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Forward

The radiative decays of the B meson to the final states K∗(892)γ and ρ(770)γ pro-

ceed through virtual effective flavor-changing neutral current processes which are

sensitive to contributions from high mass scales from within the Standard Model of

particle interactions and from possible new physics. In the context of the Standard

Model, these transitions are of interest in probing the weak interaction behavior of

the top quark. In particular, the ratio of branching fractions for the two processes

can be used to extract the ratio of Cabibbo-Kobayashi-Maskawa matrix elements

|Vtd/Vts|. Potential new physics contributions in these virtual transitions may induce

new sources of direct CP violation and enhancement or suppression of the rate of

these processes.

The B → K∗γ is a manifestation of the b → sγ radiative transition. This process

has been previously observed by the CLEO collaboration and its branching fraction

measured. While the theoretical prediction for the inclusive rate of b → sγ transi-

tions is more robust than that of the exclusive B → K∗γ, the prospects for precise

measurements of B[B → K∗γ] and direct CP violation in this channel has attracted

considerable attention. The analysis described here represents an improved measure-

ment of the B → K∗γ branching factions and a more sensitive search for direct CP

violation.

In 22.7× 106 BB events collected by the BABAR detector in 1999-2000, we measure:

B[B0 → K∗0γ] = 4.23 ± 0.40(stat.) ± 0.22(syst.) × 10−5

B[B+ → K∗+γ] = 3.83 ± 0.62(stat.) ± 0.22(syst.) × 10−5

We find no evidence for direct CP violation in the decays and constrain −0.170 <

ACP < 0.082 at 90% Confidence Level.
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The B → ργ proceeds through the analogous b → dγ radiative transition. As such,

its rate is suppressed by a factor of |Vtd/Vts|2 ∼ O(50) relative to B → K∗γ and

remains unobserved. Current limits on the branching fractions of B → ργ are still

an order of magnitude above the theoretical predictions. While the uncertainty in

the theoretical predictions for the branching fraction of this mode are large, it may

be possible to reduce these uncertainties by considering the ratio of the branching

fractions for B → ργ and B → K∗γ which would lead to a measurement of |Vtd/Vts|.
The analysis presented here represents a search with nearly an order of magnitude

more data and new analysis techniques.

In a sample of 61.7 × 106 BB events, we find no significant evidence for the decay

B → ργ is and establish the following 90% Confidence Level upper limits on the

branching fraction:

B[B0 → ρ0γ] < 1.5 × 10−6

B[B+ → ρ+γ] < 2.8 × 10−6
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Chapter 1

The Theory of Radiative B Decays

1.1 Introduction

The decays B → ργ and B → K∗γ are effective flavor-changing neutral current inter-

actions. In this chapter, we discuss how these processes arise in the Standard Model

of particle interactions and why they are of interest, particularly in extracting the

ratio of the Cabibbo-Kobayashi-Maskawa matrix elements |Vtd/Vts|. We investigate

how the theory allows the rate of these decays to be predicted using techniques such

as the Operator Product Expansion and Factorization. The decays B → ργ and

B → K∗γ are also probes of new physics processes outside of the Standard Model.

We discuss possible signatures of such new phenomena in these decays. Finally, we

summarize the current status of experimental results and theoretical calculations.

1.2 The Standard Model

1.2.1 Basic Principles

The Standard Model endeavors to explain phenomena within the realm of elementary

particles and their interactions. It has thus far explained all experimental results,

with exception of the generation of neutrino masses and the unobserved Higgs boson.

The Standard Model is built upon a foundation of relativistic quantum field theory,

1
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Figure 1.1: The constituents of the Standard Model of Particle Interactions

which embeds the dynamical framework of quantum mechanics within the space-

time structure of special relativity [1]. To this, we add the principle of local gauge

invariance [2], which postulates that the theory is invariant under transformations

of the fields of the form:

ψ(xμ) → eiαa(xμ)Taψ(xμ), (1.1)

where the Ta are the generators of a Lie group and αa(x) are a set of arbitrary

real functions of the space-time coordinate xμ, one for each generator. Local gauge

invariance within a quantum field theory forces the introduction of a set of spin-

1 bosons which mediate interactions between the fields characterized by a universal

coupling constant and conserved charge. Quantum electrodynamics can be expressed

as a quantum field theory with gauge invariance under the group U(1). The Standard

Model involves more complicated groups which endow it with a richer structure.

Finally, we will need the mechanism of spontaneous symmetry breaking [3] to generate

the observed masses of the particles. We will find that effective flavor-changing

neutral current processes, otherwise forbidden, are enabled as a consequence.
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1.2.2 The Fundamental Constituents and their Interactions

The Standard Model of particle interactions is illustrated in Figure 1.1 as a survey

of the elementary particles. The first division among these particles occurs between

bosons carrying integer spin and fermions carrying half-integer spin. Each particle

has a corresponding antiparticle which carries the opposite quantum numbers. In

some cases, as in the photon and the Z, the particle is its own antiparticle.

The spin-1 bosons are responsible for the electroweak and the strong interactions,

which are described by quantum chromodynamics (QCD). We set aside the spin-0

Higgs field for later discussion. The bosons arise from the local gauge invariance

of the quantum field theory: in order to preserve the local gauge invariance of the

kinetic term, it is necessary to introduce gauge fields Aa
μ by modifying the derivative

term ∂μ into the covariant derivative Dμ:

∂μ ⇒ Dμ = ∂μ + igT aAa
μ (1.2)

where the Aa
μ transform as:

Aa
μ → Aa

μ − 1

g
∂μαa(xμ) (1.3)

The Ta are the generators of the chosen Lie algebra, SU(3) [4] in the case of QCD and

SU(2)L ×U(1)Y [5] for the electroweak interactions. The Aa
μ are the particles medi-

ating the elementary interactions in the Standard Model. Local gauge and Lorentz

invariance dictate that they are Spin-1 Lorentz vectors transforming under the ad-

joint representation of the group. The factor g is the universal coupling constant

for the gauge group determining the strength of the interaction, with the covariant

derivative constructed in such a way that the transformations of the gauge field can-

cel terms arising from the derivative of the gauge-transformed field.

The eight gauge bosons mediating chromodynamics are called gluons, while the four

gauge bosons of the electroweak interactions after spontaneous symmetry breaking

(described in Section 1.2.3) are the W , the Z, and the photon γ.

The representation of the Ta matrices within the covariant derivative for the fermions

determines their group transformation and gauge interaction properties. If the Ta
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are a non-trivial representation of the group, the fermions couple with the corre-

sponding gauge bosons via terms in the covariant derivative. Otherwise, they are

singlets under the gauge group and do not interact through this interaction.

In this way, the fermions are divided into two categories:

• Six quarks, which transform under the fundamental representation of chromo-

dynamic SU(3), are said to carry color (chromodynamic charge) and hence

participate in QCD.

• Six leptons, which are SU(3) singlets, carry no color and do not interact via

QCD.

The six quarks are classified into “up”-type quarks with electric charge +2/3 and

“down”-type quarks with electric charge -1/3. Horizontally, they are divided into

three generations. Pairs of left-handed up and down-type quarks in each generation

are doublets of the SU(2)L gauge group of the electroweak interaction. The interac-

tion projects out the left-handed component of the fermion field, resulting in parity

violation. The right-handed components are singlets of SU(2)L. The anti-fermions

appear as conjugate terms in the Lagrangian, with the right-handed fermions form-

ing doublets and left-handed fermions forming singlets.

The leptons are likewise divided horizontally into generations and vertically into a

SU(2)L doublet consisting of a neutrino, carrying no electric charge, and a charged

lepton with electric charge -1. The various types of quarks and leptons (e.g. up,

strange, μ, τ) are collectively called flavors.

1.2.3 The Weak Interaction

Spontaneous Symmetry Breaking

The manifestation of the mediators of the electromagnetic and weak interactions in

the form of the massless photon and the massive W and Z is the result of the spon-

taneous symmetry breaking of the SU(2)L × U(1)Y gauge symmetry. Spontaneous

symmetry breaking allows the creation of massive gauge bosons without spoiling the

gauge symmetry which would otherwise result if explicit mass terms were inserted
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directly into the Lagrangian for the W and Z.

At the heart of the symmetry breaking is the introduction of the Higgs scalar field.

While any number of gauge invariant configurations that are non-trivial representa-

tions of SU(2)L can break the symmetry, the simplest is a single SU(2)L doublet:

φ =

⎛
⎝ φ+

φ0

⎞
⎠ (1.4)

We assume that the Higgs field carries no color.

In order to preserve the gauge symmetry, the kinetic term of the Higgs field must

enter via the gauge-covariant derivative:

L =
∣∣∣∣
(
∂μ + igT i · W i

μ + ig′Y
2

Bμ

)
φ

∣∣∣∣
2

− V (φ) (1.5)

Here, the W i
μ triplet and Bμ gauge bosons are introduced via gauge symmetry under

the SU(2)L and U(1)Y groups, respectively. The Higgs potential V (φ) is such that its

minima are at non-zero values of the Higgs field. The Higgs field then has a non-zero

vacuum expectation value v and the SU(2)L×U(1)Y gauge fields acquire a mass from

terms quadratic in the Higgs field. In order to identify the physical manifestation of

these fields, we identify the mass eigenstates. The combination W±
μ = W 1

μ ± iW 2
μ is

diagonal with mass 1
2
vg. The other two fields are off-diagonal in the mass matrix;

after diagonalizing the mass matrix, the eigenstates are:

Aμ =
g′W 3

μ+gBμ√
g2+g′2

Zμ =
gW 3

μ−g′Bμ√
g2+g′2

(1.6)

with eigenvalues:

MA = 0 MZ = 1
2
v
√

g2 + g′2 (1.7)

In the aftermath, we identify the massless gauge field from the remaining U(1) sym-

metry with the photon and the three massive bosons with the weak interaction.

Fermion masses are likewise generated from the vacuum expectation value of the

Higgs field via Yukawa terms:
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−M [χL φ χR + χR φ† χL] (1.8)

where M is arbitrarily chosen to construct the observed mass of the fermion. The

Standard Model makes no predictions for these fermion masses; they are inputs

parameters to the theory that must be determined from experiment.

The mechanism of spontaneous symmetry breaking thus generates all boson and

fermion masses in the Standard Model. Since we defined the Higgs field as a SU(3)

singlet, the SU(3) symmetry of QCD is not broken, leaving the gluons massless.

1.2.4 Flavor-Changing Interactions

The Weak Charged Current

The W boson can mediate flavor-changing charged current interactions in the quark

sector arising from the terms:

−i
g√
2

dγμ 1 − γ5

2
u W−

μ + Hermitean Conjugate. (1.9)

where d is a down-type quark and u is an up-type quark. However, the mass eigen-

states of the six quarks do not correspond to the flavor eigenstates, but are mixed

in a unitary transformation of the three down-type quarks. The transformation is

described by a unitary 3 × 3 matrix V , known as the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [6]. The charged current interactions between the three up-type

quarks and the three down-type quarks can be summarized as:

(u, c, t)
γμ(1 − γ5)

2

⎛
⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎠ W−

μ + H.C. (1.10)

where we have spelled out the CKM matrix explicitly. Unitarity and phase rotations

of the quark wavefunctions allow the nine elements of the matrix to be expressed in

terms of three angles and one phase. Kobayashi and Maskawa proposed that this

phase was the origin of CP Violation and argued that at least three generations of
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quarks must exist in order for unitarity to permit a non-trivial phase. This prediction

was made at a when time only three quarks were known to exist.

While the weak interactions are characterized by a universal coupling constant re-

sulting from the SU(2)L ×U(1)Y symmetry, the intergenerational quark interactions

are scaled by the appropriate CKM matrix elements; certain transitions have greater

rates due to favorable CKM elements, while others are suppressed. The theory makes

no predictions for the values of these elements aside from unitarity; they are yet an-

other set of arbitrary parameters which must be obtained from experiment. Since

the individual elements of the CKM matrix can be measured independently without

invoking the theoretical requirement of unitarity, the requirement of unitarity can

be used to overconstrain the CKM matrix and test the Standard Model of weak

interactions.

The unitarity of the CKM matrix is conveniently summarized in unitarity triangles.

In particular, unitarity imposes the following constraint on elements of the first and

third column of the CKM matrix:

V ∗
udVub + V ∗

cdVcs + V ∗
tdVtb = 0 (1.11)

This is expressed graphically in the complex plane as a triangle in Figure 1.2, where

the sides of the triangle have been normalized and rotated by dividing by the sec-

ond term in Equation 1.11, which consists of relatively well known elements of the

CKM matrix. The sides of the triangle, which correspond to magnitudes of CKM

elements, can be measured by analyzing the rates of processes which involve these

CKM elements, while the angles, which correspond to the relative phases between

the elements, can be measured by CP -violating asymmetries.

GIM Mechanism

The coupling of the quarks to the neutral Z boson are flavor-diagonal by definition,

with the result that there are no tree-level flavor-changing neutral currents in the

Standard Model. Such processes can only proceed at higher orders in loop processes

such as the “penguin” and “box” diagrams shown in Figure 1.3. These processes
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Figure 1.2: Unitarity triangle summarizing the orthogonality of the first and third
columns of the CKM matrix.
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Figure 1.3: Effective flavor-changing neutral current processes a.) The b → d/sγ
penguin diagram. b.) The K0 → μ+μ− box diagram.

are collectively known as effective flavor-changing neutral currents. Unitarity of

the CKM matrix has profound consequences for effective flavor-changing neutral

currents. In the limit of degenerate quark masses, they are forbidden: unitarity

of the CKM matrix demands that the separate contributions from the quarks that

mediate the loop cancel each other in sum [7]. As an example, the b → sγ penguin

transition in Figure 1.3 contains contributions from the three up-type quarks that

mediate the loop scaled by the appropriate CKM matrix elements:

V ∗
tbVts + V ∗

cbVcs + V ∗
ubVus (1.12)
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This quantity is identically zero from the unitarity relations between the second and

third columns of the CKM matrix. The different quark masses break the degener-

acy and allow these processes to occur at suppressed rates. Historically, Glashow,

Iliopolous and Maiani proposed the existence of the charm quark at a time when

only three quarks were thought to exist to explain the highly suppressed rate of

K0
L → μ+μ−, which could only proceed through diagrams like the box diagram in

Figure 1.3. In the GIM mechanism, the contribution of the charm quark in the loop

would cancel the contribution of the up quark in the diagram through orthogonal-

ity of the 2 × 2 matrix (corresponding to unitarity of the CKM matrix). The GIM

mechanism also explained the absence of flavor-changing Z interactions which would

occur if the strange quark were not part of a weak SU(2)L doublet [8].

The spontaneous symmetry breaking process, which endows the quarks with differ-

ing masses, is thus responsible for breaking the GIM mechanism in loop processes by

disturbing the balance imposed by the unitarity of the CKM matrix, which would

otherwise forbid effective flavor-changing neutral currents processes.

1.3 Radiative Decays in the Standard Model

Effective flavor-changing neutral current processes proceed through virtual loops and

thereby offer a testing ground of physics at high mass scales. We find a peculiar situ-

ation where the enormous mass of the top quark relative to the other quarks weakens

the GIM suppression and enhances its contribution in these processes. If the CKM

matrix elements of the up and charm contributions are known, we can isolate the top

contribution to such processes, allowing the extraction of the corresponding CKM

matrix elements involving the top quark. The weak interaction properties of the top

quark, with mass ∼ 174 GeV/c2, are thus accessible at much lower energy through

these processes.

In addition, these processes are sensitive to any other flavor-changing particles not

present in the Standard Model that may mediate the loop. These contributions can

affect the rate of the process and induce CP violation. In this way, flavor-changing

neutral currents are also sensitive to physics beyond the Standard Model. In all
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cases, the usefulness of any given process is contingent on the ability to make reli-

able theoretical predictions of its rate and CP violation.

The radiative decays B → ργ and B → K∗γ are examples of effective flavor chang-

ing neutral current interactions which offer an opportunity to study the top quark

and potential non-Standard Model contributions. The principle aim of the studying

these decays is to probe the CKM matrix elements Vtd and Vts through the underlying

b → dγ and b → sγ transitions shown in the first diagram of Figure 1.3. This goal is

greatly complicated by the need to properly account for the QCD effects. The most

notable difficulty arises from the evolution of the QCD coupling from small values

at scales much larger than ΛQCD ∼ 250 MeV, where perturbative calculations are

possible, to large values at scales ∼ ΛQCD, where they break down [9].

The large QCD couplings at low energies have profound consequences for the phe-

nomenology of quarks. The strength of the coupling results in confinement: colored

objects, such as quarks, can only appear in colorless combinations. The two possible

configurations for quarks are antisymmetric color triplets corresponding to baryons,

such as the familiar proton and neutron, and quark-antiquark pairs resulting in

mesons such as the pion, the kaon, and the B meson. The upshot is that quarks can

only be studied experimentally within the confines of baryons and mesons, with the

exception of the top quark, which decays before forming a bound state via QCD.

In order to make connection between our experimental observations and the CKM

parameters, we must be able calculate the effects of confinement. Thus, while we are

interested in parameters which are fundamental to the weak interaction, we must

inevitably confront QCD.

The challenge posed by this dramatic evolution of the behavior of the QCD is tackled

by dividing the problem into several parts. The Operator Product Expansion pro-

vides a framework in which to separate contributions of high-mass physics, occurring

at scales larger than the B meson mass, where perturbative QCD calculations are re-

liable, from the contributions from lower mass scales, where they start to break down.

Theoretical estimates of the effects from below this scale, called “long distance” con-

tributions, come from non-perturbative techniques such as QCD sum rules or lattice

calculations. Heavy Quark Effective Theory then provides the interface between the
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long-distance contributions and the perturbative calculations.

1.3.1 The Operator Product Expansion

The Operator Product Expansion [10] expresses the full diagrammatic theory as

an effective Hamilitonian constructed from a set of local operators Oi, where the

amplitude for a given process I → F is expressed as a sum of matrix elements of the

local operators:

〈F |HEff |I〉 =
GF√

2

∑
i

ViCi(μ)〈F |Oi(μ)|I〉 (1.13)

Here, GF is the Fermi constant, characterizing the strength of the underlying weak

processes. The Vi are CKM matrix elements appropriate for the quark transitions

and the Oi are the local operators categorized by Dirac and color structure forming

a complete set for a given transition. The Wilson coefficients Ci serve are the nu-

merical coefficients associated with these effective interactions. The amplitude of the

effective Hamiltonian is thus expressed as a sum of local operator amplitudes and

their Wilson coefficients.

The division of mass scales is implied by the μ-dependence of the Wilson coefficients

and the operators. The Wilson coefficients summarize the effects of interactions at

scales higher than μ, while the operators absorb all the effects that occur at scales

below μ. The choice of μ is arbitrary, but is typically chosen to be O(mb) for the

study of B decays, which is fortunately well above the scale ΛQCD where perturba-

tive QCD starts to break down. The operator product expansion offers a useful way

to summarize the expected effects of new physics contributions from scales higher

than μ: since we integrate over these new degrees of freedom, they simply result in

a modification of the Wilson coefficients in the Standard Model or additional Wil-

son coefficients associated with new operators that may be introduced with the new

physics.

In principle, the choice of μ should have no impact on the physical results of the cal-

culation. It represents an arbitrary border line between physics occurring at “higher”

and “lower” scales. As a result, the μ-dependence of the Wilson coefficients and the
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operator matrix elements must cancel. In practice, however, the Wilson coefficients

contain explicit dependence on μ due to the truncation of the perturbation expansion;

a full calculation to all orders would eliminate this dependence.

Determining the Wilson Coefficients

The Wilson coefficients are calculated by matching the predictions of the effective

theory with the full theory with all degrees of freedom at a high mass scale, typi-

cally MW , where the relevant diagrams and their QCD corrections can be calculated

via perturbation theory and evolved down to the relevant energy scale (in this case

the b quark mass) via renormalization group equations. After renormalization, the

operators can be identified within the full calculation and the Wilson coefficients

extracted. The QCD corrections result in two interesting effects. First, the QCD

contributions can introduce contributions from other operators, resulting in oper-

ator mixing. Operator mixing can significantly affect the decay rate: in b → sγ,

this results in a three-fold enhancement [11]. Second, the resulting expressions for

the Wilson coefficients contain an expansion in αs ln
M2

W

μ2 . Since μ is typically cho-

sen to be smaller than MW , the expansion diverges. Solving the renormalization

group equation allows us to sum these logarithm terms by determining the evolution

of the Wilson coefficients as a function of μ in a manner completely analogous to

determining the evolution of a gauge coupling.

1.3.2 Operators for B → ργ and B → K∗γ

The largest contributions for the radiative decays B → ργ and B → K∗γ arise

from the four-quark operators O1 and O2, and the electromagnetic penguin operator

O7. Also relevant is the chromomagnetic penguin operator O8, particularly for CP

violation studies. The operators have the following form:
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Figure 1.4: Primary operators for the B → ργ and B → K∗γ processes, up to O(αs).
On the left, the operator O7 is expressed in diagrammatic form. The crossed circles
represent possible insertions of the radiated photon.

O1 = qα(1 − γ5)pα pβ(1 − γ5)bβ O2 = qα(1 − γ5)pβ pα(1 − γ5)b

O7 = e
8π2 mb qασμν(1 + γ5)bα Fμν O8 = g

8π2 mb qασμν(1 + γ5)T a
αβbβ Ga

μν

(1.14)

We follow the convention used by Bosch and Buchalla for the numbering of the

operators [22]. α and β are color indices, q refers to d(s) for B → ργ(B → K∗γ),

and p can be either u or c. The effective Hamilitonian for the process can be written

explicitly as:

HEff =
GF√

2

∑
p=u,c

V ∗
pqVpb [C1O

p
1 + C2O

p
2 + C7O7 + C8O8] (1.15)
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At one-loop order, the decay is mediated entirely by the O7 electromagnetic penguin

operator without mixing with the four-quark operators; mixing between these sets

of operators only occurs at the two-loop level at O(eg2) and O(g3). The rate of the

inclusive b → sγ transition can then be written at one-loop order as:

Γ[b → sγ] =
αG2

F m5
b

128π4

∣∣∣∣∣
∑

p=u,c

V ∗
psVpb C7(mb)

∣∣∣∣∣
2

. (1.16)

The extraction of the rates to exclusive final states (e.g. K∗) require matrix elements

from non-perturbative calculations, as described below. Several groups have com-

pleted the next-to-leading order evaluation of the Wilson Coefficients at three-loop

level [12].

