing System

Type, No. of elements, and spacing : *Not installed*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 13 - 5200No. of particles/bunch : $\sim 2.5 \times 10^{10}$ Bunch separation : 770 ps

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.030	0.046	GeV
0	:	<i>6</i> .7	10	MeV/m
$\Delta E/E$ (FWHM)	:	10	3	%
Rep. rate	:	360	480	Hz
Pulse length	:	0.01 ~ 4	0.01 ~ 4	μs
Beam intensity	:	6		Α
Norm. emit. (1σ)	:			π mm-mrad

- * KURRI Kyoto University Research Reactor Institute
- ** Neutron source, X-ray source, light source, electron irradiation, γ-ray irradiation, positron production

Name of Linac :	Tohoku 300 MeV Electron Linac
Function :	Electron Linac for nuclear physics and other applications
	Lab. of Nucl. Sci. Tohoku Univ., Sendai 982, Japan
	M. Oyamada
Name of person supplying these data :	M. Oyamada
	e-mail: oyamada@thkln1.lns.tohoku.ac.jp
	tel. : +81 22 743 3423 fax : +81 22 743 3401

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 190	53 ; first b	eam : 1967	
Present status	Operating		
Cost of facility	500 MJPY (1963	3)	
Present linac staff :	8 man-years		
Present yearly open	ation time :	4000	h

	Operation	Design
Final energy :	0.25	0.3 GeV
Accel gradient :	7.8	9.4 MeV/m
$\Delta E/E$ (FWHM) :	1.5	1.0 %
Rep. rate :	300	300 Hz
Pulse length :	3	3 μs
Beam intensity :		0.1 A
Norm. emit. (1σ) :	60	π mm-mrad

Max, or

Normal

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inte	nsity (peak)	:		2.0	Α
Normalize	ed emittance (10)):		π mn	n-mrad

Injector

Longitudi	nal mat	ching : <i>(1</i> ,)		
Output :	0.4	MeV;	intensity :	1.0	Α
Pulse wid	th, spac	ing : 4	ıs, 3.3ms		
Normalize				π mm-	mrad

Acceleration System

Total linac length	:	52	m
No. sections : $8+12$; le	ngths : 1.05, 2.1	m
Field mode : $2\pi/3$; fre	equency : 2.856	GHz
Wave type : TW	; fil	ling time : 0.4, 0.8	μs
vg/c range : 0.0088	;Q	: 14000	
Shunt impedance	:	54 M	[Ω/m
Iris : aperture : diameter	:	20.9	mm
thickness	:	5.842	mm
Attenuation/section	:	0.275, 0.55	Np
Power units, Number :	2+3	type : Klystro	n
RF power peak : 25	MW	mean : 30	kW

Focusing System

Type, No. of elements, and spacing : Solenoids, 20 sets, each acc. structure quadrupole doublets, 3 pairs, 8m

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

OTHER RELEVANT INFORMATION

(1) S-band pre-buncher and buncher

References

- Performance of an Energy Compressing System for the Tohoku 300-MeV linac. M. Sugawara et al.; Nucl. Instr. & Meth. 153, 343-346 (1978).
- [2] SSTR The 150 MeV pulse stretcher of Tohoku University. T. Tamae et al.; Nucl. Instr. & Meth. A264, 173-185 (1988).
- [3] The Tohoku University Stretcher-Booster Ring.
 M. Oyamada et al.; Proc. the 10th Symp. on Acc. Sci. and Tech. Hitachinaka, Japan, 463-465 (1995).

Name of Linac	: INS-ES * 15 MeV Linac
Function	: Electron Injector Linac for INS-ES
Institution and address	: INS **, University of Tokyo, Midoricho, Tanashi, Tokyo 188, Japan
Person in charge	: M. Muto
Name of person supplying these da	a: M. Muto
	e-mail : muto@ins.u-tokyo.ac.jp
	tel. : +81 424 69 9552 fax : +81 424 62 0775

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	9 72 ; 1	first beam : 1974	
Present status	: Operating		
Cost of facility	:		
Present linac staff	:		
Present yearly ope	ration time :	~ 3000	h

LINAC PARAMETERS

Electron Types :		;	energy :	100	keV
	nsity (peak)	:		0.5	Α
Normalize	d emittance (10)	:		π mm	n-mrad

Injector

Longitudinal matching :				
Output :	MeV;	intensity :	Α	
Pulse width, spacing :				
Normalized emittance (1σ) :		:	π mm-mrad	

Acceleration System

Total linac length	:	2.1		m
No. sections: 7	; le	ngths :		m
Field mode : $2\pi/3$; fre	equency :	2.758	GHz
Wave type : TW	; fil	ling time :	0.54	μs
v_{g}/c range : (1)	; Q	:	1170	0
Shunt impedance	:	64	1	MΩ/m
Iris : aperture : diameter	:	29.795 ~ I	9.893	mm
thickness	:	5.0		mm
Attenuation/section	:	0.44		Np
Power units, Number :	1	type :	Klystr	on
RF power peak : 6 l	MW	; mean :	0.52	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 15 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal	Max, or	
	Operation	Design	
Final energy :	0.015	0.015	GeV
Accel gradient :	7.5		MeV/m
$\Delta E/E$ (FWHM) :	~ 5		%
Rep. rate :	21.5	21.5	Hz
Pulse length :	1.2		μs
Beam intensity :	0.150		Α
Norm. emit. (1 σ):	~ 30		π mm-mrad

OTHER RELEVANT INFORMATION

- * INS 1.3 GeV Electron Synchrotron
- ** Institute for Nuclear Study
- (1) 0.008 0.0309

References

[1] "The Construction of 15 MeV Linear Accelerator as Injector for INS Electron Synchrotron", T. Katayama et al., INS-Report 240 (1975).

Name of Linac	:
Function	: ISOL * post accelerator
Institution and address	: Institute for Nuclear Study**
Person in charge	: S. Arai
Name of person supplying these dat	a: S. Arai
	e-mail: arai@ins.u-tokyo.ac.jp
	tel. : +81 424 69 9558 fax : +81 424 62 0775

HISTORY AND STATUS

Const. started :	04/1992	; first beam :	03/1996
Present status	: Tuning		
Cost of facility	: 520 MJP	Y over 5 years	
Present linac staff	: 8 man-ye	ears	
Present yearly ope	rat. time :		h

LINAC PARAMETERS

Ion Sources

No. of sources :	4	
Types of source :	(1)	
Species of ions :	Ions up to Ni ²⁺	Z/A - 1/30
Range of currents:	. (2)	μAe
Range of output energi	es: 2	keV/u
Pulse length : Variable	μs; rep. rate :	10~1000 Hz
Normalized emittance ($(1\sigma):$ (3)	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	Split coaxial RFQ (8.6)	m
Output currents :	(2)	μAe
Output energies :	170	keV/u
Frequency : 25.5 N	MHz; peak RF power : (4	4) kW
Pulse length : (5)	μ s; rep. rate : $1 \sim 99$	99 Hz
Normalized emittanc	$e(1\sigma):$ (3) π m	n-mrad

Longitudinal Matching

Type : 6-Gap Double Coaxial $\lambda/4$ cavity					
Mod.	200	keV; drift 3760	mm at	25.5	MHz
		keV; drift	mm at		MHz

Accelerating System

Total linac length : 5.6 m; N°. of ta	nks : 4
Tank diameters : 1.49, 1.34	m
Number of drift-tubes : $7 \sim 10 + 2 (1/2)$	2)
Drift-tube lengths : $29 \sim 53$	mm
Drift-tube diam (range): $38 \sim 52$	mm
Gap/cell length (range): 0.5	
Aperture diameter : 20 mm to	32 mm
RF frequency(ies) : 51	MHz
Field modes : TE110 like (IF	H)
Eff. shunt impedance : $218 \sim 289$	MΩ/m
Q : 10681 ~ 1849	0
Filling time : $33 \sim 58$	μs
Equil. phases : -25° ; accel. rate 0.15	MeV/u-m
RF rep. rate : $1 \sim 999$ Hz; pulse : (2)	5) µs
Beam rate : $1 \sim 999$ Hz; pulse : (:	5) µs
RF power peak : (6) MW; mean : (6)	cw MW

Focusing System

No. elements	5:9			
type :	DC	order :	Triplet	
Gradients :	38	to	45	T/m
Other:				

Charge Stripping (Typical)

Type(s): Carbon foi	il (10µ	lg/cm^2			
Charge states : N_l^{2+}	to	Ni ⁹⁴	at	<i>0.17</i>	MeV/u
Charge states :	to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:			
Energy	:	1.05	1.05	MeV/u
$\Delta E/E$ (FWHM)	:		0.5 ~ 2	%
Mean acc. rate	:	0.15	0.15	MeV/u-m
Beam current	:		(7)	μ Ae peak
Norm. emit. (1σ)	:		0.1	π mm-mrad

OTHER ION BEAMS

Particle Energy range

Other info.

- * ISOL Isotope Separator On-Line
- ** University of Tokyo, Midari-cho, Tanashi-shi, Tokyo 188, Japan
- (1) ECR, SURFACE IONIZ., FEBIAD for unstable nuclei
 - ECR for stable nuclei
- (2) $< 10^{10}$ pps for unstable nuclei 200 μA for ${}^{14}N^+$
- (3) 0.03 ~ 0.1 for unstable nuclei
 0.1 for stable nuclei
- (4) max 250 kW
- (5) 50 ~ 3000
- (6) $0.015 \sim 0.039$ (max)
- (7) 6000 for Z/A 1/30

Name of Linac :	SCARLET *
	Superconducting RF Linac Driver for FEL
Institution and address :	Tokai Research Establishment, JAERI **
Person in charge :	Eisuke J. Minehara
Name of person supplying these data :	E.J. Minehara
	e-mail : minehara@felwu0.tokai.jaeri.go.jp
	tel. : +81 29 282 5464 fax : +81 29 270 5923

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	8 ; first b	eam : <i>12/1</i>	993
	Operating		
Cost of facility :	13.5 MUSD (19	95)	
Present linac staff :	5 man-years		
Present yearly operation	tion time :	(1)	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	250	keV
Beam inte	nsity (peak)	:		0.1 - 0.2	Α
Normalize	ed emittance (1	σ):	20	π mm	-mrad

Injector

Longitudinal matching : (2)							
Output :	2	MeV;	intensity :	10 - 20	Α		
Pulse width, spacing : 1 ms, 100 ms							
Normalized	l emit	tance (1σ)	: > 20	π mm-n	nrad		

Acceleration System

Total linac length	:	25	m m
No. sections: 2		gths :	
Field mode : π			0.4998 GHz
Wave type : SW	; filli	ng time :	<i>500-1000</i> μs
v_{0}/c range : 0.7 - 0.9	; Q	:	2 × 10 ⁹
Shunt impedance	:		MΩ/m
Iris : aperture : diameter	:		mm
thickness	:		mm
Attenuation/section	:		Np
Power units, Number :	2	type :	MMIC
RF power peak : 0.050	MW;	mean :	1.5 kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable) No. of bunches/pulse : No. of particles/bunch : Bunch separation :

	Normal Operation	Max, or Design	
Final energy :	0.015	0.023	GeV
Accel gradient :	6.5	> 7	MeV/m
$\Delta E/E$ (FWHM) :	< 0.8	<i>0.75</i>	%
Rep. rate :	10	10	Hz
Pulse length :	50 - 400	1000	μs
Beam intensity :	3.5 - 7	14 (10)	Α
Norm. emit. (1σ) :	> 20	10	π mm-mrad

- * SCARLET Super Conducting Accelerator for Research of Light Emission at Tokai
- ** Japan Atomic Energy Research Institute, 2 4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-11 Japan
- (1) About 2000 hrs on beam, 8400 hrs of refrigerator on duty.
- (2) A pair of 0.3 m single cell 500 MHz preaccelerator 83.3 MHz 1/6th SubHarmonic Buncher

PROTON AND/OR H- LINAC

Name of Linac	: JAERI 2 MeV RFQ			
Function	: Beam Test			
Institution and address	: JAERI, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan			
Person in charge	: Motoharu Mizumoto			
Name of person supplying these data	: Motoharu Mizumoto			
	e-mail : mizumoto@linac.tokai.jaeri.go.jp			
	tel. : +81 29 282 6451 fax : +81 29 282 5663			

HISTORY AND STATUS

Const. started : 03/1992 ; first beam : 02/1994 Present status : Operating Cost of facility : Present linac staff : 11 Present yearly operat. time : h

Focusing System

No. elements : type : order : Gradients : to T/m Other :

LINAC PARAMETERS

Ion Source

Type : Multi-cusp								
Output : 140)	mA	at	100		keV		
Pulse length :	100	μs;	rep.	rate :	100	Hz		
Normalized emitt	tance (1	σ):	0.0	08	πmm-	mrad		

Pre-accelerator (including RFQ)

Types :	4 vane		; lengths :	335	m
Output :	70	mA	at 20	00	keV
Pulse length:	700	μs;	rep. rate :	100	Hz
Normalized en	0.7	π mm-	mrad		

Longitudinal Matching

Longitudinal	Matchi	ng		
Type :				
Mod. k	eV; drift		mm at	MHz
k	eV; drift		mm at	MHz
Accelerating	System			
Total linac leng	,th :		m; No. of	tanks :
Tank diameters	:			m
Number of drift	t-tubes :			
Drift-tube lengt	hs :			mm
Drift-tube diam	(range):			mm
Gap/cell length	(range):			
Aperture diame			mm to	mm
RF frequency(i	es) :			MHz
Field modes	:			
Eff. shunt impe	dance :			MΩ/m
Q.	:			
Filling time	:			μs
Equilibrium pha	ases :			
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak	:	MW;	mean :	MW

LINAC PERFORMANCE

	optimion	20015.1	
Energy	:	2	MeV
Mean acc. rate	•	0.6	MeV/m
$\Delta E/E$ (FWHM)	•	< 5	%
Beam current	:	70	mA peak
Norm. emit. (1 σ)	:	0.7	π mm-mrad

Normal

Operation

Max, or

Design

OTHER RELEVANT INFORMATION

RFQ only.

Name of Linac	JAERI Tandem-Booster
Function	Independently-phased Heavy-ion Booster Linac
Institution and address	JAERI Tokai, Naka, Ibaraki Japan 319-11
Person in charge	Y. Yoshida
Name of person supplying these data	S. Takeuchi
	e-mail: takeuchi@tdm.alph1.tokai.jaeri.go.jp
	tel. : fax : +81292826321

HISTORY AND STATUS

Const. started :	<i>1988</i>	; first beam :	11/1993
Present status	: Operati	onal	
Cost of facility	: 2 BJPY		
Present linac staff	: 5		
Present yearly op	erat. time :	1000	h

LINAC PARAMETERS

No. of sources	:	5	
Types of source	: SN	ICS, HPIG, D	uopla
Species of ions	:	H' to Bi'	
Range of currents	3:	10	μAe
Range of output e	energies :	200/A (mass)) keV/u
Pulse length :	μs;	rep. rate :	Hz
Normalized emitt	ance (1σ) :		π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	tandem acc.	m
Output currents :	0.5	μAe
Output energies :	(2) $17000 (1+Q) / A$	keV/u
Frequency :	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : $l = \pi$ min	m-mrad

Longitudinal Matching

Longituumai IV	racenne		
Type :			
Mod. ke	V; drift	mm at	MHz
ke	V; drift	mm at	MHz
Accelerating S	vstem		
Total linac length	•	m· Nº o	f tanks : 10
•	. 20	•	a taliks. 10
Tank diameters	:	1.3	m
Number of drift-to	ubes :	(1)	
Drift-tube lengths	:	70	mm
Drift-tube diam (r	ange):	90	mm
Gap/cell length (ra	ange):	40/150)
Aperture diameter	r : 26	mm t	o mm
RF frequency(ies)) :	129.8	MHz
Field modes	:	CW	
Eff. shunt impeda	nce :		MΩ/m
Q	:	0.5 - 1 ×	10 ⁹
Filling time	:		μs
Equil. phases :	; accel.	rate	MeV/u-m
RF rep. rate :	Hz;	pulse :	μs
Beam rate :	Hz;	pulse :	μs
RF power peak :	MW;	mean :	0.002 MW

Focusing System

type :	doublet	order :		
Gradients :	0	to	25	T/m
Other: place	ed outside the	e tanks		

Charge Stripping (Typical)

Type(s): C foil						
Charge states :	12	to	28	at	1.6	MeV/u
Charge states :		to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	C to Au	C to Au	
Energy	:	(3) 25Q/A	(3) 30Q/A	MeV/u
$\Delta E/E$ (FWHM)	:	approx. 0.2	0.01-0.2	%
Mean acc. rate	:			MeV/u-m
Beam current	:	0.01-0.1		μ Ae peak
Norm. emit. (10)	:			π mm-mrad

OTHER ION BEAMS

Particle Energy range

Other info.

- (1) 40 (Quarter Wave Resonators)
- (2) Q: charge state, typically 12
- (3) Q: 12 28

Name of Linac	: Subpicosecond Twin Linac
Function	: Picosecond Time-resolved Measurement for Radiation Physics and Chemistry
Institution and address	: NERL *, University of Tokyo, Tokai, Ibaraki, Japan
	: Mitsuru Uesaka
Name of person supplying these data	: Mitsuru Uesaka
	e-mail: uesaka@utnl.gen.u-tokyo.ac.jp
	tel. : +81 29 287 8421 fax : +81 29 287 8488

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1975 ; first beam : 1977	Normal Max, or
Present status : Operating	Operation Design
Cost of facility : 5 MUSD	Final energy : (2) GeV
Present linac staff : 4 persons	Accel gradient : 10 MeV/m
Present yearly operation time : 1000 h	$\Delta E/E (FWHM) : 0.3 \%$
	Rep. rate : 50 Hz
LINAC PARAMETERS	Pulse length : (3) µs
	Beam intensity : ≤ 1000 A
Electron Sources	Norm. emit. (1σ) : 100 π mm-mrad
Types : Thermionic ; energy : 90 keV	
Beam intensity (peak) : 10 A	OTHER RELEVANT INFORMATION
Normalized emittance (1 σ): 100 π mm-mrad	OTHER RELEVANT INFORMATION
Injector	* Nuclear Engineering Research Laboratory
Longitudinal matching : (1)	
Output : MeV; intensity : A	(1) 476 MHz SHB, 2.856 GHz Prebuncher
Pulse width, spacing :	(2) 0.028, 0.018, 0.035
New line 1 in (1)	(3) $700 \text{ fm} \text{ to } 5 \text{ um}$

(3) 700 fs to 5 μs

Acceleration System

Section of Section				
Total linac length	:	10		m
No. sections: 2	; lengths	s :	2	m
Field mode : $2/3\pi$; freque	ncy :	2.856	GHz
Wave type : TW	; filling	time :	0.6	μs
v_g/c range : 0.0085	;Q	:	1931	•
Shunt impedance	:	56	N	łΩ/m
Iris : aperture : diameter	:	20		mm
thickness	:	4		mm
Attenuation/section	:	0.39		Np
Power units, Number :	2 t	ype:	Klystro	•
RF power peak : 7 N	MW; m	ean :	1.8	kW

Normalized emittance (1σ) : 100 π mm-mrad

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 - 14300No. of particles/bunch : $\leq 3 nC$ Bunch separation : 350 ps

Name of Linac	: TIT-IH-2-Linac
Function	: Booster Linac of Heavy Ion Accelerator
Institution and address	: RLNR, Tokyo Institute of Technology, Tokyo, Japan
Person in charge	: Director of RLNR
Name of person supplying these data	: T. Hattori
	e-mail : thattori@nr.titech.ac.jp
	tel. : +81 3 5734 3055 fax : +81 3 5734 2959

HISTORY AND STATUS

Const. started :	1984	; first beam :	<i>19</i> 87
Present status	: Operati	onal	
Cost of facility	: 0.5 MU	SD (1984)	
Present linac staff	: 1 man-y	vear	
Present yearly ope	erat. time :	100	h

LINAC PARAMETERS

Ion Sources			
No. of sources	:		
Types of source	:		
Species of ions	:		
Range of currents	s:		μAe
Range of output e	energies :		keV/u
Pulse length :	μs;	rep. rate :	Hz
Normalized emitt	ance (1σ) :	-	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	TIT-IH-Linac	7 m
Output currents :	0.1	μAe
Output energies :	2.4	keV/u
Frequency : 48	MHz; peak RF pow	/er: 80 kW
Pulse length :	μs; rep. rate :	DC Hz
Normalized emittar	nce (1σ) : 0.6	π mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

•

Total linac length	:	3	m; N°. of ta	inks: 1
Tank diameters	:		0.76	m
Number of drift-tubes	:		21+2 (1/2)	
Drift-tube lengths	:		56.0 ~ 66.6	mm
Drift-tube diam (range):		60	mm
Gap/cell length (range)):		1/2	
Aperture diameter	:	30	mm to	mm
RF frequency(ies)	:		96	MHz
Field modes	:		<i>TE111</i>	
Eff. shunt impedance	:		132	MΩ/m
Q	:			
Filling time	:		DC	μs
Equil. phases : 0	;	accel. 1	rate 1.33	MeV/u-m
RF rep. rate : DC		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak : (l))	MW;	mean : 0.0	001 MW

Focusing System No. elements :

ino. elements :		
type :	order :	
Gradients :	to	T/m
Other: No		

Charge Stripping (Typical)

Type(s): Carbon foil					
Charge states : C^{3+}	to	C ⁶⁺	at	2.4	MeV/u
Charge states :	to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Р	Cl	
Energy	:	3.4	3.4	MeV/u
$\Delta E/E$ (FWHM)	:	5	5	%
Mean acc. rate	:	0.36	1.33	MeV/u-m
Beam current	:	0.03	0.1	μ Ae peak
Norm. emit. (10)	:	0.6	0.6	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Р	3.4 MeV/u	
0 ⁶⁺	3.0 MeV/u	at 10 kW

OTHER RELEVANT INFORMATION

(1) $10 \ kW \ (50 \ kW)$

Name of Linac	: TIT-IH-Linac
Function	: Main Linac of Heavy Ion Accelerator
Institution and address	: RLNR, Tokyo Institute of Technology, Tokyo, Japan
Person in charge	: Director of RLNR
Name of person supplying these data	a: T. Hattori
	e-mail: thattori@nr.titech.ac.jp
	tel. : +81 3 5734 3055 fax : +81 + 5734 2959

HISTORY AND STATUS

Const. started :	1983	; first beam :	10/1984
Present status	: Operation	onal	
Cost of facility	: 3.5 MU	SD (1983)	
Present linac staff	: 1 man-y	ear	
Present yearly ope	erat. time :	200	h

Focusing System No. elements : DC

type : Gradients : Other :	QM 20	order : to	FODO 50	T/m
Charge Str Type(s): Ca		ypical)		

at 0.24 MeV/u

at

MeV/u

LINAC PARAMETERS

Ion Sources				
No. of sources	:		2	
Types of source	:	PIG and	SNIC	S-II
Species of ions	: E	le ~ Cl	ε	≥ 1/4
Range of currents	:		30 -	μAe
Range of output er	nergies :	2	0	keV/u
Pulse length : L)C μs;	rep. rat	e :	Hz
Normalized emitta	nce (1σ)	:		π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	5SDH-2	m
Output currents :	10	μAe
Output energies :	240	keV/u
Frequency : DC	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : π	mm-mrad

Longitudinal Matching

Type :	keV; drift	mm at	MHz
Mod.	keV; drift	mm at	MHz
Accelerat	ting System		

Total linac length :	7 m; N°. of tanks : 1
Tank diameters :	<i>1.4</i> m
Number of drift-tubes :	43+2 (1/2)
Drift-tube lengths :	<i>43.5 ~ 134.2</i> mm
Drift-tube diam (range):	<i>50/100</i> mm
Gap/cell length (range):	1/3
Aperture diameter :	23 mm to 1.0 mm
RF frequency(ies) :	47 MHz
Field modes :	TE111
Eff. shunt impedance :	<i>179</i> ΜΩ/m
Q :	21500
Filling time :	DC µs
	ccel. rate 1.23 MeV/u-m
RF rep. rate : DC	Hz; pulse : μ s
Beam rate :	Hz; pulse : µs
RF power peak : 0.08	MW; mean : 0.08 MW
	•

Type(s): Carbon foil Charge states : Cl^{4+} to Cl^{9+} Charge states : to

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Cl	Cl	
Energy	:	2.4	2.4	MeV/u
$\Delta E/E$ (FWHM)	:	0.5	0.5	%
Mean acc. rate	:	1.23	1.23	MeV/u-m
Beam current	:	0.1	0.1	μ Ae peak
Norm. emit. (10)	:	0.6	0.6	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Р	2.4 MeV/u	PIG
Cl	2.4 MeV/u	SNICS-II

Name of Linac: Deuteron IH LinacFunction: Radio-Isotope Production for PETInstitution and address: RLNR, Tokyo Institute of Technology, Tokyo, JapanPerson in charge: T. HattoriName of person supplying these data : T. Hattorie-mail : thattori@nr.titech.ac.jptel. : +81 3 5734 3055fax : +81 3 5734 2959

HISTORY AND STATUS

Const. started : 199	3; first b	eam : 06/19	96
Present status :	Operational		
Cost of facility :	0.1 MUSD		
Present linac staff :	1 man-year		
Present yearly operation	at. time :	100	h

LINAC PARAMETERS

Ion Sources		
No. of sources :	1	
Types of source :	Compact ECI	१
Species of ions :	P, d	
Range of currents :	100	μAe
Range of output energies :	100	keV/u
	rep. rate :	Hz
Normalized emittance (1σ) :	0.6	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	HVPS (0.5)) m
Output currents :	100	μAe
Output energies :	100	keV/u
Frequency : DC	MHz; peak RF por	wer: kW
Pulse length :	µs; rep. rate :	Hz
Normalized emittar	nce (1σ) : 0.6	π mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	1.9 m; N°. of tanks : 1
Tank diameters :	0.56 - 0.64 - 0.7 m
Number of drift-tubes :	28+2 (1/2)
Drift-tube lengths :	$13.1 \sim 21.1$ mm
Drift-tube diam (range):	<i>30 - 60</i> mm
Gap/cell length (range):	~ 0.5
Aperture diameter :	24 mm to 44 mm
RF frequency(ies) :	103 MHz
Field modes :	TE111
Eff. shunt impedance :	<i>420</i> ΜΩ/m
Q :	16000
Filling time :	DC µs
Equil. phases : ;	accel. rate 1.7 MeV/u-m
RF rep. rate : DC	Hz; pulse : μ s
Beam rate :	Hz; pulse : μ s
RF power peak : DC	MW; mean : 0.012 MW

Focusing System

No. elements :		
type :	order :	
Gradients :	to	T/m
Other : $APF (-90^{\circ} \sim +15^{\circ})$		

Charge Stripping (Typical)

Type(s): No			
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Р	D	
Energy	:	1.7	1.7	MeV/u
$\Delta E/E$ (FWHM)	:			%
Mean acc. rate	:			MeV/u-m
Beam current	:	1	1000	μ Ae peak
Norm. emit. (10)	:	0.6	0.6	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Р	1.7 MeV/u	
D	1.7 MeV/u	

Name of Linac	TIT-RFQ
Function	Heavy Ion Linac for plasma experiment
Institution and address	RLNR Tokyo, Institute of Technology, Tokyo, Japan
Person in charge	T. Hattori
Name of person supplying these data	T. Hattori
	e-mail: thattori@nr.titech.ac.jp
	tel. : +81 3 5734 3055 fax : +81 3 5734 2959

HISTORY AND STATUS

Const. started :	1992	; first beam :	11/1993
Present status	: Operatio	onal	
Cost of facility	: 0.75 ML	ISD (1992)	
Present linac staff	: 1 man-y	ear	
Present yearly ope	erat. time :	600	h

LINAC PARAMETERS

Ion Sources			
No. of sources	:	2	
Types of source	:	ECR	
Species of ions	:	(1)	
Range of currents	:	1600 (7000)) µAe
Range of output e	nergies :	0.22	keV/u
Pulse length : 1	DC µs;	rep. rate :	Hz
Normalized emitta	ance (1σ) :	0.5	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	HVPS (0.2)	m
Output currents :		μAe
Output energies :		keV/u
Frequency :	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate : DC	' Hz
Normalized emittar	nce (1σ) : 0.6 π m	m-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	4.4	m; N°. of t	anks :
Tank diameters	:		725	m
Number of drift-tube	s:		242	
Drift-tube lengths	:		413	mm
Drift-tube diam (rang	(e):			mm
Gap/cell length (rang	e):			
Aperture diameter	:	0.8	mm to	1.0 mm
RF frequency(ies)	:		81	MHz
Field modes	:		<i>TE210</i>	
Eff. shunt impedance	e :		28	MΩ/m
Eff. shunt impedance Q	e : :		28 12000	MΩ/m
	• : : :			MΩ/m µs
Q	:	accel.	12000	
Q Filling time	: : ;;		12000 150 rate 0.78	μs
Q Filling time Equil. phases : (2)	: :);:)	Hz;	12000 150 rate 0.78 pulse : 3	μs MeV/u-m
Q Filling time Equil. phases : (2) RF rep. rate : 30 Beam rate : 30	: ;;);;	Hz;	12000 150 rate 0.78 pulse : 3 pulse : 3	μs MeV/u-m 2000 μs

Focusing System

No. eleme	ents : 242		
type :	FD	order :	
Gradients	:	to	T/m
Other: RF	rQ		
~	.	 	

Charge Stripping (Typical)

Type(s): No			
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	He	Xe ¹⁰⁺	
Energy	:	0.22	0.22	MeV/u
$\Delta E/E$ (FWHM)	:	0.5	0.5	%
Mean acc. rate	:	0.3	0.78	MeV/u-m
Beam current	:	1.6	6.8	μAe peak
Norm. emit. (1σ)	:	0.5	0.5	π mm-mrad

OTHER ION BEAMS

Energy range	Other info.
0.22 MeV/u	ECR IS
	•• •

OTHER RELEVANT INFORMATION

(1) He^+ , ${}^{16}O^+$, $Xe^{10+} \varepsilon \ge 1/16$ (2) -90, -30, -20

Name of Linac	: KEK PF * 2.5 GeV Linac	
Function	: Injector Linac for 2.5 GeV PF Stora	ige Ring and AR **
Institution and address	: KEK, 1-1 Oho, Tsukuba-shi, Ibaral	ki-ken, 305, Japan
Person in charge	: Kazuo Nakahara	• • •
Name of person supplying these da	ta : H. Kobayashi	
	e-mail : hitoshik@kekvax.kek.jp	
	tel. : 0298 64 5585	fax : 0298 64 2801

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 197	'8	; first beam : 1982	
Present status :	Operatio	ng	
Cost of facility :	7000 M.	IPY (1982)	
Present linac staff :	29		
Present yearly operation	ation time	: 5300	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	200	keV
Beam inte	nsity (peak)	:		>10	Α
Normalize	ed emittance (1	σ):		π mm	n-mrad

Injector Longitudir	nal mat	ching :			
Output :	43	MeV;	intensity :	10	Α
Pulse wid	th, spac	cing : 1() ns, 40 ms		
Normalize	-	-		π mm-	mrad

Acceleration System

Total linac length	:	415	m
No. sections: 160	;	lengths : 1.9	m
Field mode : $2\pi/3$;	frequency : 2.856	GHz
Wave type : TW	;	filling time : 0.45~0.5	σμs
v_g/c range : (1)	;	Q : > 1300	00
Shunt impedance	:	55.4 - 60.3 N	/Ω/m
Iris : aperture : diameter	:	24 - 19.5	mm
thickness	:	5	mm
Attenuation/section	:	0.23 - 0.55	Np
Power units, Number :	4	0 type : Klystre	on
RF power peak : 30	M	W; mean : 5.3	kW

Focusing System

Type, No. of elements, and spacing : Quadrupole triplets, 28 triplets ~ 10 m interval in the first fifth part \sim 20 m interval in the remainder of accelerator

Beam Pulse Structure (if applicable) No. of bunches/pulse : No. of particles/bunch : **Bunch** separation :

		Normal Operation	Max, or Design	
Final energy	:	2.5	3.0	GeV
Accel gradient	:	8	20	MeV/m
$\Delta E/E$ (FWHM)	:	0.4		%
Rep. rate	:	25	50	Hz
Pulse length	:	0.001	1	μs
Beam intensity	:	0.4	10	Α
Norm. emit. (10)	:	180		π mm-mrad

OTHER RELEVANT INFORMATION

- * PF Photon Factory
- ** AR Accumulator Ring
- (1) 0.019 -0.0083

The linac is being upgraded from 2.5 GeV to 8 GeV.

References

[1] J. Tanaka, Nucl. Instr. Meth. 177 (1980) 101.

POSITRON LINAC

Name of Linac	:	KEK PF 2.5 GeV Linac
Function	:	Positron Injector Linac for 2.5 GeV PF Storage Ring and AR
Institution and address	:	KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan
Person in charge	:	Kazuo Nakahara
Name of person supplying these data	:	H. Kobayashi
		e-mail : hitoshik@kekvax.kek.jp
		tel. : +81 0298 64 5585 fax : +81 0298 64 2801

MeV

mm

Α

HISTORY AND STATUS

OTHER RELEVANT INFORMATION

Differences with respect to corresponding e linac, are given in space to right.

Primary Beam (e⁻) at Conversion Target

250

~1

10

 QWT - Quarter Wave Transformer 2 T pulsed solenoid (50 mm)
 0.4 T DC solenoid (8 m)

References

[1] A. Enomoto et al., Nucl. Instr. Meth. A281 (1989)1.

LINAC PARAMETERS

:

:

Energy

Radius (10)

Beam intensity :

Conversion Target and Capture

Material	:	Та	
Туре	:	Stationary	
Thickness (rad.length)	:	2.0	χ
Diameter	:	20	mm
Mean deposited power	:	2	kW
Solenoidal field ^{a)}	:	(1) QWT	
Matching device	:		
RF sections ^{a)}	:		

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e^{-1} linac, are given in space to right.

LINAC PERFORMANCE

	Normal Operation	Max, or Design	
Final energy :	2.5	3	GeV
Accel gradient :	8	20	MeV/m
$\Delta E/E$ (FWHM) :	0.44		%
Rep. rate :	25	50	Hz
Pulse length :	0.001	0.04	μs
Yield (fin.en) :	1.8×10^{-2}	1.8×10^{2}	e⁺/e⁻x GeV
Beam intensity :	32000	50000	μA peak
Norm. emit. (1σ) :	2000	1	r mm-mrad

Name of Linac :	ATF * Linac
Function :	Injector Linac for the ATF Damping Ring
Institution and address :	KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan
Person in charge :	S. Takeda, H. Hayano, T. Naito & M. Akemoto
Name of person supplying these data :	S. Takeda
	e-mail : <i>takeda@kekvax.kek.jp</i>
	tel. : +81 298 64 5304 fax : +81 298 64 4403

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1993	; first beam : 1995	5
Present status : Opera	ting	
Cost of facility :		
Present linac staff : 3 man	-years	
Present yearly operation tim	ne: (1)	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	(2)	keV
Beam inte	nsity (peak)	:		(3)	Α
Normalize	ed emittance (10	5) :	< 100	π mm	n-mrad

Injector

Injector					
Longitudin	al mat	ching : (4)	1		
Output :	80	MeV;	intensity :	< 3	Α
Pulse widt	h, spac	cing : 54	ns, 20 or >4	10 ms	
Normalize	d emitt	ance (1σ)	: < 100	π mm-	mrad

Acceleration System

Total linac length	:	(5)	88	m
No. sections: (6) 16+2	; len	gths :	3 .0	m
Field mode : $2\pi/3$; free	quency :	2.856	GHz
Wave type : TW	; filli	ing time :	0.83	μs
v_g/c range : (7)	; Q	:	1300	0
Shunt impedance	:	60		MΩ/m
Iris : aperture : diameter	:	(8) 25.3 -	18.4	mm
thickness	:	5.0		mm
Attenuation/section	:	0.54		Np
Power units, Number :	(9)	type :	(9)	
RF power peak : (10)	MW;	mean :	(10)	kW

Focusing System

Type, No. of elements, and spacing :

Solenoids up to 80 MeV, Matching section at 80 MeV, Triplet from 0.08 to 0.28 GeV, Doublets from 0.28 to 0.6 GeV, Singlets from 0.6 to 1.54 GeV.

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: (11) 20
No. of particles/bunch	$: < 3 \times 10^{10}$
Bunch separation	: 2.8 ns

		Normal	Max, or	
		Operation	Design	
Final energy	:	1.54	2.0	GeV
	:	33	40	MeV/m
$\Delta E/E$ (FWHM)	:	1.0	1.0	%
Rep. rate	:	25	50	Hz
Pulse length	:	0.054	0.054	μs
Beam intensity	:	(12) < 1.8	(12) < 2	Α
Norm. emit. (1σ)	:	< 100	< 100	π mm-mrad

- * ATF - Accelerator Test Facility
- (1) 900 h / 17 week (Beam op.)
- (2) 150 keV (Max 240 keV)
- (3) < 4 A (instant current), 1 ns FWHM, 20 beam pulses, 2.8 ns separation.
- (4) Two 357 MHz SHB + S-band TW Buncher + 3 m long accelerating structure.
- (5) 18 m for injector and 70 m accelerator.
- (6) 16 structures at 2.856 GHz are installed for the accelerating section. 2.856 + 4.327 MHz structure and 2.856 - 4.327 MHz structure are installed for the multi-bunch Energy Compensation System (ECS).
- (7) 0.0204 0.0065
- (8) Linac consists of three types of constant gradient structures with different apertures (25.251-18.376), (25.269-18.414) and (25.287 - 18.453)
- (9) 8 Klystrons equipped with SLED and 2 Klystrons for ECS. Two Klystrons without SLED are for $\pm \Delta f$ ECS.
- (10) Peak: 80 MW (400 MW from SLED) Mean: 18 kW at 50 Hz rep. rate
- (11) Bunch by bunch instrumentations are installed for the position, profile, intensity, bunch shape, energy and emittance of each bunch.
- (12) Instantaneous beam current of multi-bunch beam.

PROTON AND/OR H- LINAC

Name of Linac:KEK 40 MeV LineFunction:Injector for 12 CInstitution and address:KEK, 1-1 Oho,Person in charge:Isao YamaneName of person supplying these data::Eiichi Takasaki

: KEK 40 MeV Linac
: Injector for 12 GeV Proton Synchrotron
: KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan
: Isao Yamane
: Eiichi Takasaki
e-mail: eiichi@kekvax.kek.jp
tel. : fax : +81 298 64 3182

Forma System

HISTORY AND STATUS

Const. started : 04/1971 ; first beam : 08/1974 Present status : Operational Cost of facility : Present linac staff : 3 - 4 Present yearly operat. time : ~ 5000 (1995) h

LINAC PARAMETERS

Ion Source

Type : Cusp H [*] Ion Source						
Output : 25		mA	at	370		keV
Pulse length :	200	μs;	rep.	rate :	20	Hz
Normalized emit	tance (10	J):	1	.4	πmm-	mrad

Pre-accelerator (including RFQ)

Types :	Cockc	roft-Wa	lton	; lengt	hs :		m
Output	:	25	mA	at	75	0	keV
Pulse ler	ngth:	80	μs;	rep. ra	te :	20	Hz
Normaliz	zed emi	ttance (lσ) :	1.4		πmm-	mrad

Longitudinal Matching

Type :	One	buncher system wit	h 2 gaps	5	
Mod.	16	keV; drift 944.2	mm at	201.07	MHz
		keV; drift	mm at		MHz

Accelerating System

Total linac length :	(1) m; No. of tanks : 2
Tank diameters :	<i>0.94 / 0.90</i> m
Number of drift-tubes :	90/36
Drift-tube lengths :	23.29 to 287.90 mm
Drift-tube diam (range):	180/160 mm
Gap/cell length (range):	0.21 to 0.317
Aperture diameter :	20 mm to 30 mm
RF frequency(ies) :	201.069 MHz
Field modes :	TM 010
Eff. shunt impedance :	<i>53 / 46</i> ΜΩ/m
Q :	65000
Filling time :	100 µs
Equilibrium phases :	-30°
RF rep. rate : 20	Hz; pulse : 275 μs
Beam rate : 20	Hz; pulse : 80 µs
RF power peak : (2)	MW; mean: 0.0165 MW

rocusing 5	ystem			
No. elements	: (3)			
type :	(4)	order :	FODO	
Gradients :	110	to	22	T/m
Other :				

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy	:	40.3	MeV
Mean acc. rate	:	1.42	MeV/m
$\Delta E/E$ (FWHM)	:	±0.4	%
Beam current	:	18	mA peak
Norm. emit. (10)	:	1.2	π mm-mrad

- (1) 28.4 m (15.5 / 12.9)
- (2) $3 MW (1.5 \times 2)$
- (3) 90/36
- (4) pulsed/permanent Q-mags.
- There are two pre-accelerators (CW type) for the high intensity H⁻ beams and the polarized beams (H⁻/D⁻).
- The upgrade from 20 MeV to 40 MeV was completed in 1985. The second tank has a post coupled Alvarez structure and all quadrupole magnets are fabricated with permanent magnets.
- The single gap re-entrant cavity is used as a debuncher system.
- The velocity monitors are installed after each tank and are used for controlling phases and amplitudes of the RF fields.