1.3.3 Form Factors: Sum Rules and Lattice Calculations

With the Wilson coefficients in hand, we turn to the task of calculating the oper-

ator matrix elements. For the decays B → V γ, where V is a vector meson, we

parameterize the matrix element with a form factor:

〈V (λ, pV )|f σμνq
νb|B〉 = 2iεμνρσε(λ)∗νpρ

Bpσ
V F B→V

1 (q2) (1.17)

where ε(λ) is the polarization vector, B is the parent B meson, and pB, pV and

q = pB − pV are the momenta of the B meson, the outgoing vector meson, and

photon respectively. Form factors, which summarize the non-perturbative effects of

QCD interactions, have been calculated in two approaches: sum rules and lattice

calculations.

Sum Rules

The QCD sum rule [14] approach relates the vacuum-to-vacuum correlation function

to a dispersion integral via analytic continuation:
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Π(Q2 = −q2) = i
∫

d4yeiq·y〈vac|T [J(y)J(0)] |vac〉 =
1

π

∫ ∞

s0

ds
ρ(s)

s + Q2
+ subtractions

(1.18)

The currents J are composed of the quarks in the Dirac structure we are interested

in. The first integral is the Fourier transform of the non-perturbative transition from

the initial state hadronic state (i.e. the B meson) at x = 0 to the final hadronic

state at x = y. In the second integral, the information about the hadronic states is

contained in the spectral function ρ(s) = ImΠ(s), with s ranging from the threshold

s0 and extending to infinity. The spectral function consists of δ functions and Breit-

Wigner distributions representing the hadronic states we are interested in, and a

continuum contribution.

ρ(s) = ρH(s) + Θ(s − sa)ρ(s)AF (1.19)

Here Θ(x) is the Heavyside-Lorentz function and sa is the threshold for the onset of

asymptotic freedom.

With the help of the operator product expansion, Π(Q2) is calculated at large Q2

well above Λ2
QCD. The expansion, as described above, separates the short distance

contributions into Wilson coefficients obtained from perturbative calculations and

matrix elements of vacuum matrix called vacuum condensates:

ΠQCD(Q2) =
∑
k

C2k(Q
2, αs, μ)

1

(Q2)k
〈vac|O2k(μ)|vac〉 (1.20)

The vacuum condensates are universal quantities and can be obtained experi-

mentally from processes where the spectral function is well known and transferred

to the calculation of other processes.

The primary assumption of the QCD sum rule approach is quark-hadron duality

which states that Π(Q2) = Π(Q2)QCD, allowing the dispersion integral to be ex-

pressed in terms of QCD parameters such as αs and quark masses.

The light cone QCD sum rule [15] approach is a variant of the sum rule approach in

which the hadrons are represented as external states in the correlation function. For



16 CHAPTER 1. THE THEORY OF RADIATIVE B DECAYS

B → V γ, the correlation function takes the form [17]:

iεμνρσ ε(λ)∗νqρpσT
(
(p + q)2

)
= i

∫
dx eiq·x 〈V (p, λ) |T [f σμνq

νb(x) b(0)iγ5f(0) ] |vac〉
(1.21)

The contribution of the B meson in the function T (p + q)2 can be identified as a

pole function in the dispersion integral, which gives us the relation of the correlation

function to the form factor [18]. The matrix element is expanded in the operator

product expansion with the light cone wavefunctions of the hadron ordered in in-

creasing twist, defined as d − s, where d and s are the dimension and spin of the

operator, respectively. Quark-hadron duality then relates the twist expansion to the

desired form factor.

Lattice Calculations

Lattice QCD calculations [16] involve simulating the quantum field theory on a dis-

crete mesh of space-time points. Two parameters govern the reliability of the calcula-

tions: the size of the simulated lattice, which must be at least the size of the particle

being simulated (	 1 fm), and the lattice spacing, which must be small enough to

make the effects of the discretization small (
 1/ΛQCD). The heavy mass of the b

quark, which requires small lattice spacings due to its small Compton wavelength,

introduces another complication. When the spacing is not small enough, the b quark

cannot be simulated directly; it is simulated at lower masses and the results extrap-

olated to the b quark mass.

The fast emission of the meson in the two body decay at q2 = 0 relevant for B → ργ

and B → K∗γ likewise cannot be directly simulated on the lattice [18]. While the

lattice calculations are limited in their ability to directly calculate the form fac-

tors in the kinematic range we are interested in, they nonetheless provide important

cross-checks on the sum rule techniques.
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LCSR [18] LCSR [17] lattice+LCSR [19] QCD SR [20]
F ρ

1 (0) 0.29 ± 0.04 0.24 ± 0.07
F K∗

1 (0) 0.38 ± 0.06 0.32 ± 0.05 0.32+0.04
−0.02 0.38 ± 0.06

ζ 0.77 ± 0.08 0.76 ± 0.06

Table 1.1: Results of form factor calculations using light cone sum rule (LCSR),
lattice and QCD sum rules (QCDSR).

1.3.4 Summary of Form Factor Calculations

A summary of the relevant form factors F ρ
1 (0), F K∗

1 (0) and the ratio of form factors

ζ = F ρ
1 (0)/FK∗

1 (0) calculated with the various methods is shown in Table 1.1.

1.3.5 Factorization

The theoretical calculation of the rates of B → ργ and B → K∗γ is completed by

incorporating the form factors into the operator matrix elements. The situation is

complicated by contributions from purely hadronic operators in which the radiated

photon results from electromagnetic corrections. It is necessary to separate these

processes, which involve hard gluon exchange and can be calculated perturbatively,

from the non-perturbative form factors. To this end, heavy quark effective theory [21]

is employed to simplify the QCD dynamics which occur within the B meson.

The central assumption of heavy quark effective theory is that within the B me-

son, the b quark interacts with the light degrees of freedom, consisting of gluons,

quarks and anti-quarks, through the exchange of soft gluons with momentum trans-

fer O(ΛQCD). Heavy quark effective theory is derived in the limit mb 	 ΛQCD

where these interactions effect no change in the four-velocity of the b quark, with

corrections in powers of ΛQCD/mb. This allows the factorization of the hard gluon

exchange contributions from the form factor in the form [22][23]:

〈V γ(ε)|Oi|B〉 = F B→V
1 (0)T I

i +
[∫ 1

0
dξ dvT II

i (ξ, v)ΦB(ξ)ΦV (v)
]
· ε (1.22)
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The hard-scattering kernels T I
i and T II

i represent contributions from the perturbative

hard-gluon exchange, categorized according to whether the exchange occurs along the

b → d/s quark line (T I
i ), or with the spectator quark (T II

i ). The diagrams contribut-

ing to the hard scattering kernels at O(αs) are shown in Figure 1.4. Diagrams 2a

and 2b, from O1,2 and diagrams 3a and 3b from O8 contribute to T I
i . Diagrams 2c

and 3c contribute to T II
i .

1.3.6 Direct CP Violation

Direct CP violation in the decays B → K∗γ and B → ργ results in different decay

rates for the charge-conjugate processes. The magnitude of direct CP violation is

characterized by comparing the difference to the CP averaged rate:

ACP =
Γ[B → V γ] − Γ[B → V γ]

Γ[B → V γ] + Γ[B → V γ]
(1.23)

where V = ρ, K∗. While the Standard Model predicts larger direct CP violation in

B → ργ, the theoretical status is rather uncertain [24]. Since the analysis presented

here is unlikely to be sensitive to this, we confine our discussion to B → K∗γ.

Direct CP violation results from the interference of amplitude contributions with

different strong and weak (CP even and odd) phases. For the b → sγ process, the

weak phases come from the the relevant CKM matrix elements in the Standard Model

and new physics contributions which can provide non-trivial phases to the Wilson

coefficients. The imaginary parts of the operator matrix elements from O(αs) loops

involving light and charm quarks and gluons produce strong phases [25].

Two features of the Standard Model suppress CP violation in the b → sγ transition.

First, the interference resulting from any non-trivial CKM phase is modulated by

the magnitude of the CKM matrix elements involved. Since the up and charm con-

tributions are small relative to the top contributions, this interference is suppressed

by the magnitude of the CKM elements. Second, the generation of the non-trivial

strong phases occurs at O(αs(mb)) ≈ 0.214. As a result, ACP in b → sγ is expected

to be less than 1% in the Standard Model [26].
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New physics contributions can significantly enhance ACP by introducing weak phases

in the Wilson coefficients. In particular, the O7 − O8 interference can generate sig-

nificant direct CP violation in supersymmetric theories with light gluinos (mg̃<̃mq̃)

which also significantly enhance the magnitude of O8. In such cases ACP ∼ 20%

is possible. Due to the unambiguous expectation for small ACP in B → K∗γ, any

observation of large ACP would be an indication of new physics.

Authors B[B0 → K∗0γ]/10−5 B[B+ → K∗+γ]/10−5

Bosch and Buchalla [22] 7.1 ± 2.5 7.45 ± 2.5
Beneke et al. [23] 7.9+3.5

−3.0 7.9+3.5
−3.0

Ali and Parkhamenko [24] 7.2 ± 2.7 7.2 ± 2.7
CLEO [31] 4.55 ± 0.70 ± 0.34 3.76 ± 0.86 ± 0.28
BELLE [33] 4.96 ± 0.67 ± 0.45 3.89 ± 0.93 ± 0.41

Authors B[B0 → ρ0γ]/10−6 B[B+ → ρ+γ]/10−6

Bosch and Buchalla [22] 1.6 ± 0.5
Ali and Parkhomenko [24] 0.49 ± 0.18 0.90 ± 0.33

CLEO [31] < 17 < 13
BELLE [33] < 10.6 < 9.9

Table 1.2: Theoretical predictions for B[B → ργ] and B[B → K∗γ] and current
experimental results.

1.4 Current Theoretical and Experimental Status

Several groups have calculated B[B → ργ] and B[B → K∗γ] employing factorization

and heavy quark effective theory at leading order in ΛQCD/mB to incorporate form

factors into the weak effective Hamiltonian. Their results are summarized in Ta-

ble 1.2 together with recent measurements by the CLEO and BELLE collaborations.

The theoretical calculations for B[B → K∗γ] are consistently higher than the ex-

perimentally measured rates. Two of the papers discuss this discrepancy resulting

from the form factor calculations [22][24]. By comparing the experimentally obtained
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results for the exclusive rate B[B → K∗γ] and the inclusive rate B[B → Xsγ], one

obtains an estimate for the form factor which is considerably smaller than the cal-

culations shown in Table 1.1. The estimate of B[B → ργ] by Ali and Parkhomenko

[24] is calculated using the smaller form factor extracted in this manner, while Bosch

and Buchalla use the higher value obtained from the light cone sum rules.

Due to these uncertainties, it is not possible to obtain a useful estimate on |Vtd| or

|Vts| individually from B[B → ργ] and B[B → K∗γ]. Ali and Parkhomenko [24]

explore the possibility of extracting the ratio |Vtd/Vts| through the ratio of the two

decay rates:

B[B → ργ]

B[B → K∗γ]
= Sρ

∣∣∣∣Vtd

Vts

∣∣∣∣
2

[
1 − m2

ρ/M
2

1 − m2
K∗/M2

]3

ζ2[1 + ΔR(ρ/K∗)], (1.24)

where Sρ is an isospin factor (1 for B+ → ρ+γ, 1/2 for B0 → ρ0γ) and some of the un-

certainty in the form factors is expected to cancel in the ratio ζ = F B→ρ
1 (0)/FB→K∗

1 (0).

The light cone sum rule calculation predict ζ = 0.76± 0.06 [17] and ζ = 0.75± 0.07

[18]. The uncertainty in ΔR, which represent corrections from hard-spectator in-

teractions and annihilation contributions, is expected to be less than 25%. If true,

|Vtd/Vts| can be extracted with less than 15% theoretical uncertainty. However, the

discrepancy in the prediction of B[B → K∗γ] has opened a debate of whether the

form factor calculations are reliable, both individually or in the ratio. Other authors

assign a more conservative error to the form factor ratio of up to 30% [27]. Nonethe-

less, current experimental limits are still an order of magnitude larger than the most

optimistic estimates of B[B → ργ]. Observation of this decay is of considerable inter-

est as first evidence of the b → dγ transition and the first step towards determining

|Vtd/Vts| in radiative B decays.



Chapter 2

The BABAR Detector

The BABAR detector was built to study the decay of B mesons produced by the

PEP − II asymmetric electron-positron collider. The primary purpose of the de-

tector is the study of time-dependent asymmetries of B and B meson decays which

shed light on CP violation in the CKM Model. However, the detector is versatile

enough to cover the full range of B meson physics performed by previous experi-

ments. This section details the various components of the BABAR detector, following

a brief description of the PEP − II storage ring and its performance.

2.1 The PEP − II Collider

The PEP−II asymmetric collider consists of two storage rings which collide 9.0 GeV

electrons on 3.1 GeV positrons. The energies are selected to produce the Υ (4S)

resonance with a boost of βγ = 0.56. In the interaction region where the BABAR

detector is located, the beams are brought into head-on collision and separated using

dipole magnets.

The electron and positron beams are stored with currents of over 1.0 A and 1.5 A,

respectively, in 1658 bunches 120 μm×5.6 μm×9 mm in size. The design luminosity

of 3 × 1033 cm−2 s−1 has been achieved and exceeded. Approximately 10% of the

data is taken 40 MeV below the Υ (4S) resonance (off-resonance data), resulting in

a control sample of u, d, s and c quark-antiquark pairs and τ+τ− pairs produced in

21
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the continuum without BB production.

2.2 The BABAR Detector

The study of the B decays typically proceeds by fully reconstructing the decay chain

to its final state particles consisting of charged hadrons (pions, kaons and protons),

charged leptons (electrons and muons) and photons. Intermediate states in the decay

chain are reconstructed as a composition of the appropriate particles, e.g. K0
S
→

π+π− and π0 → γγ. In general, the unambiguous reconstruction of the complete

decay chain and kinematics requires the following information from the detector:

• The momentum and charge of charged tracks.

• The identity of each charged track: electron, muon, pion, kaon or proton.

• The energy and direction (momentum) of photons.

For the study of time-dependent asymmetries, the vertex information of the decay is

also necessary. This is obtained from precise measurement of not only the momenta

of the charged tracks, but also their trajectory through the detector.

The BABAR detector is composed of the five components shown in Figure 2.1, each

providing complementary information about the decay products necessary for the

full reconstruction of the B decay. In order from innermost to outermost, the sub-

components, together with their primary tasks, are:

• Silicon Vertex Detector (SVT):

Precise tracking of charged particles near the interaction region.

• Drift Chamber (DCH):

Precise tracking and momentum measurements of charged particles

• Ring-imaging Cherenkov Detector (DIRC):

Charged particle identification: pion/kaon/proton discrimination.

• Electromagnetic Calorimeter (EMC):

Position and energy reconstruction of photons and identification of electrons.
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• Instrumented Flux Return (IFR):

Hadron/muon discrimination

Except for the IFR, the components are embedded in the 1.5 T superconducting

solenoid. The curvature of the charged tracks in the magnetic field enables the mea-

surement of the momentum and sign of each track.

The electronics of the various components share a common architecture. Each de-

tector component has front-end electronics (FEE) mounted directly on the detector

system which digitize the detector output, forward the information to the trigger sys-

tem and buffer the information for readout pending an accept trigger. The output

from the FEE are transferred to storage via Readout Modules (ROM) consisting of

a personality card which interfaces via optical cables to the component-specific FEE

and a single board computer that processes the FEE output for the fast control and

timing system (FCTS) and the event builder.

The following sections describe the design and performance of each of the sub-

detectors. A detailed description of the EMC and its calibration is given in the

following chapter.

2.3 The Silicon Vertex Tracker (SVT)

The purpose of the silicon vertex tracker (SVT) is to measure the trajectories of

charged particles near the beam interaction region and provide precise information

on decay vertices. The SVT is capable of stand-alone tracking of tracks with insuf-

ficient transverse momentum to traverse the drift chamber. Measurements of the

charge collected in the silicon strips provide information on the specific ionization

used for particle identification. The SVT also measures the angles of the tracks nec-

essary for the DIRC reconstruction.
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Figure 2.1: Longitudinal section of the BABAR detector.

2.3.1 SVT Layout

The SVT layout is depicted in Figure 2.2. The detector consists of five sets of silicon

strip modules arranged in concentric layers. The three innermost layers consist of

six modules, and the two outermost layers are composed of sixteen and eighteen

modules. The silicon detectors are double-sided: on one side, the readout strips run

parallel to the beam (φ strips), on the other, the strips run perpendicular to the

beam (z strips). The readout pitch varies from 50 to 210 μm; in some cases there

are floating strips (a strip that is not read out) between two active strips.

The modules of the three innermost layers are assembled straight and positioned

close to the beam pipe to optimize point resolution. The outer two layers are arch-

shaped to increase coverage and reduce the angle of incidence. The forward and

backward acceptance, which extend to 350 mrad and 520 mrad respectively, as well
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Figure 2.2: Longitudinal section of the SVT

as the proximity of the innermost layer to the interaction point (32 mm radius), are

limited by the beam pipe and magnets in the interaction region.

2.3.2 SVT Electronics

Data from the approximately 150,000 readout channels are delivered via fanout cir-

cuits to a custom ATOM (A Time-Over-Threshold Machine) integrated circuit. In

the ATOM, the analog signal is preprocessed by a preamplifier and shaping circuit

and transformed into a pulse varying quasi-logarithmically with the integrated charge

by a comparator. The comparator output is sampled at 15 MHz onto a 193 bin cir-

cular buffer. The Level I trigger (see Section 2.8.1) initiates the readout of the buffer

into an event buffer, which is delivered with a time stamp and strip address to the

Read-Out Module (ROM) if the Level I accept is received. The front-end electronics

are mounted adjacent to the silicon strips on the beam pipe support and support

structure.

2.3.3 Reconstruction and Performance

The reconstruction of SVT hits starts by removing hits that are out-of-time relative

to the event time derived from the DCH. The remaining adjacent hits are clustered,

with hit positions weighted by charge to calculate the cluster position. The cluster
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positions are then used by the track-finding algorithms. Accurate alignment infor-

mation is critical in obtaining precise trajectory measurements. The alignment of the

SVT is determined in two steps: the local alignment, which determines the relative

positions of the individual SVT modules, and the global alignment, which determines

the position of the SVT as a whole relative to the DCH. The local alignment is per-

formed as often as necessary, typically after detector access, using e+e− → μ+μ− and

isolated tracks from hadronic events. The global alignment is performed every few

hours in order to correct for diurnal motion of the SVT resulting from temperature

variations. The procedure minimizes the offset between tracks sections reconstructed

in the SVT and the DCH by varying three rotation and three translation parameters.

The achieved hit resolution varies between 20 to 40 μm depending on the incident

angle of the track on the SVT module. The dE/dx resolution for minimum-ionizing

particles sampled over five layers is 14%.

2.4 The Drift Chamber

The Drift Chamber (DCH) provides the detection of charged particles and the pre-

cise measurement of their kinematics necessary for the reconstruction of B meson

decays with high efficiency and low background. Ionization loss measurements pro-

vide dE/dx information for particle identification which complements the SVT and

DIRC. The DCH also reconstructs the decay vertices of long-lived particles, such as

the K0
S and Λ0, which may decay outside of the SVT.

2.4.1 Design and Geometry

The DCH is constructed from two concentric cylinders with radii of 236 mm and 809

mm as shown in Figure 2.3. There are 40 radial layers of hexagonal cells organized in

10 superlayers of four layers each. In total, there are 7,104 drift cells. The wires are

oriented at various angles with respect to the z axis by superlayer to obtain longitu-

dinal information as shown on the right in Figure 2.3. The stereo angles alternate in
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Figure 2.3: Left: Longitudinal section of the DCH. Right: Schematic layout of drift
cells in the four inner superlayers.

the pattern AUVAUVAUVA for the ten superlayers, where A is axial view (parallel

to the z axis), and U and V are the stereo views, with angles increasing radially from

45 and 76 mrads.

The DCH uses 80:20 mixture of helium and isobutane to minimize multiple-scattering,

the dominant component of the resolution at momenta below 1 GeV/c, the typical

momentum of tracks from B decays. In total, the DCH contributes 1.08%X0 of ma-

terial in front of the DIRC.

The polar acceptance of the detector, defined as the extreme angle at which a par-

ticle from the origin crosses at least 20 layers, is 17.2◦ in the forward direction, and

27.4◦ in the backward direction, as shown in Figure 2.3. The azimuthal acceptance
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is complete.

2.4.2 Electronics and Readout

The front-end electronics of the DCH are mounted on the back endplate in 16 az-

imuthal sectors. No components are mounted on the front endplate in order to

minimize material in front of the EMC. Each sector consists of service boards pro-

viding high voltage to the wires and the Front- End Assembly (FEA) mounted on

the back of the service boards. On the FEAs, a combination 4 bit TDC and 6 bit

15 MHz FADC circuit processes the amplified sense wire output and digitizes the

charge deposition and drift time.

2.4.3 Reconstruction

The drift time-to-distance relationship and gas gain are needed to determine the drift

distance and ionization loss from the recorded information. The time-to-distance

relationship for a given layer is obtained using tracks from Bhabha and μ-pair events.

The track trajectory is reconstructed with all the hits excepting the wire in question.

The drift time together with the point of nearest approach to the wire for this

trajectory is used to determine the time-to-distance relationship. The overall gas

gain is obtained from the charge collected from tracks in Bhabha scattering events.

The charge collected on individual wires is corrected for geometric effects, as well as

variations in the electronics response.

2.4.4 Tracking

Track Finding

The track reconstruction starts from track segments and pattern recognition infor-

mation obtained from the Level 3 DCH algorithm (Section 2.8.2). Using the track

segments found by the Level 3 algorithm, the event time t0 is improved by re-fitting

the track parameters in each segment with varying t0. Additional hits are added to

the tracks as the t0 is recalculated with the newly added hits. Using the improved t0
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information, two additional track-finding algorithms are employed to identify tracks

which do not originate from the interaction point or do not traverse the entire length

of the DCH.

The tracks found by this algorithm are re-fit using the Kalman filter, which accounts

for local variations in material and magnetic field in the fitted trajectory, and ex-

trapolated through the SVT. SVT track segments are added to the track if they are

consistent with the extrapolation. Two additional track-finding algorithms are used

to find SVT stand-alone tracks.

Performance

The efficiency for DCH tracking has been determined to be 98 ± 1% by comparing

the number of tracks found in the SVT that extrapolate into the DCH acceptance

with the number of tracks actually found by the DCH. For SVT-only tracks, the

efficiency is greater than 80% down to pT ≈ 70 MeV/c

The tracking resolution in the parameters d0, z0 (transverse distance and z coordinate

at the closest approach to the z axis), φ0 (azimuthal angle) and λ (dip angle to the

transverse plane) can be obtained from Bhabha scattering and e+e− → μ+μ− events

by comparing the difference of the parameters obtained for the two tracks at the point

of their closest approach. The pT resolution, dominated by the DCH, can likewise

be studied with cosmic ray muons. The resolutions obtained from these studies are:

δd0 = 23 μm δz0 = 29 μm

δφ0 = 0.43mrad δ tan λ = 0.53 × 10−3
(2.1)

σpT
/pT = (0.13 ± 0.01%)pT + (0.45 ± 0.03)%

2.5 The Ring-Imaging Cherenkov Detector (DIRC)

The DIRC (Detector of Internally Reflected Cherenkov light) is a novel ring-imaging

Cherenkov radiation detector used for the identification of charged hadrons. The re-

quired momentum coverage of the DIRC is characterized on one end by kaon tagging
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for time-dependent asymmetry measurements, where the typical momentum is less

than 1 GeV/c, and on the other end by K/π separation for the B0 → π+π−/K+π−

analysis, where momenta range from 1.7 to 4.2 GeV/c. The lower threshold for the

DIRC is dictated by the 280 MeV/c of transverse momenta necessary to traverse the

DCH and reach the DIRC.
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2.5.1 Design and Geometry

The DIRC is implemented as a barrel of 144 synthetic fused silica bars surrounding

the DCH and an array of 10752 photomultipliers in the standoff box (SOB) behind

the rear IFR doors as shown in Figure 2.4. Cherenkov radiation emitted by charged

particles traversing the bars is propagated by internal reflection to the photomulti-

plier array in the SOB, where the ring is reconstructed to determine the Cherenkov

angle. The index of refraction of the bars is 1.473.

The quartz bars are mounted inside 12 aluminum bar boxes, each containing 12 bars.

The bars extend along the entire length of the DCH, covering polar angles down to

25.5◦. The acceptance in the backward direction ends at 38.6◦. The bars extend

backward through the IFR doors to the SOB. The barbox construction is shown on

the top right in Figure 2.4

The SOB is a water tank extending conically from the bars. An array of 29 mm

ETL 8125 photomultipliers (PMTs) is mounted on the back wall in twelve sectors

of 896. The index of refraction of water (n = 1.346) is close to that of the silica

bars, resulting in minimal reflection at the interface. At the end of each bar is a

silica wedge prism designed to recover photons at wide angles relative to the bar axis

by reflection, as shown in Figure 2.4. The typical distance between the end of the

bar and the photomultipliers is 1.17 meters. At this distance, the photon angular

resolution resulting from granularity of the photomultiplier array is approximately 7

mrad, so that this geometric contribution to the resolution is larger than the intrinsic

dispersion of the Cherenkov cone (approximately 5.4 mrad) and the dispersion from

photon transmission.

2.5.2 Electronics and Reconstruction

The DIRC Front-end Boards (DFBs) hold TDC and FADC circuits for 64 photomul-

tiplier signals. The 16-channel TDC has 0.5 ns binning in order to determine the

photon arrival time to within the 1.5 ns spread resulting from the transit time. The

digitized information is sent to the ROMs via optical fibers.

Precise timing of DIRC PMT signals is critical for the reconstruction. The DIRC
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timing calibration uses a 1 ns pulses from blue LED light pulsers. With approxi-

mately 65,000 TDC times accumulated in the Readout Modules from each PMT, the

timing is calibrated to a statistical accuracy of less than 0.1 ns. A complementary

method uses comparisons of observed and expected arrival times from tracks in the

collision data. The two calibrations are found to be consistent.

The DIRC reconstruction of a charged track starts by determining for each photo-

multiplier signal the coordinates in the Cherenkov cone system based on the PMT

location and the position of the end of the bar through which the track traversed.

The coordinates are θC and φC , the polar and azimuthal angle relative to the cone

direction, and δt, the time relative to the expected arrival. A sixteen-fold ambiguity

results from the last reflection in the bar (top/bottom, left/right), whether the pho-

ton scattered off the wedge, and whether the photon propagated initially forward or

backward. The timing resolution is critical in reducing this to a threefold ambiguity

and reducing background hits by a factor of forty. The reconstruction algorithm then

maximizes likelihood of the entire event based on the individual track likelihoods for

the electron, muon, pion, kaon and proton hypotheses. For momenta between 0.5

and 3 GeV, combined with dE/dx information from the SVT and DCH, the DIRC

achieves kaon identification with efficiency greater than 90% and less than 3% pion

misidentification for tracks that intersect the radiator bars.

2.6 The Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMC) provides the precise measurement of pho-

ton energy and direction from 20 MeV up to the kinematic limit of 9 GeV. The range

is necessary in part to reconstruct the mode B0 → π0π0, where the fast π0 produce

highly asymmetric photon pairs. The measurement of energy deposited in the EMC

by charged tracks (E) is also the primary input for electron identification through

E/p.
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Figure 2.5: a.) Longitudinal section of top half of the EMC. b.) Crystal housing
with front-end electronics.

2.6.1 Geometry

The EMC is an array of Thallium-doped Cesium Iodide (CsI(Tl)) crystals consisting

of two parts: the cylindrical barrel and the forward endcap. In total, the EMC

contains 6580 crystals arranged in 48 rings of 120 crystals comprising the barrel

and rings of 120, 100 and 80 crystals comprising the endcap. The segmentation

gives the excellent angular resolution (∼ few mrad) necessary for high energy π0

reconstruction. The geometry of the detector is shown in Figure 2.5. The choice of

CsI(Tl) results from the requirements of energy resolution, radiation hardness and

stopping power. The typical light yield for the crystals is 50000 photoelectrons per

MeV.

2.6.2 Electronics

Two silicon photodiodes are mounted at the end of the CsI(Tl) crystals, as shown

in Figure 2.5, along with two low-noise preamplifier contained within the crystal

fixture. The output from the photodiodes feeds into the custom auto-range coding

(CARE) circuit with amplification factors of either 1 or 32. Since these front-end

components are inaccessible during normal operation of the detector, the twofold

photodiode/preamplifier redundancy is adopted to ensure reliability. The CARE

chip can be set to read either channel or an average of both.
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Further choice of amplification using the CARE chip allow gains of 256, 32, 4 and

1 for the energy ranges 0 − 40 MeV, 50 − 400 MeV 0.4 − 3.2 GeV and 3.2 − 13 GeV,

respectively. This choice of ranging effectively allows a 18 bit dynamic range across

the entire energy spectrum. The signal output from the CARE chip, along with the

rangebits, are sent via optical fiber to the ROMs.

2.6.3 Calibration and Monitoring

The EMC response and stability are monitored by a number of calibrations. The

crystal light yields, which decrease with radiation damage, are calibrated at low

energies by circulating irradiated Fluorinert through the detector and measuring

the 6.13 MeV peak of the emitted photons. A high energy calibration of the light

yield using Bhabha scattering events calibrates the measured deposited energy to the

predictions from Monte Carlo simulation. These calibrations are described in detail

in Section 3. A third system, the Xenon light pulser, performs daily monitoring of

the relative crystal response.

2.6.4 Performance

The energy and angular resolution of photons reconstructed in the EMC has been

determined from data control samples such as symmetric π0 and η decays. At one end

of the energy range, the source calibration at 6.13 MeV gives a fractional resolution

of 5.0 ± 0.8%, and at the other end, Bhabha scattering events give a resolution of

1.9 ± 0.07% from 3 − 9 GeV. The energy resolution can be parameterized by:

σE

E
=

(2.32 ± 0.30)%

4
√

E( GeV)
⊕ (1.85 ± 0.12)% (2.2)

The first term results from statistical fluctuations in the scintillation photon yield,

as well as beam background and electronics noise. These effects become relatively

less important at higher energies. The second term, constant in energy, is associated

with leakage and absorption in front and in between crystals.
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2.7 The Instrumented Flux Return

The Instrumented Flux Return (IFR) identifies muons by providing information on

the penetration of charge particles through the steel of the solenoid flux return. Neu-

tral hadrons, such as neutrons and K0
L are also identified through their interaction in

the steel. The neutral hadron reconstruction is limited to direction; the calorimetric

information is too coarse to provide useful input. The steel of the IFR is segmented

into nineteen layers arranged in hexagons extending radially in the barrel section.

For forward and backward coverage, the end door steel has 18 gaps, as shown in

Figure 2.6. The gaps are instrumented with resistive plate chambers (RPCs) which

detect charged particles and interactions of neutral hadrons traversing the steel.

2.7.1 The Resistive Plate Chambers

The configuration of the RPC system is shown on the left in Figure 2.6. The 2

mm gap between the two layers of Bakelite is filled with a mixture of Argon, Freon,

and isobutane at ∼ 1500 torr of pressure. A potential of 8 kV is maintained via

a graphite layer deposited on the external surface of the Bakelite. When the gas

is ionized by a charged particle traversing the gap, the discharge is detected by

aluminum strip electrodes which run in perpendicular directions on the outside of

the Bakelite. The Bakelite is chosen for its resistive properties (1011−12Ω - cm) which
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localize the discharge.

The RPCs modules are produced in modules of up to 320 × 130 cm2. In the barrel,

three modules are used to cover the gaps in each hexagonal face of the steel in

each layer. The set of modules extending radially and covering the same z and φ

regions define a sector. The readout strips in each module are arranged in 32 rows

perpendicular to the beam, providing z coordinate information and 96 rows parallel

to the beam for the φ coordinate. Each half of the end doors have three vertical

sections, each containing two RPC modules.

2.7.2 Reconstruction

The IFR reconstruction joins hits across layers into two-dimensional clusters in each

dimension. Within each sector, clusters in each dimension are then combined into a

three dimensional cluster.

Muon identification in the IFR starts by associating hits in the RPC strips within

a certain transverse distance from the extrapolated trajectory of a reconstructed

charged track. Selections are based on information such as the quality of the cluster-

track match and a comparsion of the interaction lengths traversed by the track in

the detector and the expected number of interaction lengths for a muon of the same

momentum and angle. The minimum momentum for muon identification using the

IFR is about 600 MeV/c, based on the transverse momentum necessary to enter the

detector. Between momenta of 1.5 and 3.0 GeV/c, where most of the primary leptons

from semileptonic decays of the B meson lie, the IFR achieves nearly 90% efficiency

for muon identification with 6 − 8% pion misidentification.

2.8 Trigger

At the PEP − II design luminosity, beam-related background events occur at over

20 kHz, while events of physics interest (BB, τ events, etc.) occur at rates of several

Hz. The trigger system must reduce the data-taking rate to a manageable rate for
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the online reconstruction (approximately 120 Hz), while selecting events of interest

with high efficiency and low deadtime. In particular, the trigger system is required

to have at least 99% efficiency for BB events and 95% for continuum events with at

most 1% deadtime.

The trigger is implemented in two layers: The Level 1 (L1) hardware trigger, de-

signed to reduce the output rate to 1 kHz, and the Level 3 (L3) software trigger.

2.8.1 The Level 1 Trigger

The Level 1 trigger consists of three components: one based on DCH information

(DCT), one on EMC information (EMT) and diagnostic trigger based on IFR infor-

mation (IFT).

The Drift Chamber Trigger

The DCT takes data from each of the DCH cells and implements a fast 24 module

Track Segment Finder (TSF) using the φ coordinate and drift times of the hits.

These segments are passed to the Binary Link Tracker, which bins the segments into

supercells dividing the DCH into 32 φ bins and 10 superlayers. The BLT starts from

the innermost layer and links segments in contiguous supercells. Eight transverse

momentum discriminator (PTD) modules determine the number of tracks above

a certain threshold. The output of the DCT are 16 bit trigger primitives which

categorize the BLT and PTD results into short (traversing half the DCH), long

(traversing the entire DCH) and high PT (> 800 MeV/c) tracks.

The EMC Trigger

For the EMT, the EMC is divided into 280 towers which bin the detector into 7

regions in θ and 40 sectors in φ. In each φ sector, the energy is summed considering

all crystal depositions above 20 MeV. These sums are used to make the EMT trigger

primitives which consist of energy depositions in three bins, as well as an Endcap

minimum-ionizing deposition primitive and a high-energy backward barrel deposition
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primitive.

The DCT and EMT inputs are processed by the global trigger (GLT) to form specific

triggers. The processing times for the DCT and EMT is approximately 5μs with

an addition 4μs for the GLT to process and begin readout from the ROMs. The

combined L1 triggers achieve nearly 100% efficiency for generic BB events.

2.8.2 The Level 3 Trigger

The Level 3 trigger runs a track-finding algorithm in the DCH (L3Dch) and a clus-

tering algorithm in the EMC (L3Emc) to initiate the event reconstruction process.

The L3 DCH Reconstruction

The track-finding algorithm uses a Monte Carlo-based lookup table of hit patterns in

order to associate track segments from the TSF to a track. A pattern matched to an

entry in the lookup table is passed to an iterative fitting algorithm, which uses the

segment hits and adds or drops hits based on their proximity to the fitted trajectory.

The L3 EMC Reconstruction

The clustering algorithm eliminates hits which are more than 1.3μs from the event

time and isolated crystals with less than 20 MeV of energy. Clusters are formed from

adjacent energy depositions, and the energy, lateral energy profile, time and centroid

calculated for clusters with at least 100 MeV of energy.

Performance

Using the L3 tracks and clusters, events can be reconstructed, categorized, and ac-

cepted or rejected. The L3 information allows copious electrodynamic processes use-

ful for calibration purposes, such as (radiative) Bhabha scattering and e+e− → γγ

events, to be identified and passed at reduced rates. Multiplicity criteria identify

hadronic events from BB decays and the continuum. The combined L1 and L3

trigger achieves over 99.9% efficiency for BB events and over 95% for continuum

events.
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2.9 The Data

The data used in the B → K∗γ analysis consists of 20.7 fb−1 of on-resonance data

and 2.6 fb−1 of off-resonance data taken in 1999-2000, while the B → ργ analysis

includes data taken in 2001, for a total of 56.2 fb−1 of on-resonance data and 7.8 fb−1

of off-resonance data. The luminosity measurements typically have an error of 0.5%.

Within the collision environment, the Υ (4S) production which actually produces

BB pairs accounts for about a quarter of the total cross-section of hadronic pro-

duction; the rest is continuum production. Other processes such as e+e− → μ+μ−

and e+e− → τ+τ− are produced at rates comparable to the Υ (4S) production, while

Bhabha scattering occurs at rates nearly forty times higher.

The total number of BB pairs produced in the data is determined by comparing the

yield of hadronic events in the on and off-resonance data [39]. The yield in the off-

resonance data is scaled by the luminosity determined from the yield of e+e− → μ+μ−

to the on-resonance data and subtracted; the remainder is attributed to BB produc-

tion in the on-resonance data. The number of BB pairs produced is determined to

be 22.7 ± 0.36 × 106 for the 1999-2000 data and 61.7 ± 0.70 × 106 for the 1999-2001

data. Equal production of B0B0 and B+B− is assumed.

The Monte Carlo simulation of specific channels as well as generic continuum and

BB processes is based on a detailed detector simulation using GEANT [30]. Back-

ground estimates from these samples are obtained by scaling the event yields using

the equivalent luminosity for the simulated sample based on the known cross-section

for these processes. Due to the large amount of data available, the equivalent lu-

minosity of the simulated generic background Monte Carlo samples is typically half

that of the actual data.



Chapter 3

The Radiative Bhabha Calibration

3.1 Overview of the EMC Calibration

The reconstruction of high energy photons is a key ingredient of the B → ργ and

B → K∗γ analyses. In the laboratory frame, the primary photons from these decay

range from 1.5−4.5 GeV. Proper calibration of the EMC response to photons of this

energy is necessary to allow the exclusive kinematic reconstruction of these decays.

The energy calibration of the EMC proceeds in two steps:

• A crystal light yield calibration which corrects the relative response for each

crystal to a given amount of energy deposited in the crystal.

• A shower energy correction which corrects for energy not contained within the

crystals due to material in front of and in between crystals, as well as leakage

out of the back and in between the crystals. This correction is applied to

reconstructed clusters and not to individual crystals.

The first corrects for the EMC response to energy actually deposited in the crystals,

while the second corrects for energy not contained in the crystals.

40
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3.1.1 Crystal Light Yield Calibration

The light yield calibrations occur at the extreme ends of the EMC energy range. At

the lower end, the calibration is performed with 6.13 MeV photons from a source.

At the high end, the corrections are obtained from Bhabha scattering events, which

provide a large sample of electrons and positrons at the kinematic limit (3 − 9 GeV

depending on polar angle) produced in situ from the e+e− collisions.

Source Calibration

The source calibration uses 6.13 MeV photons from the following radioactive decay

chain initiated by bombarding Fluorine with neutrons:

19F + n → 16N + α, 16N → 16O∗ + β, 16O∗ → 16O + γ(6.13 MeV) (3.1)

The fluorine is distributed in the form of Fluorinert[29]. A neutron gun is used

to irradiate Fluorinert, which is circulated immediately in front of the crystals by

aluminum pipes. The decay photons are observed in the crystals, resulting in the

spectrum shown in Figure 3.1 with two escape peaks at 5.62 MeV and 5.11 MeV. The

fitted peak position then gives the crystal light yield correction. The calibration can

be performed in forty minutes to obtain a statistical precision of 0.35%. Weekly

calibrations monitor the degradation in the light yield from radiation damage, as

shown in Figure 3.1. The damage is worst in the forward region, where the light

yield decreased approximately 8% in the first year of data taking. However, the

observed damage is less than the 10% loss expected in the design of the EMC.

The Bhabha Calibration

A clean sample of Bhabha scattering events, which provide electrons and positrons

monoenergetic at a given polar angle, can be extracted from the two prong event

sample by simple kinematic selection based on the reconstructed tracks. The cali-

bration compares the reconstructed deposited energy in the calorimeter to a table

of expected values derived from Monte Carlo simulation as a function of the entry
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Figure 3.1: a.) Typical spectrum from the 6.13 MeV source photons. b.) Measured
light output in the first year of data taking.

position of the track into the EMC. The table accounts for variations in the expected

deposited energy due to differences in the material in front of the EMC, most notably

the DIRC, as well as the intercrystal leakage properties that vary with the entrance

point of the track on the face of the crystal. The calibration, however, does not

calibrate for these variations; they are inputs from the Monte Carlo simulation

The calibration for each crystal is obtained by solving a series of linear equations

resulting from a χ2 minimization of the difference between the expected and observed

deposited energy as a function of the crystal calibrations.

3.1.2 Leakage Corrections

Currently, the leakage corrections are derived from two sources: at low energies, the

π0 → γγ decay is used to determine a correction in terms of the polar angle and

energy of the photons by constraining the reconstructed mass to the known π0 mass.

At higher energy, where photons from π0 decays are typically highly asymmetric in

energy, a correction from the Monte Carlo simulation is used. It is desirable to have a

data-based control sample that can cross check this calibration and determine effects

that may not be properly simulated in the Monte Carlo. The radiative Bhabha
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scattering process provides such a sample.

3.2 The Radiative Bhabha Calibration

The radiative Bhabha scattering process, in which a Bhabha scattering event is

accompanied by the radiation of a photon from the electron or positron in the initial

or final state, provides a large sample of photons across nearly the entire phase space.

The reconstruction of the electron and the positron in the DCH, along with the

photon direction, allow the energy of the photon to be determined in a kinematic fit.

The predicted energy can be compared with the reconstructed energy to determine

a correction. The photons can be binned in angle and energy to correct for leakage

effects that may vary as a function of energy and angle of the radiated photon. The

goal of the calibration is to provide corrections with an accuracy of 0.5% across the

entire EMC for photons with momenta greater than 500 MeV.

3.2.1 The Kinematic Fit

The kinematic fit follows from energy and momentum conservation based on the kine-

matics of the initial state (the electron and positron beam), the detector-reconstructed

kinematics of the outgoing electron and positron tracks, and the direction of the

photon obtained from the reconstructed centroid of the photon cluster. Altogether,

nineteen variables are determined in the fit:

• momenta of incoming electron and positron (six variables)

• momenta of outgoing electron and positron (six variables)

• Θγ, Φγ and Eγ : direction and energy of the photon (three variables).

• λi: Four Lagrange multipliers for the energy and momentum conservation con-

straints.
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The χ2 of the fitted result can be expressed as:

χ2 = (f − m)T V −1(f − m)+

λ1[p
i
x − pf

x − Eγ sin Θγ cos Φγ ]

λ2[p
i
y − pf

y − Eγ sin Θγ sin Φγ ]

λ3[p
i
z − pf

z − Eγ cos Θγ]

λ4[E
i − Ef − Eγ ]

(3.2)

Here, f is the vector of fourteen quantities determined by the fit (incoming e+e−

momenta, outgoing e+e− momenta and the direction of the photon in terms of Θγ

and Φγ), m is the vector of corresponding measured values and V is the covariance

matrix for these fourteen quantities. pi and pf are the incoming and outgoing mo-

mentum vectors of the e+e− pair determined by the fit, and Eγ , Θγ and Φγ are the

energy, polar angle, and azimuthal angle of the outgoing photon determined by the

fit. The first line in Equation 3.2 assesses the χ2 from the deviation of the fitted

quantities to their measured values and covariances, while the four Lagrange multi-

plier terms enforce energy and momentum conservation. By minimizing the χ2, the

expected photon energy Eγ is determined along with the other kinematic quantities

independent of the energy reconstructed in the EMC. The iterative algorithm for

minimizing the χ2 used in this fit are documented in Reference [35].

3.2.2 Event Reconstruction and Photon Selection

The event reconstruction proceeds by identifying electron-positron tracks and requir-

ing that there are no other tracks in the event. A simple electron selection requires

the EMC deposition of both tracks to be greater than 500 MeV. This removes radia-

tive muon pair production, which in principle are valid calibration candidates, but

are kinematically different due to the muon mass.

Photons reconstructed in the EMC are selected by requiring that they are separated

from the electron and positron clusters, and that they contain no problematic chan-

nels. For each photon candidate, the χ2 of the e+e−γ combination is estimated by
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the reconstructed kinematics. The energy of the photon is estimated from energy

conservation, and a χ2 is calculated by determining the difference in the total initial

and final state momentum vector, which should be zero. The covariance matrix for

this 3× 3 matrix is determined from the full 14× 14 matrix according to the deriva-

tives of the momentum vector with respect to the each of the fourteen quantities,

resulting in a 3 × 14 transformation matrix which translates the covariance of the

fourteen quantities to the covariance of the three components of the total momentum.

The estimated χ2 analytically determines the compatibility of the e+e−γ combina-

tion with momentum conservation analytically, independent of the photon energy

reconstructed in the EMC, and without resorting to the time-consuming iterative

procedure for each combination.

The e+e−γ combination with the least estimated χ2 is selected and the full iterative

χ2 fit is performed with this combination. The fit predicts the energy of the photon,

which can be compared to the reconstructed energy to determine the correction.