PROTON AND/OR H- LINAC

Name of Linac :	KEK 5 MeV H ⁻ Linac Test Stand			
Function :	Accelerator Study for JHP			
Institution and address :	KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan			
Person in charge :	: Y. Yamazaki			
Name of person supplying these data:	Y. Yamazaki			
	e-mail : yoshishi@kekvax.kek.jp			
	tel. : +81 298 64 5202 fax : +81 298 64 3182			

HISTORY AND STATUS

Const. started :	1989	; first beam :	1994
Present status	: Partly	operational	
Cost of facility	: 700 M	JPY (1995)	
Present linac staf	f:6		
Present yearly op	erat. time	•	h

LINAC PARAMETERS

Ion Source

Type: Volume-p	product	ion Ty	ve H	[•] Ion S	Source	
Output : 16			at	50		keV
Pulse length :	350	μs;	rep. 1	rate :	50	Hz
Normalized emit	tance (lσ) :	0.1	13	πmm-	mrad

Pre-accelerator (including RFQ)

Types : (1)	4 vane RFQ	; lengths :	2.7 m
Output :	(2) 13.2 mA	at 30	00 keV
Pulse length:	<i>(3) 200</i> µs;	rep. rate :	(4) 20 Hz
Normalized en	nittance (10) :	0.15	π mm-mrad

Longitudinal Matching

Type :	One l	buncher syst	em			
Mod.	115	keV; drift	784	mm at	432	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length :	1.17	m; No. o	f tanks	s: 1
Tank diameters :		0.44		m
Number of drift-tubes :		17		
Drift-tube lengths :		43 to 54	!	mm
Drift-tube diam (range):		80		mm
Gap/cell length (range):		0.24 to	0.26	
Aperture diameter :	10	mm to		mm
RF frequency(ies) :		432		MHz
Field modes :		TM010	0	
Eff. shunt impedance :		62		MΩ⁄m
Q :		44000		
Filling time :		16		μs
Equilibrium phases :		-30°		
RF rep. rate : 50	Hz;	pulse :	600	μs
Beam rate :	Hz;	pulse :		μs
RF power peak : 0.095	MW;	mean :	0.003	MW

Focusing System

No. element	ts: 19			
type :	(5) PQM	order :	FODO	
Gradients :	175	to	168	T/m
Other:				

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Energy	:	3	5.4	MeV
Mean acc. rate	:		2.1	MeV/m
$\Delta E/E$ (FWHM)	:			%
Beam current	:	6	20	mA peak
Norm. emit. (10)	:		0.3	π mm-mrad

- (1) With PISL's 432 MHz.
- (2) The H beam test with LEBT.
- (3) High power test up to 600 μs.
- (4) High power test up to 50 Hz.
- (5) Permanent quadrupole magnet.
 - a) One quarter structure of the 10 MeV drift-tube linac. Post-coupled structure.
 - b) The full beam test will be done in 1997.

Name of Linac: TELL*Function: Electron Linac as injector for 3 storage rings and generation of slow positronInstitution and address: Quantum Radiation Division, Electrotechnical Laboratory, **Person in charge: Tomohisa MikadoName of person supplying these data: Tetsuo Yamazaki
e-mail : tyamazak@etl.go.jp
tel. : +81 298 54 5541fax : +81 298 58 5683

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1980 ; first beam : 12/1980 Present status : Operating Cost of facility : (1) 900 MJPY (1980) Present linac staff : (2) 10 man-years Present yearly operation time : 1800 h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80)	keV
Beam inte	ensity (peak)	:		(3)	2	Α
Normalize	ed emittance (10	σ):		π	mn	n-mrad

Injector

Longitudin	al mat	ching : (4)				
Output :	5	MeV;	intensity :	0.200	Α	
Pulse width, spacing : (5)						
Normalized	l emit	tance (1o)	7(horiz)6(ver	<i>t)</i> π mm-r	nrad	

Acceleration System

Total linac length	: 76	m
No. sections: 4	; lengths : 2.16;	m
Field mode : $2\pi/3$; frequency : 2.856 C	Hz
Wave type : TW	; filling time : (6) 0.4	μs
vg/c range : 0.013-0.02	;Q :	•
Shunt impedance	: 57-51 MS	Ω/m
Iris : aperture : diameter	: (7) 27-23	mm
thickness	: 5	mm
Attenuation/section	: (8)	Np
Power units, Number :	8 type: Klystron	-
RF power peak : 25 N	MW; mean : 25	kW

Focusing System

Type, No. of elements, and spacing :

Solenoids and Q doublet at the injector, 12 quadrupole doublets, a quadrupole triplet between Acc. 8 and 9.

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		NUTHAL	iviax, or	
		Operation	Design	
Final energy	:	0.31	0.5	GeV
Accel gradient	:	5.5	9	MeV/m
$\Delta E/E$ (FWHM)	:	1.5 - 3	1.5	%
Rep. rate	:	0.1 - 100	0.1 - 250	Hz
Pulse length	:			μs
Beam intensity	:	0.250		Α
Norm. emit. (1 σ)	:			π mm-mrad

Max or

Normal

OTHER RELEVANT INFORMATION

- * Tsukuba Electrotechnical Laboratory Linac
- ** 1-1-4 Umezono, Tsukuba-shi, Ibaraki, 305, Japan
- (1) Including the beam-transporting system and excluding the cost of building
- (2) Those people operate, maintain and do their own scientific research.
- (3) With pulse width of 4 μs : 0.002 A With pulse width of 1 ns : 1 A
- (4) 2 S-band prebuncher and a buncher
- (5) Long pulse mode: pulse width : 500 400 ns spacing : 10 - 5000 ms
 - Short pulse mode: pulse width : 1 ns spacing : 500

(This mode is used for single bunch injection into storage ring)

- (6) 0.4 μ s for 2 m sections
- $0.6 0.7 \ \mu s$ for 3 m sections
- (7) Constant-gradient type. The diameter depends on the type of acc. tube.
- (8) Depends on the type of acc. tube. 0.28 Np (2m section), 0.44-0.51 Np (3m section)

Slow-positron beam is generated usually with beam energy of 60-75 MeV in the low-energy experimental room.

600 MeV storage ring NIJI-II for SR processing is usually filled with electron energy of 150 MeV.

800 MeV storage ring TERAS for SR research is usually filled with electron energy of 310 MeV.

500 MeV storage ring NIJI-IV dedicated to free-electron lasers is filled with electron energy of 310 - 340 MeV.

Name of Linac	: ICR 100 MeV Electron Linac
Function	: Electron Linac for KSR injection
Institution and address	: ICR, Kyoto University, Gokano-sho, Uji-city, Kyoto 611, Japan
Person in charge	: M. Inoue
Name of person supplying these da	ta: A. Noda
	e-mail : noda@kyticr.kuicr.kyoto-u.ac.jp
	tel. : +81 774 32 5806 fax : +81 774 33 5509

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 10/1994 ; firs	t beam : 10/1995	
Present status : Operating		
Cost of facility :		
Present linac staff : 5 man-years		
Present yearly operation time :	300 (1995)	h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	100	keV
Beam inter	nsity (peak)	:		0.12	Α
Normalize	d emittance (1	l σ):		π mm	n-mrad

Injector

Longitudinal matching : Prebuncher, Buncher							
Output :	5	MeV;	intensity :	0.1	Α		
Pulse width, spacing : $1 \mu s$, 50 ms							
Normalized	d emit	tance (10)	: 100	π mm-	mrad		

Acceleration System

Total linac length	:	10.5	m
No. sections : 3	;	lengths : 3	m
Field mode : $2\pi/3$;	frequency : 2.85	7 GHz
Wave type : TW	;	filling time : 0.58	β µs
v_g/c range : 0.0172	;	Q : 135	00
Shunt impedance	:	53	MΩ/m
Iris : aperture : diameter	:	26.8 - 23.48	mm
thickness	; :	5.84	mm
Attenuation/section	:	0.383	Np
Power units, Number :		3 type : Klys	tron
RF power peak : 21	M	W; mean : 1	kW

Focusing System

Type, No. of elements, and spacing : FD. FD Lattice, 5 elements, 3.5m spacing

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.1		GeV
	:	12		MeV/m
$\Delta E/E$ (FWHM)	:			%
Rep. rate	:	20 (max)		Hz
Pulse length	:	1		μs
Beam intensity	:	0.100		Α
Norm. emit. (10)	:			π mm-mrad

OTHER RELEVANT INFORMATION

(1) Pierce type thermal gun

The duty factor is 2×10^3 %

PROTON AND/OR H- LINAC

Name of Linac: ICR 7MeV Proton LinacFunction: Proton Linac for Accelerator Development and Material IrradiationInstitution and address: ICR, Kyoto University, Gokano-sho, Uji-city, Kyoto 611, JapanPerson in charge: M. InoueName of person supplying these data:A. Nodae-mail:noda@kyticr.kuicr.kyoto-u.ac.jptel.: +81 774 32 5806fax: +81 774 32 5509

HISTORY AND STATUS

Const. started : 04/1986 ; first beam : 01/1992 Present status : Operating Cost of facility : 300 MYEN (1986) Present linac staff : 5 man-years Present yearly operat. time : 1500 (1995) h

LINAC PARAMETERS

Ion Source

Type : Multi-cusp Field Type								
Output :	10	mA	at	50	keV			
Pulse length :	500	μs;	rep. r	ate : max	180 Hz			
Normalized en	nittance (1	σ):	1	πn	nm-mrad			

Pre-accelerator (including RFQ)

Types :	4	vane RFQ	2	; len	gths :	2.195	m
Output	:	1.2	mA	at	200	00	keV
Pulse lengt	h:	50	μs;	rep.	rate : n	nax 18	0 Hz
Normalized emittance (1σ) :						π mm-	mrad

Longitudinal Matching

Type :	(1)			
Mod.	190	keV; drift	mm at	MHz
		keV; drift	mm at	MHz

Accelerating System

Total linac length :	(2)	m; No. o	of tanks	s: 1
Tank diameters :		0.451		m
Number of drift-tubes :		28		
Drift-tube lengths :		38.8 - 65	.3	mm
Drift-tube diam (range):		55		mm
Gap/cell length (range):				
Aperture diameter :		mm to)	mm
RF frequency(ies) :		433		MHz
Field modes :		TM01	0	
Eff. shunt impedance :		100		MΩ/m
Q :		(3) 4000	00	
Filling time :		10		μs
Equilibrium phases :				-
RF rep. rate : max 180	Hz;	pulse :	60	μs
Beam rate : max 180	Hz;	pulse :	50	μs
RF power peak : 0.33	MW;	mean :	0.003	MW

Focusing System

No. elements :29type :PMQ (NdFeB)order :Gradients :175toT/m

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
		operation	Design	
Energy	:	7		MeV
Mean acc. rate	:	1.7		MeV/m
$\Delta E/E$ (FWHM)	:	±3		%
Beam current	:	0.6		mA peak
Norm. emit. (10)	:			π mm-mrad

- (1) Longitudinal Matching Type : Single rebuncher with double gap resonator between RFQ and DTL.
- (2) 1.868
- (3) Unloaded

Name of Linac : RILAC * Function : Basic Research, Injector for the Ring Cyclotron Institution and address : The Institute of Physical and Chemical Research (RIKEN)** : Y. Miyazawa Person in charge Name of person supplying these data : A. Goto e-mail: goto@ringps.riken.go.jp tel. : +81 48 462 1111 fax : +81 48 461 5301

h

 π mm-mrad

HISTORY AND STATUS

Const. started : 197	74 ; first b	eam : 1981
Present status :	Operational	
Cost of facility :	(1) 10 MUSD	
Present linac staff :	10	
Present yearly operation	at. time :	4000

LINAC PARAMETERS

Normalized emittance (1σ) :

Ion Sources					
No. of sources	:		I		
Types of source	:	ECH	R source (Ne	omafio	s)
Species of ions	:		(2) Heavy I	ons	
Range of currents	s:				μAe
Range of output e	energie	s :	(3)		keV/u
Pulse length :		μs;	rep. rate :	CW	Hz

Pre-accelerators (including RFQ)

Types (lengths) :	Cockcroft-Walton	m
Output currents :	10×10^3	μAe
Output energies :	(4)	keV/u
Frequency : CW	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : π_1	nm-mrad

Longitudinal Matching

Type:			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	30 1	m; N	°. of ta	inks :	6
Tank diameters	:	3 ^(L)	$' \times 2^{\prime\prime}$	[»] × 3	5 ^(H)	m
Number of drift-tubes	:		8	17		
Drift-tube lengths	:		18 ~	· 220		mm
Drift-tube diam (range)	:			~ 160		mm
Gap/cell length (range)	:	(40 ~	· 90) /	' (60 ~	310)	
Aperture diameter	:	20	m	m to	30	mm
RF frequency(ies)	:			~ 40		MHz
Field modes	:	$\lambda/4$	coaxi	al / Wi	iderö	е
Eff. shunt impedance	:		20 ~	- 100	1	MΩ/m
Q	:	18	8500 ·	~ 1200	00	
Filling time	:					μs
Equil. phases :	;	accel. r	ate		Me	V/u-m
RF rep. rate :		Hz;	pulse	e: (CW	μs
Beam rate :		Hz;	pulse	e: (CW	μs
RF power peak :		MW;	mea	n: 2	2.0	MW

Focusing System

No. elements : 36 type: Quadupole magnet order : Gradients : 10 T/m to 60 Other:

Charge Stripping (Typical)

Type(s): C - Foil	Stripper		
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	He ~ Bi		
Energy	:	(5)		MeV/u
$\Delta E/E$ (FWHM)	:		0.5	%
Mean acc. rate	:			MeV/u-m
Beam current	:			μ Ae peak
Norm. emit. (1σ)	:			π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

- **Riken Linear Accelerator**
- ** Wako-shi, Saitama, 351-01, Japan
- (1) Machine only
- (2) 52 species ever accelerated
- (3) 16 MV
- (4) 0.5 MV
- $(5)^{+} 3 MeV/u$ for m/q < 5

References

[1] M. Odera et al., N.I.M. 227, 187 (1984)

Name of Linac :	PLS 2-GeV Linac
Function :	Injector to Pohang Light Source
	Pohang Accelerator Laboratory, Pohang 790-784, Korea
	Won Namkung
Name of person supplying these data :	Won Namkung
	e-mail: namkung@vision.postech.ac.kr
	tel. : +82 562 279 1006 fax : +82 562 279 1099

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 4/1	Ι.	1991	; first beam : 5/10/1994
Present status	:	Normal	l Operation
Cost of facility	:	(1)	-
Present linac staff	:	34	
Present yearly open	ra	tion time	e: 5000 h

LINAC PARAMETERS

Electron Sources

Types : Thermionic Gun	;	energy :	80	keV
Beam intensity (peak)	:		2	Α
Normalized emittance (10)	:	10	π m	n-mrad

Injector

Longitudinal matching : (2)	
Output: (3) 0.27 MeV; intensity:	Α
Pulse width, spacing : 1 ns, 100 ms	
Normalized emittance (1σ) :	π mm-mrad

- - -

Acceleration System

Total linac length	: 150	m
No. sections: (4) 42	; lengths : 3.072	m
Field mode : TM01	; frequency : 2.856	GHz
Wave type : TW	; filling time : 0.83	μs
v_g/c range : (5)	;Q : 1300	0
Shunt impedance	: $53 \sim 60$ M	MΩ/m
Iris : aperture : diameter	: 19.093 ~ 26.220	mm
thickness	: 5.842	mm
Attenuation/section	: 1.751	Np
Power units, Number :	11 type : (6) Klys	tron
RF power peak : 80	MW; mean: (7) 3.2	kW

Focusing System

Type, No. of elements, and spacing : *Quadrupoles* #1, #2, #3, #4, #5, #6 : φ 44 mm #1:8m, #2, #3:16m, #4, #5, #6:27m

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	2	2.34	GeV
Accel gradient	:	15.5	20	MeV/m
$\Delta E/E$ (FWHM)	:	0.3	0.3	%
Rep. rate	:	10	60	Hz
Pulse length	:	10 ³	0.04	μs
Beam intensity	:	2	2	Â
Norm. emit. (10)	:	0.32	0.075	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) 16 BKRW (20 MUSD), (1994)
- (2) S-band prebuncher and buncher
- (3) Estimated by PARMELA
- (4) Accelerating section: HEM11 suppressor included
- (5) $0.0204 \sim 0.0065$.
- (6) Toshiba E-3712
 10 detunable pulse compressors used
 200 MW modulator using SCR gate control
- (7) 4 μ s pulse with 10 Hz operation

3 beam exits: 100 MeV, 1 GeV, 2 GeV

References

- [1] W. Namkung, et al., "Commissioning of PLS 2-GeV Electron Linac", Proc. 1994 EPAC, p742 (1994), and references therein.
- [2] I. Ko, et al., "Control System of PLS 2-GeV Electron Linac", Proc. 1995 IEEE Real-Time Computer Applications, p 271 (1995), and references therein.

Name of Linac :	SRRC *
Function :	Preinjector linac for SRRC 1.3 GeV Booster Synchrotron
	No 1 R&D Road VI Hsinchu Science-Based Industrial Park, Hsinchu 300, Taiwan
Person in charge :	Tzong-Shyan Ueng (Linac) Prof. Y.C. Liu (Director)
Name of person supplying these data :	Tzong-Shyan Ueng
	e-mail: UENG@SRRC01.SRRC.GOV.TW
	tel. : +886 35 780281 ext. 6315 fax : +886 35 783892

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	9	; first beam	: 1992	
Present status	:	Operating		
Cost of facility	:	1 MUSD		
Present linac staff	:	5 man-years		
Present yearly oper			90	h

LINAC PARAMETERS

Electron Sources

Types Dispenser cathode;	energy :	150	keV
Beam intensity (peak) :		< 2.5	Α
Normalized emittance (1o):	< 40	π mm	-mrad

Injector

Longitudinal matching : (1)							
Output :	NA	MeV;	intensity :	NA	Α		
Pulse width, spacing : NA							
Normalized emittance (1 σ): NA π mm-mrad							

Acceleration System

Total linac length	:	3.08	m
No. sections : 1	; leng	gths :	<i>3.08</i> m
Field mode : $2\pi/3$; freq	uency :	2.9979 GHz
Wave type : TW	; filli	ng time :	0.78 µs
v_g/c range : 0.012	; Q	:	13025
Shunt impedance	:	NA	MΩ/m
Iris : aperture : diameter	:	NA	mm
thickness	:	NA	mm
Attenuation/section	:	0.564	Np
Power units, Number :	2	type :	Klystron
RF power peak : 30	MW;	mean :	ng kW

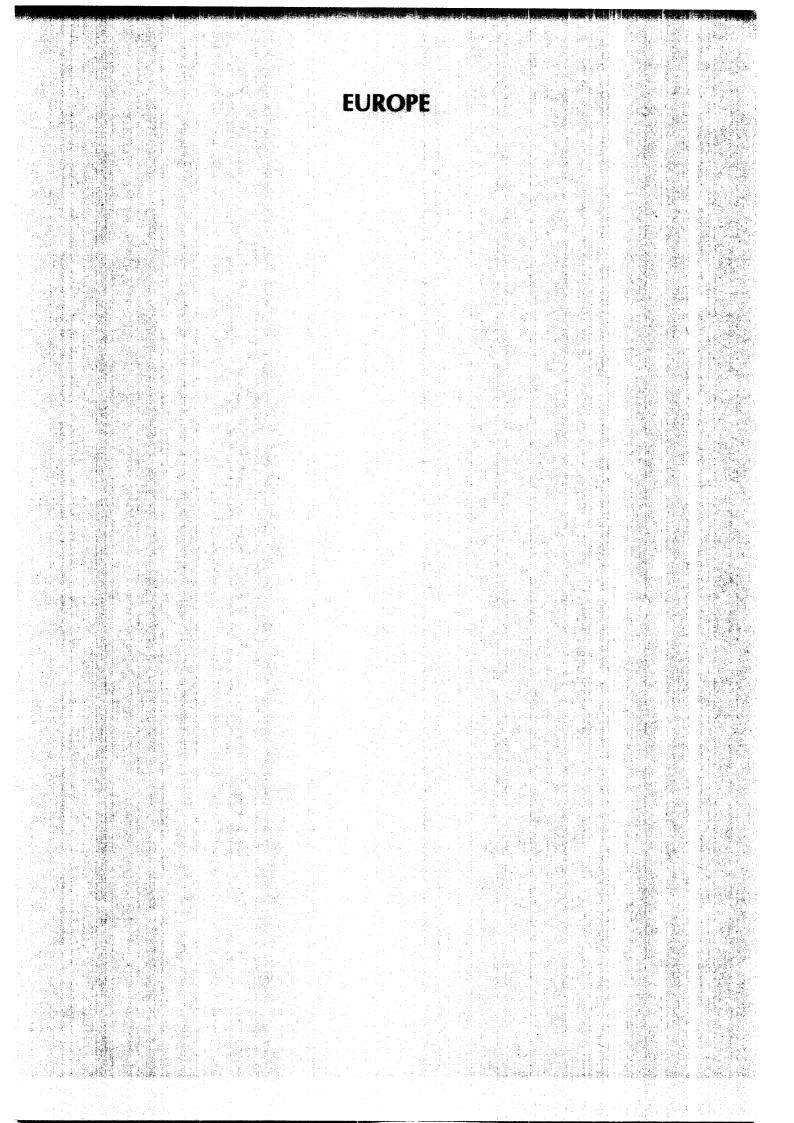
Focusing System

Type, No. of elements, and spacing : Along the beam centerline: lens 1, drift space steering, lens 2, chopper bras, lens 3, waveguide steering, solenoids 1, 2, 3 and 4.

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal	Max, or	
		Operation	Design	
Final energy :	:	0.05	0.05	GeV
Accel gradient :	:	16.8	16.8	MeV/m
$\Delta E/E$ (FWHM) :	:	0.4	0.4	%
Rep. rate :	:	10	10	Hz
Pulse length :	:	0.2 - 2	0.2 - 2	μs
Beam intensity :	:	0.024	0.024	Α
Norm. emit. (1σ) :	:	100	100	π mm-mrad


OTHER RELEVANT INFORMATION

* Synchrotron Radiation Research Centre

(1) Dual cavity 3GHz chopper/prebuncher

References

[1] See Instruction Manual HRC - 780 50 MeV Linac for SRRC preinjector

Name of Linac	ELECTRONICA U-006			
Function	Applied Researches			
Institution and address	Yerevan Physics Institute, 375036 Yerevan, Armenia			
Person in charge	: Kh. Harutyunyan			
Name of person supplying these data	Kh. Harutyunyan			
	e-mail:			
	tel. : +7 8852 3742 340083 fax : (3742) 350030/151695			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	90	; first beam : 19	990
Present status	: Operati	onal	
Cost of facility	: 300 kU	SD	
Present linac staff	: 3		
Present yearly oper	ation time	: 500	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	30	keV
Beam inte	nsity (peak)	:		1.5	Α
Normalize	ed emittance (1	σ):	1	π mr	n-mrad

Injector Longitudir	nal mat	ching :			
Output :	10	MeV;	intensity :	0.75	Α
Pulse widt	h, spac	ing : 5	us, 1 - 200 Hz		
Normalize	d emitt	ance (1σ)	: 80	π mm-	mrad

Acceleration System

Total linac length	:	4.5		m
No. sections : 1	; leng	, sths	2.2	m
Field mode : $\pi/2$; freq	uency :	1890	GHz
Wave type : TM02	l ; fillii	ng time :	0.2	μs
v_g/c range : 0.03	;Q	:	≥800	0
Shunt impedance	:	25	N	MΩ/m
Iris : aperture : diamete	er :			mm
thickne	ess :			mm
Attenuation/section	:	4		Np
Power units, Number	: 1	type :	Magnet	ron
RF power peak : 10	MW;	mean :	1 - 10	kW

Focusing System

Type, No. of elements, and spacing : Electromagnetic lens, 3 units, placed along section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 9500 No. of particles/bunch : 2.5×10^9 Bunch separation : 16cm bunch length \leq 53 ps

	Normal Operation	Max, or Design	
Final energy :	10	10	GeV
Accel gradient :	4.5	4.5	MeV/m
$\Delta E/E$ (FWHM) :	5	5	%
Rep. rate :	1 - 200	1 - 200	Hz
Pulse length :	5	5	μs
Beam intensity :	0.00075	0.00075 (1)	Α
Norm. emit. (1σ) :	80	80	π mm-mrad

OTHER RELEVANT INFORMATION

(1) Mean

Name of Linac :	High Current Injector for YerPhI Synchrotron
Function :	,
Institution and address :	Yerevan Physics Institute, 375036 Yerevan, Armenia
	V. Nikogossian
Name of person supplying these data :	G. Oksuzian
	e-mail: Oksuzian@vx1.yerphi.am
	tel. : +7 8852 3742 344066 fax : (3742) 350030/151695

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started :	; first beam :		
Present status	: (1) Installation and Tuning		
Cost of facility	: 8 MUSD		
Present linac staff	: 9		
Present yearly oper	ration time :	h	

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	150	keV
Beam inte	nsity (peak)	:		5 - 10	Α
Normalize	ed emittance (1σ)	:	0.7	π mm	-mrad

Injector

Longitudinal matching :								
Output :	20	MeV;	intensity :	1.2	Α			
Pulse width, spacing : (2)								
Normalized emittance (1σ) : 1.2			: 1.2	π mm-	mrad			

Acceleration System

Total linac length	:	20		m
No. sections: 2	; leng	gths :	2 × 2	m
Field mode : $\pi/2$; freq	uency :	2.856	GHz
Wave type : TM01	; filli	ng time :	5 - 10	μs
v_g/c range : 0.03	; Q	:	≥800	0
Shunt impedance	:	~ 50	N	/ Ω /m
Iris : aperture : diameter	:	29		mm
thickness	:	4		mm
Attenuation/section	:	7		Np
Power units, Number :	(3)	type :	Klystro	n
RF power peak : 20	MW;	mean :	20	kW

Focusing System

Type, No. of elements, and spacing : Electromagnetic lens, 3 units, placed in the injector section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 28000° No. of particles/bunch : 1×10^{9} Bunch separation : (4)

	Normal Operation	Max, or Design	
Final energy :	0.020	0.120	GeV
Accel gradient :	5	5	MeV/m
$\Delta E/E$ (FWHM) :	1.5	1.5	%
Rep. rate :	50 - 100	50 - 100	Hz
Pulse length :	5 - 10	5 - 10	μs
Beam intensity :	(5) 0.001	0.001	Â
Norm. emit. (1σ) :	0.8	0.8	π mm-mrad

- (1) High-current electron source
- (2) (5-10) µs, (50-100) Hz
- (3) 2 (18)
- (4) 10.5 cm, bunch length \leq 35 ps
- (5) Mean current

Name of Linac :	Injector for YerPhI Synchrotron			
Function :	Generation 75 MeV electrons			
Institution and address :	Yerevan Physics Institute, 375036 Yerevan, Armenia			
Person in charge :	V. Nikogossian			
Name of person supplying these data :	G. Oksuzian			
	e-mail: Oksuzian@vx1.yerphi.am			
	tel. : + 7 8852 3742 344066 fax : (3742) 350030 /151695			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	51 ; first bea	am : <i>1965</i>	
Present status	: Operational		
Cost of facility	: 4 MUSD		
Present linac staff	: 6		
Present yearly open	ation time :	6000	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	50 + 80	keV
Beam inte	nsity (peak)	:		0.5	Α
Normalize	d emittance (1	σ):	0.7	π mm	-mrad

Injector

Injector		
Longitudinal matching :		
Output: 15 + 75 MeV; intensity:	0.2	Α
Pulse width, spacing : $1 \mu s$, 50 Hz		
Normalized emittance (1σ) : 1	π mm-	mrad

Acceleration System

Total linac length	:	25		m
No. sections : 4	; leng	gths :	4.5 × 4	m
Field mode : $\pi/2$; freq	uency :	2.7973	GHz
Wave type : TM01	; filli	ng time :	~ 0.4	μs
v_g/c range : ~ 0.03	; Q	:	≥8000)
Shunt impedance	:	~ 50	M	IΩ/m
Iris : aperture : diameter	:	29		mm
thickness	:	4		mm
Attenuation/section	:	7		Np
Power units, Number :	3	type :	Klystro	n
RF power peak : 20	MW;	mean :	2	kW

Focusing System

Type, No. of elements, and spacing : Electromagnetic lens, 3 units placed in the injector section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 2800No. of particles/bunch : 5×10^7 Bunch separation : (1)

	Normal	Max, or	
	Operation	Design	
Final energy :	0.075	0.050	GeV
Accel gradient :	4.5	4.2	MeV/m
$\Delta E/E$ (FWHM) :	2.0	2.5	%
Rep. rate :	50	50	Hz
Pulse length :	0.5 - 1	0.5 - 1	μs
Beam intensity :	0.000010	0.000010	Α
Norm. emit. (1σ) :	0.9	0.9	π mm-mrad

OTHER RELEVANT INFORMATION

(1) 10.7 cm, bunch length \leq 35 ps

Name of Linac	:	LAE-8 Electronics
Function	:	Irradiation of materials and radiation technology
Institution and address		Yerevan Physics Institute, 375036, Yerevan, Armenia
Person in charge		A. Oganessian
Name of person supplying these data		0
		e-mail : Yeritsian@vxc.yerphi.am
		tel. : + 7 8852 3742 350030 fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1986 ; first beam : 1986	Normal Max, or
Present status : Irradiation source	Operation Design
Cost of facility : 430000 RUR (1986)	Final energy : 0.008 0.008 GeV
Present linac staff : 3 persons	Accel gradient : 4 4 MeV/m
Present yearly operation time : 800 h	ΔΕ/Ε (FWHM) : 20 - 25 15 - 25 %
	Rep. rate : 150 - 250 150 - 250 Hz
LINAC PARAMETERS	Pulse length : 4 4 μ s
	Beam intensity : 2×10^{-5} $4 \times 10^{-5}(1)$ A
Electron Sources	Norm. emit. (1σ) : 20 10 π mm-mrad
Types : Oxide ; energy : 40 keV	
Beam intensity (peak) : 5 A	OTHER RELEVANT INFORMATION
Normalized emittance (1 σ): π mm-mrad	

(1) Mean current

Injector Longitudinal matching :

Output :		•	intensity :	5	Α
Pulse wid	lth, spac	ing : 1	- 5 μs		
Normaliz	ed emitt	ance (1 σ)	:	π mm-	mrad

Acceleration System

Total linac length	:	2		m
No. sections : 1	; leng	gths :	2	m
Field mode :	; freq	uency :	1.86	GHz
Wave type : TW	; filli	ng time :	5	μs
vg/c range :	; Q	:	1000	
Shunt impedance	:	2	N	/Ω/m
Iris : aperture : diameter	:			mm
thickness	:			mm
Attenuation/section	:			Np
Power units, Number :	1	type :	Magneti	ron
RF power peak : 18	MW;	mean :	18	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable) No. of bunches/pulse : No. of particles/bunch :

Bunch separation :

Name of Linac: ELECTRONICA U-003Function: Applied ResearchesInstitution and address: Yerevan Physics Institute, 375036 Yerevan, ArmeniaPerson in charge: Kh. HarutyunyanName of person supplying these data: Kh. Harutyunyane-mail :
tel.: + 7 8852 3742 340083fax : (3742) 350030 /151695

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	9; first be	eam : <i>1989</i>	
Present status :	Operational		
Cost of facility :	200 kUSD		
Present linac staff :	3		
Present yearly operation	tion time :	1000	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	30	keV
Beam inte	nsity (peak)	:		1.5	Α
Normalize	ed emittance (1	σ):	1	π mm	n-mrad

Injector

Longitudin	al mai	tching :			
Output :	5	MeV;	intensity :	0.75	Α
Pulse widtl	h, spa	cing : 5	μs, 1 - 200 H	z	
Normalized				π mm-	mrad

Acceleration System

Total linac length	:	4		m
No. sections : 1	; le	ngths :	2	m
Field mode : $\pi/2$; fr	equency :	1.890	GHz
Wave type : TM01	; fi	lling time :	0.2	μs
v_g/c range : 0.03	; Q	:	≥800	0
Shunt impedance	:	25	N	/Ω/m
Iris : aperture : diameter	:			mm
thickness	:			mm
Attenuation/section	:	4		Np
Power units, Number :	1	type :	Magnet	ron
RF power peak : 10	MW	; mean :	1 - 10	kW

Focusing System

Type, No. of elements, and spacing : Electromagnetic lens, 3 units placed along section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 9500No. of particles/bunch : 2.5×10^9 Bunch separation : 16cm, bunch length $\leq 53ps$

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.005	0.005	GeV
Accel gradient	:	2.5	2.5	MeV/m
$\Delta E/E$ (FWHM)	:	5	5	%
Rep. rate	:	1 - 200	1 - 200	Hz
Pulse length	:	5	5	μs
Beam intensity	:	0.00075	0.00075 (1)	Α
Norm. emit. (1σ)	:	80	80	π mm-mrad

OTHER RELEVANT INFORMATION

(1) Mean

Name of Linac	: LAE-4 Electronics
Function	: Irradiation of materials and sterilization
	: Yerevan Physics Institute, 375036, Yerevan, Armenia
	: A. Oganessian
Name of person supplying these data	: G.N. Yeritsian
	e-mail: Yeritsian@vxc.yerphi.am
	tel. : + 7 8852 3742 350030 fax :

 π mm-mrad

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1984 ; first beam	n : <i>1984</i>	Normal	Max, or
Present status : Irradiation Source		Operation	Design
Cost of facility : 160000 RUR (1984))	Final energy : 0.004	
Present linac staff : 3 persons	,		
		Accel gradient : 2	2 MeV/m
Present yearly operation time : 8	800 h	$\Delta E/E (FWHM) : 20 - 25$	15-20 %
		Rep. rate : 150 - 250	150 - 250 Hz
LINAC PARAMETERS		Pulse length : 4	4 μs
		Beam intensity : 0.4×10^{-3}	0.8 × A
Electron Sources		Norm. emit. (1σ) : 15	
Types: Oxide cathode ; energy:	30 keV	10/iii. child. (10). 15	10π mm-mrad
Beam intensity (peak) :	5 A	OTHER RELEVANT INFO	RMATION
Normalized emittance (10):	π mm-mrad		
T - 1 4		(1) Mean current	
Injector		(-)	
Longitudinal matching :			
Output : 0.05 MeV; intensity :	3 A		
Pulse width, spacing : $1 - 4 \mu s$			
Normalized emittance (1σ)	= mm mmd		

Acceleration System

Normalized emittance (10):

Total linac length	:	ź	?		m
No. sections : 1	; leng	ths	:	2	m
Field mode :	; freq	uency	: 1	.86	GHz
Wave type : Mobile	; fillin	ng time	:	5	μs
vg/c range :	;Q	-	: .	1000	•
Shunt impedance	:	ź	2	Μ	IΩ/m
Iris : aperture : diameter	:				mm
thickness	:				mm
Attenuation/section	:				Np
Power units, Number :	1	type	Ма	gnetr	on
RF power peak : 18 1	MW;	mean		8	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

Name of Linac:GELINAFunction:Electron Linac for neutron and radiation physicsInstitution and address:European Commission JRC IRMM, Retieseweg B-2440 Geel, BelgiumPerson in charge:J-M. SaloméName of person supplying these data:J-M. Salomée-mail ::::tel.:::<

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196	3; first	beam : 1965	
Present status :	Operational		
Cost of facility :	5 MECU		
Present linac staff :	10		
Present yearly operation	ation time :	3 - 4000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		20	Α
Normalize	d emittance (1	lσ):		π mm	n-mrad

Injector

Longitudir	nal mat	ching : S-	band buncher		
Output :	20	MeV;	intensity :	15	Α
Pulse wide	th, spac	cing : 1() ns - 2 µs		
Normalize	d emitt	ance (1σ)	:	π mm-	mrad

Acceleration System

Total linac length	:	1	5		m
No. sections : 2	; le	ngths	:	2 × 6	m
Field mode : $2\pi/3$; fr	equency	:	2.998	GHz
Wave type : TW	; fil	ling time	:	1.07	μs
v_g/c range : (1)	; Q		:	15000)
Shunt impedance	:	Ć	4	N	<i>I</i> Ω/m
Iris : aperture : diameter	:	26	- 18		mm
thickness	:				mm
Attenuation/section	:	5.8	db		Np
Power units, Number :	1	type	:	(2)	
RF power peak : 30	MW	; mean	:	30	kW

Focusing System

Type, No. of elements, and spacing : Per section, 6 solenoids 1m long, 0.18T

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Norm Operat		Max, or Design	
Final energy	:	0.15		0.2	GeV
Accel gradient	:			16	MeV/m
$\Delta E/E$ (FWHM)	:	(3)			%
Rep. rate	:	800			Hz
Pulse length	:	0.010	to	2	μs
Beam intensity	:	10		12	Α
Norm. emit. (10)	:	≈5			π mm-mrad

OTHER RELEVANT INFORMATION

(1)	0.03	à ()).011	

(2) F 2042 Klystron

(3) Depends on pulse length.

A compressing magnet is installed at the end of the linac.

Pulses of 11A, 11ns are injected in the magnet and compressed to \approx 1ns, \approx 100 A, average energy \approx 100 MeV.

Name of Linac	: Gent University Electron Linac
	: Electron Linac for Interdisciplinary Research
	: Subatomic and Radiation Physics, Proeftuinstraat 86, B-9000 Gent, Belgium
Person in charge	: W. Mondelaers
Name of person supplying these data	: W. Mondelaers
	e-mail : Wim.Mondelaers@Rug.Ac.Be
	tel. : + 32 9 264 65 33 fax : + 32 9 264 66 99

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	<i>I</i> ; first beam : 19	84
Present status :	Operating	
Cost of facility :	85 MBF (1984)	
Present linac staff :	4 man-years	
Present yearly opera	tion time : 5000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	40.0	keV
Beam inte	nsity (peak)	:		0.25	Α
Normalize	ed emittance (1	σ):		π mm	n-mrad

Injector					
Longitudi	nal mate	hing : <i>(1)</i>)		
Output :	1.75	MeV;	intensity :	0.150	Α
Pulse wid	th, spac	ing : 10) µs, 500 µs		
Normalize				πmm-r	nrad

Acceleration System

Total linac length	:	7		m
No. sections : 1	; lengths	:	4.5	m
Field mode : $2\pi/3$; frequen	cy :	2.9985	GHz
Wave type : TW	; filling ti	me :	1	μs
vg/c range : 0.008 -	; Q	:	15000)
Shunt impedance	:	65	N	/Ω/m
Iris : aperture : diameter	:	25 - 1	8	mm
thickness	:	5.0		mm
Attenuation/section	:	7		Np
Power units, Number :	l ty	/pe:	Klystro	n -
RF power peak : 4 N	MW; me	ean :	60	kW

Focusing System

Type, No. of elements, and spacing : Solenoids A triplet at 1.75 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 3.10⁴ No. of particles/bunch : 2.10⁸ Bunch separation : 300 psec

		Normal Operation	Max, or Design	
Final energy :	:	0.010	0.015	GeV
Accel gradient	:	2	3	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate :	:	2000	5000	Hz
Pulse length :		10	14	μs
Beam intensity :	:	0.100	0.100	A
Norm. emit. (1σ) :		200	200	π mm-mrad

OTHER RELEVANT INFORMATION

(1) S-band prebuncher and buncher

References

^{[1] &}quot;The Gent University 15 MeV high-current linear electron accelerator facility" W. Mondelaers et al. Nucl. Instr. & Meth. A368 (1996) 278.

Name of Linac	: PIVAIR *	
Function	: Prototype Induction Accelerator for AIRIX **	
Institution and address	: CEA/CESTA BP2, 33114 Le Barp, France	
Person in charge	: P. Anthouard	
Name of person supplying these data	a : J. De Mascureau	
	e-mail :	
	tel. : + 33 56 68 46 98 fax : + 33	57 71 54 40

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1994; first beam : 1994Present status: In developmentCost of facility: (1) 40 MFRF (1994)Present linac staff: 6 man-yearsPresent yearly operation time :1600 h				
LINAC PARAMETER	RS			
Electron Sources Types : Diode Beam intensity (peak) Normalized emittance (10	; energy :): 800	3500	keV A n-mrad	
	intensity		A	
Pulse width, spacing : Normalized emittance (10			n-mrad	
Acceleration System				
Total linac length	:		m	
No. sections :	; lengths	:	m	
Field mode :	; frequency	1:	GHz	
Wave type :	; filling tim	e:	μs	
v _o /c range :	;Q	:	•	
Shunt impedance	:		MΩ/m	
Iris : aperture : diameter	:		mm	
thickness	:		mm	
Attenuation/section	:		Np	
Power units, Number :	typ	e:	•	
RF power peak :	vIW; mea	n :	kW	

Focusing System

Type, No. of elements, and spacing : 16 solenoïds, 1 per induction cell.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	0.006	0.008	GeV
Accel gradient	:	0.5	0.5	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	SINGLE	SHOT	Hz
Pulse length	:	(2) 0.080	0.080	μs
Beam intensity	:	3500	3500	Α
Norm. emit. (10)	::			π mm-mrad

- * Prototype d'Installation pour Valider l'Accélérateur à Induction de Radiographie
- ** Accélérateur à Induction de Radiographie pour Imagerie X. (AIRIX is a new high resolution X-Ray Flash Radiography facility.)
- (1) The cost only includes the injector, 16 cells and 8 high voltage generators.
- (2) FWHM
- The injector is a single shot pulsed diode electron generator. The electron source is a ø 76mm Velvet cathode.
- This linac uses the induction technology. Magnetic cores are Ni-Zn ferrites. Cells are powered by 250kV high voltage generators.
- The normal operation is 6MeV final energy at present status with 8 induction cells. By the end of 1996 it will reach 8MeV with 16 induction cells.
- The emittance value is RMS normalized.
- The energy spread is measured over the flat-top duration of the electron pulse.