The performance of the fit in determining the true energy of the photon is illustrated

from the Monte Carlo simulation in Figure 3.2 for three different energies spanning

the range of the calibration, and three different polar angles spanning the geometric

acceptance of the EMC. The distributions show the ratio of the fitted photon energy

to the true energy fit to the sum of two Gaussian distributions. The tails to the right

of the distribution result from additional radiation in the event, which leads to an

overestimate of the photon energy in the fit.

3.2.3 Determining the Correction

The correction is determined from the ratio ER/EF , where the ER is the recon-

structed energy in the EMC prior to the correction and the EF is the energy pre-

dicted by the fit. The ER/EF values are binned in polar angle Θ, azimuthal angle

Φ and fitted energy EF . The distribution of ER/EF from events within the bin are

fit to determine the peak position of ER/EF , which in turn gives the correction for
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Figure 3.2: EF it/ETrue in Monte Carlo-simulated radiative Bhabha events in three
different regions of the detector and three different energies.

this bin. For this purpose, we use the “Crystal Ball” function:

fCB = {
x−μ

σ
> α : exp− (x−μ)2

2σ2

x−μ
σ

< α : A × (B − x−μ
σ

−n
)

, (3.3)

where:
A ≡

(
n
α

)n
exp−1

2
|α|2

B ≡ n
α
− |α| (3.4)
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This distribution is a modified Gaussian distribution in which two additional pa-

rameters, α and β describe a transition to the tail described by a power function

at some point in the Gaussian. The “cut” parameter α describes the position of

this transition; a negative(positive) value places the transition on the lower(upper)

side, and the β parameter describes the slope of the power function; a larger value

indicates a more rapidly decreasing tail. A and B are defined to enforce continuity

of the function and its first derivative at the transition.

The binning is determined by the empirically observed variations in the peak po-

sitions of the ER/EF distribution and the available statistics. In particular, there

are some expected changes as a function of polar angle due to the varying amount

of material in the detector. There are some unexpected variations associated with

the differences in the electronics in the EMC. In particular, the detector is binned

twofold in Φ due to two batches of preamplifiers with different shaping times which

exhibit calibrations that are systematically different by up to a few percent. An-

other observed variation is the differing behavior of the high-gain preamplifiers in

the back of the detector and the low-gain preamplifiers in the front. This difference

is incorporated into the binning in Θ. The following binning scheme is chosen:

• Energy: 100 MeV bins from 0.3 − 1.0 GeV, 200 MeV bins from 1.0 − 5.0 GeV

and one bin for 6.0 − 7.0 GeV

• Θ: 21 bins, typically 2 or 3 Φ rings per bin.

• Φ: Two bins, −2.0 < Φ < 2.6 radians, and the compliment, corresponding to

the two areas with different preamplifier shaping times..

The fitted peak position of ER/EF as function of Θ for three energy ranges are

shown in Figure 3.3 for the two Φ regions defined by the preamplifier batches. The

corrections vary across the detector by up to 3%.

3.2.4 The Calibration

The radiative Bhabha events from the 2001 data consisting of 35.7 fb−1 of data are

used for the calibration. The sample yields approximately 6 million events with
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Figure 3.4: Energy correction as a function of raw energy and Θ. a.) long shaping
time region. b.) short shaping time region.

successful kinematic fits which are used for the ER/EF distributions.

The ER/EF peak positions are linearly interpolated between the energy bins, but

not in Θ. The result is a correction C(EF , Θ, Φ) that gives the expected ER for

a given fitted energy EF and Θ in each of the two Φ regions. In practice, we are

given ER and wish to determine the true energy of the photon. This inversion is

accomplished by a procedure that starts with C(ER, Θ, Φ). The predicted energy

is then ER2 = ER/C(ER, Θ, Φ). The correction is then recalculated with this new

predicted energy and the procedure iterated until ERi+1 = ERi/C(ERi, Θ, Φ) within

0.1 MeV. The ER correction determined this way is shown Figure 3.4 as a function
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of Θ and ER for the two Φ regions. The ER is divided by the correction to determine

the expected photon energy.
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Figure 3.5: Mass spectrum of photons pairs in a.) symmetric π0 decays and b.)
symmetric η decays before and after calibration.
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3.3 Performance

The validation of the calibration is performed on a sample of symmetric π0 and η

decays in which both photons required to have energy within a certain range, thus

isolating the EMC response to a photon of this energy. The mass spectrum of the

photon pairs is fit to determine the peak position. The peak position is then com-

pared with the measured values of mπ0 = 0.13497 GeV/c2 and mη = 0.54230 GeV/c2

[36]. The reconstructed mass distribution for π0 decays in which both photons have

between 1.0 and 1.2 GeV of energy is shown in Figure 3.5 before and after the correc-

tion. The peak position is determined by a fit to a modified Gaussian distribution

known as the “Novosibirsk” distribution:

dN/dmES = AS exp
[
−0.5(ln2(1 + Λτ(mES − m0))/τ

2 + τ 2)
]

(3.5)

where Λ = sinh(τ
√

ln 4)/(στ
√

ln 4), the peak position is m0, the width is σ, and τ is

the tail parameter. In the limit τ → 0, the Novosibirsk distribution reduces to the

Gaussian. The combinatoric background is described by a third-order polynomial.

Figure 3.5 also shows the same for η decays in which both photons have between 1.0

and 1.25 GeV of energy. The correction brings the peak position to the expected

value. The peak positions determined in this manner are shown in Figure 3.6 as a

function of photon energy for symmetric π0 decays (left) and symmetric η decays

(right), before and after the correction. The peak positions after the correction are

within 0.5% of their expected values, validating the calibration up to 4 GeV in photon

energy.



Chapter 4

The B → K∗γ Analysis

The B → K∗γ process is reconstructed in four decay modes of the K∗(892) reso-

nance: K∗0 → K+π−, K0π0 and K∗+ → K+π0, K0π+. Charged conjugate modes

are implied throughout. The K0 are reconstructed in the decay K0
S → π+π− and

the π0 in the decay to two photons. The analysis was conducted on the 1999-2000

BABAR dataset of 20.7fb−1 of on-resonance data containing 22.7 million BB decays

and 2.6fb−1 of off-resonance data. The expected signal properties are studied using a

detailed detector simulation based on GEANT [30], while the off-resonance data are

used to cross check Monte Carlo predictions for the dominant background coming

from the qq continuum events. Numerous control samples in the data are used to

evaluate and correct the detector performance predicted by the Monte Carlo simu-

lation.

The branching fractions are obtained for each of the four modes and averaged sep-

arately for B0 and B+. The CP asymmetry ACP (defined in Equation 1.23) is

measured using the three self-tagging decay modes.

The CLEO collaboration has previously measured the branching fractions of B →
K∗γ, obtaining [31]:

B[B0 → K∗0γ] = 4.55+0.72
−0.68 ± 0.34 × 10−5

B[B+ → K∗+γ] = 3.76+0.89
−0.83 ± 0.28 × 10−5

ACP = 0.08 ± 0.13 ± 0.03

(4.1)

51
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Mode Branching fraction Expected Yield
(/10−5) (Events)

B0 → K∗0γ, K∗0 → K+π− 2.77 ± 0.41 630 ± 94
B0 → K∗0γ, K∗0 → K0

S
π0, K0

S
→ π+π− 0.46 ± 0.10 105 ± 16

B+ → K∗+γ, K∗+ → K+π0 1.39 ± 0.31 315 ± 47
B+ → K∗+γ, K∗+ → K0

S
π+, K0

S
→ π+π− 0.94 ± 0.20 210 ± 31

Table 4.1: Expected number of B → K∗γ events produced in a dataset of 22.7× 106

BB events assuming the branching ratio B[B → K∗γ] = 4.2 × 10−5.

The expected yields are tabulated in Table 4.1 for the modes under consideration

assuming isospin symmetry and an average branching fraction of B[B → K∗γ] =

4.2 × 10−5.

The candidate selection criteria used in this analysis are determined by maximizing

S2/(S + B), where S is the expected signal yield based on the average measured

branching fraction from CLEO, and B is the expected background yield from the

Monte Carlo simulation. This optimization produces the selection with the minimum

expected relative statistical uncertainty on the yield. The optimal selection for each

variable is determined by varying the selection, determining the expected signal

and background yields with no other selection criteria applied, and calculating the

S2/(S + B).

While the optimal selection for a given variable depends on the selection criteria

that have already been applied on the other variables, in practice, we find that the

simultaneous or iterative optimization of the variables produces similar results to the

individual optimizations.

4.1 Global Event Selection

The analysis starts by identifying BB events with a high energy photon candidate.

Generic BB decays are characterized by high multiplicity and isotropic decay struc-

ture in the center-of-mass system (CMS) resulting from the cascade of weak decays

of the B mesons, which are slowly moving in this frame. This is different from the
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background electromagnetic processes, which have low multiplicity (typically one or

two tracks) and the continuum, which tend to have a more collimated decay structure

from the hadronic jet production resulting from the fast recoil of the quark-antiquark

pair. The selection of hadronic events begins by requiring at least three reconstructed

tracks in the event. The track multiplicity of Monte Carlo-simulated signal and off-

resonance background events is shown in Figure 4.1. The large fraction of events in

the off-resonance data with two tracks are from electromagnetic processes such as

Bhabha scattering. Next, we consider the event topology characterized by the ratio

of second and zeroth Fox-Wolfram moments R2 [34] shown in Figure 4.1 after the

track multiplicity requirement. The peak in R2 near one in the background distribu-

tion is from the remaining events from electromagnetic processes. These events are

removed by requiring R2 of the event be less than 0.9.

The signal process produces the photon in a two-body B decay. Since the B me-

son is slowly moving in the center-of-mass (CMS) frame, the photons are nearly

mono-energetic in this frame with E∗
γ ∼ 2.5 GeV. Hadronic events in which the most

energetic photons has 1.5 < E∗
γ < 3.5 GeV are selected for further analysis.

The primary background in this analysis are high energy photons produced by ener-

getic π0 and η decays in the continuum. Prior to the suppression of this background

as described in Section 4.2, this is the primary source of background. Initial state ra-

diation (ISR), where a high-energy photon is radiated from the initial state electron

or positron prior to interaction, is another source of background. After the suppres-

sion of the π0 and η backgrounds, the ISR background contribution is approximately

equal to the π0 and η backgrounds. A study of Monte Carlo-simulated BB events

indicates that there are no significant backgrounds apart from crossfeed between the

B → K∗γ modes and downfeed from other b → sγ processes. The treatment of these

backgrounds is described in Section 4.7.

The E∗
γ distributions for signal B → K∗γ and background events are shown in Fig-

ure 4.1 after the track multiplicity and R2 selection. The spread in the signal E∗
γ

distribution is dominated by the momentum of the B meson in the CMS frame of

325 MeV/c, while the background distribution has a continuous falling distribution.

The initial event selection reduces the hadronic event sample by more than a factor
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Figure 4.1: Variables used to select BB events with a high-energy photon. a.)
Charged track multiplicity. b.) Second Fox-Wolfram Moment R2. c.) Energy of the
most energetic photon in the CMS frame. The distributions are normalized to unity.

of ten with nearly 80% efficiency for the signal process.

4.2 Photon Selection

4.2.1 Selection of Single Photon Candidates

A photon candidate is identified as a local energy maximum (“bump”) within a con-

tiguous cluster of crystals in the EMC that does not overlap any charged tracks [28].

In this analysis, we further require that the photon is isolated from any other local

maxima in the EMC by at least 25 cm. This suppresses contributions from hadronic

interactions, which may produce multiple local maxima within close proximity. In

order to ensure that the photon candidate is not associated with a charge track, we

limit the polar acceptance to −0.74 < cos Θγ < 0.93 as shown in Figure 4.2; outside

of this range, the tracking coverage is limited by the acceptance of the SVT and

DCH. The photon must also not contain any crystal readout channels identified as

problematic, dead, or noisy by the online monitoring. Occasionally, the monitoring

may miss noisy channels. In this case, the EMC cluster will typically contain only

one or a few crystals. These are eliminated by requiring that the cluster contain

more than four crystals.
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Figure 4.2: Lab frame kinematics of primary photon in B → K∗γ: Elab vs. cos Θγ.
The lines indicate the acceptance used in this analysis.

4.2.2 π0 and η Veto

Photons from π0 production are suppressed by removing photon candidates that

form an invariant mass within 25 MeV/c2 of the π0 mass when paired with any other

photon in the event with energy greater than 50 MeV. A similar veto is imposed on

photon candidates that form pairs within 40 MeV/c2 of the η mass with photons with

energy greater than 250 MeV. The π0 and η vetoes are shown in Figure 4.3, where

the invariant mass combination closest to the π0 or η peak are shown for the photon

candidates. A clear peak corresponding to π0 and η production can be seen in the

continuum Monte Carlo simulation that is not present in the signal.

At energies above 3 GeV, the decay photons may be sufficiently collimated that

the reconstruction cannot distinguish the two photons as two local maxima. Such

candidates (“merged π0”), however, have wider lateral energy deposition profile which

can be characterized by the second moment L2:

L2 =
∑

crystals i

Ei [(θi − θc)
2 + (φi − φc)

2]∑
i Ei

(4.2)
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Figure 4.3: π0 and η suppression. a.) Invariant mass combination closest to the π0

mass. b.) Same for the η. c.) Second moment distribution. The distributions are
normalized to unity.

where θc, φc are angular coordinates of the centroid maxima, and Ei, θi, φi are the

energy and coordinates of the ith crystal in the bump. True single photons bumps

have smaller second moment than the merged photons from π0 decays. This con-

tamination is reduced by requiring L2 < 0.002. Single legs of π0 and η decays where

the partner photon is not reconstructed and photons from initial state radiation are

irreducible by these means.

The second moment distribution for signal and background is shown in Figure 4.3.

The background has a long tail towards large values of L2 corresponding to the

merged π0s and hadronic interactions from neutrons and K0
L in the EMC.

4.3 K∗ Reconstruction

The K∗ candidates are reconstructed from their daughter particles: charged kaons

and pions, K0
S
, and π0. The appropriate kaon and pion candidates are combined to

make the K∗ candidates for each decay mode.

4.3.1 Track reconstruction

The track requirements for the K∗ reconstruction are divided between two categories:

one for “prompt” tracks which are produced at the B decay vertex, and one for K0
S
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Figure 4.4: a.) Kaon efficiency and b.) pion misidentification rates for tracks in the
DIRC acceptance measured from the D∗+ control sample.

tracks, where the tracks may be produced far from the B decay vertex. In the first

case, we require the track to

• Contain at least 12 DCH hits

• Pass close to the interaction point: |z0| < 10 cm and |d0| < 1.5 cm. z0 is the

z position of the track at its closest approach to the detector origin, and d0 is

the transverse distance from the origin at this point.

• Have significant transverse momentum: pT > 0.1 GeV/c

• Have non-zero fit χ2 probability.

This track selection is used for both tracks in the decay K∗0 → K+π−, the kaon

in K∗+ → K+π0 and the primary pion in K∗+ → K0π+. For the K0
S
→ π+π−

tracks, we use a looser criterion that does not require that the track come from the

interaction point, and drop the pT and DCH hit requirements.

4.3.2 Particle Identification

The charged particle identification information obtained from dE/dx measurements

in the SVT and DCH and Cherenkov ring information from the DIRC is used to
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identify charged kaons. Charged kaon candidates are selected using a likelihood

ratio formed from dE/dx information at low momenta (< 0.7 GeV/c), and the DIRC

reconstruction at momenta well above the kaon Cherenkov threshold (> 0.6 GeV/c)

[44]. The DIRC likelihood is a product of two components: a Gaussian probability

describes the likelihood of the reconstructed Cherenkov angle with the expected angle

based on the track trajectory through the DIRC, and a Poisson likelihood describes

the consistency of the observed number of photons in the ring. The likelihood fit

determines the number of signal and background photons in the ring, from which

a Poisson probability is calculated based on the expected number of signal photons

derived from the Monte Carlo simulation. The likelihood is calculated for the pion,

kaon and proton hypothesis and a selection on the ratio of the likelihoods is tuned

to obtain the desired properties for the selector. In this analysis, the “tight” kaon

selection is designed to maintain a pion misidentification rate of less than 5% up to

a momentum of 3 GeV/c. Protons are rejected with a selection on the ratio of kaon

and proton likelihoods. The charged pion candidates in the K∗0 → K+π− decay are

chosen from tracks rejected by the kaon selection.

The performance of the kaon selector is shown in Figure 4.4 for a sample of kaons

and pions in the DIRC acceptance obtained from D∗+ → D0π+, D0 → K+π− decays

in the data. Most kaons in the B → K∗γ decay have momenta between 1− 3 GeV/c,

where the selector efficiency is ∼ 90% with pion misidentification rates of 2 − 3%.

4.3.3 K0
S

Reconstruction

The K0
S
→ π+π− reconstruction fits a common vertex for pairs of oppositely charged

tracks with invariant mass 300 < Mπ+π− < 700 MeV/c2 calculated using the helical

track parameters at the origin. The algorithm calculates the point of closest approach

of the two tracks based on their trajectories and determines the most likely point

of origin by minimizing the χ2 based on the track covariance matrix. From its

lifetime (τK0
S

= 0.894 × 10−10 s, cτ = 2.68 cm [36]), we expect the K0
S to traverse an

appreciable distance from the production point before decaying. As a result the track

parameters may be significantly different at the decay vertex from those obtained at
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Figure 4.5: The K0
S

reconstruction. a.) Raw and vertex-constrained Mπ+π− and b.)
Vertex flight distance in off-resonance data.

the origin. The track momenta are reevaluated at the calculated vertex, resulting in

significant improvement in the mass resolution.

With the calculated vertex and mass, we select K0
S

candidates that are displaced

by at least 0.2 cm from the beam spot and with 489 < Mπ+π− < 507 MeV/c2.

The reconstruction is demonstrated in Figure 4.5, which shows the π+π− invariant

mass distribution before and after the vertex-constrained fit, as well as the vertex

displacement for the same events outside the signal Mπ+π− region and within the

signal region with the background subtracted.

4.3.4 π0 Reconstruction

The π0 are reconstructed from their decay π0 → γγ. The photon candidates for the

π0 reconstruction are required to have at least 30 MeV of energy. Pairs of selected

photons with invariant mass 0.115 < mγγ < 0.150 MeV/c2 (approximately twice the

resolution of ∼ 7 MeV/c2) are fit with the mass constrained to the nominal π0 mass

(mπ0 = 134.98 MeV/c2) to re-determine their momenta. The π0 reconstruction is

illustrated in Figure 4.6, where the invariant mass peak from π0 decays is fit to the

Novosibirsk function and the combinatoric background described by a polynomial.
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Figure 4.6: Invariant mass distribution of photon pairs in hadronic events.

4.3.5 Selection of K∗ Candidates

The four K∗ decay modes we consider, K∗0 → K+π−, K0
S
π0, and K∗+ → K+π0, K0

S
π+

are reconstructed from the appropriate kaon and pion daughters candidates described

above. Candidates with invariant mass mKπ within 100 MeV/c2 of the nominal K∗

mass (MK∗0 = 896 MeV/c2 and MK∗+ = 892 MeV/c2) and center-of-mass momentum

between 2.35 < p∗K∗ < 2.8 GeV/c are selected.

4.4 Reconstruction of the B Candidate

The B candidate is reconstructed by combining the kinematic information from the

photon and K∗ candidate. We define two variables in the center-of-mass (CMS)

frame which are uncorrelated for the signal process:

mES =
√

E∗2
beam − p∗2B

ΔE∗ = E∗
B − E∗

beam

(4.3)

where p∗B and E∗
B are the energy and momentum of the B candidate reconstructed

by the detector. The two variables determine whether the mass and energy of the

B candidate are consistent with the B meson (mES = MB) and the beam energy
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Figure 4.7: Kinematic variables in the B → K∗γ reconstruction. a.) mES without
photon scaling, b.) mES with photon scaling and c.) ΔE∗.
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Figure 4.8: mES for the background B0 → K∗0γ, K∗0 → K+π− candidates in off-
resonance data: a.) mES without photon scaling, b.) mES with photon scaling.

(ΔE∗ = 0). The beam energy has a spread of 2 MeV in the CMS frame and is more

precisely known than any of the kinematic quantities reconstructed in the detector.

For the modes in which the K∗ final state particles are all charged (K∗0 → K+π−

and K∗+ → K0
S
π+), rather than scaling only the energy of the B candidate to the

beam energy, we scale the photon energy individually to the value that would make

ΔE∗ = 0. Both the energy and momentum of the B candidate are modified according

to the new photon momentum. The scaling of the photon individually is motivated

by the experimental resolution: the photon momentum resolution is considerably

worse than that of the tracks reconstructed in the DCH. This modified mES reduces

the width of the signal mES distribution from 3.0 MeV/c2 to 2.5 MeV/c2 as shown

in Figure 4.7. The mES distribution with this modification is described well by the
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Gaussian distribution centered at mES = MB. The background distributions for the

mES with and without rescaling are shown in Figure 4.8. The background shape is

not distorted by the photon rescaling, as indicated by the consistent ζ parameters

obtained from the ARGUS parameterizations (described in Section 4.7) of the two

distributions.

For the modes K∗0 → K0
Sπ0 and K∗+ → K+π0, the mES distribution is asymmetric

due to the energy leakage in the reconstruction of the primary photon and the π0.

The expected asymmetry in the mES distribution is described by the Novosibirsk

function (Equation 3.5).

The signal ΔE∗ distribution in all four modes is described by the “Crystal Ball”

function (Equation 3.3). The ΔE∗ distribution for the K∗0 → K+π− mode is shown

on the right in Figure 4.7.

We select candidates with |ΔE∗| < 500 MeV and mES > 5.2 GeV/c2. The expected

distribution of signal and continuum background events in the off-resonance data are

shown in Figure 4.9. Signal and sideband regions in ΔE∗ for each mode are shown

in Table 4.2, the differences resulting from the different signal ΔE∗ resolutions for

modes with and without a π0 in the final state. Due to the asymmetric distribution

of ΔE∗ for the signal, which results in signal events populating the ΔE∗ region below

the signal region, only the upper sideband in ΔE∗ in the on-resonance data is used

in the signal extraction to obtain a sample of events populated exclusively by the

continuum background. Candidates in the off-resonance data are also selected as a

background control sample with mES rescaled with the average on-resonance beam

energy of E∗
beam = 5.29 GeV/c2 to match them with the on-resonance data.

4.5 Event Shape Criteria

The differences in event topology between the continuum background and the signal

B → K∗γ can be quantified by a number of variables. For this analysis, we choose:

1. cos Θ∗
T : the angle between the photon momentum in the CMS frame and thrust

axis of the event excluding the B candidate.
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Figure 4.9: ΔE∗ vs. mES distribution for a.) B0 → K∗0γ, K∗ → K+π− signal Monte
Carlo and b.) continuum background in the off-resonance data.

Mode Signal Upper ΔE∗ Sideband Off-resonance data
GeV GeV GeV

K+π− [-0.200, 0.100] [0.100, 0.500] [-0.300, 0.300]
K0

S
π0 [-0.225, 0.125] [0.150, 0.400] [-0.300, 0.300]

K0
Sπ+ [-0.200, 0.100] [0.100, 0.500] [-0.300, 0.300]

K+π0 [-0.225, 0.125] [0.150, 0.400] [-0.300, 0.300]

Table 4.2: Signal and sideband regions in ΔE∗ for selected candidates with mES >
5.2 GeV/c2.

2. cos Θ∗
B: The polar angle of the B candidate momentum in the center-of-mass.

3. cos ΘH : The helicity angle of the K∗ decay.

4.5.1 cos Θ∗
T

The background from the continuum is the result of energetic π0 and η decays that

produce high energy photons. Since these particles are produced in hadronic jets,

they are correlated with the jet axis of the event in the CMS frame. Figure 4.10

shows the expected event topologies for the more spherical signal process and the

jet-like background continuum background.

For the signal B → K∗γ process, the decay axis of the B candidate is uncorrelated
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Figure 4.10: Comparison of the expected topology of signal B → K∗γ decays and
background continuum.

with the decay axis of the other B-meson. The result is that the angle in the CMS

frame between the photon momentum and the jet axis of the rest of the event (decay

axis of the other B) are uncorrelated due to the fact that the B mesons are nearly

at rest in this frame. The jet/decay axis is reconstructed by calculating the thrust

axis T of the event, defined as the direction that maximizes the quantity:

|T | =

∑
i

∣∣∣T · �p∗i
∣∣∣∑

i |�pi| (4.4)

.

where �p∗i are the CMS frame momenta of the reconstructed particles in the event

not associated with the B candidate. For this purpose, we use all reconstructed

charged tracks and photons with energy greater than 30 MeV. The variable Θ∗
T is

then defined as the angle between the thrust axis and the photon momentum in the

CMS. The cos Θ∗
T distribution for the Monte Carlo-simulated signal candidates and

background events from the off-resonance data are shown on the left in Figure 4.11.

The signal distribution is flat, indicating that the photon momentum is uncorrelated

with the decay axis of the other B meson, whereas for the background, the | cos Θ∗
T |

distribution peaks towards one, consistent with production along the jet axis.
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4.5.2 cos Θ∗
B

The BB mesons emerge from the decay of the Υ (4S) in a P -wave state; thus the

decay axis of the BB pair follows a sin2 Θ distribution in the polar angle Θ. Since

the CMS momentum p∗B of the B meson coincides with the axis of the Υ (4S) decay,

we expect Θ∗
B, the polar momentum of p∗B, to have the same distribution. For

the continuum background, the B candidate consists of combinations of oppositely

charged tracks with a photon candidate; this should have a distribution flat in cos Θ∗
B.

The reconstruction of cos Θ∗
B for Monte Carlo signal events and off-resonance data

is shown in the center of Figure 4.11.

4.5.3 cos ΘH

For the signal B → K∗γ, angular momentum conservation and transverse polariza-

tion of the photon dictate that the K∗ must be in a transversely polarized J = 1

state. The polarization of the K∗ can be observed from the helicity angle ΘH dis-

tribution of the decay, which is sin2 ΘH . The helicity angle is reconstructed from

the angle between the direction of the kaon candidate in the rest frame of the K∗

candidate and the momentum of the K∗ in the B candidate rest frame.

For continuum background, the Kπ combinations are not polarized, though they

may come from K∗ production. The helicity distribution for signal and continuum

background are shown on the right in Figure 4.11.

4.5.4 Event Shape selection

The S2/(S + B) optimizations for the event shape criteria result in similar require-

ments for the four K∗ modes. This leads to a common selection of:

| cosΘ∗
T | < 0.8 | cosΘ∗

B| < 0.8 | cos ΘH | < 0.75 (4.5)
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Figure 4.11: Event Shape Variables a.) cos Θ∗
T , b.) cos Θ∗

B and c.) cos ΘH .

4.6 Efficiencies and Systematic Corrections

The efficiencies for the signal reconstruction and selection obtained from exclusive

Monte Carlo simulation of each decay mode of the K∗ under consideration are shown

in Table 4.3, along with empirically determined corrections for the track and pho-

ton reconstruction efficiencies. The charged track efficiencies include the efficiency

for track reconstruction and particle identification criteria. The K0
S and π0 efficien-

cies involve the reconstruction of both daughter particles and the selection of the

composite candidates for the reconstruction of the K∗ candidates. The K∗ recon-

struction efficiency includes the MKπ and CMS frame momentum selection. The B

candidate efficiency is the fraction of reconstructed candidates which lie in the ΔE∗

signal band, where the candidate with smallest |ΔE∗| is selected in the case there

are multiple candidates satisfying the all of the selection criteria. In some cases, a

combination of tracks and photons is selected that does not actually correspond to

the signal decay process. When these events are added, the efficiency in the last row

results.

4.6.1 Photon and π0 Efficiency Correction

A sample of e+e− → τ+τ− decays were studied to determine the photon recon-

struction efficiency in the data relative to the Monte Carlo simulation. The study

is documented in Reference [41]. The method utilizes the well-known ratio B[τ →
h−π0π0ντ ]/B[τ → h−π0ντ ] = 0.355 ± 0.006 [36], [37], where h− = π−/K−. An event
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selection for τ+τ− decays involving a charged lepton from one τ decay and signifi-

cant missing momentum pointing within the acceptance of the detector is sufficient

to extract this sample. The advantage of this method is that the uncertainties in

the event selection from the track reconstruction and lepton selection largely cancel.

A comparison of the ratio in data and the Monte Carlo simulation then gives the

relative efficiency for reconstructing the second π0, which can be translated into a

correction for the Monte Carlo photon finding efficiency.

The result of this study is that the observed branching ratio in data is 6.1 ± 1.1%

lower in data than in the Monte Carlo simulation; the number of reconstructed τ de-

cays with two π0s relative to those with π0 is smaller than expected from the known

ratio of branching fractions and the detector simulation. At energies below 3.5 GeV,

this is believed to be the result of the incorrect simulation of material in front of the

EMC, particularly in the forward region. At π0 energies greater than 3.5 GeV, the

deficit is likely due to discrepancies in the shower simulation which result in higher

efficiency for identifying two contiguous bumps in a single cluster, the typical topol-

ogy for high energy π0 decays. As a result, the Monte Carlo efficiency for finding

each photon in the event is reduced by 2.5% ± 1.3%. The error is dominated by the

statistical uncertainty in the CLEO measurement of the branching ratio [37] and the

different levels of occupancy for e+e− → τ+τ− decays and hadronic decays which

may change the efficiency in BABAR.

4.6.2 Tracking Efficiency Correction

The Monte Carlo efficiency for track reconstruction and the quality requirements

described in Section 4.3.1 are cross-checked using data control samples. The stand-

alone tracking capability of the SVT allows tracks to be reconstructed independently

of DCH information. The efficiency for the DCH reconstruction and quality require-

ments can then be calculated in data and Monte Carlo simulation to determine a

correction. For this purpose, three-prong decays of the τ and D∗+ → D0π+ decays

with four prong D0 decays are reconstructed requiring all tracks save one to satisfy

the track requirements [38]. The efficiency is then obtained by requiring the final
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K+π− K0
Sπ0 K+π0 K0

Sπ+

Selection Efficiency(%)
Global Event 78.1 78.9 77.4 77.5
Photon Selection 70.4 71.0 71.1 68.6
Charged Kaon 78.0 72.7
Charged Pion 88.6 85.4
K0

S Reconstruction 62.9 60.5
π0 Reconstruction 51.8 53.6
K∗ Selection 81.0 84.1 83.5 79.8
Event Shape Selection 73.7 71.8 71.6 75.5
B selection 96.2 96.1 96.6 95.4
Photon Correction 97.5 97.5 97.5 97.5
π0 Correction 95.0 95.0
Charged track correction 97.7 99.4 98.9
K0

S
correction 104.2 103.0

Truth-matched Cumulative 21.0 11.3 11.3 15.9
Cumulative 21.0 12.6 12.9 17.2

Table 4.3: Signal reconstruction efficiency from the B → K∗γ Monte Carlo simula-
tion with empirical corrections derived from Monte Carlo-data comparisons.

track to satisfy the track requirements. The results are tabulated into an efficiency

correction binned by momentum, polar angle, azimuthal angle, and overall event

multiplicity. An average track correction is obtained in the signal Monte Carlo simu-

lation by applying the corrections on a track-by-track basis. The correction suggests

that the track reconstruction is somewhat less efficient in the data relative to the

Monte Carlo simulation.

A separate systematic correction for the K0
S reconstruction efficiency, which has less

stringent track quality requirements, is obtained from the inclusive K0
S

decays[45].

The yield of K0
S normalized by luminosity is compared between the Monte Carlo sim-

ulation of the continuum and inclusive BB decays and the on- and off-resonance data.

A correction is determined for the reconstruction efficiency in bins of momentum and

flight distance and applied event-by-event in the signal Monte Carlo simulation for

the reconstructed K0
S in the simulation to determine an average correction.
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Figure 4.12: Results of the simultaneous extended maximum likelihood fit for the
B0 → K∗0γ, K∗0 → K+π− mode in a.) signal band −200 MeV < ΔE∗ < 100 MeV,
b.) upper ΔE∗ sideband from on-resonance data and c.) off-resonance data.

4.7 Signal Extraction

The signal for each B → K∗γ mode is separately extracted by an extended maximum-

likelihood fit in the mES distribution for each final state. The signal probability

distribution function is described by a Gaussian distribution centered at mES = MB

for the modes K∗0 → K+π− and K∗+ → K0
Sπ+. The modes K∗0 → K0

Sπ0 and

K∗+ → K+π0 are described by the Novosibirsk distribution (Equation 3.5). The

width and peak of the Gaussian and Novosibirsk are free parameters in the maximum

likelihood fit for the modes K∗0 → K+π− and K∗+ → K+π0, where the number of

expected signal events is larger. For the other two modes, the width is fixed to

the Monte Carlo value with an empirically determined correction obtained from the

observed width of the K∗0 → K+π− mode (3.1 ± 0.2 MeV/c2), which is wider than

the Monte Carlo expectation of 2.5 MeV/c2. The discrepancy may due to a wider

beam-energy spread in the data than in the Monte Carlo simulation. This difference

is added quadratically to the Monte Carlo expectation for the mES resolution in

K∗0 → K0
Sπ0 and K∗+ → K+π0. The tail parameter for the Novosibirsk is fixed
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Figure 4.13: Fitted mES distributions for B → K∗γ candidates in on-resonance data.

to the Monte Carlo expectations. The signal mES parameters are summarized in

Table 4.4.

The continuum background is described by the “ARGUS” threshold shape [42]:

dN/dmES = AB
mES

E∗
beam

√√√√1 − mES
2

E∗2
beam

exp

[
ζ

(
1 − mES

2

E∗2
beam

)]
, (4.6)

The ARGUS shape describes the expected mES distribution resulting from the

phase space of random combinations of photon and K∗ candidates near the endpoint

of the mES distribution at mES = E∗
beam. The empirically determined parameter ζ

describes the turnover of the rise in phase space away from the endpoint.

4.7.1 CP -Averaged Yield Extraction

The fit for each mode is performed simultaneously over three samples: the signal

band in ΔE∗, where the fit has both a signal and background component, the upper
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Mode Shape MC σ Fixed σ Fixed τ

K∗0 → K+π− Gaussian 2.51 MeV/c2 N.A. N.A.
K∗0 → K0

S
π0 Novosibirsk 3.52 MeV/c2 4.19 ± 0.66 MeV/c2 -0.17 (0)

K∗+ → K+π0 Novosibirsk 3.44 MeV/c2 N.A. -0.15 (0.17)
K∗+ → K0

S
π+ Gaussian 2.54 MeV/c2 3.08 ± 0.23 MeV/c2 N.A.

Table 4.4: Signal mES probability distributions.

sideband in ΔE∗ above the signal region, and the off-resonance data, as described

in Table 4.2 for each mode. The latter two are fit with only the background com-

ponent under the assumption that they are populated entirely by the continuum

background. For the off-resonance data in the K∗0 → K+π− and K∗+ → K+π0, the

kaon identification requirement is removed to bolster the statistics.

The fit determines a common ζ parameter of the ARGUS function for both the con-

trol samples and the signal band and extracts a signal yield in the signal band by

maximizing the overall extended likelihood:

L =
exp(−∑

j nj)

N !

N∏
i=1

m∑
j=1

njPj(αj) (4.7)

where the nj are the number of events for each hypothesis (signal, background)

and Pj is the total probability for each of these hypotheses. The total probability is

a function of the vector of parameters αj which describe the probability distribution

of each hypothesis. The product runs over the N events of the sample. The nj and

αj are the parameters that are determined by the fit. The results of the fit for the

K∗0 → K+π− mode are shown in Figure 4.12, where the signal band is shown with

the two background control samples. The resulting parameters are shown on the

signal band plot. The signal band mES distributions with the fitted signal and back-

ground components for all four modes are shown in Figure 4.13. The corresponding

signal yield for each mode is tabulated in Table 4.5.

The Monte Carlo simulation is used to determine the expected yield of events re-

constructed in one B → K∗γ mode that are actually from another (“cross-feed”)
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and the yield of events from other b → sγ processes such as decays to higher K∗

resonance (“down-feed”). These contributions are subtracted from the signal yield

normalized according to the measured CLEO branching fractions [31], [32] as shown

in Table 4.5.

The branching fractions in each mode are obtained from the fitted yield minus the

expected cross-feed and down-feed contribution. A study of Monte Carlo-simulated

BB decays finds no other backgrounds from BB decays apart from these contribu-

tions. This corrected yield is then divided by the efficiency and the number of BB

events in the on-resonance data sample (22.7× 106BB events), giving the branching

fractions as shown in Table 4.5. The efficiency shown include the partial branching

fractions for the appropriate K∗ decay (the previously discussed efficiencies were for

the reconstruction of the exclusive K∗ decay mode). The statistical error is obtained

from the fit. The systematic errors for each mode are discussed later in Section 4.8.

Mode Efficiency Signal Yield Cross-feed Down-feed B[B → K∗γ]
% events events events ±stat. ± sys.

×10−5

K+π− 14.0 135.7± 13.3 0.4 ± 0.1 0.6 ± 0.1 4.24 ± 0.41 ± 0.22
K0

S
π0 1.4 14.8 ± 5.6 0.4 ± 0.1 1.0 ± 0.2 4.10 ± 1.71 ± 0.42

K0
Sπ+ 3.9 28.1 ± 6.6 0.7 ± 0.2 1.2 ± 0.2 3.01 ± 0.76 ± 0.21

K+π0 4.3 57.6 ± 10.4 1.2 ± 0.2 2.6 ± 0.4 5.52 ± 1.07 ± 0.38

Table 4.5: Signal yields from the maximum likelihood fits with efficiencies, inter-
mode cross-feed and down-feed from b → sγ events with higher hadronic mass as
predicted by the Monte Carlo simulation

4.7.2 Extraction of Conjugate Yields

A similar simultaneous unbinned extended maximum likelihood fit determines the

signal yield of each sign individually for each K∗ mode (with the exception of the

self-conjugate K∗0 → K0
Sπ0 mode). While the sample is divided into two disjoint

subsamples corresponding to the flavor of the B candidates, the yield of each sign

is determined simultaneously in a single fit with a common background contribution
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Figure 4.14: Results of the simultaneous extended maximum-likelihood fit for ACP

measurement in the mode B0 → K∗0γ, K∗0K+π−. a.) K∗0 → K+π− candidates.
b.) K∗0 → K−π+ candidates

using the ARGUS threshold function, under the assumption that the continuum

background is charge-symmetric.

The free parameters of each fit are the signal yields in the signal band for B and B,

a common ARGUS parameter for all three samples, a common yield of background

events for both signs in the signal band, the yield of background in the sideband and

the off-resonance data, and the signal PDF parameters, which are fixing or floating

as in the branching fraction fit, but fixed between the B and B in each mode. The

fit is illustrated in Figure 4.14 for the K∗0 → K+π− mode, and the results for all

modes tabulated in Table 4.6.

The direct CP violation in the modes is quantified by:

ACP =
1

1 − 2η

Γ(B → K∗γ) − Γ(B → K∗γ)

Γ(B → K∗γ) + Γ(B → K∗γ)
(4.8)

where η is the fraction of events which are mistagged. The mistag rate is found

from the Monte Carlo simulation to be very small (0.0025 ± 0.0008) and results

in negligible dilution of the asymmetry. The charge asymmetry for each mode is

tabulated in Table 4.6, where the statistical error is calculated from the errors on
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Mode B0 Yield B0 Yield ACP (signal) ACP (background)
(Events) (Events) (±stat. ± sys.) (±stat.)

K+π− 64.5 ± 9.0 71.1 ± 9.4 −0.049 ± 0.094 ± 0.012 −0.011 ± 0.104
K0

S
π+ 11.6 ± 3.9 16.5 ± 4.8 −0.190 ± 0.210 ± 0.012 −0.080 ± 0.080

K+π0 29.2 ± 6.8 26.7 ± 6.5 0.044 ± 0.155 ± 0.021 −0.022 ± 0.105

Table 4.6: The measured ACP in signal and background samples.

the fitted conjugate yields. The systematic error is discussed later in Section 4.8. In

order to check our assumption that the background is charge-symmetric, we calculate

ACP from the background yields in the sideband regions 5.20 < mES < 5.27 GeV/c2

and −0.2 < ΔE∗ < 0.1 GeV and find that they are all consistent with zero.

% Uncertainty in B[B → K∗γ]
K+π− K0

S
π0 K0

S
π+ K+π0

mES line shape - 7.4 1.7 1.9
Background shape 1.0 - - 3.8
Down-feed modeling 1.0 1.5 1.0 1.2
K±/π± tracking efficiency 2.4 - 1.2 1.3
K0

S eefficiency - 4.5 4.5 -
Kaon identification 0.7 - - 1.0
Photon efficiency 1.3 1.3 1.3 1.3
Photon distance cut 2.0 2.0 2.0 2.0
π0 efficiency - 2.5 - 2.5
π0/η veto 1.0 1.0 1.0 1.0
Energy resolution 2.5 2.5 2.5 2.5
Energy scale 1.0 1.0 1.0 1.0
MC statistics 1.9 2.4 1.5 2.1
B counting 1.6 1.6 1.6 1.6
Total 5.3 10.3 6.7 7.0

Table 4.7: Systematic uncertainties expressed as percent of B[B → K∗γ] in each
mode.
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4.8 Systematic Uncertainties

The systematic uncertainties for the branching fraction measurement are summarized

in Table 4.7. With the exception of the mES line shape, the background shape and

the B counting systematic, they are associated with the Monte Carlo prediction of

the signal reconstruction efficiency. In particular, there are a number of systematics

uncertainties associated with the photon reconstruction efficiency which are common

across all four modes. A second set is associated with the reconstruction of the

K∗ and are different for each of the K∗ decay modes. Finally, there are a set of

systematic uncertainties associated with the signal extraction, the finite number of

Monte Carlo simulated events, and the uncertainty in the number of BB events in

the on-resonance data sample [39].
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Figure 4.15: a.) Ratio of the mass of reconstructed symmetric η → γγ decays as
function of photon energy and nominal η mass. Effect of b.) scale shifts or c.)
broadening of the EMC energy resolution on the signal ΔE∗ distribution.

4.8.1 Photon Reconstruction

The selection criteria for the photon candidate carry systematic uncertainties which

result from the accuracy of the Monte Carlo simulation of the photon response in the

EMC and our ability to estimate any discrepancy. The first systematic uncertainty

is associated with the efficiency for finding a photon in the EMC, resulting from the

study described in Section 4.6.1. A second class of systematic uncertainties results
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Figure 4.16: Variation in efficiency for the ΔE∗ selection as function of a.) fractional
offset in the energy, and b.) smearing of the energy resolution (right).
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Figure 4.17: Efficiency of the a.) π0 veto and b.) η veto as a function of the veto
window width with various samples of data and Monte Carlo simulation as described
in the text.

from differences in the energy resolution of the EMC between the Monte Carlo sim-

ulation and the data. Since the ΔE∗ resolution of the B candidate is dominated by

the photon energy resolution, the ΔE∗ selection efficiency is particularly sensitive

to calibration errors of the EMC response or mis-modeling of the resolution in the

Monte Carlo simulation. Two control samples, consisting of energetic π0 decays in

which one photon converts to an e+e− pair reconstructed in the tracking, and sym-

metric η decays (described in Chapter 3.3) crosscheck any such effects. The peak

of the reconstructed symmetric η → γγ decays as a function of photon energy is
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shown in Figure 4.15. The deviations of the peak value from the nominal value of

542.3 MeV/c2 are less than 0.5%, thus constraining any offset in the energy calibra-

tion. A comparison of the width of the reconstructed mass distribution the data

and Monte Carlo constrain any broadening of the EMC energy response in the data

relative to the Monte Carlo to 10%.[40].

The effect of a systematic shift in the energy scale or broadening of the EMC energy

resolution on the signal ΔE∗ reconstruction is shown in Figure 4.15. The broadening

is simulated by convoluting the original distribution with a Gaussian distribution.

The effect on the efficiency of the ΔE∗ selection due to energy scale uncertainty is

shown on the right in Figure 4.16. The deviations in the ΔE∗ selection efficiency is

less than 1% for a 0.5% variation; this is taken as the systematic uncertainty result-

ing from energy scale deviations in the EMC. The effect of poorer resolution on the

ΔE∗ selection efficiency results in deviations of up to 2.5% with Gaussian smearing

corresponding to 10% wider width, as shown in Figure 4.16.