Name of Linac	: LELIA *	
Function	: Free Electron Laser - Intense Elec	ctron Source
Institution and address	: CEA-CESTA BP2, 33114 Le Barp	France
Person in charge	: L. Voisin	
Name of person supplying these data	: J. Gardelle	
	e-mail:	
	tel. : + 33 56 68 46 96	fax: +33 57 71 54 40

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1990 ; first beam : 1992 Present status : Operational Cost of facility : 20 MFRF (1990) Present linac staff : 3 man-years Present yearly operation time : 1600 h LINAC PARAMETERS	Normal OperationMax, or DesignFinal energy: 0.0022 0.003 GeVAccel gradient: 0.275 0.375 MeV/m $\Delta E/E$ (FWHM):%Rep. rate $SINGLE$ SHOT 0.1 HzPulse length:(1) 0.08 μ sBeam intensity:1000A
Electron Sources Types : Triode ; energy : 1000 keV	Norm. emit. (1 σ): π mm-mrad
Beam intensity (peak) : 1000 A	OTHER RELEVANT INFORMATION
Normalized emittance (1 σ): 410 π mm-mrad	
	* Laser à Electrons Libres on Induction Accelerator
Injector	Luser a Liech ons Libres on Maachon Accelerator
Longitudinal matching :	(1) FWHM
Output : 1 MeV; intensity : 1000 A	(1) FWHM
Pulse width, spacing : 80 ns FWHM	
Normalized emittance (1 σ): π mm-mrad	 This linac uses the technology of induction to create the accelerating field.
Acceleration System	- The cost only corresponds to the Accelerator and its
Total linac length : m	power supply (the magnetic compressor).
No. sections : ; lengths : m	- Energy spread
Field mode : ; frequency : GHz	$\Delta E/E$ (%) $\Delta t(ns)$
Wave type : ; filling time : µs	10 50
v _o /c range : ; Q :	2 20
Shunt impedance : MΩ/m	1 10
Iris : aperture : diameter : mm	- The given emittance value is the RMS normalized
thickness : mm	one.
Attenuation/section : Np	Une.
Power units, Number : type :	
RF power peak : MW; mean : kW	

Focusing System

Type, No. of elements, and spacing : 17 solenoïds, 1 per induction cell

Beam Pulse Structure (if applicable)No. of bunches/pulseNo. of particles/bunchBunch separation

Name of Linac	ELSA
Function	: FEL and e-beam applications
	C.E.A 91680 Bruyeres-le-Chatel, France
	Serge Joly
Name of person supplying these data	
	e-mail: joly@bruyeres.cea.fr
	tel. : + 33 1 69 26 47 27 fax : + 33 1 69 26 70 24

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	88	; first beam : 11/199.	1
Present status	: Operation	ng	
Cost of facility	:	-	
Present linac staff	: 5		
Present yearly ope	ration time	: 1000	h

LINAC PARAMETERS

Electron Sources

Types :	;	energy :	keV
Beam intensity (peak)	:		Α
Normalized emittance (1σ)):		π mm-mrad

Injector

Longitudinal matching : <i>Photo-injector</i>					
Output :	2	MeV;	intensity :	Α	
Pulse width, spacing : 20-60 ps					
Normalized				π mm-mrad	

Acceleration System

Total linac length	:	4	!.5		m
No. sections : 3	;	lengths	:	1.04	m
Field mode : π	;	frequency	:	0.433	GHz
Wave type : SW	;	filling time	:		μs
vg/c range :	;	Q	:	3000	
Shunt impedance	:	11	.25	N	/Ω/m
Iris : aperture : diameter	:	(50		mm
thickness	:		26		mm
Attenuation/section	:				Np
Power units, Number :		l type	:	Klystre	-
RF power peak : 6	М	W; mean	:	Ž0	kW

Focusing System

Type, No. of elements, and spacing : *Quadrupoles*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 30-10800No. of particles/bunch : 3.10^{10} Bunch separation : $13.8 \text{ ns} - 5 \mu \text{s}$

	Normal Operation	Max, or Design	
Final energy :	0.016	0.020	GeV
Accel gradient :	5.3	7	MeV/m
$\Delta E/E$ (FWHM) :	0.1	0.1	%
Rep. rate :	1	20	Hz
Pulse length :	100	150	μs
Beam intensity :	(1) 100	(1) 500	Â
Norm. emit. (1σ) :	2		π mm-mrad

OTHER RELEVANT INFORMATION

(1) Beam Intensity (peak)

Name of Linac	: ESRF Preinjector	
Function	: Electron linac	
Institution and address	: ESRF, Ave des Martyrs, BP 220 -	F 38043 Grenoble, France
Person in charge	: Jean Paul PERRINE	
Name of person supplying these	data : JP Perrine	
	e-mail:	
	tel. : + 33 76 88 24 14	fax : +33 76 88 20 54

h

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 02/1988 ; first beam : 06/1991 Present status : Operating Cost of facility : Present linac staff : Present yearly operation time :

		Operation	Design	
Final energy	:	0.160	0.200	GeV
Accel gradient	:	13	16	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	10/1	10/1	Hz
Pulse length	:1	.22 / 0.002	1.2/0.002	μs
Beam intensity	:	0.02	2.5	A
Norm. emit. (1σ)	:	< 100	< 100	π mm-mrad

Max. or

Normal

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inte	nsity (peak)	:		< 0.05	Α
Normalize	ed emittance (1	σ):		π mm	-mrad

Injector

Longitudina	al mat	ching: Bu	ncher		
Output :	4	MeV;	intensity	: 0.03	Α
Pulse width	n, spa	cing : 1.2	2 µs/2 ns	100 ms/1 s	7
Normalized emittance (1σ) : π mm-mrad					

. .

Acceleration System

Total linac length	:	20	m
No. sections : 2	; le	engths :	бm
Field mode : $2\pi/3$;fi	requency : 2	.9988 GHz
Wave type : TW	;fi	illing time :	<i>1.8</i> µs
v_g/c range : (1)	; 🤇	2:	15000
Shunt impedance	:	74	MΩ/m
Iris : aperture : diameter	:	25 - 18	mm
thickness	:	5	mm
Attenuation/section	:	8. <i>30</i>	Np
Power units, Number :	2	type :	Klystron
RF power peak : 35	MW	; mean :	14 kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 4 MeV (Around bunchers) (2)

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: NA
No. of particles/bunch	: NA
Bunch separation	: NA

OTHER RELEVANT INFORMATION

- (1) 0.0075 0.022
- (2) Focusing triplets:
 - one after the buncher
 - one between the 2 accelerating sections
 - solenoids around each section

These data are values in standard operation. Initially, the gun and the buncher were designed to roduce high current (> 2.5 A) allowing the optional production of e+. As this option has been completely abandoned, the linac is running as a low current electron injector.

Gun's running mode

- Long pulse : 1.2 μs 25 mA
- Long pulse modulated by the 352 MHz of the ring. In this case, the gun emits current only during the positive part of the sinewave of 352 MHz.
- Short pulse : 2 ns pulse lengths from 1 to 4 pulses each 100 ms.

Name of Linac	: Orsay Linac
Function	: Electron Linacs for Physics Experiments *
Institution and address	: LURE, Centre Universitaire, Bât. 209 D, 01405 ORSAY France
Person in charge	: L. Melard
Name of person supplying these	data : M-A. Tordeux
	e-mail : Tordeux@LALCLS.IN2P3.FR
	tel. : +33 1 64 46 81 80 fax : +33 1 69 85 39 97

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196.	5; first	beam : 1968	
Present status :	Operating		
Cost of facility :			
Present linac staff :	26 man-years		
Present yearly opera	tion time :	150	h

LINAC PARAMETERS

Electron Sources

Types: (1) Diod	le ;	energy :	100	keV
Beam intensity (peak)	:		0.1	Α
Normalized emittance	:(lo):		π mr	n-mrad

Injector (1)

Longitudinal matching : (2)								
Output :	20	MeV;	intensity :	0.07	Α			
Pulse widt	h, spac	; <i>(1)</i>	20 ns, 40	ms				
Normalize	d emitt	ance (1σ) :		π mm-	mrad			

Acceleration System

Total linac length	:	290	m
No. sections : 38	;	lengths : 6	m
Field mode : $\pi/2$;	frequency : 2.998	6 GHz
Wave type : TW	;	filling time : 1	μs
$v_{g}/c range : 0.011 -$;	Q : (3))
Shunt impedance	:	11 - 16	MΩ/m
Iris : aperture : diameter	:	30 - 18	mm
thickness	:	3	mm
Attenuation/section	:	0.54 - 0.92	Np
Power units, Number :	38	8 type : Klyst	ron
RF power peak : (4)	M١	W; mean :	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable) No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	1.1	2.3	GeV
Accel gradient	:	10	11/13	MeV/m
$\Delta E/E$ (FWHM)	:			%
Rep. rate	:	25	50	Hz
Pulse length	:	0.02	1.5	μs
Beam intensity	:	70	100	Α
Norm. emit. (10)	:			π mm-mrad

- * The same linac, used as Super-ACO e⁺ Injector, is also used in experimental halls with e⁻
- (1) Pulse width up to 1500 ns
- (2) Deflecting plates and S-band Buncher
- (3) 10000 to 11800
- (4) 20-25

Name of Linac :	Orsay Linac
Function :	Electron Linac for e + Production
	LURE, Centre Universitaire, Bât. 209 D, 01405 Orsay, France
	L. Melard
Name of person supplying these data :	M-A. Tordeux
	e-mail : Tordeux@LALCLS.IN2P3.FR
	tel. : +33 1 64 46 81 80 fax : +33 1 69 85 39 97

h

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 196.	5; first beam : 1968
Present status :	Operating
Cost of facility :	
Present linac staff :	26 man-years
Present yearly opera	

LINAC PARAMETERS

Electron	Sources (1)				
Types :	Diode	;	energy :	100	keV
Beam inter	nsity (peak)	:		3	Α
Normalize	d emittance (10)	:		π mm	n-mrad

Injector (1)

Longitudi	nal mat	ching : (2))		
Output :	20	MeV;	intensity :	1.4	Α
Pulse wid	th, spac	cing : 20) ns, 40 ms		
Normalized emittance (10):				πmm-	mrad

Acceleration System

:	130)	m
; leng	gths :	6	m
; free	uency :	2.9986	GHz
; filli	ng time :	1	μs
; Q	:	(3)	•
:	10 - 18	8.3 Í N	/Ω/m
:	30 - 1	8	mm
:	3		mm
:	0.54 - ().92	Np
17	type :	(4)	•
MW;	mean :		kW
	; freq ; filli ; Q : : : <i>17</i>	; lengths : ; frequency : ; filling time : ; Q : : 10 - 12 : 30 - 12 : 31 : 0.54 - 0 17 type :	; frequency : 2.9986 ; filling time : 1 ; Q : (3) : 10 - 18.3 N : 30 - 18 : 3 : 0.54 - 0.92 17 type : (4)

Focusing System

Type, No. of elements, and spacing : (5)

Beam Pulse Structure (if applicable)

No. of bunches/pulse	:
No. of particles/bunch	:
Bunch separation	:

		Normal Operation	Max, or Design	
Final energy	:	1	1	GeV
Accel gradient	:	10	13	MeV/m
$\Delta E/E$ (FWHM)	:			%
Rep. rate	:	25	50	Hz
Pulse length	:0	0.005/0.020	id	μs
Beam intensity	:	2.5/3.5	id	Â
Norm. emit. (10):			π mm-mrad

OTHER RELEVANT INFORMATION

(1) A second injector "NIL" provides short pulses which are bent at 16 MeV to the main Linac through an achromatic transport line. It allows "single bunch" injection into Super-ACO.

Electron Source

Type : Triode; Energy : 100 keV; Beam Intensity : 7 A

Injector

Long. matching : S-band Prebuncher and Buncher Output k.e.: 16 MeV; Intensity : 3.5 A Pulse width, spacing : 5 ns, 40 ms

- (2) Deflecting plates and S-band Buncher
- (3) 10000 to 11800
- (4) Klystron / F2040E
- (5) Solenoids upto 20 MeV, a triplet at 80 MeV, doublet at 200 MeV / 440 MeV / 680 MeV, a triplet before target

References

[1] "NIL, the New Injector of the Orsay Linac". M-A. Tordeux et al., EPAC 94 p. 170

POSITRON LINAC

Function Institution and address	e-mail: Tordeux@LALCLS.IN2P3.FR
	tel. : +33 1 64 46 81 80 fax : +33 1 69 85 39 97

HISTORY AND STATUS

Differences with respect to corresponding e^{-1} linac, are given in space to right. (1)

Primary Beam (e⁻) at Conversion Target

Energy	:	1000	MeV
Radius (10)	:		mm
Beam intensity	:	1 or 3	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	96% W 2% Cu 2% Ni	
Туре	:	Removable	
Thickness (rad.length)	:	7 χ	,
Diameter	:	mn	n
Mean deposited power	:	0.5/0.4 kW	I
Solenoidal field ^{a)}	:	1600 G over 6 × 6 m; DC	
Matching device	:	(2) Adiabatic lens	
RF sections ^{a)}	:	23×6 m with Klystron 2043	

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e linac, are given in space to right. (3)

LINAC PERFORMANCE (4)

		Normal Operation	Max, or Design	
Final energy	:	0.8/1.1	1.4	GeV
Accel gradient	:	8/10	10	MeV/m
$\Delta E/E$ (FWHM)	:	1.4/1		%
Rep. rate	:	25	50	Hz
Pulse length	:	0.005 /0.020		μs
Yield (fin.en)	:	0.7/0.45		e [†] /e ⁻ x GeV
Beam intensity	:	21000 /4500		μA peak
Norm. emit. (10)):			π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Two primary beams are available. See Electron Linac for narrative description
- (2) 1.25 T peak field
- (3) After the DC solenoid on the first 6 sections, 6 triplets between sections and 2 doublets.
- (4) Two types of operation are provided: injection of short bunches (5 ns) for single bunch mode, and long bunches (20 ns) for multibunch operation in the storage ring Super-ACO (800MeV), and injection of long bunches (20 ns) in the storage ring DCI (1.1 GeV).

References

[1] R. Chehab et al. "An adiabatic matching device for the Orsay Linear Positron Accelerator", PAC83, Santa Fe, 1983.

Name of Linac	: EPLUS *	
Function	\therefore Electron Linac for e^+ production	(for SOLEIL ** SR Ring)
Institution and address	: LURE, Centre Universitaire, Bât.	209 D, 91405 Orsay. France
Person in charge	: R. Chaput	,,,,.
Name of person supplying these of	lata : R. Chaput	
	e-mail: chaput@lure.u-psud.fr	
	tel. : + 33 1 64 46 81 58	fax: +33 1 69 85 39 97

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : ; first beam :			Normal	Max, or	
Present status : Project			Operation	Design	
Cost of facility :		Final energy	:	0.34	GeV
Present linac staff :		Accel gradient	:	18	MeV/m
Present yearly operation time :	h	$\Delta E/E$ (FWHM)	:	10	%
		Rep. rate	•	10	Hz
LINAC PARAMETERS		Pulse length	:	0.005 or0.3	μs
		Beam intensity	:	0.7	Â
Electron Sources		Norm. emit. (10)	:	π	mm-mrad

~ ~

CIFON SOURCES

Types :	Triode	;	energy :	90	keV
Beam inte	nsity (peak)	:		2	Α
Normalize	ed emittance (1σ)):		π m	n-mrad

Injector

Longitudir	nal mat	ching : (1)				
Output :	15	MeV;	intensity :	1	Α	
Pulse width, spacing : (2)						
Normalized emittance (1σ) :				π mm-	mrad	

Acceleration System

Total linac length	: ~ 24	m
No. sections : 3	; lengths : 6	m
Field mode : $2\pi/3$; frequency : 2.998	GHz
Wave type : TW	; filling time : 1.5	μs
vg/c range :	; Q : 13500) [`]
Shunt impedance	: 72 - 60 N	<i>I</i> Ω/m
Iris : aperture : diameter	: 26.8 - 16	mm
thickness	: 3	mm
Attenuation/section	: 0.83	Np
Power units, Number :	3 type: Klystro	on –
RF power peak : 45 N	AW; mean : 2	kW

Focusing System

Type, No. of elements, and spacing : Solenoid then triplet of quadrupoles

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

E/E (FWHM) :	10	%
ep. rate :	10	Hz
ilse length :	0.005 or 0.3	μs
am intensity :	0.7	A
orm. emit. (1 σ):	π mr	n-mrad

OTHER RELEVANT INFORMATION

- * Electron Positron Linac Ulterior for SOLEIL
- ** SOLEIL Source optimisée de Lumiére d'Energie Intermédiare de Lure
- (1) S-band prebuncher and buncher
- (2) 5 ns or 300 ns at 10 Hz

References

[1] "Linac Injector for SOLEIL", R. Chaput, M.A. Tordeux, EPAC '96.

POSITRON LINAC

Name of Linac	:	EPLUS *
Function	:	Positron Injector for SOLEIL ** (SR Ring)
Institution and address		LURE, Centre Universitaire, Bât. 209 D, 01405 Orsay, France
Person in charge		R. Chaput
Name of person supplying these data	:	R. Chaput
		e-mail : chaput@lure.u-pusd.fr
		tel. : +33 1 64 46 81 58 fax : +33 1 69 85 39 97

HISTORY AND STATUS

Differences with respect to corresponding e linac, are given in space to right.

Primary	Beam	(e ⁻)	at	Conversion	Target	
F				2 / 2	-	

Energy	:	340	MeV
Radius (10)	:		mm
Beam intensity	:	0.7	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	W in Cu Matrix	
Туре	:	Removable	
Thickness (rad.length)	:	2.0	χ
Diameter	:		mm
Mean deposited power	:	0.14	kW
Solenoidal field ^{a)}	:	0.4 T over 6.1 m DC	
Matching device RF sections ^{a)}	:	$\lambda/4$ 1.8 T pulsed Solenov (1) 4×6 m	id

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e^{-1} linac, are given in space to right.

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Final energy	:		0.35	GeV
Accel gradient	:		15	MeV/m
$\Delta E/E$ (FWHM)	:		3	%
Rep. rate	:		10	Hz
Pulse length	:		(2)	μs
Yield (fin.en)	:		2%	e⁺/e⁻x GeV
Beam intensity	:		2000	μA peak
Norm. emit. (1σ)	:		1500	π mm-mrad

- * Electron Positron Linac Ulterior for SOLEIL
- ** SOLEIL Source Optimisée de Lumiére d'Energie Intermédiare de Lure
- The first and second sections have some wider iris aperture (30.4 - 24 mm) and smaller efficiency 13.9 MV / (MW)^{1/2}. The 3rd and 4th are General Electric standard sections.
- (2) 0.005 or 0.3

Name of Linac	ELIOS *	
Function	Electron Injector Linac for SOLEIL**	(SR Ring)
Institution and address	: LURE, Centre Universitaire, Bât. 209 l	D, 91405 Orsay, France
	R. Chaput	
Name of person supplying these data :	R. Chaput	
	e-mail: chaput@lure.u-psud.fr	
		ax : +33 1 69 853997

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : ; first beam : 200.	2	Normal	Max, or	
Present status : Project		Operation	Design	
Cost of facility :		Final energy :	0.10	GeV
Present linac staff :		Accel gradient :	14	MeV/m
Present yearly operation time :	h	$\Delta E/E$ (FWHM) :	1	%
		Rep. rate :	10	Hz
LINAC PARAMETERS		Pulse length :	(4)	μs
		Beam intensity :	0.011	A
Electron Sources		Norm. emit. (1σ) :	:	πmmmrad
Types : Triode ; energy : 90	keV			
Beam intensity (peak) : 0.250	Α	OTHER RELEVANT INFO	RMATION	

- ELIOS Electron Linac Injector of SOLEIL
 - ** SOLEIL Source Optimisée de Lumiére d'Energie Intermédiare de Lure
- (1) 5 ns or 300 ns, 100 ms
- (2) General Electric, standard accelerating structure, 6m long.

Efficiency 18.5 MV / VMW

- (3) 0.035 0.0067
- (4) 0.005 or 0.3

Electron production at 100 MeV for the booster (2.15 GeV) of the ring.

Two operating modes:

- 3 pulses of 5 ns, 120 ns apart at 10 Hz. Total charge 1 nC
- 30 pulses of 5 ns at 100 MHz and 10 Hz. Total charge 3.3 nC

Electron Sources			
Types : Triode	; energy :	90	k
Ream intensity (neak)	•	0 250	

Beam intensity (peak)	:	0.230	А
Normalized emittance (1 σ) :	π mm-mr	ad

Injector

Longitudii	nal mat	ching :			
Output :	15	MeV;	intensity :	0.110	Α
Pulse widt	th, spac	cing : <i>(1</i>	2		
Normalize	d emitt	ance (1σ)	:	π mm-r	nrad

Acceleration System 1 1*

. . .

:	~ 10)	m
; lei	ngths :	6	m
; fre	equency :	2.998	GHz
; fil	ling time :	1.5	μs
; Q	:	1350	0
:	72 - 6	50	MΩ/m
:	26.8 -	16	mm
:	3		mm
:	0.83	3	Np
1	type :	Klystr	on
MW	mean :	1.5	kW
	; fre ; fil ; Q : : : :	; lengths : ; frequency : ; filling time : ; Q : ; 72 - 6 : 26.8 - : 3 : 0.82 I type :	; frequency : 2.998 ; filling time : 1.5 ; Q : 1350 : 72 - 60 : 26.8 - 16 : 3 : 0.83 1 type : Klystr

Focusing System

Type, No. of elements, and spacing : Two lens, between gun and prebuncher, solenoid on buncher and quadrupoles before and after section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

Name of Linac	:	CLIO *			
Function	:	Electron and Linac for Infrared FEL			
Institution and address		LURE, Centre Universitaire, Bât. 209 D, 91405 ORSAY, France			
Person in charge		R. Chaput			
Name of person supplying these dat	a :	R. Chaput			
		e-mail: chaput@lure.u-psud.fr			
		tel. $:+33164468158$ fax $:+33169853997$			

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	37 ; first be	eam : 1991	
Present status :	Operating		
Cost of facility :	25 MFRF (1987)		
Present linac staff :	5 man-years		
Present yearly operation	•	2400	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	90	keV
Beam inte	nsity (peak)	:		1.2	Α
Normalize	d emittance (1	σ):	15	π mm	n-mrad

Injector

Longitudina	il mai	ching : <i>(1)</i>	S-band l	buncher	
Output :	5	MeV;	intensity	: 0.7	Α
Pulse width, spacing : $12 \ \mu s$, $20 \ ms$					
Normalized emittance (1σ) :			150	π mm-	mrad

Acceleration System

Total linac length	:	18	m
No. sections : 1	;	lengths : 4.5	m
Field mode : $2\pi/3$;	frequency : 2998.6	GHz
Wave type : TW	;	filling time : 1.35	μs
v_g/c range : (2)	;	Q : 1400	0
Shunt impedance	:	63 - 74	MΩ/m
Iris : aperture : diameter	:	24 - 18	mm
thickness	; :	5.0	mm
Attenuation/section	:	0.844	Np
Power units, Number :		l type : (3) Klys	tron
RF power peak : (4)	M	W; mean : 20	kW

Focusing System

Type, No. of elements, and spacing :

Air-coils and solenoid up to 5 MeV, two lens, and solenoid on the section. Transport: 9 quadrupoles 3 bending magnets

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 400 - 3000No. of particles/bunch : 4×10^9 Bunch separation : (5) 32 ns or 16, 8, 4

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.050	0.07	GeV
Accel gradient	:	12.6		MeV/m
$\Delta E/E$ (FWHM)	:	< 0.75	0.25	%
Rep. rate	:	50	50	Hz
Pulse length	:	12	12	μs
Beam intensity	:	55	20	A
Norm. emit. (1σ)	:	150	200	π mm-mrad

OTHER RELEVANT INFORMATION

- * CLIO Centre Laser Infra-rouge Orsay
- (1) Sub-harmonic prebuncher (500 MHz) and S-band buncher.
- (2) 0.0067-0.02
- (3) Klystron TH 2130 V great HF pulse width ~ 20 μs with 20 MW.
- (4) 20. For a 19 µs pulse
- (5) Wide range of bunch separation able to fill the optical cavity by 1, 2, 4, 8 light pulses.

References

- LAL/RT-89/04, February 1989. Rapport d'étude du projet de laser à électrons libres CLIO. J.C. Bourdon et al.
- [2] 14th International FEL Conf., August 1992. Operation of the CLIO Accelerator.
 R. Chaput et al.
- [3] 17th International FEL Conf, August 1995. Activities of the CLIO Infrared Facility. JM. Ortéga et al.

Name of Linac	: NEPAL*	
Function	: Experimental High Gradient Accelerators	
Institution and address	: LAL, Bât. 200, Campus d'Orsay, 91405 Ors	ay, France
Person in charge	: G. Bienvenu	•
Name of person supplying the	e data : G. Bienvenu	
	e-mail: BIENVENU@LALCLS.IN2P3.FR	
	tel. : fax :	

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	86	ifirst b	eam : 02/1	988
Present status	:	Stand-by		
Cost of facility	:	3 MFRF		
Present linac staff	:	1/2 man-year		
Present yearly oper	a	tion time :	150	h

LINAC	PARAMETERS

Types :	Triode	;	energy :	90	keV
Beam inte	nsity (peak)	:		2	Α
Normalize	d emittance (10	5):		π m	n-mrad

Injector

Longitudinal matching : (1)						
Output :	4	MeV;	intensity :	10	Α	
Pulse width, spacing : $0.2-3 \ \mu s$, 10-40 ms						
Normalized emittance (1σ) : π mm-mrad						

Acceleration System

Total linac length	;			m
No. sections: 1	; leng	ths :	0.5	m
Field mode : $2\pi/3$; freq	uency :	3	GHz
Wave type : TW	; fillin	g time :	<i>0.3</i>	μs
v_{g}/c range : 6.4 10 ⁻³	; Q	:	1460	0
Shunt impedance	:	7 4 .2]	MΩ/m
Iris : aperture : diameter	:	18		mm
thickness	:	5		mm
Attenuation/section	:	0.2		Np
Power units, Number :	1	type :	Klystr	on
RF power peak : (2)	MW;	mean :	20	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal Operation	Max, or Design	
T		-	•	
Final energy :	:	0.003	0.1	GeV
Accel gradient :	:		80	MeV/m
$\Delta E/E$ (FWHM) :	:			%
Rep. rate :	:	6.25	25	Hz
Pulse length :	:	0.2	3	μs
Beam intensity :	:	0	40	Α
Norm. emit. (1σ) :	:	(for 3 A)	42	π mm-mrad

OTHER RELEVANT INFORMATION

* NEPAL - Nouvelle Expérience de Physique des Accélérateurs Linéaires.

(1) S-band pre-buncher and buncher

(2) 35/260 (LIPS)

There is another RF cavity of 1 m long (and 0.6 μ s filling time) instead of 0.5 m (and 0.3 μ s filling time), with the same characteristics given under "Acceleration System".

A third cavity of 1.3 m has the following characteristics:

Field mode : $4\pi/3$; Frequency : 3 GHz
Wave Type : TW/BW	; Filling Time : 0.2 s
v/c range : 6.4 10 ³	; Q : 11100
Shunt Impendance	: 75-0
Iris: aperture: diameter	:12 mm
thickness	: 3 mm
Atten./section	:0.17 Np
Power units, No.: 1	Type : Klystron
RF power peak: (2) M	W; mean: 20 kW

Name of Linac :	CANDELA *	
Function :	Photo-injector R & D for linear collid	lers
	LAL - Université d'Orsay - Bât. 200 -	
	Chris Travier	
Name of person supplying these data :	Chris Travier	
	e-mail : travier@lalcls.in2p3.fr	
	tel. : + 33 1 64 46 83 68	fax : +33 1 69 07 14 99

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	; first be	am : <i>09/1993</i>	
Present status :	Operating		
Cost of facility :	6 MFRF (1995)		
Present linac staff :	3 man-years		
Present yearly operation	•	300	h

LINAC PARAMETERS

Electron Sour	rces (1)
----------------------	----------

Types :	(2)	;	energy :	0	keV
Beam intensity	(peak)	:			Α
Normalized em	ittance	(l o):		π m	m-mrad

Injector (1)

Longitudinal matchin	ig :				
Output : M	leV;	intensity :	Α		
Pulse width, spacing :					
Normalized emittance	e (1 0) :		π mm-mrad		

Acceleration System

Total linac length	:	0.08	35	m
No. sections : 1	;	lengths :	0.085	m
Field mode : π	;	frequency :	2.9985	GHz
Wave type : SW	;	filling time :	0.6	μs
vg/c range :	;	Q :	10000)
Shunt impedance	:	65	Ň	/ Ω/ m
Iris : aperture : diameter	:	10	1	mm
thickness	3 :	16	i	mm
Attenuation/section	:			Np
Power units, Number :	1	type :	Klystro	m
RF power peak : 3.5	М	W; mean:	0.25	kW

Focusing System

Type, No. of elements, and spacing : 1 solenoid at gun exit max field 2400 Gauss

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 No. of particles/bunch : $< 1.25 \times 10^{10}$ Bunch separation : NA

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.0025	0.0035	GeV
Accel gradient	:	70	106	MeV/m
$\Delta E/E$ (FWHM)	:			%
Rep. rate	:	<i>12.5</i>	12.5	Hz
Pulse length	:<	50 × 10 ⁻⁶	< 50 × 10 ⁻⁶	μs
Beam intensity	:	< 40	1000	Α
Norm. emit. (10):		π	mm-mrad

OTHER RELEVANT INFORMATION

- * CANon..DEclenché par LAser
- (1) CANDELA is an RF gun and thus the electron source (photocathode) is directly located at the beginning of acceleration system.
- (2) Dispenser Cathode.

Characteristics of laser system used to illuminate the photocathode.

Туре	:	Ti: sapphire
useful wavelength	:	266 nm
Energy maximum	:	200 µJ
Bunch length	:	0.5 - 15 ps
Repetition rate	:	12.5 Hz

Name of Linac	MACSE*
Function	Study of superconducting RF accelerator techniques
Institution and address	CEA DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette, France
	Jean Gastebois
Name of person supplying these data	Marcel Jablonka
	e-mail : JABLONKA@hep.saclay.cea.fr
	tel. : + 33 (1)69087323 fax : + 33 (1)69087408

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 02/.	1989 ; first b	eam : 01/1991	!
Present status :	Operated for exp	periments	
Cost of facility :	50 MFRF (1989))	
Present linac staff :	6		
Present yearly operation	ation time :	300	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		0.003	Α
Normalize	d emittance (1	σ):	0.5	π mm	-mrad

Injector

Longitudir	ial mat	ching : (1)			
Output :	2	MeV;	intensity :	0.0005	Α
Pulse widt	h, spa	cing : Do	C		
Normalize	d emit	tance (1o)	: 1	π mm-n	nrad

Acceleration System

Total linac length	:	12		m
No. sections: (2) 5	; lei	ngths :	0.5	m
Field mode : π	; fre	equency :	1.497	GHz
Wave type : SW	; fil	ling time :		μs
vg/c range :	; Q	:	(3) 1.1	07
Shunt impedance	:		• •	MΩ/m
Iris : aperture : diameter	:	70		mm
thickness	:			mm
Attenuation/section	:			Np
Power units, Number :	(5)	type :	Klystre	on -
RF power peak : (6)	MW;	mean :	5	kW

Focusing System

Type, No. of elements, and spacing : Solenoïdal lenses at 2 MeV Triplets at 20 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : DCNo. of particles/bunch : 4×10^5 Bunch separation : 668 ps

	Normal Operation	Max, or Design	
Final energy :	0.015	0.025	GeV
Accel gradient :	7	10	MeV/m
$\Delta E/E$ (FWHM) :	0.1	0.1	%
Rep. rate :	DC	DC	Hz
Pulse length :			μs
Beam intensity :	104	104	Â
Norm. emit. (1σ) :	1	1	π mm-mrad

OTHER RELEVANT INFORMATION

- * Module Accelerateur à Cavité Supraconductrice pour Electrons (Electron Accelerator Module using Super-conducting Cavities)
- (1) 60° chopper, NC pre-buncher 0.84c 5 cell SC cavity
- (2) Superconducting 5 cell cavities.
- (4) loaded
- (5) TH2466

(6) 5×10^{-3}

References

- [1] First description in proceedings of 1990 Linear Acc. Conf. p. 141.
- [2] Detailed description in report DAPNIA/SEA 92-09, Juin 1992.

Name of Linac: LinacFunction: Science of First Electrons for Pulse RadiographyInstitution and address: Hahn-Meitner Institut, 14109 Berlin, GermanyPerson in charge: Dr. E. JanataName of person supplying these data: Dr. E. Janatae-mail : janata@hmi.de: +49 30 806 22853fax : +49 30 806 22434

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1	968	; first beam : 1969	
Present status	: Operation	onal	
Cost of facility	:		
Present linac staff	f :		
Present yearly op	eration time	: Low	h

LINAC PARAMETERS

Electron Sources

Types :	Cathode	;	energy :	keV
Beam inte	nsity (peak)	:		Α
Normalize	ed emittance (lσ):		π mm-mrad

Injector

Longitudi	nal mate	hing :			
Output :	0.08	MeV;	intensity	:	Α
Pulse wid	th, spac	ing : 2	ns - 2 μs ,	20 ms	
Normalize	ed emitta	ance (1σ)	:	π	mm-mrad

Acceleration System

Total linac length	:	~	5	m
No. sections : 1	; leng	gths	: ~2	2 m
Field mode :	; freq	uency	: 1.3	GHz
Wave type :	; filli	ng time	:	μs
vg/c range :	; Q		:	
Shunt impedance	:			MΩ/m
Iris : aperture : diameter	:			mm
thickness	s :			mm
Attenuation/section	:			Np
Power units, Number :		type :	:	
RF power peak : 10	MW;	mean :	:	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)

No. of bunches/pulse : min. 3 No. of particles/bunch : Bunch separation : ~ 0.8 ns

	Normal Operation	Max, or Design	
Final energy	: 0.015		GeV
Accel gradient	:		MeV/m
$\Delta E/E$ (FWHM)	:		%
Rep. rate	: 50		Hz
Pulse length	: 2 ns - 2 μs		μs
Beam intensity	: 6		Α
Norm. emit. (1σ)	:		π mm-mrad

Name of Linac	: RQ13
Function	: Ion Injector for Separated Sector Cyclotron
Institution and address	: Hahn-Meitner Institut, 14109 Berlin, Germany
Person in charge	: H. Homeyer
Name of person supplying these da	ata: A. Schempp
	e-mail: A.Schempp@em.uni-frankfurt.de
	tel. : +49 69 79822802 fax : +49 69 79828510

h

HISTORY AND STATUS

Const. started : 01/1994 ; first beam : 1997 Present status : Construction Cost of facility : 2 MDEM Present linac staff : 2 Present yearly operat. time :

Focusing System No. elements :

Charge states :

rio. ciements .			
type :	orde	r :	
Gradients :	to		T/m
Other:			
Charge Stripping	g (Typical)		
Type(s):			
Charge states :	to	at	MeV/u

to

Normal

MeV/u

at

Max, or

LINAC PARAMETERS

Ion Sources

No. of sources :	I	
Types of source :	14 GHz ECI	R
Species of ions :	1/5 > z/A > 1	/8
Range of currents :	50	μAe
Range of output energies :	15 to 30	keV/u
Pulse length : cw µs	; rep. rate :	Hz
Normalized emittance (1σ)	: 0.22	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	4 rod RFQ	m
Output currents :	25	μAe
Output energies :	90 to 360	keV/u
Frequency : (1)	MHz; peak RF power	r: 20 kW
Pulse length : CW	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : 0.22	π mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System	n		
Total linac length	:	m; N°. of ta	inks :
Tank diameters	:		m
Number of drift-tubes	:		
Drift-tube lengths	:		mm
Drift-tube diam (range)	:		mm
Gap/cell length (range)	:		
Aperture diameter	:	mm to	mm
RF frequency(ies)	:		MHz
Field modes	:		
Eff. shunt impedance	:		MΩ/m
Q	:		
Filling time	:		μs
Equil. phases :	; accel. 1	rate	MeV/u-m
RF rep. rate :	Hz;	pulse :	μs
Beam rate :	Hz;	pulse :	μs
RF power peak :	MW;	mean :	MW

Operation

LINAC PERFORMANCE

		Operation	Design	
Species	:			
Energy	:			MeV/u
$\Delta E/E$ (FWHM)	:			%
Mean acc. rate	:			MeV/u-m
Beam current	:			μ Ae peak
Norm. emit. (1 σ)	:			π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

(1) 85 to 120 MHz

Name of Linac :	Linac 1 *
Function :	Electron Injector for Synchrotron
	Bonn University, Physics Inst., Nussallee 12, D-53115 Bonn
	D. Husmann
Name of person supplying these data :	D. Husmann
	e-mail: Husmann@AXPIB.PHYSIK.UNI-BONN.DE
	tel. : +49 228 73 3617 fax : +49 228 73 3620

HISTORY AND STATUS

LINAC PERFORMANCE (4)

Const. started : 196	4 ; first be	am : <i>1966</i>	
Present status :	Operating		
Cost of facility :	1.2 MDM (1964)		
Present linac staff :	(1) ELSA Staff		
Present yearly operation	tion time :	5500	h

LINAC PARAMETERS

Electron Sources

Types :	(2)	Diode	;	energy :	120	keV
Beam int	ensity	(peak)	:		1.5	Α
Normaliz	zed em	nittance (1	σ):		π mm	n-mrad

Injector

Longitudinal matching : (3) S-band prebuncher						
Output :	0.12	MeV;	intensity :	0.8	Α	
Pulse width, spacing : $1.5 \mu s$, 20 ms						
	Normalized emittance (1 σ): π mm-mrad					

Acceleration System

Total linac length	:	3.20) m
No. sections : 1	;	lengths :	<i>2.40</i> m
Field mode : $2\pi/3$;	frequency :	2.9986 GHz
Wave type : TW	;	filling time :	0.5 µs
vg/c range :	;	Q :	10000
Shunt impedance	:	50	MΩ/m
Iris : aperture : diameter	:	20	mm
thickness	:	0.6	mm
Attenuation/section	:		Np
Power units, Number :	L	l type :	Klystron
RF power peak : 20	M	W; mean:	5 kW

Focusing System

Type, No. of elements, and spacing : 1 solenoid in front of section 3 solenoids covering section

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal Operation	Max, or Design	
Final energy :	:	0.02	0.02	GeV
Accel gradient :	:	<i>8.3</i>	<i>8.3</i>	MeV/m
$\Delta E/E$ (FWHM) :	:	10	10	%
Rep. rate :	:	50	50	Hz
Pulse length :		1	1	μs
Beam intensity :	:	0.3	0.8	Â
Norm. emit. (1σ) :	;	80	80	π mm-mrad

OTHER RELEVANT INFORMATION

* VARIAN V-7720

- (1) ELSA Electron Stretcher Accelerator
- (2) A second source is used to provide polarized electron beams. It is a source based on a Ga As photocathode.
- (3) The buncher is integrated in the section.
- (4) Data are given for operation with thermionic gun only.

Name of Linac :	Linac 2 *					
Function :	: Electron Injector for Synchrotron					
Institution and address :	Bonn University, Physics Inst., Nussallee 12, D-53115 Bonn					
Person in charge :	: D. Husmann					
Name of person supplying these data :	D. Husmann					
	e-mail: Husmann@AXPIB.PHYSIK.UNI-BONN.DE					
	tel. : +49 228 73 3617 fax : +49 228 73 3620					

HISTORY AND STATUS

LINAC PERFORMANCE (6)

Const. started : (1)	<i>1992</i>	; first	beam : 1995	
Present status :	Oper	ating		
Cost of facility :	NA			
Present linac staff :	(2)	ELSA Sta	ff	
Present yearly opera	tion tii	ne :	(3)	h

LINAC PARAMETERS

Electron Sources

Types :	(4)	Triode	;	energy :	50	keV
Beam in	tensity	(peak)	:		1	Α
Normaliz	zed en	nittance (1	σ):		π mm	n-mrad

Injector

Longitudinal matching : (5)				
Output :	MeV; i	ntensity :	Α	
Pulse width, spac	$ing: 1 \mu s$, 20 ms		
Normalized emittance (1σ) :			π mm-mrad	

- - -

Acceleration System

Total linac length	: 5.00	m
No. sections : 1	; lengths : 3.00	m
Field mode : $\pi/2$; frequency : 2.9985	GHz
Wave type : TW	; filling time : 0.5	μs
vg/c range :	;Q : 1200	0
Shunt impedance	: 50	MΩ/m
Iris : aperture : diameter	: 2.85 - 1.95	mm
thickness	: 0.3	mm
Attenuation/section	:	Np
Power units, Number :	1 type : Klystr	on
RF power peak : 20 l	MW; mean: 5	kW

Focusing System

Type, No. of elements, and spacing : *Solenoids covering section*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NA No. of particles/bunch : NA Bunch separation : NA

	Normal Operation	Max, or Design	
Final energy :		0.030	GeV
Accel gradient :		10	MeV/m
$\Delta E/E$ (FWHM) :			%
Rep. rate :	50	50	Hz
Pulse length :	1	1	μs
Beam intensity :		0.6	A
Norm. emit. (1σ) :		120	π mm-mrad

- * (1 Section of former Mainz Linac "Muell")
- (1) Linac has been constructed using parts of the former Mainz Linac "MUELL"
- (2) ELSA Electron Stretcher Accelerator
- (3) No routine operation
- (4) A second source is used to provide polarized electron beams with a Ga As photocathode
- (5) S-band prebuncher and buncher
- (6) Normal operation data are not yet well known.