A third set of systematic uncertainties result not from the modeling of the signal pho-

ton response, but from the overall occupancy of the EMC from objects other than

the signal photon. The efficiency for the photon isolation and the π0 and η vetoes

is sensitive to any discrepancy in the simulation: if there are more(less) calorimetric

objects in the event, then it will be more(less) likely that one of these objects will

be close to the signal photon, or that one of these photons will form an invariant

mass with the signal photon close to the π0 or η mass. The effect of any difference in

occupancy is studied by “embedding” the photon response into events both from the

Monte Carlo simulation and in the data. In the case of the isolation cut, the response

of the EMC to photons from radiative Bhabha events in the data is added to the

information already present in Monte Carlo simulated BB events and a sample of

exclusively reconstructed BB events in the data. The event is then reconstructed

again with the new photon and the isolation efficiency in the data and Monte Carlo

simulation compared. The resulting distance distributions are shown in Figure 4.18,

along with the efficiency as a function of the required isolation. The deviation of the

efficiencies between the two samples at 25 cm (the value actually used) of 2.0% is

taken as the systematic uncertainty.
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For the π0 and η veto, the full response of the photon is not embedded. Rather, the

π0 and η vetoes are applied to invariant mass combinations formed from momentum

vectors randomly generated from the photon spectrum of B → K∗γ events and the

photons actually reconstructed in the event. A comparison of the efficiency in generic

continuum and BB Monte Carlo simulation and off and on-resonance data is shown

in Figure 4.17. The differences between the Monte Carlo simulation and data is less

than 1% for the chosen veto windows. This is taken as the systematic uncertainty

in the efficiency for the π0 and η veto.
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Figure 4.18: Distance distributions from photons candidates embedded in BB Monte
Carlo simulation and exclusively reconstructed B → Dπ events. Left: distance
distribution. Right: Efficiency as a function of isolation.

4.8.2 K∗ Reconstruction

The systematic uncertainties for the K∗ reconstruction are different for each mode.

For the track reconstruction and K0
S

reconstruction, a systematic uncertainty is de-

rived from the statistical uncertainties in the tabulated empirical corrections de-

scribed in Section 4.6.2. For modes involving kaon selection (K∗0 → K+π− and

K∗+ → K+π0), the selection is compared between Monte Carlo and data for kaons

identified from D∗ → D0π+, D0 → K−π+ decays. The statistical uncertainty in this

comparison is the systematic uncertainty for the selection.
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Figure 4.19: a.) Asymmetry of the inclusive K0
S
→ π+π− yield as a function of the

π+ momentum. b.) Asymmetry of the kaon selection efficiency as a function of kaon
momentum from D∗+ → D0π+, D0 → K+π− decays.

4.8.3 Systematics for ACP Measurement

Charge dependent asymmetries in the K∗ reconstruction can produce systematic

uncertainties in the ACP measurement by biasing the reconstruction of one sign

of the B decay over the other. The sources of possible biases are in the particle

identification and the track reconstruction.

Particle Identification

Possible asymmetries in the kaon efficiency are estimated using the D∗+ → D0π+, D0 →
K+π− sample and its charge conjugate. The efficiencies are measured separately for

positive and negative kaon samples as a function of momentum. The relative differ-

ence in the efficiencies of the K+ selection to the K− selection is shown on the right

in Figure 4.19. The weighted average of the statistical errors in the efficiency differ-

ences according to the phase space of the kaons in the B → K∗γ process is found to

be 0.7%. This is taken as the systematic uncertainty due to possible asymmetries in

the kaon selection.
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Track Reconstruction

In direct CP-violation searches involving final states with unequal numbers of positive

and charged tracks (e.g. K∗+ → K+π0 and charge conjugate mode), an overall asym-

metry between the reconstruction efficiency for positive and charged tracks translates

directly into an asymmetry in the reconstruction efficiency between the mode and

its charge conjugate mode. A study of such effects is performed in the same control

samples used to determine the charged-averaged track efficiency by considering each

charge separately. While statistically significant biases are observed, none exceed

0.5%; this is taken as a systematic uncertainty for these modes [38].

In searches involving an equal number of positive and negative tracks (e.g. K∗0 →
K+π−), overall tracking asymmetries of this kind have no affect on ACP : the rel-

ative inefficiency for reconstructing positive tracks and negative tracks affects both

the mode and its charge conjugate identically. It is possible only for phase space-

dependent effects to produce a systematic bias. This arises from the difference in

the momentum distribution of the the kaon and pion in the B → K∗γ decay. In

this case the asymmetry must be quantified at each momentum and corrected based

on the phase space of the charged particles in the decay to determine its effect on

ACP . The inclusive K0
S
→ π+π− decay provides a clean sample of pion tracks of

both signs with which to study momentum-dependent asymmetries in the tracking

efficiency. The momentum spectrum of the π+ in these decays can be compared

with the spectrum of π−. Since the decay is symmetric between the two daughter

pions, the spectra should be identical. An asymmetry at a particular momentum p

would distort the spectrum of one sign with respect to the other at that momentum,

yielding a non-zero value of A(p) defined as:

A(p) =
N+(p) − N−(p)

N+(p) + N−(p)
(4.9)

where N±(p) is the yield of π± in the sample with momentum p. The results are

shown in Figure 4.19. The systematic uncertainty is estimated by a weighted average

according to the reconstructed track momenta and found to be less than 1%. This

is assigned as a systematic error on the ACP measurement.
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Mode ζ with kaon selection ζ without kaon selection
K∗0 → K+π− −60.3 ± 10.7 −61.2 ± 5.2
K∗+ → K+π0 −62.7 ± 8.8 −61.4 ± 3.7

Table 4.8: ARGUS ζ with and without kaon selection.

4.8.4 Signal Extraction

The lineshape used to describe the mES distribution for the signal are treated in

various ways for the different modes, resulting in different systematic uncertainties.

For the mode K∗0 → K+π−, the parameters are free in the fit; the uncertainty in the

yield incorporates the uncertainty in the line shape. For the other modes, certain

parameters are fixed, and the uncertainties in these parameters lead to systematic

uncertainties which are estimated by varying the parameters and re-extracting the

signal yield. The variations in the fixed parameters are summarized in Table 4.4.

The errors on the mES widths are the range of variations used to estimate the un-

certainty on the signal yield. The Novosibirsk τ parameter is fixed and varied to the

number in parentheses.

For K∗0 → K0
S
π0, we fix the width to the Monte Carlo prediction with an empirical

correction from the K∗0 → K+π−, where the observed width is larger than that

predicted by the Monte Carlo simulation, as described in Section 4.7. The statistical

uncertainty in this correction defines the range of values shown in Table 4.4. The tail

parameter τ of the Novosibirsk function for this mode is varied between the Monte

Carlo prediction and zero, corresponding to the Gaussian limit, and the resulting

variations in the signal yield taken as another source of systematic uncertainty. For

the modes K∗+ → K+π0, the Novosibirsk width is free in the fit, but the tail pa-

rameter is fixed to the Monte Carlo expectation. The signal extraction is performed

with the tail parameter also floating, and the change in yield taken as a systematic

uncertainty. Finally, for the mode K∗+ → K0
S
π+, the width is varied within the un-

certainties of the empirical correction in the manner described for the K∗0 → K0
Sπ0.
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A second systematic uncertainty results from the relaxing of the particle identifica-

tion requirements for the off-resonance data used in the signal extraction for modes

with a charged kaon (K∗0 → K+π− and K∗+ → K+π0). The concern is that can-

didates with “fake” kaons may distort the mES distribution of this background and

bias the signal yield. The distribution of events with the kaon selection and the

loosened selection are compared in the Monte Carlo and found to be compatible.

A systematic uncertainty is derived by fixing the off-resonance ζ parameter by a

fixed amount relative to the on-resonance data, where the particle identification is

not relaxed, thus simulating the possibility that the two distributions have different

mES distributions. The range of possible offsets is determined from the statistical

uncertainty in the comparison of off-resonance data shown in Table 4.8, where the

ζ parameter with and without the kaon selection are compared and found to be in

agreement. The values are obtained with a loosened cos Θ∗
T selection to enhance the

statistics.

4.9 Cross checks

The reconstructed events in the signal region can be cross-checked by examining

kinematic quantities associated with the reconstruction of the K∗ and the photon.

For the K∗, we expect the reconstructed MKπ for the signal events to follow the

Breit-Wigner distribution. The MKπ distribution for the K∗0 → K+π− mode for

events in the region mES > 5.27 GeV/c2 and −200 MeV < ΔE∗ < 100 MeV is shown

in Figure 4.20. The distribution is consistent with the expected Breit-Wigner peaked

at 896 MeV/c2 with a width of 50 MeV/c2. A linear shape describes the background.

For the photon reconstruction, we expect that the ΔE∗ distribution is dominated by

the photon resolution, since the tracks in the K∗0 → K+π− are reconstructed with

greater precision. The ΔE∗ distribution for K∗0 → K+π− is shown on the right in

Figure 4.20 together with the distribution expected from the Monte Carlo simulation.

The background is described by a linear function. The agreement confirms the

accuracy of the Monte Carlo simulation of the photon reconstruction, as well as the

energy calibration of the EMC.
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Figure 4.20: a.) MKπ for K∗0 → K+π− mode candidates with mES > 5.27 GeV/c2

and −200 MeV < ΔE∗ < 100 MeV. b.) ΔE∗ for the K∗0 → K+π− mode candidates
with mES > 5.27 GeV/c2.

4.10 Averaged Results and Conclusions

The branching fraction of the decay B → K∗γ is measured in four decay modes of

the K∗ resonance along with the direct CP violation parameter ACP in the three tag-

ging modes as shown in Table 4.9. The signal reconstruction efficiency is determined

from Monte Carlo simulation with corrections and systematic uncertainties deter-

mined from a number of control samples in the data. Likewise, charge-dependent

reconstruction biases which may affect the ACP measurements are studied and con-

strained.

The branching fraction for the individual partial branching fractions are averaged to

determine a branching fraction for B0 → K∗0γ and B+ → K∗+γ. We do not average

the B0 and B+ modes due to the possibility of isospin violation which would result

in different branching fractions. In order to account properly for the uncorrelated

statistical and systematic errors and the correlated systematic errors, the average

branching fractions are determined by minimizing the χ2:

χ2 = �xT V −1�x (4.10)
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Mode B[B → K∗γ] ACP

/10−5

K∗0 → K+π− 4.24 ± 0.41 ± 0.22 −0.049 ± 0.094 ± 0.012
K∗0 → K0

S
π0 4.10 ± 1.71 ± 0.42

K∗+ → K+π0 5.52 ± 1.07 ± 0.38 0.044 ± 0.155 ± 0.021
K∗+ → K0

S
π+ 3.01 ± 0.76 ± 0.21 −0.190 ± 0.210 ± 0.012

Table 4.9: Branching fraction and ACP measurements for individual final states.

Average
B[B0 → K∗0γ] [4.23 ± 0.40 ± 0.22] × 10−5

B[B+ → K∗+γ] [3.83 ± 0.62 ± 0.22] × 10−5

ACP −0.44 ± 0.076 ± 0.012
−0.17 < ACP < 0.082 at 90% C.L.

Table 4.10: Averaged results for B[B0 → K∗0γ], B[B+ → K∗+γ] and ACP for all self
tagging modes.

where x is the vector of the two branching fraction measurements in each mode that

we wish to average, and V is the covariance matrix which accounts for the correlated

and uncorrelated uncertainties. The errors on the branching fraction are likewise

determined from the covariance matrix to account for correlations. Explicitly, the

covariance matrix takes the form:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2
1 + κ2

1 0 0 0

0 σ2
2 + κ2

2 0 0

0 0 σ2
3 + κ2

3 0

0 0 0 σ2
4 + κ2

4

⎞
⎟⎟⎟⎟⎟⎟⎠

+ F × (σ2
γ + σ2

L)+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 σ2
π0 σ2

π0 0

0 σ2
π0 σ2

π0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 σ2
K0

S
0 σ2

K0
S

0 0 0 0

0 σ2
K0

S
0 σ2

K0
S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.11)
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where F is the matrix composed of 1 in every entry. The matrices are indexed by

mode (1 for K+π−, 2 for K0
Sπ0, 3 for K+π0 and 4 for K0

Sπ+). The first matrix

accounts for the statistical error and systematic error which are particular to the

individual modes, the second term describes the photon selection and BB counting

systematic errors which are common across all modes, while the third and fourth

terms describe the common systematic errors in the π0 and K0
S reconstruction for

the appropriate modes. The individual systematic errors are tabulated in Table 4.7,

and the statistical error is obtained from the signal extraction fit. For the ACP

measurement, we average the three self-tagging modes in the same manner. The

averaged results are summarized in Table 4.10.



Chapter 5

The Search for B → ργ

5.1 Introduction

The B → ργ analysis proceeds by reconstructing the decays B0 → ρ0γ, ρ0 → π+π−

and B+ → ρ+γ, ρ+ → π+π0 in a manner analogous to the B → K∗γ analysis.

The analysis is peformed on 56.2 fb−1 of on-resonance data (61.7 × 106BB decays)

and 6.4 fb−1 of off-resonance data taken in 2000 and 2001 The presence of severe

backgrounds has led to a more aggressive approach in the background suppression

and signal extraction. As in the B → K∗γ analysis, the primary background is from

continuum π0 and η production and initial state radiation of high energy photons.

We can expect, however, that the background for B → ργ will be considerably worse

for several reasons:

• With the expectation B[B0 → ρ0γ] ∼ 10−6, the signal rate is ∼ 50 times

less than for B → K∗γ. This requires that the background be reduced by

this factor relative to the background in B → K∗γ in order to achieve the

same signal-to-background ratio. In addition, the B → K∗γ itself poses a

dangerous background as it is topologically identical and kinematically similar.

The excellent kaon/pion separation abilities of the DIRC is expected to allow

substantial suppression of this background relative to previous analyses.

• The natural width of the ρ resonance is three times wider than the K∗ (150 MeV/c2

86
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vs. 50 MeV/c2). In order to obtain the same signal efficiency, a resonance mass

selection three times wider must be used, introducing proportionately higher

background.

• The use of kaon identification to positively identify the kaon in the decays

K∗0 → K+π− and K∗+ → K+π0 reduced the combinatoric background in

the continuum by a factor of ∼ 5. The ability to reject kaons using pion

identification in the B → ργ does not result in the same benefit, since pions

are much more copiously produced than kaons in the continuum.

• The B+ → ρ+γ suffers an additional background from B+ → ρ+π0. The

branching fraction for this mode is unmeasured and expected to be ∼ 10 ×
B[B+ → ρ+γ]. The different helicity structure of the ρ decay in this mode is

used to suppress this background.

We employ a neural network and a maximum likelihood fit in three variables in order

to obtain optimal background suppression and signal sensitivity. As in the B → K∗γ

analysis, we make use of the off-resonance data as a control sample to cross check the

properties of the continuum background. In addition, we use the copiously produced

B → Dπ sample in the data, as well the B → K∗γ itself to cross check the signal

properties.

The current theoretical and experimental status of B → ργ is summarized in Ta-

ble 5.1. Isospin symmetry predicts that the rate of B+ → ρ+γ is twice that of

B0 → ρ0γ. The experimental limits lie approximately an order of magnitude above

the theoretical predictions.

The B → ργ analysis was performed “blind”: the event selection and signal ex-

traction procedure were studied and defined without knowledge of the yield or

distribution of events in the signal region of −0.2 GeV < ΔE∗ < 0.1 GeV and

mES > 5.27 GeV/c2.
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Author B[B0 → ρ0γ]/10−6 B[B+ → ρ+γ]/10−6

Bosch & Buchalla 1.6 ± 0.5
Ali & Parkhomenko 0.49 ± 0.17 0.85 ± 0.30
CLEO < 17 < 13
BELLE < 10.6 < 9.9

Table 5.1: Current theoretical predictions and experimental limits for B → ργ.
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Figure 5.1: a.) χ2 probability of the fitted vertex for Monte Carlo B0 → ρ0γ events.
b.) Reconstructed ρ resonance mass Mππ.

5.2 Event Reconstruction

The event reconstruction for B0 → ρ0γ and B+ → ρ+γ is similar to the analogous

modes in B → K∗γ, i.e. B0 → K∗0γ, K∗0 → K+π− and B+ → K∗+γ, K∗+ → K+π0.

The global event selection, photon, π0 and track reconstruction are identical to that

described in Sections 4.1, 4.2 , 4.3.4 and 4.3.1.

The ρ resonance is reconstructed in the decays ρ0 → π+π− and ρ+ → π+π0. For

the ρ0 reconstruction, we require that the χ2 probability of the vertex fit is at least

0.01. We select ρ candidates in a broad mass window of 0.520 < Mππ < 1.020 GeV/c2

in anticipation of utilizing the Mππ distribution in the maximum likelihood fit. Fi-

nally, we require that the CMS frame momentum of the ρ candidate lie between

2.35 < p∗ρ < 2.8 GeV/c. This selection has nearly no inefficiency for the signal, but

eliminates spurious ππ combinations from the decay of the other B meson. The
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reconstruction of the ρ candidates is illustrated in Figure 5.1.

A tight charged pion selection has been developed for this analysis. The primary

purpose of the pion selection is to veto the B → K∗γ decays which are topologically

identical apart from the charged kaon produced in the K∗ decay. Since the B → K∗γ

is expected to occur at a rate ∼ 50 times that of B → ργ, it is desirable to achieve

kaon rejection of about the same factor.

The basis for the pion selection used in this analysis is a veto on the loosest kaon

selection developed in Reference [44]. The performance of this selection is shown on

the left in Figure 5.2, where the pion efficiency and kaon misidentification rates have

been determined from a sample of D∗+ → D0π+, D0 → K+π− decays.

The kaons misidentified as pions by this selector typically have a lower number of

reconstructed Cherenkov photons Nγ in the DIRC. Further improvement in the selec-

tion can be obtained by comparing Nγ to the expected number of photons based on

the momentum and entrance angle of the track into the DIRC under the hypothesis

that it is a pion. The consistency of the observed Nγ to the expected number of pho-

tons is calculated and required to be greater than 0.0001 for tracks with momentum

greater than 0.6 GeV/c. With this additional requirement, a significant reduction in

kaon misidentification rate is achieved in the momentum range 1 − 3 GeV/c where

most of the kaons from B → K∗γ lie, at the cost of a modest decrease in pion

efficiency, as shown in Figure 5.2.

The B candidate in both modes are reconstructed from the photon and ρ can-

didates. The mES and ΔE∗ distributions for the two signal modes are shown in

Figure 5.3. Candidates with mES > 5.2 GeV/c2 and −0.3 < ΔE∗ < 0.3 are selected.

In the case of multiple candidates, the candidate with the smallest ΔE∗ is chosen.

The poorer resolution of the B+ → ρ+γ relative to the B0 → ρ0γ in both mES and

ΔE∗ results from the π0 in the final state, which has poorer resolution than the

charged pion in B0 → ρ0γ.
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Figure 5.2: Pion efficiency and kaon misidentification rates for pion selection a.)
without Cherenkov photon consistency cut and b.) consistency > 0.0001. The data
are from D∗0 → D0π+, D0 → K+π− decays

5.3 Continuum Background Supression

Due to the severe continnuum backgrounds in this analysis, we employ the event

topology variables R′
2 (the ratio of second and zeroth Fox-Wolfram moments in the

frame recoiling from the photon candidate) and the energy E∗
Ci in 18 cones centered

on the photon momentum in the CMS frame, in addition to the variables cos Θ∗
T ,

cos Θ∗
B and cos ΘH used in the B → K∗γ analysis in order to achieve more back-

ground suppression. We find that the vertex separation of the reconstructed signal

candidate with the rest of the event, as well as an analysis of the flavor content in the

event provide useful information for background rejection. The variables are com-

bined in a neural network (described in Section 5.3.4) to produce one background

suppression variable.

5.3.1 Vertexing: Δz (B0 → ρ0γ only)

The asymmetric energies of the colliding beams at PEP − II produce BB pairs

moving along the z-axis with βγ = 0.56. This allows the BB mesons to traverse on

average 250 μm in z before decaying. If one is able to reconstruct the decay points
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Figure 5.3: Left: mES for a.) B0 → ρ0γ and b.) B+ → ρ+γ candidates in the signal
Monte Carlo simulation. ΔE∗ for c.) B0 → ρ0γ and d.) B+ → ρ+γ.

of both the B0 and B0, the uncorrelated decay times of the two mesons results in an

exponential distribution for the difference of the flight distances:

Δz = zργ − ztag (5.1)

as for the individual flight distances. Here, zργ is the z position of the B0 → ρ0γ

decay and ztag is the z position of the “tag” B, that is the other B which did not

decay to ρ0γ. Since at least two charged tracks in the reconstructed B candidate are

needed for the vertexing algorithm, we use this variable only for B0 → ρ0γ.
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The continuum production which dominates the background originates from a com-

mon vertex; the tracks from the background candidates come from the same point

as the other tracks in the event. In this case the Δz distributions should be tighter

than for the B0 → ρ0γ, where the other tracks in the event come from an origin

displaced in z relative to the B0 → ρ0γ decay.

The Δz for each B0 → ρ0γ candidate is determined by a vertex-finding algorithm

utilizing the tight beam spot constraint in the y axis (approximate 15 μm ) together

with the reconstructed momentum of the B0 → ρ0γ candidate to constrain the decay

vertex of the tag B by pointing the BCP momentum back to beam spot to obtain the

production point (the Υ (4S) decay vertex) [46]. The momentum vector of the Btag

can be inferred from the beam momentum in the lab frame and the reconstructed

B0 → ρ0γ momentum. The flight path of the Btag is then constrained to lie along

the momentum vector extending from the reconstructed production vertex. The al-

gorithm proceeds iteratively by calculating a vertex for all tracks in the event not

associated with the B0 → ρ0γ, removing the track with largest χ2 contribution if

the overall χ2 is greater than 6, and recalulating the vertex until the χ2 is less than six.
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Figure 5.4: |Δz| distribution. a.) Signal Monte Carlo events and B0 → D−π+ events
in the data. b.) Monte Carlo simulated continuum events and off-resonance data
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The vertexing algorithm returns an error on Δz based on the fit errors. We require

that this error σ(Δz) is less than 400 μm. We further require that the measured |Δz|
is less than 4000 μm, approximately fifteen times the expected average decay distance

for the signal process. The signal |Δz| distribution is shown in Figure 5.4 for Monte

Carlo simulated signal events and a control sample of B0 → D−π+ events in the data.

The reconstructed distributions are in good agreement. Figure 5.4 also shows the

|Δz| distribution for the continuum Monte Carlo simulation and the off-resonance

data. The distribution is narrower than that for the signal process, as expected.

The Monte Carlo-simulated continuum background is in good agreement with the

off-resonance data.

5.3.2 Tagside Flavor

The decay of BB events proceed through weak interaction which allow flavor-tagging

of B decays via lepton and kaon production without fully reconstructing the decay.

In the case of B → ργ, the tracks in the event not associated with the signal process

originate from the decay of the other B. We then expect that these tracks will con-

tain net lepton, charm and kaon production.

The primary background for the B → ργ is the light hadronic continuum (uu/dd/ss

production) where the particles are produced through the flavor conserving strong in-

teraction. If kaons are produced, they are produced in pairs with zero net strangeness.

Lepton production occurs primarily through decays of pions and kaons. e+e− pairs

can be produced through photons conversions, Dalitz decays of the π0 and η, and

other internal conversion processes, where e+e− pairs are produced. Thus, we ex-

pect no net lepton or kaon generation in the continuum. In order to quantify these

heuristic notions in a discriminating variable, we consider the following quantities:

1. Net kaon number: NK = Number of K+ minus the number of K−.

2. Net electron number:Ne= Number of e+ minus the number of e−.

3. Net muon number: Nμ = Number of μ+ minus the number of μ−.

4. Net slow π number: NSl.π= Number of slow π+ minus the number of slow π−.
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5. K0
S

number: NK0
S
= Number of K0

S
.

Each quantity specifies net flavor production of some sort, leptons in the case of 2

and 3, strangeness in the case of 1, and charm (D∗) for 4. We identify charged kaons

with a tight selection for the charged kaons [44], electrons with momentum greater

than 0.5 GeV/c with tight electron selection [47] and muons with momentum greater

than 1.0 GeV/c with a tight muon selection [48]. Slow pions are selected from tracks

with momentum p∗ in the CMS frame less than 250 MeV/c with the requirement

that the momentum be correlated with the thrust axis T of the tag B requiring

| cos ΘT/p∗| > 0.8. The K0
S

candidates are obtained from pairs of oppositely charged

tracks with a successfully calculated vertex displaced at least 1 mm from the primary

vertex and Mππ = [0.480, 0.516] GeV/c2. We further require that cos Θ > 0.98, where

Θ is the angle between the vector pointing to the K0
S vertex and the reconstructed

momentum. The net flavor variable

F = |Ne| + |Nμ| + |NK | + |NSl.π| + NK0
S

(5.2)

then quantifies the net flavor production in the event. The flavor production in

B0 → D−π+ events from Monte Carlo simulation and data, along with the B0 → ρ0γ

candidates in the continuum Monte Carlo and off-resonance data is shown in Fig-

ure 5.5. Also shown is the net flavor for B− → D0π− events and B+ → ρ+γ back-

ground candidates. There is good agreement between the Monte Carlo simulation

and corresponding data. Since the tag-side flavor production is a property of generic

B decays, we expect that the flavor production will be identical for B0 → ρ0γ and

B0 → D−π+ (B0B0 production) and B+ → ρ+γ and B− → D0π− (B+B− produc-

tion). The distributions confirm that more net flavor is produced in B decays than

in the continuum.

5.3.3 Event Shape Variables

The differences in event topology between the continuum background and the signal

B → ργ can be quantified by a number of variables. For this analysis, we choose:
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Figure 5.5: Tag-side Flavor production. a.) B0 → D−π+ Monte Carlo and Data
(blue) compared with B0 → ρ0γ candidates in Continuum Monte Carlo and off-
resonance data (red). b.) B− → D0π− Monte Carlo and data compared with
B+ → ρ+γ candidates in Continuum Monte Carlo and off-resonance data.

1. cos Θ∗
T , cos ΘH , cos Θ∗

B: these angles are described in Section 4.5

2. Energies E∗
Ci: Energy contained in cones in 10◦ increments in the CMS frame

centered on the photon momentum, for a total of 18 energies.

3. R′
2: The ratio of second and zeroth Fox-Wolfram moments in the recoil frame

of the photon.

Energy Cones

Additional information on the event topology can be obtained by considering the

distribution of the tracks and photons in the event relative to the candidate. For

this purpose, we define “Energy Cones”: the momentum vector in the CMS frame

for each track and photon unassociated with the B candidate are summed in 10 deg

intervals ranging from parallel to anti-parallel relative to the photon momentum.

The result is eighteen variables E∗
Ci that characterize the distribution of energy in

the event (excluding the B candidate) relative to the photon momentum in the CMS.

The E∗
Ci for the signal Monte Carlo are shown in Figure 5.6, while the corresponding
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Figure 5.6: E∗
Ci for B0 → D−π+ events: Monte Carlo(histogram) and Data (points).

Left: Forward cones. Right: Backward cones.
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Figure 5.7: E∗
Ci for continuum Monte Carlo (histogram) and off-resonance data

(points). Left: Forward cones. Right: Backward cones.
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distributions from the continuum Monte Carlo compared with off-resonance data are

shown in Figure 5.7. The discrimination again comes from the jet-like structure of

the continuum background that places more energy in the cones parallel and anti-

parallel to the photon versus the more spherical distribution of BB events which

result in more evenly distributed energy cones.

The off-resonance data and continuum Monte Carlo in good agreement. The signal

distribution of the Monte Carlo is checked by comparing the B → Dπ Monte Carlo

with the events reconstructed in this channel in the data. This distribution is shown

in Figure 5.6; the Monte Carlo is in good agreement with the data.

The E∗
Ci individually carry little information; they must be combined with informa-

tion from the other cones, in particular the correlations between the cone distribu-

tions.

5.3.4 Neural Network

Introduction to Neural Nets

A neural network is used to combine the variables (cos Θ∗
T , cos Θ∗

B, cos ΘH , 18 cones

energies E∗
Ci, |Δz| (for B0 → ρ0γ), R′

2 and Flavor) into a single variable to separate

the signal and background processes. The basic structure of a neural network is

depicted in Figure 5.8. At the bottom of the diagram, event variables xi enter the

network as input nodes (red). Linear combinations of these variables are sent to the

hidden nodes (blue): the jth hidden node receives the linear combination:

yj =
∑

aijxj (5.3)

Each hidden node receives a different linear combination of the input variables. This

input is then transformed by an activation function, in this case the hyperbolic tan-

gent (tanh) function. The activation function allows the neural network to produce

non-linear responses to the input variables.

At each stage, there is bias node (violet) which provides a constant output. The bias

node is used to set the threshold for the node output.

A linear combination of the output from the hidden nodes g(yj)
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z =
∑

bjg(yj) (5.4)

is then passed to the output node where it is again transformed by an activation

function. The mathematical chain from input to output is also shown in Figure 5.8.

A neural network can in principle have many hidden layers and output nodes.

Input Nodes

Output Node

yj=Σaij xi

g(yj)

z=Σbj g(yj)

g(z)

x1 x2 x3x0

yj=Σaij xi

g(yj)

z=Σbj g(yj)

g(z)

Hidden Nodes

Figure 5.8: Basic structure of a single hidden layer neural network.

Training the Neural Network

The free parameters of the neural network are the coefficients aij and bj that are

used to form the linear combination of input nodes to the hidden nodes, and the

hidden node outputs to the output node, respectively. The optimal set of coefficients

are determined by a process known as back-propagation. The performance of the

neural network for any given set of coefficients is summarized by the sum-squared

error (SSE):
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Figure 5.9: MSE (mean squared error) vs. training cycle comparison for the training
(solid circles) and test (open circles). a.) the B0 → ρ0γ neural network. b.) the
B+ → ρ+γ neural network.

SSE(aij , bj) =
N∑

a=1

[NN( �xa; aij , bj) − F ( �xa)]
2 (5.5)

The �xa represents the vector of input variables for the event a, NN( �xa; aij , bk) is the

neural network output for this vector with the coefficients aij and bj , and F ( �xa)

is the desired output for this vector (e.g. = 0, if it is a vector corresponding to

a background event, or = 1, if it is a signal event). The SSE then represents a

“χ2” for the network configuration that can be minimized in a manner completely

analogous to a fit via gradient descent. This describes precisely the function of the

back-propagation algorithm: the derivatives of the SSE relative to changes in each of

the coefficients are evaluated and the coefficients adjusted accordingly and iteratively

to minimize the SSE.

Implementing the Neural Network

The neural network package used for this analysis is the Stuttgart Neural Network

Simulator (SNNS)[49][50]. Separate neural networks are implemented and trained

for B0 → ρ0γ and B+ → ρ+γ. In both cases, the neural networks have 10 hidden

layer nodes and one output node.
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Network Training

The network is trained in 500 cycles of back-propagation through half the Monte

Carlo signal and continuum background sample with weights updated after every

fifty events. The events from signal and background are presented in random order.

The resulting network and its output are validated on an independent Monte Carlo

sample and data control samples.

The training process is summarized in Figure 5.9. The network performance is

quantified by the Mean Squared Error (MSE) defined as:

MSE =
SSE

Number of Events

The MSE is evaluated after each training cycle both for the training sample and an

independent sample of Monte Carlo events (the “test” sample). If the MSE in the

test sample is considerably higher than the MSE in the training sample, the neural

network may have been “overtrained”: the neural network has optimized itself on a

feature that results from a statistical fluctuation.

In Figure 5.9, the network improves dramatically with only 100 cycles, followed

by small improvements beyond. The MSE of the test and training samples are in

agreement throughout the training, indicating that no overtraining has occurred.

Neural Network Output:

The neural network output from various samples are shown in Figures 5.10 and 5.11

for B0 → ρ0γ and Figures 5.12 and 5.13 for B+ → ρ+γ. In Figures 5.10 and

5.12, the signal and continuum background outputs are shown. The Monte Carlo

expectation for the continuum agree well with the off-resonance data. In order to

have a similar validation of the signal output, we evaluate the neural network output

from B0 → D−π+ events for the B0 → ρ0γ neural network and B+ → D0π+ for the

B+ → ρ+γ neural network. The data and Monte Carlo simulation of these samples

are shown in Figures 5.11 and 5.13. The neural network output for the data events

are in good agreement with the Monte Carlo simulation. The on-resonance sideband
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Figure 5.10: B0 → ρ0γ neural network output for a.) Signal B0 → ρ0γ Monte Carlo.
b.) Continuum Monte Carlo and off-resonance data.

NN Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v
e

n
ts

/0
.0

4

0

0.05

0.10

0.15

0.20

0.25

0.30

+π D
-→0B

NN Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v
e

n
ts

/0
.0

4

0

0.05

0.10

0.15

0.20

0.25

0.30

Continuum Background

Off-Resonance

On-resonance sideband

Monte Carlo

Data

a.) b.)

Figure 5.11: B0 → ρ0γ neural network output for a.) B → Dπ Monte Carlo and
data and b.) off-resonance data and on-resonance sideband

(events with MES < 5.27 GeV/c2 and |ΔE∗| < 0.5 GeV) is compared with the off-

resonance data. Here again, the distributions are in good agreement, demonstrating

that the presence of BB events does not significantly change the distribution of the

neural network output.

5.3.5 Background Suppression

The continuum background is suppressed with a selection on the neural network

output determined by maximizing the S2/(S + B). The optimization is performed
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Figure 5.12: B+ → ρ+γ neural network output for a.) B+ → ρ+γ Monte Carlo and
b.) Continuum Monte Carlo and off-resonance data.
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Figure 5.13: B+ → ρ+γ neural network output for a.) B− → D0π− Monte Carlo
and data and b.) off-resonance data and on-resonance sideband.

assuming that the fit will be performed in the Grand Side Band (GSB) of mES =

[5.2, 5.3] GeV/c2, ΔE∗ = [−0.3, 0.3] GeV and Mππ = [0.520, 1.020] GeV/c2 with B[B0 →
ρ0γ] = 10−6 and B[B+ → ρ+γ] = 2 · 10−6. The predicted signal and background ex-

pectations are obtained from the signal and continuum Monte Carlo simulation for

56.2fb−1 of on-resonance data. The background estimates in the signal box are made

by scaling the grand sideband yield by the ratio of ΔE∗ ×mES phase space between

signal box and the grand sideband region assuming a flat background distribution.

The optimization is shown in Figures 5.14. The maximum value of S2/(S + B) is

obtained by requring the neural network output to be greater than 0.91 and and 0.90
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for B0 → ρ0γ and B+ → ρ+γ, respectively. This corresponds to approximately 7.6

signal and 250 continuum background events for B0 → ρ0γ and 11.4 signal and 400

continuum background events for B+ → ρ+γ.
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Figure 5.14: S2/(S+B) optimization of neural network selection for B0 → ρ0γ (Left)
and B+ → ρ+γ (Right). The vertical line indicates the chosen selection.

5.3.6 Helicity Angle Cut

The decay mode B+ → ρ+π0 presents a serious background to B+ → ρ+γ due to

its large expected (though unmeasured) branching fraction of ∼ 2.5× 10−5, an order

of magnitude larger than the signal process. The analogous mode B0 → ρ0π0 for

B0 → ρ0γ occurs at much smaller rates (∼ 1 × 10−6) due to color suppression.

The recoil of the vector meson ρ+ against the pseudoscalar meson π0 in this decay

results in a cos2 ΘH helicity distribution as opposed to the sin2 ΘH distribution for

the ρ+ recoiling against the photon (see Section 4.5.3). While cos ΘH is included in

the neural network, the training of the neural network was based on separation of

the signal process from the continuum background; there is additional benefit from

using cos ΘH explicitly in suppressing the B+ → ρ+π0.

Figure 5.15 shows the distribution of the cos ΘH for B+ → ρ+π0 and for B+ → ρ+γ

after the neural network selection. While there is a clear depletion of events at large

cos ΘH , the B0 → ρ0π0 still has a distribution which is enhanced at large cos ΘH
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relative to the signal process.
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Figure 5.15: Helicity angle distributions of a.) B+ → ρ+π0 background and b.)
B+ → ρ+γ signal after the neural network output selection. c.) Optimization of
cos ΘH selection.

The current 90% confidence level limit for B+ → ρ+π0 from the CLEO collab-

oration is B[B+ → ρ+π0] < 4.2 × 10−5 [51]. Since the branching fraction of this

process is unknown, the uncertainty in the signal yield due to its contribution scales

linearly with the yield of B0 → ρ+π0 rather than the square root. As a result, we

optimize S2

S+B2 . Figure 5.15 shows the optimization of this variable. Based on this

optimization, we select events with | cos ΘH | < 0.6.

5.4 Signal Extraction

5.4.1 Event Rates

The expected background rates from Monte Carlo simulation of the generic contin-

uum and BB backgrounds and some exclusive decay modes of the BB are tabulated

in Tables 5.3 and 5.4 for B0 → ρ0γ and B+ → ρ+γ, respectively. The “preselection”

columns record the yield of events with a reconstructed B candidate in the region

5.2 < mES < 5.3 GeV/c2 and −0.3 < ΔE∗ < 0.3 GeV. For the purposes of comparing

how many of these events are close to the signal region of mES = 5.28 GeV/c2 and

ΔE∗ = 0, we divide the yield into events in the “signal box” defined as the region

5.27 < mES < 5.29 GeV/c2 and −0.2 < ΔE∗ < 0.1 GeV, and the sideband region



5.4. SIGNAL EXTRACTION 105

Description Efficiency (B0 → ρ0γ) (B+ → ρ+γ)
Global event selection 0.762 0.745
Photon eeconstruction 0.768 0.759
Track reconstruction 0.831 0.918
Pion Selection 0.671 0.815
π0 reconstruction N.A. 0.557
ρ selection 0.844 0.873
B candidate selection 0.924 0.959
Cumulative reconstruction (truth matched) 0.253 0.199
Cumulative reconstruction (all) 0.261 0.233

Background Suppression
Helicity selection N.A. 0.866
Neural Network selection 0.471 0.456
Cumulative Efficiency 0.123 0.092

Table 5.2: Reconstruction efficiency for B → ργ from Monte Carlo simulation.

which consists of the rest. The numbers are scaled according to the equivalent lu-

minosity of the sample to obtain predictions for the 56.2 fb−1 of data used in this

analysis. Additional exclusive decay modes were considered; only those found to

contribute more than 0.1 events are shown. Due to the low statistics of the generic

continuum background samples, the background expectations in the signal box after

the neural network selection (and the cos ΘH selection for B+ → ρ+γ) were obtained

by scaling the sideband yield after the selection by the ratio of the signal box yield

and sideband yield before the selection under the assumption that the events after

the selection follow a similar distribution.

5.4.2 Signal Extraction Strategy

While the background is predominantly from the continuum, there is a significant

contribution from BB decays. While we could extract the yield of each background

mode, we adopt instead the following simplified strategy for the signal extraction:
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Mode Cross section Preselection NN Selection
Sideband Signal Box Sideband Signal Box

Continuum
uds 2.09 nb 11897 1578 161 21.4
cc 1.35 nb 1737 192 62 6.8
τ+τ− 0.94 nb 2458 281 5 0.6

BB

Generic B0B0 0.525 nb 27.7 9.2 0
Generic B+B− 0.525 nb 26.5 8.3 0
B0 → K∗0γ 22.2 fb 1.8 6.4 0.4 2.6
B+ → K∗+γ 20.1 fb 3.8 0.6 0.9 0.2
B0 → X0

s γ 143 fb 9.1 1.6 2.1 0.7
B+ → X+

s γ 143 fb 8.4 2.1 1.9 0.9
B0 → ρ0π0 0.525 fb 0.2 0.7 0.0 0.2
B+ → ρ+π0 13.7 fb 1.2 0.8 0.2 0.1
On-resonance 276

Table 5.3: Expected backgrounds for B0 → ρ0γ in 56.2 fb−1 of on-resonance data.

Mode Cross section Preselection NN Selection
Sideband Signal Box Sideband Signal Box

Continuum
uds 2.09 nb 20944.6 2790.7 238.1 31.7
cc 1.35 nb 4191.2 463.3 98.7 10.9
τ+τ− 0.94 nb 1436.6 134.9 6.8 0.6

BB

Generic B0B0 0.525 nb 74 1.8 1.8
Generic B+B− 0.525 nb 81 5.0 1.7
B0 → K∗0γ 22.2 fb 10.7 2.5 2.6 0.8
B+ → K∗+γ 20.1 fb 11.7 5.0 2.6 1.8
B0 → X0

s γ 143 fb 30.3 5.8 3.5 0.9
B+ → X+

s γ 143 fb 30.5 10.5 2.6 0.5
B0 → ρ0π0 0.525 fb 0.1 0.1 0.0 0.0
B+ → ρ+π0 13.7 fb 7.2 13.0 0.6 1.3
On-resonance 306

Table 5.4: Expected backgrounds for B+ → ρ+γ in 56.2 fb−1 of data at the Υ (4S)
resonance. The expected yields in the last two columns include the cos ΘH selection.
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• The yield of signal events will be extracted by an extended maximum likelihood

fit in the manner described in Section 4.7 for the B → K∗γ, but in the three

variables mES, ΔE∗ and Mππ. This maximizes the sensitivity of the fit by

using the full information about the distribution of the signal and background

in each variable, rather than making a selection.

• The extraction will only have two components: a signal component, and a con-

tinuum component. We assume that all the background, despite the presence

of significant backgrounds from BB decays, can be adequately described by

the continuum distribution. This assumption will be checked by simulating

the BB backgrounds and assessing any biases in the fitting procedure.

5.4.3 Validation of Signal Extraction Procedure

A study was performed to check the signal extraction procedure, evaluate the sen-

sitivity of the analysis to the signal process, and determine the effect of BB back-

grounds. In these “toy” Monte Carlo studies, simulated events consisting of values of

mES, ΔE∗ and Mρ are randomly generated for the signal and background hypothe-

ses from the probability distribution functions summarized in Tables 5.5 and 5.6 for

B0 → ρ0γ and B+ → ρ+γ, respectively. Figures 5.16 and 5.17 show the distributions

from the off-resonance data used to obtain the background parameterizations.

Events for the combined signal and background distribution are generated according

to the expected signal and background yields given in Table 5.3 and 5.4, resulting in

a simulated “experiment” representing a possible outcome of the data. The actual

number of generated events for each hypothesis is allowed to vary according to Pois-

son statistics.

Each experiment is fit to the three-dimensional probability density function of signal

and background composed of the product of mES, ΔE∗ and Mππ distributions for

the signal and background hypotheses to determine the signal and background yield.

The signal description is identical to the generator: the same parameterizations and

parameters are used. For the background, the same functional parameterizations as

the generator are used, but the parameters are allowed to vary in the fit, with the
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B0 → ρ0γ Signal
mES Gaussian μ = 5.280 GeV/c2, σ = 2.5 MeV/c2

ΔE∗ Crystal Ball μ = −11.0 MeV, σ = 43.6 MeV
α = 0.981, β = 0.912

Mππ Breit-Wigner m0 = 767 MeV/c2, Γ = 155 MeV/c2

B0 → ρ0γ Background
mES ARGUS Threshold ζ = −54.0
ΔE∗ 2nd order polynomial p1 = −1.0, p2 = 0.30
Mππ Breit-Wigner+linear m0 = 767 MeV/c2, Γ = 155 MeV/c2,

p1 = −0.48, Fraction=0.205

Table 5.5: Parameterizations used for mES, ΔE∗, Mππ signal extraction studies in
the B0 → ρ0γ analysis.

B+ → ρ+γ Signal
mES Crystal Ball μ = 5.2793 GeV/c2, σ = 2.5 MeV/c2

α = 1.12, β = 2.4
ΔE∗ Crystal Ball μ = −29.0 MeV, σ = 57.0 MeV

α = 0.68, β = 7.0
Mππ Breit-Wigner m0 = 767 MeV/c2, Γ = 157 MeV/c2

B+ → ρ+γ Background
mES ARGUS Threshold ζ = −53.3
ΔE∗ 2nd order polynomial p1 = −1.2, p2 = −0.4
Mππ Breit-Wigner+linear m0 = 767 MeV/c2, Γ = 157 MeV/c2,

p1 = −0.64, Fraction=0.12

Table 5.6: Parameterizations used for mES, ΔE∗, Mππ signal extraction studies in
the B+ → ρ+γ analysis.
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Figure 5.16: mES, ΔE∗, Mππ distributions for B0 → ρ0γ candidates in the off-
resonance data.
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Figure 5.17: mES, ΔE∗, and Mππ distributions for B+ → ρ+γ candidates in the
off-resonance data.

exception of the ρ resonance fraction in the Mππ distribution, which is fixed. The

systematic uncertainties due to the fixed parameters is determined in Section 5.5.1.

In the first stage of the studies, we generate only signal and continuum background

events in each experiment, so that the generated and fitted distributions are consis-

tent. Later, we explore the effects of BB backgrounds. Table 5.7 summarizes the

mean number of generated signal and background events, the number of generated

background events and the mean error on the signal yield returned by the fit.
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Figure 5.18: ΔE∗ vs. mES distribution for B0 → ρ0γ candidates in BB background
Monte Carlo simulations. The left plot of each pair shows the raw distribution and
the right shows 10,000 events generated from a non-parameteric model.
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Figure 5.19: ΔE∗ vs. mES distribution for B+ → ρ+γ candidates in BB background
Monte Carlo simulations. The left plot of each pair shows the raw distribution and
the right shows 10,000 events generated from a non-parameteric model.
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Figure 5.20: mES, ΔE∗, Mππ projections for B0 → ρ0γ background candidates in
Monte Carlo-simulated BB events.
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Figure 5.21: mES, ΔE∗, Mρ projections for B+ → ρ+γ background candidates in
Monte Carlo-simulated BB events.
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Expected NS NB 〈δNS〉 δNS/NS

B0 → ρ0γ 7.6 250 4.4 0.57
B+ → ρ+γ 11.4 375 6.1 0.54

Table 5.7: Mean number of generated events, fitted yield and error and relative error
for a toy Monte Carlo study for B0 → ρ0γ and B+ → ρ+γ with no BB backgrounds.