Name of Linac	GSI Heavy Ion Linac Wideröe (Linac I)	
Function	Heavy Ion Injector for UNILAC Postaccelerator	
Institution and address	GSI, 64220 Darmstadt, PO 11 05 52, Germany	
Person in charge	J. Klabunde	
Name of person supplying these data	J. Klabunde	
	e-mail : j.klabunde@GSI.de	
	tel. : +49 6159 712344 fax : +49 6159 7	12987

HISTORY AND STATUS

Const. started :	1972	; first beam :	1975
Present status	: Operat	tional	
Cost of facility	: 8 MDE	EM (1972)	
Present linac staff	: 6/2=	3 man-years	
Present yearly ope	erat. time	: 6000	h

LINAC PARAMETERS

Ion Sources

No. of sources :	2	
Types of source :	PIG, CHORDIS,	MEVVA
Species of ions :	All ions up to ur	anium
Range of currents :	500	μAe
Range of output en	ergies : 0.5 - 1.0	keV/u
Pulse length : 50	000 µs; rep. rate :	50 Hz
Normalized emittar	nce (1σ) : 0.5	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) : 320 k	VDC Preaccelerate	or m
Output currents :	500	μAe
Output energies :	11.7	keV/u
Frequency : MHz;	peak RF power :	kW
Pulse length : 5000 µs	; rep. rate : 50	Hz
Normalized emittance (1σ)	: $0.5 \pi m$	m-mrad

Longitudinal Matching

Type:	2-gap	double drift bunch	er		
Mod.	4	keV; drift 1000	mm at	27	MHz
	4	keV; drift 1500	mm at	27	MHz

Accelerating System

Total linac length	:	26 m; N°. of tanks : 4	
Tank diameters	:	<i>1.2</i> m	
Number of drift-tubes	:	35, 35, 29, 25	
Drift-tube lengths	:	10 - 290 mm	
Drift-tube diam (range)	:	<i>34 - 40</i> mm	
Gap/cell length (range)	:	0.33 - 0.65	
Aperture diameter	:	20 mm to 30 mm	
RF frequency(ies)	:	27.1 MHz	
Field modes	:	Coaxial $\beta\lambda$ / 2 Structure	
Eff. shunt impedance	:	<i>45.4, 50.6, 46, 34.</i> 7 MΩ/ m	
Q	:	4400, 5100, 7200, 7000	
Filling time	:	100 µs	
Equil. phases : - 30°	;	accel. rate 0.054 MeV/u-m	
RF rep. rate : 50		Hz; pulse : 5500 μs	
Beam rate : 50		Hz; pulse : 5000 µs	
RF power peak : 1.0		MW; mean: 0.28 MW	

Focusing System

type :	Singlet		order :		FFD	D
Gradients :	30		to		100	T/m
Other :						
Charge Sta Type(s): G Charge states Charge states	as s : 23	(Typic to to	al) 31	at at	1.4	MeV/u MeV/u

LINAC PERFORMANCE

		Normal Operation (Max, or (1) Design	
Species	:	All ions	U ¹⁰⁺	
Energy	:	1.4	1.4	MeV/u
$\Delta E/E$ (FWHM)	:	1	1	%
Mean acc. rate	:	0.054	0.054	MeV/u-m
Beam current	:	3000	70	μ Ae peak
Norm. emit. (1σ)	:	0.5	0.5	π mm-mrad

OTHER ION BEAMS

P	article	Energ
_		

ergy range Other info.

OTHER RELEVANT INFORMATION

(1) All ions with $q/m \ge 0.04$ can be acclerated, parameters given for U^{10+} .

Name of Linac :	GSI Heavy Ion Linac HLI (Linac II)			
Function	Heavy Ion Injector for UNILAC Postaccelerator			
Institution and address :	GSI, 64220 Darmstadt, PO 11 05 52, Germany			
Person in charge :	J. Klabunde			
Name of person supplying these data :	J. Klabunde			
	e-mail : j.klabunde@gsi.de			
	tel. : +49 6159 712344 fax : +49 6159 712987			

HISTORY AND STATUS

Const. started :	1989	; first beam :	1991
Present status	: Opera	tional	
Cost of facility	: 6 MDI	EM (1990)	
Present linac staff	: 4/2=	2 man-years	
Present yearly op	erat. time	: 6000	h

LINAC PARAMETERS

Ion Sources				
No. of sources	:	1		
Types of source	:	14 GHz E0	CR	
Species of ions	: All	ions up to u	raniun	1
Range of currents	:	6		μAe
Range of output er	nergies :	2.5		keV/u
Pulse length : C	W μs;	rep. rate :	CW	Hz
Normalized emitta	nce (1σ) :	0.5	π mm	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	4-rod RFQ/3	m
Output currents :	б	μAe
Output energies :	300	keV/u
Frequency : 108.4 MHz;	peak RF powe	er: 130 kW
Pulse length : - 5000 μ s;	rep. rate :	<i>100</i> Hz
Normalized emittance (1σ)	: 0.5	π mm-mrad

Longitudinal Matching

Type :	λ/4-	4 gap reson	ator			
Mod.	160	keV; drift	500	mm at	108.4	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length :	3.3	m; N°. of t	anks: 1
Tank diameters :		0.6	m
Number of drift-tubes :		43	
Drift-tube lengths :	19 -	58, 369.9, 3	374.7 mm
Drift-tube diam (range):		24 - 27	mm
Gap/cell length (range):		0.2 - 0.5	
Aperture diameter :	18	mm to	20 mm
RF frequency(ies) :		108.4	MHz
Field modes :		TE111 (1)	
Eff. shunt impedance :		300	MΩ/m
Q :		20000	
Filling time :		< 100	μs
Equil. phases : 0, - 30	accel.	rate 0.33	MeV/u-m
RF rep. rate : 100	Hz;	pulse : 5	<i>500</i> μs
Beam rate : 100	Hz;	pulse : 5	000 µs
RF power peak : 0.11	MW;	mean : (0.6 MW

Focusing System

No. element	s : 2			
type :	Triplet	order :	FDF	7
Gradients :	50	to	70	T/m
Other :				
Charge St	ripping ((Typical)		
-	ripping ((Typical)		
Charge Sta Type(s) : Charge state		(Typical) to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation (Max, or (2) Design	
Species	:	All ions	U^{28+}	
Energy	:	1.4	1.4	MeV/u
$\Delta E/E$ (FWHM)	:	1.0	1.0	%
Mean acc. rate	:	0.33	0.33	MeV/u-m
Beam current	:	- 1000	6	μ Ae peak
Norm. emit. (1 σ)	:	0.5	0.5	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

- (1) (IH $\beta\lambda/2$ operation)
- (2) All ions with $q/m \ge 0.11$ can be acclerated, parameters given for U^{28+} .

References

[1] Linac described in Linac Conf. Proc. 1988, 1990, 1992.

Name of Linac	GSI Heavy Ion Postaccelerator (Linac III)			
Function	Synchrotron Injector, Physics Experiments			
Institution and address	GSI, 64220 Darmstadt, PO 11 05 52, Germany			
Person in charge	J. Klabunde			
Name of person supplying these data	: J. Klabunde			
	e-mail : j.klabunde@gsi.de			
	tel. : +49 6159 712344 fax : +49 6159 712987			

HISTORY AND STATUS

Const. started :	<i>1972</i>	; first beam :	1975
Present status	: Opera	tional	
Cost of facility	: 12 ML	DEM (1972)	
Present linac staff	f: 6/2=	3 man-years	
Present yearly op	erat. time	: 6000	h

LINAC PARAMETERS

Ion Sources				
No. of sources	:	see GSI	Linac I, II	
Types of source	:			
Species of ions	:			
Range of currents	6:			μAe
Range of output e	energies :			keV/u
Pulse length :	μs	; rep. ra	ite :	Hz
Normalized emitt	ance (1σ)	: -	π m	m-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	see GSI Linac I, II	m
Output currents :		μAe
Output energies :		keV/u
Frequency :	MHz; peak RF power :	kW
Pulse length :	μs; rep. rate :	Hz
Normalized emittar	nce (1σ) : π m	m-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	70 m; N°. of tanks : 5
Tank diameters :	2.0 m
Number of drift-tubes :	62, 24, 20, 36, 31
Drift-tube lengths :	<i>114 - 230</i> mm
Drift-tube diam (range):	<i>200</i> mm
Gap/cell length (range):	0.25
Aperture diameter :	30 mm to 35 mm
RF frequency(ies) :	108.4 MHz
Field modes :	TM010
Eff. shunt impedance :	<i>50, 55, 57, 58, 60</i> MΩ/m
Q :	(1)
Filling time :	<i>5000</i> μs
Equil. phases : 30; 25;	accel. rate 0.2 MeV/u-m
RF rep. rate : 50	Hz; pulse : 5500 µs
Beam rate : 50	Hz; pulse : 5000 µs
RF power peak : 5.0	MW; mean: 1.4 MW

Focusing System

No. element type :	ts : 173 Singlet	order :	FFDI	n
~ 1	•			-
Gradients :	20	to	40	T/m
Other :				
Type(s): C	•			
CI		75		3 # X7/

Charge states :	71	to	75	at 11.	4 MeV/u
Charge states :		to		at	MeV/u

LINAC PERFORMANCE

		Normal Operation (2	Max, or 2) Design	
Species	:	All ions	U ²⁸⁺	
Energy	:	(3) 1.4 - 15	1.4 - 15	MeV/u
$\Delta E/E$ (FWHM)	:	0.5	0.5	%
Mean acc. rate	:	0.2	0.2	MeV/u-m
Beam current	:	3000	5 - 30	μ Ae peak
Norm. emit. (10)	:	0.5	0.5	π mm-mrad

OTHER ION BEAMS

Other info.

- (1) 112, 108, 107, 105, 104×10^3
- (2) The linac has the capability to accelerate on a pulse-to-pulse basis beams of differing ion species to individual energies.
- (3) Energy variation between 1.4 and 15 MeV/u by additional 15 single gap cavities.

Name of Linac : S-DALINAC Function : Nuclear and Radiation Physics, FEL Driver Institution and address : Institut für Kernphysik, TH Darmstadt, Germany Person in charge : A. Richter Name of person supplying these data : H-D. Gräf e-mail: Graef@linac.ikp.physik.th-darmstadt.de tel. : +49 6151 163323 fax : +49 6151 164321

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1983 ; first	beam : 1987	,	
Present status : Operating			
Cost of facility : 20 MDEM			Final energy
Present linac staff : 6			Accel gradien
Present yearly operation time :	2500	h	ΔE/E (FWHM
· · ·			Ren rate

LINAC PARAMETERS

Electron Sources

Types : Thermionic Gun	;	energy :	250	keV
Beam intensity (peak)	:		≤0.03	Α
Normalized emittance (10)):	≤2	π mm	-mrad

Injector

Longitudir	hal mat	ching : Cl	hopper + Pr	ebuncher		
Output :	10	MeV;	intensity :	≤0.00006	Α	
Pulse width, spacing : CW						
Normalize	d emitt	ance (1σ)	: ≤2	πmm-m	rad	

Acceleration System

Total linac length	:	17		m
No. sections : 8	; le	ngths :	8 × 1	m
Field mode : π	; fre	equency :	3	GHz
Wave type : TM 010	; fil	ling time :	1590) μs
vg/c range : Stan.wave	; Q	:	1.10	ງ ° ່
Shunt impedance	:	1.25 ×	10 ⁶	MΩ/m
Iris : aperture : diameter	:	35		mm
thickness	:	6.4		mm
Attenuation/section	:	Standing	wave	Np
Power units, Number :	12	type :	Klysti	ron
RF power peak : (1)	MW	; mean :	0.5	kW

Focusing System

Type, No. of elements, and spacing : Quadrupoles, 4, 3.8 m

Beam Pulse Structure (if applicable)

No. of bunches/pulse : CW No. of particles/bunch : 1.25×10^5 Bunch separation : 333 ps

	Normal Operation	Max, or Design	
Final energy	: 0.03 - 0.12	0.130	GeV
Accel gradient	: ≤7	10	MeV/m
$\Delta E/E$ (FWHM)	: 0.05		%
Rep. rate	: CW		Hz
Pulse length	: NA		μs
Beam intensity	$3 \le 60 \times 10^{-6}$		A
Norm. emit. (10): <i>≤2</i>		π mm-mrad

OTHER RELEVANT INFORMATION

(1) 5×10^{-4}

e

Superconducting recirculating electron linac.

Superconducting cavities: 2 cells, $\beta = 0.85$ 5 cells, $\beta = 1.00$ 10×20 cells, $\beta = 1.00$

Two recirculations (three passes through linac).

Name of Linac	: DELTA Injector Linac
Function	: Electron Injector Linac for 1.5 GeV Synchrotron Radiation Light Source DELTA
Institution and address	: University of Dortmund, D-44221 Dortmund, Germany
Person in charge	: Th. Weis
Name of person supplying these data	a: Th. Weis
	e-mail: weis@marvin.physik.uni-dortmund.de
	tel. : +49 231 755 5370 fax : +49 231 755 5383

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : (1) 1992	; first beam : 1994	
Present status : Operation	ng	
Cost of facility : NA	-	
Present linac staff : 1 man-y	vear	
Present yearly operation time		h

LINAC PARAMETERS

Electron Sources

Types :	Triode ;	;	energy :	50	keV
Beam inte	nsity (peak) :	:			Α
Normalize	ed emittance (1o):		< 80	π mr	n-mrad

Injector

Longitudinal matching : (2) Output : 3.8 MeV; intensity : 1 A Pulse width, spacing : 2-20 ns, 10 -100 ms Normalized emittance (1 σ) : < 200 π mm-mrad

Acceleration System

Total linac length	:	12		m
No. sections : 2	; leng	gths :	4.2	m
Field mode : $2\pi/3$; free	uency :	2.9986	GHz
Wave type : TW	; filli	ng time :	0.7	μs
v_g/c range : (3)	; Q	:	1000)
Shunt impedance	:	42	N	/Ω/m
Iris : aperture : diameter	:	30 - 2	20	mm
thickness	:	Not kno	own	mm
Attenuation/section	:	0.62	?	Np
Power units, Number :	2	type :	Klystre	on -
RF power peak : 20 1	MW;	mean :	1 -10	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 3.8 MeV; a triplet at 3.8 MeV and a triplet between sections at 40 - 50 MeV.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 6 - 60No. of particles/bunch : 1.2×10^9 Bunch separation : NA

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.07	0.1	GeV
Accel gradient	:	8. <i>33</i>	11.9	MeV/m
$\Delta E/E$ (FWHM)	:	10	10	%
Rep. rate	:	10	100	Hz
Pulse length	:	0.002	0.020	μs
Beam intensity	:	0.6	0.6	Α
Norm. emit. (1 σ):	:	140	140	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Linac has been constructed using old system parts of the Mainz university 400 MeV electron linac (first operation 1966, shut down 1989).
- Mainz components: 2 linac sections (age 20 years) - 20 MW klystrons, pilot klystron - substantial part of the modulators - gun body and prebuncher New installed components: - 3.8 MeV buncher
 - gun
 - complete focusing system
 - monitoring
 - rf-network
- (2) S-band prebuncher and buncher
- (3) 0.011-0.036

References

- [1] DELTA, a Status Report, DELTA Group, University of Dortmund.
- [2] G. Blokesch, J. Friedl, A. Jankowiak, C. Piel, T. Weis, K. Wille and DELTA Group, The Injector Linac of the DELTA-Facility, Proc. 1996 European Particle Accelerator Conference, Sitges.

Name of Linac	: Linac 2					
Function	Electron Injector for PIA (DORIS, HERA)					
	DESY, Notkestr. 85, 22603 Hamburg, Germany					
	D. Trines					
Name of person supplying these data	: M. Nagl					
	e-mail:					
	tel. : + 49 40 8998 3796	fax : +49 40 8998 4364				

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1966 ; first beam : 01/197	71		Normal	Max, or	
Present status : Operating			Operation	Design	
Cost of facility :		Final energy	: 0.45	0.90	
Present linac staff : 6		Accel gradient	: 14.4	17.7	1
Present yearly operation time : 6700 (1995)	h	$\Delta E/E$ (FWHM)	: 0.27		
		Rep. rate	: 50	50	
LINAC PARAMETERS		Pulse length	: 0.020		
		Beam intensity	:0.030-0.060		

Electron Sources

Types :	Diode	;	energy :	150	keV
Beam inte	nsity (peak)	:		4.0	Α
Normalize	ed emittance (10)):		π mn	n-mrad

Injector

Longitudinal matching : (1)								
Output :	MeV;	intensity :	Α					
Pulse width, spa								
Normalized emittance (1σ) :		π mm-mrad						

Acceleration System

Total linac length	: 70	m
No. sections: $(2) 6$; lengths : 5.2	m
Field mode : $2\pi/3$; frequency : 2.998	GHz
Wave type : TW	; filling time : 0.74	μs
v_g/c range : (3)	;Q : 1400	0
Shunt impedance	: 51.5	MΩ/m
Iris : aperture : diameter	: 29.5 - 22.5	mm
thickness	: 5.56	mm
Attenuation/section	: 0.50	Np
Power units, Number: (2) 6 type : (4) Klys	trons
RF power peak : 25 N	AW; mean : 5	kW

Focusing System

Type, No. of elements, and spacing : 0.08 T solenoids on the first 3 sections; quadrupoles on the last 5 sections

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NA No. of particles/bunch : NA Bunch separation : NA

		Operation	Design	
Final energy	:	0.45	0.90	GeV
Accel gradient	:	14.4	17.7	MeV/m
$\Delta E/E$ (FWHM)	:	0.27		%
Rep. rate	:	50	50	Hz
Pulse length	:	0.020		μs
		0.030-0.060		Α
Norm. emit. (1σ)	:	60		π mm-mrad

- (1) S-band prebuncher and buncher
- (2) See Positron Linac for e^+ operation.
- (3) 0.012-0.0043
- (4) 11 klystrons are equipped with RF pulse compression.

POSITRON LINAC

Name of Linac:Linac 2Function:Positron Injector for PIA (DORIS, HERA)Institution and address:DESY, Notkestr, 85, 22603, Hamburg, GermanyPerson in charge:D. TrinesName of person supplying these data:M. Nagle-mail ::::tel.::+49 40 8998 3796fax : +49 40 8998 4364

HISTORY AND STATUS

Differences with respect to corresponding e linac, are given in space to right.

Primary	Beam	(e ⁻)	at	Conversion	Target	
-				100		

Energy	:	400	MeV
Radius (10)	:	0.3	mm
Beam intensity	:	1.5	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	- Tungsten		
Туре	:	Stationary		
Thickness (rad.length)	:	2.0	χ	
Diameter	:	10	mm	
Mean deposited power	:	2	kW	
Solenoidal field ^{a)}	:	0.4 T DC over 2 RF sect	ions	
Matching device RF sections ^{a)}	: :	(10.4 m) λ/4; 1.8 T pulsed solenoid 6 (7) × 5.2 m		

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e⁻linac, are given in space to right.

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Final energy	:	0.45	0.55	GeV
Accel gradient	:	14.4	17.7	MeV/m
$\Delta E/E$ (FWHM)	:	1.0	1.0	%
Rep. rate	:	50	50	Hz
Pulse length	:	0.060	0.1	μs
Yield (fin.en)	:	0.025	0.03	e [†] /e ⁻ x GeV
Beam intensity	:	10000	15000	μA peak
Norm. emit. (1σ)	:	3000		π mm-mrad

OTHER RELEVANT INFORMATION

The electrons are accelerated in five accelerator sections, which are powered by five klystrons. Each klystron is equipped with RF pulse compression.

The electron beam is focused by a quadrupole doublet onto the target.

Behind the converter, comprising the target and the small 1.8 T positron lens, there are two RF sections with 0.4 T solenoids, followed by a matching quadrupole doublet and 5 RF sections equipped with 25 quadrupoles in a FODO channel lattice. Six of these seven klystrons are equipped with RF pulse compression.

Name of Linac: TTF *Function: Test Facility for a Superconducting Linear ColliderInstitution and address: DESY, Notkestr. 85, 22603 Hamburg, GermanyPerson in charge: Bernard AuneName of person supplying these data : Hans Weise
e-mail : Weise@desy.de
tel. : + 49 40 8998 3950fax : +49 40 8998 3094

h

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	9:	5; first beam :				
Present status	:	Under construction				
Cost of facility	:	44 MDEM (1995)				
Present linac staff	:					
Present yearly operation time :						

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	(2)	keV
Beam inte	nsity (peak)	:	(3) 0.010	Α
Normalize	ed emittance (10	5):		π mm-	mrad

Injector

Longitudinal matching : (4) Output : 10 (20) MeV; intensity : (3) 0.008 A Pulse width, spacing : see beam pulse structure Normalized emittance (1 σ) : (5) < 5 π mm-mrad

Acceleration System

Total linac length	:	50		m
No. sections : 3×8	; len	gths :	1.0	m
Field mode : π	; fre	quency :	1.3	GHz
Wave type : Standing	; fill	ing time :	≈500	μs
vg/c range : 1	; Q	:	3×10) ⁹
Shunt impedance	:	0.001	N	/Ω/m
Iris : aperture : diameter	:	78		mm
thickness	:	(6)		mm
Attenuation/section	:			Np
Power units, Number :	2	type :	Klystre	on
RF power peak : (7)	MW;	mean :	(8)	kW

Focusing System

Type, No. of elements, and spacing : Solenoids at 250 keV, 2 triplets at 10 MeV (matching section), quadrupole doublets every 12.2m

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 216×800 (1 × 800) No. of particles/bunch : 2.3×10^8 (5 × 10^{10}) Bunch separation : $1/216 \ \mu s$ (1 μs)

	-	Normal peration	Max, or Design	
Final energy	:		0.4 - 0.6	GeV
Accel gradient	:		15 - 25	MeV/m
$\Delta E/E$ (FWHM)	:		0.1	%
Rep. rate	:		10	Hz
Pulse length	:		800	μs
Beam intensity	:		(3) 0.008	A
Norm. emit. (10)	:		<5	π mm-mrad

- * TESLA Test Facility Linac
- (1) Two different injectors are under construction; Injector I (Triode) will be used for commissioning, Injector II (RF Gun) for cavity studies.
- (2) Triode gun: 250 keV RF gun : 3500 keV
- (3) Average current for the 800 μ s long macro pulse.
- (4) Injector I : 216 MHz Buncher Injector II : magnetic bunch compressor
- (5) For the RF gun, $E = 20 \pi$ mm.mrad
- (6) Special shape
- (7) 24 × 0.2
- (8) $peak \times 0.8/100$

Name of Linac	: SBTF *	
Function	: Linear Collider Test Facility	
Institution and address	: DESY, Notkestr. 85, 22603 H	lamburg. Germany
Person in charge	: Norbert Holtkamp	0,,
Name of person supplying these		
	e-mail: MPYHOL@mint2.de	esy.de
	tel. :	fax :

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1992	?; first b	eam : 1995	
Present status :	Under construct	ion	
Cost of facility :	10 MUSD		
Present linac staff :	~10 man-years		
Present yearly operation	tion time :	1000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	90	keV
Beam inte	nsity (peak)	:		6	Α
Normalize	d emittance (1	σ):	5	π m	n-mrad

Injector

Injector					
Longitudin	al mat	ching : (1))		
Output :	6	MeV;	intensity :	(2)	Α
Pulse widt	h, spa	cing : 2	us, 16 ns, 50) Hz	
Normalized				π mm-	mrad

Acceleration System

Total linac length	:	30	m
No. sections : 4	;	lengths : 6	m
Field mode : $2\pi/3$;	frequency : 2.998	GHz
Wave type : TW	;	filling time : 0.8	μs
v_{g} /c range : 4.1 - 1.4	;	Q : 13800)
Shunt impedance	:	~ 55 N	1Ω/m
Iris : aperture : diameter	:	27 - 13	mm
thickness	:	5	mm
Attenuation/section	:	0.55	Np
Power units, Number :		2 type : Klystro	n
RF power peak : 150	M	W; mean : 25	kW

Focusing System

Type, No. of elements, and spacing : *Triplets, solenoids*

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 74/125/250No. of particles/bunch : $\ge 5 \times 10^{10}$ Bunch separation : 8/16/24 ns

		Normal Operation	Max, or Design	
Final energy	:	0.400	0.45	GeV
Accel gradient	:	17	22	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	50	50	Hz
Pulse length	:	2	2	μs
Beam intensity	:	0.300	0.400	A
Norm. emit. (10)	:	500	400	π mm-mrad

OTHER RELEVANT INFORMATION

- * SBTF S Band Test Facility
- (1) S-band, 500 MHz & 125 MHz buncher
- (2) 1 kA peak, 300 mA average

PROTON AND/OR H- LINAC

Name of Linac: Linac 3Function: Proton Injector for DESY Accelerator ComplexInstitution and address: DESY, Notkestr. 85, 22603 Hamburg, GermanyPerson in charge: D. TrinesName of person supplying these data:M. Nagl
e-mail :
tel. : +49 40 8998 3796fax : +49 40 8998 4364

HISTORY AND STATUS

Const. started :	1984	; first beam :	11/1988
Present status	: Operating	g	
Cost of facility	:		
Present linac staff	: 4		
Present yearly ope	erat. time :	6900 (199	<i>5)</i> h

LINAC PARAMETERS

Ion Source

Type : H ⁻ magnetro	on ion sou	rce		
Output : 60	mA			keV
Pulse length : 7	75 μs;	rep. rate :	6	Hz
Normalized emittan	ce (1 0) :	0.6	πmm-	mrad

Pre-accelerator (including RFQ)

Types :	4 rod Ri	FQ	; lengths	:	<i>l.2</i> m
Output	: 20	mA	at	750	keV
Pulse length	: 30	μs;	rep. rate	: 0.2	25 (1) Hz
Normalized	emittance	e (lo) :	0.8	π	mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System (2)

Total linac length: 33.6m; No. of tanks :3Tank diameters: 0.94 ; 0.90 ; 0.86 mNumber of drift-tubes :(3)Drift-tube lengths:(4)Drift-tube diam (range):180; 160; 160Gap/cell length (range):22-31%; 20-29%; 26-31%Aperture diameter:20mm to30RF frequency(ies):202.56Eff. shunt impedance:36MQ'm:60000Filling time:(5)Equilibrium phases: -35° to -25° ; -25° RF rep. rate :0.25 (1)Hz; pulse :200DE newser people ::00002MEX:::DE newser people ::::			
Number of drift-tubes :(3)Drift-tube lengths:(4)mmDrift-tube lengths:180; 160; 160mmGap/cell length (range): $22-31\%$; $20-29\%$; $26-31\%$ Aperture diameter: 20 mm toRF frequency(ies): 202.56 MHzField modes:.TM010Eff. shunt impedance: 36 M Ω/m Q: 60000 Filling time:Firep. rate : 0.25 (1)Hz; pulse : 250 RF rep. rate : 0.25 (1)Hz; pulse : 30 Beam rate : 0.25 (1)Hz; pulse : 30	Total linac length :	33.6 m; No. of tanks	: 3
Drift-tube lengths:(4)mmDrift-tube diam (range): 180 ; 160 ; 160 mmGap/cell length (range): $22-31\%$; $20-29\%$; $26-31\%$ Aperture diameter: 20 mm to 30 mmRF frequency(ies): 202.56 MHzField modes:Field modes: $TM010$ Eff. shunt impedance: 36 MQ'mQ:Q: 60000 Filling time: (5) µsEquilibrium phases:<- 35° to -25° ; -25° RF rep. rate : 0.25 (1)Hz; pulse :Beam rate: 0.25 (1)Hz; pulse : 30 µs	Tank diameters :	0.94; 0.90; 0.86	m
Drift-tube diam (range): $180; 160; 160$ mmGap/cell length (range): $22-31\%; 20-29\%; 26-31\%$ Aperture diameter: 20 mm to 30 mmRF frequency(ies): 202.56 MHzField modes: $TM010$ Eff. shunt impedance: 36 M Ω /mQ: 60000 Filling time:(5) μ sEquilibrium phases: -35° to -25° ; -25° RF rep. rate : 0.25 (1)Hz; pulse :Beam rate: 0.25 (1)Hz; pulse :: 30 μ s	Number of drift-tubes :	(3)	
Gap/cell length (range): $22-31\%$; $20-29\%$; $26-31\%$ Aperture diameter: 20 mm to 30 mmRF frequency(ies): 202.56 MHzField modes: $TM010$ Eff. shunt impedance: 36 MQ/mQ: 60000 Filling time: (5) μ sEquilibrium phases: -35° to -25° ; -25° RF rep. rate : 0.25 (1)Hz; pulse : 250 μ sBeam rate: 0.25 (1)Hz; pulse : 30 μ s	Drift-tube lengths :	(4)	mm
Aperture diameter:20mm to30mmRF frequency(ies): 202.56 MHzField modes: $TM010$ Eff. shunt impedance: 36 MQ/mQ: 60000 Filling time:(5) μ sEquilibrium phases: -35° to -25° ; -25° RF rep. rate: 0.25 (1)Hz; pulseBeam rate:: 0.25 (1)Hz; pulse:: 30 μ s	Drift-tube diam (range):	180; 160; 160	mm
RF frequency(ies) : 202.56 MHz Field modes : $TM010$ Eff. shunt impedance : 36 MQ/m Q : 60000 Filling time : (5) μ s Equilibrium phases : -35° to -25° ; -25° RF rep. rate : 0.25 (1) Hz; pulse : 250 μ s Beam rate : 0.25 (1) Hz; pulse : 30 μ s	Gap/cell length (range):	22-31%; 20-29%; 26-	-31%
Field modes: $TM010$ Eff. shunt impedance: 36 $M\Omega/m$ Q:: 60000 Filling time::(5)Equilibrium phases: -35° to -25° ; -25° ; -25° RF rep. rate :0.25 (1)Hz; pulse :250Beam rate:0.25 (1)Hz; pulse :	Aperture diameter :	20 mm to 30	mm
Field modes 36 M Ω /mEff. shunt impedance : 36 M Ω /mQ: 60000 Filling time :(5) μ sEquilibrium phases : -35° to -25° ; -25° ; -25° RF rep. rate : 0.25 (1)Hz; pulse :Beam rate : 0.25 (1)Hz; pulse : 30 μ s	RF frequency(ies) :		MHz
Q : 60000 Filling time : (5) μ s Equilibrium phases : -35° to -25° ; -25° RF rep. rate : 0.25 (1) RF rep. rate : 0.25 (1) Hz; pulse : 250 μ s Beam rate : : 0.25 (1) Hz; pulse : 30 μ s	Field modes :	TM010	
Filling time:(5) μ sEquilibrium phases:-35° to -25°; -25°; -25°RF rep. rate:0.25 (1)Hz; pulse250Beam rate:0.25 (1)Hz; pulse30	Eff. shunt impedance :	36	MΩ/m
Equilibrium phases : -35° to -25° ; -25° ; -25° RF rep. rate : 0.25 (1) Hz; pulse : 250 µs Beam rate : 0.25 (1) Hz; pulse : 30 µs	Q :	60000	
RF rep. rate : 0.25 (1) Hz; pulse : 250 μ s Beam rate : 0.25 (1) Hz; pulse : 30 μ s	Filling time :	(5)	μs
Beam rate : 0.25 (1) Hz; pulse : 30 µs	Equilibrium phases :	-35° to -25°; -25°; -2	5°
	RF rep. rate : 0.25 (1)		μs
DEnomination 26 MW moon 0.0002 MW	Beam rate : 0.25 (1)	-	•
KF power peak : 5.0 NIW; mean : 0.0002 NIW	RF power peak : 3.6	MW; mean : 0.0002	MW

Focusing System

No. elements	: 131			
type :	Pulsed	order :	FODC)
Gradients :	100	to	20	T/m
Other: Puls	ed flat-top (1	00 µs)		

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Energy	:	50	50	MeV
Mean acc. rate	:	1.48	1.48	MeV/m
$\Delta E/E$ (FWHM)	:	0.28	0.28	%
Beam current	:	12	20	mA peak
Norm. emit. (1 σ)	:	1.0	2.0	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Maximum 1 Hz
- (2) Post coupled Alvarez linac structure.
- (3) 51+2/2; 43+2/2; 31+2/2
- (4) 48-147; 177-258; 274-316
- (5) Determined by feedback; $< 100 \, \mu s$

Name of Linac	: Heidelberg Postaccelerator
Function	: Heavy Ion Booster for Tandem-Accelerator Nuclear and Atomic Physics
	: Max-Planck-Institut für Kernphysik, POBox 103980, D69029 Heidelberg
Person in charge	: Roland Repnow
Name of person supplying these data	: Roland Repnow
	e-mail: REP@HERING.MPI-HD.MPG.DE
	tel. : +49 6221 516 277 fax : +49 6221 516234

HISTORY AND STATUS

Const. started :	1974	; first beam :	1979
Present status	: Operat	ing	
Cost of facility	: 10 MD	EM (1980)	
Present linac staff	: 6 perso	ons	
Present yearly ope	erat. time	: 1500-2500	h

LINAC PARAMETERS

Ion Sources

No. of sources :	2	
Types of source :	(1)	
Species of ions :	all ions from p to U	
Range of currents :	0.1 - 200	μAe
Range of output energie	es: 190	keV/u
Pulse length : DC/200	μ s; rep. rate : 55	Hz
Normalized emittance (1	lσ): 1.5 πm	m-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	(2) 25	m
Output currents :	0.1 - 10.0	μAe
Output energies :	1000 - 24000	keV/u
Frequency : 0 MHz	z; peak RF powe	er: <i>na</i> kW
Pulse length : (3)	is; rep. rate :	55 Hz
Normalized emittance (1	σ): 1.5	π mm-mrad

Longitudinal Matching

Type : a) Harmonic buncher b) Spiral resonator (4) Mod. a) 1.2 keV; drift 5000 mm at 13.56 MHz b) 300 keV; drift 3200 mm at 108.48 MHz

Accelerating System

Total linac length :	16	m; N°. of tar	nks : 40
Tank diameters :		0.35-0.5	m
Number of drift-tubes :		48	
Drift-tube lengths :		35 - 146	mm
Drift-tube diam (range):		32	mm
Gap/cell length (range):		180 - 215	
Aperture diameter :	20	mm to	mm
RF frequency(ies) :		108.48	MHz
Field modes :		na	
Eff. shunt impedance :		30	MΩ/m
Q :		3500	
Filling time :		na	μs
Equil. phases : -20°;	accel.	rate 0.5	MeV/u-m
RF rep. rate : 55	Hz;	pulse : 20	00 µs
Beam rate : 55	Hz;	pulse : 20	00 µs
RF power peak : 3.6	MW;	mean : 0 .	9 MW

Focusing System

No. elements :	10			
type: Qua	id. Dupl.	order :	FD	
Gradients :	8	to	30	T/m
Other :				

Charge Stripping (Typical)

Type(s): Gas / Foil					
Charge states : -1	to	6 12	at	0.1	MeV/u
Charge states : 6 12	to	15 30	at	1	MeV/u

LINAC PERFORMANCE

		Normal Operation (Max, or (5) Design (6	5)
Species	:	¹² C	120 SN	
Energy	:	11/15	5.5	MeV/u
$\Delta E/E$ (FWHM)	:	0.04	0.1	%
Mean acc. rate	:	0.25/0.5	0.12/0.25	MeV/u-m
Beam current	:	1.0	0.080	μ Ae peak
Norm. emit. (1σ)	:	2.0	2.0	π mm-mrad

OTHER ION BEAMS

Particle	Energy range (7)	Other info.
32 S	8/13 MeV/u	(25% DF)
58 Ni	5.3 / 10 MeV/u	(25% DF)
197 Au	3.6 MeV/u	(25% DF)

OTHER RELEVANT INFORMATION

- (1) CE × Duopl., Cs-Sputter-Source (neg)
- (2) 12MV Electrostatic Tandem
- (3) 200 2000 μs
- (4) c) rf-chopper 13.56 MHz 150 kV
- (5) light ions : cw / pulsed
- (6) heavy ions : cw / pulsed
- (7) cw/pulsed

Beams can be further accelerated by TSR-storage ring in synchrotron acceleration mode.

Second linac-injector for high particle currents under construction.

References

[1] IEEE Trans. Nucl. Sci. Vol. NS-28, No. 2, April 1981 p. 1441: Heavy Ion Acceleration at the Heidelberg Tandem Postaccelerator Combination, B. Huck, H. Ingwersen, E. Jaeschke, B. Kolb, R. Repnow. Th. Walcher.

h

Name of Linac	: Heidelberg High Current Injector
Function	: Heavy Ion High Current Injector, Nuclear and Atomic Physics
	: Max-Planck-Institut für Kernphysik, PO Box 103980, D 69029 Heidelberg
	: Robert von Hahn
Name of person supplying these data	: Robert von Hahn
	e-mail : vonhahn@zoohey.mpi-hd.mpg.de
	tel. : +49 6221 516 396 fax : +49 6221 516 234

HISTORY AND STATUS

Const. started :		1991	; first beam :
Present status	:	Under	construction
Cost of facility	:	5 MDI	EM
Present linac staff	:	5	
Present yearly ope	ra	at. time	:

LINAC PARAMETERS

Ion Sources

No. of sources :		2		
Types of source :		(1)		
Species of ions :	(1) Be, .	Li / all ions	from p	to U
Range of currents :	(1) 4000 / 1	0-400	μAe
Range of output en	ergies :	4		keV/u
Pulse length : 20	00 µs;	rep. rate :	ca 60	Hz
Normalized emittar	nce (1σ) :	na	π mn	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	2 RFQ resonators, 3	<i>Bm each</i> m
Output currents :	T=90 % calculate	ed μAe
Output energies :	480	keV/u
Frequency : (2) 1	MHz; peak RF pow	er: 80 kW
Pulse length: 4000	μs; rep. rate :	60 Hz
Normalized emittanc	e (1 o): na	π mm-mrad

Longitudinal Matching

Type :	Spiral	Resonator			
Mod.	200	keV; drift	1500	mm at 108.48	MHz
		keV; drift		mm at	MHz

Accelerating System

Total linac length	:	10	m; N°. of	tanks	: 8
Tank diameters	:		0.5		m
Number of drift-tubes	:		48		
Drift-tube lengths	:		36 - 59		mm
Drift-tube diam (range)	:		32		mm
Gap/cell length (range)	:		51 - 78		
Aperture diameter	:	20	mm to)	mm
RF frequency(ies)	:		108.48		MHz
Field modes	:		na		
Eff. shunt impedance	:		100		MΩ/m
Q	:		5500		
Filling time	:		na		μs
Equil. phases : -20°	; a	ccel.	rate 0.18	Me	V/u-m
RF rep. rate : 60		Hz;	pulse :	4000	μs
Beam rate : 60		Hz;	pulse :	4000	μs
RF power peak : 0.72	,	MW;	mean :	0.18	MW

Focusing System

No. elements : 4				
type: quad.d	upl.	order :	FD)
Gradients : 8		to	30	T/m
Other:				
Charge Strippin Type(s) :	ig (Typi	cal)		
Charge states :	to	2	it	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:		p to U	
Energy	:		2	MeV/u
$\Delta E/E$ (FWHM)	:		0.5	%
Mean acc. rate	:		0.2	MeV/u-m
Beam current	:		10 - 4000	μ Ae peak
Norm. emit. (1 σ)	:		na a	πm-mrad

OTHER ION BEAMS

Particle Energy range

Other info.

OTHER RELEVANT INFORMATION

(1) 1st phase: CHORDIS / 2nd phase: ECR
 (2) 108.48 MHz

Beams can be further accelerated by the postaccelerator and the storage ring in synchrotron mode.

Name of Linac: MAMI * - ILACFunction: Injector to the CW-RTM-Cascade MAMIInstitution and address: Institut für Kernphysik, D-55099 Mainz, GermanyPerson in charge: Dr. K.H. KaiserName of person supplying these data : Dr. H. Euteneuer
e-mail : EUT@vkpmza.kph.uni-mainz.de
tel. : +49 6131 39 5869

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	6; first beam : 1988	
Present status :	Operating	
Cost of facility :	~ 0.8 MDEM (1988)	
Present linac staff :	(1)	
Present yearly opera	tion time : 5000 to 7000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		0.0015	Α
Normalize	d emittance (10)	:	0.15	π mm	-mrad

Injector

Longitudi	nal mat	ching : <i>(2)</i>)		
Output :	0.1	MeV;	intensity :	2.104	Α
Pulse wid	th, spac	ing : 9	ps, 408 ps		
Normalize	ed emitt	ance (1σ)	: 0.15	π mm-n	nrad

Acceleration System

Total linac length	:	(3) 9	m
No. sections: (4) 3	; ler	ngths : <i>(5)</i>	m
Field mode : $\pi/2$ (<i>bip.</i>)	; fre	quency : 2.449	95 GHz
Wave type : SW	; fill	ing time : NA	μs
v_g/c range : (6)	;Q	: (7	り
Shunt impedance	:	(8) 77	MΩ/m
Iris : aperture : diameter	:	12.4	mm
thickness	:	2.9	mm
Attenuation/section	:	NA	Np
Power units, Number :	1	type : Klys	tron
RF power peak : NA 1	MW;	mean : 35	kW

Focusing System

Type, No. of elements, and spacing : 6 double solenoids, 1 at gun, 2 at chopper and 1 at each accelerating section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NANo. of particles/bunch : 2.5×10^5 Bunch separation : 408 ps

		Normal Operation	Max, or Design	
Final energy :	:	0.00353	-	GeV
Accel gradient :	:	(9) 0.72	average	MeV/m
$\Delta E/E$ (FWHM) :		0.1	-	%
Rep. rate :	:	NA	-	Hz
Pulse length :	:	NA	-	μs
Beam intensity :	:	(10)	2.104	Α
Norm. emit. (1σ) :	;	≤0.4	1	π mm-mrad

OTHER RELEVANT INFORMATION

- * MAMI Mainz Microtron. This Linac is the injector for MAMI (Mainz Microtron), a cascade of 3 race-track microtrons.
- (1) 13 staff, 17 student-operators
- (2) 2.45 GHz double-chopper & prebuncher
- (3) 2.63 m (injector) + 6.35 m
- (4) The ILAC consists of
 - graded-β-section (0.1 0.55 MeV);
 - $-\beta = 0.918/0.966$ -section (0.55 1.99 MeV);
 - $-\beta = 0.987$ -section (1.99 3.53 MeV).
- (5) 0.78/2.03/2.11
- (6) 5.1 to 3.5%
- (7) 16500 (unloaded)
- (8) for high β
- (9) average
- $(10)10^{-15} 1.5 \times 10^{-4}$

References

- [1] A detailed description of gun, chopper, the linac and its diagnostics is given in Proc. of EPAC '88, Rome; p.997 and 1149 respectively.
- [2] The setup and the operating experience of the MAMI-facility are given in : Proc. Linac'88, Cebaf Report-89-001, p. 247 and Proc. EPAC'94, London, p. 506.

Name of Linac	:	SchweIN : IH type
Function	:	Heavy ion postaccelerator
Institution and address	:	Beschleunigerlabor der LMU und TUM; D-85747 Garching, Germany
Person in charge	:	Eckehart Nolte
Name of person supplying these da	ta :	Eckehart Nolte
		e-mail : nolte@physik.tu-muenchen.de
		tel. : +49 89 289 12554 fax : +49 89 289 14280

HISTORY AND STATUS

Const. started :	1971	; first beam :	1976
Present status	: Oper	ating	
Cost of facility	: 2 MD	<i>EM</i>	
Present linac staff	f : 1 ope	rator	
Present yearly op	erat. time	e: 1440	h

LINAC PARAMETERS

Ion Sources

No. of sources	:	2		
Types of source	:	CS sputter s	source	
Species of ions	:	(1)		
Range of currents	::	1		μAe
Range of output e	nergies :	4300 - 64	00	keV/u
Pulse length :	μs;	rep. rate :	d.c.	Hz
Normalized emitta	ance (1σ) :	(2) 80	π mm	-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	MP Tand	<i>lem, 24</i> m
Output currents :	1	μAe
Output energies :	≈ 2400) keV/u
Frequency :	MHz; peak RI	Fpower: dc kW
Pulse length :	μs; rep. ra	te: Hz
Normalized emittar	$lce(1\sigma):$	π mm-mrad

Longitudinal Matching

Tuna		Ð	
Type :	1 37 1 6		
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz
Accelerati	ng System		
Total linac l	ength :	8 m; N°. of t	anks : 2
Tank diamet	ers :	1; 0.5	m
Number of a	lrift-tubes :	50	
Drift-tube le	ngths :	≈ 100; ≈ 50	mm mm
Drift-tube di	am (range):	8000	mm
Gap/cell len	gth (range):	0.5	
Aperture dia		<i>30</i> mm to	20 mm
RF frequenc	y(ies) :	78; 156	MHz
Field modes	:	TE111; IH	ŗ
Eff. shunt in	npedance :	150; 170	MΩ/m
Q	:	30000; 2000	0
Filling time	:	<i>d.c</i> .	μs
Equil. phase	s: <i>(3)</i> ;a	ccel. rate 0.5	MeV/u-m
RF rep. rate	: <i>d.c.</i>	Hz; pulse :	μs
Beam rate	:	Hz; pulse :	μs
RF power pe	eak : 90	MW; mean :	90 MW
-			

Focusing System

No. elements	s:3 a	outs	ide tar	ıks			
type :	Q	D		order :			
Gradients :				to		30	T/m
Other:							
Charge Str		ng	(Typi	ical)			
Type(s): Ni							
Charge states	s: .	11	to	22	at	2.4	MeV/u

at

MeV/u

Charge states : to

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Ni		
Energy	:	6		MeV/u
$\Delta E/E$ (FWHM)	:	1		%
Mean acc. rate	:	0.5		MeV/u-m
Beam current	:	1		μ Ae peak
Norm. emit. (1σ)	:	3		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

- (1) S^{*}, Cl^{*}, Ca^{*}, T^{*}, MnO^{*}, Fe^{*}, Ni^{*}, Ge^{*}
- (2) After preaccelerator (170 kV)
- $(3) + 5 to 10^{\circ}$
- (4) 3 (outside tanks)

First IH structure in operation. First postaccelerator after Tandem accelerator.

References

[1] E. Nolte et al. NIM 158 (1979) 311

[2] E. Nolte et al. NIM 201 (1982) 281

[3] U. Ratzinger et al. NIM A263 (1988) 261

Name of Linac	: DAONE - LINAC
Function	: Electron Injector Linac per DAONE and for the DAONE BTF*
Institution and address	: INFN LNF via E.Fermi 40 CP 13 00044 Frascati Italy
Person in charge	: F. Sannibale
Name of person supplying these data	: F. Sannibale
	e-mail : SANNIBALE@LNF.INFN.IT
	tel. : + 39 6 94032213 fax : + 39 6 94032256

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 199	2 ; first be	am : 1995	
Present status :	Operating		
Cost of facility :	12 MUSD (1992))	
Present linac staff :	10 man-years		
Present yearly operation	tion time :	1000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	120	keV
Beam inte	nsity (peak)	:			Α
Normalize	ed emittance (lσ):		π mm	n-mrad

Injector

Longitudin	ial mai	ching: S-a	band PB and .	Buncher	
Output :	3	MeV;	intensity :	7	Α
Pulse widt	h, spa	cing : 1() ns, 20 ms		
Normalize	d emit	tance (1 σ)	: < 300	π mm-	mrad

Acceleration System

Total linac length	: 62	m
No. sections: (1) 15	; lengths : 3	m
Field mode : $2\pi/3$; frequency : 2.85	6 GHz
Wave type : TW	; filling time : 0.82	0 µs
v_g/c range : (2)	;Q : 134	00
Shunt impedance	: 53 - 60	MΩ/m
Iris : aperture : diameter	: 26.2 - 19.1	mm
thickness	: 5.842	mm
Attenuation/section	: 0.57	Np
Power units, Number :	4 type : (3) Kly	vstron
RF power peak : 45	MW; mean : 100	kW

Focusing System

Type, No. of elements, and spacing : (4)

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 28No. of particles/bunch : $1 - 3 \times 10^8$ Bunch separation : 12.5 ps

	Normal Operation	Max, or Design	
Final energy :	0.510	0.8	GeV
Accel gradient :	18	25	MeV/m
$\Delta E/E$ (FWHM) :	1.0	1.0	%
Rep. rate :	50	50	Hz
Pulse length :	0.010	0.010	μs
Beam intensity :	150	150	A
Norm. emit. (1σ) :	< 300	< 300	π mm-mrad

OTHER RELEVANT INFORMATION

- * BTF Beam Test Facility. It is a branch line designed to work also in single electron mode.
- (1) SLAC type sections
- (2) 0.0204 0.0065
- (3) Equipped with RF pulse compression (SLED)
- (4) Helmotz coils up to 55 MeV, FODO 2 m step up to 250 MeV (Positron converter position), solenoids around two accelerating sections downstream the positron converter, FODO tapered step (0.5 - 2m) up to the LINAC end 800 MeV.

The first section downstream the positron converter has an operating gradient of 25 MeV/m

POSITRON LINAC

Name of Linac	: DAΦNE - LINAC
Function	: Positron Injector Linac per DAONE and for the DAONE BTF *
Institution and address	: INFN LNF via E. Fermi 40 CP 13 00044 Frascati Italy
Person in charge	: F. Sannibale
Name of person supplying these da	ta : F. Sannibale
	e-mail : sannibale@lnf.infn.it
	tel. : + 39 6 94032213 fax : + 39 6 94032256

HISTORY AND STATUS

Differences with respect to corresponding e^{-1} linac, are given in space to right. (1)

Primary Beam (e⁻) at Conversion Target

Energy	:	MeV
Radius (10)	:	mm
Beam intensity	:	A

LINAC PARAMETERS

Conversion Target and Capture

Material	: Tungsten with ~25% Rhenium		
Туре	:	Removable	
Thickness (rad.length)	:		χ
Diameter	:	8 mm	mm
Mean deposited power	:	~ 150 W	kW
Solenoidal field ^{a)}	:	(2)	
Matching device	:	(3) 5 T Flux Concentrator	
RF sections ^{a)}	:	(4) $10 \times 3 m$	

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e linac, are given in space to right.

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
		-	-	
Final energy	:	0.510	0.550	GeV
Accel gradient	:	18	25	MeV/m
$\Delta E/E$ (FWHM)	:	2.0	2.0	%
Rep. rate	:	50	50	Hz
Pulse length	:	0.010	0.010	μs
Yield (fin.en)	:			e⁺/e⁻x GeV
Beam intensity	:	0.036	0.036	μA peak
Norm. emit. (1o):	< 3000	< 3000	π mm-mrad

OTHER RELEVANT INFORMATION

* BTF: Beam Test Facility. It is a branch line designed to work also in single electron mode.

- (1) Const. started: 1992Present status: Starting commissioningCost of facility: 12 MUSD (1992)Present linac staff: 10 man-yearsPresent yearly operation time : 0 h
- (2) 1.2 T tapered field DC solenoid, 0.5 T DC solenoid over 7 m
- (3) SLAC type.
- (4) The first section downstream the positron converter has an operating gradient of 25 MeV / m. This section will work in a decelerating mode in order to increase the positron capture.

Between the second and the third accelerating section downstream the positron converter there is a magnetic separator where the electron beam is stopped.

Name of Linac	: ALPI *
Function	: Heavy Ion Linac
Institution and address	: INFN - LNL via Romea 4-35020 Legnaro Italy
Person in charge	: G. Fortuna
Name of person supplying these	data : <i>G. Fortuna</i>
	e-mail : fortuna@lnl.infn.it
	tel. : + 39 49 829 2442 fax : + 39 49 64 19 25

HISTORY AND STATUS

Const. started :	1989	; first beam :	05/1994
Present status	: Operatio	onal	
Cost of facility	: 30 GITL	4	
Present linac staff	: 10 man-	years	
Present yearly ope	erat. time :	2000	h

LINAC PARAMETERS

Ion Sources

No. of sources :	1	
Types of source :	Sputtering sou	rce
Species of ions :	Stable isotopes 28 ≤	A ≤ 100
Range of currents :	Up to $3+5$	μAe
Range of output ene	rgies : 2 + 7	keV/u
Pulse length : dc	μs; rep. rate :	Hz
Normalized emittand	$ce(1\sigma): 0.2(estimated)$	π mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	16 MV XTU - Tandem	m		
Output currents :	Up to 1	μAe		
Output energies :	Up to 7000	keV/u		
Frequency : dc	MHz; peak RF power :	kW		
Pulse length :	μs; rep. rate :	Hz		
Normalized emittance (1σ) : 0.5(estimated) π mm-mrad				

Longitudinal Matching

Type : (1)	5-10 MHz DD Bur	icher, n°2 chop	opers
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:	(2)	m; N°. of ta	anks :
Tank diameters	:			m
Number of drift-tubes	:			
Drift-tube lengths	:			mm
Drift-tube diam (range):			mm
Gap/cell length (range):			
Aperture diameter	:		mm to	mm
RF frequency(ies)	:			MHz
Field modes	:			
Eff. shunt impedance	:			MΩ/m
Q	:			
Filling time	:			μs
Equil. phases :	;	accel. 1	rate	MeV/u-m
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak :		MW;	mean :	MW

Focusing System

No. elements : 29			
type : Singlets-Triplets	order :	FDF	
Gradients :	to	12	T/m
Other: 8 dipoles 3.2 T·m			

Charge Stripping (Typical)

Type(s): c foils	5+	10 μg/	'cm ²		
Charge states :	14	to	30	at 0.8-7	MeV/u
Charge states :		to		at	MeV/u

LINAC PERFORMANCE

		Normal	Max, or	
		Operation	Design	1
Species	:	$^{28}S_{I}/Z_{I}^{90}$	$^{28}S_{I}/U^{238}$	r
Energy	:	20/10	20/6	MeV/u
$\Delta E/E$ (FWHM)	:	0.5	0.1	%
Mean acc. rate	:			MeV/u-m
Beam current	:	5 pnA	30 pnA	μ Ae peak
Norm. emit. (1σ)	:	0.5% (est.)	0.5	π mm-mrad

OTHER ION BEAMS

Particle	
----------	--

Other info.

OTHER RELEVANT INFORMATION

* Acceleratore Lineare Per Ioni Superconducting Linac

Energy range

(1) n°2 ScQWRS Bunchers

(2) Accelerating System

Number and type of resonators : 52, QWR RF frequency : 80 160 MHz; Field mode : TEM Q: $10^{8} \div 10^{9}$; Stored Energy : $64 - 110 \text{ mJ/(MV/m)}^{2}$ E_{peak} / E_{acc} : $4.5 \div 5$; Hp/Eq : 100 Gauss/MV/mActive length : 18 cm; $\beta \text{ opt}$: 0.11, 0.14, 0.055TTF ($\beta \text{ opt}$) : 0.92; Number of gaps: 2 Operating RF power per resonator at 4.5 K : 7 W Average accelerating field : 2.5 - 5 MV/mPhasing : all resonators independently phased Number and type of cryostats : 13, vertical Cryogenic plants : 1300 W at 4.5 K, 3900 W at 80 K. Duty cycle : CW

Notes: we use three types of resonators namely, lead 149 plated, Nb sheets, Nb sputtered based cavities

Name of Linac	: ELETTRA 100 MeV	
Function	: Electron preinjector for ELETTRA Injector	Linac, electron linac for FERMI
Institution and address	: SINCROTRONE Trieste - Padriciano 99 34	4012 Trieste, Italy
	: G. D'Auria	· · ·
Name of person supplying these data	: C. Rossi	G. D'Auria
		Gerardo.Dauria@Elettra.Trieste.it + 39 40 375 8565

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	8 ; first b	eam : 1991	
Present status :	Operating		
Cost of facility :			
Present linac staff :	7 man-years		
Present yearly operation	tion time :	4000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:			Α
Normalize	d emittance (10	5) :		π mm	n-mrad

Injector

Longitudinal matching : (1)								
Output :	4	MeV;	intensity :	(2)	Α			
Pulse widt	h, spa	cing : <i>(3)</i>	1					
Normalize	d emit	tance (1σ) :	< 200	π mm-	mrad			

. . .

Acceleration System

Total linac length	:	10.9)	m
No. sections: 2	; leng	gths :	3.2	m
Field mode : $2\pi/3$; freq	uency :	<i>2.998</i>	GHz
Wave type : TW	; filli	ng time :	0.900	μs
v_g/c range : (4)	; Q	:	14770	0
Shunt impedance	:	> 60) N	MΩ/m
Iris : aperture : diameter	:	22.4 - 1	6.04	mm
thickness	:			mm
Attenuation/section	:	0.6		Np
Power units, Number :	1	type :	Klystro	on
RF power peak : (5)	MW;	mean :	2	kW

Focusing System

Type, No. of elements, and spacing :

Solenoids up to 4 MeV, a triplet at each section output, solenoids on the two accelerating sections.

Beam Pulse Structure (if applicable)

No. of bunches/pulse	: (2) 1/5+150/208+312
No. of particles/bunch	: 1.188/0.165/0.938 10 ⁹
Bunch separation	: (2)100 ms/2 ns/32+48 ns

		Normal Operation		Max, or Design	
Final energy	:	0.100		0.100	GeV
Accel gradient	:	15		15	MeV/m
$\Delta E/E$ (FWHM)	:	(6) ±0.5		±0.5	%
Rep. rate	:	10		10	Hz
Pulse length	:	0.03 + 0.1	0	0.01 + 0.3	μs
Beam intensity	:	0.010		0.010	A
Norm. emit. (1 σ)	:	< 200		< 200	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Long. matching : 500 MHz Chopper and Prebuncher, S band Prebuncher and Buncher
- (2) The 100 MeV Trieste Linac can be operated in three different beam modes:

i) single bunch mode: one intense burst of electrons every 100ms (0.2nC in less that 1ns, 20 A peak); ii) multibunch mode: a variable time length pulse from 10 to 300 ns which is normally used for injecting into ELETTRA (10mA at 300 ns); the energy of the injection modes is kept at 100 MeV and the RF power requirements are 42MW 3 µs. iii) FEL mode: a train of 2 ns electron pulses at a frequency variable from 20.8 to 31.2 MHz in a macropulse of 10 µs length at 10 Hz repetition rate. In the FEL mode the energy range is variable from 30 to 75 MeV, with a RF pulse up to 10 µs, 22.5 MW.

- (3) $2ns/10+300ns/10\mu s$, 100ms
- (4) 0.0068 0.0196
- (5) 22.5/45 (2)
- (6) $\pm 0.6\%$ measured in FEL mode at 30 MeV beam energy.

Function Institution and address	ELETTRA INJECTOR LINAC * Electron injector for ELETTRA SINCROTRONE Trieste - Padriciano 34012 Trieste, Italy G. D'Auria
Name of person supplying these data	C. Rossi G. D'Auria e-mail : Carlo.Rossi@Elettra.Trieste.it Gerardo.Dauria@Elettra.Trieste.it tel. : + 39 40 375 8654 fax : + 39 40 375 8565

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1989	; first beam : 1993	
Present status : Op	perating	
Cost of facility :	-	
Present linac staff : 7 n	nan-years	
Present yearly operation	•	h

LINAC PARAMETERS

Electron Sources

Types :	;	energy :	keV
Beam intensity (peak)	:		Α
Normalized emittance (10)):		π mm-mrad

Injector

Longitudinal m	atching :				
Output :	MeV;	intensity :	Α		
Pulse width, spacing :					
Normalized em	ittance (1σ) :		π mm-mrad		

Acceleration System

Total linac length	:	67		m
No. sections: 7	; le	ngths :	6.15	m
Field mode : $3\pi/4$; fr	equency :	2.998	GHz
Wave type : BTW	; fil	lling time :	0.760	μs
v_g/c range : 0.026	; Q	:	11600)
Shunt impedance	:	> 71	N	/Ω/m
Iris : aperture : diameter	:	10		mm
thickness	:	9.5 +1	0	mm
Attenuation/section	:	0.61		Np
Power units, Number :	7	type : (1	l) Klyst	tron
RF power peak : 45	MW	; mean :	2	kW

Focusing System

Type, No. of elements, and spacing : Same as ELETTRA 100 MeV up to 100 MeV, then solenoids on section 1 and triplets at the end of each section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : $5 \div 75$ No. of particles/bunch : $0.25 \ 10^9$ Bunch separation : $2 \ ns$

		Normal Operation	Max, or Design	
Final energy	:	1.0	1.2	GeV
Accel gradient	:	25	27	MeV/m
$\Delta E/E$ (FWHM)	:	± 0.5	±0.5	%
Rep. rate	:	10	10	Hz
Pulse length	:	0.03 + 0.1	0.01 + 0.15	μs
Beam intensity	:	0.020	0.020	Α
Norm. emit. (10):		< 200	π mm-mrad

OTHER RELEVANT INFORMATION

- * The ELETTRA Injector Linac is fed by the ELETTRA 100 MeV. A small bending magnet, located between the ELETTRA 100 MeV and the ELETTRA Injector Linac, allows to transfer the low energy beam to the FEL experimental hall. The operation modes of Injector Linac are the single bunch mode and the multibunch mode (see ELETTRA 100 MeV for more details).
- (1) Equipped with RF pulse compression.

Name of Linac :	MEA*
Function :	Electron Injector Linac for AmPS
	NIKHEF, Kruislaan 409, 1098 SJ Amsterdam, Netherlands
	L.H. Kuyer
Name of person supplying these data :	F.B. Kroes
	e-mail : Frans@nikhefk.nikhef.nl
	tel. : + 31 20 5922055 fax : + 31 20 5922165

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 197	5 ; first b	eam : 1978	
Present status :	Operating		
Cost of facility :	30 MFL (1975)		
Present linac staff :	15 man-years		
Present yearly operation	tion time :	5500	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	400	keV
Beam inte	ensity (peak)	:		0.300	Α
Normalize	ed emittance (10)	:	8	π mm	-mrad

Injector					
Longitudir	ial mat	ching : (1))		
Output :	6	MeV;	intensity :	0.060	Α
Pulse widt	h, spac	cing : 3.	5 µs. 4 ms		
Normalize				πmm-r	nrad

Acceleration System

Total linac length	:	200	m
No. sections : 23	;	lengths : 7.35	m
Field mode : $2\pi/3$;	frequency : 2.856	6 GHz
Wave type : TW	;:	filling time : 1.3	μs
v_g/c range : (2)	;(50
Shunt impedance	:	56.5 - 48	MΩ/m
Iris : aperture : diameter	:	32 - 17	mm
thickness	:	5.84	mm
Attenuation/section	:	0.825	Np
Power units, Number :	1.	3 type : Klyst	ron
RF power peak : 10 1	M	W; mean : 20	kW

Focusing System

Type, No. of elements, and spacing : Solenoïds up to 100 MeV Quadruplet/2 sections up to 750 MeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NA No. of particles/bunch : NA Bunch separation : NA

		Normal Operation	Max, or Design	
Final energy	:	0.7	0.8	GeV
Accel gradient	:	5	7	MeV/m
$\Delta E/E$ (FWHM)	:	(3) < 0.1	(3) < 0.1	%
Rep. rate	:	150	250	Hz
Pulse length	:	2	3.5	μs
Beam intensity	:	0.040	0.060	Â
Norm. emit. (1 σ)	:	25		π mm-mrad

OTHER RELEVANT INFORMATION

* Medium Energy Electron Accelerator

- (1) S-band chopper, pre-buncher and buncher
- (2) 0.0093 0.0389
- (3) Energy Spectrum Compressor

Around 1990 the 500 MeV high duty factor (1%) electron linac MEA was upgraded to a 700 MeV low duty (0.1%) factor injector linac for AmPS (Amsterdam Pulse Stretcher).

References

- [1] "High Duty Factor Electron Linear Accelerators"; J.Haimson, Lapostolle & Septier, Linear Accelerators, 1970. North Holland publishing Comp. Amsterdam.
- [2] "Modification of MEA Modulator-klystron units enabling short pulse injection into a Pulse Stretcher Ring"; F.B. Kroes, E. Heine, IEEE Proc. of the Part. Acc.Conf., Chicago, March 20-23, 1989.
- [3] "An Energy Compressor System (ECS) for AmPS"; J.G. Noomen, R.Maas, IEEE Proc. of the Part.Acc.Conf., Chicago, March 20-23, 1989.
- [4] "Improvement of the 400 keV Linac Electron Source", F.B. Kroes et al., Proc. of the 3rd European Part. Acc. Conf., Berlin, March 24-28, 1992.

Name of Linac	: FELIX*
Function	: FEL-driver
Institution and address	: FOM-"RYNHUIZEN", Edisonbaan 14, 3439 MN Nieuwegein, Netherlands
Person in charge	: Dr. A. F. G. van der Meer
Name of person supplying these data	: Dr. A. F. G. van der Meer
	e-mail : <i>meer@rijnh.nl</i>
	tel. : + 31 306096999 fax : + 31 306031204

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 06	/1	990 ; first be	am : 05/1991	
Present status	:	Operational		
Cost of facility	:	8 MNLG (1990)		
Present linac staff	:	3 man-years		
Present yearly open	rai	tion time :	3000	h

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	100	keV
Beam inte	nsity (peak)	:		0.2	Α
Normalize	ed emittance (1	σ):	15	π mm	n-mrad

Injector

Longitudinal matching : (1)									
Output :	4.5	MeV;	intensity :	0.2	Α				
Pulse width, spacing : $10 \mu s$, $100 ms$									
Normalize	d emitt	ance (1σ)	: 25	π mm-	mrad				

Acceleration System

Total linac length	:	15		m
No. sections : 2	; len	gths :	3.15	m
Field mode : $2\pi/3$; free	quency :	2.9985	GHz
Wave type : TW	; filli	ng time :	0.6	μs
v_{g} /c range : 0.01-0.02	; Q	:	12000)
Shunt impedance	:	57	Ν	ίΩ/ m
Iris : aperture : diameter	:	18-23	3	mm
thickness	:			mm
Attenuation/section	:	0.41		Np
Power units, Number :	1	type :	Klystro	n
RF power peak : 20 1	MW;	mean :	4	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to end of 1st linac (25 MeV), triplet, solenoid around 2nd linac.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : 10^9 Bunch separation : 1 ns or 40 ns

		Normal Operation	Max, or Design	
Final energy	:0	.012-0.050	0.015-0.04.	5 GeV
Accel gradient	:	10	10	MeV/m
$\Delta E/E$ (FWHM)	:	0.3-0.6	0.6	%
Rep. rate	:	5	10	Hz
Pulse length	:	9	20	μs
Beam intensity	:	0.17	0.2	A
Norm. emit. (1σ)	:	30	25	π mm-mrad

OTHER RELEVANT INFORMATION

- * FELIX Free Electron Laser for Infrared Experiments
- (1) 1 GHz pre-buncher, S-band buncher

References

[1] "A Low-Energy-Spread RF Accelerator for a Far-Infrared Free-Electron Laser", C.A.J. van der Geer et al., NIM A 334 (1993) 607-616.

.

Name of Linac : TEUFEL * Function : Driver for Free-Electron-Laser ** Institution and address : University of Twente: Drienerlolaan 5; 7522 NB Enschede; the Netherlands Person in charge : G.J. Ernst, J.W.J. Verschuur Name of person supplying these data : J.W.J. Verschuur e-mail: J.W.J.Verschuur@tn.utwente.nl tel. : + 31 53 489 3971 fax : +31 53 489 1102

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1988 ; first beam : 1993			Normal	Max, or	
Present status : Operating			Operation	Design	
Cost of facility :		Final energy :	0.006	0.007	GeV
Present linac staff : 2 man-years		Accel gradient :	10 - 30		MeV/m
Present yearly operation time :	h	$\Delta E/E$ (FWHM) :	0.5		%
		Rep. rate :	< 10		Hz
LINAC PARAMETERS		Pulse length :			μs
		Beam intensity :	(2)	(2)	Â
Electron Sources		Norm. emit. (1σ) :	5		π mm-mrad
Types: (1) RF gun ; energy: k	eV				

OTHER RELEVANT INFORMATION

- Twente Eindhoven Urenco Free Electron Laser
- ** Injector for 25 MeV racetrack microtron

(1) Photocathode

(2) 5 nC / bunch with a maximum of 7 nC / bunch

Const. statted . 19	00	5 , 11St Death : 1995
Present status	:	Operating
Cost of facility	:	
Present linac staff	:	2 man-years
Present yearly open	ra	tion time :

Types :	(1) RF gun	;	energy :	keV
Beam inte	ensity (peak)	:		Α
Normalize	ed emittance (10)	:		π mm-mrad

Injector

Longitudinal r	natching :		
Output :	MeV;	intensity :	Α
Pulse width, s	pacing :	-	
Normalized er	nittance (1σ) :		π mm-mrad

Acceleration System

Total linac length	:	0.65		m
No. sections: 1	; length	s:	0.65	m
Field mode : $\pi/2$; freque	ncy :	1.3	GHz
Wave type : SW	; filling	time :	4	μs
vg/c range :	;Q	:	1688	5
Shunt impedance	:	47.0]	MΩ/m
Iris : aperture : diameter	:			mm
thickness	:			mm
Attenuation/section	:			Np
Power units, Number :	1	type :	Klystr	on -
RF power peak : 20 1	MW; n	nean :	-	kW

Focusing System

Type, No. of elements, and spacing : 1 solenoid at position of cathode and first 2.5 cells with bucking coil to zero field at cathode

Beam Pulse Structure (if applicable)

No. of bunches/pulse : < 1200No. of particles/bunch : $< 4.4 \times 10^{10}$ Bunch separation : 12.31 ns

Name of Linac	:	S-20*
Function	:	Research in Accelerator Technology, Testing of Accelerating structures
		SINS **, 05-400 Otwock-Swierk, Poland
Person in charge	:	W. Maciszewski
Name of person supplying these data	:	W. Maciszewski
		e-mail: sinsp10@cx1.cyf.gov.pl
		tel. : + 48 2 779 8632 fax : + 48 2 779 3481

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1995 ; first beam : 1996		
Present status : under construction		
Cost of facility :		F
Present linac staff :		I
Present yearly operation time :	h	Z
		-

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	30	keV
Beam inte	nsity (peak)	:		0.200	Α
Normalize	d emittance (1	σ):		π mm	n-mrad

Injector

Longitudinal matching :							
Output :	MeV;	intensity :	Α				
Pulse width, spacing :							
Normalized emitta	:	π mm-mrad					

Acceleration System

Total linac length	:	2.	50		m
No. sections : 1	; l	engths	:	2.20	m
Field mode : $2\pi/3$; f	requency	:	2.995	GHz
Wave type : TW	; f	illing time	::	0.9	μs
vg/c range :	; (2	:		
Shunt impedance	:	-	18]	MΩ/m
Iris : aperture : diameter	:				mm
thickness	:				mm
Attenuation/section	:				Np
Power units, Number :	1	type	::	Klystr	on
RF power peak : 5	M۷	V; mean	:	3.5	kW

Focusing System

Type, No. of elements, and spacing : Solenoïd

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : · Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	0.022		GeV
Accel gradient	:	10		MeV/m
$\Delta E/E$ (FWHM)	:			%
Rep. rate	:	100		Hz
Pulse length	:	7		μs
Beam intensity	:			Α
Norm. emit. (10)	:			π mm-mrad

OTHER RELEVANT INFORMATION

* Laboratory set-up

** SINS - Soltan Institute for Nuclear Studies

More detailed data will be given after running up.

Name of Linac	: LU-20 *
Function	: Ion Injector for Nuclotron
Institution and address	: JINR LHE. 141980 Dubna, Moscow Region, Russia
Person in charge	: V.A. Monchinsky
Name of person supplying these data	a: A.I. Govorov
	e-mail: edik@sunhe.JINR.Dubna.SU.
	tel. : fax : +7 7096 2165889

HISTORY AND STATUS

Const. started : 02/.	1966	; first beam : 11/19	73
Present status :	Operatio	nal	
Cost of facility :	15 MUSI	D (1995)	
Present linac staff :	10 man-y	vears	
Present yearly operation	at. time :	2000 (1995)	h

LINAC PARAMETERS

Ion Sources

I'M D'MICCS		
No. of sources :	2	
Types of source :	LIS, EBIS	
Species of ions : Id	ons up to Kr ²⁹⁺ Z/A	> 1/3
Range of currents:	(1)	μAe
Range of output energies	i: 3	keV/u
Pulse length : 5 - 150 µ	us; rep. rate : 0.	.2 Hz
Normalized emittance (10	σ): 0.2 π	mm-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	Accelerating tube 2.2	m
Output currents :	(2)	μAe
Output energies :	150	keV/u
Frequency :	MHz; peak RF power :	kW
Pulse length: 600) μ s; rep. rate : 0.2	Hz
Normalized emittan	$ce(1\sigma): 0.3 \pi mr$	n-mrad

Longitudinal Matching

Type:	l gap	buncher	-			
Mod.	50	keV; drift	800	mm at	145	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length	: <i>14.3</i> 8	m; N°. of tank	s: 1
Tank diameters	:	1.4	m
Number of drift-tubes	:	57 + 2 (1/2)	
Drift-tube lengths	:	56 - 316	mm
Drift-tube diam (range)	:	133.5 to 110	mm
Gap/cell length (range)	:	0.25; g/2 βλ	
Aperture diameter	: 17	mm to 25	5 mm
RF frequency(ies)	:	145	MHz
Field modes	:	TM010	
Eff. shunt impedance	:	16	MΩ/m
Q	:	40000	
Filling time	:	< 150	μs
Equil. phases : -10°-25	, accel.	rate 0.34 M	leV/u-m
RF rep. rate : 0.5	Hz;	pulse : 500	μs
Beam rate : 0.2	Hz;	pulse : 5 - 40	
RF power peak : 5.0	MW;	mean: 0.000	5 MW

Focusing System

No. elements	s: 58			
type :	DC	order :	FODO	
Gradients :	65	to	9	T/m
Other:				

Charge Stripping (Typical)

Type(s): C foil Charge states equil to charge at 50 N

Charge states : equil.	to to	charge	at	5.0	MeV/u
Charge states :	to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	(3)	(4)	
Energy	:	5.0		MeV/u
$\Delta E/E$ (FWHM)	:	+ 0.25		%
Mean acc. rate	:	0.34		MeV/u-m
Beam current	:	(3)	(4)	μ Ae peak
Norm. emit. (1σ)	:	3.5		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
р	20 MeV	duoplas.
d, α	5 MeV/u	duoplas.

OTHER RELEVANT INFORMATION

- * LHE JINR Ion Linac (LU-20)
- (1) for LIS : 200 ×10³ μAe for EBIS : 10 μAe
- (2) for LIS : $40 \times 10^3 \mu Ae$
- for EBIS : 5 µAe
- (3) for LIS : Species C^{4+} , Mg^{10+} Beam Current 3×10^3
- (4) for EBIS: Species Kr²⁹⁺ Beam Current 2

Name of Linac	: RTM * Injector
Function	: Nuclear Physics and Applied Research
	: Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
Person in charge	: B.S. Ishkhanov
Name of person supplying these data	: V.I. Shvedunov
	e-mail : shved@cdfe.npi.msu.su
	tel. : + 7 095 939 2451 fax : + 7 095 939 0896

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1986	5; first be	eam : 1991	
Present status :	Operating		
Cost of facility :	3 MRUR (1991)		
Present linac staff :	5 persons		
Present yearly opera	tion time :	1000	h

LINAC PARAMETERS

Electron Sources

Types : Thermionic, DC	;	energy :	100	keV
Beam intensity (peak)	:		0.016	Α
Normalized emittance (1σ)	:	2	π mm	-mrad

Injector

Longitudi	nal mat	ching : <i>Cl</i>	hopper-bunch	er	
Output :	0.1	MeV;	intensity :	≤10 ⁻³	Α
Pulse wid	th, spac	ing : I	7 ps, 408 ps		
Normalize	d emitt	ance (1σ)	: 2	π mm-r	nrad

Acceleration System

Total linac length	:	7		m
No. sections : δ	; len	gths :	1	m
Field mode : $\pi/2$; fre	quency :	2.45	GHz
Wave type : SW	; fill	ing time :		μs
vg/c range :	; Q	:	(1)	
Shunt impedance	:	76	1	MΩ/m
Iris : aperture : diameter	:	10		mm
thickness	s :	4		mm
Attenuation/section	:			Np
Power units, Number :	6	type :	Klystr	on -
RF power peak :	MW;	mean :	22	kW

Focusing System

Type, No. of elements, and spacing : Solenoidal and quadrupole lenses

Beam Pulse Structure (if applicable)

No. of bunches/pulse : Continuous wave No. of particles/bunch : $\leq 2.5 \times 10^6$ Bunch separation : 408 ps

		Normal Operation	Max, or Design	
Final energy	•	(2) 0.0067	0.0115	GeV
Accel gradient				
•	:	1.1	1.1	MeV/m
$\Delta E/E$ (FWHM)	:	0.3	0.5	%
Rep. rate	:	2.45 ×10 ⁹	2.45 × 10 ⁹	' Hz
Pulse length	:	CW	CW	μs
Beam intensity	:	≤10 ³	$\geq 2.5 \times 10^{\circ}$	³ A
Norm. emit. (1σ)):	4	10	π mm-mrad

OTHER RELEVANT INFORMATION

* RTM - Race Track Microtron

Linac was built as injector to CW-RTM.

- (1) 14500 unloaded
- (2) Plans exist to increase beam energy to 11.5 MeV by beam acceleration in opposite direction, and to increase beam current to 2.5 mA by injection from high current 1.2 MeV booster Linac.

References

- [1] Electron gun is described in: B.S. Ishkhanov et al., Prib. Tekh. Exp. 3 (1987) 24
- [2] Chopper-buncher system in: A.S. Alimov et al., NIM A278 (1989) 379
- [3] The whole linac description is in: A.S. Alimov et al., NIM A326 (1993) 391

PROTON AND/OR H- LINAC

: MMFL * Name of Linac Function : Nuclear physics, Isotope production Institution and address : INR, 117312 Moscow 60th Anniversary pr. 7A, Russia Person in charge : S.K. Esin Name of person supplying these data: P.N. Ostroumov e-mail: OSTROUMOV@AL20.INR.TROITSK,RU tel. : fax : +7 095 135 22 68

HISTORY AND STATUS

Const. started :	1977	; first beam :	1990
Present status	: Opera	tional	
Cost of facility	: 130 M	RUR (1989)	
Present linac staff	f: 170		
Present yearly op	erat. time	: 3000	h

LINAC PARAMETERS

Ion Source

Type : H^+ Duoplasmatron, H^- Dudnikov - type Output : $250H^+$, $100H^-$ mA at $40H^+$, $20H^-$ keV Pulse length : 100μ s; rep. rate : 100 Hz Normalized emittance (1σ) : 0.5 π mm-mrad

Pre-accelerator (including RFQ)

Types :	Accele	erating t	ube	; lengtl	1S :	1.3	m
Output	:	(1)	mA	at	750)	keV
Pulse len	gth:	100	μs;	rep. ra	te :	100	Hz
Normaliz	ed emi	ttance (lσ) :	0.7	1	tmm-	mrad

Longitudinal Matching

Type :	: 2 bun	ching cavitie	es			
Mod.	12.5	keV; drift	1270	mm at	198.2	MHz
	50.0	keV; drift	500	mm at	198.2	MHz

Accelerating System

Total linac length :	430 m; No	o. of tanks	: 33
Tank diameters :	1.05-0.89	0.46 - 0.4	<i>10</i> m
Number of drift-tubes :	186 + 1	0 × 0.5	
Drift-tube lengths :	47.8	390.5	mm
Drift-tube diam (range):	15	0	mm
Gap/cell length (range):	0.242	- 0.3976	
Aperture diameter :	15 - 28 mm	n to 38	mm
RF frequency(ies) :	<i>198.2</i>	991.0	MHz
Field modes :	TM010	TM020	
Eff. shunt impedance :	33-20	22-40	MΩ/m
Q 6	4000-50000	17000-29	0000
Filling time :	100	10	μs
Equilibrium phases :	37-26	33	
RF rep. rate :	Hz; pulse	:	μs
Beam rate : 100	Hz; pulse	: 80	μs
RF power peak : 110.0	MW; mean	: 1.2	MW

Focusing System

No. elemer	nts : 434			
type :	Quadrupoles	order :	FODO/I	7DO
Gradients :	60	to	20	T/m
Other :				

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Energy	:	423	600	MeV
Mean acc. rate	:	1.4	1.4	MeV/m
$\Delta E/E$ (FWHM)	:	0.9	0.8	%
Beam current	:	20.0	50.0	mA peak
Norm. emit. (1o)	:	0.8	1.5	π mm-mrad

OTHER RELEVANT INFORMATION

Moscow Meson Factory Linac *

(1) 90H⁺, 20H⁻

Part I - post coupled Alvarez linac structure. Part II - disc and washer linac structure.

Proton stretcher - compressor ring is under construction (Energy - 600 MeV, circulating current -11 A. orbit circumference - 106.7 m, duty factor - max 98 %, min 10³ %, rep. rate 100 Hz).

References

[1] V.D.Burlakov et.al, Proc. of the 1984 Linac Conf. Seeheim, Germany, p 9-13.