5.4.4 B decay backgrounds:

The study of the signal extraction procedure thus far assumes that the background is

entirely continuum and ignores backgrounds from BB decays which are distributed

differently in mES, ΔE∗ and Mππ. We simulate the presence of these backgrounds

with two models:

• The ΔE∗ vs. mES distribution of these background is modeled two dimensions

using the Keys non-parametric model[52].This model simulates the distribution

as a sum of two-dimensional Gaussian distributions centered at each ΔE∗ vs.

mES point. The Mππ is modeled independently from a functional parameteri-

zation.

• Each variable is parameterized independently.

The ΔE∗ vs. mES distributions for these events are shown in Figures 5.18 and 5.19

together with their KEYS representation. The parameterized one-dimensional pro-

jections are shown in Figures 5.20 and 5.21. The difference in the observed bias

between these two models is taken as a systematic uncertainty.

We simulate uncertainties in the background rates by considering the possibility

of an underestimated kaon misidentification rate by doubling the b → sγ back-

ground rates, as well as enhancing the B+ → ρ+π0 rate to the upper limit of

B[B+ → ρ+π0] < 4.2 × 10−5 established by the CLEO collaboration.

The observed signal yields are shown in Figure 5.22 and 5.23 for B0 → ρ0γ and

Figure 5.24 and Figure 5.25 for B+ → ρ+γ. For the B0 → ρ0γ, the biases range from

−0.5 events to 0.8 events. For the B+ → ρ+γ, the biases range from −0.1 to 2.0

events. In both case, we take the full range of values as the systematic uncertainty
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due to biases from B decay backgrounds.
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Figure 5.22: Fitted signal yields for B0 → ρ0γ with B decay backgrounds modeled
using KEYS for ΔE∗ and mES: a.) No B backgrounds, b.) B backgrounds at
nominal Monte Carlo rates, c.) B backgrounds with b → sγ rates doubled.
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Figure 5.23: Fitted signal yields for B0 → ρ0γ with B decay backgrounds modeled by
one-dimensional parameterizations in mES, ΔE∗ and Mππ: a.) No B backgrounds,
b.) B backgrounds at nominal Monte Carlo rates, c.) B backgrounds with b → sγ
rates doubled.

5.5 Systematic Studies of PDF Parameterzations:

In the previous Monte Carlo studies, the signal distributions were assumed to be

known perfectly: the parameters of the fitted distributions are fixed in the fit to the

values used in the generation. This is also the case with the Mππ resonant fraction

in the background. In practice, these parameters carry uncertainties which result in
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Figure 5.24: Fitted signal yields for B+ → ρ+γ with B decay backgrounds modeled
with ΔE∗ and mES modeled with KEYS: a.) No B backgrounds, b.) B backgrounds
at nominal Monte Carlo rates, c.) B backgrounds with b → sγ rates doubled, and
d.) B backgrounds with B+ → ρ+π0 rate increased to B[B+ → ρ+π0] = 4.3 × 10−5.
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Figure 5.25: Fitted signal yields for B+ → ρ+γ with B decay backgrounds modeled
with one-dimensional parameterization in mES, ΔE∗ and Mππ: a.) No B back-
grounds, b.) B backgrounds at nominal Monte Carlo rates, c.) B backgrounds with
b → sγ rates doubled, and d.) B backgrounds with B+ → ρ+π0 rate increased to
B[B+ → ρ+π0] = 4.3 × 10−5.

systematic uncertainties on the extracted signal for each parameter fixed in the fit.

These uncertainties may be estimated by cross-checking the parameters in data con-

trol samples and varying the fixed parameters within the uncertainties. We obtain

the range of reasonable values for each parameter from the appropriate B → K∗γ

control channels. By varying each of these parameters according to these ranges, we

obtain the systematic uncertainty on the signal yield.

For the background parameters, the largest sample of continuum background occurs

within the on-resonance data itself. Thus, we allow the background parameters to
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float (with the exception of the resonant fraction in the Mππ) and incorporate the un-

certainty of these parameters into the statistical uncertainty in the yield determined

by the fit.

5.5.1 Uncertainties from Fixed Parameters

We identify the following fixed signal probability distribution function parameters

which may introduce systematic error due to uncertainty in their values:

• mES: The width of the signal mES distribution (resolution).

• ΔE∗: The peak position and width of the signal ΔE∗ distribution.

• Mππ: The fraction of ρ resonance contribution to the continuum Mππ distribu-

tion.

We obtain the range of uncertainty for the mES and ΔE∗ parameters from the B0 →
K∗0γ and B+ → K∗+γ shown in Figure 5.26. For the resonant fraction, we use the

off-resonance data. The parameters in the signal extraction are then offset from the

values used in the generation to determine any bias in the extracted signal yield.

The parameters from the B → K∗γ data, the parameter variations and the resulting

fractional offset in the mean fitted signal yield are summarized in Table 5.8. Each

study has a statistical precision of approximately 1.0%. In cases where the variations

are smaller than this uncertainty, 1.0% is taken as the systematic uncertainty. Based

on the variations seen in the study, we conservatively assign a 5% systematic on

the signal yield for B0 → ρ0γ and 10% to B+ → ρ+γ due to uncertainties in these

parameters. In each case, the range covers the sum in quadrature of all the observed

observations (2.4% for B0 → ρ0γ and 7.0% for B+ → ρ+γ).

5.5.2 Systematic Error on the Neural Network Selection

The efficiency of the neural network output selection for both modes is cross-checked

using the B → Dπ decays as control samples. For this purpose, we use the B0 →
D−π+ decays to study the selection B0 → ρ0γ, and B− → D0π− for B+ → ρ+γ
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Figure 5.26: Fitted distributions of a.) mES and b.) ΔE∗ for B0 → K∗0γ, and c.)
mES and d.) ΔE∗ for B+ → K∗+γ.

decays. To obtain a systematic uncertainty, we compare the efficiency for the signal

Monte Carlo to the control samples in both the data and the Monte Carlo simula-

tion for events with neural network output greater than 0.9. The largest discrepency

between these three samples is taken as the systematic uncertainty. While we do not

expect the neural network behavior of the control samples to be exactly the same

as the signal processes (for example, due to different different helicity structure of

the meson decays), we conservatively take any difference as a systematic uncertainty.

Based on the results tabulated in Table 5.9 we assign a relative systematic uncer-

tainty of 8% and 6% for the neural network selection in B0 → ρ0γ and B+ → ρ+γ,

respectively. The efficiencies tabulated here are somewhat different from those in Ta-

ble 5.2 due to the fact that the helicity requirement is not applied in the B+ → ρ+γ

and that the selection is slightly different for B0 → ρ0γ.
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B0 → K∗0γ Fit Parameter Variation Fitted Yield Variation
B0 → ρ0γ (%)
mES Width 2.69 ± 0.17 MeV/c2 ±0.2 MeV/c2 +0.05/ − 0.08
ΔE∗ Peak −11.0 ± 4.1 MeV ±5.0 MeV −0.3/ + 1.4
ΔE∗ Width 44.5 ± 4.4 MeV ±5.0 MeV −0.2/ + 0.2
Mππ Res. Frac. 0.205 ± 0.045 ±0.05 +1.4/ − 0.3

B+ → K∗+γ Fit Parameter Variation Fitted Yield Variation
B+ → ρ+γ (%)
mES Width 3.09 ± 0.34 MeV/c2 ±0.34 MeV/c2 +3.3/ − 5.3
ΔE∗ Peak −31.2 ± 8.6 MeV ±8.6 MeV −1.5/ + 2.2
ΔE∗ Width 58.1 ± 8.3 MeV ±8.3 MeV −2.2/ − 1.0
Mππ Res. Frac. 0.120 ± 0.020 ±0.02 +3.4/ − 2.3

Table 5.8: Signal probability distribution function parameters obtained from B →
K∗γ control samples and systematic uncertainties on the average signal yield result-
ing from variations on parameters.

Mode B → ργ MC B → Dπ MC B → Dπ Data
B0 → ρ0γ 52.5 ± 1.7% 53.5 ± 1.1% 56.5 ± 0.5%
B+ → ρ+γ 39.7 ± 1.6% 41.5 ± 0.9% 42.0 ± 0.6%

Table 5.9: Efficiency for the neural network selection for the signal B → ργ Monte
Carlo and B → Dπ control samples in Monte Carlo and data.

5.5.3 Consistency Check: B → K∗γ

As a final consistency check, we can look at an orthogonal subspace of events based

on the particle identification requirements. For the B0 → ρ0γ, the relevant sample

are those events for which one track passes the pion selection and one fails. For the

B+ → ρ+γ, the sample consists of events where the pion track fails the pion selection.

We expect these events to be populated heavily by the B0 → K∗0γ, K∗0 → K+π−

in the first case, and B+ → K∗+γ, K∗+ → K+π0 in the latter. We run the entire

analysis on the B → K∗γ Monte Carlo with the identical selection criteria up to the

particle identification to obtain efficiencies and probability distribution functions for

the B → K∗γ. We then fit these samples in the on-resonance data to check that
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Efficiency (%) Fitted Yield (Events) Expected Yield (Events)
B0 → K∗0γ 9.3 238.6 ± 17.3 243 ± 26
B+ → K∗+γ 3.26 73.5 ± 11.2 77 ± 13

Table 5.10: Results of signal extraction procedure on B → K∗γ-enhanced sample
with comparison to the expected yield based on the measured branching fractions
and efficiencies predicted by the Monte carlo simulation.

the yield obtained is consistent with the known branching fractions and efficiencies.

This procedure cross checks the entire analysis chain up to the particle identification

requirements.

The mES, ΔE∗ and Mπ+π− distributions for the two B → K∗γ modes are shown in

Figure 5.27. Since the kaon mass hypothesis is not applied to the meson reconstruc-

tion (the kinematics and mass are calculated as a ππ combination), the ΔE∗ and

Mππ are offset to lower values and distorted from what is expected for a properly

reconstructed B → K∗γ candidate.

The corresponding on-resonance data is shown in Figure 5.28. A clear cluster of

events can be seen at the B mass (5.28 GeV/c2), with the expected negative offset

in the ΔE∗. The fitted and expected yields are shown in Table 5.10. The observed

yields are in agreement with the expectations.

Systematic Uncertainty B0 → ρ0γ B+ → ρ+γ
Selection Criteria (%) (%)
B Count 1.14 1.14
γ Eff. 1.5 1.5
π0 Eff. N/A 5.0
π0/η Veto 1.0 1.0
γ Dist Cut 2.0 2.0
Tracking Eff. 2.4 1.3
π Selection 6.0 3.0
Neural Network 8.0 6.0
Fit Distributions 5.0 10.0
Total 11.8% 13.4%

Table 5.11: Summary of systematic errors for B → ργ
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Figure 5.27: Parameterized distributions of a.) mES, b.) ΔE∗ and c.) Mππ for
B0 → K∗0γ Monte Carlo and d.) mES, ΔE∗ and Mππ for B+ → K∗+γ Monte Carlo.

5.5.4 Summary of Systematic Uncertainties

Table 5.11 summarizes the systematic uncertainties in the reconstruction efficiency

for B → ργ. Many of the systematic uncertainties overlap with the B → K∗γ

analysis due to the common photon reconstruction and identical topology of the

events. The differences are primarily in the efficiency of the neural network selection

and the resolution uncertainties. The latter have been translated into uncertainties

in the fit distributions used in the signal extraction.

Mode Yield 90% C.L. Yield Bias Efficiency
Events Events Events (%)

B0 → ρ0γ 3.1 ± 4.2 9.5 [-0.5,0.8] 12.3
B+ → ρ+γ 4.6 ± 5.8 13.5 [-0.1,2.0] 9.2

Table 5.12: The fitted yields, biases from BB backgrounds, reconstruction efficiencies
for B0 → ρ0γ and B+ → ρ+γ.
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Figure 5.28: Distributions of ΔE∗ vs. mES for B → K∗γ-enhanced sampled in the
on-resonance data. a.) B0 → ρ0γ candidates in which one fails the pion selection,
b.)B+ → ρ+γ candidates in which the charged pion candidate fails the pion selection.

5.6 Results

Before unblinding the signal yield, the fit is performed to obtain the − logL value

of the fit without disclosing any of the parameters. The results are compared to

the distributions from the toy Monte Carlo exeriments, as shown in Figure 5.29.

In the toy Monte Carlo experiments, the events are actually generated from the

parameterizations; the distribution of − logL from these experiments represents the

quality of fit from a sample of experiments where the fit parameterizations perfectly

describe the data. The comparison shows that the − logL values in the data are

consistent with the range expected from the toy Monte Carlo experiments, indicating

that the data set is well-modeled by the fit hypotheses.

The unblinded ΔE∗ vs. mES distributions are shown in Figure 5.30. There is no

visible evidence for a signal. The fitted yields are:

• B0 → ρ0γ: 3.1 ± 4.2 Events

• B+ → ρ+γ: 4.6 ± 5.8 Events

The mES and ΔE∗ projections in the signal region defined by ΔE∗ = [−0.2, 0.1] GeV

for the mES projection and mES > 5.27 GeV/c2 for ΔE∗ projection are shown in Fig-

ure 5.31. The projections are visibly consistent with the full multivariate result.
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Figure 5.29: Minima of − logL of the signal extraction fit (arrow) compared with
toy Monte Carlo distributions for a.) B0 → ρ0γ and b.) B+ → ρ+γ).
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Figure 5.30: ΔE∗ vs. MES distributions for a.) B0 → ρ0γ and b.) B+ → ρ+γ.

In the absence of a significant signal yield, we set 90% confidence level limits

on the branching fractions. We determine the 90% confidence level maximum yield

allowed by the observed data by refitting the data with increasing fixed signal yield

and evaluating the − logL of the fit as show in Figure 5.32. The maximum yield is

defined as the point at which the − logL of the fit deviates by 0.82 (corresponding to

a two-sided 90% confidence level interval) from the minimum − logL which defines

the central value. For conservatism, we subtract the minimum observed bias from

our systematic studies: for B0 → ρ0γ we add 0.5 events, and for B+ → ρ+γ, we

add 0.1 events to the signal yield. This yield is then divided by the signal efficiency



5.6. RESULTS 123

]2 [GeV/c
ES

 M

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

2
E

v
e

n
ts

/2
.0

 M
e

V
/c

0

2

4

6

8

10

12

14
a.)

]2 [GeV/c
ES

 M

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

2
E

v
e
n
ts

/2
.0

 M
e
V

/c

0

2

4

6

8

10 b.)

 E [GeV]Δ
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
v
e

n
ts

/2
0

 M
e

V

0

2

4

6

8

10

c.)

 E [GeV]Δ
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
v
e

n
ts

/2
0

 M
e

V

0

1

2

3

4

5

6

7

8 d.)

Figure 5.31: Fit projections: mES fit projections for a.) B0 → ρ0γ and b.) B+ → ρ+γ
for candidates with −0.2 < ΔE∗ < 0.1 GeV. ΔE∗ fit projections for c.) B0 → ρ0γ
and d.) B+ → ρ+γ for candidates with mES > 5.27 GeV/c2.
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reduced by one standard deviation of the systematic uncertainty to determine the

corresponding yield of events in the dataset. Finally, to obtain the branching fraction,

we divide by the estimated number of BB events in the sample, again lowered by one

standard deviation. The procedure is tabulated in Table 5.12, resulting in B[B0 →
ρ0γ] < 1.5 × 10−6 and B[B+ → ρ+γ] < 2.8 × 10−6.



Chapter 6

Conclusions

6.1 Interpretation of Results

The results of the B → K∗γ and B → ργ analyses are summarized in Tables 6.1

and 6.2 together with the CLEO measurements and recent preliminary results from

the BELLE collaboration. The predictions of Ali and Parkhomenko [24] are also

shown as a representative theoretical prediction.

6.1.1 B → K∗γ Analysis

The BABAR B → K∗γ measurements represent an improvement in precision over the

the CLEO results as expected from the increase in statistics. The preliminary BELLE

result represents an update of their analysis with approximately three times more

data. The branching fraction measurements from the three experiments are compat-

ible, and no experiment observes evidence for direct CP violation. The theoretical

predictions of the branching fraction are all quite high; nearly twice the experimental

measurements. It has been suggested that the form factor F B→K∗
1 (0) calculated in

the light cone sum rule approach used in these calculations may be incorrect. The

basis for this is that the predicted ratio ζ = F B→ρ
1 (0)/FB→K∗

1 (0) = 0.76 ± 0.06 in

this approach suggests a significantly higher form factor for the B → K∗ transition
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BB B[B0 → K∗0γ] B[B+ → K∗+γ] ACP

(/106) (/10−5) (/10−5) (%)
BABAR 22.7 4.23 ± 0.40 ± 0.22 3.83 ± 0.62 ± 0.22 −4.4 ± 7.6 ± 1.2
CLEO [31] 9.7 4.55 ± 0.70 ± 0.34 3.76 ± 0.89 ± 0.28 8.0 ± 13.0 ± 3.0
BELLE (prelim.)[53] 31.7 4.08 ± 0.35 ± 0.26 4.92 ± 0.59 ± 0.37 3.2 ± 6.9 ± 2.0
Ali and 7.2 ± 2.7 7.2 ± 2.7 < 0.5%
Parkhomenko

Table 6.1: Experimental results on B → K∗γ with theoretical predictions

BB B[B0 → ρ0γ] B[B+ → ρ+γ]
(/106) (/10−6) (/10−6)

BABAR 61.7 < 1.5 < 2.8
CLEO [31] 9.7 < 17 < 13
BELLE (prelim.) [55] 45.1 < 5.7 < 7.2
Ali and Parkhamenko 0.5 ± 0.2 0.9 ± 0.4

Table 6.2: Experimental results on B → ργ with theoretical predictions

relative to the B → ρ transition. Due to the hard recoil of the daughter meson rela-

tive to its mass in this process, it is difficult to explain why the two processes should

be so different [54]. Indeed, the lattice QCD calculations suggest that the differ-

ence is small, albeit in a different kinematic region [19]. A comparison of F B→K∗
1 (q2)

calculated using the light cone sum rule to the points obtained in the lattice QCD cal-

culations shows that the former are consistently higher. Together, these arguments

suggests that the F B→K∗
1 (0) form factor obtained by this method may be artificially

high, resulting in a similar artificial enhancement of B[B → K∗γ].

6.1.2 B → ργ Analysis

The limits obtained on B[B → ργ] represent a significant improvement over the

published CLEO results. While the improvement is due in part to the large increase

in statistics, this accounts for only a factor of ∼ 2.5 in sensitivity. The additional

gain in sensitivity (a total of about a factor of ten in B[B0 → ρ0γ] and five in
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B[B+ → ρ+γ]) can be attributed to the improved background suppression and signal

extraction techniques. A preliminary BELLE result is also shown in Table 6.2 [55].

Even the most optimistic prediction of B[B+ → ρ+γ] = 1.53 × 10−6 [22] is a factor

of two lower than the BABAR limits.

A bound on |Vtd/Vts| can be obtained from Equation 1.24 using the limits on B[B →
ργ] and the measurement of B[B → K∗γ]. By assuming isospin symmetry (2 ×
B[B0 → ρ0γ] = B[B+ → ρ+γ] ≡ B[B → ργ]), the likelihood curves for the two

modes can be combined to obtain a single limit B[B → ργ] < 2.3×10−6. This results

in a limit on the ratio B[B → ργ]/B[B → K∗γ] < 0.06. Taking the conservative

limits on the parameters ζ = 0.7 and ΔR = −0.25, we derive a limit |Vtd/Vts| < 0.4.

An more detailed analysis of the constraint has been performed by Ali and Lunghi

[56]. The result is conveniently summarized in the unitarity triangle shown in Fig-

ure 6.1. The figure shows the bound expressed as a maximum radius from the lower

right point of the unitarity triangle. The bound is compared to analogous constraints

from B0
d mixing and Bs mixing; while the bound from B[B → ργ] is still not com-

petitive, with an additional factor of two in sensitivity of B[B → ργ], non-trivial

constraints will be possible. Observation of B → ργ will also constrain the radius

from within.

6.2 Future Prospects

The BABAR detector continues to accumulate data at a rapid rate. Within a few

years, it is likely that a sample of BB events an order of magnitude larger than that

analyzed here will be available for analysis.

For B → K∗γ, the branching fractions are likely to be measured with such precision

(a few percent) that systematic uncertainties may be become dominant. We have

already shown that B → K∗γ is a useful experimental testing ground for more chal-

lenging searches like B → ργ. It is likely that precision measurements of B → K∗γ

branching fractions may likewise become a testing ground for the theory of B decays

as theorists improve their calculations. Currently, there is considerable theoretical

interest in B → K∗γ phenomenology in the form of predictions of isospin violation
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Figure 6.1: Current experimental constraints on the CKM Unitarity Triangle [56].

(where B[B+ → K∗+γ] �= B[B0 → K∗0γ]) and CP violation. With larger data

sets and more precise measurements, we may soon be able to conclusively confirm

or refute these predictions. Since the theoretical framework for these predictions is

rather general and applied to the study of many decay modes of the B meson, such

comparisons will have general ramifications for the robustness of these theoretical

approaches.

For B → ργ, despite the substantial gains in sensitivity realized in this analysis from

a considerably larger data sets and better background suppression, we are still quite

far from making an observation of this mode. Limits on B[B → ργ] that would

impose non-trivial constraints on the CKM matrix require about a factor of two in

sensitivity over the current limits; this can be accomplished with four times more

data. At BABAR, this may be forthcoming on the time scale of two years.

It is desirable, however, to make a significant observation of this mode. In this case,

improvements in the analysis are necessary. There are several areas in which gains in

sensitivity can be made. First, the net flavor information used in the neural network

is far from the optimal use of this information. Separately categorizing the flavor
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into electron, muon and kaon-tagged tracks and using the the momentum of the

track may afford significant increases in sensitivity. Second, the rejection of π0 and

η candidates might be improved by a more general veto. The current veto does not

reject cases where the photon accompanying the decay converts in the material or

proceeds through an internal conversion process (Dalitz decay). The veto will also

fail if a track is mistakenly matched to the EMC deposition created by the accom-

panying photon in the π0/η decay. If explicitly reconstructed conversion candidates,

as well as single electron candidates and charged EMC depositions are also paired

with the photon candidate in the veto, it may be possible to reject some part of

this background. A third possibility is to include the neural network in the signal

extraction fit rather than imposing a selection on it. It is hoped that some or all

of these possible improvements can be explored in the next iteration of the analysis

with significant enhancement in the sensitivity.
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