PROTON AND/OR H- LINAC

Name of Linac	: ISTRA-36 *
Function	: Driver for Subcritical Test Facility; Production of Radionuclides
Institution and address	: Inst. for Theoretical and Experimental Physics, 117259, Moscow, Russia
Person in charge	: A. Kozodaev
Name of person supplying these data	: A. Kozodaev
	e-mail : kozodaev@rØ2vax.itep.ru
	tel. : +7 095 123 0292 fax : +7 095 123 6584

HISTORY AND STATUS

Const. started :	1982	; first beam : 19/09/19	89
Present status	: Assembl	ed	
Cost of facility	: 2 MUSL) (1992)	
Present linac staff	: 6		
Present yearly ope	erat. time :		h

LINAC PARAMETERS

Ion Source Type : Cold cathode due	oplasn	natron			
Output : 300 - 400	mA	at	82		keV
Pulse length : 5-150	μs;	rep. r	ate :	0.5-25	Hz
Normalized emittance (1	σ):	0.3	5	πmm-i	mrad

Pre-accelerator (including RFQ)

Types :	4-1	vane RFQ)	; leng	gths :	4.6	m
Output	:	150	mA	at	30	00	keV
Pulse lengt	h:	5-150	μs;	rep.	rate :	0.5-25	Hz
Normalized	i em	ittance (1	σ):	0.	8	π mm-	mrad

Longitudinal Matching

Type : It a	is not necessary		
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	16 m; No. of tanks : 2	2
Tank diameters :	0.65; 0.63	m
Number of drift-tubes :	33+2 (1/2); 54+2 (1/2)	
Drift-tube lengths :	<i>68-100; 123-193</i> mi	m
Drift-tube diam (range):	<i>100; 85</i> mi	m
Gap/cell length (range):	0.18-0.25; 0.18-0.29	
Aperture diameter :	18 mm to 18 m	m
RF frequency(ies) :	297 MH	lz
Field modes :	TM010	
Eff. shunt impedance :	28; 38 MΩ	m
Q :	35000; 36000	
Filling time :	ų	ιs
Equilibrium phases :	-50° to -37°; -37° to -30°	
RF rep. rate : 0.5 - 25	Hz; pulse : 230 µ	ιs
Beam rate : 0.5 - 25	Hz; pulse : 5 - 150 µ	ιs
RF power peak : 7.3	MW; mean : MV	N

Focusing System

No. elemer	nts : 91			
type :	Quadrupole	order :	FODO	
Gradients :	60	to	23.6	T/m
Other: Sm	Co _s quadrupole	25		

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Energy	:	36		MeV
Mean acc. rate	:	2		MeV/m
$\Delta E/E$ (FWHM)	:	1.2		%
Beam current	:	150	200	mA peak
Norm. emit. (10)	:	1.5		π mm-mrad

OTHER RELEVANT INFORMATION

* ISTRA-36 (ITEP Proton Linac)

RFQ RF frequency 148. 5 MHz

Drift-tubes are open to vacuum

Ion channel will be between DTL tanks

RFQ and tank No.1 (DTL-10MeV) have launched at 150mA, 5µs, 1 Hz

References

[1] Description of the ISTRA-36 see in Proc. of 1990 Linac Conf., p.776 and Proc. of 1994 Linac Conf., p.128.

 Name of Linac
 : I-2*

 Function
 : Injector of 10 GeV PS

 Institution and address
 : Inst. for Theoretical and Experimental Physics, 117259, Moscow, Russia

 Person in charge
 : N.V. Lazarev

 Name of person supplying these data
 : N.V. Lazarev

 e-mail:
 Skachkov_v@cl.itep.ru

 tel.
 :
 fax : +7 95 123 6584

HISTORY AND STATUS

Const. started :	1962	; first beam :	1966
Present status	: Injecto	or of 10 GeV PS	
Cost of facility	: 4 MU	SD	
Present linac staff	: 8 for s	hifts + 6 for service	
Present yearly ope	rat. time	: 5500	h

LINAC PARAMETERS

Ion Sources

No. of sources :	1	
Types of source : Cold of	cathode duopla	smatron
Species of ions :	p	
Range of currents :	2×10^{6}	μAe
Range of output energies :	15	keV/u
Pulse length : $20 - 25 \ \mu s$;	rep. rate :	2 Hz
Normalized emittance (1σ) :	1	πm-mrad

Pre-accelerators (including RFQ)

Types (lengths) : 75	0 kV acc. column 2.3	m
Output currents :	1.2 × 10 ⁶	μAe
Output energies :	70 3	keV/u
Frequency : MHz;	peak RF power :	kW
Pulse length : $20 - 25 \mu$	s; rep. rate : 2	Hz
Normalized emittance (10): 8 πmr	n-mrad

Longitudinal Matching

Type:	One-g	ap buncher				
Mod.	30	keV; drift	850	mm at	148.5	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length	:	6+ m	; N°. of t	anks :	2
Tank diameters	:		1.37		m
Number of drift-tubes	:	1/2+18+	1/2 1/2+	33+1/	/2
Drift-tube lengths	:	137	313, 190	-314	mm
Drift-tube diam (range):		- 150, 1:		mm
Gap/cell length (range)):	0.2 - 0).3; 0.16	- 0.3	
Aperture diameter	:	20	mm to	25	mm
RF frequency(ies)	:		148.5		MHz
Field modes	:		E010		
Eff. shunt impedance	:		22	N	/Ω/m
Q	:	650	00 - 700	00	
Filling time	:		150		μs
Equil. phases : 37°	;	accel. rat	e 1.35	Me	//u-m
RF rep. rate : 2		Hz; p	ulse: .	300	μs
Beam rate : 2		Hz; p	ulse : 15	5 - 20	μs
RF power peak : 1.0+.	2.	0MW; m	nean: 0.	002	MW

Focusing System

No. elements	: 37 + 68			
type :	dc	order : F	OD, FOP	FDOD
Gradients :	55	to	18	T/m
Other: Each	drift tube c	ontains 2 lense	es of opp.	signs

Charge Stripping (Typical)

Type(s):			
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	р		
Energy	:	24.6	24.6	MeV/u
$\Delta E/E$ (FWHM)	:	1.0	0.8	%
Mean acc. rate	:	1.3	1.3	MeV/u-m
Beam current	:(0.18-0.2×10 ⁶	0.23×10 ⁶	μ Ae peak
Norm. emit. (10)	:	10	8	π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
He_2+	24.6 MeV/n	

OTHER RELEVANT INFORMATION

- * I-2 (Injector the 2nd)
- (1) Cold cathode duoplasmatron ion source with pulse exhaust valve.
- (2) Used 750 kV pulse (1ms) transformer.
- (3) Acc. period is $2\beta\lambda$ in the 1st cavity and $\beta\lambda$ in the 2nd cavity.

References

- [1] "Pribory i Technika Eksperimenta" N5, p. 9-70, 1967
- [2] Proc. of the 6th Int. Conf. on High Energy Accelerators, 1967 p. A_1 A_3 , A_{30} A_{31}

Name of Linac : ITEP * Function : Prototype of Driver for Heavy Ion Fusion Institution and address : Inst. for Theoretical and Experimental Physics, 117259, Moscow, Russia Person in charge : Kulevoy T.V. Name of person supplying these data : Kulevoy T.V. e-mail: Kulevoj@mvax3.itep.ru tel. : fax: +7 125 65 84

HISTORY AND STATUS

Const. started : 1984	<i>4</i> ; first beam : <i>1</i>	986
Present status :	Operational	
Cost of facility :	-	
Present linac staff :	4 man-years	
Present yearly operation	t. time : 500 (1995)) h

LINAC PARAMETERS

Ion Sources

No. of sources :		1		
Types of source :		MEVVA		
Species of ions :	Cu^+	Mo ³⁺ ,Ta ³⁺ , Up to 1000	W ³⁺ .	U ⁴⁺
Range of currents :	,	Up to 1000)00 (μAe
Range of output ene	rgies :	1.3		keV/u
Pulse length : 400) µs;	rep. rate :	1	Hz
Normalized emittance	xe (1σ):	0.2	π m	m-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	RFQ, 12	m
Output currents :	15000	μAe
Output energies :	36	keV/u
Frequency : 6.19 MHz;	peak RF powe	er:3000 kW
Pulse length : $600 \mu s$;	rep. rate :	0.25 Hz
Normalized emittance (10)	: 0.3	π mm-mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System Total linac length m; N°. of tanks : : Tank diameters Number of drift-tubes : Drift-tube lengths : mm Drift-tube diam (range): mm Gap/cell length (range): Aperture diameter : mm to mm RF frequency(ies) : MHz Field modes MΩ/m Eff. shunt impedance : Q : Filling time μs MeV/u-m Equil. phases : ; accel. rate RF rep. rate : Hz; pulse : μs Beam rate : Hz; pulse: μs MW RF power peak : MW; mean:

Focusing	System
No alaman	to .

No. elements :		
type :	order :	
Gradients :	to	T/m
Other:		

Charge Stripping (Typical)

Type(s):			
Charge states :	to	at	MeV/u
Charge states :	to	at	MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	(1)		
Energy	:	0.036		MeV/u
$\Delta E/E$ (FWHM)	:	4		%
Mean acc. rate	:	0.003		MeV/u-m
Beam current	:	<15 000		μ Ae peak
Norm. emit. (10)	:	0.3		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
----------	--------------	-------------

OTHER RELEVANT INFORMATION

ITEP Heavy Ion Linac (TIPr-1)

(1) Any metal ions with mass-to-charge rate about 60.

m

Name of Linac: Linac-60 RRC (FAKEL)Function: Electron and neutron source for physical researchInstitution and address: RRC Kurchatov Institute 123182 Moscow RussiaPerson in charge: V.V. PetrenkoName of person supplying these data: V.V. Kalachnikove-mail : kalach@fakel.ssspi.msk.rutel. : +7 095 196 77 42fax : +7 095 196 59 73

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1963; first beam : 12/1973Present status: OperatingCost of facility: 10 MRUR (1973)Present linac staff: 22 man-yearsPresent yearly operation time :3200h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	100	keV
Beam inte	nsity (peak)	:		3	Α
Normalize	d emittance (1	σ):		π mr	n-mrad

Injector

Longitudinal matching : Inflector and buncher (2m)					
Output :	4	MeV;	intensity :	1.5	A
Pulse width, spacing : $1-5 \ \mu s$					
Normalized emittance (1 σ): π mm-mrad			mrad		

Acceleration System

Total linac length	:	20)		m
No. sections: 5	;	lengths :		2	m
Field mode : $2\pi/3$;	frequency :	i	1.818	GHz
Wave type : TW	;	filling time :		0.3	μs
$v_g/c range : 0.03 - 0.01$;	Q :			
Shunt impedance	:	50 -	40		MΩ/m
Iris : aperture : diameter	:	47	33		mm
thickness	:	6			mm
Attenuation/section	:	0.1.	3		Np
Power units, Number :	(f type:	1	Klysti	ron
RF power peak : 30 N	N	W; mean:		20	kW

Focusing System

Type, No. of elements, and spacing : Solenoid up to 4 MeV, 3 doublets after 1, 3 and 5 sections

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.054	0.060	GeV
Accel gradient	:	5	6	MeV/m
$\Delta E/E$ (FWHM)	:	8	б	%
Rep. rate	:	150	150	Hz
Pulse length	:	4.2	5.5	μs
Beam intensity	:	0.8	1	A
Norm. emit. (10)	:			π mm-mrad

OTHER RELEVANT INFORMATION

In particular, one of targets (breeding target) is used with neutron multiplication coefficient of 5. The target can operate with electron beam up to 100 kW. The target is equipped with path lengths with length of several metres.

Name of Linac :	VEPP-5 Pre-injector
Function :	Pre-injector
Institution and address :	Budker INP *, Novosibirsk 630090, Russia
Person in charge :	A.V. Novokhatski
Name of person supplying these data :	P.V. Logatchev
	e-mail : logatchov@inp.nsk.su
	tel. : +7 3832 359583 fax : +7 3832 352163

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1988 ; first beam :		Normal	Max, or	
Present status : Under construction		Operation	Design	
Cost of facility :	Final energy	: 0.510	0.510	GeV
Present linac staff :	Accel gradient	: 18	18	MeV/m
Present yearly operation time :	h $\Delta E/E$ (FWHM)	: 1	1	%
	Rep. rate	: 50	50	Hz
LINAC PARAMETERS	Pulse length	: 2 × 10 ⁵	2×10^{5}	μs
	Beam intensity	: 1000	1000	A
Electron Sources	Norm. emit. (10):	15	π mm-mrad
Types : Thermionic gun ; energy : 200 keV	/			
Beam intensity (peak) : 10 A	A OTHER RELI	EVANT INFO	RMATION	r

 π mm-mrad

Institute for Nuclear Physics

(1) $2\pi/3$

*

(2) 0.11 Np/m

Longitudinal matching : Output · 510 MeV·

Injector

Normalized emittance (1σ) : 100

Output :	510	MeV;	intensity :	1000	Α
Pulse wid	th, spac	ing : 20) ps, 20 ms		
Normalize	d emitt	ance (1 σ)	: 15	π mm-i	nrad

Acceleration System

Total linac length	:	70		m
No. sections : 14	;	lengths :	3	m
Field mode : TM01	;	frequency :	2.856	GHz
Wave type : (1) TW	;	filling time :	0.5	μs
v_g/c range : 0.02	;	Q :	1.3 ×1	04
Shunt impedance	:	53	N	MΩ/m
Iris : aperture : diameter	:	25.9 : 8	3.8	mm
thickness	:	6		mm
Attenuation/section	:	(2)		Np
Power units, Number :		4 type : 50	045 Kly	stron
RF power peak : 63	M	W; mean:	45	kW

Focusing System

Type, No. of elements, and spacing : 2 solenoids FODO 31 el., spacing 1700 mm

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 1 No. of particles/bunch : 10^{11} Bunch separation : 20 ms

POSITRON LINAC

Name of Linac	:	VEPP-5 pre-injector
Function	:	Pre-injector
Institution and address	:	Budker INP *, Novosibirsk 630090, Russia
Person in charge	:	A.V. Novokhatski
Name of person supplying these data	:	P.V. Logatchev
		e-mail: logatchov@inp.nsk.su
		tel. : +7 3832 359583 fax : +7 3832 352163

HISTORY AND STATUS

OTHER RELEVANT INFORMATION

Differences with respect to corresponding e^{-1} linac, are given in space to right.

(1) 25 π mm-mrad

Primary Beam (e) at Conversion Target

Energy	:	300	MeV
Radius (10)	:	0.5	mm
Beam intensity	:	1000	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	Tungsten (W)	
Туре	:	Solid	
Thickness (rad.length)	:	2.5	χ
Diameter	:	3	mm
Mean deposited power	:	0.016	kW
Solenoidal field ^{a)}	:	0.5	
Matching device	:	AD	
RF sections ^{a)}	:	25 MeV/m	

^{a)} key parameters

Accelerating System, Focusing System and Beam Pulse Structure

Differences with respect to corresponding e^{-1} linac, are given in space to ri_{0}^{-1} :

LINAC PERFORMANCE

	Normal Operation	Max, or Design	
Final energy :	0.510	0.510	GeV
Accel gradient :	18	18	MeV/m
$\Delta E/E$ (FWHM) :	3	3	%
Rep. rate :	50	50	Hz
Pulse length :	2 × 10 ⁵	2 × 10 ⁵	μs
Yield (fin.en) :	0.05	0.05	e⁺/e⁻x GeV
Beam intensity :	5 × 10 7	5 × 10 7	μA peak
Norm. emit. (1σ) :	(1)	(1)	π mm-mrad

PROTON AND/OR H- LINAC

Name of Linac	:	I-100
Function	:	Fixed target
Institution and address	:	IHEP, 142284, Protvino, Moscow Region, Russia
		V.A. Teplyakov
Name of person supplying these data	1:	Maltsev A.P.
		e-mail : zherebtsov@vx.olu.decnet.ihep.su
		tel. : fax : +95 230 23 37

HISTORY AND STATUS

Const. started :	1961	; first beam :	11/1966
Present status	: Opera	tional	
Cost of facility	:		
Present linac staff	: 8 man	-years	
Present yearly ope	erat. time	: 1000 (199	<i>)4)</i> h

LINAC PARAMETERS

Ion Source

ion Source						
Type : Plasma accelerator						
Output : 30	0	mA	at 70	0	keV	
Pulse length :	300	μs;	rep. rate :	1	Hz	
Normalized emi	ttance (1	lσ) :	0.2	π mm	-mrad	

Pre-accelerator (including RFQ)

Types :	Pu	lse trans	f.	; length	is :	2.2	m
Output	:	300	mA	at	700)	keV
Pulse leng	th:	300	μs;	rep. rat	:e :	1	Hz
Normalize	d em	ittance (1	lσ) :	0.2	:	πmm-	mrad

Longitudinal Matching

Type :	: One l	buncher syst	em			
Mod.	25.4	keV; drift	995	mm at	148.5	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length :	80 m; No. of tanks : 3
Tank diameters :	<i>1.32; 1.22; 1.08</i> m
Number of drift-tubes :	(1)
Drift-tube lengths :	(2) mm
Drift-tube diam (range):	<i>232 - 100</i> mm
Gap/cell length (range):	0.185 - 0.277
Aperture diameter :	20 mm to 40 mm
RF frequency(ies) :	148.5 MHz
Field modes :	E010
Eff. shunt impedance :	25 - 15 MΩ/m
Q :	72000; 50000; 36000
Filling time :	< 100 µs
Equilibrium phases :	-37° to 50°
RF rep. rate : 1	Hz; pulse : 400 μs
Beam rate : 1	Hz; pulse : $100 \mu s$
RF power peak : 10	MW; mean: 0.004 MW

Focusing System

No. elements	: 163			
type :	Pulsed	order :	FOD	0
Gradients :	60	to	4	T/m
Other: Pulse	ed flat top (2	50 µs)		

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy :	<i>38;74;103</i>	MeV
Mean acc. rate	1.25	MeV/m
$\Delta E/E$ (FWHM) :	0.45	%
Beam current :	≤100	mA peak
Norm. emit. (1σ) :	2	π mm-mrad

OTHER RELEVANT INFORMATION

(1) 93+2 (1/2); 41+2 (1/2); 26+2 (1/2)

(2) 62 - 413; 456 - 537; 586 - 624

Alvarez linac structure.

Proton injector for IHEP Acclerator complex in 1967-1983.

PROTON AND/OR H- LINAC

Name of Linac:URAL-30Function:Proton Injector for IHEP Accelerator ComplexInstitution and address:IHEP, 142284, Protvino, Moscow region, RussiaPerson in charge:V.A. TeplyakovName of person supplying these data:A.P. Maltsev
e-mail:zKEREBTSOV@VX.OLU.DECNET.IHEP.SU
tel.::fax: +7095 230 23 37

HISTORY AND STATUS

Const. started : 07/1973 ; first beam : 11/1983 Present status : Operational Cost of facility : Present linac staff : 7 man-years Present yearly operat. time : 1080 (1995) h

LINAC PARAMETERS

Ion Source

Type : Plasma a	iccelerat	or				
Output : 200-	250	mA	at	100)	keV
Pulse length :	5-10	μs;	rep.	rate :	16.6	Hz
Normalized emi	ttance (1	σ):	0.1 -	0.15	π mm-	mrad

Pre-accelerator (including RFQ)

Types :	2H RFQ		; lengths :	4.1	m
Output :	100	mA	at 19	80	keV
Pulse length:	5-10	μs;	rep. rate :	16.6	Hz
Normalized e	mittance (le	σ):	0.8	π mm-	mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	: 21.3	m; No. of tanl	ks: 2
Tank diameters		0.42;0.42	m
Number of drift-tubes :	:	65;57	
Drift-tube lengths	: 9.7 -	97.5; 50.8 - 89	9.6 mm
Drift-tube diam (range)	:	34.4 ; 37.4	mm
Gap/cell length (range)	:		
Aperture diameter	: 19	mm to 22	? mm
	:	148.5	MHz
Field modes	: Longi	tudinal magneti	c field
Eff. shunt impedance	:	120 - 10	MΩ/m
Q		15000	
Filling time	:	< 30	μs
Equilibrium phases	:	-30°; -30°	
RF rep. rate : 16.6	Hz;	pulse : 5-10) µs
Beam rate : 16.6	Hz;	pulse : 5-10) µs
RF power peak : 10	MW;	mean : 0.00	4 MW

Focusing System

No. elements: 122 type: RFQ order: FFDDGradients: $337 kV/cm^2$ to T/mOther: Space-periodic RFQ focusing system

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy :	30	MeV
Mean acc. rate :	1.3	MeV/m
$\Delta E/E$ (FWHM) :	± 0.35	%
Beam current :	50 - 70	100 mA peak
Norm. emit. (1σ) :	2.5	π mm-mrad

OTHER RELEVANT INFORMATION

Space-periodic radio-frequency quadrupole focusing system.

 H^{-} resonator; RFQ : $2H^{-}$ resonator.

Linac parameters described at EPAC 1988.

Name of Linac :	Electron Linear Accelerator LU-50	
Function :	*	
Institution and address :	Russian Federal Nuclear Center **	
Person in charge :	Yu.A. Khokhlov	
Name of person supplying these data :	N.V. Zavyalov	
	e-mail: zavyalov@expd.rfnc.nnov.su	!
	tel. : + 7 83 130 17072	fax : +7 83 130 58269

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 197	6; first be	eam : 1981	
Present status :	Operating		
Cost of facility :	3 MUSD (1996)		
Present linac staff :	6 man-years		
Present yearly operation	ation time :	1500	h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	50	keV
Beam inte	nsity (peak)	:		0.0024	Α
Normalize	ed emittance (1	l σ) :		π mm	-mrad

Injector

Longitudinal matching :							
Output :	MeV;	intensity :	Α				
Pulse width, spa	acing :						
Normalized emi	ttance (1σ)	:	π mm-mrad				

Acceleration System

Total linac length	:	29	m
No. sections : 1-2	; l	engths : 3.795	m
Field mode : $2\pi/3$; f	requency : 1.818	GHz
Wave type : TW	; f	illing time : 0.9	μs
v_g/c range : 0.013	; (Q : (1) 12	000
Shunt impedance	:	80	MΩ/m
Iris : aperture : diameter	:	38.082 - 33.00	mm
thickness	:	5	mm
Attenuation/section	:	0.32	Np
Power units, Number :	1	type : Magne	tron
RF power peak : 30	M۷	V; mean : 100	kW

Focusing System

Type, No. of elements, and spacing : Solenoid

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal Operation	Max, or Design	
Final energy	:	0.065	0.075	GeV
Accel gradient	:	8.6	10	MeV/m
$\Delta E/E$ (FWHM)	:	20	20	%
Rep. rate	:	2400	2400	Hz
Pulse length	:	0.01	0.01	μs
Beam intensity	:	0.00024	0.00024	Α
Norm. emit. (1 σ)	:	6.5	6.5	π mm-mrad

OTHER RELEVANT INFORMATION

- * Electron Linac for neutron spectrometry with time-of-flight method in an energy range from few hundreds keV to few tens MeV.
- ****** All Russia Scientific Research Institute of Experimental Physics (RFNC-VNIIEF), 607190 Sarov (Arzamas-16), Nizhnii Novgorod Region, Russia.

(1) Maximum value

At the present time the linac Lu-50 is widely used for investigation of nuclear reactions which are induced by fast neutrons.

References

- [1] Yu.A. Khokhlov, N.V. Zavyalov, I.A. Ivanin et al., "Linear accelerator of All-Union Scientific Research Institute of Experimental Physics for neutron spectrometry". Nuclear Data for Science Technology. Proceedings of an International Conference, held at the Forschungszentrum Jülich, Fed. Rep. of Germany, 13-17 May 1991, p.487-489.
- [2] Report on Linac96 "Electron Linear Accelerators of RFNC-VNIIEF", N.V. Zavyalov and etc.

Name of Linac: Electron Linear Accelerator LU-10-20Function: Electron Linac for support and development of new radiation technologiesInstitution and address: Russian Federal Nuclear Center *Person in charge: N.V. ZavyalovName of person supplying these data :N.V. Zavyalove-mail : zavyalov@expd.rfnc.nnov.sutel. : +7 83 130 17072fax : +7 83 130 58269

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 19	92	2 ; first b	eam : 1994	
Present status	:	Operating		
Cost of facility	:	750 000 USD (1	996)	
Present linac staff	:	4 man-years		
Present yearly ope	ra	tion time :	2000	h

		Operation	Design	
Final energy	:	0.008	0.009	GeV
Accel gradient	:	7	8	MeV/m
$\Delta E/E$ (FWHM)	:	10	10	%
Rep. rate	:	1000	1000	Hz
Pulse length	:(0.002-0.005	0.004	μs
Beam intensity	:	1.5	0.0015	Α
Norm. emit. (10):	10	10	π mm-mrad

Max, or

Normal

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	40	keV
Beam inte	nsity (peak)	:		0.005	Α
Normalize	ed emittance (1	l σ):		π mm	n-mrad

Injector

Longitudinal mat	ching :		
Output :	MeV;	intensity :	Α
Pulse width, space	cing :	-	
Normalized emit	tance (1σ) :		π mm-mrad

Acceleration System

Total linac length	:		3		m
No. sections : 1	; len	gths	:	1.65	m
Field mode : $2\pi/3$; fre	quency	:	1.818	GHz
Wave type : TW	; fill	ing time	:	0.54	μs
v_g/c range : (1)	; Q		:	(2) 120	000
Shunt impedance	:	6	58	.3	MΩ/m
Iris : aperture : diameter	:	27.53		47.5	mm
thickness	:	б.	23		mm
Attenuation/section	:				Np
Power units, Number :	1	type	:	Magne	tron
RF power peak : 6	MW;	mean	:	22	kW

Focusing System

Type, No. of elements, and spacing : Solenoid

Beam Pulse Structure (if applicable) No. of bunches/pulse :

No. of particles/bunch : Bunch separation :

OTHER RELEVANT INFORMATION

- * All Russia Scientific Research Institute of Experimental Physics (RFNC-VNIIEF), 607190 Sarov (Arzamas-16), Nizhnii Novgorod Region, Russia
- (1) 0.0065 0.027
- (2) Maximum value

At the present time the linac Lu-50 is widely used for investigation of nuclear reactions which are induced by fast neutrons.

References

[1] Report on Linac96 "Electron Linear Accelerators of RFNC-VNIIEF", N.V. Zavyalov and etc.

Name of Linac	:	
Function	: Electron Injector Linac for Sync	chrotron Radiation Source
Institution and address	: Laboratori del Sincrotrò de Bar	
Person in charge	:	,
Name of person supplying these	e data : M. Pont	
	e-mail: mpont@ifae.es	
	tel. : +34 3 581 2832	fax : +34 3 581 7302

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started :	; first beam :	
Present status	•	
Cost of facility	:	
Present linac staff	:	
Present yearly oper	ration time :	h

LINAC PARAMETERS

Electron Sources

Types :	;	energy :	keV
Beam intensity (peak)	:		Α
Normalized emittance (10	5):		π mm-mrad

Injector

Longitudinal matching :		
Output : MeV;	intensity :	Α
Pulse width, spacing :	-	
Normalized emittance (10):	π mm-mrad

Acceleration System

Total linac length	:		m
No. sections:	; lengths	:	m
Field mode :	; frequency	:	GHz
Wave type :	; filling time	:	μs
vg/c range :	; Q	:	
Shunt impedance	:		MΩ/m
Iris : aperture : diameter	:		mm
thickness	:		mm
Attenuation/section	:		Np
Power units, Number :	type	:	
RF power peak :	MW; mean	:	kW

Focusing System

Type, No. of elements, and spacing :

Beam Pulse Structure (if applicable)No. of bunches/pulseNo. of particles/bunchBunch separation:

	Nor Oper	 Max, or Design	
Final energy	:		GeV
Accel gradient	:		MeV/m
$\Delta E/E$ (FWHM)	:		%
Rep. rate	:		Hz
Pulse length	:		μs
Beam intensity	:		A
Norm. emit. (10)	:		π mm-mrad

OTHER RELEVANT INFORMATION

* Vila Universitària G-002, 06193 Bellaterra, Spain

We are in the design stage of the future Synchrotron Radiation Source in Barcelona (Spain), but right now we cannot produce specific data on the Linac that will be used at LSB.

h

Name of Linac:LIL *Function:Electron Injector Linac for LEP **Institution and address:CERN, 1211 Geneva 23, SwitzerlandPerson in charge:L. RinolfiName of person supplying these data :J:P: Potiere-mail :POTIER@cernvm.cern.chtel.: + 41 22 767 2584

HISTORY AND STATUS

Const. started : 1982; first beam : 1986Present status: OperatingCost of facility: 32.5 MSF (1987)Present linac staff: 9 man-yearsPresent yearly operation time :5800

Normal Max, or Operation Design Final energy 0.5 : 0.75 GeV Accel gradient 9.2 12.0 MeV/m $\Delta E/E$ (FWHM) : 1.0 1.0 % Rep. rate 100 100 Hz Pulse length 0.01 0.01 μs Beam intensity : 0.060 0.060 Α Norm. emit. (1σ) : 80 $<< 600 \pi$ mm-mrad

fax: +41 22 767 8510

LINAC PARAMETERS

Electron Sources

Types :	Triode	;	energy :	80	keV
Beam inter	nsity (peak)	:		< 0.3	Α
Normalize	d emittance (1	σ):		π mm	i-mrad

Injector

Longitudinal matching : (1)								
Output :	4	MeV;	intensity :	0.150	Α			
Pulse width, spacing : 10 ns, 10 ms								
Normalized emittance (1σ) :				πmm-r	nrad			

Acceleration System

Total linac length	:	101	m
No. sections: 16	; le	ngths : 4.5	m
Field mode : $2\pi/3$; fr	equency : 2.998	86 GHz
Wave type : TW	; fi	lling time : 1.2	μs
v_g/c range : (2)	; Q	: 149	00
Shunt impedance	:	63-74	MΩ/m
Iris : aperture : diameter	:	(3) 25.0-18.0	mm
thickness	:	5.0	mm
Attenuation/section	:	0.844	Np
Power units, Number :	4	type : (4) Kly	strons
RF power peak : 35	MW	; mean : 19	kW

Focusing System

Type, No. of elements, and spacing :

Solenoids up to 4 MeV; a triplet at 4 MeV and between sections to 200 MeV; a quadruplet at 200 MeV. FODO from 200 MeV to 500 MeV.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : 30No. of particles/bunch : 2×10^8 Bunch separation : 330 ps

OTHER RELEVANT INFORMATION

LIL - LEP Injector Linac

LINAC PERFORMANCE

** LEP - Large Electron Positron Collider

- (1) S-band pre-buncher and buncher
- (2) 0.0075 0.022

(3) 1-2% larger in the 2nd - 4th sections

(4) 2 equipped with RF pulse compression (LIPS)

Lepton production for the Electron-Positron Accumulator (EPA) at 500 MeV uses 2 linacs in series. For e^- , LIL runs at low charge. After passing through a 2mm hole in the e^+/e^- converter target (at 200 MeV) the e^- beam is accelerated another 300 MeV by 8 of the 12 sections.

For e^+ , LIL provides a high intensity 200 MeV e^- beam at the converter target with 4 sections. Then 12 sections accelerate the positrons, captured at 4 MeV, to 500 MeV.

References

- [1] "LEP Injector Linacs", J.H.B. Madsen, CERN/PS 89-56
- [2] "Parameters of the LEP Injector Linacs", D. Blechschmidt, D. Warner, CERN/PS 88-07
- [3] " A new front-end for the LEP Injector Linac", J.C. Godot, L. Rinolfi, A. Pisent, H. Braun, IEEE 1991 PAC (San Francisco) and CERN/PS 91-19 (LP)

POSITRON LINAC

Name of Linac : *LIL** Function : Positron Injector Linac for LEP** Institution and address : CERN, 1211 Geneva 23, Switzerland Person in charge : L. Rinolfi Name of person supplying these data : J.P. Potier e-mail: potier@cernvm.cern.ch tel. : +41 22 767 2584 fax : +41 22 767 8510

HISTORY AND STATUS

Differences with respect to corresponding e linac, are given in space to right.

Primary	Beam	(e ⁻)	at	Conversion	Target	
Г				200		

		Contrologia	
Energy	•	200	MeV
Radius (10)	:	0.4	mm
Beam intensity	:	1.4	Α

LINAC PARAMETERS

Conversion Target and Capture

Material	:	W in Cu matrix	
Туре	:	Stationary	
Thickness (rad.length)	:	2.0	χ
Diameter	:	5	mm
Mean deposited power	:	0.6	kW
Solenoidal field ^{a)}	:	0.36 T over 9 m ; DC fiel	d
Matching device	:	(1)	
RF sections ^{a)}	:	(2)	

^{a)} key parameters

Accelerating System, Focusing System and **Beam Pulse Structure**

Differences with respect to corresponding e⁻linac, are given in space to right. (3)

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Final energy	:	0.5	0.65	GeV
Accel gradient	:	<i>9.2</i>	12.0	MeV/m
$\Delta E/E$ (FWHM)	:	1.0	1.0	%
Rep. rate	:	100	100	Hz
Pulse length	:	0.025	0.025	μs
Yield (fin.en)	:	(4)	3.0×10^{-2}	e [‡] /e ⁻ x GeV
Beam intensity	:	5000	11000	μA peak
Norm. emit. (10)	:	2800	2300 m	mm-mrad

OTHER RELEVANT INFORMATION

- * LIL LEP Injector Linac
- ** LEP Large Electron Positron Collider
- (1) Quarter Wave Transformer; $\lambda / 4$, 0.85 T pulsed solenoïd
- (2) Decelerating mode at the capture. Gradient : 9.5 MV/m
- (3) 12 sections powered by 4 klystrons, 2 of which are equipped with RF pulse compression.

Two solenoïds, 0.36 T, on the first 2 accelerator sections, 1 quadrupole doublet, 4 independent matching quadrupoles, followed by a 32-quadrupole FODO lattice.

(4) 2.5×10^{-2} . The yield is given within an energy spread of $\pm 1\%$.

References

[1] "New Optics of the LEP Injector Linac for e^+ Production". C. Bourat, H. Braun, L. Rinolfi, EPAC94 (London) and CERN/PS 94-18 (LP).

Name of Linac	:	CTF *		
Function	:	Test facility for a linear collider (CLIC	C**)	
Institution and address	:	CERN, 1211 Geneva 23, Switzerland	-	
Person in charge	:	J. Madsen		
Name of person supplying these data	:	L. Rinolfi		
		e-mail : rinolfi@ps.msm.cern.ch		
		tel. : +41 22 767 20 07	fax :	+41 22 767 85 10

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 07/1	989 ;	first beam : 12/1990	
Present status :	(1)		
Cost of facility :			
Present linac staff :	4		
Present yearly operat	tion time :	1000	h

		Operation	Design	
Final energy	:	0.095	0.320 (2)	GeV
Accel gradient	:	80	80	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	10	10	Hz
Pulse length	:	10 × 10 ⁶	10 × 10 ⁻⁶	μs
	:	100	100	A
Norm. emit. (1σ)	:	20	20	π mm-mrad

Max. or

Normal

LINAC PARAMETERS

Electron Sources

Types :	RF gun	;	energy :	4500	keV
Beam inte	ensity (peak)	:		100	Α
Normalize	ed emittance (1σ)):	20	π mm	n-mrad

Injector

Longitudinal matching : No								
Output :	50	MeV;	intensity :	100	Α			
Pulse widt								
Normalize	d emitt	ance (1 σ)	: 20	π mm-	mrad			

Acceleration System

Acceleration System				
Total linac length	:	20	n	n
No. sections: (2) 2	; leng	ths :	<i>0.28</i> n	n
Field mode : $2\pi/3$; frequ	lency :	<i>30</i> GH	Z
Wave type : TW	; fillin	g time :	0.011 µ	S
v_g/c range : 0.082	;Q	:	4220	
Shunt impedance	:	110	MΩ/n	n
Iris : aperture : diameter	:	4	mn	n
thickness	:	0.5	mn	n
Attenuation/section	:	0.25	N	р
Power units, Number :	(3) 1	type: <i>F</i>	RF sections	
RF power peak : 80	MW;	mean :	<i>(4)</i> kW	V

Focusing System

Type, No. of elements, and spacing : Solenoid at 4 MeV. Doublet structure between 45 MeV and the end of linac.

Beam Pulse Structure (if applicable)

No. of bunches/pulse : (5) 1 - 2No. of particles/bunch : 8×10^9 Bunch separation : 0.33 - 10 ns

OTHER RELEVANT INFORMATION

- * CLIC Test Facility
- ** CLIC Compact Linear Collider
- (1) CTF1 ran from 1990 until 1995 CTF2 will start in July 1996
- (2) It is foreseen to install later on 10 more 30 GHz sections in order to achieve 320 MeV
- (3) The power units consist of one RF decelerating structure where a drive beam (high charge, short pulses) generates the 30 GHz. This structure feeds 2 accelerating structures.
- (4) 9.6×10^3
- (5) Figures are given for the Main beam. For the drive beam, they will be: Nb of bunches/pulse : 48

Nb of particles/bunch : 1.3×10^{11}

Bunch separation : 333 ps

Reference

[1] "CTF2 Design Report", The CLIC Study Group, CLIC Note 304 - CERN PS 96-14 (LP).

PROTON AND/OR H- LINAC

Name of Linac:CERN 50 MeV Proton Linac (Linac 2)Function:Proton Injector for CERN Accelerator ComplexInstitution and address:CERN, 1211 Geneva 23, SwitzerlandPerson in charge:H. HaserothName of person supplying these data:C.E. Hille-mail:CEH@PS.MSM.CERN.CHtel.:+41 22 7673659fax::+41 22 7679145

HISTORY AND STATUS

Const. started :	11/1973	; first beam :	09/1978
Present status	: Operation	onal	
Cost of facility	: 23 MCH	IF (1978)	
Present linac staff	f : <i>16/2 = 8</i>	8 man-years	
Present yearly op	erat. time :	6700 (199	<i>5)</i> h

LINAC PARAMETERS

Ion Source

Type : Duoplasmatron with polarized expansion cupOutput :250-300mA at92keVPulse length :20-150 μ s; rep. rate :1 (maxHzNormalized emittance (1 σ) :0.8 π mm-mrad

Pre-accelerator (including RFQ)

Types :	(1) 4	vane Ri	FQ	; lengt	hs :	1.8	m
Output	:	165	mA	at	750		keV
Pulse leng	gth:	500	μs;	rep. ra	ite : 1	(max	Hz
Normaliz	ed em	ittance (Ισ) :	1.2	่ 1	:mm-r	nrad

Longitudinal Matching

Type :	Two	buncher syst	em			
Mod.	150	keV; drift	285	mm at	202.56	MHz
	120	keV; drift	146	mm at	202.56	MHz

Accelerating System (2)

Total linac length :	: 33.6 m; No. of tanks : 3
Tank diameters :	: 0.94; 0.90; 0.86 m
Number of drift-tubes :	: (3)
Drift-tube lengths :	: <i>(4)</i> mm
Drift-tube diam (range):	: 180; 160; 160 mm
Gap/cell length (range):	: (5)
Aperture diameter :	: 20 mm to 30 mm
RF frequency(ies) :	
Field modes :	<i>TM010</i>
Eff. shunt impedance :	: 36 MΩ/m
Q :	60000
Filling time :	: <i>(6)</i> µs
Equilibrium phases :	: -25° to -35°; -25°; -25°
RF rep. rate : 1 (max 2)) Hz; pulse : 500 μs
Beam rate : $1 (max 2)$) Hz; pulse : 20-150 µs
RF power peak : 10	MW; mean: 0.002 MW

Focusing System

No. elements	s: <i>131</i>			
type :	pulsed	order :	FODO	
Gradients :	- 100	to	20	T/m
Other: Puls	ed flat top (≈	200 µs)		

LINAC PERFORMANCE (7)

		Normal Operation	Max, or Design	(8)
		operation	Design	(0)
Energy	:	50		MeV
Mean acc. rate	:	1.48		MeV/m
$\Delta E/E$ (FWHM)	:	±0.25		%
Beam current	:	150	180	mA peak
Norm. emit. (1 σ)	:	5		π mm-mrad

OTHER RELEVANT INFORMATION

- (1) Converted from Cockroft-Walton injector to RFQ in 1993.
- (2) Post coupled Alvarez Linac structure.
- (3) 51+2(1/2); 43+2(1/2); 31+2(1/2)
- (4) 48-147; 177-258; 274-316
- (5) 0.22-0.31;0.2-0.29;0.26-0.31
- (6) determined by feedback < $100 \,\mu s$
- (7) Beam length modulated at source according to beam user. Users are SPS fixed target physics, Antiproton production, Test beams, ISOLDE, LEAR.
- (8) Maximum performance obtained in tests for LHC beams.

References

 [1] Original machine described at Linac Conference 1979 (Montauk) and PAC 1979.
 RFQ modifications described at Linac 1994 (Tsukuba).

PROTON AND/OR H- LINAC

h

Name of Linac:PL2 RFQ LiFunction:CalibrationInstitution and address:CERN, 1211Person in charge:H. NewmanName of person supplying these data:H. Newman

: PL2 RFQ Linac
: Calibration of L3 E.M. Calorimeter
: CERN, 1211 Geneva 23, Switzerland
: H. Newman
a: H. Newman
e-mail : newman@vxcern.cern.ch
tel. : +41 22 767 6366 fax : +41 22 767 8530

HISTORY AND STATUS

Const. started :	05/1989	; first beam : (1)
Present status	: Operatin	g
Cost of facility	: USD 940	000
Present linac staff	f : <i>3 (part-ti</i>	ime)
Present yearly op	erat. time :	<i>≈240</i>

LINAC PARAMETERS

Ion Source

Type : Multi-cus	p, RF	driven,	H^{\cdot}	volume		
Output : 12		mA				keV
Pulse length :	50	μs;	rep	. rate :	60 (2)	Hz
Normalized emit	tance	(l σ) :	~ ().3 (3)	π mm-	mrad

Pre-accelerator (including RFQ)

Types :	4 vane		; lengths	: 1.626	m
Output :	7	mA	at 1	850	keV
Pulse length:	5	μs;	rep. rate	: (2) 60	Hz
Normalized en	nittance (lσ) :	(3) 0.4	πmm-	mrad

Longitudinal Matching

Type :			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length	:		m; No. of	tanks :
Tank diameters	:			m
Number of drift-tubes	:			
Drift-tube lengths	:			mm
Drift-tube diam (range)):			mm
Gap/cell length (range)	:			
Aperture diameter	:		mm to	mm
RF frequency(ies)	:			MHz
Field modes	:			
Eff. shunt impedance	:			MΩ/m
Q	:			
Filling time	:			μs
Equilibrium phases	:			
RF rep. rate :		Hz;	pulse :	μs
Beam rate :		Hz;	pulse :	μs
RF power peak :		MW;	mean :	MW

Focusing System

No. elements: 4 quads type: Electromagnets order: FDFD Gradients: 0 to 20.5 T/m Other: 2 bends for horizontal and vertical steering

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy :	1.85	MeV
Mean acc. rate	1.14	MeV/m
$\Delta E/E$ (FWHM) :	(3) 1	%
Beam current :	7	mA peak
Norm. emit. (1σ) :	(3) 0.4	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) First proton beam at factory; 08/1990
 First H⁻ beam at factory: 08/1991;
 First normal operation in L3 at CERN: 11/1992
- (2) Maximum repetition rate 150 Hz, normally run at about 60 Hz, rate limited by L3 DAQ.

(3) Estimated value

Mfg: AccSys Technology Inc. Pleasanton CA 94566 USA

Name of Linac: CERN Heavy Ion Linac (Linac 3)Function: (Heavy) Ion Injector for CERN Accelerator ComplexInstitution and address: CERN, 1211 Geneva 23, SwitzerlandPerson in charge: H. HaserothName of person supplying these data: C.E.Hille-mail : CEH@PS.MSM.CERN.CHtel. : +41 22 767 3659fax : +41 22 767 9145

HISTORY AND STATUS

Const. started :	06/1991	; first beam :	06/1994
Present status	: Operati	onal	
Cost of facility	: 15 MCH	HF (1994)	
Present linac staf	f : <i>16/2</i> = 8	8 man-years	
Present yearly op	erat. time :	2500 (199	<i>15)</i> h

LINAC PARAMETERS

Ion Sources				
No. of sources :	1			
Types of source : 14 GH	z ECR (afterg	glo	w m	iode)
Species of ions :	Lead 27+			
Range of currents:	120			μAe
Range of output energies :	2.5			keV/u
Pulse length : $100-1500 \mu s$;	rep. rate :	10	/5	Hz
Normalized emittance (1σ) :	0.28	π	mn	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	4 rod RFQ,	2.66	m
Output currents :	80		μAe
Output energies :	250		keV/u
Frequency : 101.3 MHz	; peak RF p	ower : 200	kW
Pulse length : 1000 µ	s; rep. rate	: 1 (max 1	0) Hz
Normalized emittance (10	5): 0,4	π mm	-mrad

Longitudinal Matching

Type :	4 gap	buncher				
Mod.	100	keV; drift	530	mm at	101.3	MHz
		keV; drift		mm at		MHz

Accelerating System

Total linac length	:	8.1 r	n; N°. of ta	unks : 3	ł
Tank diameters	:	Not a	circular sec	<i>tion</i> n	n
Number of drift-tubes	:		41; 28; 30		
Drift-tube lengths	:	18 -	72 (triplet 4	<i>130)</i> mn	n
Drift-tube diam (range):		28 to 32	mn	n
Gap/cell length (range)):	0.29 1	o 0.54; g/0	.5 Br	
Aperture diameter	:	18	mm to	22 mn	n
RF frequency(ies)	:	101.28	3, 202.56, 2	02.56MH	Z
Field modes	:7	TE110 (1	[Η βλ/2 ор	eration)	
Eff. shunt impedance	:	27	70; 250; 28	5 MΩ/n	n
Q	:	2120	0; 12500; 1	440	
Filling time	:		(1)	μ	S
Equil. phases : 0 - 30	ο,	accel. ra	ate 0.52	MeV/u-n	n
RF rep. rate : 1 (max	10) Hz;	pulse : 10	000 µ:	S
Beam rate : 1 - 10 m	ax	: Hz;	pulse : (2) µ:	S
RF power peak : 1.1	1	MW;	mean : 0.5.	5 <i>/11</i> MW	/

Focusing System

No. elements : 4×3 type : *DC triplet* order : *FDF* Gradients : 69 to 56.5 T/m Other : 2 triplets in tank 1, 2 between tanks

Charge Stripping (Typical)

Type(s): C foil	! (≈ 10	0 µg	cm^{-2})			
Charge states :	27+	to	(3)	at	4.2	MeV/u
Charge states :		to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Lead 53+	Lead 55+	
Energy	:	4.2		MeV/u
$\Delta E/E$ (FWHM)	:	0.5 - 0.6		%
Mean acc. rate	:	0.52		MeV/u-m
Beam current	:	25		μ Ae peak
Norm. emit. (1σ)	:	0.95		π mm-mrad

OTHER ION BEAMS

Other info.

OTHER RELEVANT INFORMATION

- (1) determined by feedback; <10
- (2) 40, 600, 1000 max
- (3) (52+) 53+ (55+)

Constructed by international collaboration between CERN, France, Germany, Italy, India, Czech Republic, Sweden and Switzerland.

Parameters given for 208Pb, ions with q/m > 0.12 can also be accelerated provided source extraction for 2.5 keV/u is between 13 and 25 kV. Linac was designed for Pb25+.

Beams length modulated at source. Users are SPS ion physics, test beams and LEAR.

References

[1] Project described in "CERN Heavy-Ion Facility Design Report", CERN 93-01 (1993).

Name of Linac : LUE 2000* Function : Electron Linac for Fixed Target Experiments Institution and address : NSC-KPTI "Accelerator" R&D&P Est., 310108 Kharkov, Ukraine Person in charge : A. Dovbnva Name of person supplying these data : Y. Tur e-mail: tur@nik.kharkov.ua tel. : + 380 57 235 6533 fax: +380 57 235 3731

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1958 ; first beam : 1964 Present status : Since 1992 - idle Cost of facility : NA Present linac staff : 112 man-years Present yearly operation time : 4000 (1991) h

LINAC PARAMETERS

Electron Sources

Types :	Diode	;	energy :	80	keV
	nsity (peak)	:		3	Α
Normalize	ed emittance (10)	:		π mr	n-mrad

Injector

Longitudin	al mate	ching: (1)			
Output :	20	MeV;	intensity :	1	Α
Pulse widt	h, spac	ing : 2.0) μs; 10 - 80	ms	
Normalize	d emitt	ance (1σ) :	<200	π mm-	mrad

Acceleration System

Total linac length	:	240)	m
No. sections: 49	; len	igths :	4.3	m
Field mode : $\pi/2$; fre	quency :	2.797	GHz
Wave type : TW	; fill	ing time :	0.4	μs
v_g/c range : 0.04	; Q	:	1000) [`]
Shunt impedance	:	43	N	<i>l</i> Ω/m
Iris : aperture : diameter	:	30.0)	mm
thickness	:	4.0		mm
Attenuation/section	:	0.337	'5	Np
Power units, Number :	50	type :	Klystro	on È
RF power peak : 20	MW;	mean :	2.6	kW

Focusing System

Type, No. of elements, and spacing : Solenoids up to 20 MeV, triplets at 20 MeV and between sections up to 300 MeV; 5 quadruplets at 0.4, 0.8, 1.2, 1.6, 2.0 GeV

Beam Pulse Structure (if applicable)

No. of bunches/pulse : NA No. of particles/bunch : NA Bunch separation : NA

		Normal Operation	Max, or Design	
Final energy	:	1.8	2.0	GeV
Accel gradient	:	8.4	10	MeV/m
$\Delta E/E$ (FWHM)	:	0.3	0.1	%
Rep. rate	:	50	100	Hz
Pulse length	:	2.5	2.5	μs
Beam intensity	:	0.0005	0.001	Â
Norm. emit. (1 o)	:	480	200	π mm-mrad

OTHER RELEVANT INFORMATION

- LUE 2000 (2 GeV Kharkov Linac)
- (1) S-band pre-buncher, buncher

Ten new quasi-constant gradient accelerating stuctures (4 subsections) have been designed, constructed and installed in acceleration system [1].

Characteristics are following : Filling time : 0.94 μs ; v_g/c : 0.015; Q: 11000Shunt impedance : 56 MΩ/m Iris diameter : 25-19 mm Attenuation/section: 0.952 Np With the new 40 MW klystron [2] .

Will the new 40 MIW	kiysiron [2] :
Normal gradient :	14 MeV/m
Max gradient :	20 MeV/m

References

- [1] "Development of Components for Multisection Electron Accelerators" - Proceedings of the Workshop on JINR C-tau Factory, Dubna, 1992, pp. 365-374.
- [2] "Development of Linear Electron Accelerators for Basic Scientific Researches and Advancement of Technologies in Ukraine" - Ukrainian Physical Journal, vol. 40 (1995), No. 9, pp. 909-912, (in Ukrainian).

Name of Linac	LUE 60 *
Function	Electron Injector Linac for 600 MeV SRS
	NSC-KPTI "Accelerator" R&D&P Est., 310108 Kharkov, Ukraine
	Y. Tur
Name of person supplying these data :	Y. Tur
	e-mail: tur@nik.kharkov.ua
	tel. : + 380 57 235 6533 fax : + 380 57 235 3731

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 198	9; firs	t beam : 1990	
Present status :	Since 1992 - i	dle	
Cost of facility :	1 MUSD (199	0)	
Present linac staff :	11 man-years		
Present yearly operation	tion time :	400 (1991)	h

LINAC PARAMETERS

Electron Sources

Types :	(1)	;	energy :	750	keV
Beam inter	isity (peak)	:		0.540	Α
Normalized	d emittance (10	σ):	15	π mm	-mrad

Injector

Longitudinal matching : RF-Gun with α -magnet							
Output :	0.75	MeV;	intensity :	0.107	Α		
Pulse width, spacing : (2)							
Normalized emittance (1 σ): 20 π mm-mrad							

Acceleration System

Total linac length	:	4	m
No. sections : 1	;	lengths : 3.3	m
Field mode : $\pi/2$;	frequency : 2.792	7 GHz
Wave type : TW	;	filling time : 1.24	μs
v_g/c range : 0.009	;	Q : 120	00 [.]
Shunt impedance	:	53	MΩ/m
Iris : aperture : diameter	:	21.8 - 16.6	mm
thickness	:	4.0	mm
Attenuation/section	:	1.171	Np
Power units, Number :		l type: Klyst	ron
RF power peak : 26	М	W; mean : 1.7	kW

Focusing System

Type, No. of elements, and spacing : Two lenses between RF gun, α -magnet and accelerating section

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal Operation		ax, or esign	
Final energy	:	0.06	(0.06	GeV
Accel gradient	:	(3) 18.2	j.	18.2	MeV/m
$\Delta E/E$ (FWHM)	:	<2		1	%
Rep. rate	:	12.5		25	Hz
Pulse length	:	0.1		1.2	μs
Beam intensity	:	0.1	0	.107	A
Norm. emit. (1o):	:	<150	<	:150	π mm-mrad

OTHER RELEVANT INFORMATION

- * LUE 60 (60 MeV Kharkov Linac)
- (1) 1-cell thermionic RF gun
- (2) 0.03-1.2 μs; 80-1000 ms
- (3) Quasi-constant gradient accelerating structures (3 subsections)

References

- [1] "Compact 60 MeV Accelerator with Precise Beam Parameters" - Proceedings of the Workshop on JINR c-tau Factory, Dubna, 1992, pp. 350-364.
- [2] "Development of Linear Electron Accelerators for Basic Scientific Researches and Advancement of Technologies in Ukraine" - Ukrainian Physical Journal, vol. 40 (1995), No. 9, pp. 909-912, (in Ukrainian)

Name of Linac: LUE 40*Function: Electron Linac for Fixed Target ExperimentsInstitution and address: NSC-KPTI "Accelerator" R&D&P Est., 310108 Kharkov, UkrainePerson in charge: A. ZykovName of person supplying these data: Y. Tur
e-mail : tur@nik.kharkov.ua
tel. : + 380 57 235 6533fax : + 380 57 235 3731

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1958	; first beam : 1964	
Present status : Si	ince 1992 - idle	
Cost of facility : N	IA	
Present linac staff : 10	0 man-years	
Present yearly operatio	on time : 1500 (1991)	h

LINAC PARAMETERS

. .

Electron Sources

Types :	Diode	;	energy :	80	keV
Beam inte	nsity (peak)	:		4	Α
Normalize	d emittance (1	σ):		π m	n-mrad

Injector

Longitudinal matching : (1)						
Output :	19 - 8	MeV;	intensity :	0.05 - 1	Α	
Pulse width, spacing : $10 \ \mu s$; $20 - 80 \ ms$						
Normalize				π mm-n	nrad	

Acceleration System

Total linac length	:	8.5	n	1
No. sections : 1	; k	engths :	<i>4.3</i> m	1
Field mode : $\pi/2$; f	requency :	2.797 GHz	Z
Wave type : TW	; f	illing time :	0.38 µs	S
v_g/c range : 0.04	; () :	10000	
Shunt impedance	:	43	MΩ/n	1
Iris : aperture : diameter	:	30.0	mn	1
thickness	:	4.0	mn	1
Attenuation/section	:	0.3375	5 N _I)
Power units, Number :	1	type :	Klystron	
RF power peak : 10	M۷	/; mean :	5 kW	1

Focusing System

Type, No. of elements, and spacing : 2 axial symmetric lenses between gun and injector, solenoid

Beam Pulse Structure (if applicable)

No. of bunches/pulse: NANo. of particles/bunch: NABunch separation: NA

		Normal Operation	Max, or Design	
Final energy	:	0.02	0.04	GeV
Accel gradient	:	2.9	5.8	MeV/m
$\Delta E/E$ (FWHM)	:	3	3	%
Rep. rate	:	50	100	Hz
Pulse length	:	10	10	μs
Beam intensity	:	0.8	1.0	Α
Norm. emit. (1σ)	:	-	200	π mm-mrad

OTHER RELEVANT INFORMATION

- * LUE 40 (40 MeV Kharkov Linac)
- (1) Pre-buncher; TW buncher 3 m

References

[1] Described in "Atomnaya energya" 1979, v.46, No. 3, pp. 336 - 340 (in Russian).

Name of Linac: LIC *Function: Multipurpose scientific experimental facilityInstitution and address: NSC - KPTI "Accelerator" R&D&P Est., 310108 Kharkov, UkrainePerson in charge: V.A. KushnirName of person supplying these data: V.A. Kushnire-mail : kushnir@nik.kharkov.uatel. : + 380 57 235 3731

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1991	!;fir	st beam	: 1993	
Present status :	Operating			
Cost of facility :				
Present linac staff :	3 man-years			
Present yearly operat	tion time :	(1995)	1000	h

LINAC PARAMETERS

Electron Sources

Types :	RF-gun	;	energy :7	00 - 1100	keV
Beam inter	isity (peak)	:		1.7	Α
Normalized	d emittance (10):	12	π mm-	mrad

Injector

Longitudinal matching : RF-gun				
Output : 0.7 - 1.1 MeV; in	itensity :	1.5	Α	
Pulse width, spacing : $2 \mu s$,	160 - 1000	ms		
Normalized emittance (10):		π mm-i	mrad	

Acceleration System

Total linac length	:	4.0	m
No. sections : 1	; l	engths :	<i>2.3</i> m
Field mode : $4\pi/3$; f	requency :	2.797 GHz
Wave type : TW	; f	illing time :	0.9 µs
v_g/c range : 0.01	;(2:	13000
Shunt impedance	:	12	MΩ/m
Iris : aperture : diameter	:	50	mm
thickness	:	50	mm
Attenuation/section	:	0.6	Np
Power units, Number :	1	type :	Klystron
RF power peak : 22	M٧	/; mean :	kW

Focusing System

Type, No. of elements, and spacing :

One axial. symmetric lens between RF-gun and section

Beam Pulse Structure (if applicable)

No. of bunches/pulse : No. of particles/bunch : Bunch separation :

		Normal	Max, or	
		Operation	Design	
Final energy	:	0.015	0.02	GeV
Accel gradient	:	6.5	8.7	MeV/m
$\Delta E/E$ (FWHM)	:	3	< 8	%
Rep. rate	:	1 - 6.25	6.25	Hz
Pulse length	:	0.3 - 1.5	2.5	μs
Beam intensity	:	1.0	1.3	Α
Norm. emit. (1 σ)	:	14	< 20	π mm-mrad

OTHER RELEVANT INFORMATION

- * (Laser Injector Complex)
- a) Microsecond pulses This facility produces pulses in the microsecond range

b) Nanosecond pulses

It can be used also in th	e nanosecond range.
Pulse width	: 7 ns
Spacing	: 320 - 1000 ms
Final Energy	: 0.018 GeV
Acc. gradient	: 7.8 MeV/m
ΔE/E (%)	: 2
Beam intensity	: 1.5 A
Beam Pulse Structure:	
No. of bunches/pulse	: 20
No. of particles/bunch	: 3 × 10 ⁹
Bunch separation	: 358.2 ps

References

[1] Project described in "Proceeding of the 13 Conference on Charge Particles Accelerators, Dubna, 1992" (in Russian). Present-day status described in report that submitted to EPAC '96.

PROTON AND/OR H- LINAC

Name of Linac	: KMTA *
Function	: Nuclear and Irradiation Physics
Institution and address	NNC KFTI Academicheskaja str.1, 310108 Kharkov, Ukraine
Person in charge	Ye.V. Gussev
Name of person supplying these data	: N.A. Khizhnyak
	e-mail : <i>kfti@rocket.kharcov.ua</i>
	tel. : + 38 057 235 6414 fax : + 38 057 235 3564

h

HISTORY AND STATUS

Const. started : 1985 ; first beam : Present status : Under construction Cost of facility : 2.5 MUSD Present linac staff : Present yearly operat. time :

Focusing System

No. elements : type : order : Gradients : to T/m Other : Modify Alternating-phase Focusing (MAPF)

LINAC PERFORMANCE

LINAC PAR	AMETERS
-----------	---------

Ion Source

Type : Duoplasmotron				
Output : 500	mA	at 150)	keV
Pulse length : 1000	μs;	rep. rate :	1 - 20	Hz
Normalized emittance (1	σ):	2	πmm-	mrad

Pre-accelerator (including RFQ)

Types :	Pulse	transfor	mer	; length	is :	m
Output	:	500	mA	at	150	keV
Pulse ler	igth:	1000	μs;	rep. rat	te: 1-20) Hz
Normalia	zed em	ittance (I	lσ) :	2	π mm	-mrad

Longitudinal Matching

Type : H_1	₁₁ cavity: 152.5 Ml	Hz: 6.0 kV/cm:	26 - gaps
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	10.9 m; No. of tanks :	3
Tank diameters :	0.4	m
Number of drift-tubes :	22: 24: 22	
Drift-tube lengths :	9 - 180	mm
Drift-tube diam (range):	10.26 - 200.0	mm
Gap/cell length (range):	0.39 - 0.67	
Aperture diameter :	12.5 mm to 100.0	mm
RF frequency(ies) :	152.5	MHz
Field modes :	H_{IIN}	
Eff. shunt impedance :	45.0: 52.5: 50.3 N	1Ω/ m
Q :	5000: 7200: 9500	
Filling time :	20.0 - 30.0	μs
Equilibrium phases :	-90° + + 50°	
RF rep. rate : 1 - 20	Hz; pulse : 1000	μs
Beam rate : 1 - 20	Hz; pulse : 1000	μs
RF power peak : 7.56	MW; mean : 0.15	MW

DIVAC I EXFORMANCE

Normal	Max, or
Operation	Design

Energy	:	(1) 22.5		MeV
Mean acc. rate	:	2.0		MeV/m
$\Delta E/E$ (FWHM)	:	±1.5		%
Beam current	:	50.0	100.0	mA peak
Norm. emit. (1 σ)):	4		π mm-mrad

OTHER RELEVANT INFORMATION

- * Kharkov Material Test Accelerator
- (1) The first turn

It is built:

- RF frequency system to 35.0 MW peak power, 0.8 MW - mean;
- injector;
- water cooling system; and other.

ION LINAC

Name of Linac :	Kharkov Heavy Ion Linac *
Function :	Heavy Ion Accelerator
Institution and address :	NNC KFTI Academicheskaja str.1, 310108 Kharkov, Ukraine
Person in charge :	B.I. Rudvak
Name of person supplying these data :	V.A. Bomko
	e-mail: kfti@rocket.kharkov.ua
	tel. : +38 057 235 3564 fax : +38 057 235 3564

HISTORY AND STATUS

Const. started : 1955	; first beam : 1958	
Present status : O	perational	
Cost of facility :		
Present linac staff : 20) man-years	
Present yearly operat.	time : 1500 (1994)	h

LINAC PARAMETERS

Ion Sources

Ion Dources				
No. of sources	:	2		
Types of source	: Duopl	asmatron and	d MEV	'VA
Species of ions	: Arg	on 3+, Titan	ium 34	F
Range of currents:	:	2500		μAe
Range of output en	nergies :	3		keV/u
Pulse length : 30	00 µs;	rep. rate :	2-5	Hz
Normalized emitta	nce (1σ) :	0.2	π mn	n-mrad

Pre-accelerators (including RFQ)

Types (lengths) :	Pulse Transformer K	<i>G-800</i> m
Output currents :	500	μAe
Output energies :	33	keV/u
Frequency :	MHz; peak RF power	r: kW
Pulse length : 500) µs; rep. rate :	10 Hz
Normalized emittan	$ce(1\sigma): 0.3$	π mm-mrad

Longitudinal Matching

Type:

Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	15.4 i	m; N°. of	tanks :	2
Tank diameters :		(1)		m
Number of drift-tubes :		47; 40		
Drift-tube lengths :	14 t	o 72; 72 to	210	mm
Drift-tube diam (range):		o 129; 72 t		mm
Gap/cell length (range):	0).5; g/0.25	3 λ	
Aperture diameter :	24	mm to	30	mm
RF frequency(ies) :		47.2; 47.2		MHz
Field modes :	TE110 (ΊΗ βλ/2 ο		
Eff. shunt impedance :		150; 50	M	Ω/m
Q :	1	4000: 150	00	
Filling time :		10: 10		μs
Equil. phases : -20°-30	°accel. r	rate (2)	MeV	/u-m
RF rep. rate : 2-5	Hz;	pulse :	500	μs
Beam rate : 2-5	Hz;	pulse :	500	μs
RF power peak : 0.4: 2.	3 MW;	mean :	(3)	MW

Focusing System

No. elemen	ts : <i>20</i>					
type:	Quadrup	ole	order :	:	FOI	D <i>O</i>
Gradients :			to		30	T/m
Other:						
Charge St	tripping	(Тур	ical)			
Type(s): C	C foil					
Charge state	es: 3+	to	12+	at	1	MeV/u
Charge state	es :	to		at		MeV/u

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Argon 12+		
Energy	:	8 .5		MeV/u
$\Delta E/E$ (FWHM)	:	0.5		%
Mean acc. rate	:	0.658		MeV/u-m
Beam current	:	2		μ Ae peak
Norm. emit. (10)	:	1		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Nitrogen,	8.5 MeV/u	
Aluminium	8.5 MeV/u	

OTHER RELEVANT INFORMATION

- * Kharkov Heavy Ion Linac (Multi Charged Ion Linac MILAC)
- (1) 0.9×1.16 (not circular); 1.5 m
- (2) 0.235; 0.658 MeV/u-m
- (3) 7×10^{-4} ; $4 \times 10^{-3} MW$

ION LINAC

Name of Linac : MLUD-3 Function : Neutron generator Institution and address : NNC KFTI Academicheskaja str.1, 310108 Kharkov, Ukraine Person in charge : N.G. Shulika Name of person supplying these data : N.A. Khizhnyak e-mail: kfti@rocket.kharkov.ua tel. : +38 057 235 6414 fax : +38 057 235 3564

h

HISTORY AND STATUS

Const. started : 1972	; first beam : 1975
Present status : (Operational
Cost of facility : 3	00000 USD
Present linac staff : 2	? man-year
Present yearly operat.	time :

LINAC PARAMETERS

Ion Sources

No. of sources :	1
Types of source :	Duoplasmotron
Species of ions :	Deuteron 1+
Range of currents :	300×10^3 µAe
Range of output energies :	75 keV/u
Pulse length : $250 \mu s$;	rep. rate : 1.10 Hz
Normalized emittance (10):	10π mm-mrad

Pre-accelerators (including RFO)

Normalized emittar	nce (1σ) : π	mm-mrad
Pulse length :	μs; rep. rate :	Hz
Frequency :	MHz; peak RF power :	kW
Output energies :		keV/u
Output currents :		μAe
Types (lengths) :		m

Longitudinal Matching

Type:			
Mod.	keV; drift	mm at	MHz
	keV; drift	mm at	MHz

Accelerating System

Total linac length :	: 1.2	m; N°. of tanks	: 1
Tank diameters :		0.5	m
Number of drift-tubes :		16	
Drift-tube lengths :		7 to 135	mm
Drift-tube diam (range):		20 to 120	mm
Gap/cell length (range):		0.33 to 0.75	
Aperture diameter :	: 9	mm to 40	mm
RF frequency(ies) :		97.8	MHz
Field modes :		TE _{11N}	
Eff. shunt impedance :	;		MΩ/m
Q :		5000	
Filling time :		20	μs
Equil. phases : (1) ;	; accel.	. rate 1.65 Me	· V/u-m
RF rep. rate : 1-10	Hz	; pulse : 300	μs
Beam rate : 1-10	Hz	; pulse : 250	μs
RF power peak : 0.6	MW	; mean : 0.01-0.1	5 MW

Focusing System

No. elements : type : order : Gradients : to T/m Other : Modified Alternating-phase Focusing (MAPF)

Charge Stripping (Typical)

Type(s): Charge states : to MeV/u at Charge states : to MeV/u at

LINAC PERFORMANCE

		Normal Operation	Max, or Design	
Species	:	Deuteron 1+		
Energy	:	1.65		MeV/u
$\Delta E/E$ (FWHM)	:	+2.5		%
Mean acc. rate	:	1.4		MeV/u-m
Beam current	:	65×10^{3}		μ Ae peak
Norm. emit. (10)	:	4		π mm-mrad

OTHER ION BEAMS

Particle	Energy range	Other info.
Proton	1.65 MeV	~40 mA peak
H_3^+	3.3 MeV	~75 mA peak

OTHER RELEVANT INFORMATION

* Small-size deuterium Linac (MLUD-3)

(1) $-90^{\circ} + +50^{\circ}$

PROTON AND/OR H- LINAC

Name of Linac	ISIS Injector
Function	Injector for Synchrotron of Pulsed Spallation Neutron Source
Institution and address	Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX
Person in charge	I.S.K. Gardner (ISIS), CW Planner (Linac)
Name of person supplying these data:	
	e-mail : <i>cwp45@isise.pl.ac.uk</i>
	tel. : +44 1235 445434 fax : +44 1235 445720

HISTORY AND STATUS

Const. started :		(1)	; first beam :	: 01/198	3
Present status	:	Operat	ional		
Cost of facility	:	(2)			
Present linac staff	:	6			
Present yearly ope	era	at. time :	: <i>5000</i>)	h

LINAC PARAMETERS

Ion Source

Type: H ⁻ Pennin	ig				
Output : 35	mA	at	18		keV
Pulse length :	<i>300</i> μs;	rep. rat	te:	50	Hz
Normalized emitt	ance (1σ) :	-		πmm-	mrad

Pre-accelerator (including RFQ)

Types :	Cockc	roft-Wa	lton	; leng	ths :		m
Output	:	35	mA	at	66	5	keV
Pulse ler	ngth:		μs;	rep. r	ate :	DC	Hz
Normalia	zed emi	ittance (lσ) :			πmm-	mrad

Longitudinal Matching

Type :	Bunc	her coaxial i	resona	utor - dou	ble gap	
Mod.	23	keV; drift	800	mm at	202.5	MHz
		keV: drift		mm at		MHz

Accelerating System

Total linac length :	43 m; No. of tanks : 4
Tank diameters :	<i>0.94</i> , <i>0.927</i> , <i>0.828</i> , m
Number of drift-tubes :	(3)
Drift-tube lengths :	45 - 340 mm
Drift-tube diam (range):	180 - 160 mm
Gap/cell length (range):	0.21 - 0.37
Aperture diameter :	20 mm to 38 mm
RF frequency(ies) :	202.5 MHz
Field modes :	E (010)
Eff. shunt impedance :	MΩm
Q :	40000 - 60000
Filling time :	<i>125</i> µs
Equilibrium phases :	- 30 °
RF rep. rate : 50	Hz; pulse : 700 μs
Beam rate : 50	Hz; pulse : 500 µs
RF power peak : 7.0	MW; mean : 0.24 MW

Focusing	System
	, ogovens

No. elements :	152			
type :	(4)	order :	FFDD	
Gradients :	40	to	4.6	T/m
Other:				

LINAC PERFORMANCE

Normal	Max, or
Operation	Design

Energy	: 70.4	MeV
Mean acc. rate	: 1.7	MeV/m
$\Delta E/E$ (FWHM)	: (5) ± 0.26	%
Beam current	: 25	mA peak
Norm. emit. (1σ)): <i>10 (99%)</i>	π mm-mrad

OTHER RELEVANT INFORMATION

- (1) 1977 Conversion to H^-
- (2) Originally built as a low duty cycle proton linac, 1973-76, at construction cost of £1.8 M.
 Converted to high duty cycle, H⁻ linac at cost (capital) of £0.9 M.
 Tanks 2 & 3 originally formed part of an earlier 50 MeV proton linac that operated 1960-69.
- (3) $55+2 \times 1/2$, $40+2 \times 1/2$, $26+2 \times 1/2$, $23+2 \times 1/2$
- (4) Pulsed ANDC
- (5) Design after Debuncher

Name of Linac	: SRS *	
Function	: Electron Injector for SRS Booster	
Institution and address	: CLRC, Daresbury Laboratory, Wa	arrington, WA4 4AD, UK
Person in charge	: D M Dykes	
Name of person supplying these of	lata : D M Dykes	
	e-mail: d.m.dykes@dl.ac.uk	
	tel. : +44 1925 603142	fax : +44 1925 603192

HISTORY AND STATUS

LINAC PERFORMANCE

Const. started : 1976 ; first beam : 1978		Norma	•	
Present status : Operational		Operati	on Design	
Cost of facility : 284 MGBP (1978)	Final energy	: 0.012	0.015	GeV
Present linac staff : 4 part time	Accel gradient	: 6	7.5	MeV/m
Present yearly operation time : < 500 h	$\Delta E/E$ (FWHM)	: 1	1	%
	Rep. rate	: 10	10	Hz
LINAC PARAMETERS	Pulse length	: 1	2	μs
	Beam intensity	: 0.020	0.030	Α

Electron Sources

Types: (1) Triode	;	energy :	80	keV
Beam intensity (peak)	:		> 0.350	Α
Normalized emittance (10):		π mm-	mrad

Injector

Longitudinal ma	atching : In	tegral S-band	buncher
Output :	MeV;	intensity :	Α
Pulse width, sp	acing :		
Normalized emi	ittance (1σ)	:	π mm-mrad

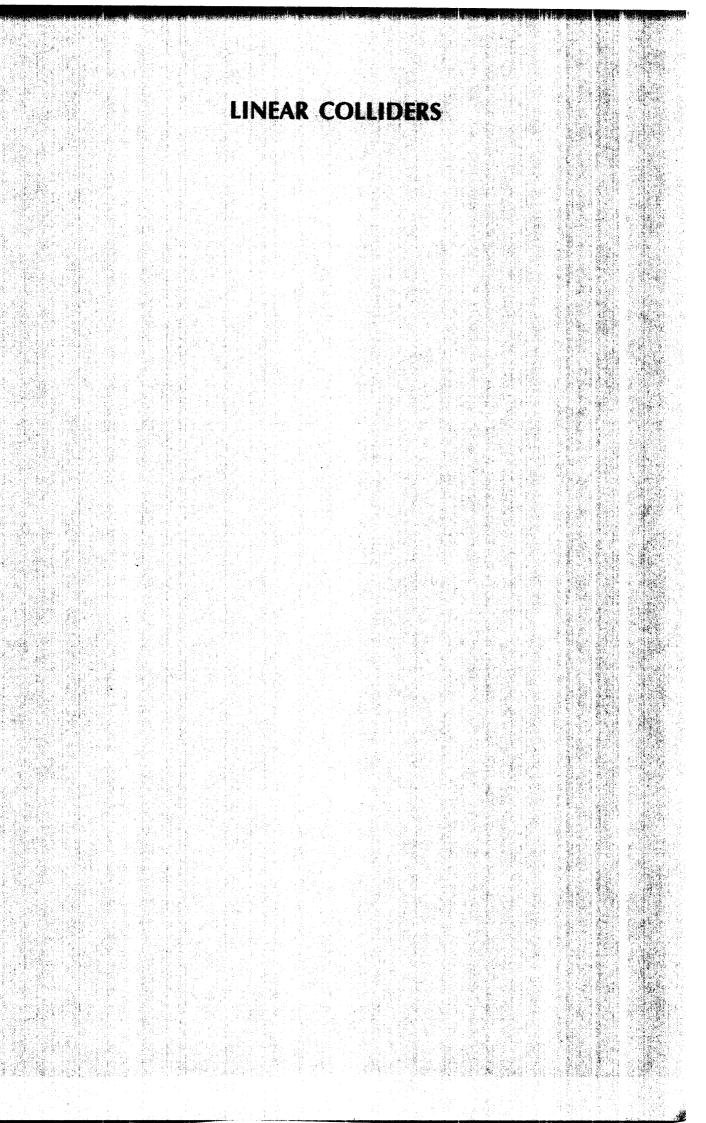
Acceleration System

Total linac length	:	2		m
No. sections : 1	; leng	gths :	2	m
Field mode : $2\pi/3$; freq	uency :	2.998	GHz
Wave type : TW	; filli	ng time :	< 1	μs
$v_g/c range : 0.16 - 0.1$; Q	:	1760	0
Shunt impedance	:	56 - 6		MΩ/m
Iris : aperture : diameter	:	23.36 - 2	20.0	mm
thickness	:	5.95		mm
Attenuation/section	:	0.230	5	Np
Power units, Number :	1	type :	Klystr	on
RF power peak : 6	MW;	mean :	1.2	kW

Focusing System

Type, No. of elements, and spacing : Solenoids: 2 for source and 2 distributed for accelerator

Beam Pulse Structure (if applicable)


No. of bunches/pulse : 500 No. of particles/bunch : 2.5×10^{10} Bunch separation : 2 ns

		Operation	Design	
Final energy	:	0.012	0.015	GeV
Accel gradient	:	6	7.5	MeV/m
$\Delta E/E$ (FWHM)	:	1	1	%
Rep. rate	:	10	10	Hz
Pulse length	:	1	2	μs
Beam intensity	:	0.020	0.030	Α
Norm. emit. (10)	:	-	10	π mm-mrad

OTHER RELEVANT INFORMATION

- SRS Synchrotron Radiation Source *
- (1) Electron source uses an Eimac planar triode, 8755, fitted to the gun assembly. The anode is broken off, cathode/grid assembly is then reconditioned.

The source is modulated via the grid at 500 MHz.

Linear Collider Studies

Within the framework of an international collaboration, different approaches for Linear Colliders in the TeV range are under study. It is worth mentioning the main laboratories who contribute to this research, in the 1996 compendium of linacs.

An "International Linear Collider Technical Review Committee Report" was published by G. Loew (SLAC) in December 1995.

At EPAC96, J.P. Delahaye (CERN) presented a review on "Design Issues of TeV Linear Colliders".

The two following tables were presented at the Linac96 Conference by G. Loew. They show an updating of the parameters and they provide the reader with an overview of e^{-}/e^{+} linear colliders under consideration at 500 GeV.

٦	
Table	

Linear Colliders: Overall and Final Focus Parameters -- 500 GeV (c.m.)

	TESLA TRC U	iLA Updated	SBLC TRC 1	,C Updated	JLC(S) TRC UF	dated	JLC(C) TRC Up	, and the second se	JLC(X) I TRC Upda	(X) Updated	NLC TRC	C Updated	VLEPP TRC Up	P.P. Updated	CLIC TRC	C Updated
	12/95	7/96	12/95	7/96	12/95		12/95	7/96	12/95	7/96	12/95	7/96		7/96	12/95	7/96
Initial energy (c of m) (GeV)	2005		2005		005		005		005		605		005		200	
RE fractioners of main lines (GHz)	- 1 -		,		200		222	47	114		11 4		14		Ģ	
Nominal Luminosity $(10^{33} \text{ cm}^{-1} \text{ c}^{-1})^{1}$	2.6				2		7.3	!			53	3.9	12.3		0.7-3.4	3.9
Actual luminosity $(10^{33} \text{ cm}^{-1} \text{ s}^{-1})^{1}$	6.1 6	6.0	3.75	5.0	1 4		6.1	9.1	5.2		7.1	5.5	9.3		1.07-4.8	7.5
Linac repetition rate (Hz)	10	5	50		50		10		150		180		300		2530-121	0 280
No. of particles/bunch at IP (1010)	5.15	3.63	2.9	1.1	1.4		1.0	1.1	.63		.65	.75	20		œ.	
No. of bunches/pulse	800	1130	125	333	50		72		85		8		1		1-10	20
Bunch separation (nsec)	1000	708	16.0	9	5.6		2.8		1.4		1.4		ı		.67	_
Beam power/beam (MW)	16.5	8.2	7.26	7.25	1.3		2.9	3.2	3.2		4.2	4.8	2.4		6.6-8.	4.47
Damping ring energy (GeV)	4.0		3.15		2.0				2.0		2.0		3.0		2.15	
Unloaded/loaded gradient (MV/m) th	25/25		21/17		31/			40/29.3	73/58		50/37	50/35	16/001		80/78	100/95
Total two-linac length (km)	29	32	33	32	22.1			20.2	10.4		15.6	17.6	7		8.8	
Total beam delivery length (km)			3		3.6				3.6		4.4	10.4	3		2.4	
ye.,/ye.(m-rad x 10*)	20/1	14/.25	10/.5		3.3/.05		3.3/.05		3.3/.05		5/.05	4/.09	20/.08		3/.15	4.9/.08
), / B. (mm)	25/2	251.7	22/.8	11/.45	10/.1		10/.1	15/.2	10/.1		10/.1	10/.15	100/.1		10/.18	10/.13
ຜູ້/ຜູ້ (nm) before pinch	1000/64	845/19	670/28	335/15	260/3.0		260/3.0	318/4	260/3.0		320/3.2	285/6.8	2000/4		24717.4	315/3
3, (μm)	0001	700	500	300	120		120	200	8		8	125	750		200	8
Crossing Angle at IP (mrad)	0		ę	2.5	6.4		6.0	••	6.1		50		6		-	20
Disruptions D./D.	.56/8.7	.28/17	.36/8.5	.32/7.1	.29/25		.20/18	.23/17	.096/8.3		.07 <i>0</i> .3		.4/215		.29/9.8	.21/9.9
H, ,	2.3		1.8		1.6		1.4	1.82	1.4		1.34	1.4	2.0		1.42	1.25
Upsilon sub-zero	.02		.037		.20		.14		.12		.089	60.	.059		<u>.</u> 07	
Upsilon effective	.03		.042		.22		.144	0.79	.12		0 60 [.]		.074		.075	.084
Š. (%)	3.3	2.9	3.2	3.1	12.7		6.5	3.9	3.5		2.4	3.2	13.3		3.6	3.5
n, (no. of Ys per e)	2.7		1.9		2.2		1.5	1.4	.94		øoj	1.0	5.0		1.35	1.38
N (pr==20 MeV/c, 0=0.15)	19.0		8 .0		31.6		10.3		2.9		2.0		1700		3.0	
N/crossing	.17		.10		86.		.23		.05		.03		45.9		.0 5	
Nx10 ⁻² (n. ^{min} =3.2 GeV/c)	.16		.14		3.4		.66		.14		.08		56.4		0 1.	

For the sake of uniformity, the nominal luminosity is simply defined as N¹/4π ot ot it of a cast and no pinch. The actual luminosity incorporates all these effects, including crossing angle where applicable. NLC calculations assume crab-crossing.

¹¹ The main linac loaded gradient includes the effect of single-bunch (all modes) and multibunch beam loading, assuming that the bunches ride on crest. Beam loading is based on bunch charges in the linacs, which are slightly higher than at the IP.

TSIA SBLC JLC(S) JLC(S) JLC(S) MLC VLEPP CLC VLEPP CLC 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 125 196 126	TESLA SBLC JLC(S) JLC(C) JLC(X) NLC VLEPP CLC(X) 785 Vpiand Trc Vpiand Vpiand Vpiand Vpiand	TESI.A SBLC JLC(S) JLC(C) JLC(S) MLC VLEP TrC Upbase TrC Upbase <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																	
TRC Updated TRC Updated <th< th=""><th>Tick Update Tick Update <t< th=""><th></th><th></th><th>TE</th><th>SLA</th><th>SBI</th><th>Ŋ</th><th>JLC</th><th></th><th>JLC((</th><th>ទ</th><th>JLC()</th><th>()</th><th>NLC</th><th></th><th>VLI</th><th>3PP</th><th>CLIC</th><th></th></t<></th></th<>	Tick Update Tick Update <t< th=""><th></th><th></th><th>TE</th><th>SLA</th><th>SBI</th><th>Ŋ</th><th>JLC</th><th></th><th>JLC((</th><th>ទ</th><th>JLC()</th><th>()</th><th>NLC</th><th></th><th>VLI</th><th>3PP</th><th>CLIC</th><th></th></t<>			TE	SLA	SBI	Ŋ	JLC		JLC((ទ	JLC()	()	NLC		VLI	3PP	CLIC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TRC 12/95	Updated 7/96	TRC 12/95	Updated 7/96			32 1	•		8		Updated 7/96	TRC 12/95	Updated 7/96	TRC 12/95	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Pre-linacs																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cond stage ϵ energy (GeV) - - - 20 10 100 100 36 - - an energy to make ϵ' (GeV) 250 200 10 10 10 36 150 an energy to make ϵ' (GeV) 250 200 10 10 10 36 150 predenping integenergy (GeV) 4 313 333 33 33 33 33 33 33 198 2 180 <td>First stage e[±] energy (GeV)</td> <td>4</td> <td></td> <td>3.15</td> <td></td> <td>1.98</td> <td>1.9</td> <td>8</td> <td></td> <td>1.98</td> <td>7</td> <td></td> <td></td> <td>3</td> <td></td> <td>2.15</td> <td></td>	First stage e [±] energy (GeV)	4		3.15		1.98	1.9	8		1.98	7			3		2.15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and energy to make C (GeV) 250 100 10 36 150 215 unplag Rings implag regress (GeV) 200 10 10 36 150 215 antiping ring regress (GeV) 200 133 133 133 133 213 213 213 213 antiping ring regress (GeV) 4 313 333 313 333 313 213 <td>and on the c (GeV) 20 10 10 35</td> <td>Second stage et energy (GeV</td> <td>,</td> <td></td> <td>1</td> <td></td> <td>,</td> <td>20</td> <td></td> <td></td> <td>10-20</td> <td>ž</td> <td>0</td> <td></td> <td></td> <td></td> <td>6</td> <td></td>	and on the c (GeV) 20 10 10 35	Second stage et energy (GeV	,		1		,	20			10-20	ž	0				6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mplag Ring: predminging ingreger(GeV) ·	mplag Ring: mplag Ring: mplag reserve (xeV) \cdot	Bcam energy to make e ⁺ (GeV)	250		250		10	10			10	ų	γ		150		2.15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Damping Rings																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	damping ring energy (GeV) 4 315 198 198 23 31 215 31 215 31 215 31 215 31 215 31 215 31 215 31		e ⁺ pre-damping ring energy (GeV)	•				1.98	1.9	8	-	1.98	2					2.15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gericumference (m) 2000 650 221 271 223 160 233 metry function (χ_{γ}) 2000 130 125 33 100 235 4052 4146 18729 103105 metry function (χ_{γ}) 2000 130 125 33 100 235 33.005 25.03 35.045 25.04 45.06 3 46.10	geticumference (m) 20,000 650 222 321 277 223 160 mber of barget (mex) (7, r) 2020 3.3, 3.3 6.1/8 3.3, 4.3 4.0.52 4.1/4.6 18.2.9 mber of barget (mex) 0 130 13 3.3, 3.3 100 2.3 3.3 100 3.5 3.4, 3 3.6 3.5 4.1 9.8 3.5 mber of barget (mm) 10 1.3 3.3 10.5 5.7.5 3.3/105 3.3/105 3.5/103 3.6/104 4.5.1.45 mber of particitic (NVm) ¹¹ 2.7.5 3.3/105 3.3/105 3.3/105 3.3/105 3.5/103 3.6/104 4.5.1.45 in Librace in Librace 1 3.3/105 3.3/105 3.3/105 3.5/104 4.5.1.45 in consolutioned gradient (NVm) ¹¹ 2.7.5 3.3/105 3.3/105 3.3/105 3.3/105 3.5/104 4.5.1.45 in outbor of klystens 6/4 2.5/13 3.6/14 3.6/14 3.6/14 3.6/14	e [*] damping ring energy (GeV)	4		3.15		1.98	1.9		-	1.98	7					2.15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mining time (m) (t_{7}^{4}) 2020 387.3 6.18 3.54.3 4.05.2 4.14.6 1.82.9 10.510.5 mine time (m) (t_{7}^{4}) 80 1130 125 333 100 28 340 360 1 35 4.11 9.8 1.82.9 10.510.5 mine timene, (t_{7}^{4} /ts, 10 ⁴) 20 ⁴ 1.42.5 3.12.5 3.34.05 3.37.05 3.37.05 3.37.05 3.57.03 3.60.4 45.57.45 2.57.04 all Lines all Lines 3.7 11.4 11.4 11.4 3.7 3.37.05 3.37.05 3.37.05 3.57.04 45.57.45 2.57.04 all Lines 2.7 11.4 11.4 11.4 11.4 3.7 3.4 3.2 2.57.04 45.3.45 2.57.04 all Lines 2.7 11.4 11.4 11.4 11.4 3.7 3.4 3.7 3.4 3.5 4.0 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.5 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ring circumference (m)	20,000		650		222	321	_		112	. 11	23		160		283	
800 1130 125 333 100 288 340 360 3 48.10 10 3.6 3.6 3.6 3.6 3.6 3.6 3.8 48.10 201 14/25 10/25 57.2 3.3/05 3.3/05 3.3/05 3.3/05 2.5/03 3.6/04 455/45 2.5/04 201 14/25 10/25 57.2 3.3/05 3.3/05 3.3/05 2.5/03 3.6/04 455/45 2.5/04 25523 21/17 31/2 40/35 5 11.4 11.4 11.4 3.6 260 22 30.2 19.8 15.7 15.1 8.7 10.4 8.7 8.7 3.6 7.6 45.16 3.7 280 221 31/2 15.1 8.7 10.4 10.4 11.6 1 9.7 45.16 3.7 29 257 15.1 8.7 10.4 13.2 10.4 1.7 6.7 8.8<	mber of burches per ring 800 1130 125 333 100 288 340 360 3 48.10 mol length (mm) 10 13 3.5 3.105 3.305 3.305 3.40 360 3.3 48.10 ir. beam relatace, (%r/y, 10*) 201 14/25 57.2 3.305 3.305 3.405 3.604 55.45 2.5704 all Llacs 1.3 3 2.8 5.7 11.4 11.4 11.4 3.604 55.45 2.5704 all Llacs 2.8 5.7 11.4 11.4 11.4 3.604 55.45 2.5704 strouch mole length (m) 20 2 2.17 2.18 2.02 10.6 7 8.6 3.704 55.45 25.704 strouch mole length (m) 20 2 2.17 3.1 1.4 3.6 4.57.45 25.704 8.6 strouch mole length (m) 20 2 2.55 2.55 2.57.53 2.57.03	mber of bunches per ring 800 1130 125 333 100 288 340 360 3 in chargh (mm) 12 3,5 4,3 5 5 4,1 360 3 in chargh (mm) 10 3,5 5,2 3,3/05 5,5/03 3,6/04 45,5/45 all Llacs 1 1 1 1 1 1 4 5 4 1 5 3 3 5 4 1 5 4 5 5 4 1 4 5 4 5 5 4 1 4 5 5 4 5 5 3 3 5 4 1 4 1 4 1 4 1 4 1 4 1 1 1 1 1 4 3 5 4 1 4 3 5 4 3 5 3 3 3 3 3	Damping times (ms) (t_{r}/t_{r})	20/20		3.8/3.8		6.1/8	3.5	14.3	•	4.0/5.2	4	.1/4.6		1.8/2.9		10.5/10.5	
$ \begin{bmatrix} 10 & 3.6 & 3.6 & 4.8 & 5 & 4.1 & 9.8 & 1.8 \\ 201 & 14/25 & 10/2 & 5/2.5 & 3.3/05 & 3.3/05 & 3.3/05 & 3.3/05 & 2.5/04 & 45.5/45 & 2.5/04 \\ 1.3 & 3 & 3 & 2.8 & 5.7 & 11.4 & 11.4 & 11.4 & 30 \\ 2.5 & 2.5 & 2.5 & 3.3 & 3.2 & 2.5 & 11.4 & 11.4 & 30 \\ 2.6 & 2.5 & 2.5 & 13.8 & 15.7 & 13.8 & 13.7 & 14.2 & 16.3 & 10091 & 8078 \\ 2.6 & 2.5 & 2.5 & 13.8 & 15.7 & 13.8 & 10.4 & 15.6 & 17.6 & 7 & 8.8 \\ 2.9 & 2.2 & 2.02 & 2.3 & 2.3 & 3.320 & 3936 & 45.8 & 10091 & 8078 \\ 2.0 & 2.2 & 2.2660 & 2.78 & 2.003 & 3936 & 45.8 & 10091 & 8078 \\ 8 & 2.5 & 2.5 & 3.32 & 2.24 & 3.320 & 3970 & 2.264 & 140 & NA \\ 8 & 150 & 135 & 4.8 & 50.3 & 1350 & 1970 & 2.264 & 140 & NA \\ 8 & 150 & 135 & 4.8 & 50.3 & 1330 & 3970 & 2.264 & 140 & NA \\ 1.3 & 2.8 & 4.5 & 2.4 & 3.330 & 1970 & 2.264 & 140 & NA \\ 1.3 & 2.8 & 4.5 & 2.3 & 3.33 & 196 & 3.83 & 3.6 & 3.2 & 2.466 \\ 1.0 & 5 & 5.0 & 100 & 180 & 2.3660 & 7.87 & 9056 & 5.00 & 2.3666 \\ 1.0 & 5 & 5.0 & 100 & 180 & 3.03 & 196 & 3.83 & 3.6 & 3.2 & 0.164007 \\ 1.3 & 1.2 & 4.80 & 2.3 & 1.96 & 3.83 & 3.6 & 3.2 & 0.164007 \\ 1.3 & 1.0 & 1.4/1 & 1.6/12 & 17/12 & 2.0/14 & 2.2/15 & 1.1 & 0.164007 \\ 1.6 & 88 & 16/11 & 16/12 & 17/12 & 20/14 & 2.2/15 & 1.1 & 0.164007 \\ 1.6 & 88 & 16/11 & 1.6/12 & 17/12 & 20/14 & 2.2/15 & 1.1 & 0.166007 \\ 1.0 & 100 & 118 & 130 & 4.6 & 4.2 & 5.6 & 2.2 & 3.2 & 1.4 & 1.078 \\ 2.0 & 19 & 107 & 104 & 310 & 4.6 & 4.2 & 5.6 & 8.2 & 7.9 & 8.4 & 16/78 \\ 2.0 & 19 & 0.7 & 104 & 310 & 4.6 & 4.2 & 5.6 & 8.2 & 7.9 & 8.4 & 16/78 \\ 2.0 & 19 & 0.7 & 104 & 310 & 4.6 & 4.2 & 5.6 & 8.2 & 7.9 & 8.4 & 16/78 \\ 2.0 & 10 & 10 & 110 & 106 & 118 & 120 & 12$	unch length (mm) 10 36 4.8 5 5 4.1 9.8 1.8 ur beam emisance, ($\gamma e_{J} \gamma e_{J}$ 10' 14'/25 10'/5 57.2 3.3/05 3.3/05 3.3/05 3.5/04 45.5/45 2.5/04 55.45 2.5/04 55.45 2.5/04 45.5/14 2.5/04 45.5/14 2.5/04 45.5/14 2.5/04 45.5/14 2.5/04 45.5/14 2	moth length (mm) 10 36 4.8 5 5 4.1 98 it. beam emittance, $(r_{a}/r_{g_{a}} 0^{+})$ 201 14/25 10.5 5/2.5 3.3/05 3.3/05 3.3/05 3.3/05 3.5/04 4.5/45 all Llacs if requence, $(r_{a}/r_{g_{a}} 0^{+})$ 201 14/25 10/25 5/2.5 3.3/05 3.3/05 3.5/04 4.5/45 9.8 all Llacs 1 223 3.3/05 3.3/05 3.3/05 3.5/04 4.5/45 if requencing (ht) 202 21/17 31/2 3.1/16 1/4 1/4 1/4 if requencing (ht) 20 22 19.8 15.7 15.1 8.7 14.4 1/4 1/6 3.6/04 4.5/45 3.6/04 4.5/45 3.6/04 4.5/45 3.6/04 4.5/45 3.6/04 4.5/45 3.6/04 4.5/2/45 3.6/04 4.5/2/45 3.6/04 4.5/2/45 3.6/04 4.5/2/45 3.6/04 4.5/2/45 4.0/2 3.6/04 4.5/2/45	Number of bunches per ring	800	1130	125	333	100	285	e r		340	ñ	8				48x10	48x50
201 14/25 10/5 5/2.5 3.3/05 3.3/05 3.3/05 3.3/05 3.3/05 2.5/04 45.5/45 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 400 10.1 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 45.5/16 2.5/04 400	If hear emitance, (π_{c}/r_{w} , $ 0^{-1}\rangle$, $20'1$ $ 4'/25$ $ 0'2$ $5/2.5$ $3.3/05$ $3.3/05$ $3.3/05$ $2.5/03$ $3.6/04$ $4.5/45$ $2.5/04$ ath Llans ath Llans ath Llans ath Llans ath Llans ath Llans ath Llans ath Collarded gradient ($W'(m)^{*}$ $2'72^{*}$ $2'1'7$ $31'^{*}$ $40'32$ $13'1$ $8'7$ $11'4$ $11'4$ $11'4$ $1'6$ $7'$ $3'0'7$ ath Llans ath Collarded gradient ($W'(m)^{*}$ $2'72^{*}$ $2'1'7$ $31'^{*}$ $40'32$ $13'1$ $8'7$ $13'1$ $8'7$ $13'5$ $15'1$ $8'7$ $13'5$ $15'1$ $8'7$ $13'5$ $15'1$ $8'7$ $13'5$ $15'1$ $15'7$ $15'6$ $1'6'6' 7'$ $7'$ $8'8$ ath cove limar length (cm) $2''$ $2''$ $2''$ $3'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13'''$ $13''''$ $13'''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13''''$ $13'''''$ $13'''''''$ $13''''''''''''''''''''''''''''''''''''$	If hear emittance, (ye, ye, 10 ⁻⁷) 201 14.25 10/5 5/25 3.3.05 3.3.05 3.3.05 3.5.04 455/45 and Lines frequency (GH2) 1.13 3 3.2.13 3.2.14 5.5.75 11.14 11.4 11.4 11.4 11.4 11.4 11.4 11	Bunch length (mm)	01		3.6		4.8	ŝ			2	4	I.		9.8		1.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	all Lines frequency (GH2) 1.3 3 2.8 5.7 11.4 11.4 307 30051 8078	all Lines frequency (GH2) 1.3 3 2.8 5.7 11.4	Extr. beam emittance, (ye,/ye, 10 ⁻⁶)	20/1	14/.25	10/.5	5/2.5	3.3/.05	3.3	1.05	. •	3.3/.05	6		3.6/.04	45.5/.45		2.5/.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	frequency (GH2) 13 3 23 5.7 11.4 11.4 11.4 30 30 uoted/outed/gradie/(model/gradie	frequency (GHz) 13 3 2.8 5.7 11.4 11.6 7 10.6 11.6 7 11.6 7 11.6 7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 12.6 12.6 12.6 </td <td>Main Linacs</td> <td></td>	Main Linacs																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	loaded/orded gradient (NV/m) ¹ 2573 21/17 31/. 40/32 73/58 50/37 50/35 100/91 80/78 tive two-linac length (km) 2 0 22 30/2 19/8 15.7 15.1 8.7 14.2 16.3 5.8 6.3 at a lively contract length (km) 2 0 225 30/2 19/8 15.7 15.1 8.7 14.2 16.3 5.8 6.3 at a lively contract length (km) 2 0 2 2517 2560 4351 4184 3320 3936 4528 1400 2 at a lively contract length (km) 8 150 2317 2560 23178 2092 3320 1970 2264 140 NA visit length (usec) 1315 2.8 4.8 50.3 135 0.9 1970 2264 140 NA visit length (usec) 1315 2.8 4.3 2.0 100 1970 2264 140 NA visit length (usec) 1315 2.8 4.3 2.2 2.8 4.5 3.3 232 135 0.9 1970 2264 140 NA visit length (usec) 1315 2.8 4.5 2.8 2.9 2 3320 1970 2264 140 NA visit length (usec) 1315 2.8 4.5 2.2 3.3 135 0.9 1970 2264 140 NA visit length (usec) 1315 2.8 4.5 2.2 2.8 4.5 2.2 2.8 2.9 2 3.3 2.9 2.9 2.9 2.9 2.9 2.9 10.0 116/0017 visit length (usec) 1315 2.8 1.1 2 0.0 100 118.0 07 000 116/0017 visit length (usec) 1315 2.8 1.1 2 0.0 100 18.0 07 000 2364 0.0 00 2364 0.0 100 116/0017 visit length (usec) 1315 2.8 1.1 2 0.0 00 2364 0.0 00 23	loaded/oaded gradient (MV/m) ¹ 25/25 21/17 31/- 40/32 73/58 50/37 50/35 10091 if we colinae length (km) 20 22 30/2 19.8 15.7 15.1 8.7 14.2 16.3 5.8 at we line regular (km) 20 22 31 32 22.1 18.8 10.4 15.7 15.1 8.7 14.2 16.3 5.8 at mmber of klystrons 604 2517 2560 43561 4184 3320 9970 2264 140 9700 2264 140 9700 past power (MW) 8 1500 100 5 50 201 135 2560 2178 2092 3320 9970 2264 140 970 2264 140 9700 2264 140 9700 past power (MW) 8 1500 100 5 50 201 135 24 150 100 135 24 150 100 300 100 150 135 24 150 300 100 150 135 24 150 300 100 150 135 24 150 100 100 150 130 136 22 135 3.3 1.96 3.3 33 3.6 3.2 1.2 1.2 1.2 480 150 100 130 130 126 1660 th time (usec) 1315 2.8 12.0 8712 8066 5600 7872 9056 5600 100 100 100 100 100 100 100 100 100	RF frequency (GHz)	1.3				2.8	5.7		-	11.4	ľ	1.4		14		30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tive two-linae length (tm) 20 22 30.2 19.8 15.7 15.1 8.7 14.2 16.3 5.8 6.3 at all worlinae length (tm) 29 32 30.2 19.8 15.7 15.1 8.7 14.2 16.3 5.8 6.3 at all worlinae length (tm) 29 32 33.7 2560 43561 4184 33.2 39.2 39.7 2560 43561 4184 33.2 39.7 2560 43561 4184 33.2 39.7 2564 140 N S stron peak power (MW) 8 150 2317 2560 2178 2092 33.0 1970 2264 140 N S stron peak power (MW) 8 150 2317 2560 2178 2092 33.0 1970 2264 140 N S stron peak power (MW) 8 150 2360 2178 2092 33.0 1970 2264 140 N S stron peak power (MW) 8 150 2360 2178 2092 33.0 1970 2264 140 N S stron peak power (MW) 8 150 2360 2178 2092 33.0 1970 2264 140 N S stron peak power (MW) 8 150 238 4.5 3.2 2.4 5 5 1.2 2.4 5 3.3 135 3.6 3.2 300 2360 1160 000 1315 2.3 3.7 3.7 3.7 130 130 2364 140 N S stron peak power (MW) 8 1315 2.8 4.5 3.2 2.4 5 5 1.2 3.5 3.3 136 3.2 300 2360 1160 017 stron peak power (MW) 104 6 13 13 2.3 3.7 1.96 3.3 3.6 3.2 3.7 1016/0017 mixer of section ratio = -2.2 3.5 3.3 1.96 3.3 3.6 3.2 3.2 2.4 5 5 5 5 2.4 5 5 5 2.4 5 5 5 2.4 5 5 5 2.4 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 2.4 5 5 5 5 5 2.4 5 5 5 5 5 2.4 5 5 5 5 5 2.4 5 5 5 5 5 5 2.4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tive two-linac length (km)202230.219.815.715.18.714.216.35.8al wo-linac length (km)2932333222.118.810.415.617.67al wo-linac length (km)2932333222.118.810.415.617.67al wo-linac length (km)604251725604184332039364528140yatron peak power (MW)8150256021782092332019702264140yatron peak power (MW)815013526644552400300yatron peak power (MW)813152.82.45550300yatron peak power (MW)813152.82.45555yatron peak power (MW)813152.82.45555yatron peak power (MW)63.3152.4555555yatron peak power (MW)81.72.82.4555555yatron peak power (MW)81.3152.82.4555555yatron peak power (MW)13152.82.45555555lse compression ratio2.23.53.63.63.63.6 <t< td=""><td>Unloaded/loaded gradient (MV/m)th</td><td>25/25</td><td></td><td>21/17</td><td></td><td>31/-</td><td>4</td><td>'32</td><td>•</td><td>73/58</td><td>জ</td><td></td><td>50/35</td><td>100/01</td><td></td><td>80/78</td><td>100/</td></t<>	Unloaded/loaded gradient (MV/m) th	25/25		21/17		31/-	4	'32	•	73/58	জ		50/35	100/01		80/78	100/
29 32 33 32 22.1 18.8 10.4 15.6 17.6 7 8.8 604 2517 2560 43561 4184 3320 3936 4528 1400 2 604 2517 2560 43561 4184 3320 3936 4528 1400 NA 604 2517 2560 2178 2092 3320 1970 2264 140 NA 604 2517 2560 135 50 160 2 2 2 2 3 135 190 250 230	al wo-line (engh (km)) 29 32 33 32 22.1 18.8 10.4 15.6 17.6 7 8.8 al number of klystons 604 2517 2560 43561 4184 3320 3936 4538 1400 N at number of klystons 604 2517 2560 43561 4184 3320 1970 2564 140 N stron meek power (MW) 8 150 135 50 135 50 160 N stron meek town (MW) 8 1315 2.8 4.5 2.4 5 300 2530/1210 stron meet ion rate (Hz) 10 5 50 100 150 122 5 0116/0017 stron meet ion rate (Hz) 10 5 2.4 5 3.3 3.6 3.5 0 116/0017 stron make (MW) 8 1.31 2.4 1.2 5 3.6 3.6 3.6 3.6 3.6 3.6 <t< td=""><td>ad two-linac length (km)2932333222.1118.810.415.617.67ad number of klystrons60425172560435614184332039364528400ad number of klystrons604251725602178209233201970226440ad number of klystrons604251725602178209233201970226440ystron tripetition rate (H2)1055030100130305300300ystron tripetition rate (H2)1052.453330300ystron tripetition rate (H2)13152.84.52.45330ystron pulse length (usec)13152.84.52.45533336is compression ratio3.7553.351.963.7555<td< td=""><td>Active two-linac length (km)</td><td>20</td><td>22</td><td>30.2</td><td></td><td>19.8</td><td>15.</td><td></td><td></td><td>3.7</td><td>÷</td><td></td><td>16.3</td><td>5.8</td><td></td><td>6.3</td><td>5.3</td></td<></td></t<>	ad two-linac length (km)2932333222.1118.810.415.617.67ad number of klystrons60425172560435614184332039364528400ad number of klystrons604251725602178209233201970226440ad number of klystrons604251725602178209233201970226440ystron tripetition rate (H2)1055030100130305300300ystron tripetition rate (H2)1052.453330300ystron tripetition rate (H2)13152.84.52.45330ystron pulse length (usec)13152.84.52.45533336is compression ratio3.7553.351.963.7555 <td< td=""><td>Active two-linac length (km)</td><td>20</td><td>22</td><td>30.2</td><td></td><td>19.8</td><td>15.</td><td></td><td></td><td>3.7</td><td>÷</td><td></td><td>16.3</td><td>5.8</td><td></td><td>6.3</td><td>5.3</td></td<>	Active two-linac length (km)	20	22	30.2		19.8	15.			3.7	÷		16.3	5.8		6.3	5.3
604 2517 2560 43561 4184 3320 3936 4528 1400 2 8 150 135 48 50.3 135 50 150 NA 8 150 135 48 50.3 135 50 150 NA 10 5 50 135 48 50.3 135 50 150 NA 1315 2.8 4.5 2.4 .5 120 25301210 23301210 1315 2.8 4.5 2.4 .5 120 2.8 3.00 23301210 1315 2.8 1.2 3.35 1.96 3.33 3.6 3.2 .116/0017 1315 2.8 1.2 3.35 2.4 .12 .24 .11 .0116/0017 1315 2.8 1.2 3.33 3.6 3.2 .24 .11 .0116/0017 104 6 3.6 1.8 1.36	al number of klystrons 604 2517 2560 43561 4184 3320 3936 4528 1400 2 at number of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 NA stron repeat over (NW) 8 64 2517 2560 2178 2092 3320 1970 2264 140 NA stron repeat over (NW) 10 5 50 100 260 1000 200 1500 1000 200 $2530/1210$ stron repeat over (NW) 10 5 50 50 100 200 1000 216 112 5 112 5 12 112 5 112 2560 2133 135 202 3320 1970 2264 140 NA stron repeat over (NW) 10 5 500 50 1000 2170 1000 300 $2530/1210$ stron repeat over (NW) 10 5 500 500 1000 216 0000 1000 1000 1000 1000 1100 110 112 214 55 112 55 112 213 214 55 112 213 2146 213 2146 213 2146 213 2146 213 2146 213 214 2131 213 2146 213 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110 2201 112 2101 112 2101 112 2101 112 2101 213 2	al number of klystrons 604 2517 2560 43561 4184 3320 3936 4528 1400 (all number of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 (all number of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 (all number of modulators 101 5 50 160 135 24 5 5 120 180 300 (all number of modulator rate (Hz) 10 5 50 100 135 2.8 4.5 5 120 180 300 (all number of modulator rate (Hz) 10 5 2.8 4.5 5 2.4 5 3 3.35 1.96 3.8 3.6 3.2 (all number of sections 1315 2.8 1.2 3.5 3.3.5 1.96 3.8 3.6 3.2 (all number of sections 1315 2.8 1.2 4.8 50.3 135 3.6 3.2 (all number of sections 1315 2.8 4.5 3 3.35 1.96 3.8 3.6 3.2 (all number of sections 1315 2.8 1.1 1.2 1.2 4.8 1.3 1.96 3.8 3.6 3.2 (all number of sections 1014 0.1 1.04 1.0 (ange if applicable) 15 1.4 1.0 (ange if applicable) 166.11 1.0 (ang is 1.2 1.7 1.1 2.0 0.1 4.1 1.0 1.8 1.1 1.6 (ang is 1.2 1.7 1.1 2.0 0.1 4.1 1.0 1.8 1.1 1.6 (ang is 1.2 1.7 1.1 2.0 0.1 4.1 1.0 1.8 1.1 1.6 (ang is 1.2 1.7 1.1 1.0 1.1 1.6 (ang is 1.2 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Total two-linac length (km)	29	32	33	32	22.1	18.			10.4			17.6	7		8.8	7.4
604 2517 2560 2178 2092 3320 1970 2264 140 NA 8 150 135 48 50.3 135 50 150 NA 8 150 135 48 50.3 135 50 150 NA 1315 2.8 4.5 5.3 135 5 5 5 5 5 5 5 5 5 5 5 0116/0017 1315 2.8 4.5 5.7 1.2 5 5 5 5 5 5 5 0116/0017 cc) 1315 2.8 1.2 480 3.3 3.6 3.2 11 0116/0017 1315 2.8 1.2 480 3.3 3.6 3.2 3.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	tal number of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 NA synthese of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 NA synthese of modulators (H2) 10 5 50 150 170 2360 150 700 2360 120 235001210 2510 112 2 5 5 1 2 5 1 2 5 1 2 5 1 2 0 116/0017 18 compression rate (H2) 10 5 2.8 1.5 2.8 1.5 2.4 5 5 1.9 6 3.3 3.6 3.2 - 016/0017 18 compression rate (H2) 1315 2.8 1.2 3.5 3.3 5 1.9 6 3.8 3.6 3.2 - 0116/0017 18 compression rate (H2) 1315 2.8 1.2 3.5 3.3 1.9 6 3.8 3.6 3.2 - 0116/0017 18 compression rate (H2) 1315 2.8 1.2 480 2.3 3.5 2.4 5 5 2 5 5 5 2 5 5 2 2.4 5 1.1 0116/0017 18 compression rate (H2) 1.0 4 0 112 2.0 112 2.3 1.9 6 3.8 3.6 5.2 - 0116/0017 10017 10017 1001 1 0.4 1.0 1 1.0 4 1.0 1.8 1.3 1 1.2 2.4 1.1 1.2 2.4 1.1 1.0 116/0017 10017 10017 1001 18 1.3 1.1 2.3 1.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	tal number of modulators 604 2517 2560 2178 2092 3320 1970 2264 140 sytron praction rate (Hz) 10 5 50 135 80 30 135 50 150 150 150 150 150 150 150 150 150	Total number of klystrons	604		2517		2560	435	-		3320	Ψ.		4528	1400		2	2
	ystron peak power (MW) 8 150 135 48 50.3 135 50 150 NA ystron peak power (MW) 8 150 135 2.8 4.5 50 2530/1210 ystron trate (Hz) 10 5 50 50 23 135 150 180 300 2530/1210 ystron pulse length (lusec) 1315 2.8 4.5 2.4 5 5 1.2 3.0 116/.0017 is compression ratio $ 3.75 5 2.8 1.2 2.4 5 3.2 0.116/.0017 is compression ratio 3.75 5 2.8 1.2 2.8 1.2 2.8 2.3 3.5 3.35 1.96 3.32 3.6 3.2 0.116/.0017 or pulse length at linac (lusec) 1315 2.8 1.2 3.75 5 5 3.3 2.9 2.4 1.1 0.116/.0017 or pulse length at linac (lusec) 1315 2.8 1.2 3.75 5 5 3.35 1.96 3.32 3.3 3.6 3.2 0.116/.0017 or pulse length at linac (lusec) 1315 2.8 1.2 2.2 3.5 3.35 1.96 3.36 56.40 7322 9056 56.00 22466 ction length (m) 1.04 6 8 139 140 118 1.3112 2.07.14 2.21.15 1.14 2.20.16 ction length (m) 164 88 139 140 118 139 153 114 103 121 57 1.4 2.2 10.14 1.4/.1 1.4/.1 1.4/.1 2.20.14 2.21.15 1.14 2.2 1.14 2.2 1.14 1.2 2.115 1.14 1.16/.18 1.16/.18 1.16/.18 1.1001 118 1.14/.1 1.16/.12 2.07.14 2.21.15 1.14 2.2 1.14 2.2 1.14 1.2 2.115 1.14 2.2 1.14 2.2 1.14 2.2 1.14 1.2 2.115 1.14 1.16/.18 1.16/.18 1.16/.18 1.16/.18 1.16/.18 1.16/.18 1.16/.18 1.16/.14 1.16/.12 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 1.14 2.2 1.14 1.2 2.07.14 2.2 2.15 1.14 1.2 2.07.14 2.2 2.15 1.14 1.2 2.07.14 2.2 2.15 1.14 2.2 1.14 1.2 2.07.14 2.2 2.15 1.14 2.2 2.00 2.2466 ction length (m) 166 88 139 140 118 1.39 153 1.14 1.2 2.07.14 2.22/.15 1.14 2.2 2.00 2.2466 ction length (m) 1.04 3.0 100 2.1466 ction $	ystron peak power (MW) 8 150 135 48 50.3 135 50 150 50 50 50 50 50 100 180 300 5 50 50 100 180 300 50 50 50 100 180 300 500 50 100 1315 2.8 4.5 2.4 1.2 5 1.2 5 1.2 3.5 3.3 1.9 6 3.2 3.2 4.55 3.2 5 1.9 6 3.2 3.3 3.6 3.2 7.9 1015 enclosed and -2 2.3 2.4 2.1 1.1 2.0 104 103 121 2.8 1.2 2.8 1.2 2.9 056 5600 ction tagth (m) 1.0 4 6 3.6 1.8 1.3 1.1 1.4/.1 1.16/.12 1.7/.12 20/.14 22/.15 1.14 1.3 1.4/.1 1.16/.12 1.7/.12 20/.14 22/.15 1.14 1.3 1.4/.1 1.16/.12 1.7/.12 20/.14 22/.15 1.14 1.3 1.14 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	Total number of modulators	604		2517		2560	217			3320	ï		2264	140		N A	
	ystron repetition rate (H2) 10 5 50 50 100 150 180 300 2530/1210 ystron pulse length (usec) 1315 2.8 4.5 2.4 5 5 1.2 5 0.0116/0017 ystron pulse length (usec) 1315 2.8 4.5 3.2 2.4 5 5 7 0.0116/0017 esc on pression ratio $ -$	ystron repetition rate (H2) 10 5 50 50 100 150 180 300 ystron pulse length (µsec) 1315 2.8 4.5 5 5 5 1.2 5 1.2 5 5 3.2 lse compression ratio	Klystron peak power (MW)	~		150		135	48			135	ŝ	0		150		A N	15300
Image: Section 1315 2.8 4.5 2.4 .5 1.2 .5 .0116/.0017 - - - 3.75 5 2 2 5 .5 .0116/.0017 - - - 3.75 5 3.35 1.96 3.8 3.2 - .0116/.0017 (lusec) 1315 2.8 1.2 3.8 3.35 1.96 3.2 .1 0 3.2 - .0116/.0017 (lusec) 1315 2.8 1.2 3.83 3.6 3.2 .2 2.4 .1 0 0116/.0017 19328 5034 5120 8712 8368 6640 7872 9056 5600 22466 104 6 3.6 1.8 1.31 1.8 1.3 1.8 .2 .2 .16/.11 .14/.1 .16/.12 .17/.12 .20/.14 .22/.15 .14 .2 .2 .16 88 139 140 118 1.31 1.8 .2 .2 .2 .2 .2 <	ystron pulse length (usec) 1315 2.8 4.5 2.4 5 1.2 5 0.0116/.0017 lise compression ratio - 3.75 5 5 2.4 4.55 3.2 0.0116/.0017 lise compression ratio2 3.75 5 5 3.2 2.4 4.55 3.2 - 0.116/.0017 lise compression gain2 3.75 5 5 3.2 3.2 2.4 4.55 3.2 2.1 0.0116/.0017 line constructions 1315 2.8 1.2 8.36 6.40 7.872 9056 5600 22466 contength and inac (usec) 1.5 1.6/.11 1.4/.1 1.6/.12 1.7/.12 20/.14 1.8 1 2.2/.15 1.4 2.8 contengt (m) 1.64 88 139 140 118 139 153 114 1.3 2.0/.14 1.3 121 57 100 and AC pover to make rf (MW) 164 88 139 140 118 139 153 114 1.3 2.0/.14 1.3 2.0/.14 1.3 2.0/.14 1.3 2.0/.14 1.6/.18 1.4/.1 1.6/.12 1.7/.12 2.0/.14 1.3 1.1 2.0/.14 1.3 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 2.8 1.3 1.4 1.3 1.3 1.4 2.8 1.3 1.4 1.3 1.3 1.4 2.8 1.3 1.4 1.3 1.3 1.4 2.8 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.5 7.8 1.6/.18 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.5 1.4 1.3 1.4 1.5 1.4 1.4 1.3 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	ystron pulse length (usec) 1315 2.8 4.5 2.4 5 1.2 5 3.2 is examples (usec) 1315 2.8 4.5 5 5 5 7 1.2 5 3.3 3.2 is exampression ratio $ 3.75$ 5 5 $ 3.75$ 5 5 $ 2$ $ 3.75$ 5 5 $ 2$ $ 3.5$ $ 4.55$ 3.2 is ecompression ratio $ -$	Klystron repetition rate (Hz)	10	Ŷ	50		S0	ğ	6		150	ï	80		300		2530/1210	220
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lse compression ratio	lse compression ratio2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Klystron pulse length (µsec)	1315		2.8		4.5	2.4			Ś	Ι.	7		i.		0116/.0017	6 .072
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lse compression gain2 3.5 3.35 1.96 3.2 3.6 3.22 -2 2.0116/.00176 3.83 3.6 3.211 0.0116/.00176 1.0116 1.0	lse compression gain2 -2 -3.5 -3.5 -1.96 -3.83 -3.6 -3.2 ⁷ pulse length at linac (µsec) 1315 -2.8 1.2 .480 -2.4 .11 mber of sections 19228 50.3 51.2 .480 -3.12 -2.4 .11 mber of sections 1.04 6.0 -3.6 1.8 1.31 1.8 1 -1.4 (range if applicable) .15 .16/.11 .14/.1 .16/.12 .17/.12 .20/.14 .22/.15 .14 at AC power to make rf (MW) 164 88 139 140 118 139 153 114 103 121 57 all plug → beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4	Pulse compression ratio	ı		,		3.75	Ś			~	ŝ			4.55	3.2	•	
(Jusec) [315 2.8 1.2 .480 .23 .24 .11 0116/00176 [9328 5034 5120 8712 8368 6640 7872 9056 5600 22466 [1.04 6 3.5 1.8 1.31 1.8 1 .280 1.2466 .15 .16/.11 .14/.1 .16/.12 .17/.12 .20/.14 .22/.15 1.14 .280 erf (MW) 164 88 139 140 118 139 153 114 103 121 57 100 iency (76) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/7.8	7 pulse length at linac (µsec) 1315 2.8 1.2 480 2.3 2.4 .11 0116/.00176 mber of sections 19328 5034 5120 8712 8368 6640 7872 9056 5600 22466 too length (m) 1.04 6 3.6 1.8 1.31 1.8 1.8 1.28 1.30 (range if applicable) .15 .16/.11 .14/.1 .16/.12 .17/.12 .20/.14 1.22/.15 .14 .280 at lA C power to maker f (MW) 164 88 139 140 118 139 153 114 103 121 57 100 all plug \rightarrow beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 5.6 8.2 7.9 8.4 1.6/.8	⁷ pulse length at linac (µsec) 1315 2.8 1.2 \cdot 480 2.3 2.4 .11 imber of sections 19328 5034 5120 8712 8368 6640 7872 9056 5600 ction length (m) 1.04 6 3.6 1.8 1.31 1.8 1 \cdot (range if applicable) .15 1.6/.11 .14/.1 .16/.12 .17/.12 .20/.14 .22/.15 .14 at a AC power to make rf (MW) 164 88 139 140 118 139 153 114 103 121 57 all plug → beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4	Pulse compression gain			,		7	3.5			1.96	ų.	.83	3.6	3.2		,	
19328 5034 5120 8712 8368 6640 7872 9056 5600 22466 1.04 6 3.6 1.8 1.31 1.8 1 280 .15 .166/.11 .14/.1 .16/.12 .17/.12 20/.14 .22/.15 1 .280 .16 88 139 140 118 139 153 114 103 121 57 100 incy (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RF pulse length at linac (µsec)	1315		2.8		1.2	.48	ç	•	23	q	4		11.		0116/.0017	6 .072
1.04 6 3.6 1.8 1.31 1.8 1. 280 15 .16/.11 .14/.1 .16/.12 .17/.12 20/.14 .22/.15 .14 .2 16/.18 139 140 118 139 153 114 103 121 57 100 iency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/7.8	ction length (m) 1.04 6 3.6 1.8 1.31 1.8 1 280 (range if applicable) $.15$ $.16/.11$ $.14/.1$ $.16/.12$ $.17/.12$ $20/.14$ $.22/.15$ $.14$ $.2$ (range if applicable) $.15$ $.16/.11$ $.14/.1$ $.16/.12$ $.17/.12$ $.20/.14$ $.22/.15$ $.14$ $.2$ tal AC power to make rf (MW) 164 88 139 140 118 139 153 114 103 21 57 100 all plug \rightarrow beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 $1.67.78$	ction length (m) 1.04 6 3.6 1.8 1.31 1.8 1.31 1.8 1 (range if applicable) 1.5 $1.6/.11$ $1.6/.12$ $1.7/.12$ $2.0/.14$ $2.2/.15$ 1.4 tal AC power to make rf (MW) 164 88 139 140 118 139 153 114 103 121 57 all plug → beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.5 4.2 5.6 8.2 7.9 8.4	Number of sections	19328		5034		5120	871			5640	2		9056	5600		22466	11200
. 15	(range if applicable)		Section length (m)	1.04		6		3.6	1.8			1.31	1.	oo j		-		.280	<u>4</u> 4.
164 88 139 140 118 139 153 114 103 121 57 100 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.67.8	ital AC power to make rf (MW) 164 88 139 140 118 139 153 114 103 121 57 100 all plug → beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/7.8 The moin line hooded motion includes the effect of includes band on the hood band and includes the effect of the hood on the hood of t		aA (range if applicable)	.15		.16/.11		.14/.1	.16			20/.14	Li.	12/.15		.14		Ŀ,	
20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/7.8	all plug \rightarrow beam efficiency (%) 20 19 10.7 10.4 3.0 4.6 4.2 5.6 8.2 7.9 8.4 1.6/7.8 The model interference of equations from the second environment of the second envit of the second environment of t		Total AC power to make rf (MW)	164	88	139	140	118	135			114	ž		121	57		100	11
			Wall plug \rightarrow beam efficiency (%)	20	61	10.7	10.4	3.0	4.6			5.6	òò		7.9	8.4		1.67.8	11.6

Table 2

189